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Abstract—Memristive technologies are attractive due to their 
non-volatility, high-density, low-power and compatibility with 
CMOS. For memristive devices, a model corresponding to 
practical behavioral characteristics is highly favorable for the 
realization of its neuromorphic system and applications. This 
paper presents a novel flexible memristor model with electronic 
resistive switching memory behavior. Firstly, the 
Ag-Au/MoSe2-doped Se/Au-Ag memristor is prepared using 
hydrothermal synthesis method and magnetron sputtering 
method, and its performance test is conducted on an 
electrochemical workstation. Then, the mathematical model and 
SPICE circuit model of the Ag-Au/MoSe2-doped Se/Au-Ag 
memristor are constructed. The model accuracy is verified by 
using the electrochemical data derived from the performance test. 
Furthermore, the proposed model is applied to the circuit 
implementation of spiking neural network with biological 
mechanism. Finally, computer simulations and analysis are 
carried out to verify the validity and effectiveness of the entire 
scheme.  

Index Terms—Electronic resistive switching memory behavior, 
memristor, performance test, spiking neural network 

I. INTRODUCTION

ith the advent of Internet of Things, cloud computing, 
and big data; the in-depth analysis and processing of 

massive unstructured data require higher computational speed 
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and energy efficiency [1]. However, the computing system 
under Von Neumann architecture appears to be less capable, 
and at the same time, Moore’s Law is greatly challenged [2]. In 
contrast, the human brain consumes about 20W of power but it 
does well in versatile tasks including working memory, pattern 
recognition, vision processing and adaptive learning, which 
impose huge challenges for computers to perform [3]. 
Therefore, developing new electronic components and 
intelligent information processing systems closer to the 
structure and functions of human brains are currently the 
research focus. 

Memristor possesses numerous unique properties such as 
high-density, low-power, nanoscale geometry, non-linearity, 
binary/multiple memory and capacity compatibility with 
complementary metal-oxide-semiconductor (CMOS), which 
makes it a powerful candidate in the field of neuromorphic 
computing [4]–[6]. Electronic resistive switching memory 
(ERSM) is one important kind of resistive random-access 
memory (RRAM) [1], with asymmetric I–V curves in the 
positive and negative voltage regions and no obvious current 
jump, which has been widely concerned by researchers. [7]–
[12]. In 2013, reference [7] successfully fabricated a Pt/BiFeO3 
nano-islands/SRO memristor. The detailed electrochemical 
analysis indicated that the ERSM behavior could be attributed 
to the asymmetric Schottky barrier and the interfacial 
polarization charge. In [8], the devices with Pt/ 
MoS2-MoOx<3/Ag structures were fabricated by spin-coating at 
room temperature. The ERSM phenomenon should be 
attributed to the polar charges at the two ends and the space 
charges in the bulk of the composite MoS2-MoOx<3 nanobelts. 
A highly flexible ERSM was fabricated in the 
Al/TiO2/Al/polyimide structure using a simple and 
cost-effective method. The detailed electrical analysis indicated 
that the ERSM behavior could be attributed to the electronic 
switching mechanism mediated by the electron 
trapping/detrapping [9]. A polymer memristor with buffer layer 
was prepared in [10], and its specific working mechanism 
indicated that the device also belonged to ERSM. In [11], the 
design and fabrication of an asymmetrical Al/TiO2/FTO 
sandwiched nanostructure was reported by using simple 
spin-coating and vacuum deposition techniques. The 
Al/TiO2/FTO memristor presents the ERSM behavior mode by 
trapping and detrapping of carriers. In [12], the 
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Ag/BaTiO3/LaNiO3 memristor was prepared using sol-gel 
method, and its performance test indicated that ERSM behavior 
was led by the light-assisted Schottky tunneling mechanism. 

However, current memristive devices have been suffering 
from geometry variation and process variation, thus leading 
change of performance parameters and restricting their device 
integration and application [13]. The modeling of a memristor 
aims to correlate the electrical properties with the underlying 
physical mechanisms [14]. Once the memristor model is 
constructed the performance parameters of the memristor 
model remain constant. As a result, most applied research on 
memristors always using their mathematical models [15]–[17]. 
A simple linear memristor model based on ion migration theory 
was proposed by D. Strukov's team in HP Laboratory in 2008 
[18]. On this basis, a nonlinear memristor model considering 
the boundary effect was proposed in [19]. A more accurate 
physical model based on quantum tunneling theory was 
proposed in [20]. This model is however quite complicated, 
without an explicit relationship between current and voltage, 
and is also computational inefficient. Inspired by [20], a new 
memristive device model was presented—TEAM (ThrEshold 
Adaptive Memristor model) [21]. Notably, this model is 
flexible and can be fit to any practical memristive device. Since 
a voltage-controlled memristor was more suitable in parallel 
memristor-based application circuits, a Voltage ThrEshold 
Adaptive Memristor (VTEAM) model extending the previously 
proposed TEAM model was proposed [22]. In 2017, a novel 
experiment-based memristive model considering the drifting 
effect, the diffusing effect, and the negative differential 
resistance (NDR) behavior was presented [23]. In addition, 
some researchers [24]–[26], based on the Chua theory, used 
traditional analog circuit components to build a memristor 
simulation circuit, to simulate the basic characteristics of 
memristor.  

