Supplementary Materials

Appendix A: MRF Material and Energy Balances and Cost Estimation

Table A.1: UK household recycling stream composition estimates (2017) [1]	3
Table A.2: Separation efficiencies of MRF processes [2].	4
Table A.3: Detailed breakdown of MRF stream flow rates into each stage by waste	
component	5
Table A.4: Equipment cost estimation for MRF system	6
Table A.5: Lang factor for solid processing system [4]	7
Table A.6: Variable operating cost for MRF system.	8
Table A.7: Fixed operating cost for MRF system [4]	8
Table A.8: Cost of baling wire for different type of recyclable materials	9
Table A.9: Unit price of baling wire [6].	10
Table A.10: Baling specification [7]	10
Table A.11: Baled material density, $\rho_{R,i}$ [7]	11
Table A.12: Specification of wire per bale of materials.	11
Table A.13: Cost of electricity for different MRF equipment.	
Table A.14: Cost of fuel required for rolling stock.	14
Table A.15: Cost of personnel for MRF.	15
Table A.16: Revenues generated from recyclable products from MRF	17

Appendix B: Gasification-H₂ System Material and Energy Balances and Cost Estimation

19
21
23
24
25
26
27
28
29
30

Appendix C: Heat Integration and Utility System for Gasification-H₂ System

Table C.1: Stream data and classification.	32
Table C.2: Power balance of gasification-H ₂ system	
Figure C.1: CHP network design for Gasification-H ₂ system.	

Appendix A

MRF Material and Energy Balances and Cost Estimation

Waste category	Waste component	Kerbside Household Recycling	HWRC Household Recycling	Bring Site Recycling	Street Bins Recycling	"Other Means" Household Recycling	Total	Mass fraction (%)
Card and paper	Papers	1640101	68471	35690	489	11	1744762	30.05
	Cards	1078003	173283	16608	348	9	1268251	21.84
Metals	Ferrous metals	191947	215862	3761	78	20	411668	7.09
	Non-ferrous metals	68837	107068	1646	27	11	177589	3.06
Glass		1265274	50658	149967	954	9	1466862	25.26
Plastics	PET bottles	153213	13624	1423	68	14	168342	2.90
	HDPE bottles	76849	6833	714	34	7	84437	1.45
	Other plastic bottles	80283	7139	746	36	8	88212	1.52
	Dense plastic non-bottles	169714	15435	1613	77	16	186855	3.22
	Plastic films and bags	19552	1276	170	9	0	21007	0.36
Textiles		15198	82749	46835	3	23	144808	2.49
Other wastes		9152	33007	1005	0	0	43164	0.74
	TOTAL						5805957	100.00

Table A.1: UK household recycling stream composition estimates (2017) [1].

Note:

1. HWRC: Household Waste Recycling Centres

2. The data has been refined to suit the present study. Please refer to WRAP National Household Waste Composition 2017 report [1] for the detailed breakdown of waste components and compositions.

Table A.2: Separation efficiencies of MRF processes [2].

	Separation stage											
Waste component	Manual sorting and vacuum	Trommel	Ballistic separator	Magnet	Eddy current separator	Air classifier	Optical/NIR sorter - PET	Optical/NIR sorter - HDPE	Optical/NIR sorter - Mixed rigid plastics			
Cards and papers			91									
Ferrous metals				88								
Aluminium					87							
Glass		10				87						
PET							83					
HDPE								83				
Mixed rigid plastics	81	5							83			
Other materials		95										

Assumptions:

1. The separation efficiency for ballistic separator was assumed to be the same as disc separator.

2. The separation efficiency for Optical/NIR sorter - Mixed rigid plastics was assumed to be the same as Optical/NIR-PET/HDPE.

3. The separation efficiency for air classifier was assumed to be the same as glass breaker screen.

4. Any non-recyclable materials in each category were separated from the associated separation stage, except:

a. The non-recyclable plastics was separated in manual sorting to prevent downstream operational issues.

b. The remaining papers and cards, metals and other materials were rejected at the glass separation stage.

		Input flow to (t/h)							
Waste category	Waste component	Manual sorting	Paper/card separation	Metal separation	Glass separation	Plastic sorting			
Card and papar	Cards and papers	9.24	9.24	0.83	0.83	0.00			
Card and paper	Non-recyclable	0.37	0.37	0.00	0.00	0.00			
	Ferrous metals	1.13	1.13	1.13	0.14	0.00			
Metal	Aluminium metals	0.49	0.49	0.49	0.06	0.00			
	Non-recyclable	0.26	0.26	0.26	0.00	0.00			
Glass	Glass	4.60	4.60	4.14	4.14	0.54			
Glass	Non-recyclable	0.08	0.08	0.08	0.08	0.00			
	PET bottles	0.54	0.54	0.54	0.54	0.54			
Plastics	HDPE bottles	0.27	0.27	0.27	0.27	0.27			
Flastics	Mixed rigid plastics	0.66	0.13	0.12	0.12	0.12			
	Non-recyclable	0.28	0.00	0.00	0.00	0.00			
Other materials	Organics and inorganics	0.60	0.60	0.03	0.03	0.00			
	Total	18.52	17.70	7.89	6.21	1.46			

Table A.3: Detailed breakdown of MRF stream flow rates into each stage by waste component.

Itom no	Equipment	Reference	Base cost		Base Year		Size		Coolo footor	Cooled cost (C)	Dresent Veer	Lovalized cost (C)	Loveliged cost (million C)
Item no.	Equipment	Reference	USD	GBP	base tear	Base	Current	Unit	Scale factor	Scaleu Cost (2)	Present rear	Levensed cost (£)	Levelised cost (million £)
1	Conveyor	[2]	46000	28980	2012	30	18.52	t/h	0.6	21696.48	2019	22123.29	0.022
2	Drum feeder	[2]	150000	94500	2012	30	18.52	t/h	0.6	70749.41	2019	72141.16	0.072
3	Vacuum	[2]	150000	94500	2012	10	0.54	t/h	0.6	16346.60	2019	16668.16	0.017
4	Trommel	[2]	125000	78750	2012	45	17.70	t/h	0.6	44989.28	2019	45874.29	0.046
5	Ballistic separator	[3]		60000	2009	10	17.70	t/h	0.6	84515.67	2019	96531.50	0.097
6	Magnet	[2]	35000	22050	2012	2	7.89	t/h	0.6	50222.50	2019	51210.46	0.051
7	Eddy current separator	[2]	128000	80640	2012	12	7.89	t/h	0.6	62682.96	2019	63916.04	0.064
8	Air classifier	[2]	62500	39375	2012	36	6.21	t/h	0.6	13712.33	2019	13982.07	0.014
9	Optical/NIR sorter - PET	[2]	225000	141750	2012	10	1.46	t/h	0.6	44756.59	2019	45637.02	0.046
10	Optical/NIR sorter - HDPE	[2]	450000	283500	2012	10	1.46	t/h	0.6	89513.18	2019	91274.05	0.091
11	Optical/NIR sorter - Mixed rigid pl	[2]	450000	283500	2012	10	1.46	t/h	0.6	89513.18	2019	91274.05	0.091
12	Baler - cards and papers	[2]	550000	346500	2012	51	8.41	t/h	0.6	117495.40	2019	119806.72	0.120
13	Baler - ferrous metals	[2]	530000	333900	2012	30	1.00	t/h	0.6	43283.88	2019	44135.34	0.044
14	Baler - non-ferrous metals	[2]	530000	333900	2012	30	0.42	t/h	0.6	25957.90	2019	26468.53	0.026
15	Baler - plastics	[2]	530000	333900	2012	30	1.31	t/h	0.6	50911.76	2019	51913.28	0.052
	TOTAL											852955.94	0.853

Table A.4: Equipment cost estimation for MRF system.

