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Abstract-- Time-based demand response (DR) is an effective way to improve the reliability of power grid and reduce energy costs. 
Time-Of-Use tariff (TOU) has been adopted by many countries and achieved good performance. However, in cities with a large 
proportion of industrial consumers, load over-shifting phenomenon leads to new peak electricity consumption and reduces the effect 
of TOU. This paper proposes a new deregulated demand response scheme (DDR) to solve the load over-shifting problem. The scheme 
selects industrial consumers with large shiftable load in the city as load adjustment component and provides independent tariff to each 
consumer. Different to other methods with the requirement of entire scheme replacement, the proposed DDR only influences a small 
group of consumers with much lower implementation risk. Also, the cost of consumers and profit of agent can be improved at the 
same time as shown in the numerical study. In the proposed scheme, the interests of consumers and the agent need to be considered in 
the formulation of independent tariff, which forms a nested optimization problem that is difficult to solve quickly. In this paper, a 
novel and efficient approximate algorithm is proposed to solve the optimization problem. The proposed algorithm can produce 
optimal solutions similar to Genetic Algorithm with higher computational efficiency. 
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Nomenclature 
Variables Parameters 
Prn Dynamic price offered to the nth OSC A,B,C Parameters of generation cost  
L_optn Total load of the nth OSC after optimization Operational parameters set in the nth OSC 
Bill_optn Electric bill of the nth OSC after optimization Parameters set except changed load from OSCs 

AL 
All loads in the city, including OSCs’ and 
other users’ Billn_max The max electricity bill that the nth OSC can 

accept 
Billn Electric bill of the nth OSC KD Load correlation matrix 
ln,t Total load of the nth OSC at time slot t KP Unit correlation matrix 
G Output power of units SF Shifting factor matrix 
gm,t Output power of the mth unit at time slot t Rmax The max climbing power of power units 

Total load in the city at time slot t from all 
consumers except OSCs PLmax Upper boundary for power transmission in the 

transmission line 

stn,m,t The operational status of the mth device in the 
nth OSC at time slot t 

gm,max Maximum output power of the mth unit 
gm,min Minimum output power of the mth unit 

st_optn,m,t The operational status of the mth device in the 
nth OSC at time slot t after optimization 

DPconsn,t The total unshiftable load of nth OSC at time slot t 
DPn,m The power of the mth device in the nth OSC 

Other Function STCn,m The total working time of the mth device in nth 
OSC in one day 

Pf () 
Output the cost of agent according to  and 
L_opt Abbreviations 

Bfn () Represents how a OSC changes behaviors and 
load with newly offered dynamic price 

OSC Over-Shifting contributors 
DR Demand Response 

Output the optimal solution x of the 
optimization problem whose objective 
function is ‘obj’ and the boundary condition 
set is   

DDR Deregulated Demand Response 
TOU Time-of-Use 
RTP Real-Time-Price 
PDRC Provincial Development and Reform Commission 
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I.  INTRODUCTION 

A.  Background And Problem Definition 
emand Response (DR) consists of various methodologies to achieve supply-demand balancing in modern power system. 
DR aims to modify power consumption to adapt power system’s operation by economic encouragement adjustment [1~6]. 

US National Institute of Standards, and Technology (NIST) and US Federal Energy Regulatory Commission (FERC) had 
classified DR into two categories, which is time-based DR and event-based DR [7,8]. Time-Of-Use tariff (TOU) is a typical 
time-based DR which is popular in many districts. For example, Tucson in USA [9] adopts TOU tariffs for both residential and 
industrial consumers. The peak periods and the tariffs are not the same between residential, industrial and commercial 
consumers. The tariffs for industrial consumers with different power consumption scales are also different [9]. In Jiangsu 
Province of China [10], TOU is adopted for large industrial users and cooling and heating loads. In France [11], EDF offers off-
peak electricity tariff for residential users. TOU’s higher/lower price period is usually set to the period whose load is relatively 
higher/lower so that consumers are expected to shift their power consumption from higher price period to lower price period. 
With this behaviour change, difference between peak load and valley of a districts are expected to be moderately reduced and 
the generation cost of power system will be decreased [12~18]. However, the expected effect may not always occur. Fig. 1 
shows an example from a typical city in China.   
 

