
1

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

 Hybridization of Capsule and LSTM Networks for

unsupervised anomaly detection on multivariate data

Ayman Elhalwagy and Tatiana Kalganova, Member, IEEE

Abstract— Deep learning techniques have recently shown

promise in the field of anomaly detection, providing a flexible and

effective method of modelling systems in comparison to traditional

statistical modelling and signal processing-based methods.

However, there are a few well publicised issues Neural Networks

(NN)s face such as generalisation ability, requiring large volumes

of labelled data to be able to train effectively and understanding

spatial context in data. This paper introduces a novel NN

architecture which hybridises the Long-Short-Term-Memory

(LSTM) and Capsule Networks into a single network in a

branched input Autoencoder architecture for use on multivariate

time series data. The proposed method uses an unsupervised

learning technique to overcome the issues with finding large

volumes of labelled training data. Experimental results show that

without hyperparameter optimisation, using Capsules

significantly reduces overfitting and improves the training

efficiency. Additionally, results also show that the branched input

models can learn multivariate data more consistently with or

without Capsules in comparison to the non-branched input

models. The proposed model architecture was also tested on an

open-source benchmark, where it achieved state-of-the-art

performance in outlier detection, and overall performs best over

the metrics tested in comparison to current state-of-the art

methods.

Index Terms—Anomaly Detection, Capsule, LSTM, Neural

Networks, Unsupervised learning.

I. INTRODUCTION

ime Series data analysis is a prominent field of research

due to the significant demand stemming from

increasingly larger datasets being acquired in industrial

and commercial environments. The automation of this analysis

has been integral to the advancement of Industry 4.0 [1], which

refers to the automation of industrial processes. One important

use case for time series analysis is outlier detection, which is an

important part of the function of intelligent systems in the

context of fault diagnosis.

There are various traditional approaches to fault detection by

way of hardware redundancy in literature [2]. However, a rising

need in industry for a lightweight and cost-effective solution to

This paragraph of the first footnote will contain the date on which you submitted your paper for review, which is populated by IEEE. It is IEEE style to display

support information, including sponsor and financial support acknowledgment, here and not in an acknowledgment section at the end of the article. For example,
“This work was supported in part by the U.S. Department of Commerce under Grant BS123456.” The name of the corresponding author appears after the financial

information, e.g. (Corresponding author: M. Smith). Here you may also indicate if authors contributed equally or if there are co-first authors.

The next few paragraphs should contain the authors’ current affiliations, including current address and e-mail. For example, First A. Author is with the National
Institute of Standards and Technology, Boulder, CO 80305 USA (e-mail: author@ boulder.nist.gov).

Second B. Author, Jr., was with Rice University, Houston, TX 77005 USA. He is now with the Department of Physics, Colorado State University, Fort Collins,

CO 80523 USA (e-mail: author@lamar.colostate.edu).
Third C. Author is with the Electrical Engineering Department, University of Colorado, Boulder, CO 80309 USA, on leave from the National Research Institute

for Metals, Tsukuba 305-0047, Japan (e-mail: author@nrim.go.jp).
Mentions of supplemental materials and animal/human rights statements can be included here.

Color versions of one or more of the figures in this article are available online at http://ieeexplore.ieee.org

fault detection as a result of Industry 4.0 has encouraged the

development of soft sensing systems, which use the existing

sensors in a system to infer further information regarding the

system. Recently, Neural Networks (NNs) have been identified

as an effective tool in data analysis and fault detection due to

their unique ability to be trained to identify numerical

relationships in different forms of data [3]. They provide an

advantage over traditional signal processing and statistical

techniques due to the level of complexity that they can model

the data, as well as being generalizable to similar types of data

[3]. Furthermore, there is minimal data manipulation needed for

the use of NNs, which can simplify the implementation of such

systems.

For time series analysis, Recurrent Neural Network (RNN)

based models such as the Long-Short Term Memory (LSTM)

network [4] are generally used due to their ability to identify

dependencies in sequential data using their internal memory [5],

[6], however some recent works have utilised the Convolutional

Neural Network (CNN), which has proved to be a powerful tool

in image classification [7], [8], in time series forecasting [9] and

outlier detection tasks [10], [11]. Furthermore, the hybridisation

of the aforementioned layers has also been shown to be a

method of improving outlier detection performance [12], [13].

However, it is well documented that the CNN has a

fundamental flaw in understanding spatial context in data; this

is most prominently demonstrated in image classification tasks.

The Capsule Network (CapsNet) [14] was proposed by Hinton

et al to address this flaw and has successfully shown state-of-

the-art performance in image classification tasks with different

variants of the network [15]. Additionally, some work has been

done utilising the CapsNet for use on time series data in its raw

format [16], [17], but predominantly using image

representations[18], [19]; most approaches use an image

representation of the data as the CapsNet has been proven to

improve performance in this context. In this paper, we propose

the hybridisation of the CapsNet and the LSTM Network in a

branched Autoencoder architecture for use on raw time series

T

2

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

data.

The contributions of this paper are summarised as follows:

1) A hybridisation of the LSTM layer and the Capsule

layer is implemented in a novel branched input,

merged output model architecture for use on raw

multivariate time series data

2) The model is tested on a real-world dataset and

benchmarked on another real-world dataset against

the state-of-the-art anomaly detection methods in the

field for a performance comparison

II. MOTIVATION AND RELATED PUBLICATIONS

This section will first explore the advantages of soft sensing

methods over traditional hardware redundancy techniques for

fault detection, then outline the benefits of NN soft sensing

methods over traditional system modelling and signal

processing techniques. NN based fault detection methods will

then be reviewed so that a justification for the proposed method

can be made.

Fault detection systems have been researched and improved

extensively over the last two decades due to the intense demand

to automate industrial processes, also known as Industry 4.0

[20]. There have been numerous approaches that aim to be

effective in detecting different types of faults in different

systems, due to the nature of the usage of the system or other

reasons relating to the susceptibility of the system to certain

faults. Some approaches for fault detection have involved using

methods and techniques such as redundancy for sensors,

sometimes paired with analytical redundancy methods[21],

[22].

The common issue with these proposed solutions is that they

involve the installation and maintenance of physical hardware

to monitor the sensors or the system, which naturally means that

they may require redundancy in more sensitive use cases: for

example, that require the monitoring of life-threatening

substances with very sensitive sensors. Furthermore, this

guarantees an increase in the operating costs of these solutions

due to increased energy usage and maintenance costs and

provides another barrier to the goal of achieving automation.

However more recently, soft sensing methods have been

explored with the goal of using the information available from

the sensors already implemented in the system to calculate an

estimate of the quality of data being collected. This approach

provides an economical and cost-effective alternative to

physical systems by not needing to implement any additional

physical hardware that could be expensive to buy or maintain

whilst achieving robust fault detection scores that are

comparable to and even better than physical systems.

A. Soft Sensing Methods for Fault Detection

Statistical analysis and signal processing are frequently used

methods in the field of anomaly detection. As a method of soft

sensing, they are able to overcome the drawbacks of physical

hardware monitoring and provide a robust method of data

inference. For instance in [23] a dynamic model is proposed that

is able to utilise the existing supervisory control and data

acquisition (SCADA) system in wind turbines to dynamically

model the relationship between the sensor readings by a

parameter estimation process for the purpose of fault detection.

A frequency domain analysis is used to determine damage

sensitive indices which are then compared to the model sensor.

The technique is tested on a 5-year wind turbine dataset where

the system was able to detect faults as well as perform fault

prognosis. Whilst the method is clearly effective in the

specified use case, the flexibility of the method for other use

cases comes into question as in-depth knowledge about the

system and the relationships between the variables being

analysed was utilised to be able to create the initial model. This

issue is also mentioned in [24] where the authors concluded

from their survey of outlier detection techniques that model-

driven methods are heavily dependent on the understanding of

the data being analysed. The lack of flexibility of such

techniques is also mentioned, due to the heavy tailoring that

must be made to the models for each dataset. This is a trend

across many signal processing techniques including for motor

condition monitoring where [25] noted in their state-of-the art

review of outlier detection techniques the lack of flexibility of

data analysis techniques such as acoustic analysis and motor

current signal analysis (MCSA) in detecting a wide range of

faults that could occur within the system.