Note:

1. Equipment costs for MRF were obtained from [2], except ballistic separator which was obtained from [3].

2. Balers include single ram and dual ram ballers. Single ram ballers are used for paper and cardboards while dual ram balers are used for metals and hard plastics. All other materials were assumed to be collected on loose packing.

3. Papers and cardboards were screened by ballistic separator instead of disc screen.

4. The cost for optical/NIR for mixed rigid plastics was assumed to be the same as optical/NIR for HDPE.

5. Base cost included equipment and installation costs.

6. CEPCI (2009) = 521.9; CEPCI (2012) = 584.6; CEPCI (2019, November Prelim.) = 596.1.

7. Currency conversion rate of 1 USD = 0.63 GBP (2012) was assumed.

Component	Factor
<u>Direct cost</u>	
Delivered cost of equipment	1.00
Installation	0.45
Instrumentation and control	0.18
Piping	0.16
Electrical systems	0.10
Buildings (including services)	0.25
Yard improvements	0.15
Service facilities	0.40
Total direct cost	2.69
<u>Indirect cost</u>	
Engineering and supervision	0.33
Construction expenses	0.39
Legal expenses	0.04
Contractor's fee	0.17
Contingency	0.35
Total indirect cost	1.28
Working capital	0.70
Total capital investment	4.67

Table A.5: Lang factor for solid processing system [4].

Table A.6: Variable operating cost for MRF system.

No.	Component	Estimation	Cost (million £/y)
1	Baling - wire cost	Table A.8 - Table A.12; Eq. (A.1)- (A.5)	0.14
2	Electricity	Table A.13; Eq. (A.6)	0.05
3	Fuel	Table A.14; Eq. (A.6)	0.97
4	Rejects disposal cost	Landfill gate fees and tax = 114.35 \pounds/t ; EfW gate fees = 100 \pounds/t (March 2020) [5]	2.07
	Total variable cost		3.23

Table A.7: Fixed operating cost for MRF system [4].

No.	Specification	Estimation	Unit	Cost (million £/y)
1	Maintenance	10%	indirect capital costs	0.013
2	Personnel	Table A.1.	5; Eq. (A.7) and (A.8)	0.287
3	Laboratory costs	0%	personnel costs	0.000
4	Supervision	0%	personnel costs	0.000
5	Plant overheads	50%	personnel costs	0.143
6	Capital charges	10%	indirect capital costs	0.013
7	Insurance	1%	indirect capital costs	0.001
8	Local taxes	2%	indirect capital costs	0.003
9	Royalties	1%	indirect capital costs	0.001
	Direct production cost			0.461
10	Sales expense	20%	direct production cost	0.092
	General overheads			
	Research and developments			
	Total fixed operating costs			0.553

Note:

1. No laboratory cost is required in MRF. The cost of supervision was accounted in personnel.

2. Indirect capital cost is 0.13 million/y (capital recovery factor = 0.117 assuming discount rate of 10% and plant life of 20 years).

Cost of baling

Materials to be baled	Type of wire	Wire cost per bale, <i>C_{w,b}</i> (<i>\$/</i> bale)	Wire cost per mass of bale, C _{w,m} (£/t)	Mass of waste component, $m_{R,i}$ (t/y)	Wire cost. C _w (£/y)
Papers and cards	Black annealed	2.20	2.08	45410.9	94606.01
Ferrous metals	Galvanised	2.55	2.12	5379.0	11425.83
Non-ferrous metals	Galvanised	2.55	3.87	2294.1	8886.63
Plastics	Galvanised	2.55	3.39	7049.9	23896.06
Total				60133.8	138814.52

Table A.8: Cost of baling wire for different type of recyclable materials.

Eqs. (A.1) - (A.5) were used to estimate the wire cost for baling recyclable materials. The associated parameters can be found in Table A.9 - Table A.12.

wire cost per bale,
$$C_{w,b}\left(\frac{\pounds}{bale}\right) =$$
 wire length required per bale, $L_{w,b}\left(\frac{m}{bale}\right) \times$ price per unit length of wire, $C_{w,l}\left(\frac{\pounds}{m}\right)$ (A.1)

where wire length require per bale,
$$L_{w,b}\left(\frac{m}{bale}\right) = [(2 \times H_b) + (2 \times W_b)] \times N_s$$
 (A.2)

mass of materials per bale,
$$m_{R,b} \left(\frac{\text{kg}}{\text{bale}}\right) = \left(W_b \times L_b \times H_b\right) \left(\frac{\text{m}^3}{\text{bale}}\right) \times \text{density of baled materials}, \rho_{R,i}\left(\frac{\text{kg}}{\text{m}^3}\right)$$
 (A.3)

wire cost per mass of bale,
$$C_{w,m}\left(\frac{\pounds}{\text{kg}}\right) = \frac{\text{wire cost per bale, } C_{w,b}\left(\frac{\pounds}{\text{bale}}\right)}{\text{mass of materials per bale, } m_{R,b}\left(\frac{\text{kg}}{\text{bale}}\right)}$$
 (A.4)

wire cost,
$$C_w \left(\frac{f}{y}\right)$$
 = wire cost per mass of bale, $C_{w,m} \left(\frac{f}{kg}\right) \times$ mass of waste component, $m_{R,i} \left(\frac{kg}{y}\right)$ (A.5)

Basis for estimating baling wire cost

Table A.9: Unit price of baling wire [6].

Parameter	Specification		
Type of baler	Single ram	Dual ram	
Type of wire	Black annealed	Galvanised	
Length of wire per bundle (m/bundle)	480	480	
Mass of wire per bundle (kg/bundle)	25	25	
Price per bundle (£/bundle)	52.8	52.8	
Price per unit length of wire, $C_{w,l}$ (\pounds/m)	0.11	0.11	
Price per unit mass of wire (£/kg)	2.11	2.11	
Note	a, c	b, c	

Note:

a. Wire long black annealed 3mm diameter, pre-cut and looped.
b. Wire long galvanised 3mm diameter, pre-cut and looped.
c. Price includes VAT of 20%.

d. Length of wire is 4.8 m. There are 100 wires in one bundle.

Table A.10: Baling specification [7].

Parameter	Specification						
Types of baler	Single ram	Dual ram					
Bale width, W_b (m)	1	1.14					
Bale length, L_b (m)	2	1.63					
Bale height, H_b (m)	1	0.79					
Straps per bale, N_S	5	6					

Table A.11: Baled material density, $\rho_{R,i}$ [7].

Parameter	Density (kg/m ³)
Cardboard	528
Steel cans	817
Aluminium cans	448
Plastics	512

Table A.12: Specification of wire per bale of materials.

Parameter	Specification						
Type of baler	Single ram	Dual ram					
Type of wire	Black annealed	Galvanised					
Wire length required per bale, $L_{w,b}$ (m/bale)	20.0	23.2					
Mass of materials per bale, $m_{R,i}$ (kg/bale)							
- Cardboard	1056.0						
- Steel cans		1199.3					
- Aluminium cans		657.7					
- Plastics		751.6					

Cost of electricity

Table A.13: Cost of electricity for different MRF equipment.