For clarity, the comparative information of different 
memristor models is collected and summarized in Table I. It 
can be concluded that although all these above-mentioned 
models can reflect the basic characteristics of the memristor, 
the physical mechanism between the model and the real 
memristor is still a knowledge gap. Meanwhile, the 
electrochemical characteristics of the real memristor cannot be 
fully characterized.  

In this paper, a flexible memristor model with electronic 
resistive switching memory behavior is constructed. The main 
contributions are as follows: 

1) The Ag-Au/MoSe2-doped Se/Au-Ag memristor is
prepared using hydrothermal synthesis method and magnetron 
sputtering method. Meanwhile, the corresponding performance 
test via electrochemical workstation is conducted to explore the 
ERSM behavior, which serves as a frame of reference for the 

subsequent model construction. 
2) Unlike many existing memristor modeling techniques, the

mathematical model and SPICE circuit model of the 
Ag-Au/MoSe2-doped Se/Au-Ag memristor are built up, based 
on the electrochemical data derived from the performance test. 
It opens up a novel path for the deep integration of physical 
memristors into neuromorphic computing systems and 
energy-efficient integrated circuits. 

3) Based on the constructed memristor model, a circuit
implementation of spiking neural network with long/short term 
synaptic plasticity is presented and verified by the handwritten 
digits recognition task, which provides a practical case study 
for the development of neuromorphic computing systems. 

The rest of the paper is organized as follows. In Section II, an 
Ag-Au/MoSe2-doped Se/Au-Ag memristor is fabricated and 
the performance of which is tested by the electrochemical 
workstation CHI-600D. In Section III, the mathematical and 
circuit models are established by analyzing the physical 
mechanism of memristors, and the simulation experiments 
show that the proposed models can have high accuracy. Section 
IV designs a compact spiking neural network circuit with 
memristor-based synapse and neuronal cells to classify the 
MNIST dataset. Section V concludes the work and future work 
will be provided. 

II. FABRICATION AND EXPERIMENT

A. Preparation of Ag-Au/MoSe2-doped Se/Au-Ag Memristor
In this paper, Ag-Au/MoSe2-doped Se/Au-Ag memristor is

prepared based on hydrothermal synthesis and magnetron 
sputtering methods, in which hydrothermal synthesis method is 

TABLE I 
THE COMPARATIVE INFORMATION OF DIFFERENT MEMRISTOR MODELS 

Literature [18, 19] [20] [21, 22] [23] [24-26] This work 
Physical support No Yes No No No Yes 

Physical mechanism Ion migration 
theory 

Quantum 
tunneling theory No Ion migration 

theory No Defect state 
filling theory 

Model complexity Easy Complex Medium Medium Complex Medium 
Applied range Wide Narrow Wide Wide Narrow Wide 

Fig. 1.  Flow chart for the preparation of Ag-Au/MoSe2-doped Se/Au-Ag 
memristor. 
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used to prepare MoSe2-doped Se microwires and magnetron 
sputtering method is used to prepare Ag-Au electrodes, with 
details as shown in Fig. 1.  

Step 1: 0.1moL ammonium molybdate (NH4)6MO7O24·H2O 
is dissolved in 25mL deionized water, stirred for 30 minutes at 
room temperature until it is completely dissolved. 

Step 2: 0.1moL Se powder is dispersed in 25mL deionized 
water and sonicates continuously for 3 hours. 

Step 3: Sonicated Se powder dispersed liquid and ammonium 
molybdate solution are mixed in a 1:1 ratio by volume and 
stirred continuously for 3 hours with a magnetic stirrer, until the 
mixture is completely mixed. 

Step 4: 0.05g hexadecyl trimethyl ammonium bromide (i.e., 
the surfactant) is added to the stirred solution. 

Step 5: The mixture is transferred to a 50mL Teflon-lined 
container, fixed by a still reactor with a corresponding size, 
heated at 500K for 48 hours in a blast oven, and then cooled to 
room temperature. 

Step 6: MoSe2-doped Se microwire is obtained by 
centrifugation at room temperature for 3 times. 

Step 7: Magnetron sputtering is used to fabricate Au 
electrodes with a spacing of 400μm and an area of 50×50μm2 
pre-deposited on the Si/SiO2 substrate.  

Step 8: A single microwire is picked out using a four-probe 
test system, the ends of which are lapped onto the Au electrode 
and covered with a layer of Ag adhesive to form an Ag-Au/ 
MoSe2-doped Se/Au-Ag memristor.  