More recently, Machine Learning (ML) has been heavily

utilised in literature for the modelling of such systems. As well

as being a soft sensing technique, ML is able to provide a higher

degree of flexibility in terms of application as well as being

generally easier to implement than the aforementioned

techniques. Various examples of literature can be found that

utilise proposed NN models in multiple use cases and datasets

[6], [26]. However, this is not to say that generalisation is still

not an issue with NNs. The main issue found in literature with

NNs is the importance of data volume and representation in

being able to train NNs effectively. Most NN types such as the

CNN and the LSTM require large quantities of data to

effectively learn the shape and features of the data, and some

methods even require the labelling of the data before training,

known as supervised learning [12], which is very time-

consuming and costly as this is usually a manual process.

Furthermore, with some types of data it is very difficult to

distinguish faults and anomalies in raw sequential format.

To address these discussed issues with NNs, researchers have

opted to combine signal processing techniques with NNs where

applicable in order to utilise the advantages provided by the

former with data representation and the latter in flexibility and

ease of use. This approach has seen great success in motor fault

detection [27], [28], where in these cases frequency domain

transformations were used to enhance the representation of the

data for use with LSTM networks. Additionally, the use of

various types of CapsNets in numerous cases was found to

improve training and classification performance over smaller

datasets [29], [30]. As well as hybridising signal processing and

ML, many literatures also propose the hybridisation of NN

types to take advantage of their advantages with different types

of data; one popular hybridisation for TS data is RNNs and

3

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

CNNs [12].

B. LSTM based Autoencoder

The LSTM network [4] has lately grown in popularity due to

the overwhelming demand for time series analysis and

forecasting in commercial environments, hence fuelling the

demand for more research into the improvement of its

performance. One recently proposed method [31] explored the

usage of the LSTM layer in an Autoencoder architecture. The

authors correctly identified that a large number of the current

machine learning methods that are used are unsuitable for use

practically, as they usually require the use of labelled data

which is impractical with time series data due to the large

volumes being constantly produced. Furthermore, the authors

go on to evaluate classical anomaly detection methods such as

Support Vector Machines and Isolation forests as being flawed

since they fail to account for the temporal aspect of the time

series data and only take the current data into account. In

addition to this, they demonstrate, with an initial experiment,

that other methods such as signal decomposition are only

effective when used with periodic data, so their use is limited in

that aspect. However, the authors [31] noted that the simplicity

of this method is an advantage over the LSTM autoencoder

approach that was being explored, but the necessity of manual

parameter selection was considered a drawback.

The proposed method in [31] uses the sliding window

algorithm to feed the data into the LSTM Autoencoder, for

which the number of layers and LSTM cells were optimised.

The neural network was trained by fitting the output to the input

signal, and the mean absolute error between the prediction and

signal was used as the threshold for testing for anomalies. The

system was tested on sound files from the DCASE dataset

which were down sampled to 16000 samples per second, and

the sliding window would take 1-second steps. Results [31]

show an 87% accuracy for anomaly detections, with the correct

location identified 91.7% of the time.

Evaluating the approach used in this paper [31], it shows

promise with the accuracy of detection and the wide application

of its usage, but various drawbacks were identified: the authors

selectively used data that was loud enough to be detected by the

autoencoder and did not explore the sensitivity of detection.

Furthermore, the authors assumed that the training data

acquired was “clean” of any anomalies, which could be a

reasonable assumption to make since the data was taken from

an established dataset, but in a real-life use case, this may not

be the case. However, since this is an unsupervised approach, it

is expected that all initial errors will not be identified unless

extensive data analysis is carried out before training the system,

or if previous knowledge about the operation of the system

being analysed is acquired. Furthermore, due to the sliding

window approach, the location of the anomaly was a parameter

that had to be measured, which could be overcome if a different

approach to parsing the data was used. One main issue that the

LSTM faces is its overfitting when used with gradient descent

learning optimisation algorithms. Although very careful

tweaking of hyperparameters can help to reduce this issue, this

is often highly inefficient and time consuming and with

complex datasets is sometimes unavoidable.

C. Capsule Network application in time series data analysis

The CapsNet [14] is a novel neural network developed to

overcome issues faced with the spatial context of image

classification that is encountered when using prevalent image

classifications such as convolutional neural networks. It does

this by “encapsulating” the entity being described in a vector

format, where the length describes the probability of existence

and the orientation of the vector describes the entity’s

characteristics, such as orientation and the special context that

other traditional neural networks cannot capture. The original

idea was conceptualized in [14] by Hinton et al, but some

literatures [32] have built on this work by adjusting the

architecture to work with Adaptive Gradient Descent

optimisation algorithms for image classification. However, the

effectiveness of the latter approach has not been fully explored

for raw time series data at the time of writing. This architecture

is mainly used for image classification as demonstrated by [33]

for brain tumour classification using MRI images and [34] for

“Hyperspectral Image Classification”, but more recently its

usage has been explored limitedly in a time series use case.

A few papers currently exist that utilise this neural network

architecture for time series tasks [35]. However, the approaches

that most papers use is to transform the data into an image

representation, which has already been identified as a powerful

usage of this network. For example, one proposed approach

[36] aimed to utilise capsule networks to address an issue with

the detection of short circuit faults in a power network

transmission line. The authors state that the raw signals are

difficult to analyse for this task and analyse methods for time

series feature extraction in the literature review. The Fourier

transform was identified as a prevalent method of frequency

domain analysis, however, the authors identify that the former

does not take the temporal context into account which, for the

use case that this paper covers, is an essential factor. Therefore,

another paper was outlined [37] which overcame this issue

using the discrete wavelet transform, which is able to provide

information from both the frequency and time domain. The

authors [36] note that these signal processing techniques require

a high level of expert knowledge in order to leverage properly

to produce good results, and image representation techniques

can extract more significant features more efficiently in

comparison to signal processing methods. Using this

information, the authors propose a deep learning approach that

overcomes the issues that current machine learning methods

have with poorer feature representation due to scalar values

being used and max pooling inhibiting the information learned

by the neural network.

A 3-phase voltage system is first simulated [36] so that

different fault models can be identified and simulated, and the

signal processing can be applied and tested for robustness. The

discrete wavelet transform that was identified as a superior

method to the Fourier analysis is used in combination with a

high pass and low pass filter in order to filter the signal noise,

and a polar representation of the signal is acquired which is then

represented as a Gramian Angular Field (GAF), proposed in

4

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

[38], which is a method of time series image representation. The

authors reasoning for this is a more feature-rich representation

of the data in comparison to other image representations, due to

the preservation of the temporal context as well as the other

points identified in their literature review.

The proposed approach in [36] utilises the capsule network

to overcome the discussed issues in the literature review.

Furthermore, the architecture proposed uses convolutional

layers that accept 6 inputs corresponding to the number of

signals in the 3-phase voltage system transformed into pictures.

The convolutional operation then outputs to a self-attention

layer, which the author [36] claims produces promising results

by focusing on the more relevant areas in the GAF image. A

Rectified Linear Unit (Relu) activation is then used before 2

capsule layers which output the classification results. The

neural network uses a novel technique referred to as weight

sharing, which connects the neurons in a different configuration

to a normal fully connected network so that the neurons in the

previous layer share the weights so that the same number of

weights as the neurons in the next layer is used when connecting

to the next layer.

The authors test the proposed model architecture’s anomaly

detection performance on the 11 types of short circuit faults

identified [36], where an overall classification accuracy of

99.81% is achieved. However, they go on to state that the

classification accuracy is not detailed enough to provide a

conclusion as to whether the system is robust. They also go on

to test the effect of current transformer saturation on the

classification ability of the network, as well as voltage and

current inversions. The results achieved for the stated cases are

99.4% and 97% respectively. The proposed network was also

validated on real-world data, with an accuracy of 92% attained.

This paper [36] provides an objective view on the different

methods used currently in power system fault detection and

goes into depth on the prevalence of some time series image

representation techniques over others but fails to provide an

evidence-backed explanation as to why raw data is unsuitable

for this use case only stating that “it is difficult to directly

consider” [36] them for the fault detection and classification

task. This directly contradicts the statement made about the

difficulty of applying signal processing tasks due to the expert

knowledge required. Moreover, not every test case was

explored with this approach, which was identified by the

authors [36] but this is to be expected since it is difficult to

cover all fault types for such a complex system. On the other

hand, a methodical approach was used to synthesise the

proposed approach, and an evidence-backed conclusion was

made to the effectiveness of their approach due to the various

test cases applied and the comparison between traditional

neural network models without the capsule integration.