Item no.	Equipment	Reference	Rated motor capacity, $e_j^{MaxMotor}$ (kW)	$\begin{array}{c} \text{Fraction} \\ \text{of motor} \\ \text{rated} \\ \text{capacity} \\ \text{utilised,} \\ f_j^{MC} \end{array}$	Maximum throughput, m_j^{MTP} (t/h)	Fraction of equipment capacity utilised, \int_{j}^{MTP}	Electricity requirement, E_j (kWh/t)	Current throughput (t/h)	Annual electricity requirement (kWh/y)	Annual cost of electricity (£/y)
1	Conveyor	[2]	5.6	0.5	30	0.85	0.110	18.52	10980.4	1416.47
2	Drum feeder	[2]	15	0.5	30	1	0.250	18.52	25000.0	3225.00
3	Vacuum	[2]	5	0.5	10	0.85	0.294	0.54	852.9	110.03
4	Trommel	[2]	62	0.5	45	0.85	0.810	17.70	77464.1	9992.87
5	Ballistic separator	[8]	22	0.5	30	0.85	0.431	17.70	41230.9	5318.79
6	Magnet	[2]	4	0.5	2	0.85	1.176	7.89	50098.1	6462.65
7	Eddy current separator	[2]	9	0.5	12	0.85	0.441	7.89	18786.8	2423.49
8	Air classifier	[2]	164	0.5	36	0.85	2.680	6.21	89799.3	11584.11
9	Optical/NIR - PET	[2]	13	0.5	10	0.85	0.765	1.46	6045.7	779.89
10	Optical/NIR - HDPE	[2]	40	0.5	10	0.85	2.353	1.46	18602.1	2399.67
11	Optical/NIR - Mixed rigid plastics	[2]	40	0.5	10	0.85	2.353	1.46	18602.1	2399.67
12	Baler - cards and papers	[2]	63	0.5	51	1	0.618	8.41	28047.9	3618.18
13	Baler - ferrous metals	[2]	59	0.5	30	1	0.983	1.00	5289.3	682.32
14	Baler - non-ferrous metals	[2]	59	0.5	30	1	0.983	0.42	2255.8	291.00
15	Baler - plastics	[2]	59	0.5	30	1	0.983	1.31	6932.4	894.28
	TOTAL								399987.8	51598.42

Note:

1. The rated motor capacity for optical/NIR for mixed rigid plastics was assumed to be the same as optical/NIR for HDPE.

2. Balers include single ram and dual ram ballers. Single ram ballers are used for paper and cardboards while dual ram balers are used for metals and hard plastics. All other materials are assumed to be collected on loose packing.

3. Price of electricity = $0.129 \text{ } \text{\pounds/kWh}$ (2019, including CCL) [9]

Eq. (A.6) was applied to estimate the electricity requirement for MRF equipment.

$$E_{j} = \frac{\left(e_{j}^{MaxMotor} \times f_{j}^{MC}\right)}{\left(m_{j}^{MTP} \times f_{j}^{MTP}\right)}$$

where

 E_j is the electricity requirement of equipment *j*, kWh/t; $e_j^{MaxMotor}$ is the rated motor capacity of equipment *j*, kW; f_j^{MC} is the fraction of motor rated capacity utilised; m_j^{MTP} is the maximum throughput of equipment *j*, t/h; f_j^{MTP} is the fraction of equipment capacity utilised. (A.6)

Cost of Fuel

Table A.14: Cost of fuel required for rolling stock.

Item no.	Equipment	Reference	Diesel use (L/t)	Maximum throughput (t/h)	Fraction of equipment capacity utilised	Current throughput (t/h)	Fuel requirement (L/h)	Annual fuel requirement (L/y)	Annual cost of fuel (£/y)
1	Rolling stock - mixed recyclables	[2]	10	24	0.85	18.52	185.19	1000000.0	483829.89
2	Rolling stock - cards and papers	[2]	10	24	0.85	8.41	84.09	454108.8	219711.43
3	Rolling stock - ferrous metals	[2]	10	24	0.85	1.00	9.96	53789.6	26025.00
4	Rolling stock - non-ferrous metals	[2]	10	24	0.85	0.42	4.25	22940.5	11099.32
5	Rolling stock - glass	[2]	10	24	0.85	3.60	36.01	194470.3	94090.52
6	Rolling stock - plastics	[2]	10	24	0.85	1.31	13.06	70499.3	34109.65
7	Rolling stock - rejects	[2]	10	24	0.85	3.78	37.81	204191.6	98793.98
	Total							2000000.0	967659.77
Note									

Note:

1. The rolling stock has been broken down into different categories of stocks to be moved. It does not represent the actual number of rolling stocks on site.

2. Maximum throughput and fraction of equipment capacity utilised were used as reference and not in the calculation as long as the current throughput adhere to the given capacity.

3. Price of diesel = $0.484 \text{\pounds}/\text{L}$ (gas oil, 2019) [9]

Equation (A.6) was used to estimate the fuel requirement, using the same analogy as the estimation for electricity.

Cost of personnel

Table A.15: Cost of personnel for MRF.

Category of personnel	MRF stage	Maximum throughput, $m_j^{MTP}(t/h)$	Fraction of equipment capacity utilised, f_j^{MTP}	Number of personnel required for maximum throughput, n ^{personnel}	Personnel hour per tonne of throughput, <i>P</i> _j	Current throughput (t/h)	Personnel required	Hourly rate of salary per person (£/h)	Annual salary for personnel (£/y)
Driver	Rolling stock	24	0.85	1	0.049	37.04	1.82	11	107843.14
Equipment-specific	Vacuum	10	0.85	2	0.235	0.54	0.13	9	6141.01
labour	Baler - cards and papers	51	1	1	0.020	8.41	0.16	9	8013.69
	Baler - ferrous metals	30	1	1	0.033	1.00	0.03	9	1613.69
	Baler - non-ferrous metals	30	1	1	0.033	0.42	0.01	9	688.22
	Baler - plastics	30	1	1	0.033	1.31	0.04	9	2114.98
Sorter	Manual sorting						1.29	9.29	64797.22
Supervisor									95605.97
Total									286817.91
Note:									

1. Hourly wages for drivers, equipment-specific labours and sorter were obtained from Jobsite based on the latest rate in 2020 (https://www.jobsite.co.uk/jobs/recycling) 2. Hourly wages for supervisor was assumed to be 50% of the total salary of the above [2].

The numbers of driver and equipment-specific labour were estimated using equation (A.7).

$$P_{j} = \frac{n_{j}^{personnel}}{m_{j}^{MTP} \times f_{j}^{MTP}}$$
(A.7)

where

 P_j is the personnel requirement for equipment j, personnel h/t throughput;

 $n_{j}^{personnel}$ is the number of personnel required to operate equipment *j*;

 m_j^{MTP} is the maximum throughput of equipment *j*, t/h; f_j^{MTP} is the fraction of equipment capacity utilised.

The number of manual sorter was estimated using equation (A.8).

$$P_j^{MS} = \frac{m_j^{removed}}{m_j^{TP} \times r_j^{picking}}$$
(A.8)

where

 P_j^{MS} is the personnel requirement for manual sorting, personnel h/t throughput (1.6 personnel-h/t estimated using values below);

 $m_j^{removed}$ is the mass of materials removed at picking station *j*, t/h (0.82 t/h);

 m_j^{TP} is the throughput of material entering picking station *j*, t/h (18.52 t/h);

 $r_j^{picking}$ is the picking rate of equipment capacity utilised, kg/personnel-h (28 kg/personel-h).

