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Abstract: Functional data, which provides information about curves, surfaces or anything else vary-
ing over a continuum, has become a commonly encountered type of data. The k-nearest neighbor
(kNN) method, as a nonparametric method, has become one of the most popular supervised machine
learning algorithms used to solve both classification and regression problems. This paper is devoted
to the k-nearest neighbor (kNN) estimators of the nonparametric functional regression model when
the observed variables take values from negatively associated (NA) sequences. The consistent and
complete convergence rate for the proposed kNN estimator is first provided. Then, numerical assess-
ments, including simulation study and real data analysis, are conducted to evaluate the performance
of the proposed method and compare it with the standard nonparametric kernel approach.

Keywords: convergence rate; NA samples; functional data; nonparametric regression model; k-nearest
neighbor estimator
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1. Introduction

Functional data analysis (FDA) is a branch of statistics that analyzes data providing
information about curves, surfaces or anything else varying over a continuum. In its
most general form, under an FDA framework, each sample element of functional data is
considered to be a random function.

Popularized by Ramsay and Silverman [1,2], statistics for functional data analysis have
attracted considerable research interest because of its wide applications in many practical
fields, such as medicine, economics and linguistics. For an introduction to the topics, we
can refer to the monographs of Ramsay and Silverman [3] for parametric models, and
Ferraty and Vieu [4] for nonparametric models.

In this paper, the following functional non-parametric regression model is considered.

Y = m(χ) + ε, (1)

where Y is a scalar response variable, χ is a covariate taking value in a subset SF of an
infinite-dimensional functional space F endowed with a semi-metric d(·, ·). m(·) is the
unknown regression operator from SF to R, and the random error ε satisfies E(ε|χ) = 0, a.s.

For the estimation of model (1), Ferraty and Vieu [5] investigated the classical func-
tional Nadaraya-Watson (N-W) kernel type estimator of m(·) and obtained the asymptotic
properties with rates in the case of α-mixing functional data. Ling and Wu [6] studied the
modified N-W kernel estimate and derived the asymptotic distribution for strong mixing
functional time series data, Baíllo and Grane [7] proposed a functional local linear estimate
based on the local linear idea. In this paper, we focus on the k-nearest neighbors (kNN)
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method for regression model (1). The kNN method, as one of the most simple and tradi-
tional nonparametric techniques, is often used as a nonparametric classification method.
The kNN method was first developed by Evelyn Fix and Joseph Hodges in 1951 [8] and then
expanded by Thomas Cover [9]. In our kNN regression, the input consists of the k-closest
training examples in a dataset, whereas the output is the property value for the object.
This value is the average of the values of the k-nearest neighbors. Under independent
samples, research in kNN regression mostly focuses on the estimation of the continuous
regression function m(χ). For example, Burba et al. [10] investigated the kNN estimator
based on the idea of the local adaptive bandwidth of functional explanatory variables. The
papers [11–18], and others, obtained the asymptotic behavior of nonparametric regression
estimators for functional data in independent and dependent cases. Further, Kudraszow
and Vieu [19] obtained asymptotic results for a kNN generalized regression estimator when
the observed variables take values in an abstract space. Kara-Zaitri et al. [20] provided an
asymptotic theory for several different target operators and some simulated experiences,
including regression, conditional density, conditional distribution and hazard operators.
However, functional observations often behave with correlation, including satisfying some
form of negative dependence or negative association.

Negatively associated (NA) sequences were introduced by Joag-Dev and Proschan
in [21]. Random variables {Yi}1≤i≤n are said to be NA, if for every pair of disjoint subsets
A, B ⊂ {1, 2, · · · , n},

Cov( f (Yi, i ∈ A)g(Yj, j ∈ B)) ≤ 0,

or equivalently,

E( f (Yi, i ∈ A), g(Yj, j ∈ B)) ≤ E( f (Yi, i ∈ A))E(g(Yj, j ∈ B)),

where f and g are coordinatewise non-decreasing, such that this covariance exists. An
infinite sequence {Yn}n≥1 is NA if every finite subcollection is NA.

For example, if {Yi}1≤i≤n follows permutation distributions, where {Y1, Y2, · · · , Yn} =
{y1, y2, · · · , yn} always and y1 ≤ y2 ≤ · · · ≤ yn are n real numbers, then {Yi}1≤i≤n is NA.

Whereas kNN regression under NA sequences has not been explored in the literature,
in this paper, we extend the kNN estimation of functional data from the case of independent
samples to NA sequences.

Let a pair {(χi, Yi)}i=1,··· ,n be a sample of NA pairs in (χ, Y), which is a random vector
valued in the F×R. (F, d) is a semi-metric space, F is not necessarily of the finite dimension
and we do not suppose the existence of a density for the functional random variable χ. For
a fixed χ ∈ F, the closed ball with χ as the center and ε as the radius is denoted as:

d : B(χ, ε) = {χ′ ∈ F|d(χ′, χ) ≤ ε}.