Furthermore, the weight shared capsule approach showed

promise with its strong generalisation performance with the

real-world dataset.

D. LSTM and Capsule hybridisation

Recently, some works have been published combining the

LSTM and Capsule networks to improve performance over

current state-of-the-art techniques[39], [40]. One such work

[41] proposes a rotating machinery fault diagnosis methodology

utilising a CNN for feature extraction, a Bi-directional LSTM

for denoising by dimensionality reduction and Capsules for

their superior feature learning ability. The authors demonstrate

the effectiveness of each proposed addition through a

comparison of similar architectures with different NN

combinations. The model diagnoses bearing faults in a

supervised manner; this was demonstrated with an experiment

on the Case Western Reserve University (CSWU) Bearing

dataset [42], where raw vibration waveforms were used as the

input data, and prelabelled classes as the output. The proposed

model outperforms the current state-of-the-art with 98.95%

accuracy whilst dramatically reducing training sample size

from 5600, the sample size used by other compared methods, to

just 150.

Another proposed method [43] combines the LSTM and

Capsule layers in a single model for EEG emotion recognition.

The authors propose a channel-wise attention mechanism using

a CNN to prioritise the relevant EEG channels, Capsules to

extract the spatial features and LSTM layers to extract the

temporal features of the data. The model was tested on a public

EEG dataset, where the state-of-the-art was considerably

outperformed. It was noted that NN models that use Capsules

consistently outperformed models using just CNNs in all three

classification categories of valence, arousal and dominance.

However, the authors noted the higher computational time

involved with training Capsules as opposed to CNNs.

These examples in literature demonstrate the potential

advantages of hybridising the LSTM and Capsule Networks,

due to the advantages that the LSTM has with temporal feature

learning and the Capsules spatial feature learning ability.

Furthermore, the combination of the two layers has proven to

be effective in some time series applications and has potential

to be used in other architectures for different use cases.

To conclude, soft sensing methods of anomaly detection are

more efficient and effective methods than hardware

redundancy. However, with traditional methods it is difficult to

accurately model systems without in depth knowledge of their

dynamics and parameters, creating a barrier to flexible and

accurate system modelling which is the basis of many anomaly

detection systems. However, NNs provide a solution for this

issue, providing a method of easily modelling system behaviour

based of previously encountered data. Using NNs such as

LSTM NNs for time series data learning, researchers have been

able to accurately account for long term dependency in

temporal data and create robust anomaly detection systems.

However, this creates another issue with requiring access to

large amounts of labelled data which is expensive and time

consuming to produce. To avoid labelling data, some literatures

have proposed unsupervised learning techniques such as the

autoencoder which is able to learn data features by transforming

it into a latent space representation. However, a comprehensive

training set which is fully representative of the operation of the

system or device being analysed is still required to utilise this

technique, and generalisation performance is weak in many

5

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

these methods. The Capsule was proposed to address issues

TABLE I

 LSTM EQUATIONS [4]

Fig. 1. Visualisation of LSTM cell [4], where:

σ=sigmoid layer, tanh= tanh layer, ft=forget gate,

it=input gate, C̃t=candidate gate, Ot=output gate

with training efficiency and the shortcomings of traditional

NNs with learning spatial context of data. This paper further

explores these qualities found in Capsules by hybridising them

with LSTMs in a NN, and addresses issues found with learning

multivariate data with single channel NNs.

III. PROPOSED NEURAL NETWORK MODEL

A. LSTM Cell

The LSTM network, proposed initially in 1997 by

Hochreiter and Schmidhuber [4] but popularised recently by its

widespread usage in commercial environments, is a popular

iteration of the RNN that can overcome the vanishing gradient

issue and allows for the learning of long-term dependency. It

does this using a specialised architecture that integrates “gates”

to the architecture to allow the cell state to forget values and

replace values, then decide which values to output and send to

the next cell. A visualisation of this architecture can be seen in

Fig. 1, and the equations shown in TABLE I.

 The architecture can be described as follows: The “forget”

gate, (1), uses a sigmoid layer to determine which irrelevant

data in the cell state to remove, where a value of 1 would keep

all of the data and a 0 would completely erase the information.

The “replace” gate ,(2),(3),(4), is used to decide which values

in the cell state to update. This gate operates by using a sigmoid

Fig. 2. Autoencoder architecture visualised [44]

layer to decide which values to update and a tanh layer creates

a vector of candidate values to add to the cell state. The old state

is then multiplied by 𝑓𝑡, the forget value and added to the

candidate values scaled by the sigmoid. The “output” gate

,(5),(6), determines which part of the cell state to output using

a sigmoid layer and is then multiplied by the cell state with a

tanh layer applied to constrain the values between 1 and -1. The

following equations formally define each gate:

B. Capsule

The Capsule network (CapsNet) [14], is a novel neural

network architecture designed to address the issues the

convolutional neural network has with spatial context. It does

this by ‘encapsulating’ the spatial information between the

variables using vectors which allows the neural network to learn

the distances between the identified features as well as the

classification of the features.

A capsule differs from the traditional artificial neuron in

various ways: A traditional neuron receives scalar inputs;

performs the weighted sum of the aforementioned scalars;

applies an activation function and outputs a scalar dependant on

the weights and biases that it has adopted through training. A

capsule on the other hand, whilst operating in a similar fashion,

slightly differs from the internal operation and the

representation of the values that it receives. A capsule receives

a vector input, where the input denotes the probability of

occurrence as well as orientation and other spatial features not

captured by a scalar value. It applies an “affine transformation”

which is essentially a transformation matrix weight that

replaces the traditional scalar weight; this operation is formally

defined in (7)[14]:

�̂�𝑗|𝑖 = 𝑊𝑖𝑗𝑢𝑖 . (7)

This transformation matrix is used to represent the spatial

context that is missing from the traditional method of weight

application. The weighted sum of these vectors is calculated

using (8) [14]:

𝑠𝑗 = ∑ 𝑐𝑖𝑗�̂�𝑗|𝑖𝑖 . (8)

In order to preserve the vector information that is input to the

capsule, a new type of activation is proposed known as the non-

linear “squashing” function. This operates similar to the normal

Gate Equation

Forget 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1)

Replace 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2)

 �̃�𝑡 = tanh(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3)

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (4)

Output 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5)

 ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (6)

Symbol

Definitions

σ=sigmoid function, Wg = Weight of respective

gate(g) neurons, bg= Bias of respective gate(g)

[f = forget gate, I = input gate,
C = candidate gate, O = output gate]

x=input at current timestep,

h=output of previous LSTM cell

6

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

activation functions discussed previously by squashing the

output between 0 and 1 but does so in a way that is able to

preserve the length and spatial information of the input values,

so that a long vector will shrink to a value just below 1 and

shorter vectors are shrunk to near 0 [14]. Equation (9) [14]

formally defines this operation:

 𝑣𝑗 =
||𝑠𝑗||2

1+||𝑠𝑗||2 ∙
𝑠𝑗

||𝑠𝑗||
 . (9)

C. Autoencoder Structure

An Autoencoder is a variant of neural network architecture

that aims to learn a compressed representation of the input data

and copy it to the output. A compressed representation is used

so that the model does not learn the noise in a data

representation but only the main shapes and features of the data.

An autoencoder is composed of 2 sections: An encoder and a

decoder. The encoder part is used to transform the input data

into a latent space representation through dimensionality

reduction, which the decoder part then learns and decodes back

into the input data with reduced accuracy and hence noise. A

visualization of this can be seen in Fig. 2.

