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a b s t r a c t

Metal matrix nanocomposites were fabricated by high-pressure torsion (HPT) using 5% graphene
nanoplates as a reinforcement contained within an Al matrix. Powders were mixed and compacted at
room temperature and then processed by HPT at three different temperatures of 298, 373 and 473 K.
After processing, microstructural observations were undertaken to reveal the distributions of graphene
in the matrix, the grain refinement in the aluminium and the nature of the graphene-aluminium in-
terfaces. Tests were performed to measure the microhardness, the tensile stress-strain curves and the
electrical conductivity. The results show that processing by HPT is advantageous because it avoids the
sintering and high temperature deformation associated with other processing routes.
© 2018 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Metal matrix composites (MMCs) are lightweight structural
materials having wide applications in the aerospace, automotive
and electronic sectors [1]. Boron, carbon and silicon carbide (SiC)
are often used as continuous fibre reinforcements and silicon car-
bide (SiCp), alumina (Al2O3) and boron carbide (B4C) are conven-
tional particle reinforcements [2]. Aluminium-based MMCs have
attracted much interest due to the strengthening effects from
different reinforcements such as Al2O3 and SiC [3]. An alternative
reinforcement is graphene which was discovered in the last 15
years [4] and has a low mass density of 0.77mgm�2 [5],
outstanding mechanical properties with a 1 TPa Young's modulus
and 130 GPa tensile strength [6], as well as high thermal conduc-
tivity above 4000WmK�1 [7] and high electronic conductivity
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above 15000 cmV�2 [8]. The 2D geometry of graphene nanosheets
and nanoplates is responsible for producing maximum values for
their surface-to-volume ratios so that graphene appears as an ideal
candidate for incorporation in an aluminiummatrix to achieve high
strength and conductivity. Graphene nanoplates (GNPs), which
consist of multilayer graphene, are much cheaper and easier to
produce than single layer graphene [9] but the high van der Waals
forces between the graphene layers tends to limit the uniform
dispersion of GNPs within the metal matrix.

The traditional fabrication routes for MMCs can be divided into
liquid state (liquid metal infiltration and casting techniques) and
solid state (powder metallurgy) methods [10]. Liquid metal infil-
tration and casting involves an incorporation of a dispersed par-
ticulate into a molten matrix metal, followed by its solidification.
However, due to the large density difference between graphene and
the metal matrix, it is difficult to disperse graphene uniformly
within the matrix and the liquid processing methods usually pro-
duce agglomerated particles in the ductile matrix which lead to an
unwanted brittle nature. Furthermore, the agglomeration is more
severe when the particulate size is in the submicrometer or
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
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Fig. 1. SEM images of as-received GNPs powder at (a) low and (b) high magnifications.
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nanoscale range [11] which is the case when using graphene as the
reinforcement. The alternative of powder metallurgy (PM) pro-
cessing techniques generally involve sintering, cold isostatic
pressing, hot isostatic pressing or spark plasma sintering, and in
some cases secondary deformation such as hot extrusion, hot
forging, hot rolling and/or friction stir processing. The PM pro-
cessing has two major disadvantages. The first disadvantage is an
oxidation of the metal matrix and the production of unclean in-
terfaces between the particulates and the matrix which lead to a
weak bonding and consequent low mechanical strength [12]. In
addition, processing at elevated temperatures aids the chemical
reactions between the matrix and particles which may produce
brittle secondary phases [13]. The second disadvantage is that high
temperature sintering can produce unexpected grain growth in the
matrix [14]. Nevertheless, it is generally easier to achieve unifor-
mity of the reinforcement distributions using PM processing rather
than liquid processing [15].