The kNN regression estimator [10] is defined as follows:

m̂kNN(χ) =

n
∑

i=1
YiK(Hn,k(χ)

−1d(χi, χ))

n
∑

i=1
K(Hn,k(χ)−1d(χi, χ))

, χ ∈ F, (2)

where K(·) is the kernel function supported on [0, ∞). Hn,k(χ) is a positive random variable
that depends on (χ1, χ2, . . . , χn) and is defined by:

Hn,k(χ) = min{h ∈ R+ :
n

∑
i=1

IB(χ,h)(χi) = k},
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obviously, the kNN estimator can be seen as an expansion to a random locally adaptive
neighborhood of the traditional kernel method [5] defined as:

m̂n(χ) =

n
∑

i=1
YiK(hn(χ)−1d(χi, χ))

n
∑

i=1
K(hn(χ)−1d(χi, χ))

, χ ∈ F, (3)

where hn(χ) is a sequence of positive real numbers such as hn(χ)→ 0 a.s. n→ ∞.
This paper is organized as follows. The main results of our paper about the asymptotic

behavior of the kNN estimators using a data-driven random number of neighbors are
given in Section 2. Section 3 illustrates the numerical performance of the proposed method,
including nonparametric functional regression analysis of the sea level surface temperature
(SST) data for the El Niño area (0–100 S, 800–900 W). The technical proofs are postponed
to Section 4. Finally, Section 5 is devoted to comments on the results and to related
perspectives for the future.

2. Assumptions and Main Results

In this section, we focus on the asymptotic property of the kNN regression estimator
and need to state the convergence rate of an estimator.

One says that the rate of almost complete convergence of a sequence {Yn, n ≥ 1} to Y
is of order un if only if for any ε > 0,

∞

∑
n=1

P(|Yn −Y| > εun) < ∞,

and we write Yn − Y = Oa.co.(un)(see for instance [5]). By the Borel-Cantelli lemma, this
implies that Yn−Y

un
→ 0 almost surely, so almost complete convergence is a stronger result

than almost sure convergence.
Our results are stated under some mild assumptions we gather below for easy refer-

ences. Throughout the paper, we will denote by C, C1, C′ some positive generic constants,
which may be different in various places.

Assumption 1. ∀ε > 0, P(χ ∈ B(χ, ε)) = ϕχ(ε) > 0 and ϕχ(·) is a continuous function, and
strictly monotonically increasing at the origin with ϕχ(0) = 0.

Assumption 2. There exist a function φ(·) ≥ 0 and a bounded function f (·) > 0 such that:

(i) Fφ(0) = 0, and lim
ε→∞

φ(ε) = 0.

(ii) lim
ε→∞

φ(uε)
φ(ε)

= 0, for any u ∈ [0, 1].

(iii) ∃τ > 0 such that supχ∈SF

∣∣∣ ϕχ(ε)
φ(ε)
− f (χ)

∣∣∣ = O(ετ), ε→ 0.

Assumption 3. K(t) is a nonnegative bounded kernel function with support [0, 1], and if K(1) >
0, the derivative K

′
(t) exists on [0, 1] satisfying:

−∞ < C < K
′
(t) < C′ < ∞, f or ∀t ∈ [0, 1].

Assumption 4. m(·) is a bounded Lipschitz operator with order β on SF, and there exists β > 0
such that:

∀χ1, χ2 ∈ SF, |m(χ1)−m(χ2)| ≤ Cd(χ1, χ2)
β.

Assumption 5. ∀m ≥ 2, E(|Y|m | X = χ) = δm(χ) < C with δm(·) continuous on SF.
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Assumption 6. Kolmogorov’s ε-entropy of SF satisfies:

∞

∑
n=1

exp
{
(1−ω)ΨSF

(
log n

n

)}
< ∞, f or some ω > 1.

For ∀ε > 0, the Kolmogorov’s ε-entropy of some set SF ⊂ F is defined by ΨSF
= log(Nε(SF)),

where Nε(SF) is the minimal number of open balls, which can cover SF with χ1, χ2, . . . , χNε(SF)

as the center and ε as the radius in F.

Remark 1. Assumption 1, Assumption 2((i)–(iii)) and Assumption 4 are the standard assumptions
for small ball probability and regression operators in nonparametric FDA, see Kudraszow and
Vieu [19]. Assumption 2(ii) will play a key role in the methodology particularly when we compute
the asymptotic variance and permit it to be explicit in Ling and Wang [6]. Assumption 2(iii) shows
that the small ball probability can be written as the product of the two independent functions φ(·)
and f (·), which has been used many times in Masry [11], Laib and Louani [12] and other literatures.
Assumption 5 is standard in the nonparametric setting and concerns the existence of the conditional
moments in Masry [11] and Burba [10], which aims to obtain the rate of uniform almost complete
convergence. Assumption 6 assumes the Kolmogorov’s ε-entropy condition, which we will use in
the following proof of the rate of uniform almost complete convergence.

Theorem 1. Under Assumptions 1–6, suppose that sequence {kn, n ≥ 1} satisfies kn
n → 0, n→

∞, log2 n
kn

< ΨSF

(
log n

n

)
< kn

log n and 0 < C1 < kn
log2 n

< C2 < ∞, for n large enough, then we

have:

sup
χ∈SF

|m̂kNN(χ)−m(χ)| = Oa.co.

φ−1
(

kn

n

)β

+

√√√√ s2
nΨSF

(
log n

n

)
n2

.

