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 Hybridization of Capsule and LSTM Networks for 

unsupervised anomaly detection on multivariate data 

Ayman Elhalwagy and Tatiana Kalganova, Member, IEEE 

Abstract— Deep learning techniques have recently shown 

promise in the field of anomaly detection, providing a flexible and 

effective method of modelling systems in comparison to traditional 

statistical modelling and signal processing-based methods. 

However, there are a few well publicised issues Neural Networks 

(NN)s face such as generalisation ability, requiring large volumes 

of labelled data to be able to train effectively and understanding 

spatial context in data. This paper introduces a novel NN 

architecture which hybridises the Long-Short-Term-Memory 

(LSTM) and Capsule Networks into a single network in a 

branched input Autoencoder architecture for use on multivariate 

time series data. The proposed method uses an unsupervised 

learning technique to overcome the issues with finding large 

volumes of labelled training data. Experimental results show that 

without hyperparameter optimisation, using Capsules 

significantly reduces overfitting and improves the training 

efficiency. Additionally, results also show that the branched input 

models can learn multivariate data more consistently with or 

without Capsules in comparison to the non-branched input 

models. The proposed model architecture was also tested on an 

open-source benchmark, where it achieved state-of-the-art 

performance in outlier detection, and overall performs best over 

the metrics tested in comparison to current state-of-the art 

methods. 

 
Index Terms—Anomaly Detection, Capsule, LSTM, Neural 

Networks, Unsupervised learning. 

I. INTRODUCTION 

ime Series data analysis is a prominent field of research 

due to the significant demand stemming from 

increasingly larger datasets being acquired in industrial 

and commercial environments. The automation of this analysis 

has been integral to the advancement of Industry 4.0 [1], which 

refers to the automation of industrial processes. One important 

use case for time series analysis is outlier detection, which is an 

important part of the function of intelligent systems in the 

context of fault diagnosis. 

There are various traditional approaches to fault detection by 

way of hardware redundancy in literature [2]. However, a rising 

need in industry for a lightweight and cost-effective solution to 
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fault detection as a result of Industry 4.0 has encouraged the 

development of soft sensing systems, which use the existing 

sensors in a system to infer further information regarding the 

system. Recently, Neural Networks (NNs) have been identified 

as an effective tool in data analysis and fault detection due to 

their unique ability to be trained to identify numerical 

relationships in different forms of data [3]. They provide an 

advantage over traditional signal processing and statistical 

techniques due to the level of complexity that they can model 

the data, as well as being generalizable to similar types of data 

[3]. Furthermore, there is minimal data manipulation needed for 

the use of NNs, which can simplify the implementation of such 

systems. 

For time series analysis, Recurrent Neural Network (RNN) 

based models such as the Long-Short Term Memory (LSTM) 

network [4] are generally used due to their ability to identify 

dependencies in sequential data using their internal memory [5], 

[6], however some recent works have utilised the Convolutional 

Neural Network (CNN), which has proved to be a powerful tool 

in image classification [7], [8], in time series forecasting [9] and 

outlier detection tasks [10], [11]. Furthermore, the hybridisation 

of the aforementioned layers has also been shown to be a 

method of improving outlier detection performance [12], [13]. 

However, it is well documented that the CNN has a 

fundamental flaw in understanding spatial context in data; this 

is most prominently demonstrated in image classification tasks. 

The Capsule Network (CapsNet) [14] was proposed by Hinton 

et al to address this flaw and has successfully shown state-of-

the-art performance in image classification tasks with different 

variants of the network [15]. Additionally, some work has been 

done utilising the CapsNet for use on time series data in its raw 

format [16], [17], but predominantly using image 

representations[18], [19]; most approaches use an image 

representation of the data as the CapsNet has been proven to 

improve performance in this context. In this paper, we propose 

the hybridisation of the CapsNet and the LSTM Network in a 

branched Autoencoder architecture for use on raw time series 
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data. 

The contributions of this paper are summarised as follows: 

1) A hybridisation of the LSTM layer and the Capsule 

layer is implemented in a novel branched input, 

merged output model architecture for use on raw 

multivariate time series data 

2) The model is tested on a real-world dataset and 

benchmarked on another real-world dataset against 

the state-of-the-art anomaly detection methods in the 

field for a performance comparison 

II. MOTIVATION AND RELATED PUBLICATIONS 

This section will first explore the advantages of soft sensing 

methods over traditional hardware redundancy techniques for 

fault detection, then outline the benefits of NN soft sensing 

methods over traditional system modelling and signal 

processing techniques. NN based fault detection methods will 

then be reviewed so that a justification for the proposed method 

can be made. 

Fault detection systems have been researched and improved 

extensively over the last two decades due to the intense demand 

to automate industrial processes, also known as Industry 4.0 

[20]. There have been numerous approaches that aim to be 

effective in detecting different types of faults in different 

systems, due to the nature of the usage of the system or other 

reasons relating to the susceptibility of the system to certain 

faults. Some approaches for fault detection have involved using 

methods and techniques such as redundancy for sensors, 

sometimes paired with analytical redundancy methods[21], 

[22]. 

The common issue with these proposed solutions is that they 

involve the installation and maintenance of physical hardware 

to monitor the sensors or the system, which naturally means that 

they may require redundancy in more sensitive use cases: for 

example, that require the monitoring of life-threatening 

substances with very sensitive sensors. Furthermore, this 

guarantees an increase in the operating costs of these solutions 

due to increased energy usage and maintenance costs and 

provides another barrier to the goal of achieving automation. 

However more recently, soft sensing methods have been 

explored with the goal of using the information available from 

the sensors already implemented in the system to calculate an 

estimate of the quality of data being collected. This approach 

provides an economical and cost-effective alternative to 

physical systems by not needing to implement any additional 

physical hardware that could be expensive to buy or maintain 

whilst achieving robust fault detection scores that are 

comparable to and even better than physical systems. 

A. Soft Sensing Methods for Fault Detection 

Statistical analysis and signal processing are frequently used 

methods in the field of anomaly detection. As a method of soft 

sensing, they are able to overcome the drawbacks of physical 

hardware monitoring and provide a robust method of data 

inference. For instance in [23] a dynamic model is proposed that 

is able to utilise the existing supervisory control and data 

acquisition (SCADA) system in wind turbines to dynamically 

model the relationship between the sensor readings by a 

parameter estimation process for the purpose of fault detection. 

A frequency domain analysis is used to determine damage 

sensitive indices which are then compared to the model sensor. 