Several recent reports have described the synthesis of
graphene-reinforced Al matrix composites [16e28] including using
a liquid method [16], ball milling plus hot isostatic pressing, hot
pressing or hot extrusion [17e21], ball milling plus sintering [22],
sintering or sintering plus extrusion [23e25], spark plasma sin-
tering [26,27] or an ultrasonic treatment plus friction stir pro-
cessing [28]. In practice, these various investigations all involve
high temperature processing steps which may cause oxidation of
the metal matrix and/or reactions between the graphene and the
matrix. Thermodynamic calculations show that the Al and graphite
may react to form Al4C3 at high temperature [29]. Therefore, in
order to overcome these technical challenges, it is important to
consider developing the composites using a low temperature
approach. One possibility is to use high-pressure torsion (HPT)
which is a severe plastic deformation technique that introduces
significant grain refinement and corresponding strength enhance-
ment in bulk metals in particular when processing at relatively low
temperatures [30,31]. Currently, there are reports on the HPT pro-
cessing of powder materials such as pure metals [32e36], com-
posites reinforced with Al2O3 and SiC particulates [37e40] and
composites reinforced with carbon-based particles such as fuller-
enes (C60) and carbon nanotubes (CNTs) [41e48]. These MMCs can
be effectively processed by HPT at temperatures between 298 and
473 K and this range is much lower than the typical sintering
temperatures of 863e893 K for Al alloys. Furthermore, the use of
low temperature HPT processing will avoid oxidation and the for-
mation of second phases. There is also mass transfer within the
samples due to the development of turbulent eddy currents in the
sample cross-sections during HPT processing, as confirmed by
computer modelling [49] and experimental observations in
immiscible alloys [50,51], and this will help in the redistribution of
reinforcements within the metal matrix. In addition, there are
currently no reports on using HPT to fabricate graphene-reinforced
Al-based MMCs (henceforth designated graphene-Al composites).

The present research was therefore initiated in order to evaluate
the use of HPT processing in the fabrication of graphene-Al com-
posites at temperatures ranging from 298 to 473 K, to develop a
comprehensive understanding of the microstructural de-
velopments in both the Al matrix and the graphene, and tomeasure
experimentally the strength and conductivity in the fabricated
composites.

2. Experimental materials and procedures

Aluminium powder with a mean particle size of 125 mm was
purchased from Goodfellow (Cambridge, UK). The purity of the
powder, as provided by the supplier, was 99.5% with Cu < 200,
Fe< 3500, Mn< 200, and Si< 2500 ppm; this composition is
similar to the specifications for commercial purity Al-1050
aluminium in ASTM B491. Graphene nanoplates (GNPs) were pur-
chased from Sigma-Aldrich (Gillingham, Dorset, UK) with Raman
D/G (the ratio of D band peak to G band peak) and D/D0 (the ratio of
D band peak to D0 band peak) values of 0.28 and 5.0, respectively.
The 2D band shape indicates the presence of graphene flakes of a
few layers with an average of ~5e7 atomic layers. Fig. 1(a) shows
the scanning electron microscope (SEM) images of the as-received
GNPs and the higher magnification image in Fig. 1(b) shows an
agglomeration of GNPs.

The aluminium powder was initially mixed with 5% of GNPs in
weight percentage and themixed powders were then poured into a
glass bottle and rotated on a rotation rack for 30min to improve the
homogeneity of GNPs in the Al powder. The mixed powders were
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compacted in a die at room temperature under a pressure ~40MPa
for 1min to provide disc-shaped tablets with diameters of 10mm
and heights of ~1.2mm.

The HPT processing was conducted at temperatures of 298, 373
and 473 K under quasi-constrained conditions where there is a
small outflow of material around the periphery of the disc during
processing [52]. At each temperature, the pre-compacted disc-
shaped tablets were initially subjected to a pressure of 6.0 GPa for
1min without any shear deformation where this processing con-
dition is henceforth designated 0 turns. Thereafter, the samples
were processed by torsional straining through numbers of rota-
tions, N, of 1, 5, 10 and 20 turns.

After processing, each disc was cut into two halves along a
diameter using a diamond wafering saw. The cross-sections of each
disc were examined using SEM with the specimens prepared by
grinding and ion polishing using an Hitachi Ion Milling System IM-
4000. Since ion milling is a damageless process, this polishing
eliminates all deformation and oxide layers and the surface quality
was sufficiently good that the structure was examined by SEM
using channelling contrast. Microstructure examinations were
conducted using an Hitachi SU-8000 SEM operating at 10 kV. The
images were taken in secondary electron (SE) imaging and in back-
scattered electron (BSE) modes. The SEM observations were per-
formed on cross-section planes in the middle region close to the
disc centre and in the edge region at ~0.5mm from the disc edge.
Detailed microstructural observations from selected areas were
recorded using a Cs-corrected dedicated high resolution scanning
transmission electron microscope (STEM) Hitachi HD-2700 oper-
ating at an accelerating voltage of 200 kV. The STEM thin foils were
extracted from the peripheral parts of each disc using a focused ion
Fig. 2. The distribution of 5% GNPs in the Al matrix processed by H
beam (FIB) Hitachi NB 5000 microscope. The STEM observations
were taken in bright-field (BF) and high-angle annular dark field
(HAADF or Z-contrast) modes. The grain size of the HPT-processed
Al matrix was measured using the linear intercept method with
Image J software based on the SEM and STEM images.