A formal definition of the Autoencoder operation is provided

in (10) and (11) [44]:

𝑓(𝑥) = 𝑙𝑎𝑡𝑒𝑛𝑡 𝑠𝑝𝑎𝑐𝑒 (10)

𝑔(𝑓(𝑥)) = 𝑥′ (11)

The idea is to reduce the layer width of the middle layers so

that the neural network compresses the input instead of just

learning the exact representation: this is known as an

undercomplete Autoencoder. However, learning data that is too

compressed would reduce the accuracy of the reconstruction, so

when training the network, the aim is to balance the denoising

ability with the accuracy of reconstruction. This is determined

by the reconstruction loss, and the aim of training this type of

network is to minimise this loss whilst maintaining a good

generalisation performance.

This type of neural network is typically used for

unsupervised deep learning, as the inputs are being copied to

the outputs with no labelling required, which is useful for the

use case that this paper explores.

D. Proposed Layer Architecture

The proposed layer architecture is illustrated in Fig. 3 As

shown in the figure, the number of input branches is entirely

dependent on the number of features present in the data.

Each individual feature is first encoded through an LSTM

layer for dimensionality reduction and is output as a 2D vector.

This dimensionality reduction is carried out to reduce the

number of degrees of freedom in the model so that the risk of

overfitting on data is reduced. Additionally, representing the

data in latent space also helps the NN to learn data features more

easily. The Repeat Vector layer transforms the 2D tensor input

Fig. 3. Architecture proposed by this paper

Fig. 4. An example of a frequency plot of the MAEs for the

drone dataset (where the signal sources are unknown), and the

corresponding error thresholds for feature 1, feature 2 and

feature 3 in Fig. 9.

7

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 5. Design A (The proposed design) – Branched Inputs,

LSTMCaps Autoencoder Network

Fig. 6. Design B – Branched Inputs, LSTM Autoencoder

Network with no Capsules

back to a 3D tensor by repeating the fixed length vector n

number of times; in this case the number of repetitions is set to

be equal to the number of timesteps being input in the system.

The 3D tensor is then input into a Capsule layer, where the

number of Capsules in equal to the number of timesteps, and

the width of the Capsule is equal to the LSTM hidden layer

width. The output of each branch is then concatenated into a

single vector which is input into a Capsule layer with an equal

number of Capsules as the previous Capsule layers but with a

width equal to the product of the width of the previous Capsules

and the number of branches. The Time Distributed layer is then

used to apply a Dense layer to each vector in the 3D output.

Since this is an Autoencoder, the output should be equal to the

input vectors merged into one vector with all the input features

present.

E. Fault Detection method

To be able to detect a fault, the neural network will be trained

to reconstruct healthy data. This can be done when

fitting by setting the input and the output as the same dataset,

which would be the healthy operation of the data. While

technically this is an unsupervised task as the initial data

provided is unlabeled so the condition of the data is unknown,

it can be framed as a supervised learning task using this method.

After this, the reconstruction error can be found using the

Mean Absolute Error (MAE) of the training predictions. The

maximum prediction error for the training set can be used as the

reconstruction error threshold, which essentially means that the

worst prediction case is being used as the threshold initially so

Fig. 7. Design C – Single Input, LSTMCaps Autoencoder

Network

Fig. 8. Design D – Single Input, LSTM Autoencoder Network

that when applying the system to more data from the system

being analysed, any predictions outside this value will be more

likely to be an anomaly. The sensitivity of the anomaly

detection can be adjusted by changing the threshold value, so

this will be experimented with in order to find the optimal value

that will minimise the false positive and false negative rate.

Furthermore, each data feature will have its own error threshold

to maximise the accuracy of detection as the neural network

may perform better on some features than others. An example

of a threshold calculation can be seen in Fig. 4. The main aim

of the training process is to minimise the loss and standard

deviation of this plot so that the system is able to make more

confident and sensitive anomaly predictions.

IV. EXPERIMENTATION

To demonstrate the effectiveness of the contributions of this

paper, four different NN models have been compared:

• For the first experiment, the effectiveness of CapsNet

integration is explored in terms of training performance

8

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 9. Training data subset from the reference drone with the

3 outputs shown

and MSE of prediction on test data. The proposed

model (Design A, Fig. 5) is compared to a

similar model with the Capsule layers removed and

replaced with LSTM layers (Design B, Fig. 6).

• For the second experiment, the effectiveness of the

branched model was observed. This was

demonstrated by synthesising a non-branched model

with the same layer structure as the branched model

(Design C, Fig. 7).

• The final experiment will demonstrate the

effectiveness of both additions being used

simultaneously. This will be shown by using a non-

branched model consisting of just LSTM layers

(Design D, Fig. 8).

For the following experiments, each model was adjusted so

that the trainable parameters are similar to the LSTMCaps

model for experimental consistency. The models were then

trained on the datasets with equal training iterations (epochs) 5

times each, and an average was taken. This was to observe the

training stability of the respective models.

The final training and validation loss values will be used to

measure the training efficiency of each NN model tested, and

the Mean Squared Error (MSE), Mean Absolute Error (MAE)

and F1 score of testing data predictions will be used to measure

the prediction accuracy of the models respectively.

A. Datasets

Drone Data

The drone dataset was acquired from previous work

conducted by a researcher in the same department. The dataset

consists of 3 output features from unknown sensors. 3 subsets

of data were provided, the sample sizes and respective

visualisations are outlined below:

Reference device:

• Sample size: 600 secs (Fig. 9)

• Sample size: 30 secs (Fig. 10)

Test Device:

• Sample size: 30 secs (Fig. 11)

Fig. 10. Validation data subset from the reference drone with

the 3 outputs shown

Fig. 11. Testing data subset from the test drone with the 3

outputs shown, and anomalies circled in red

Fig. 12. Plot of a subset of data from the SKAB anomaly

benchmark

9

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 13. Binary plot of the respective anomalies and

changepoints in Fig. 12

As shown in Fig. 11, it is clear to see that there are anomalies

from the test device in feature 1 and feature 3 at the same points

temporally. The reason for the anomalous data stems from

malicious code affecting the drone controls causing the

direction of the drone to differ from the intended direction input

by the drone operator. Since the data was received unlabelled,

the anomalies were manually labelled so that a measure of the

anomaly detection performance of each NN model could be

attained. The metric used for this is the F1 score, which is

defined in (12):

F1=
TP

TP+
1

2
(FP+FN)

 , (12)

where 𝐹1 = F1 Score, TP = True Positive, FP = False Positive,

FN = False Negative.

SKAB Anomaly Benchmark

The SKAB anomaly detection benchmark [45] is a public

benchmark available online used for offline outlier detection

and changepoint detection testing. The benchmark consists of

35 subsets of data from a water circulation system which

contain 8 features each from different sensors in the system.

The test is conducted by looping through each subset, training

the neural network on a slice of clean data from the subset then

testing it on labelled anomalies that were simulated with the test

rig. The metrics used to gauge the effectiveness of the anomaly

detection are the F1 score (12) and the NAB Changepoint

TABLE II

INITIAL HYPERPARAMETERS USED TO TRAIN MODELS

Hyperparameter Value

Epochs 100

Optimiser Adam

Learning rate 0.001

Time Steps 64

Capsule

Activation

squash

Hyperparameter Value

Loss Function MSE

Dropout rate 0.2

Batch size 64

Branched layer

width

32

LSTM Activation tanh

Metric [46]. Fig. 12 illustrates a subset of data from the

benchmark, and Fig. 13 shows the plot for the anomalies in the

data.

B. Data Pre-processing

Data pre-processing can be segmented into 4 sections:

Cleaning, Integration, reduction, and transformation. For the

datasets acquired, most of the pre-processing procedure was not

essential as the data was acquired in a format that implied that

the cleaning and integration had already been carried out.

Moreover, the data did not require reduction since time series

data is sequential so removing or shuffling the dataset would

compromise the integrity of the readings. However, it was

necessary for the data to be transformed; this is an integral part

of data pre-processing and is carried out due to the benefits it

can have on the performance on the neural network with the

speed of convergence when training as well as performance. To

improve the neural network performance, it is common practice

to rescale the data. For these datasets, the type of rescaling

chosen was Z-Score Normalisation (13):

z=
(X - μ)

σ
 , (13)

where X = un-normalised data point, μ = mean of the dataset,

σ = standard deviation of the dataset and z = normalised data

point. This operation normalises the dataset so that the mean is

equal to 0 and the standard deviation is equal to 1.