The technique is tested on a 5-year wind turbine dataset where 

the system was able to detect faults as well as perform fault 

prognosis. Whilst the method is clearly effective in the 

specified use case, the flexibility of the method for other use 

cases comes into question as in-depth knowledge about the 

system and the relationships between the variables being 

analysed was utilised to be able to create the initial model. This 

issue is also mentioned in [24] where the authors concluded 

from their survey of outlier detection techniques that model-

driven methods are heavily dependent on the understanding of 

the data being analysed. The lack of flexibility of such 

techniques is also mentioned, due to the heavy tailoring that 

must be made to the models for each dataset. This is a trend 

across many signal processing techniques including for motor 

condition monitoring where [25] noted in their state-of-the art 

review of outlier detection techniques the lack of flexibility of 

data analysis techniques such as acoustic analysis and motor 

current signal analysis (MCSA) in detecting a wide range of 

faults that could occur within the system. 

More recently, Machine Learning (ML) has been heavily 

utilised in literature for the modelling of such systems. As well 

as being a soft sensing technique, ML is able to provide a higher 

degree of flexibility in terms of application as well as being 

generally easier to implement than the aforementioned 

techniques. Various examples of literature can be found that 

utilise proposed NN models in multiple use cases and datasets 

[6], [26]. However, this is not to say that generalisation is still 

not an issue with NNs. The main issue found in literature with 

NNs is the importance of data volume and representation in 

being able to train NNs effectively. Most NN types such as the 

CNN and the LSTM require large quantities of data to 

effectively learn the shape and features of the data, and some 

methods even require the labelling of the data before training, 

known as supervised learning [12], which is very time-

consuming and costly as this is usually a manual process. 

Furthermore, with some types of data it is very difficult to 

distinguish faults and anomalies in raw sequential format. 

To address these discussed issues with NNs, researchers have 

opted to combine signal processing techniques with NNs where 

applicable in order to utilise the advantages provided by the 

former with data representation and the latter in flexibility and 

ease of use. This approach has seen great success in motor fault 

detection [27], [28], where in these cases frequency domain 

transformations were used to enhance the representation of the 

data for use with LSTM networks. Additionally, the use of 

various types of CapsNets in numerous cases was found to 

improve training and classification performance over smaller 

datasets [29], [30]. As well as hybridising signal processing and 

ML, many literatures also propose the hybridisation of NN 

types to take advantage of their advantages with different types 

of data; one popular hybridisation for TS data is RNNs and 
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CNNs [12]. 

B. LSTM based Autoencoder 

The LSTM network [4] has lately grown in popularity due to 

the overwhelming demand for time series analysis and 

forecasting in commercial environments, hence fuelling the 

demand for more research into the improvement of its 

performance. One recently proposed method [31] explored the 

usage of the LSTM layer in an Autoencoder architecture. The 

authors correctly identified that a large number of the current 

machine learning methods that are used are unsuitable for use 

practically, as they usually require the use of labelled data 

which is impractical with time series data due to the large 

volumes being constantly produced. Furthermore, the authors 

go on to evaluate classical anomaly detection methods such as 

Support Vector Machines and Isolation forests as being flawed 

since they fail to account for the temporal aspect of the time 

series data and only take the current data into account. In 

addition to this, they demonstrate, with an initial experiment, 

that other methods such as signal decomposition are only 

effective when used with periodic data, so their use is limited in 

that aspect. However, the authors [31] noted that the simplicity 

of this method is an advantage over the LSTM autoencoder 

approach that was being explored, but the necessity of manual 

parameter selection was considered a drawback. 

The proposed method in [31] uses the sliding window 

algorithm to feed the data into the LSTM Autoencoder, for 

which the number of layers and LSTM cells were optimised. 

The neural network was trained by fitting the output to the input 

signal, and the mean absolute error between the prediction and 

signal was used as the threshold for testing for anomalies. The 

system was tested on sound files from the DCASE dataset 

which were down sampled to 16000 samples per second, and 

the sliding window would take 1-second steps. Results [31] 

show an 87% accuracy for anomaly detections, with the correct 

location identified 91.7% of the time. 

Evaluating the approach used in this paper [31], it shows 

promise with the accuracy of detection and the wide application 

of its usage, but various drawbacks were identified: the authors 

selectively used data that was loud enough to be detected by the 

autoencoder and did not explore the sensitivity of detection. 

Furthermore, the authors assumed that the training data 

acquired was “clean” of any anomalies, which could be a 

reasonable assumption to make since the data was taken from 

an established dataset, but in a real-life use case, this may not 

be the case. However, since this is an unsupervised approach, it 

is expected that all initial errors will not be identified unless 

extensive data analysis is carried out before training the system, 

or if previous knowledge about the operation of the system 

being analysed is acquired. Furthermore, due to the sliding 

window approach, the location of the anomaly was a parameter 

that had to be measured, which could be overcome if a different 

approach to parsing the data was used. One main issue that the 

LSTM faces is its overfitting when used with gradient descent 

learning optimisation algorithms. Although very careful 

tweaking of hyperparameters can help to reduce this issue, this 

is often highly inefficient and time consuming and with 

complex datasets is sometimes unavoidable. 

C. Capsule Network application in time series data analysis 

The CapsNet [14] is a novel neural network developed to 

overcome issues faced with the spatial context of image 

classification that is encountered when using prevalent image 

classifications such as convolutional neural networks. It does 

this by “encapsulating” the entity being described in a vector 

format, where the length describes the probability of existence 

and the orientation of the vector describes the entity’s 

characteristics, such as orientation and the special context that 

other traditional neural networks cannot capture. The original 

idea was conceptualized in [14] by Hinton et al, but some 

literatures [32] have built on this work by adjusting the 

architecture to work with Adaptive Gradient Descent 

optimisation algorithms for image classification. However, the 

effectiveness of the latter approach has not been fully explored 

for raw time series data at the time of writing. This architecture 

is mainly used for image classification as demonstrated by [33] 

for brain tumour classification using MRI images and [34] for 

“Hyperspectral Image Classification”, but more recently its 

usage has been explored limitedly in a time series use case. 

A few papers currently exist that utilise this neural network 

architecture for time series tasks [35]. However, the approaches 

that most papers use is to transform the data into an image 

representation, which has already been identified as a powerful 

usage of this network. For example, one proposed approach 

[36] aimed to utilise capsule networks to address an issue with 

the detection of short circuit faults in a power network 

transmission line. The authors state that the raw signals are 

difficult to analyse for this task and analyse methods for time 

series feature extraction in the literature review. The Fourier 

transform was identified as a prevalent method of frequency 

domain analysis, however, the authors identify that the former 

does not take the temporal context into account which, for the 

use case that this paper covers, is an essential factor. Therefore, 

another paper was outlined [37] which overcame this issue 

using the discrete wavelet transform, which is able to provide 

information from both the frequency and time domain. The 

authors [36] note that these signal processing techniques require 

a high level of expert knowledge in order to leverage properly 

to produce good results, and image representation techniques 

can extract more significant features more efficiently in 

comparison to signal processing methods. Using this 

information, the authors propose a deep learning approach that 

overcomes the issues that current machine learning methods 

have with poorer feature representation due to scalar values 

being used and max pooling inhibiting the information learned 

by the neural network. 