XploRA confocal Raman spectroscopy was used to examine the
structure change of the graphene during HPT processing. The
Raman spectra were acquired with a selected laser wavelength of
532 nm at room temperature.

The mechanical properties of HPT-processed samples were
evaluated using microhardness measurements and tensile testing.
The Vickers microhardness, Hv, was measured along radial di-
rections on the polished disc surfaces using an FM-300 micro-
hardness tester with a load of 200 g (equivalent to 1.96 N) and a
dwell time of 15 s. Miniature tensile specimens having gauge
lengths of 1.1mm, widths of 0.95mm and thicknesses of ~0.7mm
were cut from the HPT-processed discs. These specimens were
tested in tension at 298 K using a Zwick 30 kN Proline facility
operating at a constant rate of cross-head displacement with an
initial strain rate of 1.0� 10�3 s�1. The constant cross-head velocity
testing machine applies a constant strain rate that is the sum of the
elastic and plastic strain rates in the specimen and the strain rate
resulting from the elasticity of the testing machine [53]. The load
and displacement data were converted to engineering stress and
engineering strain using the method described elsewhere [54]
where the influence of the elastic deformation of the testing
apparatus was minimised by equating the elastic portion of the
stress-strain curves to the theoretical elastic modulus of
aluminium. To check on reproducibility, four samples were tested
for each condition.
PT at 298 K with (a) N¼ 0, (b) N¼ 1, (c) N¼ 5 and (d) N¼ 20.
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The bulk electrical resistivity (ohms-cm) of HPT-processed disc
samples was measured on a 4D automatic four-points probe meter
(Model 280) using a linear probe with a probe size of 500 mm and a
probe-to-probe distance of 1mm. For each disc sample, the bulk
electrical resistivity was measured at 5 or more positions within
the disc half-radius area. The measured bulk resistivity (ohms-cm)
was compared with the bulk resistivity of annealed commercial
pure Cu (1.72� 10�6U-cm), and then it was converted to the
electrical conductivity represented by the IACS (International
Annealed Copper Standard) using the expression IACS
(%)¼ 1.72� 10�6U-cm/(the measured bulk electrical resistivity in
ohm-cm) [55].

3. Experimental results

3.1. The evolution of the GNPs distributions in the Al matrix during
HPT processing

The polished cross-sectional surfaces of samples processed by
HPT at 298 K were observed by SEM and the SE images giving the
GNPs distributions in the Al matrix are shown in Fig. 2 after 0, 1, 5
and 20 turns, where the GNPs have a black colour in these images.
In the sample compressed under 6.0 GPa for 1min (0 turns sample),
large cracks with shining reflections appear at the upper and lower
regions of the disc in Fig. 2(a) and the GNPs are in the form of ag-
glomerates displaying flow tendencies. By contrast, no cracks are
visible in samples processed to 1, 5 and 20 turns in Fig. 2(bed).
Furthermore, with increasing numbers of turns there is less evi-
dence for a flow tendency in the agglomerated GNPs, and the size of
the agglomerates is reduced significantly as N increases from 5 to
Fig. 3. The distribution of 5% GNPs in the Al matrix processed by H
20 turns.
Similar polished cross-sectional surfaces were examined after

HPT at 473 K and the results are shown in Fig. 3(aed). No large
cracks are visible in the 0 turns sample in Fig. 3(a) although there
are some very short cracks in the top area of the SE image but the
agglomerated GNPs have no obvious flow tendency. Comparing
Figs. 3(a) and 2(a), it is apparent that HPT processing at 473 K
promotes diffusion and plastic flow which reduces the cracking in
the 0 turns sample. The agglomeration of GNPs in the Al matrix also
changes with increasing numbers of turns as shown in Fig. 3(bed)
such that the agglomerated GNPs are fragmented to much smaller
sizes after 5 and 20 turns by comparison with the samples pro-
cessed at 298 K. This shows that the shear deformation induced by
HPT processing is effective in reducing cracking and in prompting
the material flow and the fragmentation of the agglomerates of
GNPs in the Al matrix.