 
Fig.1 (a): The TOU Tariff in A Typical City with Large Industrial Consumers 

 
Fig.1 (b): The Total Electric Load of a Typical City  

 
Fig.1 (c): Electric Load of Typical Industries in the City 

 
 In Fig. 1(a) and (c), TOU actually promotes consumers to shift their electricity consumption (i.e., load) from high price period 
(9:00 – 13:00 and 18:00-22:00) to lower price period (e.g., 13:00 – 18:00). But the amount of shifted load is too large so that 
new peaks occur in 13:00 – 18:00. This means that the TOU in the case of Fig.1 creates a new load peak instead of reducing 
original peak moderately. As the power system cost reduction comes from the difference reduction between load peak and load 
valley, this new peak creation may reduce the positive effect of TOU and even contributes larger cost. 
 The reason for TOU’s effect loss in Fig. 1 comes from the power load over-shifting (i.e., too much load is shifted into a same 
time period). It means that this city contains too much price responsible load, which usually comes from the following two 
factors. 
 Factor 1: Too many consumers are offered the same TOU. The price in Fig.1 (a) of a typical city is deployed to all 
industrial consumers whose capacity is larger than 100 kVA. It may lead to a similar load shifting direction for many consumers 
group. 
 Factor 2: A TOU covering area contains consumers with extremely large shiftable load. For example, the typical city in 

D 
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Fig. 1 contains cement manufacturing and steel manufacturing industries, whose shiftable load is up to 30 MW in total.  
 Electricity consumers in China are heavily influenced by factor 1. Nearly all official TOU tariff is offered to all large 
industrial consumers with a same shape in each province, which is normally generated by Provincial Development and Reform 
Commission (PDRC) [10, 19, 20]. TOUs with a same shape mean that the relatively high/low relationship of price level between 
each two hours are the same. Factor 2 generally occurs in areas with large heavy industries. In this case, electricity consumers in 
China are affected by Factor 2 because nearly 68% electricity is consumed by industrial consumers. Cities with multiple large 
shiftable loads are common. In summary, load over-shifting of TOU is a possible unexpected phenomenon for areas with Factor 
1 & 2, which China is a typical example. This phenomenon decreases the effect of TOU and increase the operation and 
construction cost of power system.  
  
 Gap of DR Scheme on Over-Shifting Phenomenon: In summary, cities with Factor 1 and 2 require new scheme to not only 
inherit the load improvement capability of TOU but also reduce the effect of over-shifting phenomenon. Also, the new scheme 
is expected to contain less implementation cost and risk by changing tariff of too many consumers.  

B.  Literature Review 
Target areas of this paper is with load over-shifting phenomenon, which indicates two practical situations. Situation 1 is that 

many consumers are already offered a same-shape TOU tariff. Situation 2 is that load over-shifting phenomenon occurs. To 
prevent large social cost and risk from changing electric tariff for an extremely large consumer group, this paper tries to improve 
traditional TOU with influencing only a small section of consumers, which means that this small section of consumers may 
receive independent prices.  

A literature review is deployed for the consideration above. There are tremendous number of materials on demand response 
and TOU tariff. Houman Jamshidi Monfared et al [21] proposed a mixed price demand response scheme for residential 
consumers. This scheme combines the advantages of TOU and real-time price (RTP), reduces the peak valley difference and 
improves the social benefits. This scheme is for all residential consumers and needs a large number of residential consumers to 
participate in the response to achieve better results. Ziyang Wang et al [22] proposed a new interactive real-time pricing scheme 
based on a comfort evaluation model. Through the interaction between the behavior of residential consumers and the RTP, the 
scheme can reduce the difference between peak and valley of load, stabilize the load fluctuation and reduce the electricity cost 
of consumers. This scheme requires the participation of all residential consumers, and the consumers should pay attention to the 
change of RTP frequently. Mohsen Khorasany et al [23] proposed a new two-stage trading scheme in day-ahead and real-time 
market. This scheme can reduce the cost of each consumer and the whole community, through bidding and coordination 
between agents and community coordinator in day ahead and real-time market. This scheme needs the interaction of consumers, 
agents and community coordinator in the whole community to achieve the best economic effect, which is easy to cause fatigue. 
Rui Tang et al [24] proposed a dynamic tariff demand response scheme based on game theory. The scheme can reduce the 
fluctuation of load demand, improve the profit of power grid and reduce the cost of consumers. This scheme requires all 
buildings to participate in the bidding in day-ahead market to formulate the dynamic tariff until Nash equilibrium is reached. 
The frequent game process will make consumers feel inconvenient.  