C. Experiment 1: Drone Data

This experiment aims to explore the training capability of the

proposed NN architecture (Design A, Fig. 5) by making a

TABLE III

RESULTS FOR TRAINING FOR EACH NEURAL NETWORK MODEL USING HYPERPARAMETERS FROM TABLE II

Model Design A: Branched

LSTMCaps

Design B: Branched

LSTM

Design C: Non-

Branched LSTMCaps

Design D: Non-

Branched LSTM

Training Plot

Avg Final Train Loss 0.0013 0.0012 0.0019 0.0052

Avg Final Val loss 0.0017 0.0030 0.0041 0.0299
% Overfitting 31 150 116 475

% Val loss improvement

from non-Caps
43 N/A 86 N/A

10

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

comparison with the non-hybridised non-branched LSTM NN

(Design D, Fig. 8), the non-branched hybridised LSTMCaps

NN (Design C, Fig. 7) and the branched non-hybridised LSTM

NN (Design B, Fig. 6). The models are first trained with non-

optimised hyperparameters, then each optimised for the drone

dataset and tested for their anomaly detection capabilities.

The NN models were first tested with the default

recommended hyperparameters in TensorFlow documentation

and literature; this was to purely observe the raw effect of the

inclusion of the Capsule layer as well as the introduction of the

branched architecture on the training performance. The

hyperparameters used are shown in Table II. Each model was

trained 5 times on the 5-minute subset from the reference device

and the training and validation loss scores were recorded. An

average was taken of these values for testing rigour: the results

are shown in Table III, as well as the improvement in training

performance with the inclusion of the Capsule Layer. The

training plot is also illustrated so that the stability of the training

can be better visualised. Additionally, the percentage of

overfitting is shown, which refers to the percentage difference

between the training and validation losses.

The neural network models were then optimised using an

iterative testing method so that the effect of changing each

hyperparameter value can be seen and hence from this, the most

optimal configuration of the hyperparameters for each model

can be found.

The values that were monitored were the training and

validation loss, and the training time. The loss value was chosen

as the metric to gauge the effectiveness of the system due to the

nature of the outlier detection technique. Since the anomaly

threshold is calculated using the prediction residual, a low loss

value allows for a lower threshold for the loss when testing the

model, which can potentially lead to a more sensitive and

accurate fault detection system. The validation loss scores were

considered with more weight than the training loss when

quantitively analysing the system as they were used to

determine the error threshold, as well as them being a better

indicator of the generalisation ability of the NN.

The optimal hyperparameters were then implemented into

the proposed models for further testing. Before conducting the

testing, each NN model was adjusted so that all networks being

trained have a similar number of parameters for the purpose of

experimental rigour. This will reduce the difference between

each model so that the effect of the proposed architecture and

hybridisation can be better observed on anomaly detection

performance.

Each model was trained 5 times, and for each individual

training procedure the prediction MSE and MAE thresholds

were recorded, as well as the standard deviations of the latter to

observe the consistency of training for each feature. Using the

thresholds, the NNs were made to predict the test data, and any

predictions exceeding the thresholds set were outlined as

anomalies. The predicted anomalies were then compared to the

real anomalies labelled during data analysis, and the precision,

recall and F1 scores were calculated for each NN. The best

score attained by each NN model is depicted in Table IV, and

the average score over the 5 runs in Table V.

The results in Table III clearly show an improvement in

performance with the proposed additions. The addition of the

Capsule layer to the non-branched model variant using non-

optimised hyperparameters shows a clear improvement in the

training and validation losses respectively. Training results

using non-optimised hyperparameters have an overall more

stable training procedure; evidence for this is shown in the

training plots accompanying the results for Design A and

Design C. With the addition of the branched inputs, there is a

significant improvement in performance in both the hybridised

and non-hybridised models with non-optimised

hyperparameters. The branched model shows a clear reduction

in overfitting from 475% to 150% without Capsule layers and

from 115.79% to 30.77% with the Capsule layer without

hyperparameter optimisation.

After optimising each NN model hyperparameters on the

dataset, the results in Table IV and Table V show that the

proposed model, Design A, performs better than the other

models tested with anomaly detection with an average F1 score

of 0.64, and a best F1 score of 0.75. However, the non-branched

TABLE IV

BEST TEST RESULTS FOR ANOMALY DETECTION FROM 5 RUNS USING OPTIMISED HYPERPARAMETERS FOR EACH NN DESIGN

Model Trainable

Parameters

MSE

MAE Threshold Std Dvn of

thresholds

Precision Recall F1

Feature

1

Feature

2

Feature

3

Design A: Branched LSTMCaps 25,635 0.0244 0.8126 0.9764 1.1383 0.1330 0.8819 0.6633 0.7465

Design B: Branched LSTM 24,243 0.0145 0.6222 0.9034 0.9389 0.1417 0.8452 0.3333 0.3949

Design C: Non-Branched LSTMCaps 26,183 0.0313 0.5367 1.0195 0.8689 0.2017 0.6219 0.5533 0.5143

Design D: Non-Branched LSTM 25,338 0.0309 0.9435 0.7682 1.5487 0.3344 0.7224 0.5767 0.6406

TABLE V

AVERAGE TEST RESULTS FOR ANOMALY DETECTION FROM 5 RUNS USING OPTIMISED HYPERPARAMETERS FOR EACH NN DESIGN
Model Trainable

Parameters

MSE

MAE Threshold Std Dvn of

thresholds

Precision Recall F1

Feature

1

Feature

2

Feature

3

Design A: Branched LSTMCaps 25,635 0.0187 0.5998 0.6842 0.8090 0.1119 0.8334 0.5666 0.6415
Design B: Branched LSTM 24,243 0.0118 0.8371 0.8588 0.8627 0.1081 0.8706 0.3387 0.3680

Design C: Non-Branched LSTMCaps 26,183 0.0587 1.4832 1.4752 1.5623 0.1161 0.7965 0.3253 0.3254

Design D: Non-Branched LSTM 25,338 0.0273 1.0303 0.6698 1.3450 0.2965 0.5141 0.4460 0.4663

11

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

LSTM model, Design D, performs better than both the non-

branched hybridised and the branched non-hybridised models.

This was found to be the case due to the technique used for

anomaly detection: With a higher MSE, Design D (the standard

LSTM AE, Fig. 8) did not learn the data features as accurately

as Design B (the branched LSTM variant, Fig. 6), which in this

case was more beneficial for anomaly detection since data is

more likely to be flagged as an outlier. Whilst this resulted in a

higher F1 score, the precision of the model is weaker in

comparison to both branched variants. In the case of Design B,

the average MSE of prediction was the lowest out of all the

TABLE VI

AVERAGE OUTLIER DETECTION SCORES FROM 5 TEST

ITERATIONS FOR EACH ANOMALY DETECTION METHOD

Algorithm F1 FAR, % MAR, %

Perfect score 1 0 0
LSTMCaps 0.74 21.66 18.74
MSET[48] 0.73 20.82 20.08

LSTMCapsV2 0.71 14.45 30.86
MSCRED[49] 0.7 16.82 31.28
Conv-AE [50] 0.66 5.57 46.16

LSTM [51] 0.65 14.89 39.4
LSTM-AE [52] 0.64 14.81 39.5

LSTM-VAE [53] 0.56 9.04 54.75
Autoencoder [54] 0.45 7.52 66.59

Isolation forest [47] 0.4 6.86 72.09
Null score 0 100 100

TABLE VII

AVERAGE CHANGEPOINT DETECTION SCORES FROM 5 TEST

ITERATIONS FOR EACH ANOMALY DETECTION METHOD

Algorithm NAB
(standard)

NAB
(lowFP)

NAB
(LowFN)