Recyclable materials	Unit price (£/t)	Flow (t/h)	Flow (t/y)	Revenue (million £/y)
Cards and papers	32.5	8.41	45410.88	1.48
Ferrous metals	83.0	1.00	5378.96	0.45
Aluminium	725.0	0.42	2294.05	1.66
Glass	-10.5	3.60	19447.03	-0.20
PET	290.0	0.45	2406.56	0.70
HDPE	555.0	0.22	1207.08	0.67
Mixed rigid plastics	145.0	0.10	536.36	0.08
Total				4.83
Gate fees for MRF	35	18.52	100000	3.50
Total revenue				8.33

Table A.16: Revenues generated from recyclable products from MRF.

Note:

1. The average price of papers and cardboards has been taken to be the unit price of the collective component. Mixed papers and cardboard prices are based on Domestic Mill (ex-works) in April 2020. (https://www.letsrecycle.com/prices/waste-paper/uk-domestic-mill-prices/2020-domestic-mill-prices/)

2. Ferrous scrap metals prices have been taken from a range of scraps, in April 2020. (https://www.letsrecycle.com/prices/metals/ferrous-metal-prices/ferrous-scrap-metal-prices/2020/)

3. Non-Ferrous metals consider aluminium cans, in March 2020. (https://www.letsrecycle.com/prices/metals/aluminium-cans/aluminium-can-prices-2020/)

4. MRF glass price in March 2020. (https://www.letsrecycle.com/prices/glass/glass-prices-2020/)

5. PET bottles - assumes clear and light blue PET, April 2020. (https://www.letsrecycle.com/prices/plastics/plastic-bottles/plastic-bottles-2020/)

6. HDPE bottles - assumes HDPE natural, April 2020. (https://www.letsrecycle.com/prices/plastic-bottles/plastic-bottles-2020/)

7. Mixed rigid plastics - assumes mixed plastics, April 2020. (https://www.letsrecycle.com/prices/plastics/plastic-bottles/plastic-bottles-2020/)

8. Negative price means that there is a charge to haul them away from MRF.

Appendix B

Gasification-H₂ **System Material and Energy Balances and Cost Estimation**

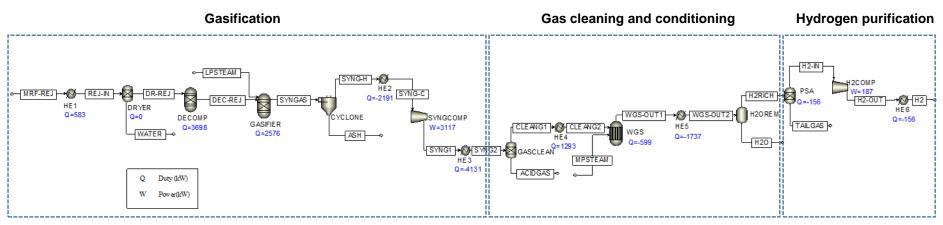


Figure B.1: Aspen Plus simulation flowsheet showing the conversion of MRF rejected materials into hydrogen through gasification system.

Process description

The process modelling of the gasification system has been carried out in Aspen Plus V8.0 environment, using PR-BM (Peng-Robinson equation of state with Boston-Mathias modification) property method [10]. Aspen Plus model specification is provided in

Table B.2 and the detailed material balance of the gasification system is presented in Table B.2.

The MRF rejected material stream (MRF-REJ) has been modelled using the proximate and ultimate analyses presented in Table 2. The specification of this stream has been defined in such a way that the Mixed substream consists of water, and the Non-conventional substream includes MSW and ASH. The MSW stream at a flow rate of 2.55 t/h is preheated to 110°C in HE1 and the REJ-IN stream is fed into the DRYER, modelled using a separator (Sep) where 90% of the moisture is removed (WATER stream: 0.615 t/h). The dried rejected materials stream (DR-REJ) is sent to the gasification process. In this study, gasification has been modelled using a decomposition unit (DECOMP) and a main gasification unit (GASIFIER). DECOMP, modelled using a yield reactor (RYield), is not a physical process unit and it is used for decomposing the rejected materials into C, H, O, N and S elements for subsequent modelling purposes [10]. The decomposed rejected materials (DEC-REJ) is then gasified at 900°C and 1.6 bar, modelled using a Gibbs reactor (RGibbs), using low-pressure steam (LPSTEAM) as the gasifying medium [11]. The gasifier has been assumed to be a fluidised bed reactor (i.e. indirect heated, BCL type) where char is combusted to provide sufficient heat to the gasification. It should be noted that char separation and combustion has not been modelled here and it has been assumed that the energy balance around gasification has achieved self-sufficiency (i.e. endothermic energy requirement of gasifier is met). The steam-to-feed ratio has been assumed to be 1.04 on weight basis and thus tar formation has been assumed to be negligible [11]. The validation of gasification model against experimental results [11] is presented in

Table B.3. Syngas generated from gasification (SYNGAS) consists primarily of CO, H_2 , CO₂ and H_2O and a H_2/CO molar ratio of 2.6 is obtained. The hot syngas is passed through a cyclone (CYCLONE, modelled using a Splitter model or SSplit) to remove ash (ASH) which is then disposed to landfill. The syngas (SYNG-H) is cooled down to 80°C in HE2 and SYNG-C is further compressed in a syngas compressor (SYNGCOMP) to 30 bar. HE3 represents the compressor inter/after cooler for maintaining the outlet stream (SYNG1) temperature of SYNGCOMP at 50°C before entering the gas cleaning processes (GASCLEAN). GASCLEAN, modelled using a separator (Sep) represents a series of acid gas removal units (LO-CAT and ZnO bed). GASCLEAN removes H₂S in the syngas (SYNG2) down to 1 ppmv (a split fraction of H₂S has been specified at 0.999999) as a measure to prevent catalyst poisoning in the water-gas shift reactor (WGS). The ACIDGAS stream consists of H₂S only. The temperature of cleaned syngas (CLEANG1) is then increased to 200°C in HE4 before entering WGS. WGS reaction (CO + H₂ \rightarrow H₂ + CO₂), modelled using an equilibrium reactor (REquil) and operated at 200°C is served to increase the yield of H₂. MP steam (MPSTEAM; 1.6 t/h) at 14 bar and 250°C is added to facilitate the reaction. The amount of steam to be supplied to water-gas shift reactor has been determined using sensitivity analysis presented in Table B.4. The flow rate of hydrogen has been increased from 0.26 t/h (CLEANG2) to 0.36 t/h (WGS-OUT1). WGS-OUT1 is cooled down to 40°C (WGS-OUT2) in HE5 so that water (H2O) can be removed in a flash drum (H2OREM, modelled using Flash2).

The hydrogen-rich stream (H2RICH) is sent to a pressure swing adsorption (PSA) unit, modelled using a separator (Sep) to recover hydrogen at 85 mol % and obtain a purity of 99.95 mol% (H2-IN). H2-IN is then compressed to 70 bar in a hydrogen compressor (H2COMP). The temperature of compressed H₂ (H2-OUT) is maintained at 45°C through HE6 upon distribution (H2). The tail gas stream from PSA (TAILGAS) comprises mainly CO_2 .