C.  In summary, majority of research works on DR attempt to analyse or initiate a scheme for a large consumer group other 
than a scheme compensation to an implemented DR. Generally, changing tariff of too many consumers may lead to large 
implementation difficulties and social risk. Moreover, there are rare materials are target to the scheme improvement of 
traditional TOU with consideration on over-shifting phenomenon in this literature review. Original Contribution  

Facing the issue above, this paper initiates a Deregulated Demand Response scheme (DDR) to reduce the effect of over-
shifting phenomenon. It can be recognized as a scheme compensation to traditional TOU. Details of contributions includes the 
following 3 points. 
l A novel structure of DDR scheme is proposed for areas with over-shifting phenomenon. To prevent changing tariff for too 
many consumers, DDR only adjusts the tariff of a small group of consumers. By selecting consumers with large shiftable load to 
that small group, the scheme offers independent tariff to each consumer for a Two-Win solution between power grid and the 
load-adjustable consumer. This selected small group is recognized as an adjustable load compensation to the city so that the 
main contributors of over-shifting phenomenon can shift their load into other time periods. 
l Considering the controlling variable affiliation, a special optimization structure i.e., nested optimization modelling is selected 
for DDR so that price maker, consumers and power system operator can only control their variables. The independent price 
making is set to be the chief optimization and optimization of consumers. Power system operators are nested as sub-optimization 
into the objective function of chief optimization. This modelling logic ensures a together optimization minimum of price maker, 
selected large consumers and power grid, which provides much more feasibility of scheme implementation. 
l Facing the gradient computation difficulties in nested optimization, a new efficient approximating algorithm is proposed to 
increase the computational efficiency instead of using stochastic algorithm. The numerical shows that the proposed algorithm 
can achieve similar optimum to Genetic Algorithm with more than 300 times faster. 
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II.  STRUCTURE OF DEREGULATED DEMAND RESPONSE SCHEME  

A.  Aim of Deregulated Demand Response  
The aim of Deregulated Demand Response (DDR) is to reduce city’s peak power load by targeting on a small section of load-

flexible-changing consumers without influencing the majority of consumers. From Fig.1, it is obvious that typical industrial 
load-flexible-changing consumers contribute a lot on city’s load over-shifting. A united hourly dynamic electricity price 
promotes all flexible load into the price valley. To deal with this over-shifting issue in regulated power market (e.g., China), one 
typical way is to construct a deregulated power market (e.g., Day-ahead Market or Real-time Market in PJM) so that dynamic 
prices with different shapes in a day are offered to consumers under different buses. But overthrowing the entire regulation in 
power market immediately is a big revolution and may lead to huge cost and risk to the entire consumers. To prevent the huge 
cost and risk, a more feasible way is to find out the over-shifting contributors (OSC) and provide independent price with 
different shapes so that they can shift the load to other time periods. This idea contains the following advantages: 
(1)  Load of industrial OSCs is usually easier to be shifted by price shape than other consumers. The major contributors of peak 
over-shifting are sensitive to the shape of daily dynamic price. In other words, it is much easier to shift load from these 
consumers to other time period by providing a different price shape. In areas with industrial park, these load-flexible-changing 
consumers are usually large industrial consumers. For example, Fig.1 shows a section of typical daily load of industrial 
consumers in a typical city in China [25]. In Fig.1, consumers from cement manufacturing and steel manufacturing are this type 
of consumers. 
(2)  Targeting on large industrial OSCs can reduce city’s peak power without influencing the entire consumer group. Instead of 
facing the risks and barriers from deregulation on entire power market, focusing on over-shifting contributors are much easier. 
The number of relevant consumers is much lower and the difficulties on negotiation with consumers are much smaller. 
(3)  Precedents of providing special price to a part of industrial consumers exist already. Usually, implementation of policies 
with similar precedents is with less barriers. As an example for China, special electricity price is offered to industrial consumers 
from high energy-consuming enterprises [10,19]. On the point of providing different electricity price to a small section of 
industrial consumers, the policy for high-energy-consuming enterprises and the proposed scheme are similar.  

B.  Structure of Deregulated Demand Response  
Fig.2 shows the detail structure of DDR. In Fig.2, the entire logic is that the price maker provides independent daily dynamic 

price to selected OSCs. Each OSC will optimize its behaviours and load under the offered prices and forms a new daily load. 
Then the agent of OSCs will spend less cost on purchase energy from generations. Neither of selected OSC is forced to join 
DDR. Each OSC can offer an ensuring power cost reduction level for price maker as their condition on DDR participation. 
Otherwise, any OSC can choose back to traditional price scheme. In summary, the aim of price maker is to reduce the cost of 
electricity of energy purchase with ensuring DDR participated OSCs’ benefit improvements.  So the final objective for price 
maker is the cost of trading and OSCs benefit improvements are the constraints. The adjustable item for price maker is the 
independent daily price for OSCs.  With this scheme, less load is concentrated in the peak period. The power grid can benefit 
with less over-loading or instability situation from lower daily consumption peak. Following the proposed scheme, detail 
modification of the two current traditional tariffs in China are introduced in Appendix. 