B. Performance Test of Ag-Au/MoSe2-doped Se/Au-Ag
Memristor

An electrochemical workstation CHI-600D is used to test the 
I–V and resistance curves of Ag-Au/MoSe2-doped Se/Au-Ag 
memristor at room temperature. Fig. 2(a) shows the measured 
I–V curve of Ag-Au/MoSe2-doped Se/Au-Ag memristor with a 
±3V bias voltage scan rate of 0.05V/s, and the inset is a 
structural representation of the prepared memristor. The overall 
I–V curve shows that the characteristics of memristors are 
asymmetrical in the positive and negative voltage regions, and 
there is no current jump. That is, the prepared memristor 
exhibits ERSM behavior. In the first stage, the memristor is in 
the high resistance state (HRS). As the scan voltage increases 
from 0V to 1.5V, there is very little change in the device current 
and when the applied voltage exceeds 1.5V, the current starts to 
increase with the scan voltage and reaches a maximum at 3V, 
meaning that the memristor changes from HRS to low 
resistance state (LRS), and the “SET” process is completed. In 
the second stage, the memristor remains in LRS while the scan 
voltage decreases from 3V to 0V. In the third stage, LRS of the 
memristor remains unchanged as the scan voltage is reversed 
from 0V to −3V. In the fourth stage, the current gradually 
decreases from a negative maximum as the scan voltage 
changes from −3V to 0V. When the scan voltage is higher than 
−1.5V, the memristor changes from LRS to HRS, meaning that
the “RESET” process is completed. Reference [6] suggests that 
the asymmetric contact between the interface of Ag-Au and 
MoSe2 doped Se microwires, mainly caused by the asymmetric 
distribution of free defects Mo4+ in the microwires and the 

asymmetric distribution of other impurity defects in the Se 
microwires themselves, may lead to the ERSM behavior in 
memristor. The I–V curves for the 1st, 10th, 50th, 200th and 500th 
cycles are shown in Fig. 2(b). It can be seen that this 
continuously varying asymmetry in the positive and negative 
voltage regions is well maintained, although the corresponding 
curves decay from 50th cycle onwards, indicating that the 
dominant ERSM mechanism remains unchanged. To study the 
stability of the device, a 0.5 V reading voltage is applied both in 
the high resistive state and low resistive state for 105 seconds, 
as shown in Fig. 2(c). A resistance ratio between the high 
resistive state and low resistive state of over 102 can be 
maintained during the retention time indicating that the 
prepared memristor has good stability. The I–V curves of the 
device at different scan voltages are shown in Fig. 2(d). The 
continuity and asymmetry of the I–V curve at different scan 
voltages is unchanged, which indicates that the variations of 
voltage only change the degree of filling of electrons in the 
microwire with deep and shallow trappings.  

III. MEMRISTOR MODELING

A. Analysis of the Physical Mechanism of the Memristor
The ERSM behavior observed in Ag-Au/MoSe2-doped

Se/Au-Ag memristors is dominated by trapping and detrapping 
of charges in the empty state, satisfying space-charge limited 
current (SCLC) mechanism [27] with the following 
mathematical expressions: 

(1) 

where J is the current density, V is the external voltage, L is the 
microwire’s length and m is the fitting parameter. In particular, 
when m = 0, the current is linearly related to the voltage, 
meaning that it satisfies Ohmic or Ohmic-like Conduction.  

1

2 1
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m

VJ
L
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+µ

(a) (b) 

(c)                                               (d) 
Fig. 2.  (a) I-V curve of Ag-Au/MoSe2-doped Se/Au-Ag memristor. The inset 
is a structural representation of the prepared memristor; (b) Measurements of 
cyclic scan for the I-V curves; (c) The stability of HRS and LRS of the 
prepared memristor over time at 0.5V; (d) I-V curves of the memristor with 
different amplitudes of voltages.  
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The structure of the SCLC mechanism for trapping and 
detrapping of charges is shown schematically in Fig. 3, where 
the blue region indicates the empty traps, and the grey region 
indicates that the empty traps have been filled with electrons.  

In the initial state, the traps are empty (as shown in Fig. 3(a)); 
after the external voltage is applied to the memristor, the traps 
are gradually filled (as shown in Fig. 3(b)); as the applied 
voltage increases, the traps are fully filled (as shown in Fig. 
3(c)); after which electrons are injected from the Ag-Au side 
and a transport channel is established through the electrons in 
the empty traps (as shown in Fig. 3(d)). 

According to the SCLC mechanism, when the fitting factor 
m = 1, (1) can be rewritten as: 

(2) 

(3) 

where J is the density of the current, γ is the ratio of the number 
of free electrons in the microwire to the number of electrons 
captured in the empty traps, εr and ε0 are the relativity 
permittivity and vacuum permittivity respectively, μ is the 
carrier mobility, and L is the length of the microwire. 

In the initial state, as the applied voltage is very low, most of 
the traps are empty. When γ<<1, (2) can be expressed as J=γkV2, 
the memristor is in HRS. When the applied voltage exceeds the 
forward threshold voltage, all the empty traps are filled with 
electrons injected from the electrodes, and the memristor 
transforms into LRS, which means that the device completes 
the SET process. When the empty traps are filled, the electrons 
in the empty traps have less influence on the subsequently 
injected electrons and the current increases rapidly. When the 
reverse voltage is applied to the memristor, the conductive 
channel formed by the filled empty traps still exists and the 
device remains LRS until the applied voltage is less than the 
negative threshold voltage. When the conductive channel 

formed in the empty traps is broken and the device is 
transformed into HRS, indicating that the device completes the 
RESET process. 