Process Unit	Block name	Aspen Plus Model	Temperature (°C)	Pressure (bar)	Other specification
Dryer	DRYER	Sep			Split fraction; Stream DR-REJ <u>Substream (Mixed)</u> $H_2O = 0.1$ <u>Substream (NC)</u> Ash = 1.0 MSW = 1.0
Decomposition	DECOMP	RYield	250	1.6	Component yields (mass basis) C = 0.6077 $H_2 = 0.0784$ $O_2 = 0.2458$

Table B.1: Aspen Plus model specification for Gasification-H₂ system.

					$\begin{split} N_2 &= 0.01357 \\ S &= 0.0754 \\ H_2O &= 0.0469 \end{split}$
Gasifier	GASIFIER	RGibbs	900	1.6	
Cyclone	CYCLONE	SSplit			Stream: ASH Split fraction (NC) = 1.0
Acid gas removal	GASCLEAN	Sep			Split fraction; Stream ACIDGAS $H_2S = 0.9999999$
Water-gas shift reactor	WGS	REquil	200	1.013	
Water removal unit	H2OREM	Flash2	40	1.013	
Pressure swing adsorption column	PSA	Sep			Split fraction; Stream H2 <u>Substream (Mixed)</u> $H_2 = 0.85$ CO = 0.001 $CO_2 = 0.001$ $CH_4 = 0.001$
Syngas compressor	SYNGCOMP	Compr		30	Isentropic efficiency = 85%
H ₂ compressor	H2COMP	Compr		70	Isentropic efficiency = 85%
Heat exchanger (Feed preheater)	HE1	Heater	110	1.013	
Heat exchanger (Syngas cooler)	HE2	Heater	80	1.013	
Heat exchanger (Syngas compressor inter/aftercooler)	HE3	Heater	50	30	

Heat exchanger (Cleaned syngas heater)	HE4	Heater	200	30	
Heat exchanger (WGS outlet gas cooler)	HE5	Heater	40	30	
Heat exchanger (H ₂ compressor inter/aftercooler)	HE6	Heater	45	70	

Table B.2: Material balance of the conversion of MRF r	ejected materials into h	vdrogen through	gasification system.

Component	ACIDGAS	ASH	CLEANG1	CLEANG2	DEC-RE I	DR-REI	H2	H2-IN	H2-OUT	H2O	H2RICH		tream	MRF-REJ	REJ-IN	SYNG-C	SYNG-H	SYNG1	SYNG2	SYNGAS		WATER	WGS-OUT1	WGS-OUT2
Substream: MIXED	AOIDOAO	Aon	OLLANGI	OLLANOL	DEO-INEO	DICINES	114	112-114	112-001	1120	HERIOII	LIUILAN			ILC-IN	01110-0	01110-11	onitor	OTHOL	UTROAD	TAILOAU	MAILIN	100-0011	100-0012
Mole Flow (kmol/h)																								
C	0.000	0.000	0.000	0.000	73.692	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
H ₂	0.000	0.000	130.780	130.780	56.655	0.000	153.571	153.571	153.571	0.000	180.672	0.000	0.000	0.000	0.000	130.780	130.780	130.780	130.780	130.780	27.101	0.000	180.672	180.672
02	0.000	0.000	0.000	0.000	11,188	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
N ₂	0.000	0.000	0.706	0.706	0.706	0.000	0.000	0.000	0.000	0.000	0.706	0.000	0.000	0.000	0.000	0.706	0.706	0.706	0.706	0.706	0.706	0.000	0.706	0.706
S	0.000	0.000	0.000	0.000	0.342	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
co	0.000	0.000	50.411	50.411	0.000	0.000	0.001	0.000	0.000	0.000	0.519	0.000	0.000	0.000	0.000	50.411	50.411	50.411	50.411	50.411	0.519	0.000	0.519	0.519
CO ₂	0.000	0.000	23.249	23.249	0.000	0.000	0.073	0.073	0.073	0.002	73.138	0.000	0.000	0.000	0.000	23.249	23.249	23.249	23.249	23.249	73.065	0.000	73.140	73.140
H ₂ O	0.000	0.000	76.558	76.558	3,796	3.796	0.000	0.000	0.000	98.083	17.396	147.295	88.814	37.957	37.957	76,558	76.558	76.558	76.558	76.558	17.396	34.161	115.480	115.480
CH ₄	0.000	0.000	0.032	0.032	0.000	0.000	0.000	0.000	0.000	0.000	0.032	0.000	0.000	0.000	0.000	0.032	0.032	0.032	0.032	0.032	0.032	0.000	0.032	0.032
H ₂ S	0.342	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.342	0.342	0.342	0.342	0.342	0.002	0.000	0.000	0.000
	0.342	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.342	0.342	0.342	0.342	0.342	0.000	0.000	0.000	0.000
Mole Fraction	0.000	0.000	0.000	0.000	0.503	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
•	0.000	0.000	0.464	0.464	0.387	0.000	1.000	1.000	1.000	0.000	0.663	0.000	0.000	0.000	0.000	0.464	0.464	0.464	0.464	0.464	0.000	0.000	0.488	0.488
H ₂																								
O ₂	0.000	0.000	0.000	0.000	0.076	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
N ₂	0.000	0.000	0.003	0.003	0.005	0.000	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.003	0.003	0.003	0.003	0.003	0.006	0.000	0.002	0.002
S	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
<u>co</u>	0.000	0.000	0.179	0.179	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.179	0.179	0.179	0.179	0.179	0.004	0.000	0.001	0.001
CO ₂	0.000	0.000	0.083	0.083	0.000	0.000	0.000	0.000	0.000	0.000	0.268	0.000	0.000	0.000	0.000	0.082	0.082	0.082	0.082	0.082	0.615	0.000	0.197	0.197
H ₂ O	0.000	0.000	0.272	0.272	0.026	1.000	0.000	0.000	0.000	1.000	0.064	1.000	1.000	1.000	1.000	0.271	0.271	0.271	0.271	0.271	0.146	1.000	0.312	0.312
CH4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
H ₂ S	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000
Mass Flow (kg/h)																								
С	0.000	0.000	0.000	0.000	885.117	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
H ₂	0.000	0.000	263.638	263.638	114.209	0.000	309.581	309.581	309.581	0.000	364.213	0.000	0.000	0.000	0.000	263.638	263.638	263.638	263.638	263.638	54.632	0.000	364.213	364.213
O ₂	0.000	0.000	0.000	0.000	358.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
N ₂	0.000	0.000	19,767	19,767	19,767	0.000	0.000	0.000	0.000	0.000	19,767	0.000	0.000	0.000	0.000	19,767	19,767	19,767	19,767	19,767	19,767	0.000	19,767	19,767
s	0.000	0.000	0.000	0.000	10.982	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
CO	0.000	0.000	1412.024	1412.024	0.000	0.000	0.015	0.015	0.015	0.000	14.548	0.000	0.000	0.000	0.000	1412.024	1412.024	1412.024	1412.024	1412.024	14.534	0.000	14.548	14.548
CO2	0.000	0.000	1023.187	1023.187	0.000	0.000	3.219	3.219	3.219	0.103	3218.792	0.000	0.000	0.000	0.000	1023.187	1023.187	1023.187	1023.187	1023.187	3215.573	0.000	3218.894	3218.894
H ₂ O	0.000	0.000	1379.205	1379.205	68.378	68.380	0.000	0.000	0.000	1767.000	313,399	2653,560	1600.000	683.802	683.802	1379.205	1379.205	1379.205	1379.205	1379.205	313,399	615.422	2080.399	2080.399
CH ₄	0.000	0.000	0.520	0.520	0.000	0.000	0.001	0.001	0.001	0.000	0.520	0.000	0.000	0.000	0.000	0.520	0.520	0.520	0.520	0.520	0.520	0.000	0.520	0.520
H ₂ S	11.672	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	11.672	11.672	11.672	11.672	11.672	0.000	0.000	0.000	0.000
Mass Fraction	11.072	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	11.072	11.072	11.072	11.072	11.072	0.000	0.000	0.000	0.000
C	0.000		0.000	0.000	0.608	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
H ₂	0.000		0.064	0.064	0.078	0.000	0.990	0.990	0.990	0.000	0.093	0.000	0.000	0.000	0.000	0.064	0.064	0.064	0.064	0.064	0.015	0.000	0.064	0.064
O ₂	0.000		0.000	0.000	0.246	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000		0.005	0.005	0.240	0.000	0.000	0.000	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.005	0.005	0.005	0.005	0.005	0.005	0.000	0.003	0.000
N ₂	0.000		0.000	0.000	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.005	0.005	0.000	0.005	0.000	0.000	0.003	0.003
co	0.000		0.345	0.000	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.344	0.000	0.000	0.000	0.000	0.000	0.000
CO ₂	0.000		0.250	0.250	0.000	0.000	0.000	0.010	0.010	0.000	0.819	0.000	0.000	0.000	0.000	0.249	0.249	0.249	0.249	0.249	0.889	0.000	0.565	0.565
	0.000		0.337	0.230	0.000	1.000	0.010	0.000	0.000	1.000	0.080	1.000	1.000	1.000	1.000	0.336	0.336	0.249	0.336	0.336	0.085	1.000	0.365	0.365
H ₂ O																								
CH ₄	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
H ₂ S	1.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.003	0.003	0.003	0.003	0.000	0.000	0.000	0.000
Total Flow (kmol/h)	0.342	0.000	281.736	281.736	146.379	3.796	153.645	153.645	153.645	98.086	272.464	147.295	88.814	37.957	37.957	282.078	282.078	282.078	282.078	282.078	118.819	34.161	370.549	370.549
Total Flow (kg/h)	11.672	0.000	4098.341	4098.341	1456.453	68.380	312.815	312.815	312.815	1767.103	3931.239	2653.560	1600.000	683.802	683.802	4110.013	4110.013	4110.013	4110.013	4110.013	3618.424	615.422	5698.341	5698.341
Total Flow (m ³ /s)	0.000	0.000	0.052	0.101	0.549	0.033	0.017	0.052	0.023	0.001	1.944	0.001	0.073	0.000	0.329	2.268	4.778	0.324	0.052	4.778	0.771	0.296	0.132	1.944
Temperature (°C)	50		50 30	200	250	110	45	20	169.3927 70	40	40	133.5	250	25	110	80	900	1210.41 30	50 30	900	40	110	200	40
Pressure (bar) Vapor Fraction	1.000		0.731	30	1.6	1.013	1.000	1.000	1.000	0.000	1.013	0.000	14	0.000	1.013	1.013	1.6	30	0.732	1.6	1.013	1.013	1.000	0.735
Liquid Fraction	0.000		0.269	0.000	0.497	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000	0.000	0.752	0.000	0.912	0.000	0.000	0.735
Solid Fraction	0.000		0.209	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.203
Substream: Non-conv		am																						
Mass Flow (kg/h)																								
ASH	0.000	479.625	0.000	0.000	479.625	479.625	0.000	0.000	0.000	0.000	0.000	0.000	0.000	479.625	479.625	0.000	0.000	0.000	0.000	479.625	0.000	0.000	0.000	0.000
MSW	0.000	0.000	0.000	0.000	0.000	1388.073	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1388.073	1388.073	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mass Fraction																								
ASH	0.000	1.000	0.000	0.000	1.000	0.257	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.257	0.257	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000
MSW	0.000	0.000	0.000	0.000	0.000	0.743	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.743	0.743	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total Flow (kg/h)	0.000	479.625	0.000	0.000	479.625	1867.698	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1867.698	1867.698	0.000	0.000	0.000	0.000	479.625	0.000	0.000	0.000	0.000
Temperature (°C)	-	900			250	110				1.010	1.016			25	110					900				
Pressure (bar)	30	1.6	30	30	1.6	1.013	70	20	70	1.013	1.013	3	14	1.013	1.013	1.013		30	30	1.6	1.013	1.013		1.013
Vapor Fraction	-	0	-		0	0		-			-			0	0		-			0				
Liquid Fraction Solid Fraction	-	1	-	-	1	1		-		-	-		-	1	1	-	-		-	1				
Solid Praction	-	1	1	1		1			1		1	1	1		1	1			1				1	1