VI.  
 

Fig.2: Structure of The Proposed DDR 
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III.  MODELLING ON DEREGULATED DEMAND RESPONSE SCHEME  

A.  Nested Optimization Modelling Logic 
In scheme modelling, behaviors of 3 stakeholders are included. They are the price maker whose behavior is to offer 

independent prices to selected consumers, the selected consumers whose behaviors are to control their load on the offered prices, 
and the agent of OSC who represents all OSCs to trade with generation. These behaviors from 3 stakeholders are all with 
independent degree of freedom. A typical modelling logic is to recognize them all as argument of the entire optimization 
[26~29]. But it may lead to that the entire optimum sacrifices the benefit of one stakeholder and contributes more to another. 
This feature may decrease the feasibility of the entire model (practically, each stakeholder only prefers to find out their own 
optimum without considering others’ optimums). In other words, the optimum of entire model and the model of each 
stakeholder should be achieved synchronously to increase model’s feasibility.  

So this paper constructs the model respecting the practical influencing chain. The chief modelling is the price making 
optimization, which corresponds to price maker. As each OSC will optimize its behavior on the offered independent price, the 
optimization of each OSC is nested into the objective function of chief model, which constructs the influencing chain from price 
to power load. Moreover, the agent of OSCs will trade with generation with the trading mechanism on the given load. So this 
process is also nested into the objective function of chief model, which constructs the influencing chain from load to energy 
benefit. 

B.  Chief Modelling of DDR  
From Fig.2, it is obvious that the problem faced by price maker is an optimization problem. Simply, DDR is to find out the 

optimal independent daily price to each OSCs for a minimum energy purchasing cost with ensuring each OSC’s cost reduction. 
Equation (1)-(3) can review this logic. Function Bfn( ) in Equation (1) represents how a OSC changes behaviors and load with 
newly offered dynamic price. Prn is the dynamic price offered to the nth OSC.  is other operational parameters in the nth 
OSC. L_optn and Bill_optn are the changed load and electric bill of changed load from the nth OSC. Function Pf( ) in Equation 
(2) represents the trading with all changed load from OSCs.  is other parameters except changed load from OSCs. Output of 
function Pf( ) is the cost of energy trading, which is the final object in the optimization. Equation (3) represents that electric bill 
of the nth OSC should be lower than an ensuring bill level. 

                                                                           (1) 
                                                    (2) 

                                                                             (3) 
Details of Equation (1) is revealed in part C of section III and details of Equation (2) is revealed in part B of section III. 

C.  Modelling of Energy Trading  
This part introduces detail model on how changed loads from OSCs influence the cost of trading. There are multiple 

mechanisms for energy trading. In the proposed scheme, the trading mechanism is not only required to capable of generation 
competition but also consider the impact from OSCs’ entire changed load in power grid operation. A typical mechanism capable 
to these requirements is the economic dispatch model [经济调度可以实现市场化竞争的论文]. In this paper, a typical 
economic power dispatch model [30~33] is selected and revealed in Equations (4) – (8). Equation (4) is the objective function 
indicating the cost of economic dispatch. Equation (5) ensures the energy balancing among power generations and loads. 
Equation (6) ensures transmission lines are used in their secure range. Equation (7) ensures power generation capacity of each 
power plant is operating within secure range. Equation (8) is the climbing constraint of power units. 

                                                              (4) 

                                                                     (5) 

                                               (6) 
                                                                                      (7) 

                                                                       (8) 
This trading model can also reveal the influence from OSCs’ changed load to power grid operation, including effect 

on electricity production, transmission and other relevant constraints. 
In Equation (4)-(8), newly changed load values from OSCs are the boundary condition in equality constraint 2.1 and the 

inequality constraint 2.2. It means that the influencing path from OSCs’ changed load to the final cost is constructed by 
changing the boundary condition of economic dispatch. In other words, function Pf( ) in Equation (2) is a sub-optimization in 
the entire optimization problem, as shown in Equation (9). 