3.2. Microstructure development in the Al matrix during HPT
processing

The polished surfaces of the 0 turns samples processed by HPTat
298 and 473 K were further observed by SEM at higher magnifi-
cations to reveal the grain structure in the Al matrix and the
occurrence of local bonding between the GNPs and the Al matrix.
Fig. 4(a) and (b) show the same area observed by the SE and BSE
mode for the 0 turns sample processed at 298 K. The SE image in
Fig. 4(a) demonstrates that most of the agglomerated GNPs have
good bondingwith themetal matrix and some of them have comet-
tails which confirm the strong flow tendency after compression at
6.0 GPa for 1min. Some cracks formed around the GNPs and also
PT at 473 K with (a) N¼ 0, (b) N¼ 1, (c) N¼ 5 and (d) N¼ 20.



Fig. 4. Microstructures of 0 turns sample processed by HPT at 298 K: same area
observed using different SEM modes of (a) secondary electron image and (b) back
scattered image.

Fig. 5. Microstructures of 0 turns sample processed by HPT at 473 K: same area
observed using different SEM modes of (a) secondary electron image and (b) back
scattered image.
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some isolated cracks formedwithin the Al matrix. The BSE image in
Fig. 4(b) reveals the grain structure and thewhite regions of lines or
dots were identified by EDX analysis as Fe-Si rich phases which is
consistent with the compositional analysis of the Al powder. When
the compact tablet is subjected only to compression as at 0 turns,
the axial compression gives a radial flow tendency so that most of
the grain structure tends to be elongated with a measured average
grain size of ~0.5 mm along the shorter axes of the grains. It is
important to note that the cracks and GNPs both appear as a black
colour in the BSE image in Fig. 4(b) so that the cracks and GNPs can
be identified only in the SE image in Fig. 4(a). Similar observations
were recorded for the 0 turns sample processed by HPT at 473 K in
Fig. 5 where the GNPs have no obvious flow tendency and there is a
network-like bonding with the Al matrix. It is evident from Fig. 5(b)
that the grains are reasonably equiaxed in structure with an
average grain size of ~1.5 mm.

Fig. 6 shows the STEM images of samples processed to (a) 1, (b) 5
and (c) 20 turns of HPTat 298 K: each row shows two images where
the left column is a high resolution STEM image so that the GNPs
appear white and the right column is a HAADF image (or Z-contrast
image) of the same area where the GNPs are black based on the
compositional difference. Normally, heavy elements are brighter in
Z-contrast images and, since the carbon atoms in graphene are
lighter than the aluminium atoms, the graphene appears dark in
the Z-contrast images. For convenience, the observable GNPs are
markedwith white arrows in both the STEM and Z-contrast images.
By comparing the two sets of images for each sample, it is apparent
that the presence of GNPs is resolved more clearly in the Z-contrast
images. No cracks or voids exist between the GNPs and the Al
matrix after processing to 1, 5 and 20 turns but with increasing
through 1, 5 and 20 turns at 298 K the average grain size of the Al
matrix is reduced through ~180, ~90 and ~70 nm, respectively. Fig. 7
shows comparable images after processing at 473 K for (a) 1, (b) 5
and (c) 20 turns: as in Fig. 6, the observable GNPs are marked with
white arrows. Thus, the GNPs show good bonding with the Al
matrix without the detection of any cracks or voids. The average
grain sizes after 1, 5 and 20 turns at 473 K were ~700, ~295 and
~155 nm, respectively, and these values are larger than at 298 K.
3.3. The nature of the interfaces between the GNPs and the Al
matrix during HPT processing

Samples processed by HPT at 298 and 473 K were observed
under high resolution STEM to reveal the bonding interface and the
surface features of the GNPs: representative STEM images are
presented in Figs. 8 and 9.

Fig. 8 shows STEM images of 1 turn samples processed by HPT at
298 K. Thus, when the graphene (0001) nanoplates have a different
orientation from the (111) crystal plane of the Al matrix, there is an
interface transition zone inwhich the C and Al atoms accommodate



Fig. 6. STEM and Z-contrast images showing the microstructures of samples processed by HPT at 298 K for (a) N¼ 1, (b) N¼ 5 and (c) N¼ 20.
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each other as shown in Fig. 8(a). The measured layer-to-layer dis-
tance of the GNPs is ~0.35 nm in Fig. 8(a) which is similar to the
layer-to-layer distance reported for carbon nanotubes [48] whereas
the Al (111) interplanar spacing is ~0.23 nm. The GNPs show a long
intact layered structure and there are only slight bends as indicated
bywhite arrows in Fig. 8(b). These results are reasonable because of
the small amounts of shear strain applied to the graphene-Al
composite in 1 turn of HPT processing.