B. Demonstration of PSpice Analysis
Based on the above analysis, an equivalent circuit for the

memristor model is proposed in this paper, including Gm, Gx, 
two current sources and Cx, a capacitor with a capacitance of 1F. 
The terminals TE and BE represent the top and bottom 
electrodes of the memristor, where the model would be 
connected in a circuit schematic. The equivalent circuit is 
shown in Fig. 4.  

From the circuit, the current and voltage relationship can be 
described by: 

(4) 

where v(t) denotes the applied voltage, iGm(t) denotes the 
current passing through the memristor, a1, a2, n1, and n2 are the 
fitting parameters of the model so that the I–V curve of this 
mathematical model approximates the actual physical model. 
x(t) with the range of [0,1] is the state variable, characterizing 
the conductivity of the device. The value of the state variable 
x(t) is derived from the integration of the current iGx(t) over time, 
and such an integration process is accomplished in the 
equivalent circuit through the capacitor Cx. The a1x(t)n1 and 
a2x(t)n2 terms are used to stimulate the dynamics of the kγ/(γ+1) 
term in the SCLC mechanism with respect to the applied 
voltage. 

The change of the state variable depending on two different 
functions g(v) and f(x) can be mathematically expressed by: 

 (5) 

where g(v) is used to model the voltage threshold behavior of 
the memristor. f(x) is the window function mainly used to 
ensure that the state variable x(t) is always in the range of [0,1]. 
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Fig. 3.  (a) Traps being empty; (b) Traps being gradually filled; (c) Traps just 
being filled with charge; (d) A transport channel is established through 
injected electrons in the empty traps in the microwire.  

Fig. 4.  An equivalent circuit for the memristor model. 
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TABLE II 
SUB-CIRCUIT DESCRIPTION OF THE MEMRISTOR MODEL 

* Memristor model
**XSV-External connection to plot state variable that is not used otherwise** 
.SUBCKT Memristor model TE BE XSV PARAMS: 
+a1=0.0015 a2=−1.709E−4 n1=1.696 n2=−0.12 Vth1=1.5 Vth2=−1.5
+x0=0.01 Ap=1 An=−0.117 xp=0.3 xn=0.5 Alphap=1 Alphan=5
*********************Function dx/dt=F(x(t),v(t))*******************
.func wp(x,xp)={(xp-x)/(1-xp)+1}
.func wn(x,xn)={x/(1-xn)}
.func G(v,Vth1,Vth2,An,Ap)={if(v>=Vth1,Ap*(exp(v)-exp(Vth1)),
+if(v<=Vth2, -An*(exp(Vth2)-exp(-v)),0))}
.func f1(x,xp,Alphap)={if(x>=xp,exp(-Alphap*(x-xp))*wp(x,xp),1)}
.func f2(x,xn,Alphan)={if(x<=(1-xn),exp(Alphan*(x+xn-1))*wn(x,xn),1)}
.func F(x,v,xp,xn,Alphap,Alphan)={if(v>=0,f1(x,xp,Alphap),
+f2(x,xn,Alphan))}
*************IV Response – Hyperbolic sine due to MIN structure******** 
.func IVRel(x,v,a1,a2,n1,n2)={if(v>=0,a1*(x^n1)*v^2,a2*(x^n2)*v^2)} 
Gm Plus Minus value={IVRel(V(x),V(Plus,Minus),a1,a2,n1,n2)} 
*******************Circuit to determine state variable***************** 
Gx 0 x value={F(V(x),V(Plus,Minus),xp,xn,Alphap,Alphan)* 
+G(V(Plus,Minus),Vth1,Vth2,An,Ap)}
Cx x 0 1 IC={x0} 
Raux x 0 1T 
ENDS Memristor model 
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Specifically, g(v) is expressed as follows: 

(6) 

where vth1 and vth2 denote the forward threshold voltage and 
reverse threshold voltage of the memristor respectively, and the 
state variable only changes when the voltage applied to the 
memristor is greater than the threshold voltage. Ap and An are 
the fitting parameters, and the larger their magnitude, the faster 
the rate of change of the state variable of the memristor when 
the change conditions are met. 

It should be noted that in (5), a totally different window 
function [28] is used, with f(x) being expressed specifically as 
follows: 

(7) 

(8) 

where xp and xn are the upper and lower boundary thresholds for 
the state variables respectively. Notably, when the applied 
voltage is positive, the state variable is limited by an 
exponential function decaying with a rate of αp. On the other 
hand, when the applied voltage is negative, the state variable is 
limited by an exponential function decaying with a rate of αn. In 
particular, when the values of the state variables do not reach 
the threshold values xp and xn, the value of the window function 
is a constant term of 1, that is, the window function does not 
affect the rate of change of the state variables.  

ωp(x, xp) and ωn(x, xn) are the two boundary functions to 
ensure that the value of the state variable does not exceed the 
upper and lower limits. 

 (9) 

(10) 

Based on the above theoretical description and mathematical 
derivation, a SPICE model of the memristor is proposed with its 
corresponding sub-circuit description, as shown in Table II.  