A 3-phase voltage system is first simulated [36] so that 

different fault models can be identified and simulated, and the 

signal processing can be applied and tested for robustness. The 

discrete wavelet transform that was identified as a superior 

method to the Fourier analysis is used in combination with a 

high pass and low pass filter in order to filter the signal noise, 

and a polar representation of the signal is acquired which is then 

represented as a Gramian Angular Field (GAF), proposed in 
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[38], which is a method of time series image representation. The 

authors reasoning for this is a more feature-rich representation 

of the data in comparison to other image representations, due to 

the preservation of the temporal context as well as the other 

points identified in their literature review. 

The proposed approach in [36] utilises the capsule network 

to overcome the discussed issues in the literature review. 

Furthermore, the architecture proposed uses convolutional 

layers that accept 6 inputs corresponding to the number of 

signals in the 3-phase voltage system transformed into pictures. 

The convolutional operation then outputs to a self-attention 

layer, which the author [36] claims produces promising results 

by focusing on the more relevant areas in the GAF image. A 

Rectified Linear Unit (Relu) activation is then used before 2 

capsule layers which output the classification results. The 

neural network uses a novel technique referred to as weight 

sharing, which connects the neurons in a different configuration 

to a normal fully connected network so that the neurons in the 

previous layer share the weights so that the same number of 

weights as the neurons in the next layer is used when connecting 

to the next layer. 

The authors test the proposed model architecture’s anomaly 

detection performance on the 11 types of short circuit faults 

identified [36], where an overall classification accuracy of 

99.81% is achieved. However, they go on to state that the 

classification accuracy is not detailed enough to provide a 

conclusion as to whether the system is robust. They also go on 

to test the effect of current transformer saturation on the 

classification ability of the network, as well as voltage and 

current inversions. The results achieved for the stated cases are 

99.4% and 97% respectively. The proposed network was also 

validated on real-world data, with an accuracy of 92% attained. 

This paper [36] provides an objective view on the different 

methods used currently in power system fault detection and 

goes into depth on the prevalence of some time series image 

representation techniques over others but fails to provide an 

evidence-backed explanation as to why raw data is unsuitable 

for this use case only stating that “it is difficult to directly 

consider” [36] them for the fault detection and classification 

task. This directly contradicts the statement made about the 

difficulty of applying signal processing tasks due to the expert 

knowledge required. Moreover, not every test case was 

explored with this approach, which was identified by the 

authors [36] but this is to be expected since it is difficult to 

cover all fault types for such a complex system. On the other 

hand, a methodical approach was used to synthesise the 

proposed approach, and an evidence-backed conclusion was 

made to the effectiveness of their approach due to the various 

test cases applied and the comparison between traditional 

neural network models without the capsule integration. 

Furthermore, the weight shared capsule approach showed 

promise with its strong generalisation performance with the 

real-world dataset. 

D. LSTM and Capsule hybridisation 

Recently, some works have been published combining the 

LSTM and Capsule networks to improve performance over 

current state-of-the-art techniques[39], [40]. One such work 

[41] proposes a rotating machinery fault diagnosis methodology 

utilising a CNN for feature extraction, a Bi-directional LSTM 

for denoising by dimensionality reduction and Capsules for 

their superior feature learning ability. The authors demonstrate 

the effectiveness of each proposed addition through a 

comparison of similar architectures with different NN 

combinations. The model diagnoses bearing faults in a 

supervised manner; this was demonstrated with an experiment 

on the Case Western Reserve University (CSWU) Bearing 

dataset [42], where raw vibration waveforms were used as the 

input data, and prelabelled classes as the output. The proposed 

model outperforms the current state-of-the-art with 98.95% 

accuracy whilst dramatically reducing training sample size 

from 5600, the sample size used by other compared methods, to 

just 150. 

Another proposed method [43] combines the LSTM and 

Capsule layers in a single model for EEG emotion recognition. 

The authors propose a channel-wise attention mechanism using 

a CNN to prioritise the relevant EEG channels, Capsules to 

extract the spatial features and LSTM layers to extract the 

temporal features of the data. The model was tested on a public 

EEG dataset, where the state-of-the-art was considerably 

outperformed. It was noted that NN models that use Capsules 

consistently outperformed models using just CNNs in all three 

classification categories of valence, arousal and dominance. 

However, the authors noted the higher computational time 

involved with training Capsules as opposed to CNNs. 

These examples in literature demonstrate the potential 

advantages of hybridising the LSTM and Capsule Networks, 

due to the advantages that the LSTM has with temporal feature 

learning and the Capsules spatial feature learning ability. 

Furthermore, the combination of the two layers has proven to 

be effective in some time series applications and has potential 

to be used in other architectures for different use cases. 

To conclude, soft sensing methods of anomaly detection are  

more efficient and effective methods than hardware 

redundancy. However, with traditional methods it is difficult to 

accurately model systems without in depth knowledge of their 

dynamics and parameters, creating a barrier to flexible and 

accurate system modelling which is the basis of many anomaly 

detection systems. However, NNs provide a solution for this 

issue, providing a method of easily modelling system behaviour 

based of previously encountered data. Using NNs such as 

LSTM NNs for time series data learning, researchers have been 

able to accurately account for long term dependency in 

temporal data and create robust anomaly detection systems. 

However, this creates another issue with requiring access to 

large amounts of labelled data which is expensive and time 

consuming to produce. To avoid labelling data, some literatures 

have proposed unsupervised learning techniques such as the 

autoencoder which is able to learn data features by transforming 

it into a latent space representation. However, a comprehensive 

training set which is fully representative of the operation of the 

system or device being analysed is still required to utilise this 

technique, and generalisation performance is weak in many 
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these methods. The Capsule was proposed to address issues 

TABLE I 

 LSTM EQUATIONS [4] 

Fig. 1. Visualisation of LSTM cell [4], where: 

σ=sigmoid layer,  tanh= tanh layer, ft=forget gate,  

it=input gate, C̃t=candidate gate, Ot=output gate 

with training efficiency and the shortcomings of traditional 

NNs with learning spatial context of data. This paper further 

explores these qualities found in Capsules by hybridising them 

with LSTMs in a NN, and addresses issues found with learning 

multivariate data with single channel NNs. 