Perfect score 100 100 100
Isolation forest

[47]
37.53 17.09 45.02

LSTMCapsV2 27.39 17.08 31.13
LSTM 26.61 11.78 32

MSCRED [49] 26.13 17.81 29.53
LSTM-AE [52] 22.97 20.95 23.93

LSTMCaps 21.58 5.12 27.49
LSTM-VAE [53] 21.09 17.52 22.73

Autoencoder [54] 15.65 0.48 21
MSET[48] 12.71 11.04 13.6

Conv-AE [50] 11.12 10.35 11.77
Null score 0 0 0

TABLE VIII

BEST OUTLIER DETECTION SCORES OUT OF 5 TEST

ITERATIONS FOR EACH ANOMALY DETECTION METHOD

Algorithm F1 FAR, % MAR, %

Perfect score 1 0 0
LSTMCaps 0.74 21.5 18.74
MSET [48] 0.73 20.82 20.08

LSTMCapsV2 0.71 14.51 30.59
MSCRED [49] 0.7 16.2 30.87

LSTM [51] 0.67 15.42 36.02
Conv-AE [50] 0.66 5.58 46.05
LSTM-AE [52] 0.65 14.59 39.42

LSTM-VAE [53] 0.56 9.2 54.81
Autoencoder [54] 0.45 7.55 66.57

Isolation forest [47] 0.4 6.86 72.09
Null score 0 100 100

TABLE IX

BEST CHANGEPOINT DETECTION SCORES OUT OF 5 TEST

ITERATIONS FOR EACH ANOMALY DETECTION METHOD

Algorithm NAB
(standard)

NAB
(lowFP)

NAB
(LowFN)

Perfect score 100 100 100
Isolation forest [47] 37.53 17.09 45.02
LSTMCapsV2 27.77 17.14 31.59

LSTM [51] 26.76 12.92 31.93
MSCRED [49] 24.99 17.9 27.94
LSTM-AE [52] 24.77 22.69 25.75
LSTMCaps 24.02 8.14 29.60

LSTM-VAE [53] 21.92 18.45 23.59
Autoencoder [54] 16.27 1.04 21.62

MSET [48] 12.71 11.04 13.6
Conv-AE [50] 11.21 10.45 11.83
Null score 0 0 0

TABLE X

SCALED AVERAGE OF AVERAGE F1 AND NAB SCORES

FROM TABLE VI AND TABLE VII RESPECTIVELY

Algorithm Scaled Average of Average
Score

Perfect score 1
LSTMCapsV2 0.49195
MSCRED [49] 0.48065

LSTMCaps 0.4779
LSTM [51] 0.45805

LSTM-AE [52] 0.43485
MSET [48] 0.42855

Isolation forest [47] 0.38765
Conv-AE [50] 0.3856

LSTM-VAE [53] 0.38545
Autoencoder [54] 0.30325

Null score `0

TABLE XI

SCALED AVERAGE FROM BEST F1 AND NAB SCORES

FROM TABLE VIII AND TABLE IX RESPECTIVELY

Algorithm Scaled Average of Best Score

Perfect score 1
LSTMCapsV2 0.49385

LSTMCaps 0.4901
MSCRED [49] 0.47495

LSTM [51] 0.4688
LSTM-AE [52] 0.44885

MSET [48] 0.42855
LSTM-VAE [53] 0.3896

Isolation forest [47] 0.38765
Conv-AE [50] 0.38605

Autoencoder [54] 0.30635
Null score 0

Table 2: Scaled average from best F1 and NAB scores from

12

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

models, which did not work to its favour during anomaly

detection with recall but resulted in a higher precision.

By utilising the hybridisation in the branched input model,

the best performance was achieved across all the metrics tested,

with both optimised and non-optimised hyperparameters.

Furthermore, minimal overfitting was observed when training

with unoptimized hyperparameters. Consequently, it can be

said that minimal hyperparameter optimisation is required when

using this model architecture as these results show a resilience

to overfitting and relatively strong performance when applying

the network on multivariate data without hyperparameter

tuning.

The results attained show that both the hybridisation of the

Capsule and LSTM layers and the branched input model

structure are both effective methods of improving the

performance of the neural network with multivariate data,

especially when used in conjunction with each other. To further

substantiate this performance, the proposed model was tested

against common state-of-the-art anomaly detection methods on

an open-source benchmark.

D. Experiment 2: SKAB Anomaly benchmark

This experiment aims to compare the anomaly detection and

changepoint detection performance of state-of-the-art

unsupervised anomaly detection methods with the proposed NN

model. A selection of NNs and ML based fault detection

methods were chosen to compare on the benchmark with

minimal hyperparameter optimisation applied.

The same testing procedure utilised in the SKAB

benchmark’s GitHub repo [45] was used to test the proposed

model architecture. The model was trained with 100 epochs on

a subset from each dataset with early stopping set at a patience

of 20, and then tested on the remainder of the dataset. The F1

scores and NAB scores achieved for each dataset are averaged,

which gives the final score of the benchmark. Each model

compared was also tested on the same computer for

experimental rigour. The results in Table VI and Table VII

depict the average outlier detection score and the changepoint

detection scores over 5 test iterations respectively, and the

results in Table VIII and Table IX show the best NN

performance in a single test over the outlier and changepoint

scores respectively.

To better conclude the effectiveness of each anomaly

detection method over both the F1 and NAB scores

simultaneously, a scaled average of both metrics was

calculated. This was done by scaling the NAB score between 0

and 1 and averaging the F1 score and scaled NAB scores. The

results in Table 1 and Table 2 show the scaled average of the

F1 and NAB score of the average performance and best

performance respectively.

While testing it was found that there was an inversely

proportional relationship with outlier detection score and

changepoint detection score. This meant that hyperparameters

optimal for a good F1 score would not perform as well in the

NAB score. To demonstrate this, the hyperparameters of the

LSTMCaps NN were slightly adjusted to achieve a better score

in the changepoint detection benchmark, at the expense of a

slightly lower outlier detection score. This NN configuration is

labelled as LSTMCaps V2 in the results shown in Table VI to

Table XI.

The results in Table VI and Table VIII show that as an outlier

detector, the proposed LSTMCaps NN achieves the best F1

score and the lowest False Negative rate out of the models

tested. It also achieves the second highest False Positive rate out

of the models. In terms of changepoint detection, the results in

Table VII and Table IX indicate that the original configuration

does not perform as well, coming 5th out of the 9 methods

tested. However, with a slight adjustment to the

hyperparameters, the LSTMCapsV2 NN was able to come 2nd

out of the 9 methods tested in both the outlier detection and

changepoint detection scores and performs better than all other

NN based methods in the latter. Similar outcomes can be seen

for the best performing test iteration, with no improvement in

relation to the other NNs and ML methods. The scaled average

results in Table X and Table XI show that the LSTMCapsV2

configuration is overall the best performing method over the

two metrics tested.

From this test, it can be concluded that for single datapoint

outlier detection, the proposed LSTMCaps branched

architecture provides state-of-the-art performance. However,

while the changepoint detection performance is superior to

other NNs with the right adjustments to the hyperparameters,

significantly better performance can be attained from non-NN

based algorithms, such as the Isolation Forest algorithm [47].

V. DISCUSSION

Across the experiments conducted, it is clear to see that both

the inclusion of the Capsule Network and the branched input

architecture is integral to the improvement of the performance

of the Capsule Network in terms of training and anomaly

detection. The evidence for this is shown clearly across the

experiments, where with standard LSTM AEs, the training and

anomaly detection performance is significantly weaker than

with the proposed NN.

The experimental results further suggest that the Capsule

Network is most effective in the training phase. Generally, it

was found that models which included Capsules were training

more efficiently, reaching the local minima at a faster rate in

relation to networks without Capsules. Most importantly, the

results in Table III for training using non-optimised

hyperparameters suggest that with the use of Capsules, the

hyperparameter optimisation procedure can be simplified

considerably due to the lack of overfitting during training on the

NN models with Capsules integrated.

One significant strength of the proposed LSTMCaps NN is

its ability to learn separate data features effectively in

comparison to a standard single channel NN. This is shown by

the difference in standard deviation in the MAE thresholds in

Table IV when conducting the anomaly detection test on the

drone data. This is further substantiated with the anomaly

detection performance on the SKAB anomaly benchmark,

which contains a larger number of more complex features than

the drone data. Here it is clear to see the advantage that having

separate input branches per feature brings.

13

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

VI. CONCLUSION AND FUTURE WORKS

This paper proposed a novel hybridisation of the LSTM and

Capsule Networks in a branched architecture to address the

issues found in the literature review with training performance

of NNs, specifically on multivariate data. The motivation for

this research stemmed from the growing demand for more

effective unsupervised data analysis techniques regarding

outlier and anomaly detection for use in industrial and

commercial environments with large datasets to assist in the

advancement of Industry 4.0, the automation of industrial

processes.