Commonst	Simulati	on model	Experiment [11]	R ²
Component	Mole fraction (mol%, wet)	Mole fraction (mol%, dry)	Mole fraction (mol%, dry)	K-
С	0.0000	0.0000	0.0000	0.0000
H_2	0.4530	0.5866	0.5322	0.0104
O ₂	0.0000	0.0000	0.0000	0.0000
N_2	0.0007	0.0009	0.0000	0.0000
S	0.0008	0.0011	0.0000	0.0000
CO	0.2276	0.2947	0.2572	0.0213
CO_2	0.0901	0.1167	0.2061	0.1882
H ₂ O	0.2277	0.0000	0.0000	0.0000
CH ₄	0.0001	0.0001	0.0023	0.9297
Total	1.0000	1.0000	0.9978	1.1496
H ₂ /CO		1.99	2.07	
CO/CO ₂		2.53	1.25	

Table B.3: Gasification model validation using MSW composition.

Steam flow rate	Component f WGS-C (kg/	DUT1	Relative changes in H ₂ (%)	Relative changes in CO (%)		
(kg/h) H ₂ CO		CO				
100	361.80	48.07	0.00	0.00		
200	362.26	41.72	0.13	13.21		
300	362.61	36.82	0.10	11.74		
400	362.89	32.94	0.08	10.54		
500	363.12	29.79	0.06	9.55		
600	363.30	27.19	0.05	8.73		
700	363.46	25.01	0.04	8.03		
800	363.59	23.15	0.04	7.43		
900	363.71	21.55	0.03	6.91		
1000	363.81	20.16	0.03	6.46		
1100	363.90	18.94	0.02	6.06		
1200	363.97	17.86	0.02	5.71		
1300	364.04	16.90	0.02	5.39		
1400	364.11	16.03	0.02	5.11		
1500	364.16	15.25	0.02	4.86		
1600	364.21	14.55	0.01	4.63		
1700	364.26	13.91	0.01	4.42		
1800	364.3011	13.31846	0.01	4.22		
1900	364.3398	12.77944	0.01	4.05		
2000	364.3756	12.28294	0.01	3.89		

Table B.4: Sensitivity analysis of WGS steam requirement.

MPSTEAM flowrate at 1600 kg/h was selected since the increase of H_2 is only 0.01% for additional 100 kg/h of steam .