Comparable STEM images are shown in Fig. 9 for 5 turns
samples processed by HPT at 473 K. Thus, the GNPs exist not only in
the grain boundary area in Fig. 9(a) but also within the Al matrix in
Fig. 9(b) as highlighted by white arrows. The GNPs embedded
within these ultrafine grains are critical for achieving a significant
strength enhancement in the graphene-Al composites. Based on
these observations of samples processed by HPT at 298 and 473 K, it
is concluded that the GNPs display more bending as the numbers of
turns increase and this is consistent with the high levels of internal
stress introduced by the heavy shear deformation.



Fig. 7. STEM and Z-contrast images showing the microstructures of samples processed by HPT at 473 K for (a) N¼ 1, (b) N¼ 5 and (c) N¼ 20.
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Raman spectroscopy is a convenient and effective method for
characterizing carbonmaterials and Fig. 10 shows the Raman spectra
of GNPs in the 20 turns sample processed by HPT at 298 K. The
characteristic peaks of the disorder-induced D band (~1353 cm�1)
and G band (1580 cm�1) were detected, where the D band is asso-
ciated with non-sp2 disorders (sp3-hybridized carbon) which are
present in the network of sp2-hybridized carbon, whereas the G
band is a typical ordered graphite structure that is attributed to the
degree of crystallinity of sp2-bonded carbon materials [56]. The in-
tensity ratio of the D band to G band (ID/IG) is a measure of the de-
fects present in the GNPs after HPT processing, where a high ratio
indicates a higher defect density in carbon materials [57]. In Fig. 10,
the ratio is ~1.15 indicating that some defects exist in the GNPs after
20 turns, where this is consistent with the observed bends of the
GNPs in the STEM images in Figs. 8 and 9.

3.4. Mechanical properties of HPT-processed graphene-Al
nanocomposites

Fig. 11 shows the evolution of microhardness in the composites
processed by HPT at (a) 298, (b) 373 and (d) 473 K, respectively. At
298 K, there is no large difference in hardness between the 0 turns



Fig. 8. High resolution STEM images of 1 turn sample processed by HPT at 298 K
showing the interface between GNPs and the Al matrix under the condition of (a)
graphene nanoplates and Al matrix having different orientations, (b) the existence of
long straight and slightly curved GNPs in the Al matrix.

Fig. 9. High resolution STEM images of 5 turns sample processed by HPT at 473 K
showing the interface between GNPs and the Al matrix under the condition of (a) the
existence of GNPs not only in the grain boundary area but also within the Al matrix, (b)
part of the curved graphene nanoplates having the same orientation with Al matrix.
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and 1 turn samples in Fig. 11(a) and all values are in the range
~40e60 Hv which shows that 1 turn of HPT introduces no signifi-
cant deformation in the Al matrix. As the numbers of turns in-
creases to 5 and 10, the hardness distributions show the typical
trends observed in most bulk metals with lower hardness values in
the disc centre areas and higher hardness values in the disc outer
areas [58]. With a further increase in the numbers of turns to 20,
the centre area shows only a slight increase in hardness but from
the half-radius position to the disc edge the hardness values lie
around a plateau with a value of ~110 Hvwhich confirms that heavy
straining introduces a saturation state. At 373 K, hardness
distributions in Fig. 11(b) are similar except there is no well-defined
plateau distribution after 20 turns. In Fig. 11(c) for HPT at 473 K the
maximum hardness values are ~90 Hv after 20 turns and the
hardness values for the samples processed to 10 and 20 turns are
almost identical.

Tensile testing was conducted at room temperature with an
initial strain rate of 1.0� 10�3 s�1 on samples processed by 20 turns
at three different temperatures. As shown in Fig. 12, the strength of
the graphene-Al nanocomposite decreases with increasing pro-
cessing temperature and the maximum strengths are ~350, ~340
and ~290MPa after processing at 298, 373 and 473 K, respectively.



Fig. 10. Raman spectroscopy of GNPs after HPT processing to 20 turns at 298 K.