III. PROPOSED NEURAL NETWORK MODEL 

A. LSTM Cell 

The LSTM network, proposed initially in 1997 by 

Hochreiter and Schmidhuber [4] but popularised recently by its  

widespread usage in commercial environments, is a popular 

iteration of the RNN that can overcome the vanishing gradient 

issue and allows for the learning of long-term dependency. It 

does this using a specialised architecture that integrates “gates” 

to the architecture to allow the cell state to forget values and 

replace values, then decide which values to output and send to 

the next cell. A visualisation of this architecture can be seen in 

Fig. 1, and the equations shown in TABLE I. 

 The architecture can be described as follows: The “forget” 

gate, (1), uses a sigmoid layer to determine which irrelevant 

data in the cell state to remove, where a value of 1 would keep 

all of the data and a 0 would completely erase the information. 

The “replace” gate ,(2),(3),(4), is used to decide which values 

in the cell state to update. This gate operates by using a sigmoid  

 

 

Fig. 2. Autoencoder architecture visualised [44] 

 

layer to decide which values to update and a tanh layer creates 

a vector of candidate values to add to the cell state. The old state 

is then multiplied by 𝑓𝑡, the forget value and added to the 

candidate values scaled by the sigmoid. The “output” gate 

,(5),(6), determines which part of the cell state to output using 

a sigmoid layer and is then multiplied by the cell state with a 

tanh layer applied to constrain the values between 1 and -1. The 

following equations formally define each gate: 

B. Capsule 

The Capsule network (CapsNet) [14], is a novel neural 

network architecture designed to address the issues the 

convolutional neural network has with spatial context. It does 

this by ‘encapsulating’ the spatial information between the 

variables using vectors which allows the neural network to learn 

the distances between the identified features as well as the 

classification of the features. 

A capsule differs from the traditional artificial neuron in 

various ways: A traditional neuron receives scalar inputs; 

performs the weighted sum of the aforementioned scalars; 

applies an activation function and outputs a scalar dependant on 

the weights and biases that it has adopted through training. A 

capsule on the other hand, whilst operating in a similar fashion, 

slightly differs from the internal operation and the 

representation of the values that it receives. A capsule receives 

a vector input, where the input denotes the probability of 

occurrence as well as orientation and other spatial features not 

captured by a scalar value. It applies an “affine transformation” 

which is essentially a transformation matrix weight that 

replaces the traditional scalar weight; this operation is formally 

defined in (7)[14]: 

�̂�𝑗|𝑖 = 𝑊𝑖𝑗𝑢𝑖 . (7) 

This transformation matrix is used to represent the spatial 

context that is missing from the traditional method of weight 

application. The weighted sum of these vectors is calculated 

using (8) [14]: 

𝑠𝑗 = ∑ 𝑐𝑖𝑗�̂�𝑗|𝑖𝑖  . (8) 

In order to preserve the vector information that is input to the 

capsule, a new type of activation is proposed known as the non-

linear “squashing” function. This operates similar to the normal 

Gate Equation  

Forget 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

Replace 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖) (2) 

 �̃�𝑡 = tanh(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)   (3) 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (4) 

Output 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

 ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (6) 

Symbol 

Definitions 

σ=sigmoid function, Wg = Weight of respective  

gate(g) neurons, bg= Bias of respective gate(g) 

[f = forget gate, I = input gate, 
C = candidate gate, O = output gate] 

x=input at current timestep, 

h=output of previous LSTM cell 
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activation functions discussed previously by squashing the 

output between 0 and 1 but does so in a way that is able to 

preserve the length and spatial information of the input values, 

so that a long vector will shrink to a value just below 1 and 

shorter vectors are shrunk to near 0 [14]. Equation (9) [14] 

formally defines this operation: 

 𝑣𝑗 =
||𝑠𝑗||2

1+||𝑠𝑗||2 ∙
𝑠𝑗

||𝑠𝑗||
 . (9) 

C. Autoencoder Structure 

An Autoencoder is a variant of neural network architecture 

that aims to learn a compressed representation of the input data 

and copy it to the output. A compressed representation is used 

so that the model does not learn the noise in a data 

representation but only the main shapes and features of the data. 

An autoencoder is composed of 2 sections: An encoder and a 

decoder. The encoder part is used to transform the input data 

into a latent space representation through dimensionality 

reduction, which the decoder part then learns and decodes back 

into the input data with reduced accuracy and hence noise. A 

visualization of this can be seen in Fig. 2. 

A formal definition of the Autoencoder operation is provided 

in (10) and (11) [44]: 

𝑓(𝑥) = 𝑙𝑎𝑡𝑒𝑛𝑡 𝑠𝑝𝑎𝑐𝑒 (10) 

 

𝑔(𝑓(𝑥)) = 𝑥′ (11) 

The idea is to reduce the layer width of the middle layers so 

that the neural network compresses the input instead of just 

learning the exact representation: this is known as an 

undercomplete Autoencoder. However, learning data that is too 

compressed would reduce the accuracy of the reconstruction, so  

when training the network, the aim is to balance the denoising 

ability with the accuracy of reconstruction. This is determined 

by the reconstruction loss, and the aim of training this type of  

network is to minimise this loss whilst maintaining a good 

generalisation performance. 

This type of neural network is typically used for 

unsupervised deep learning, as the inputs are being copied to 

the outputs with no labelling required, which is useful for the 

use case that this paper explores. 

D. Proposed Layer Architecture 

The proposed layer architecture is illustrated in Fig. 3 As 

shown in the figure, the number of input branches is entirely 

dependent on the number of features present in the data.  

Each individual feature is first encoded through an LSTM 

layer for dimensionality reduction and is output as a 2D vector. 

This dimensionality reduction is carried out to reduce the 

number of degrees of freedom in the model so that the risk of 

overfitting on data is reduced. Additionally, representing the 

data in latent space also helps the NN to learn data features more 

easily. The Repeat Vector layer transforms the 2D tensor input  

 

 

 

 

Fig. 3. Architecture proposed by this paper 

 

Fig. 4. An example of a frequency plot of the MAEs for the 

drone dataset (where the signal sources are unknown), and the  

corresponding error thresholds for feature 1, feature 2 and 

feature 3 in Fig. 9.  
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Fig. 5. Design A (The proposed design) – Branched Inputs, 

LSTMCaps Autoencoder Network 

Fig. 6. Design B – Branched Inputs, LSTM Autoencoder 

Network with no Capsules 

 

back to a 3D tensor by repeating the fixed length vector n 

number of times; in this case the number of repetitions is set to 

be equal to the number of timesteps being input in the system. 