Remark 2. The Theorem extends the kNN estimation result of Theorem 2 in Kudraszow and
Vieu [19] from the independent case to the NA mixed dependent case, and obtains the same conver-
gence rate under the assumptions. Second, the almost complete convergence rate of the prediction
operator is divided into two parts, one part affected by strong mixing and Kolmogorov’s ε−entropy,
and the other part depends on the smoothness of the regression operator and smoothness parameter k.

Corollary 1. Under the condition of the Theorem, we have:

sup
χ∈SF

|m̂kNN(χ)−m(χ)| = Oa.s.

φ−1
(

kn

n

)β

+

√√√√ s2
nΨSF

(
log n

n

)
n2

.

Corollary 2. Under the condition of the Theorem, we have:

sup
χ∈SF

|m̂kNN(χ)−m(χ)| = OP

φ−1
(

kn

n

)β

+

√√√√ s2
nΨSF

(
log n

n

)
n2

.

3. Simulation
3.1. A simulation Study

In this section, we aim at illustrating the performance of the nonparametric functional
regression model and we will make a comparison with traditional kernel density estimation
methods. We consider the nonparametric functional regression model:

Yi = m(χi) + εi,
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where m(χi) =
(∫ π

5
0 χ

′
i(t)dt

)2
, εi is distributed according to N(0, 0.05), the functional curve

χi(t) is generated in the following way:

χi(t) = ait3 + arctan
(

bi

(
t− π

5

))
, t ∈

[
0,

π

5

]
, i = 1, 2, . . . , n.

where {ai} ∼ N
(
0, π

10
)
, i = 1, 2, · · · , n, {b1, b2, · · · , bn} ∼ Nn(0, Σ), 0 represents zero vector

and the covariance matrix is defined as:

∑ =



1 + θ2 −θ 0 · · · 0 0 0
−θ 1 + θ2 −θ · · · 0 0 0
0 −θ 1 + θ2 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 + θ2 −θ 0
0 0 0 · · · −θ 1 + θ2 −θ
0 0 0 · · · 0 −θ 1 + θ2


n×n

, 0 < θ < 1.

By the definition of NA, it can be seen that (b1, b2, · · · , bn) is an NA vector for each
n ≥ 3 with a finite moment of any order (see Wu and Wang [22]).

We choose casually that θ = 0.4, the sample sizes n as n = 330, t takes 1000 equispaced
values in [0, π

5 ]. We carry out the simulation of the curve χ(t) for the 330 samples (see
Figure 1).

Figure 1. Curve-sample with sample size of n = 330.

We consider the Epanechnikov kernel given by K(u) = 3
4 (1− u2)I[0,1](u), and the

semi-metrics d(·, ·) based on derivatives of order q.

d(χi, χj) =

√∫ π
5

0

(
χ
(q)
i (t)− χ

(q)
j (t)

)2
dt, ∀χi, χj ∈ F, q = {0, 1, 2, . . .}.

Our purpose is to compare the mean square error (MSE) of the kNN method with
the NW kernel approach on finite simulated datasets. In the finite sample simulation, the
following steps are followed.

Step 1: We take 300 curves to construct the training samples {χi, Yi}300
i=1, and the other

30 constitute the test samples {χi, Yi}330
i=301.
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Step 2: In the training sample, the parameters k and h in the kNN method and NW
kernel method are automatically selected based on the cross-validation method, respectively.

Step 3: Based on the MSE standard (see [4] for details), we obtain that the respective
semi-metric parameters q in both the kNN method and the NW method takes q = 1.

Step 4: The response values
{

Ŷi
}330

i=301 and
{

Ỹi
}330

i=301 of the test sample {Yi}330
i=301 are

calculated by using the kNN method and the NW method, respectively, and their MSE and
scatter plots against the true value {Yi}330

i=301 are represented by Figure 2.
As we can see in Figure 2, the MSE of the kNN method is much smaller than that of

the NW method, and the scattered points in Figure 2 are more densely distributed around
the linear function y = x, which shows that the kNN method has a better fit and higher
prediction accuracy for the NA dependent functional samples.

(a) (b)

Figure 2. Prediction effects of the two estimation methods. (a) kNN estimation method. (b) NW
estimation method.

The kNN method and NW method were used to conduct 100 independent replicated
experiments at sample sizes of n = 200, 300, 500, 800, respectively. AMSE was calculated
for both methods at different sample sizes using the following equation.

AMSE =
1

100

100

∑
j=1

1
30

n

∑
i=n−30

(Ȳi −Yi)
2, Ȳi = Ŷi, Ỹi, n = 200, 300, 500, 800

As can be seen from Table 1, the AMSE of the kNN method is much smaller than that of
the NW kernel method when the sample size is fixed at n = 200, 300, 500, 800, respectively;
when the estimation method is fixed, the AMSE of the two estimation methods have the
same trend—they both decrease as the sample size increases. However, the decreasing
speed of the kNN method is significantly faster than that of the NW kernel method.

Table 1. The AMSE of the predicted response variables of the two methods under different sam-
ple sizes.

n 200 300 500 800

kNN- AMSE 0.0623 0.0470 0.0327 0.0291
NW- AMSE 0.2764 0.2593 0.2329 0.2117

3.2. A Real Study

This section applies the proposed kNN regression analysis of the data, which consist
of the sea level surface temperature (SST) for the El Niño area (0–100 S, 800–900 W) for a
total of 31 years from 1 January 1990 to 31 December 2020. The data are available online at
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the website: https://www.cpc.ncep.noaa.gov/data/indices/ (accessed on 1 January 2022).
More relevant discussions of these data can be found in Ezzahrioui et al. [13,14], Delsol
et al. [23], and Ferraty et al. [24] The 1618 weekly SST data from the original data were
preprocessed and averaged by month to obtain 372 monthly average SST discrete data.
Figure 3 displays the decomposition of the multiplicative time series of the monthly SST.