Fig. 11. Microhardness distributions along disc diameter in samples processed by HPT
at (a) 298 K, (b) 373 K and (c) 473 K.
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Inspection shows that the elongations exhibit no simple variation
with processing temperature and the measured elongations for
these three temperatures are ~1.8%, ~3.9% and ~2.1%, respectively.

3.5. Electrical conductivity of the HPT-processed graphene-Al
composites

For comparison purposes, Table 1 shows electrical conductivity
measurements in the HPT-processed graphene-Al composite. The
electrical conductivity of commercial purity Al is 62% IACS [59].
When graphene-Al composites are processed by HPT at 298 K, the
average electrical conductivity in samples taken through 5 and 20
turns are 66.7± 4.0% and 64.9± 2.1% IACS, respectively. Considering
the relatively large error bar ranges, the conductivity in the sample
with the larger shear deformation is only slightly lower than the
sample with the smaller shear deformation. To check whether the
HPT processing temperature has an influence, the electrical con-
ductivity was also measured after processing by HPT for 20 turns at
473 K. The result is shown in Table 1 and it confirms there is an
increase in conductivity with increasing HPT processing tempera-
ture which is consistent with data reported for the processing of a
Cu-Cr alloy by HPT [60]. It is also consistent with the result for a Cu-
Cr alloy showing that the conductivity is increased when samples
are subjected to heat treatments after HPT [61].

4. Discussion

4.1. The use of HPT in dispersing agglomerated GNPs within an Al
matrix

The generally accepted theory of HPT is based on the assump-
tions of a uniformity of simple shear deformation through the
height of the specimen but with the localized shear strain pro-
portional to the distance from the disc centre [62]. However, several
recent investigations show deviations from this simple model. For
example, in the HPT processing of a duplex stainless steel there is
evidence for the formation of significant local turbulence including
the presence of double-swirl patterns and local shear strain
vortices [63e67]. Double-swirl flow patterns were reported also in
a Cu-28% Ag alloy after HPT processing [68] and there are recent
simulations demonstrating that non-laminar or turbulent flow
causes intensive mass transfer and a mixing of the deformed ma-
terial [49,69]. This explains the improved uniformity of particle size
distribution in an Al-6061 matrix alloy reinforced with Al2O3



Fig. 12. Tensile results of 20 turns samples processed by HPT at different processing
temperatures of 298, 373 and 473 K, and testing at 298 K.
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particulates after heavy shear deformation [33,70] and the good
homogeneity achieved in a nanocrystalline Cu-Cr alloy with an
average grain size of less than 20 nm from an initial mixture of
coarse Cu and Cr particles [71]. The successful processing of
immiscible alloys by HPT also provides evidence of turbulent flow,
mass transfer and themixing of the deformedmaterials since a very
high degree of chemical mixing was produced in the immiscible
Cu50Ta50 system by the HPT deformation to high strains of stacks of
Cu and Ta thin foils [51].

Based on these experimental observations and the simulations,
it is reasonable to anticipate that the heavy shear strain applied by
HPT will fragment the agglomerated GNPs in the Al matrix and
redistribute the particles reasonably homogenously through the
advent of turbulent flow. Figs. 2 and 3 confirms this trend for ma-
terials processed at 298 and 473 K, with a reduction in the extent of
the GNPs agglomeration with increasing numbers of turns. This
suggests that HPT may provide a powerful manufacturing route for
obtaining uniform distributions of GNPs in an Al matrix through
heavy shear deformation. This approach also overcomes the prob-
lem of the wettability between GNPs in an Al matrix which is an
inherent feature of traditional liquid casting methods.

Furthermore, we noted that some graphene agglomerations
remained even after high numbers of turns of HPT processing and
this may limit any additional strength enhancement in the
graphene-Al composites. Thus, the procedure for achieving a fully
homogenous dispersion of graphene nanoplates in the Al matrix
remains a challenge.
4.2. The effect of GNPs in improving the strength of HPT-processed
graphene-Al nanocomposites

It was noted earlier that the composition of the Al powder is
similar to that of the commercial purity (99.5%) Al-1050 alloy.
Therefore, it is interesting to compare the strength of the HPT-
Table 1
Electrical conductivity of HPT-processed graphene-Al composite at 298 and 473 K.