The 3D tensor is then input into a Capsule layer, where the 

number of Capsules in equal to the number of timesteps, and 

the width of the Capsule is equal to the LSTM hidden layer 

width. The output of each branch is then concatenated into a 

single vector which is input into a Capsule layer with an equal 

number of Capsules as the previous Capsule layers but with a 

width equal to the product of the width of the previous Capsules 

and the number of branches.  The Time Distributed layer is then 

used to apply a Dense layer to each vector in the 3D output. 

Since this is an Autoencoder, the output should be equal to the 

input vectors merged into one vector with all the input features 

present. 

E. Fault Detection method 

To be able to detect a fault, the neural network will be trained 

to reconstruct healthy data. This can be done when  

fitting by setting the input and the output as the same dataset, 

which would be the healthy operation of the data. While 

technically this is an unsupervised task as the initial data 

provided is unlabeled so the condition of the data is unknown, 

it can be framed as a supervised learning task using this method.  

After this, the reconstruction error can be found using the 

Mean Absolute Error (MAE) of the training predictions. The 

maximum prediction error for the training set can be used as the 

reconstruction error threshold, which essentially means that the 

worst prediction case is being used as the threshold initially so    

Fig. 7. Design C – Single Input, LSTMCaps Autoencoder 

Network 

Fig. 8. Design D – Single Input, LSTM Autoencoder Network 

 

that when applying the system to more data from the system 

being analysed, any predictions outside this value will be more 

likely to be an anomaly. The sensitivity of the anomaly 

detection can be adjusted by changing the threshold value, so 

this will be experimented with in order to find the optimal value 

that will minimise the false positive and false negative rate. 

Furthermore, each data feature will have its own error threshold 

to maximise the accuracy of detection as the neural network 

may perform better on some features than others. An example 

of a threshold calculation can be seen in Fig. 4. The main aim 

of the training process is to minimise the loss and standard 

deviation of this plot so that the system is able to make more 

confident and sensitive anomaly predictions. 

IV. EXPERIMENTATION 

To demonstrate the effectiveness of the contributions of this 

paper, four different NN models have been compared:  

• For the first experiment, the effectiveness of CapsNet 

integration is explored in terms of training performance  
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Fig. 9. Training data subset from the reference drone with the 

3 outputs shown 

 

and MSE of prediction on test data. The proposed 

model (Design A, Fig. 5) is compared to a  

similar model with the Capsule layers removed and 

replaced with LSTM layers (Design B, Fig. 6). 

• For the second experiment, the effectiveness of the 

branched model was observed. This was 

demonstrated by synthesising a non-branched model 

with the same layer structure as the branched model 

(Design C, Fig. 7). 

• The final experiment will demonstrate the 

effectiveness of both additions being used 

simultaneously. This will be shown by using a non-

branched model consisting of just LSTM layers 

(Design D, Fig. 8). 

For the following experiments, each model was adjusted so 

that the trainable parameters are similar to the LSTMCaps 

model for experimental consistency. The models were then 

trained on the datasets with equal training iterations (epochs) 5  

times each, and an average was taken. This was to observe the 

training stability of the respective models. 

The final training and validation loss values will be used to 

measure the training efficiency of each NN model tested, and 

the Mean Squared Error (MSE), Mean Absolute Error (MAE) 

and F1 score of testing data predictions will be used to measure 

the prediction accuracy of the models respectively. 

A. Datasets 

Drone Data 

The drone dataset was acquired from previous work 

conducted by a researcher in the same department. The dataset 

consists of 3 output features from unknown sensors. 3 subsets 

of data were provided, the sample sizes and respective 

visualisations are outlined below: 

Reference device: 

• Sample size: 600 secs (Fig. 9) 

• Sample size: 30 secs (Fig. 10) 

Test Device: 

• Sample size: 30 secs (Fig. 11) 

 

 
Fig. 10. Validation data subset from the reference drone with 

the 3 outputs shown 

 
Fig. 11. Testing data subset from the test drone with the 3 

outputs shown, and anomalies circled in red

 
Fig. 12. Plot of a subset of data from the SKAB anomaly 

benchmark 
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Fig. 13. Binary plot of the respective anomalies and 

changepoints in Fig. 12 

 

As shown in Fig. 11, it is clear to see that there are anomalies 

from the test device in feature 1 and feature 3 at the same points 

temporally. The reason for the anomalous data stems from 

malicious code affecting the drone controls causing the 

direction of the drone to differ from the intended direction input 

by the drone operator. Since the data was received unlabelled, 

the anomalies were manually labelled so that a measure of the 

anomaly detection performance of each NN model could be 

attained. The metric used for this is the F1 score, which is 

defined in (12): 

F1=
TP

TP+
1

2
(FP+FN)

  , (12) 

where 𝐹1 = F1 Score, TP = True Positive, FP = False Positive, 

FN = False Negative. 

SKAB Anomaly Benchmark 

The SKAB anomaly detection benchmark [45] is a public 

benchmark available online used for offline outlier detection 

and changepoint detection testing. The benchmark consists of 

35 subsets of data from a water circulation system which 

contain 8 features each from different sensors in the system. 

The test is conducted by looping through each subset, training 

the neural network on a slice of clean data from the subset then 

testing it on labelled anomalies that were simulated with the test 

rig. The metrics used to gauge the effectiveness of the anomaly 

detection are the F1 score (12) and the NAB Changepoint  

 

 

TABLE II 

INITIAL HYPERPARAMETERS USED TO TRAIN MODELS  

 

 

Hyperparameter Value 

Epochs 100 

Optimiser Adam 

Learning rate 0.001 

Time Steps 64 

Capsule 

Activation 

squash 

 

Hyperparameter Value 

Loss Function MSE 

Dropout rate 0.2 

Batch size 64 

Branched layer 

width 

32 

LSTM Activation tanh 

 

Metric [46]. Fig. 12 illustrates a subset of data from the 

benchmark, and Fig. 13 shows the plot for the anomalies in the 

data. 

B. Data Pre-processing 

Data pre-processing can be segmented into 4 sections: 

Cleaning, Integration, reduction, and transformation. For the 

datasets acquired, most of the pre-processing procedure was not 

essential as the data was acquired in a format that implied that 

the cleaning and integration had already been carried out. 