Figure 3. Monthly mean SST factor decomposition fitting comprehensive output diagram.

Figure 4 shows that the monthly average SST in El Niño regions from 1990 to 2020 had
a clear seasonal variation, and the monthly trend of SST can also clearly be observed from
the seasonal index plot of the monthly mean SST.

The main factors affecting the temperature variation can be generally summarized as
seasonal factors and random fluctuations. If the seasonal factor is removed, the SST should
be left with only random fluctuations, i.e., the values fluctuate up and down at some mean
value. At the same time, if the effect of random fluctuations is not considered, the SST is
left with only the seasonal factor, i.e., the SST will have similar values in the same month in
different years.

The following steps implement the kNN regression estimation method for the analysis
of the SST data and display the comparison with the NW sum estimation method in
Figure 5.

Step 1: Transform 372 months (31 years) of SST data {Zi, i = 1, . . . , 372} into func-
tional data.

Step 2: Divide the 31 samples of data (χj, Yj(s))j=1,...,31 into two parts: 30 training
samples of data (χj, Yj(s))j=1,...,30 for model fitting and 1 test sample of data (χ31, Y31(s))
for prediction assessment.

Step 3: Here, the functional principal component analysis (FPCA) is applicable to
semi-measures for rough curves such as SST data (see Chapter 3 of Ferraty et al. [25] for the
methodology). A quadratic kernel function used in Section 3.1 is used in kNN regression.

Step 4: The SST values (Ŷ31(s), s = 1, . . . , 12) for 12 months in 2020 are predicted by
the kNN method and the NW method, respectively, along with obtaining their MSEs for
both methods.

Then, in step 1, we split the discrete monthly average temperature data of 372 months
into 31 years of temperature profiles and express them as χi = {Zi(t), 12(j − 1) < t <
12j}, i = 1, . . . , 31. Therefore, the response variable can be expressed as Yj(s) = {Z12j+s, s =

https://www.cpc.ncep.noaa.gov/data/indices/
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1, . . . , 12},j = 1, . . . , 30. Thus, (χj, Yj(s))j=1,...,30 is the sample set of dependent function
type with a sample size of 30, where χj is the function type data, and Yj(s) is a real value.

Figure 4. Time series curve of SST in El Niño during 31 years.

In Step 3, the choice of parameters q for the kNN method and NW method is performed
via computation of cross-validation in R, which gives q = 3 and q = 1 for the kNN
regression method and NW method, respectively. The selection of parameters k and h is
similar to Section 3.1.

Figure 5. Forecast value of SST in 2020 by KNN method and NW method.

From Figure 5, which compares the MSE values calculated by the two methods, it can
be seen that the MSE of the kNN method is much smaller than that of the NW method.
Further, noting that the degree of fit between the curves fitted by the two methods to the
true curve (dotted line), the predicted curves by two methods are generally closer to the
true curve, indicating that the prediction effect of both methods is very good. However,
a closer look reveals that the predicted values of the kNN method obviously have better
fitting at the inflection points of the curves, such as January, February, March, November
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and December, which fully reflect the fact that the kNN method pays more attention to
the local variation than the NW method when processing the data like this, including the
abnormal or extreme distribution of the response variable.

4. Proof of Theorem

In order to prove the main results, we give some lemmas. Let (Ai, Bi)i=1,2,...,n be n
random pairs valued in (Ω×R,A×B(R)), where (Ω,A) is a general measurable space.
Let SΩ be a fixed subset of Ω, G(·, (χ, ·)) : R× (SΩ ×Ω)→ R+ be a measurable function,
for ∀t, t′ ∈ R,

(L0) : t ≤ t′ ⇒ G(t, z) ≤ G(t′, z), ∀z ∈ SΩ ×Ω,

Dn(χ)n∈N is a sequence of random real variables (r.r.v.), and c(·) : SΩ → R is a nonrandom
function such that supχ∈SΩ

|c(χ)| < ∞. For ∀χ ∈ SΩ, n ∈ N/{0}, we define:

cn,χ(t) =

n
∑

i=1
BiG(t, (χ, Ai))

n
∑

i=1
G(t, (χ, Ai))

.

Lemma 1 ([10]). Let un(χ)n∈N be a decreasing positive real sequence satisfying limn→∞ un = 0.
For any increasing sequences βn ∈ (0, 1) and βn − 1 = O(un), there exist two real random
sequences {D−n (βn, χ)}n∈N and {D+

n (βn, χ)}n∈N such that:
(L1) D−n (βn, χ) ≤ D+

n (βn, χ), ∀n ∈ N, ∀χ ∈ SΩ,
(L2) I{D−n (βn ,χ)≤Dn(βn ,χ)≤D+

n (βn ,χ),∀χ∈SΩ} → 1, a.co. n→ ∞,

(L3) supχ∈SΩ

∣∣∣∣∣∣
n
∑

i=1
G(D−n (βn ,χ))

n
∑

i=1
G(D+

n (βn ,χ))
− βn

∣∣∣∣∣∣ = Oa.co.(un),

(L4) supχ∈SΩ
|cn,χ(D−n (βn, χ))− c(χ)| = Oa.co.(un),

(L5) supχ∈SΩ
|cn,χ(D+

n (βn, χ))− c(χ)| = Oa.co.(un),
then, we have:

sup
χ∈SΩ

|cn,χ(Dn(βn, χ))− c(χ)| = Oa.co.(un).