 6 

                           (9) 

D.  Modelling of Behaviour Optimization in OSC 
This part introduces detail model on how offered independent daily dynamic electricity price influence OSCs’ load. On the 

area of relationship between price and consumption, one popular model is price-consumption elasticity [34~39]. This model 
recognizes the detail relationship between price variation and consumption variation as a simple default model (e.g., a linear 
model) and use historical data to obtain the unknown parameters. The advantage of elasticity is its simple model structure. But it 
is usually effective on a large consumer group with enough consumers. It is difficult to predict the consumption variation when 
the price changes greatly. In the situation of DDR, one independent daily price is only offered to one consumer. Therefore, the 
power load variation deeply relates to the special industrial operation inside each OSC. The detail behaviour models of industrial 
OSCs [40~45] should be selected other than price elasticity. One typical general industrial model is referred in this paper to 
construct the relationship between price and load [25]. Equations (10)-(12) introduce the detail model between price and load. 
Generally, OSC change their power consumption behaviours is for a lower power cost with the same manufacturing capability 
and device operation stability. Equation (10) reveals that each OSC’s object is to decrease its cost. Variable DPn,m is the power 
of the mth device in the nth OSC. This power is an average power of a device. Actually, the real power load of continuous 
process and discontinuous process is different. Some discontinuous process from certain industries may fluctuated largely 
secondly or minutely. But practically, the energy consumption for an industrial device at a certain gear deeply relates to the 
workload suffered in a longer time period. And the power consumption is deeply relating to the workload suffered by the device. 
In this case, though power load of discontinuous process may fluctuate secondly or minutely, it can be replaced by an equivalent 
stable continuous power in its energy computation in a longer period. In this paper, the power load modelling selected from 
reference [25] is with this consideration. It uses an equivalent stable continuous power load in a longer period, such as hourly 
power load, to present the energy consumption. And the hourly energy consumption is the focusing point of power bill and some 
of the power grid operation, such as day-ahead power dispatch. This logic of approximation is similar to the Effective Value of 
3-Phase current, which using a stable continuous value to represents the energy aspect of fluctuation. E.g., the process of 
welding may be discontinuous. So the actual power of welding fluctuates largely at seconds level or minutes level. But when 
stay at level of one hour or half an hour, the power consumption of weld relates to the workload of welding. Intermittence on 
higher frequency does not influence the power consumption at certain long period, e.g. hourly. So the average power is used. 
Variable stn,m,t is the operational status of the mth device in the nth OSC at time t. Equation (11) reveals the work load of any 
device in OSC should be the same. In other words, OSC’s behaviour changing should not change the entire manufacturing 
requirement. Equation (12) ensures that devices’ operational status is logical variable.  

                 (10) 

                                                            (11) 

                                                                   (12) 
Modelling on assembly line processing is compatible in Equation (10)-(12) [25]. If there is no storage, multiple devices of 

assembly line should be switched at same operational status. In this case, these group of devices can be recognized as one device 
and one variable on operational status is sufficient. The corresponding device power is the summary of all these devices in the 
group. Devices with more than two operational statuses are also compatible in the model. For example, if a device is with 3 
operational statuses (Off / 1 / 2). It can be modelled as two devices. One device is with status Off / On and the device power is 
set to power at original 1 status. The other is with Off / On as well and the device power is set to power at original 2 status. Then 
any operation situation of original device can be modelled with these two devices.  

Indeed, not all industrial consumers fit for the model described in Equations (10)-(12). This model is designed for industrial 
consumers which contains large shiftable load. It means that the relevant industrial consumers should satisfy 2 conditions: One 
condition is that at least a section of industrial devices are with low start-up cost, whose power load are also not small. High 
start-up cost usually indicates nonstop operation for devices. The other condition is that the workloads from consumers’ orders 
are not large enough so that those shiftable devices have to keep working without resting time daily. In summary, this model is 
suitable for consumers who have low shiftable cost and shiftable time space in a day. One method of scope confirmation is to 
find out the correlation between the price shape and the historical power load. For example, Table R.1 reveals this correlation. It 
is obvious that consumers with high correlation indicates their high capability and willing in power load shifting. 
添加一个相关性表 
In Equation (10)-(12), the offered independent price are the boundary condition in objective function. It means that the 

influencing path from each independent daily price to OSCs’ changed load is constructed by changing the boundary condition 
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OSC’s behaviour optimization. In other words, function Bfn( ) in Equation (1) is a sub-optimization in the entire optimization 
problem, as shown in Equation (13). 

                              (13) 

IV.  EFFICIENT ALGORITHM FOR NESTING OPTIMIZATION IN THE PROPOSED DDR SCHEME  

A.  Nesting Optimization Structure in DDR 
As shown in section III, Equations (1), (2), (3) reveal that the model of DDR is an optimization problem (Obj_1), which is 

finding independent daily prices to each OSC for the lowest cost in power trading. Equations (9) and (13) reveal that 
computation of objective function in Obj_1 with a candidate argument requires to solve two types of sub-optimizations. One is 
the optimization of economic dispatch (Obj_2 and Const 2.1-2.4) and the other is optimization of OSC’s behaviour optimization 
(Obj_3 and Const 3.1-3.2). This mathematical structure is called nesting optimization [30,46], which the objective function of 
entire problem contains sub-optimizations.  