Moreover, the data did not require reduction since time series 

data is sequential so removing or shuffling the dataset would 

compromise the integrity of the readings. However, it was 

necessary for the data to be transformed; this is an integral part 

of data pre-processing and is carried out due to the benefits it 

can have on the performance on the neural network with the 

speed of convergence when training as well as performance. To 

improve the neural network performance, it is common practice 

to rescale the data. For these datasets, the type of rescaling 

chosen was Z-Score Normalisation (13): 

z=
(X - μ)

σ
 , (13) 

where X = un-normalised data point, μ = mean of the dataset,  

σ = standard deviation of the dataset and z = normalised data 

point. This operation normalises the dataset so that the mean is 

equal to 0 and the standard deviation is equal to 1. 

C. Experiment 1: Drone Data 

This experiment aims to explore the training capability of the 

proposed NN architecture (Design A, Fig. 5) by making a 

TABLE III 

RESULTS FOR TRAINING FOR EACH NEURAL NETWORK MODEL USING HYPERPARAMETERS FROM TABLE II 

 

Model Design A: Branched 

LSTMCaps 

Design B: Branched 

LSTM 

Design C: Non-

Branched LSTMCaps 

Design D: Non-

Branched LSTM 

 

 

Training Plot 

    
Avg Final Train Loss 0.0013 0.0012 0.0019 0.0052 

Avg Final Val loss 0.0017 0.0030 0.0041 0.0299 
% Overfitting 31 150 116 475 

% Val loss improvement 

from non-Caps 
43 N/A 86 N/A 
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comparison with the non-hybridised non-branched LSTM NN 

(Design D, Fig. 8), the non-branched hybridised LSTMCaps 

NN (Design C, Fig. 7) and the branched non-hybridised LSTM 

NN (Design B, Fig. 6). The models are first trained with non-

optimised hyperparameters, then each optimised for the drone 

dataset and tested for their anomaly detection capabilities. 

The NN models were first tested with the default 

recommended hyperparameters in TensorFlow documentation 

and literature; this was to purely observe the raw effect of the 

inclusion of the Capsule layer as well as the introduction of the 

branched architecture on the training performance. The 

hyperparameters used are shown in Table II. Each model was 

trained 5 times on the 5-minute subset from the reference device 

and the training and validation loss scores were recorded. An 

average was taken of these values for testing rigour: the results 

are shown in Table III, as well as the improvement in training 

performance with the inclusion of the Capsule Layer. The 

training plot is also illustrated so that the stability of the training 

can be better visualised. Additionally, the percentage of 

overfitting is shown, which refers to the percentage difference 

between the training and validation losses. 

The neural network models were then optimised using an 

iterative testing method so that the effect of changing each 

hyperparameter value can be seen and hence from this, the most 

optimal configuration of the hyperparameters for each model 

can be found. 

The values that were monitored were the training and 

validation loss, and the training time. The loss value was chosen 

as the metric to gauge the effectiveness of the system due to the 

nature of the outlier detection technique. Since the anomaly 

threshold is calculated using the prediction residual, a low loss 

value allows for a lower threshold for the loss when testing the 

model, which can potentially lead to a more sensitive and 

accurate fault detection system. The validation loss scores were 

considered with more weight than the training loss when 

quantitively analysing the system as they were used to 

determine the error threshold, as well as them being a better 

indicator of the generalisation ability of the NN. 

The optimal hyperparameters were then implemented into 

the proposed models for further testing. Before conducting the 

testing, each NN model was adjusted so that all networks being 

trained have a similar number of parameters for the purpose of 

experimental rigour. This will reduce the difference between 

each model so that the effect of the proposed architecture and 

hybridisation can be better observed on anomaly detection 

performance. 

Each model was trained 5 times, and for each individual 

training procedure the prediction MSE and MAE thresholds 

were recorded, as well as the standard deviations of the latter to 

observe the consistency of training for each feature. Using the 

thresholds, the NNs were made to predict the test data, and any 

predictions exceeding the thresholds set were outlined as 

anomalies. The predicted anomalies were then compared to the 

real anomalies labelled during data analysis, and the precision, 

recall and F1 scores were calculated for each NN. The best 

score attained by each NN model is depicted in Table IV, and 

the average score over the 5 runs in Table V. 

The results in Table III clearly show an improvement in 

performance with the proposed additions. The addition of the 

Capsule layer to the non-branched model variant using non-

optimised hyperparameters shows a clear improvement in the 

training and validation losses respectively. Training results 

using non-optimised hyperparameters have an overall more 

stable training procedure; evidence for this is shown in the 

training plots accompanying the results for Design A and 

Design C. With the addition of the branched inputs, there is a 

significant improvement in performance in both the hybridised 

and non-hybridised models with non-optimised 

hyperparameters. The branched model shows a clear reduction 

in overfitting from 475% to 150% without Capsule layers and 

from 115.79% to 30.77% with the Capsule layer without 

hyperparameter optimisation.  

After optimising each NN model hyperparameters on the 

dataset, the results in Table IV and Table V show that the 

proposed model, Design A, performs better than the other 

models tested with anomaly detection with an average F1 score 

of 0.64, and a best F1 score of 0.75. However, the non-branched 

TABLE IV 

BEST TEST RESULTS FOR ANOMALY DETECTION FROM 5 RUNS USING OPTIMISED HYPERPARAMETERS FOR EACH NN DESIGN 
 

Model Trainable 

Parameters 

 

MSE 

MAE Threshold Std Dvn of 

thresholds 

Precision Recall F1 

Feature 

1 

Feature 

2 

Feature 

3 

Design A: Branched LSTMCaps 25,635 0.0244 0.8126 0.9764 1.1383 0.1330 0.8819 0.6633 0.7465 

Design B: Branched LSTM 24,243 0.0145 0.6222 0.9034 0.9389 0.1417 0.8452 0.3333 0.3949 

Design C: Non-Branched LSTMCaps 26,183 0.0313 0.5367 1.0195 0.8689 0.2017 0.6219 0.5533 0.5143 

Design D: Non-Branched LSTM 25,338 0.0309 0.9435 0.7682 1.5487 0.3344 0.7224 0.5767 0.6406 

          
 

TABLE V 

AVERAGE TEST RESULTS FOR ANOMALY DETECTION FROM 5 RUNS USING OPTIMISED HYPERPARAMETERS FOR EACH NN DESIGN 
Model Trainable 

Parameters 

 

MSE 

MAE Threshold Std Dvn of 

thresholds 

Precision Recall F1 

Feature 

1 

Feature 

2 

Feature 

3 

Design A: Branched LSTMCaps 25,635 0.0187 0.5998 0.6842 0.8090 0.1119 0.8334 0.5666 0.6415 
Design B: Branched LSTM 24,243 0.0118 0.8371 0.8588 0.8627 0.1081 0.8706 0.3387 0.3680 

Design C: Non-Branched LSTMCaps 26,183 0.0587 1.4832 1.4752 1.5623 0.1161 0.7965 0.3253 0.3254 

Design D: Non-Branched LSTM 25,338 0.0273 1.0303 0.6698 1.3450 0.2965 0.5141 0.4460 0.4663 
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LSTM model, Design D, performs better than both the non-

branched hybridised and the branched non-hybridised models. 