The proposed NN was tested first in its training performance

with no hyperparameter optimisation and compared to non-

hybridised and non-branched variants of the NN, where it was

found that the proposed NN can train more efficiently over a

smaller number of epochs in comparison to the variants with no

capsules integrated in the NN, and significantly reduces

overfitting. After conducting hyperparameter optimisation, the

NNs were retested, this time for their anomaly performance

ability using an unsupervised method of reconstructing the data

and using the MAE any data outlying from the expected shape

in the training data. The results of this test concluded that the

proposed NN performs better than the other variants tested as a

result of the proposed additions and changes to the NN

architecture. To substantiate these results, the proposed NN was

tested against other state-of-the-art anomaly detection methods

on the SKAB anomaly detection benchmark, where with slight

hyperparameter adjustments the proposed method was able to

perform better than all other methods tested for outlier detection

and performed better than all other NN based methods in

changepoint detection, only being outperformed by the

Isolation Forest algorithm in the latter.

Whilst the proposed NN operated exclusively on raw data, it

was found in the literature review that with different

representations of data, the prominence of data features can be

increased which in turn can help to improve the performance of

unsupervised anomaly detection. Furthermore, the use-cases for

the proposed NN were not fully explored, so future works will

be exploring the use of different data representations and

different unsupervised anomaly detection methods, including

the grouping of encountered anomalies in an unsupervised

manner.

REFERENCES

[1] J. Lee, H. A. Kao, and S. Yang, “Service innovation

and smart analytics for Industry 4.0 and big data

environment,” Procedia CIRP, vol. 16, pp. 3–8, 2014,

doi: 10.1016/j.procir.2014.02.001.
[2] E. Dubrova, “Hardware Redundancy,” in Fault-

Tolerant Design, New York, NY: Springer New York,

2013, pp. 55–86. doi: 10.1007/978-1-4614-2113-9_4.

[3] M. Paliwal and U. A. Kumar, “Neural networks and

statistical techniques: A review of applications,”

Expert Systems with Applications, vol. 36, no. 1, pp.

2–17, 2009, doi: 10.1016/j.eswa.2007.10.005.

[4] S. Hochreiter and J. Schmidhuber, “Long Short-Term

Memory,” Neural Computation, vol. 9, no. 8, pp.

1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.

[5] A. Nanduri and L. Sherry, “Anomaly detection in

aircraft data using Recurrent Neural Networks

(RNN),” ICNS 2016: Securing an Integrated CNS

System to Meet Future Challenges, pp. 1–8, 2016, doi:

10.1109/ICNSURV.2016.7486356.

[6] T. Ergen and S. S. Kozat, “Unsupervised anomaly

detection with LSTM neural networks,” IEEE

Transactions on Neural Networks and Learning

Systems, vol. 31, no. 8, 2020, doi:

10.1109/TNNLS.2019.2935975.

[7] M. Zhang, W. Li, and Q. Du, “Diverse region-based

CNN for hyperspectral image classification,” IEEE

Transactions on Image Processing, vol. 27, no. 6, pp.

2623–2634, 2018, doi: 10.1109/TIP.2018.2809606.

[8] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M.

Chen, “Medical image classification with

convolutional neural network,” 2014 13th

International Conference on Control Automation

Robotics and Vision, ICARCV 2014, vol. 2014, no.

December, pp. 844–848, 2014, doi:

10.1109/ICARCV.2014.7064414.

[9] A. Dingli and K. S. Fournier, “Financial time series

forecasting - a deep learning approach,” International

Journal of Machine Learning and Computing, vol. 7,

no. 5, pp. 118–122, 2017, doi:

10.18178/ijmlc.2017.7.5.632.

[10] C. Y. Hsu and W. C. Liu, “Multiple time-series

convolutional neural network for fault detection and

diagnosis and empirical study in semiconductor

manufacturing,” Journal of Intelligent Manufacturing,

vol. 32, no. 3, pp. 823–836, 2021, doi:

10.1007/s10845-020-01591-0.

[11] S. Mukhopadhyay and M. Litoiu, “Fault Detection in

Sensors Using Single and Multi-Channel Weighted

Convolutional Neural Networks,” pp. 0–7, 2020.

[12] M. Canizo, I. Triguero, A. Conde, and E. Onieva,

“Multi-head CNN–RNN for multi-time series anomaly

detection: An industrial case study,” Neurocomputing,

vol. 363, pp. 246–260, Oct. 2019, doi:

10.1016/j.neucom.2019.07.034.

[13] T. Y. Kim and S. B. Cho, “Web traffic anomaly

detection using C-LSTM neural networks,” Expert

Systems with Applications, vol. 106, pp. 66–76, Sep.

2018, doi: 10.1016/J.ESWA.2018.04.004.

[14] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic

routing between capsules,” Advances in Neural

Information Processing Systems, vol. 2017-Decem,

no. Nips, pp. 3857–3867, 2017.

[15] A. Byerly, T. Kalganova, and I. Dear, “No routing

needed between capsules,” Neurocomputing, vol. 463,

pp. 545–553, Nov. 2021, doi:

10.1016/J.NEUCOM.2021.08.064.

[16] L. Zheng et al., “Spatio-temporal wind speed

prediction of multiple wind farms using capsule

network,” Renewable Energy, vol. 175, pp. 718–730,

2021, doi: 10.1016/j.renene.2021.05.023.

[17] R. Huang, J. Li, S. Wang, G. Li, and W. Li, “A Robust

Weight-Shared Capsule Network for Intelligent

Machinery Fault Diagnosis,” IEEE Transactions on

14

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Industrial Informatics, vol. 16, no. 10, pp. 6466–6475,

2020, doi: 10.1109/TII.2020.2964117.

[18] B. Han, “Network and Markov Transition Field /

Gramian Angular Field,” 2021.

[19] Z. Xu, X. Shen, Y. Wong, and M. S. Kankanhalli,

“Unsupervised Motion Representation Learning with

Capsule Autoencoders,” no. NeurIPS, 2021, [Online].

Available: http://arxiv.org/abs/2110.00529

[20] M. Moore, “What is Industry 4.0? Everything you

need to know,” 2019.

https://www.techradar.com/news/what-is-industry-40-

everything-you-need-to-know (accessed Nov. 25,

2020).

[21] M. Jafari, “Optimal redundant sensor configuration for

accuracy increasing in space inertial navigation

system,” Aerospace Science and Technology, vol. 47,

pp. 467–472, 2015, doi: 10.1016/j.ast.2015.09.017.

[22] H. S. Kim, S. K. Park, Y. Kim, and C. G. Park, Hybrid

fault detection and isolation method for UAV inertial

sensor redundancy management system, vol. 16, no. 1.

IFAC, 2005. doi: 10.3182/20050703-6-cz-1902.02005.

[23] S. Zhang and Z. Q. Lang, “SCADA-data-based wind

turbine fault detection: A dynamic model sensor

method,” Control Engineering Practice, vol. 102, no.

322430, p. 104546, 2020, doi:

10.1016/j.conengprac.2020.104546.

[24] A. Zimek and P. Filzmoser, “There and back again:

Outlier detection between statistical reasoning and

data mining algorithms,” Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, vol.

8, no. 6, pp. 1–26, 2018, doi: 10.1002/widm.1280.

[25] P. Gangsar and R. Tiwari, “Signal based condition

monitoring techniques for fault detection and

diagnosis of induction motors: A state-of-the-art

review,” Mechanical Systems and Signal Processing,

vol. 144, p. 106908, 2020, doi:

10.1016/j.ymssp.2020.106908.

[26] S. Lin, R. Clark, R. Birke, and S. Sch, “ANOMALY

DETECTION FOR TIME SERIES USING VAE-

LSTM HYBRID MODEL,” Ieee, pp. 4322–4326,

2020.

[27] R. Sabir, D. Rosato, S. Hartmann, and C. Gühmann,

“LSTM based Bearing Fault Diagnosis of Electrical

Machines using Motor Current Signal,” pp. 613–618,

2019, doi: 10.1109/ICMLA.2019.00113.