The feature of nesting optimization is that the gradient of optimization object to the argument is usually difficult to be 
obtained. The reason is that gradient computation usually requires to find out dominant expression from optimal solution to one 
of the boundary conditions in sub-optimization section. This feature restricts the utilization of gradient based solving algorithms 
(e.g., Gradient Decent, BFGS, LM and so on), which are popular in high converging efficiency. Excluding gradient based 
algorithms, stochastic algorithms (e.g., Genetic Algorithm, Partial Swarm Optimization, and Artificial Bee Colony) do not 
requires gradient computation and are candidates to solve nesting optimization. But the converging time and computational 
resources of stochastic algorithms are usually much larger. What’s more, all sub-optimizations require solving in each individual 
of stochastic algorithms, which significantly increase the computational work of stochastic algorithm.  

B.  A New Algorithm for Nesting Optimization in DDR 
To prevent the large computational work of stochastic algorithm, this paper proposes a new algorithm for nesting 

optimization in DDR. The basic logic of the proposed algorithm is that we may try to find out what types of load can decrease 
the cost of city’s energy trading most firstly. Then try to find out the independent daily price that can promote each OSC to 
achieve that load type. This logic separates the entire optimization problem into two different problems. Each of them is an 
independent optimization which prevents the nesting optimization structure. The entire algorithm contains 2 modules. 
l Module 1: OSC’s Load Modification for Optimal Power Trading Cost 

Following the proposed logic, the first step is to find out what types of loads from OSCs can decrease the cost of energy 
tradings and the entire cost of city’s power mostly. Equations (14)-(19) reveal the model of this step. This model is derived from 
the sub-optimization of Obj_2 (Equation (4)-(8)). The first difference between model in Module 1 and the model in Obj_2 is that 
both G and stn,m,t are the argument in Equation (4) instead of only letting G as argument in Obj_2. Leading in stn,m,t represents 
that the optimal cost of trading relates to different devices’ operation status in every OSCs. The second difference is that 
constraint 3.2 is removed and a penalty term is added in objective function (Equation (14)). This modification change stn,m,t from 
discrete solution space into continuous solution space. The convex penalty term will still restrict stn,m,t to be close to 0 or 1. 
Definition of parameters can be referred to Nomenclature in Section I. 

     (14) 

                                                                 (15) 

                                                         (16) 
                                                                                                            (17) 

                                                                                            (18) 

                                                                                                   (19) 

One point should be paid attention that G is always the optimal solution for the minimum of Obj_2 corresponding to any ln,t 
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and stn,m,t throughout the optimization process in non-gradient based algorithm (e.g. Genetic Algorithm). It represents that 
optimal trading cost is always dependent on given loads from OSCs. The economic dispatch considers its own parameters 
independently to the price maker and OSCs. But in Equation (14)-(19), G and stn,m,t are both argument. So throughout the 
optimization process of Equation (14)-(19), G cannot be guarantee to be the optimal solution when setting stn,m,t as boundary in 
Obj_2. It means that the power trading platform may not provide a same controls as the G given by optimization on Obj_4 when 
letting the optimized stn,m,t as boundary condition. 

To explain the feasibility of Equation (14)-(19) on this point, Lemma 1 is introduced. 
Lemma 1: Let X=[X1, X2]T is the argument of an optimization problem (OP1) with objective function OBJ=F({K},X). X1 and 

X2 are sections of argument elements. {K} is the set of boundary conditions of OBJ. X=[X1, X2]T is an extreme point of OP1. Let 
X’=[X2’] is the argument of an another optimization problem (OP2) with objective function OBJ= F({K, X1}, X2’). Difference 
between OP1 and OP2 is that argument section of X1 in OP1 and OBJ becomes boundary condition with value X1 in OP2 and 
OBJ’. Then X2 is also the extreme point of OP2. (Proof of Lemma 1 is in Appendix I) 

With Lemma 1, at the converging point of optimization in Equations (14)-(19), G and stn,m,t in the solution of Obj_4 follow 
that G is also the extreme point of Obj_2 with stn,m,t as boundary condition. The converging point is the final selection through 
the entire optimization process of Obj_4 other than any non-converging solution. In other words, using the converging solution 
from model in Module 1 withstands the verification on original model of Obj_2. 
l Module 2: Price Scheduling for The Modified OSC’s Load 

Module 1 outputs the expected behaviours from OSCs for minimum cost of power grid energy dispatch. So the aim of 
Module 2 is to find out the independent dynamic daily price to promote OSCs to behave with the expected behaviours. 
Practically, OSC will behave for its minimum electric bill with manufacturing operation satisfaction, as shown in Obj_3 in 
Equation (10)-(12). The optimization problem contains a feature which is shown in Lemma 2.  