Sample condition Electrical conductivity, IACS%

HPT processing at 298 K, N¼ 5 66.7± 4.0
HPT processing at 298 K, N¼ 20 64.9± 2.1
HPT processing at 473 K, N¼ 20 69.5± 2.3
processed graphene-Al nanocomposites with the Al-1050 alloy.
After 5 turns of HPT at 298 K, the Al-1050 alloy shows a saturation
hardness of ~65 Hv across the disc diameter [72,73] whereas in
Fig. 11(a) the nanocomposite has not achieved saturation after 5
turns at 298 K with hardness values of ~40 Hv in the disc central
area and ~90 Hv at the edge. There is also no saturation in the
nanocomposite after 20 turns but with a maximum hardness of
~110 Hv from the disc half-radius to the edge. Thus, a much higher
hardness is achieved at the edge of the nanocomposite which
confirms the significant strengthening contribution from the GNPs.

It is well established that the equivalent von Mises strain, ε,
imposed in HPT may be estimated from the relationship

ε ¼ 2pNr
h

ffiffiffi

3
p (1)

where N is the number of HPT processing turns and r and h are the
radius and height (or thickness) of the disc, respectively [62]. An
early report demonstrated that all hardness datum points derived
in HPT processing may be conveniently correlated by plotting
against the equivalent strain [74]. Fig. 13 shows these plots for the
nanocomposite at the three temperatures of (a) 298, (b) 373 and (c)
473 K. The saturation hardness at 298 K is ~110 Hv at equivalent
strains above ~200, at 373 K the behaviour is similar to 298 K but
with a saturation hardness of ~100 Hv at equivalent strains above
~200 and at 473 K there is a well-defined saturation at ~80 Hv at
equivalent strains above ~50. These hardness distributions are
similar to many other bulk metals except that the saturation then
occurs at lower equivalent strains of ~30 in Al-1% Mg [75], ~50 in
AZ31 alloy [76] and ~20 in tantalum [77]. This suggests the GNPs
may interfere with dislocation slip in the Al matrix so that there is
little or no recovery during the HPT processing.

Commercial purity Al-1050 sheet in an H14 state (work hard-
ened by rolling) should have a tensile strength of ~105e145MPa
with a minimum of 12% elongation. Fig. 12 show that the graphene-
Al nanocomposite has maximum strengths of ~350, ~340 and
~290MPa after processing by HPT through 20 turns at 298, 373 and
473 K, respectively, and then testing in tension at 298 K. These
values are therefore significantly higher than for the Al-1050 sheet.
A comparison of grain refinement in the Al matrix when processing
by HPT at 298 and 473 K is given in Fig. 14 and it is apparent that
processing at 473 K produces a coarser grain structure with final
grain sizes after 20 turns of ~70 and ~155 nm at 298 and 473 K,
respectively. Thus, the HPT-processed graphene-Al nanocomposite
hasmuch higher strength than the commercial purity Al-1050 alloy
but with limited ductility, where this strength enhancement may
arise from the synergistic effect of grain size refinement, dislocation
strengthening, GNPs reinforcement and stress transfer [78].

4.3. The nature of the graphene-Al interface after HPT processing

There is an ab initio simulation on the interaction between a
graphene (0001) sheet and Al (111) layer in carbon-aluminium (C-
Al) nanocomposite systems with a calculated cohesive energy of
~0.185 eV for the C-Al interface and an equilibrium separation
distance of ~0.248 nm between the graphene and Al layers [79].
This calculated cohesive energy at the C-Al interface is much larger
than the value of 0.0417 eV for the bulk C-Al system [80] and sug-
gests that the interface bonding of the C-Al nanostructure is not
simply a van der Waals type but rather it is metallic or semi-
metallic in nature [81]. The calculated equilibrium separation dis-
tance of 0.248 nm between the graphene (0001) layers and the Al
(111) layers is smaller than the GNPs interlayer separation of
0.35 nm but larger than the Al (111) interplanar distance of
0.231 nm. In order to form coherent interfaces between the



Fig. 14. Grain size comparison in graphene-Al composites processed at 298 and 473 K.

Fig. 13. Values of the Vickers microhardness plotted as a function of the equivalent
strain for HPT-processed nanocomposites at (a) 298 K, (b) 373 K and (c) 473 K.
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graphene (0001) sheets and the Al (111) planes, it is reasonable to
assume that the interfacial spacing of the Al (111) layer near the
interface is larger than the areawithout GNPs so that this interfacial
area has a high dislocation density and microstrain within the Al
lattice.