[28] R. Wang, Z. Feng, S. Huang, X. Fang, and J. Wang,

“Research on Voltage Waveform Fault Detection of

Miniature Vibration Motor Based on Improved WP-

LSTM,” 2020.

[29] A. Byerly, T. Kalganova, and I. Dear, “No routing

needed between capsules,” Neurocomputing, vol. 463,

pp. 545–553, 2021, doi:

10.1016/j.neucom.2021.08.064.

[30] F. Deng, S. Pu, X. Chen, Y. Shi, T. Yuan, and P.

Shengyan, “Hyperspectral image classification with

capsule network using limited training samples,”

Sensors (Switzerland), vol. 18, no. 9, 2018, doi:

10.3390/s18093153.

[31] O. I. Provotar, Y. M. Linder, and M. M. Veres,

“Unsupervised Anomaly Detection in Time Series

Using LSTM-Based Autoencoders,” 2019 IEEE

International Conference on Advanced Trends in

Information Theory, ATIT 2019 - Proceedings, pp.

513–517, 2019, doi:

10.1109/ATIT49449.2019.9030505.

[32] A. Byerly and T. Kalganova, “Homogeneous Vector

Capsules Enable Adaptive Gradient Descent in

Convolutional Neural Networks,” arXiv, 2019.

[33] P. Afshar, A. Mohammadi, and K. N. Plataniotis,

“Brain Tumor Type Classification via Capsule

Networks,” in Proceedings - International Conference

on Image Processing, ICIP, 2018, pp. 3129–3133. doi:

10.1109/ICIP.2018.8451379.

[34] M. E. Paoletti et al., “Capsule Networks for

Hyperspectral Image Classification,” IEEE

Transactions on Geoscience and Remote Sensing, vol.

57, no. 4, pp. 2145–2160, 2019, doi:

10.1109/TGRS.2018.2871782.

[35] R. Huang, J. Li, W. Li, and L. Cui, “Deep Ensemble

Capsule Network for Intelligent Compound Fault

Diagnosis Using Multisensory Data,” IEEE

Transactions on Instrumentation and Measurement,

vol. 69, no. 5, 2020, doi: 10.1109/TIM.2019.2958010.

[36] S. R. R. Fahim, S. K. Sarker, S. M. Muyeen, M. R. I.

Sheikh, S. K. Das, and M. G. Simoes, “A Robust Self-

Attentive Capsule Network for Fault Diagnosis of

Series-Compensated Transmission Line,” IEEE

Transactions on Power Delivery, vol. 8977, no. c,

2021, doi: 10.1109/TPWRD.2021.3049861.

[37] U. B. Parikh, B. Das, and R. P. Maheshwari,

“Combined wavelet-SVM technique for fault zone

detection in a series compensated transmission line,”

IEEE Transactions on Power Delivery, vol. 23, no. 4,

pp. 1789–1794, 2008, doi:

10.1109/TPWRD.2008.919395.

[38] Z. Wang and T. Oates, “Encoding time series as

images for visual inspection and classification using

tiled convolutional neural networks,” AAAI Workshop

- Technical Report, vol. WS-15-14, pp. 40–46, 2015.

[39] Y. Liang, B. Li, and B. Jiao, “A deep learning method

for motor fault diagnosis based on a capsule network

with gate-structure dilated convolutions,” Neural

Computing and Applications, vol. 33, doi:

10.1007/s00521-020-04999-0.

[40] C. Zhao, X. Huang, Y. Li, and S. Li, “A Novel Cap-

LSTM Model for Remaining Useful Life Prediction,”

IEEE Sensors Journal, vol. 21, no. 20, pp. 23498–

23509, 2021, doi: 10.1109/JSEN.2021.3109623.

[41] T. Han, R. Ma, and J. Zheng, “Combination

bidirectional long short-term memory and capsule

network for rotating machinery fault diagnosis,”

Measurement, vol. 176, p. 109208, May 2021, doi:

10.1016/J.MEASUREMENT.2021.109208.

[42] “Bearing Data Center | Case School of Engineering |

Case Western Reserve University.”

https://engineering.case.edu/bearingdatacenter/

(accessed Jan. 31, 2022).

15

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

[43] L. Deng, X. Wang, F. Jiang, and R. Doss, “EEG-based

emotion recognition via capsule network with

channel-wise attention and LSTM models,” CCF

Transactions on Pervasive Computing and

Interaction, vol. 3, no. 4, pp. 425–435, Dec. 2021, doi:

10.1007/S42486-021-00078-Y/FIGURES/9.

[44] G. Hinton and R. Salakhutdinov, “Reducing the

dimensionality of data with neural networks,” Science,

vol. 313, no. 5786, pp. 504–507, 2006, doi:

10.1126/science.1127647.

[45] I. D. Katser and V. O. Kozitsin, “Skoltech Anomaly

Benchmark (SKAB),” Kaggle, 2020.

https://github.com/waico/SKAB

[46] A. Lavin and S. Ahmad, “Evaluating real-time

anomaly detection algorithms - The numenta anomaly

benchmark,” Proceedings - 2015 IEEE 14th

International Conference on Machine Learning and

Applications, ICMLA 2015, pp. 38–44, 2016, doi:

10.1109/ICMLA.2015.141.

[47] F. Tony Liu, K. Ming Ting, and Z.-H. Zhou, “Isolation

Forest ICDM08,” Icdm, 2008, [Online]. Available:

https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/i

cdm08b.pdf%0Ahttps://cs.nju.edu.cn/zhouzh/zhouzh.f

iles/publication/icdm08b.pdf?q=isolation-forest

[48] K. C. Gross, R. M. Singer, S. W. Wegerich, J. P.

Herzog, R. VanAlstine, and F. Bockhorst,

“Application of a Model-based Fault Detection

System to Nuclear Plant Signals,” International

conference on intelligent systems applications to

power systems, no. October 2015, p. 6, 1997, [Online].

Available:

http://www.osti.gov/bridge/product.biblio.jsp?osti_id=

481606

[49] C. Zhang et al., “A deep neural network for

unsupervised anomaly detection and diagnosis in

multivariate time series data,” 33rd AAAI Conference

on Artificial Intelligence, AAAI 2019, 31st Innovative

Applications of Artificial Intelligence Conference,

IAAI 2019 and the 9th AAAI Symposium on

Educational Advances in Artificial Intelligence, EAAI

2019, pp. 1409–1416, 2019, doi:

10.1609/aaai.v33i01.33011409.

[50] P. Vijay, “Timeseries anomaly detection using an

Autoencoder,” Keras, 2020.

https://keras.io/examples/timeseries/timeseries_anoma

ly_detection/

[51] P. Filonov, A. Lavrentyev, and A. Vorontsov,

“Multivariate Industrial Time Series with Cyber-

Attack Simulation: Fault Detection Using an LSTM-

based Predictive Data Model,” pp. 1–8, 2016,

[Online]. Available: http://arxiv.org/abs/1612.06676

[52] F. Chollet, “Building Autoencoders in Keras,” The

Keras Blog, 2016. https://blog.keras.io/building-

autoencoders-in-keras.html

[53] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R.

Jozefowicz, and S. Bengio, “Generating sentences

from a continuous space,” CoNLL 2016 - 20th

SIGNLL Conference on Computational Natural

Language Learning, Proceedings, pp. 10–21, 2016,

doi: 10.18653/v1/k16-1002.

[54] J. Chen, S. Sathe, C. Aggarwal, and D. Turaga,

“Outlier detection with autoencoder ensembles,”

Proceedings of the 17th SIAM International

Conference on Data Mining, SDM 2017, pp. 90–98,

2017, doi: 10.1137/1.9781611974973.11.

Ayman Elhalwagy received the BEng

(Hons) degree in electronic and computer

Engineering from Brunel University

London, Uxbridge in 2021 and is

pursuing the Ph.D. degree in Electronic

and Computer Engineering with Brunel

University London, Uxbridge.

His research interests include Neural

Networks, Anomaly Detection and Fault

Classification as well as intelligent systems.

Tatiana Kalganova received the B.Sc.

(Hons.) and Ph.D. degrees.,

She is currently a Reader in

intelligent systems and the ECE

Postgraduate Research Director in ECE

with Brunel University London,

Uxbridge, U.K. She has over 20 years of

experience in design and

implementation of applied intelligent

systems.