Lemma 2: The optimal solution of optimization problem in Equation (10)-(12) contains the following feature: For any t1 and 
t2, when , then the optimal solution obeys . When , then the optimal solution obeys 

. (Proof of Lemma 2 is in Appendix II) 
Lemma 2 indicates that OSC’s optimal consumption deeply relates to the daily price shape, which is the comparative 

relationship between any price at one time period to prices in all other time periods. This feature indicates a price scheduling 
method. That is setting a negatively correlated price shape to the expected load of an OSC as a constraint. And find out the 
suitable price level in the shape that satisfying the bill reduction requirement from OSC. Equation (20)-(23) reveals the models 
on this logic. 

           (20) 

        (21) 

                                                                                           (22) 

                                                                                                               (23) 
Constraint 5.1 in Equation (21) ensures that the negative correlation between the price shape and the expected load of the 

OSC. Constraint 5.2 in Equation (22) ensures the electric bill of an OSC is no larger than the required bill reduction. Constraint 
5.3 in Equation (23) limits the price level at each time period into a suitable range. With the above 3 constraints, the objective 
function in Equation (20) maximizes OSC’s electric bill. these objective functions indicates that price maker does not have any 
encouragement to keep reducing OSC’s electric bill when the bill reduction requirement is already satisfied. 

The price scheduling model in Equations (20)-(23) is a kind of approximation method. This is because Lemma 2 only ensures 
the negative correlation between the load shape and the price shape. But there are possibly more than one possible load that 
satisfy a same load shape. So one more verification step should be added to verify the result of price scheduling from Equations 
(20)-(23) by operating the objective function once in Equation (2). This verification step double checks that if the scheduled 
price can really achieve similar optimal cost in the economic dispatch. 

In summary, using models in Module 1 and Module 2 can achieve the price scheduling result on typical optimization 
structure instead of nesting optimization.  
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V.  NUMERICAL STUDY AND ANALYSIS 

A.  Background 
A typical Chinese city with multiple large industrial consumers is selected for numerical study. All industrial consumers are 

suffering a unique TOU tariff as shown in Fig.1, which is formulated by the government [10]. This is a typical city with over-
shifting phenomenon. From Fig.1 the unique TOU tariff shifts too much power load into 13:00-17:00 so that a new load peak 
appears in this time period. It is obvious in Fig.1 that consumers under steel manufacturing and cement manufacturing are 
typical OSCs for they response strongly to TOU’s shape. Consider this feature, 3 factories in cement manufacturing and 8 
factories in steel manufacturing in this city are set as OSCs in the numerical study. Data of city’s base load and OSCs are 
introduced in Appendix III [25]. 

The power grid structure is modified from a typical 9-bus system in Fig.3 [47]. Refer to Table V in Appendix IV for details 
of loads connected by each OSC. Data of this power grid is introduced in Appendix V. 

 
Fig.3: The 9-Bus System Used in Numerical Study 

 
Two typical numerical studies will be introduced in this section. Study 1 is a scheme feasibility study. It compares the 

proposed scheme and traditional tariff by simulating their models to verify the feasibility. Study 2 is a sensitivity study. This 
study changes important parameters of model and reveals model’s performance variation. 

B.  Result and Analysis of Study 1 
In this study, results from two scenarios are compared. Scenario 1 represents that all industrial consumers are suffering a 

unite TOU in Fig.1. Scenario 2 represents that all OSCs will join the proposed scheme if their bill can be reduced at least 2% 
(Constraint 1&5.2). Table I and Fig.4 introduce the result comparison of the two scenarios. 

Table I: Result Comparison in Study 1 

Item 
Traditional United TOU Proposed Scheme 

Variation 
（$/day） （$/day） 

Daily Generation Cost  15734855 15704393.7 Save 0.194 % 

Daily Profit of Agent 1077417 1089739.50  Increase 1.144 % 
Daily Bill of OSC1 78633.41 77062.42 Save 1.998 % 
Daily Bill of OSC2 79835.99 78241.48 Save 1.997 % 
Daily Bill of OSC3 79762.15 78167.78 Save 1.999 % 
Daily Bill of OSC4 72486.17 71036.44 Save 2.000 % 
Daily Bill of OSC5 70214 68809.71 Save 2.000 % 
Daily Bill of OSC6 73910.5 72432.6 Save 2.000 % 
Daily Bill of OSC7 71176.63 69753.08 Save 2.000 % 
Daily Bill of OSC8 103763.6 101688.6 Save 2.000 % 
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Daily Bill of OSC9 102693.9 100640.4 Save 2.000 % 
Daily Bill of OSC10 108161.7 105999.1 Save 1.999 % 
Daily Bill of OSC11 66652.95 65320.22 Save 2.000 % 