This was found to be the case due to the technique used for 

anomaly detection: With a higher MSE, Design D (the standard 

LSTM AE, Fig. 8) did not learn the data features as accurately 

as Design B (the branched LSTM variant, Fig. 6), which in this 

case was more beneficial for anomaly detection since data is 

more likely to be flagged as an outlier. Whilst this resulted in a 

higher F1 score, the precision of the model is weaker in 

comparison to both branched variants. In the case of Design B, 

the average MSE of prediction was the lowest out of all the 

 
TABLE VI 

AVERAGE OUTLIER DETECTION SCORES FROM 5 TEST 

ITERATIONS FOR EACH ANOMALY DETECTION METHOD 
 

Algorithm F1 FAR, % MAR, % 

Perfect score 1 0 0 
LSTMCaps 0.74 21.66 18.74 
MSET[48] 0.73 20.82 20.08 

LSTMCapsV2 0.71 14.45 30.86 
MSCRED[49] 0.7 16.82 31.28 
Conv-AE [50] 0.66 5.57 46.16 

LSTM [51] 0.65 14.89 39.4 
LSTM-AE [52] 0.64 14.81 39.5 

LSTM-VAE [53] 0.56 9.04 54.75 
Autoencoder [54] 0.45 7.52 66.59 

Isolation forest [47] 0.4 6.86 72.09 
Null score 0 100 100 

 

TABLE VII 

AVERAGE CHANGEPOINT DETECTION SCORES FROM 5 TEST 

ITERATIONS FOR EACH ANOMALY DETECTION METHOD 
 

Algorithm NAB 
(standard) 

NAB 
(lowFP) 

NAB 
(LowFN) 

Perfect score 100 100 100 
Isolation forest 

[47] 
37.53 17.09 45.02 

LSTMCapsV2 27.39 17.08 31.13 
LSTM  26.61 11.78 32 

MSCRED [49] 26.13 17.81 29.53 
LSTM-AE [52] 22.97 20.95 23.93 

LSTMCaps 21.58 5.12 27.49 
LSTM-VAE [53] 21.09 17.52 22.73 

Autoencoder [54] 15.65 0.48 21 
MSET[48] 12.71 11.04 13.6 

Conv-AE [50] 11.12 10.35 11.77 
Null score 0 0 0 

 

 

TABLE VIII 

BEST OUTLIER DETECTION SCORES OUT OF 5 TEST 

ITERATIONS FOR EACH ANOMALY DETECTION METHOD 

Algorithm F1 FAR, % MAR, % 

Perfect score 1 0 0 
LSTMCaps 0.74 21.5 18.74 
MSET [48] 0.73 20.82 20.08 

LSTMCapsV2 0.71 14.51 30.59 
MSCRED [49] 0.7 16.2 30.87 

LSTM [51] 0.67 15.42 36.02 
Conv-AE [50] 0.66 5.58 46.05 
LSTM-AE [52] 0.65 14.59 39.42 

LSTM-VAE [53] 0.56 9.2 54.81 
Autoencoder [54] 0.45 7.55 66.57 

Isolation forest [47] 0.4 6.86 72.09 
Null score 0 100 100 

 

TABLE IX 

BEST CHANGEPOINT DETECTION SCORES OUT OF 5 TEST 

ITERATIONS FOR EACH ANOMALY DETECTION METHOD 
 

Algorithm NAB 
(standard) 

NAB 
(lowFP) 

NAB 
(LowFN) 

Perfect score 100 100 100 
Isolation forest [47] 37.53 17.09 45.02 
LSTMCapsV2 27.77 17.14 31.59 

LSTM [51] 26.76 12.92 31.93 
MSCRED [49] 24.99 17.9 27.94 
LSTM-AE [52] 24.77 22.69 25.75 
LSTMCaps 24.02 8.14 29.60 

LSTM-VAE [53] 21.92 18.45 23.59 
Autoencoder [54] 16.27 1.04 21.62 

MSET [48] 12.71 11.04 13.6 
Conv-AE [50] 11.21 10.45 11.83 
Null score 0 0 0 

 

 

TABLE X 

SCALED AVERAGE OF AVERAGE F1 AND NAB SCORES 

FROM TABLE VI AND TABLE VII RESPECTIVELY 

Algorithm Scaled Average of Average 
Score 

Perfect score 1 
LSTMCapsV2 0.49195 
MSCRED [49] 0.48065 

LSTMCaps 0.4779 
LSTM [51] 0.45805 

LSTM-AE [52] 0.43485 
MSET [48] 0.42855 

Isolation forest [47] 0.38765 
Conv-AE [50] 0.3856 

LSTM-VAE [53] 0.38545 
Autoencoder [54] 0.30325 

Null score `0 

 

 

 

 

 

 

 

 

TABLE XI 

SCALED AVERAGE FROM BEST F1 AND NAB SCORES 

FROM TABLE VIII AND TABLE IX RESPECTIVELY 

Algorithm Scaled Average of Best Score 

Perfect score 1 
LSTMCapsV2 0.49385 

LSTMCaps 0.4901 
MSCRED [49] 0.47495 

LSTM [51] 0.4688 
LSTM-AE [52] 0.44885 

MSET [48] 0.42855 
LSTM-VAE [53] 0.3896 

Isolation forest [47] 0.38765 
Conv-AE [50] 0.38605 

Autoencoder [54] 0.30635 
Null score 0 

 

 

 

 

 

 

 

Table 2: Scaled average from best F1 and NAB scores from 
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models, which did not work to its favour during anomaly 

detection with recall but resulted in a higher precision. 

By utilising the hybridisation in the branched input model, 

the best performance was achieved across all the metrics tested, 

with both optimised and non-optimised hyperparameters. 

Furthermore, minimal overfitting was observed when training 

with unoptimized hyperparameters. Consequently, it can be 

said that minimal hyperparameter optimisation is required when 

using this model architecture as these results show a resilience 

to overfitting and relatively strong performance when applying 

the network on multivariate data without hyperparameter 

tuning. 