The proof of Lemma 1 is not presented here because it follows, step by step, the same
argument in Burba et al. [10], Kudraszow and Vieu [19].

Lemma 2 ([26]). Let {Xn, n ∈ N} be an NA random sequence with zero mean, and there exists a
positive constant ck, k = 1, 2, · · · , n such that |Xk| ≤ ck, let Sn = X1 + X2 + . . . + Xn. For any
ε > 0, we get:

P(Sn ≥ nε) ≤ exp


−n2ε2

2
n
∑

i=1
c2

i

, (4)

and

P(|Sn| ≥ nε) ≤ 2 exp


−n2ε2

2
n
∑

i=1
c2

i

.

Lemma 3. Suppose that Assumptions 1–6 hold, and hn(χ) → 0 a.s. n → ∞ in model (3)
satisfying:

lim(ϕχ(Hn,k(χ))− ϕχ(hn(χ))) = 0, (5)

0 < C1hn ≤ inf
χ∈SF

hn(χ) ≤ sup
χ∈SF

hn(χ) ≤ C2hn < ∞, (6)
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and for n large enough,
log2 n
nφ(hn)

< ΨSF

(
log n

n

)
<

nφ(hn)

log n
, (7)

0 < C1 <
nφ(hn)

log2 n
< C2 < ∞, (8)

then we have:

sup
χ∈SF

|m̂n(χ)−m(χ)| = Oa.co.

(
hβ

n

)
+ Oa.co.

√ s2
nΨSF

(ε)

n2

, (9)

where ε =
log n

n .

Proof of Lemma 3. In order to simplify the proof, we introduce some notations in this
article. For ∀χ ∈ SF, let k(χ) = arg min

k=1,2,...,Nε(SF)
d(χ, χk), s2

n = max
{

s2
n,1, s2

n,2, s2
n,3, s2

n,4

}
be

the mixed operator covariance,

s2
n,1 =

n

∑
i=1

n

∑
j=1

∣∣Cov(Yiui, Yjuj)
∣∣, s2

n,2 =
n

∑
i=1

n

∑
j=1

∣∣Cov(vi, vj)
∣∣,

s2
n,3 =

n

∑
i=1

n

∑
j=1

∣∣Cov(ui, uj)
∣∣, s2

n,4 =
n

∑
i=1

n

∑
j=1

∣∣Cov(wi, wj)
∣∣,

where ui = I
B
(

χkχ ,C2hn(χ)+ε
), 0 < hn → 0,

vi =
YiK

(
hn(χk)

−1d(χk, χi)
)

EK(hn(χk)−1d(χk, χ1))
−

E
(
YiK(hn(χk)

−1d(χk, χi)
)

EK(hn(χk)−1d(χk, χ1))
,

wi =
K
(
hn(χk)

−1d(χk, χi)
)

EK(hn(χk)−1d(χk, χ1))
−

EK
(
hn(χk)

−1d(χk, χi)
)

EK(hn(χk)−1d(χk, χ1))
.

For the fixed χ ∈ SF in model (3), we have the decomposition as follows:

m̂n(χ)−m(χ) =
m̂2n(χ)

m̂1n(χ)
−mn(χ)

=
1

m̂1n(χ)
[m̂2n(χ)− Em̂n(χ)] +

1
m̂1n(χ)

[Em̂n(χ)−mn(χ)]

+
mn(χ)

m̂1n(χ)
[1− m̂1n(χ)].

where:

m̂1n(χ) =

n
∑

i=1
K
(
hn(χ)−1d(χ, χi)

)
nEK(hn(χ)−1d(χ, χ1))

, m̂2n(χ) =

n
∑

i=1
YiK

(
hn(χ)−1d(χ, χi)

)
nEK(hn(χ)−1d(χ, χ1))

.

It suffices to prove the three following results in order to establish (9),

sup
χ∈SF

|Em̂2n(χ)−m(χ)| = Oa.co.

(
hβ

n

)
, (10)

sup
χ∈SF

|m̂2n(χ)− Em̂2n(χ)| = Oa.co.

√ s2
nΨSF

(ε)

n2

, (11)
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sup
χ∈SF

|m̂1n(χ)− 1| = sup
χ∈SF

|m̂1n(χ)− Em̂1n(χ)| = Oa.co.

√ s2
nΨSF

(ε)

n2

. (12)

As to the Equation (10). For χ ∈ SF, by the Equation (6) and Assumption 4, it follows that:

|Em̂2n(χ)−m(χ)| =

∣∣∣∣∣∣∣∣E
n
∑

i=1
YiK

(
hn(χ)−1d(χ, χi)

)
nEK(hn(χ)−1d(χ, χ1))

−m(χ)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣EY1K
(
hn(χ)−1d(χ, χi)

)
EK(hn(χ)−1d(χ, χ1))

−m(χ)

∣∣∣∣∣
=

∣∣∣∣∣m(χ1)EK
(
hn(χ)−1d(χ, χi)

)
−m(χ)EK

(
hn(χ)−1d(χ, χ1)

)
EK(hn(χ)−1d(χ, χ1))

∣∣∣∣∣
= |m(χ1)−m(χ)| = Oa.co.