C. Simulation Analysis of the Memristor Model
In order to measure how the experimental data of the

Ag-Au/MoSe2-doped Se/Au-Ag memristor fits to the 
constructed circuit model in this paper, we use Gradient 
Descent to minimize the relative error function value [29]. The 
error function is selected as relative root mean squared error 
(RRMSE): 

 (11) 

where N is the total number of samples, Vk and Vref,k denote the 
kth voltage applied to the real memristor and its circuit model, 
respectively. Ik and Iref,k present the kth current through the real 
memristor and its circuit model, respectively. Vref and Iref are the 
Euclidean norm of the voltage and current of the circuit model, 
respectively. 

The fitting results of the memristor are shown in Fig. 5, 
where the solid spheres represent the experimental data 
obtained from the Ag-Au/MoSe2-doped Se/Au-Ag memristor 
at different scan voltages, while the solid lines represent the I–
V curves of the constructed circuit model with a scan voltage at 
the amplitude of 3V. In this paper, sequential model-based 
global optimization (SMBO) [30] is used to obtain the 
following parameters of the circuit model: a1=1.500×10-3, 
a2=−1.709×10-4, n1=1.696, n2=−0.121, Ap=1, An=−0.117, 
xp=0.3, xn=0.5, αp=1, αn=5, vth1=−vth2=1.5V. Fig. 5(a) shows the 
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Fig. 5.  Simulation and fitting results of measured data of different voltage 
scanning rates of memristor (a) scanning rate of 20V/s; (b) Scanning rate 
60V/s; (c) Scanning rate 100V/s; (d) Scanning rate: 150V/s. 
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(c)                                               (d) 
Fig. 6.  The simulation results of proposed memristor model (a) V&I–t; (b) I–
V; (c) x–V; (d) x–t. 
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simulation results of the device at a scan rate of 20 V/s. The 
RRMSE obtained after fitting to the experimental data is 0.14%. 
Compared with the I–V curve in Fig. 2(a), the device at 20 V/s 
does not change significantly, in terms of the curve’s shape and 
the maximum current. When the voltage scan rate increases to 
60V/s and 100V/s, the asymmetry of the I–V curve and the 
continuous current variation can be both maintained, with the 
exception of a slight reduction in the maximum current, from 
2.5mA to 1.9mA, as shown in Fig. 5(b) and Fig. 5(c). These 
fitted curves are matched to the target data, and the RRMSEs 
are calculated as 0.26%. When the scan rate is added to 150 V/s, 
RRMSE rises to 4.26% and the shape of I–V curve is basically 
fitted except for some noise points, as shown in Fig. 5(d). The 
scan rate mainly reflects the response of the interface defect 
state to the voltage polarity variation. From the experimental 
data, the interface defect state makes a relatively small 
contribution to the ERSM behavior of the microwire device, 
and only when the scan rate reaches 150V/s or more does it 
have a significant effect on the device.  

In Fig. 6(a), when a triangular-wave voltage is applied to the 
memristor, the overall current through the memristor gradually 
decreases, because of the charge at deep traps which influences 
the scattering of injected electrons. From Fig. 6(b), the I–V 
relationship are hysteresis loops with overlap between adjacent 
loops, which are asymmetrical in the positive and negative 
voltage regions, and the memristor exhibits ERSM 
characteristics. Meanwhile, the state variable x(t) of the 
memristor is changed with the external excitation voltage, as 
shown in Fig. 6(c). When the external excitation voltage is less 
than the threshold voltage (vth2<v<vth1), the memristor remains 
in HRS. Until the threshold condition is satisfied, the memristor 
changes from HRS to LRS, and the state variable gradually 
increases (decreases) influenced by the positive (negative) 
voltage. From Fig. 6(d), it can be seen that the state variable x(t) 
is in a decreasing trend, which is consistent with the change of 
the current and is in line with the characteristics of the physical 
memristor.  

D. Comparison with Previously Proposed Models
A comparative summary of different memristive models is

given in Table III. From Table III, different memristor models 
(e.g., Linear ion model[18], Nonlinear ion model [19], 
Simmons model[20], TEAM model[21], VTEAM moddel[22], 
and Fang model [23]) are used to reflect the characteristic of the 

physical memristive device. However, these models seldom 
consider the physical mechanism of the real memristor and the 
physical phenomena including the ERMS behavior. Compared 
with other works, the proposed model is a simple, flexible and 
convenient model that can be used to characterize a practical 
memristive devices. The proposed model exhibits a voltage 
threshold and nonlinear dependences on the state variable 
which alleviates the boundary effects and shows a ERSM 
behavior. While the simplicity of this model improves the 
efficiency of the simulation process, the model is sufficiently 
accurate, exhibiting a relative root mean squared error of only 
0.14% as compared to the other memristive device models. 
This model fits practical memristive devices better than 
previously proposed models. 

IV. THE APPLICATION OF AG-AU/MOSE2-DOPED SE/AU-AG
MEMRISTOR MODEL 

A. Memristor Synapse Circuit
Synapses are biological junctions through which the signals

of neurons can be exchanged with each other and with 
non-neuronal cells [31]. The memristors can be programmed 
into different conductance states and can be used to modulate 
signals in either forward or backward directions [32]. This 
property makes the memristor a favorable candidate for 
achieving electronic synapses and helps obtaining different 
weighting parameters of a neural network, simply by 
generating different modulated signals without changing the 
circuit structure. Based on the proposed memristor circuit 
model in this paper, a memristor synapse circuit is designed as 
shown in Fig. 7, where the synapse circuit consists of a pair of 
memristors and diodes that are connected with a reversed 
polarity.  