For a sample processed to 1 turn by HPT at 298 K as shown in
Fig. 8(a), the graphene nanoplates have large orientation differ-
ences with the Al matrix (111) planes at lower numbers of turns
which is consistent with the wide interfacial area. Due to the low
shear strain induced at 1 turn of HPT, long straight and slightly
curved GNPs are visible in the Al matrix in Fig. 8(b). At 473 K for 5
turns, the GNPs are dispersed and embedded within the grains,
along the grain boundaries and in relatively large agglomerates in
Fig. 9. The curvatures of the GNPs in Fig. 9 indicate heavy levels of
local strain. Nevertheless, when the Al lattice (001) planes have the
same orientation as the GNPs (0001) nanoplates, they merge
together and it becomes difficult to clearly reveal the graphene
nanoplates as in Fig. 9(b).

4.4. Factors affecting the electrical conductivity

The electrical conductivity is very sensitive to the microstruc-
ture of the metallic materials [81]. In practice, the electrical resis-
tance of metals can be represented by Matthiessen's rule [59]:

rtotal ¼ r þ rss þ rp þ rd þ rgb (2)

where rtotal is the total electrical resistance, r is the electrical re-
sistivity of the lattice, rss is the resistivity due to solute atoms
dissolved in the matrix, rp is the resistivity added by second-phase
precipitates, rd is the resistivity due to dislocations present in the
microstructure and rgb is the resistivity due to grain boundaries.

The electrical conductivity of commercial purity Al in an
annealed state with a coarse-grained structure is 62% IACS [82].
After HPT processing to 10 turns at 300 K, the electrical resistivity of
commercial purity Al (99.5 wt%) was 30.5 nUm [83], equivalent to
57.5% IACS. The drop of electrical conductivity in commercial purity
Al arises from an electrical resistance increase due to the increased
numbers of dislocations and grain boundaries (rd þ rgb) after HPT
processing.

In the fabricated graphene-Al nanocomposites, there is no sig-
nificant effect from solute atoms (rss) and this term can be
neglected. The GNPs as a reinforcement are different from second-
phase precipitates and it is expected that the pi (p) electrons of
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graphene will help to improve the conductivity. By contrast, the
high dislocation densities and the significant grain refinement
introduced by HPT processing increases the electrical resistance
through rd and rgb and thereby reduces the electrical conductivity.
This means the measured conductivity of the graphene-Al nano-
composite will arise from these competing factors.

The electrical conductivities recorded in Table 1 show that in
HPT processing at 298 K for 5 and 20 turns the average conduc-
tivities are higher than the reported conductivity of 57.5% IACS in
commercial purity Al when processed to 10 turns by HPT at 300 K
[83]. This suggests that the reinforcement by graphene produces a
small improvement in the conductivity. There is also a further in-
crease when the nanocomposite is processed by HPT at 473 K for 20
turns. In practice, HPT processing at 473 K may introduce some
oxidation and this will increase the resistivity [84] but, in addition,
processing at 473 K produces a lower dislocation density and a
coarser grain structure when compared to HPT processing at 298 K
as shown in Fig. 7 and this will effectively reduce the resistivity.
Finally, it should be noted that, although the electrical conductivity
is increased after processing by HPT at 473 K (Table 1), the tensile
strength (Fig. 12) and the hardness (Fig. 13) are reduced at this
processing temperature and this may limit the use of this material
in practical applications.

5. Summary and conclusions

1. Graphene-Al nanocomposites with 5% GNPs reinforced in an Al
matrix were successfully fabricated using HPT processing at 298,
373 and 473 K. Agglomerated GNPs were fragmented during
HPT processing and tended to become more dispersed in the Al
matrix as the numbers of turns increased.

2. Significant microstructural refinement was achieved in the Al
matrix with average grain sizes of ~70 and ~155 nm after pro-
cessing through 20 turns at 298 and 473 K, respectively.

3. The interface between graphene and the Al matrix showed long
aligned graphene nanoplates at low numbers of turns and
curved graphene plates after higher numbers of turns. The
graphene nanoplates were present both within the Al grains and
along the grain boundaries.

4. The HPT-processed graphene-Al nanocomposites have
improved hardness and tensile strength by comparison with
HPT-processed commercial purity Al. Therefore, the graphene
reinforcement effectively improves the material strength.

5. These nanocomposites show a small improvement in conduc-
tivity compared with HPT-processed commercial purity Al at
298 K which suggests that graphene tends to improve the ma-
terial conductivity.
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