(
hβ

n

)
.

Then, we need to show the Equation (11). In fact, we have the decomposition as follows:

sup
χ∈SF

|m̂2n(χ)− Em̂2n(χ)|

≤ sup
χ∈SF

∣∣∣m̂2n(χ)− m̂2n(χk(χ))
∣∣∣+ sup

χ∈SF

∣∣∣m̂2n(χk(χ))− Em̂2n(χk(χ))
∣∣∣

+ sup
χ∈SF

∣∣∣Em̂2n(χk(χ))− Em̂2n(χ)
∣∣∣ =: I1 + I2 + I3.

For I1, by Assumption 3, it is easily seen that:

0 < C1 < EK
(

hn(χ)
−1d(χ, χi)

)
< C2 < ∞,

thus,

I1 = sup
χ∈SF

∣∣∣∣∣∣∣∣
n
∑

i=1
YiK

(
hn(χ)−1d(χ, χi)

)
nEK(hn(χ)−1d(χ, χ1))

−

n
∑

i=1
YiK

(
hn(χk(χ))

−1d(χk(χ), χi)
)

nEK
(

hn(χk(χ))
−1d(χk(χ), χ1)

)
∣∣∣∣∣∣∣∣

= sup
χ∈SF

1
n

n

∑
i=1

Yi

∣∣∣∣∣∣ K
(
hn(χ)−1d(χ, χi)

)
EK(hn(χ)−1d(χ, χ1))

−
K
(

hn(χk(χ))
−1d(χk(χ), χi)

)
EK
(

hn(χk(χ))
−1d(χk(χ), χ1)

)
∣∣∣∣∣∣

≤ C sup
χ∈SF

1
n

n

∑
i=1

Yi

∣∣∣∣∣K
(

d(χ, χi)

hn(χ)

)
− K

(
d(χk(χ), χi)

hn(χk(χ))

)∣∣∣∣∣IB(χ,hn(χ))∪B(χk(χ),hn(χ))(χi)

≤ C sup
χ∈SF

1
n

n

∑
i=1

Yi IB(χk(χ),C2hn(χ)+ε)(χi),
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for ∀η > 0, we have:

P

I1 > η

√
s2

n,1ΨSF
(ε)

n2


≤ P

C sup
χ∈SF

1
n

n

∑
i=1

Yi IB(χk(χ),C2hn(χ)+ε)(χi) > η

√
s2

n,1ΨSF
(ε)

n2


≤ CNε(SF) max

k∈
{

χ1,χ2,...,χNε(SF)

} P

(
n

∑
i=1
|Yi|IB(χk(χ),C2hn(χ)+ε)(χi) > η

√
s2

n,1ΨSF
(ε)

)
.

According to (4) in Lemma 2 and Assumption 6, we have:

P

(
n

∑
i=1
|Yi|IB(χk(χ),C2hn(χ)+ε)(χi) > η

√
s2

n,1ΨSF
(ε)

)

≤ exp


−ηs2

n,1ΨSF
(ε)

2
n
∑

i=1
c2

i

 ≤ exp


1−

−ηs2
n,1

2
n
∑

i=1
c2

i

−ΨSF
(ε)

 < ∞.

Hence, it follows that:

I1 = Oa.co.

√ s2
n,1ΨSF

(ε)

n2

. (13)

For I2, similar to the proof of I1, for ∀η > 0, we have:

P

I2 > η

√
s2

n,2ΨSF
(ε)

n2



= P

 sup
χ∈SF

∣∣∣∣∣∣∣∣
n
∑

i=1
YiK

(
d(χk(χ),χi)
hn(χk(χ))

)
nEK

(
d(χk(χ),χ1)
hn(χk(χ))

) −
E

n
∑

i=1
YiK

(
d(χk(χ),χi)
hn(χk(χ))

)
nEK

(
d(χk(χ),χ1)
hn(χk(χ))

)
∣∣∣∣∣∣∣∣ > η

√
s2

n,2ΨSF
(ε)

n2



= P

 sup
χ∈SF

1
n

n

∑
i=1

∣∣∣∣∣∣∣∣
YiK

(
d(χk(χ),χi)
hn(χk(χ))

)
EK
(

d(χk(χ),χ1)
hn(χk(χ))

) − EYiK
(

d(χk(χ),χi)
hn(χk(χ))

)
EK
(

d(χk(χ),χ1)
hn(χk(χ))

)
∣∣∣∣∣∣∣∣ > η

√
s2

n,2ΨSF
(ε)

n2



≤ Nε(SF) max
k∈
{

χ1,χ2,...,χNε(SF)

} P

 1
n

n

∑
i=1

∣∣∣∣∣∣∣∣
YiK

(
d(χk(χ),χi)
hn(χk(χ))

)
EK
(

d(χk(χ),χ1)
hn(χk(χ))

) − EYiK
(

d(χk(χ),χi)
hn(χk(χ))

)
EK
(

d(χk(χ),χ1)
hn(χk(χ))

)
∣∣∣∣∣∣∣∣ > η

√
s2

n,2ΨSF
(ε)

n2


≤ CNε(SF) max

k∈
{

χ1,χ2,...,χNε(SF)

} P

 1
n

n

∑
i=1
|Yi|IB(χk(χ),C2hn(χ)+ε)(χi) > η

√
s2

n,2ΨSF
(ε)

n2

.