Table B.5: Equipment cost estimation for Gasification-H ₂ system.
--

Item no.	Equipment	Reference	Base co	st	Base Year		S	ize	Scale factor	r Cooled cost (million C) Present Year	Levelised cost (million £)
item no.	Equipment	Reference	million USD	million GBP	base rear	Base	Current	Unit	Scale lactor	Scaled cost (million £)		
1	Dryer	[4]	7.6	5.168	2001	33.5	2.55	wet t/h feed	0.8	0.66	2019	1.00
2	Gasifier	[4]	16.3	11.084	2001	68.8	1.87	dry t/h feed	0.65	1.06	2019	1.61
3	Cyclone	[4]	2.6	1.768	2001	34.2	4.78	m ³ /s gas input	0.7	0.45	2019	0.67
4	Acid gas removal	[4]	30	20.4	2001	74.1	0.05	m ³ /s gas input	1	0.01	2019	0.02
5	Water-gas shift reactor	[4]	36.9	25.092	2001	15.6	0.18	Mmol/h CO+H ₂ input	0.85	0.57	2019	0.86
6	Water removal unit (flash drum)	[12]	0.015	0.010	2002	3.168	5.70	t/h input	0.6	0.01	2019	0.02
7	Pressure swing adsorption column	[4]	28	19.04	2001	9600	272.46	kmol/h throughput	0.7	1.57	2019	2.38
8	Syngas compressor	[4]	11.1	7.548	2001	13.2	3.12	MW compression work	0.85	2.21	2019	3.35
9	H ₂ compressor	[4]	11.1	7.548	2001	13.2	0.19	MW compression work	0.85	0.20	2019	0.31
10	Heat exchanger (Feed preheater, HE1)	[12]	0.022	0.015	2002	2581	582.58	kW heat duty	0.6	0.01	2019	0.01
11	Heat exchanger (Syngas cooler, HE2)	[12]	0.022	0.015	2002	2581	2190.83	kW heat duty	0.6	0.01	2019	0.02
12	Heat exchanger (Syngas compressor inter/aftercooler, HE3)	[12]	0.022	0.015	2002	2581	4130.97	kW heat duty	0.6	0.02	2019	0.03
13	Heat exchanger (Cleaned syngas heater, HE4)	[12]	1.022	0.695	2002	2581	1293.10	kW heat duty	0.6	0.46	2019	0.69
14	Heat exchanger (WGS outlet gas cooler, HE5)	[12]	2.022	1.375	2002	2581	1737.39	kW heat duty	0.6	1.08	2019	1.63
15	Heat exchanger (H ₂ compressor inter/aftercooler, HE6)	[12]	3.022	2.055	2002	2581	156.18	kW heat duty	0.6	0.38	2019	0.58
16	Steam turbine and steam system	[4]	5.1	3.468	2001	10.3	1.79	MW electrical output	0.7	1.02	2019	1.54
	TOTAL											14.71

Note:

1. Equipment costs for Gasification-H₂ system were obtained from [4] and [12].

2. CEPCI (2001) = 394.3; CEPCI (2002) = 395.6; CEPCI (2019, November Prelim.) = 596.1.

3. Currency conversion rate of 1 USD = 0.68 GBP (2001/2002) was assumed.

Table B.6: Lang factor for fluid processing system [4].

Component	Factor
<u>Direct cost</u>	
Delivered cost of equipment	1.00
Installation	0.47
Instrumentation and control	0.36
Piping	0.68
Electrical systems	0.11
Buildings (including services)	0.18
Yard improvements	0.10
Service facilities	0.70
Total direct cost	3.60
Indirect cost	
Engineering and supervision	0.33
Construction expenses	0.41
Legal expenses	0.04
Contractor's fee	0.22
Contingency	0.44
Total indirect cost	1.44
Working capital	0.89
Total capital investment	5.93

Table B.7: Variable operating cost for Gasification-H₂ system.

Specification	Quantity	Unit	Estimation	Unit	Note	Cost (million £/y)
Electricity	1517.94	kW	0.129	£/kWh	1	1.567
Catalyst					2	0.006
LO-CAT chemicals	0.00548	t/h	84.0	£/t sulphur	3	0.004
Gasifier bed materials	0.05547	t/h	96.8	£/t olivine	4	0.043
Solid disposal cost	0.47963	t/h	114.35	£/t (Ash)	5	0.439
Effluent discharge cost	2.1034	m³/h	0.629	\pounds/m^3	6	0.011
Total variable operating cost						2.07
	Electricity Catalyst LO-CAT chemicals Gasifier bed materials Solid disposal cost	Electricity1517.94Catalyst1LO-CAT chemicals0.00548Gasifier bed materials0.05547Solid disposal cost0.47963Effluent discharge cost2.1034	Electricity1517.94kWCatalyst	Electricity 1517.94 kW 0.129 Catalyst	Electricity 1517.94 kW 0.129 £/kWh Catalyst - - - - LO-CAT chemicals 0.00548 t/h 84.0 £/t sulphur Gasifier bed materials 0.05547 t/h 96.8 £/t olivine Solid disposal cost 0.47963 t/h 114.35 £/t (Ash) Effluent discharge cost 2.1034 m³/h 0.629 £/m³	Electricity 1517.94 kW 0.129 £/kWh 1 Catalyst 2 2 LO-CAT chemicals 0.00548 t/h 84.0 £/t sulphur 3 Gasifier bed materials 0.05547 t/h 96.8 £/t olivine 4 Solid disposal cost 0.47963 t/h 114.35 £/t (Ash) 5 Effluent discharge cost 2.1034 m³/h 0.629 £/m³ 6

Note:

1. Price of electricity was obtained from BEIS Quarterly Energy Price, March 2020 [9].

2. Costs of catalyst include ZnO and shift catalysts. It was assumed that both catalysts have a gas hourly space velocity (GHSV) of 4000 h⁻¹ and lifetime of 5 years and price of 8.24 f/kg (10.3 kg) [12]. The densities of ZnO and shift catalysts are 1090 and 1300 kg/m³, respectively.

3. 1 mole of H₂S is equal to 1 mole of sulphur removed (H₂S + 0.5 O₂ \rightarrow H₂O + S). The cost of LO-CAT chemicals was estimated based on 84 £/t sulphur (150 \$/t sulphur) [12].

4. The olivine circulating rate in gasification was assumed to be 27 kg/kg dry feed and the fresh olivine was taken to be 0.11% of the circulating rate [12]. The price of olivine was assumed to be 96.8 \pounds /t (172.9 %) [12].

5. Ash from gasification was sent to landfill. Landfill gate fees and tax = 114.35 \pounds/t [5].

6. Wastewater was sent to off-site treatment facility. The effluent discharge cost was estimated using Mogden formula based on the latest Trade Effluent Charge (2020/21) [13].

No	Specification	Estimation	Unit	Cost (million £/y)
1	Maintenance	10%	indirect capital costs	0.25
2	Personnel	Table B.9		0.79
3	Laboratory costs	20%	personnel costs	0.16
4	Supervision	20%	personnel costs	0.16
5	Plant overheads	50%	personnel costs	0.40
6	Capital charges	10%	indirect capital costs	0.25
7	Insurance	1%	indirect capital costs	0.02
8	Local taxes	2%	indirect capital costs	0.05
9	Royalties	1%	indirect capital costs	0.02
	Direct production cost			4.17
10	Sales expense	20%	direct production cost	0.83
	General overheads			
	Research and developments			
Note	Total fixed operating costs			2.93

Table B.8: Fixed operating cost for Gasification-H₂ system [4].