For the synapse circuit, the input voltage is added into the 
connection point of two memristors, and according to 
Kirchhoff’s Current Law [33] the branch current is obtained as  
follows： 

(12) 

The output current Ioutput equals to the difference between the 
branch currents IA and IB: 

(13) 
where WG=GA-GB. 
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TABLE III 
COMPARATIVE SUMMARY OF DIFFERENT MEMRISTIVE MODELS 

Model Linear ion 
model [18] 

Nonlinear ion 
model [19] 

Simmons 
model [20] 

TEAM model 
[21] 

VTEAM model 
[22] 

Fang model 
[23] This work

State variable 
0≤x≤D 

Doped region 
physical width 

0≤x≤1 
Doped region 
physical width 

aoff≤x≤aon 
Undoped region 

width 

aoff≤x≤aon 
Undoped 

region width 

aoff≤x≤aon 
Undoped 

region width 

0≤x≤1 
No physical 
explanation 

0≤x≤1 
Conductivity of 

the device 
Control mechanism Current Voltage Current Current Voltage Voltage Voltage 

I-V relationship Explicit Explicit Ambiguous Explicit Explicit Explicit Explicit 
Physical mechanism IMT IMT QTT Ambiguous Ambiguous Ambiguous DSFT 
Model Complexity Easy Medium Complex Medium Medium Medium Medium 
Boundary effects Unsolved Solved Solved Solved Solved Unsolved Solved 
Threshold effects No No Yes Yes Yes No Yes 
Fitting accuracy  Lowest Low Highest Moderate Moderate Moderate High 

Note: IMT→Ion migration theory; QTT→Quantum tunneling theory; DSFT→Defect state filling theory. 
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In this paper, PSpice simulations of the memristor synapse 
circuit are performed based on the proposed memristor model. 
The threshold voltage of the memristor is vth1=−vth2=1.5V, the 
resistance range is from Ron=206Ω to Roff=325kΩ, and the 
corresponding conductance range is from Gon=4.85mS to 
Goff=3.08μS. The simulation results of the synapse circuit are 
shown in Fig. 7. When a positive programming signal is applied, 
the conductance GB decreases while GA increases, the 
corresponding synapse weights change from zero to a positive 
maximum. When a negative programming signal is applied, the 
conductance GA decreases while GB increases, the 
corresponding synapse weights change from zero to a negative 
maximum. Thus, the proposed memristor synapse circuit can 
be programmed for both positive and negative weights. The 
range of WG can be calculated as follows. 

  (14) 
In the above synapse operation, when the input voltage is less 

than the voltage threshold of the memristor, the state of the 
memristor does not change. Conversely, when the applied 
voltage is greater than the voltage threshold, the synapse 
weights can be programmed. When a positive programming 
voltage is applied, conductance GB decreases while GA

increases, resulting in an increase in the synapse weight. 
However, when a negative programming voltage is used, the 
synapse weight decreases. In the above programming process, 
since the polarity of the two memristors is reversed, the change 
in memristors is always reversed, regardless of whether the 
applied signal is positive or negative. This not only accelerates 
the weight programming operation, but also ensures that the 
positive, zero and negative synapse weights can be obtained 
during successive programming without setting in advance. 

The modulation of synapse is the process of applying an 
electrical signal to update the conductance of memristors from 
the initial to the target state, so that the synapse weights can 
meet the requirements. In practice, in order to obtain the high 
accuracy, pulse-based modulation is usually adopted, changing 
only a small amount of synapse weights at a time. In this paper, 
the relationship between memristors’ conductance and pulses 

obtained from [32] is used, its mathematical expression can be 
described by: 

(15) 

(16) 

(17) 

where P is the number of pulses required for synapse 
modulation and A is the fitting parameter of the device. As for 
LTP and LTD, they represent long-term potentiation and long- 
term depression, respectively. GLTP denotes the increasing 
process of conductance (SET process) while GLTD means the 
opposite (RESET process). Gmax, Gmin and Pmax indicate the 
maximum conductance, the minimum conductance and the 
maximum number of pulses corresponding to the processes 
from SET to RESET.  

Fig. 8 shows the modulation process of the designed 
memristor synapse. Part I and Part II correspond to the increase 
(GLTP) and decrease (GLTD) of memristor weights, respectively. 
According to (15) – (17), the parameters of the synapse 
modulation process can be obtained as follows: Gmax=4.85mS, 
Gmin =3.08μS and Pmax=60, A=0.42.  

B. Neuron Circuit Based on Memristor Synapse
Artificial neurons contain three basic processing units:

multiplication, summation, and activation [34]. How to 
combine the weighted signals from multiple synapses and 
activate the output is the key to neuron circuit design. In this 
paper, a memristor neuron circuit is illustrated in Fig. 9(a). It's 
worth noting that two diodes at the memristor synapse circuit 
can effectively avoid “snake current” in neuron circuit. 