The results attained show that both the hybridisation of the 

Capsule and LSTM layers and the branched input model 

structure are both effective methods of improving the 

performance of the neural network with multivariate data, 

especially when used in conjunction with each other. To further 

substantiate this performance, the proposed model was tested 

against common state-of-the-art anomaly detection methods on 

an open-source benchmark. 

D. Experiment 2: SKAB Anomaly benchmark 

This experiment aims to compare the anomaly detection and 

changepoint detection performance of state-of-the-art 

unsupervised anomaly detection methods with the proposed NN 

model. A selection of NNs and ML based fault detection 

methods were chosen to compare on the benchmark with 

minimal hyperparameter optimisation applied. 

The same testing procedure utilised in the SKAB 

benchmark’s GitHub repo [45] was used to test the proposed 

model architecture. The model was trained with 100 epochs on 

a subset from each dataset with early stopping set at a patience 

of 20, and then tested on the remainder of the dataset. The F1 

scores and NAB scores achieved for each dataset are averaged, 

which gives the final score of the benchmark. Each model 

compared was also tested on the same computer for 

experimental rigour. The results in Table VI and Table VII 

depict the average outlier detection score and the changepoint 

detection scores over 5 test iterations respectively, and the 

results in Table VIII and Table IX show the best NN 

performance in a single test over the outlier and changepoint 

scores respectively.  

To better conclude the effectiveness of each anomaly 

detection method over both the F1 and NAB scores 

simultaneously, a scaled average of both metrics was 

calculated. This was done by scaling the NAB score between 0 

and 1 and averaging the F1 score and scaled NAB scores. The 

results in Table 1 and Table 2 show the scaled average of the 

F1 and NAB score of the average performance and best 

performance respectively. 

While testing it was found that there was an inversely 

proportional relationship with outlier detection score and 

changepoint detection score. This meant that hyperparameters 

optimal for a good F1 score would not perform as well in the 

NAB score. To demonstrate this, the hyperparameters of the 

LSTMCaps NN were slightly adjusted to achieve a better score 

in the changepoint detection benchmark, at the expense of a 

slightly lower outlier detection score. This NN configuration is 

labelled as LSTMCaps V2 in the results shown in Table VI to 

Table XI. 

The results in Table VI and Table VIII show that as an outlier 

detector, the proposed LSTMCaps NN achieves the best F1 

score and the lowest False Negative rate out of the models 

tested. It also achieves the second highest False Positive rate out 

of the models. In terms of changepoint detection, the results in 

Table VII and Table IX indicate that the original configuration 

does not perform as well, coming 5th out of the 9 methods 

tested. However, with a slight adjustment to the 

hyperparameters, the LSTMCapsV2 NN was able to come 2nd 

out of the 9 methods tested in both the outlier detection and 

changepoint detection scores and performs better than all other 

NN based methods in the latter. Similar outcomes can be seen 

for the best performing test iteration, with no improvement in 

relation to the other NNs and ML methods. The scaled average 

results in Table X and Table XI show that the LSTMCapsV2 

configuration is overall the best performing method over the 

two metrics tested. 

From this test, it can be concluded that for single datapoint 

outlier detection, the proposed LSTMCaps branched 

architecture provides state-of-the-art performance. However, 

while the changepoint detection performance is superior to 

other NNs with the right adjustments to the hyperparameters, 

significantly better performance can be attained from non-NN 

based algorithms, such as the Isolation Forest algorithm [47]. 

V. DISCUSSION 

Across the experiments conducted, it is clear to see that both 

the inclusion of the Capsule Network and the branched input 

architecture is integral to the improvement of the performance 

of the Capsule Network in terms of training and anomaly 

detection. The evidence for this is shown clearly across the 

experiments, where with standard LSTM AEs, the training and 

anomaly detection performance is significantly weaker than 

with the proposed NN.  

The experimental results further suggest that the Capsule 

Network is most effective in the training phase. Generally, it 

was found that models which included Capsules were training 

more efficiently, reaching the local minima at a faster rate in 

relation to networks without Capsules. Most importantly, the 

results in Table III for training using non-optimised 

hyperparameters suggest that with the use of Capsules, the 

hyperparameter optimisation procedure can be simplified 

considerably due to the lack of overfitting during training on the 

NN models with Capsules integrated. 

One significant strength of the proposed LSTMCaps NN is 

its ability to learn separate data features effectively in 

comparison to a standard single channel NN. This is shown by 

the difference in standard deviation in the MAE thresholds in 

Table IV when conducting the anomaly detection test on the 

drone data. This is further substantiated with the anomaly 

detection performance on the SKAB anomaly benchmark, 

which contains a larger number of more complex features than 

the drone data. Here it is clear to see the advantage that having 

separate input branches per feature brings. 
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VI. CONCLUSION AND FUTURE WORKS 

This paper proposed a novel hybridisation of the LSTM and 

Capsule Networks in a branched architecture to address the 

issues found in the literature review with training performance 

of NNs, specifically on multivariate data. The motivation for 

this research stemmed from the growing demand for more 

effective unsupervised data analysis techniques regarding 

outlier and anomaly detection for use in industrial and 

commercial environments with large datasets to assist in the 

advancement of Industry 4.0, the automation of industrial 

processes.  

The proposed NN was tested first in its training performance 

with no hyperparameter optimisation and compared to non-

hybridised and non-branched variants of the NN, where it was 

found that the proposed NN can train more efficiently over a 

smaller number of epochs in comparison to the variants with no 

capsules integrated in the NN, and significantly reduces 

overfitting. After conducting hyperparameter optimisation, the 

NNs were retested, this time for their anomaly performance 

ability using an unsupervised method of reconstructing the data 

and using the MAE any data outlying from the expected shape 

in the training data. The results of this test concluded that the 

proposed NN performs better than the other variants tested as a 

result of the proposed additions and changes to the NN 

architecture. To substantiate these results, the proposed NN was 

tested against other state-of-the-art anomaly detection methods 

on the SKAB anomaly detection benchmark, where with slight 

hyperparameter adjustments the proposed method was able to 

perform better than all other methods tested for outlier detection 

and performed better than all other NN based methods in 

changepoint detection, only being outperformed by the 

Isolation Forest algorithm in the latter. 

Whilst the proposed NN operated exclusively on raw data, it 

was found in the literature review that with different 

representations of data, the prominence of data features can be 

increased which in turn can help to improve the performance of 

unsupervised anomaly detection. Furthermore, the use-cases for 

the proposed NN were not fully explored, so future works will 

be exploring the use of different data representations and 

different unsupervised anomaly detection methods, including 

the grouping of encountered anomalies in an unsupervised 

manner. 
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