Note:

1. Indirect capital cost is 2.49 million/y (capital recovery factor = 0.117 assuming discount rate of 10% and plant life of 20 years).

		c 1 1 1 1	
Table B 9. Basis for	r estimating cost of	f personnel required in	Gasification-H ₂ system [4].
Tuble D.7. Duble for	estimating cost of	r personner requirea m	Submeation 112 System [1].

Parameter	Value	Note
Number of processing steps	4	Gasification; Gas cleaning and conditioning; PSA; utility systems
Number of personnel per processing steps	1	continuous, fluid processing
Number of personnel per shift	4	
Number of shifts	5	
Working hours per week	40	
Number of weeks per year	52	
Hourly wages (£/h)	19	(Average chemical engineer salary in the UK, https://www.payscale.com/research/UK/Job=Chemical_Engineer/Salary)
Cost of personnel (million £/y)	0.79	

The cost of personnel was estimated using Eq. (B.1).

Cost of personnel = Number of personnel per shift \times 5 shift \times 40 hours/week \times 52 weeks/year

 \times hourly wages (B.1)

where the number of personnel per shift is correlated with the number of processing steps depending on the nature of the process, given in Eq. (B.2).

Number of personnel per shift

= number of processing steps × number of personnel per processing step

(B.2)

Appendix C

Heat Integration and CHP Network for Gasification-H₂ System

Table C.1: Stream data and classification.

Heat exchanger/Process unit	Supply temperature, <i>Ts</i> (°C)	Target temperature, <i>T</i> _T (°C)	Heat duty, ΔH (kW)	Supply/Demand	Level of task	Task
HE2	900	80	2190.83	Supply	High	VHP steam generation
HE3	1351.27	50	4130.97	Supply	High	VHP steam generation
HE5	200	40	1737.39	Supply	Low-Medium	Process-to-process heat exchange (with HE1)
HE6	169.4	45	156.177	Supply	Low	Hot water generation
WGS	200	199.9	599.123	Supply	Medium	LP steam generation
HE1	25	110	582.577	Demand	Low	Process-to-process heat exchange (with HE5)
HE4	50	200	1293.1	Demand	Medium	Heated by MP steam

The stream data presented in Table C.1 was extracted from the flowsheet illustrated in Figure B.1, modelled in Aspen Plus. The heat supply and demand for each stream were classified into different level of tasks based on temperature and heat duties. The methodology for classifying the streams is presented in section 2.3.2.

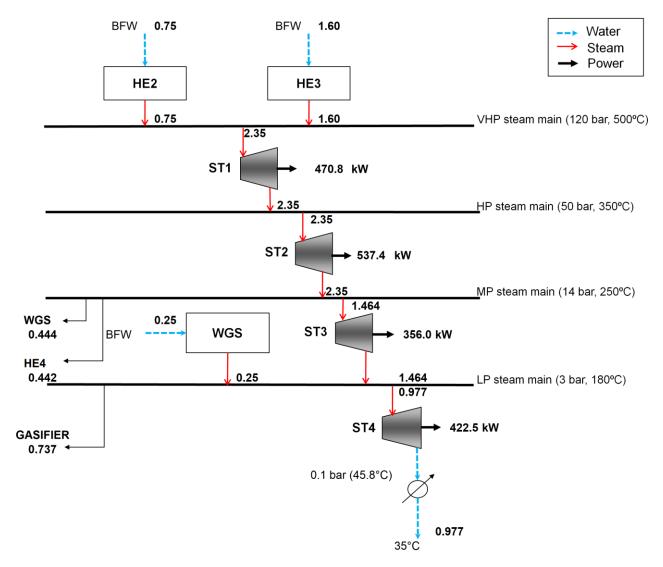


Figure C.1: CHP network design for Gasification-H₂ system.

Component	Turbine/compressor	Power (kW)	Power consumption/generation
ST1	Steam turbine	470.76	Generation
ST2	Steam turbine	537.40	Generation
ST3	Steam turbine	356.04	Generation
ST4	Steam turbine	422.46	Generation
SYNGCOMP	Compressor	-3117.36	Consumption
H2COMP	Compressor	-187.22	Consumption
		-1517.94	

References

- [1] WRAP. 2020. National Compositional Estimates for Local Authority Collected Household Waste and Recycling in the United Kingdom: National Household Waste Composition 2017, prepared by Eunomia Research & Consulting Ltd. Available from: <u>https://wrap.org.uk/sites/files/wrap/National%20household%20waste%20composition</u> <u>%202017.pdf</u> [cited 3 April 2020].
- [2] Pressley, P.N., Levis, J.W., Damgaard, A., Barlaz, M.A., DeCarolis, J.F., 2015. *Analysis of material recovery facilities for use in life-cycle assessment*. Waste Management. **35**: 307-317.
- [3] WRAP. 2009. A financial assessment of recycling mixed plastics in the UK. Report prepared by Axion Consulting. Available from: <u>https://www.wrap.org.uk/sites/files/wrap/WRAP%20A%20financial%20assessment%</u> <u>20of%20recycling%20mixed%20plastics%20in%20the%20UK.pdf</u> [cited 1 April 2020].
- [4] Sadhukhan, J., Ng, K.S., Hernandez, E.M., 2014. *Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis.* Wiley, Chichester.
- [5] Letsrecycle. 2020. *Prices: EfW, landfill, RDF*. Available from: <u>https://www.letsrecycle.com/prices/efw-landfill-rdf-2/efw-landfill-rdf-2020-gate-fees/</u>. [cited 5 May 2020]
- [6] Riversider Waste Machinery Ltd. 2020. *Baling wire*. Available from: <u>https://www.wastemachinery.co.uk/product-category/baling-wire/</u> [cited 5 May 2020]
- [7] Combs, A.R. North Carolina State University. 2012. Life Cycle Analysis of Recycling Facilities in a Carbon Constrained World. MSc Thesis. Available from: https://repository.lib.ncsu.edu/handle/1840.16/7808 [cited 5 April 2020].
- [8] BRT Hartner. 2020. Ballistic Separator BRT HARTNER BPS for Waste Paper. Available from: <u>https://www.eggersmann-recyclingtechnology.com/en/brt-hartner/products/ballistic-separator-brt-hartner-bps-for-waste-paper/</u>. [cited 5 April 2020]
- [9] Department for Business, Energy & Industrial Strategy (BEIS). 2020. Quarterly Energy Prices. March 2020. Available from: <u>https://www.gov.uk/government/statistics/quarterly-energy-prices-march-2020</u> [cited 5 April 2020].
- [10] Pala, L.P.R., Wang, Q., Kolb, G., Hessel, V., 2017. Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model. Renewable Energy. **101**: 484-492.
- [11] He, M., Xiao, B., Liu, S., Guo, X., Luo, S., Xu, Z., Feng, Y., Hu, Z., 2009. *Hydrogenrich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of steam to MSW ratios and weight hourly space velocity on gas production and composition.* International Journal of Hydrogen Energy. **34**(5): 2174-2183.
- [12] Spath, P., Aden, A., Eggeman, T., Ringer, M., Wallace, B., Jechura, J. NREL. 2005. Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly Heated Gasifier. NREL/TP-510-37408. Available from: http://neotericsint.com/pubs/BCL%20Gasifier.pdf [cited 3 May 2020].
- [13] Severn Trent. 2020. Wholesale Charges: Non-Household, Scheme of Charges 2020/2021. Available from: <u>https://www.stwater.co.uk/content/dam/stw/my-account/our-charges/2020/nhh-wholesale-charges-scheme.pdf</u> [cited 15 May 2020].