In this circuit, the input voltages can be converted directly 
into currents by means of the memristor. These weighted 
currents are then collected directly into the negative terminals 
of amplifiers A1 and A2, and the output voltages V1 and V2 are 
expressed as: 

(18) 

where the signal of branch currents can be expressed as: 

(19) 
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Fig. 8.  Modulation process of the weights of the memristor synapse circuit. 

Fig. 7.  Simulation results of the memristor synapse circuit. 
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The output voltage of this neuron circuit can be computed by 
the difference of amplifier voltage V1 and V2: 

(20) 

where WGi=GAi –GBi. 
Notably, if the number of synapse arrays and operational 

amplifiers is further increased, as shown in Fig. 9(b), the 
multiplication of the input vector and the weight matrix, 

Voutput=WVinput, can be achieved in one go, which is the most 
basic and resource-intensive operation in a neural network. In a 
digital circuit system, parameters are repeatedly read from 
memory for computation, but in a memristor network, the 
mapping of input vectors to output vectors can be also done in 
one go, combining memory and computation in a unit, which is 
much more efficient. In addition, during the synapse 
modulation process, the same memristor array can be updated 
into an arbitrary W parameter matrix, which can be applied to a 
pulse-based neural network for online learning. 

C. Memristor-based Spiking Neural Network for digital
handwritten recognition

In fact, a complete memristor-based spiking neural network 
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Fig. 9.  (a) Memristor neuron circuit; (b) Memristor crossbar array. 
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Fig. 10. Memristor-based spiking neural network for digital handwritten recognition. 
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contains extra components (i.e., peripheral circuits). As shown 
in Fig. 10, besides the memristor array and input/output circuits, 
memristor-based spiking neural network consists of 
analog-to-digital converters (ADCs), digital-to-analog 
converters (DACs), neuron-computing unit, pulse modulator, 
learning algorithm unit and weight modulator. Specifically, the 
memristor array implements the vector-matrix multiplication of 
weight value and input value, neuron-computing unit describes 
the dynamics of the neurons, the learning algorithm unit 
calculates the error between the target weight and the actual 
outputs, and the pulse-based modulator generates the 
modulated pulses of each memristor to update its state. To 
improve the energy efficiency for the circuit implementation of 
spiking neural network, the simplified neuron-computing 
model proposed in [35] is used. Notably, the circuit 
implementation of neural network algorithms is still a difficult 
task, which may be affected by factors such as the scale of 
circuits and the interaction between circuit components. Hence, 
the realization of a self-learning neuron circuit designed in [36] 
is taken to perform online least mean squares (LMS) algorithms. 
Furthermore, the memristor synapse adopts a pair of 
reversely-connected memristors, as illustrated in Section IV-A, 
and the modulation of synapse is based on the relationship 
between the memristor conductance and pulse introduced in 
(15) – (17).

The whole circuit is finally completed in PSpice. For the sake
of verification, the memristor-based spiking neural network is 
applied for digital handwritten recognition, and the recognition 
process is illustrated (as show in Fig. 11). 

Step i: Initial setting. This includes the setting of the network 
parameters as well as the component parameters in the 
memristor array. The memristor is initialized to a very low 
conductance by applying voltage pulses to each column of the 
array. 

Step ii: Pulse injection. Each digital image of the MNIST 
dataset is in 28 × 28 pixels. The grey-scale value of each pixel 

is encoded as the pulse sequence Vinput,i and further injected into 
10 neurons numbered from 0 to 9. 

Step iii: Weight programming. The target weights are 
programmed by applying different intensity of pulses 
corresponding to the encoded grey-scale values to each column. 
The state of each memristor synapse is updated according to 
(15) – (17), and the programming is performed row by row until
all memristors on each selected row have been programmed to
the target value. Once the target conductance is achieved, the
synapse weights remain constant, and the training of the neural
network is completed, at which the network output is

Fig. 11.  The flow chart of training phase. 
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Fig. 13.  Variation of network recognition rates with the increased number of 
samples tested. 
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Fig. 14.  (a) Effect of the failed device ratio in the array on the network 
recognition rate; (b) Effect of the read noise on the network recognition rate. 
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represented as Voutput,i. 
Step iv: Corresponding error calculation: 

(21) 

Notably, if the error converges to a sufficiently small value 
(the error is previously set as 10-5 in this paper), Step v is 
executed. Otherwise, return to Step iii.  

Step v: Recognition strategy. The output pulses generated by 
each neuron is counted, and the final recognition result depends 
on the largest number of the output pulses.  

In our experiments, the MNIST dataset contains 6000 
samples, where 4800 samples are used for training and the 
remaining 1200 samples are used for testing. After executing 
Step i - Step iv, the training phase is completed. When the 12th 
test sample (handwritten digit 8) is injected into the 
well-trained memristor-based spiking neural network, the 
generated pulses of the output-layer neuron are shown in Fig. 
12. It can be seen that Neuron 1, Neuron 4 and Neuron 8
generate one, two and eight pulses respectively, while the
remaining seven neurons do not generate any pulses. Since the
recognition result is determined by the largest number of pulses
generated by the neuron, the recognition result is number 8.