Thus,

I2 = Oa.co.

√ s2
n,2ΨSF

(ε)

n2

. (14)
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Finally, for I3, we can get I3 ≤ E
(

supχ∈SF

∣∣∣m̂2n

(
χk(χ)

)
− m̂2n(χ)

∣∣∣). The proof process is
similar to I1, and we can obtain:

I3 = Oa.co.

√ s2
n,1ΨSF

(ε)

n2

. (15)

Therefore, combining the Equations (13)–(15), the Equation (11) can be established.
Similarly, we may prove the Equation (12). Hence, the proof of Lemma 3 is completed.

Proof of Theorem 1. According to Lemma 1, let SΩ = SF, Ai = χi, Bi = Yi, G(t, (χ, Ai)) =
K(t−1d(χ, χi)), Dn(χ) = Hn,k(χ), cn,χ(χ) = m̂kNN(χ), c(χ) = m̂n(χ). Let βn ∈ (0, 1) be

an increasing sequence such that βn − 1 = O(un), where un = φ−1
(

kn
n

)β
+

√
s2

nΨSF

(
log n

n

)
n2

is a decreasing positive real sequence such that limn→∞ un = 0 and hn = φ−1
(

kn
n

)β
. Let

{D−n (βn, χ)}n∈N and {D+
n (βn, χ)}n∈N be two real random sequences such that:

ϕχ

(
D−n (βn, χ)

)
= ϕχ(hn(χ))β

1
2
n , (16)

ϕχ

(
D+

n (βn, χ)
)
= ϕχ(hn(χ))β

− 1
2

n , (17)

Firstly, we verify the conditions (L4) and (L5) in Lemma 1. By ϕχ(D−n (βn, χ)) and
βn − 1 = O(un), it is easy to follow that the local bandwidth D−n (βn, χ) satisfies the

condition (5). Combining hn = φ−1
(

kn
n

)β
with Assumption 2, it follows that hn(χ) satisfies

the condition (6). Let kn = nφ(hn), from Assumption 2(i) we obtain that kn
n = nφ(hn)

n =
nφ(hn) is satisfied. Hence, according to the conditions of the Theorem, the Equations (7)
and (8) in Lemma 3 hold. Thus, by Lemma 3, we have:

sup
χ∈SF

∣∣cn,χ
(

D−n (βn, χ)
)
− c(χ)

∣∣ = Oa.co.

φ−1
(

kn

n

)β

+

√√√√ s2
nΨSF

(
log n

n

)
n2

 = Oa.co.(un).

Similarly, for D+
n (βn, χ), we can also get:

sup
χ∈SF

∣∣cn,χ
(

D+
n (βn, χ)

)
− c(χ)

∣∣ = Oa.co.

φ−1
(

kn

n

)β

+

√√√√ s2
nΨSF

(
log n

n

)
n2

 = Oa.co.(un).

Secondly, checking the conditions (L1) and (L2) in Lemma 1, and combining (16)
and (17) with βn ∈ (0, 1), it is clearly followed that:

ϕχ

(
D−n (βn, χ)

)
≤ ϕχ(hn(χ)) ≤ ϕχ

(
D+

n (βn, χ)
)
, (18)

By Assumption 1 we get:

D−n (βn, χ) ≤ hn(χ) ≤ D+
n (βn, χ).

According to (5) and (18), for n→ ∞, we have:

ϕχ

(
D−n (βn, χ)

)
≤ ϕχ(Hn,χ(χ)) ≤ ϕχ

(
D+

n (βn, χ)
)
,

That is:
ϕχ

(
D−n (βn, χ)

)
≤ ϕχ(Dn(χ)) ≤ ϕχ

(
D+

n (βn, χ)
)
,
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Therefore, by Assumption 1 we can get:

D−n (βn, χ) ≤ Dn(χ) ≤ D+
n (βn, χ),

Thus,
I{D−n (βn ,χ)≤Dn(βn ,χ)≤D+

n (βn ,χ),∀χ∈SF} → 1, a.co. n→ ∞.

(L2) is checked.
Finally, we establish the condition (L3) in Lemma 1. Similar to Kudraszow and

Vieu [19], we denote:

f ∗(χ, hn(χ)) = EK
(

hn(χ)
−1d(χ, χ1)

)
, ∀χ ∈ SF.

and let:

F1 =
f ∗(χ, D−n (βn, χ))

f ∗
(
χ, D+

n (βn, χ)
) , F2 =

m̂1n(χ, D−n (βn, χ))

m̂1n
(
χ, D+

n (βn, χ)
) − 1, F3 =

f ∗(χ, D+
n (βn, χ))

f ∗
(
χ, D−n (βn, χ)

) βn − 1.