The variation of the recognition rate with the number of test 
samples is exhibited in Fig. 13. It can be seen that when the 
number of samples is 200, the recognition rate is approximately 
92.4% and when 1200 samples are tested, the recognition rate 
becomes 95.6%. 

To verify the robustness of the proposed neural network, this 
paper sets a certain ratio of failed devices (assuming in the 
lowest or highest conductance state) in the array. As shown in 
Fig. 14(a), when the device is in a low conductivity state and its 
failure rate is less than 25%, the recognition rate still greater 
than 90%; when the device is in a high conductivity state and its 
failure rate is less than 10%, the recognition rate also maintains 
over 90%. It can be concluded that the proposed memristor 
-based spiking neural network has a better tolerance to the
failed memristor in a low conductivity state. The main reason
may be that high conductance failure tends to produce large
error current, which can significantly affect the output of the
weighted summation. Conversely, low conductance failure
does not produce large current and can be adjusted by the
non-failed devices to improve the output of the weighted
summation, thus maintaining a good recognition rate despite
the large failure rate of the devices.

The read noise always occurs during the period of weight 
gain. From Fig. 14(b), when the variance of read noise is less 

than 0.2, the memristor-based spiking neural network maintains 
a high recognition rate, indicating that the proposed neural 
network performs well in terms of robustness to noise. Only 
when the variance of read noise is larger than 0.2, the 
recognition rate decreases sharply with the noise increasing.  

D. Comparison with Previously Proposed  memristor-based
neural networks

A comparison between different memristor-based spiking 
neural networks are provided in Table IV. 

From Table IV, different memristor models (e.g., Ta/TaOx/Pt 
memristor [30], Ta/HfO2/Pd memristor [35], 
Pt/Cu:ZnO/Nb:STO memristor model [36], Linear ion model 
[37], Pt/VO2/TaOx/Si memristor [17], and 
Ag-Au/MoSe2-doped Se/Au-Ag memristor model) are used to 
realize the circuit design of neural networks for handwritten 
recngnition. According to [37], Linear ion model cannot 
accurately characterize the nonlinear behaviors of emerging 
memristors, which may lead to the instability and inaccuracy. 
In particular, unlike the other memristor-based neural network 
implementations, this work provides the specific preparation 
process of the Ag-Au/MoSe2-doped Se/Au-Ag memristor, 
which makes the entire circuit design more convincing. 
Meanwhile, in order to realize the positive, negative and zero 
weights, almost all the memristor-based neural network 
implementations use a single memristor to represent a weight 
and some additional circuit elements are used to realize the 
negative and zero weights. Compared with other works, this 
paper uses dual-memristor configuration to represent a weight, 
which can be obtained during successive programming without 
setting in advance. Last but not least, compared with the other 
competitors, this work provides a robust scheme that can 
perform well in terms of robustness to failed devices and noise, 
indicating the proposed network achieves similar or even 
higher recognition rate compared to other works. 

V. CONCLUSION

In this paper, a flexible memristor model based on electronic 
resistive switching memory is investigated. Specifically, the 
Ag-Au/MoSe2-doped Se/Au-Ag memristor is prepared using 
hydrothermal synthesis method and magnetron sputtering 
method, and its performance testing is conducted by 
electrochemical workstation. Correspondingly, a novel 
Ag-Au/MoSe2-doped Se/Au-Ag memristor model (including 
mathematical model and circuit model) derived, based on the 
electrochemical data obtained from the performance test. The 
sufficient accuracy of the proposed model as compared with the 
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TABLE IV 
COMPARISON OF DIFFERENT MEMRISTOR-BASED NEURAL NETWORK FOR DIGITAL HANDWRITTEN RECOGNITION 

Literature [30] [35] [36] [37] [17] This work

Memristor model Ta/TaOx/Pt 
memristor 

Ta/HfO2/Pd 
memristor 

Pt/Cu:ZnO/Nb:STO 
memristor model Linear ion model Pt/VO2/TaOx/Si 

memristor 

Ag-Au/MoSe2-doped 
Se/Au-Ag memristor 

model 
Preparation process P P P O P P 

Number of memristors in 
a weight 1 1 1 1 1 2 

Hardware-based design Totally Totally Partially Partially Partially Totally 
Robustness Not mentioned Not mentioned Not mentioned Not mentioned Not mentioned Good 

Recognition rate 92.1% 89.9% 91.07% 92.5% 95.2% 95.6% 
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experimental data is achieved by tuning the fitting parameters, 
exhibiting a root mean squared error of 0.14%. Meanwhile, a 
compact spiking neural network circuit realized by 
memristor-based synaptic and neuronal circuits is designed 
with high degree of accuracy. Compared with the existing 
methods, the proposed memristor-based spiking neural network 
offers benefits in terms of robustness and hardware friendly. 
For verification, the proposed method is applied to the 
handwritten digits recognition. The experimental results 
demonstrate that the memristor-based spiking neural network 
has good performance (i.e., accuracy and tolerance) in pattern 
recognition, achieving a recognition rate of 92.4% considering 
device failure and external noise. 
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