Then, (L3) can be decomposed as follows:

sup
χ∈SF

∣∣∣∣∣∣∣∣
n
∑

i=1
G(D−n (βn, χ))

n
∑

i=1
G
(

D+
n (βn, χ)

) − βn

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ m̂1n(χ, D−n (βn, χ))

m̂1n
(
χ, D+

n (βn, χ)
) f ∗(χ, D−n (βn, χ))

f ∗
(
χ, D+

n (βn, χ)
) − f ∗(χ, D+

n (βn, χ))

f ∗
(
χ, D−n (βn, χ)

) f ∗(χ, D−n (βn, χ))

f ∗
(
χ, D+

n (βn, χ)
) βn

∣∣∣∣∣
=

∣∣∣∣∣ f ∗(χ, D−n (βn, χ))

f ∗
(
χ, D+

n (βn, χ)
) ∣∣∣∣∣
∣∣∣∣∣ m̂1n(χ, D−n (βn, χ))

m̂1n
(
χ, D+

n (βn, χ)
) − f ∗(χ, D+

n (βn, χ))

f ∗
(
χ, D−n (βn, χ)

) βn

∣∣∣∣∣
≤
∣∣∣∣∣ f ∗(χ, D−n (βn, χ))

f ∗
(
χ, D+

n (βn, χ)
) ∣∣∣∣∣
(∣∣∣∣∣ m̂1n(χ, D−n (βn, χ))

m̂1n
(
χ, D+

n (βn, χ)
) − 1

∣∣∣∣∣+
∣∣∣∣∣ f ∗(χ, D+

n (βn, χ))

f ∗
(
χ, D−n (βn, χ)

) βn − 1

∣∣∣∣∣
)

, |F1||F2|+ |F1||F3|.

(19)

By Assumption 3, it is followed that:

sup
χ∈SF

|F1| ≤ C, (20)

and for ∀χ ∈ SF, m̂1n(χ) =

n
∑

i=1
K(hn(χ)−1d(χ,χi))

nEK(hn(χ)−1d(χ,χ1))
, refering to Ferraty et al. [25], we have:

sup
χ∈SF

|m̂1n(χ)− 1| = Oa.co.


√√√√ s2

nΨSF

(
log n

n

)
n2

,
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Therefore,

sup
χ∈SF

|F2| = sup
χ∈SF

∣∣∣∣∣ m̂1n(χ, D−n (βn, χ))

m̂1n
(
χ, D+

n (βn, χ)
) − 1

∣∣∣∣∣
= sup

χ∈SF

∣∣∣∣∣ m̂1n(χ, D−n (βn, χ))− 1 + 1− m̂1n(χ, D+
n (βn, χ))

m̂1n
(
χ, D+

n (βn, χ)
) ∣∣∣∣∣

≤
supχ∈SF

|m̂1n(χ, D−n (βn, χ))− 1|+ supχ∈SF
|m̂1n(χ, D+

n (βn, χ))− 1|
infχ∈SF

m̂1n
(
χ, D+

n (βn, χ)
)

= Oa.co.


√√√√ s2

nΨSF

(
log n

n

)
n2

.

(21)

Moreover, for F3, according to Lemma 1 in Ezzahrioui and Ould-said [13] and As-
sumption 2(iii), there exists τ > 0, for ∀χ ∈ SF,

f ∗(χ, hn(χ)) = φ(hn(χ))τ f (χ) + O
(

φ(hn(χ))hn(χ)
β
)
= τϕ(hn(χ)) + O

(
φ(hn)h

β
n

)
,

by
ϕ(D−n (βn ,χ))
ϕ(D+

n (βn ,χ))
= βn, supχ∈SF

|F3| = O
(

φ(hn)h
β
n

)
= O

(√
βnφ−1( kn

n )β
)

holds. Hence, for

βn → 1, it follows that

sup
χ∈SF

|F3| = O
(

φ−1(
kn

n
)β

)
. (22)

Combining (19)–(22), we obtain:

sup
χ∈SF

∣∣∣∣∣∣∣∣
n
∑

i=1
G(D−n (βn, χ))

n
∑

i=1
G
(

D+
n (βn, χ)

) − βn

∣∣∣∣∣∣∣∣ = Oa.co.(un).

(L3) is established.
Thus, the conditions (L1)–(L5) in Lemma 1 have been established. By Lemma 1, we

can get:

sup
χ∈SF

|m̂KNN(χ)−m(χ)| = Oa.co.

φ−1
(

kn

n

)β

+

√√√√ s2
nΨSF

(
log n

n

)
n2

.

The proof of the Theorem 1 is completed.

5. Conclusions and Future Research

Functional data analysis deals with the analysis and theory of data that are in the
form of functions, images and shapes, or more general objects. In a way, correlation is
really the heart of data science. The correlation between variables may be complicated,
from simply independent to α-mixing or something else, such as negatively associated
(NA). The kNN method, as one of the nonparametric methods, is very useful in statistical
estimation and machine learning. While regression analysis of functional data under many
variable correlated cases, except NA sequences, has been explored. This paper builds a
kNN regression estimator of the functional regression model. In particular, we obtain the
almost complete convergence rate of kNN estimation. Some simulated experiments and
real data analyses illustrate the feasibility and the finite-sample behavior of the method.



Axioms 2022, 11, 102 16 of 17

Further work includes introducing the kNN machine learning algorithm for functional
data analysis and kNN high-dimensional modeling with NA sequences.
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