City’s Daily Power Consumption 153093  MWH 153093 MWH 0 % 
 

 
Fig.4: Typical Daily Load Curves of The Target City under Traditional TOU and The Proposed Scheme 

 
In Table I, with a same total daily power consumption, the proposed scheme can reduce the cost of power generation and 

increase agent’s profit. All the benefit comes from the incremental cost reduction in power generation by decreasing city’s peak 
load and shift load in peak period (13:00 – 17:00) to valley period (18:00-21:00). Fig.5 shows the power generation variation of 
each unit between the two scenarios. The incremental cost reduction is mainly contributed by generation peak reduction in Unit 
G1, G4, and G6. Total cost of daily power generation is reduced 30462 $/day in the proposed scheme, which is near 0.2% 
reduction. This cost reduction is shared by the agent and each participated OSCs. The entire profit of agent has increased 12322 
$/day, which is 1.144% increasing.  
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Fig.5: Power Generation of Each Unit under Traditional TOU and The Proposed Scheme 

 
City’s peak load reduction comes from decreasing the severity level of over-shifting phenomenon. Under the proposed 

scheme, each OSC is offered an independent daily price curve, as shown in Fig.6. Though price for each OSC is different, most 
of the offered prices tend to set lower price between 18:00-21:00 than 13:00-17:00. The model automatically recognizes too 
much load between 13:00-17:00 and aims to move it to 18:00-21:00 so that the optimization object (total generation cost) can be 
decrease. 

 
Fig.6: The Operating Situation in Each OSC 

 
In summary, the proposed scheme can effectively decrease the severity of load over-shifting phenomenon in a city. The 

reason is that model of proposed scheme creates independent price for OSCs with different shape to the united TOU. The 
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independent price encourages OSCs to shift their load from traditional TOU’s valley into the independent price’s valley so that 
load of these OSCs will not concentrate into city’s load peak. With the proposed scheme, both agent and consumers can earn 
benefit. 

C.  Result and Analysis of Study 2 
l  Case 1: Sensitivity Analysis of The Minimum Bill Reduction Requirements 
The first case in study 2 is the sensitivity analysis of the minimum electric bill reduction requirement of OSCs (Billmax in 

Constraint 5.2). In this case, different scenarios of between 1% bill reduction to 4% reduction is simulated and the results are 
shown in Table II. 

Table II: Performance of The Proposed Scheme Under Different OSCs’ Minimum Electric Bill Reduction Requirements 

Item 
Minimum Bill Reduction Requirement of OSCs (%) 

1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 

Power Generation Cost 
Reduction ($/day) 

30486  30480  30482  30481  30466  30475  30430  
0.19% 0.19% 0.19% 0.19% 0.19% 0.19% 0.19% 

Average OSCs Bill Reduction 
($/day) 

824  1237  1649  2061  2474  2886  3298  
1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 

Agent Profit Improvement 
($/day) 

21418  16876  12343  7805  3255  -1273  -5847  
1.99% 1.57% 1.15% 0.72% 0.30% -0.12% -0.54% 

 
From Table II, the power generation cost reduction does not change with the variation of bill reduction requirement. But the  

profit of OSCs’ agent improvement keeps decreasing while the increase of bill reduction requirements. In fact, the benefit of 
OSCs and the agent is all comes from the power generation cost reduction by decreasing the over-shifting load. When 
participated OSCs are confirmed, the maximum power generation cost reduction is fixed. This is the reason that power 
generation cost reduction does not change in all scenarios in Table II. Considering this factor, a higher benefit requirements of 
OSCs represents lower benefit for the agent. So this is the reason that agent’s profit improvement decrease when the bill 
reduction of OSCs increase. When the minimum bill reduction requirement is higher to 3.5%, the agent’s profit improvement 
becomes negative, which means loss. It indicates that not all scenarios on minimum bill reduction requirement in the proposed 
scheme will ensure benefit to each stakeholder. The feasibility range in this case is about 0%-3%.  

l Case 2: Algorithm Comparison for Nesting Optimization 
Section IV introduces the structure of nesting optimization. Without a feasible method to construct the gradient computation 

in nesting optimization, stochastic methods are the few choices. This paper has proposed an equivalent algorithm with 2 
modules to avoid the structure of nesting optimization. So this case compares the efficiencies between the proposed equivalent 
algorithm and a typical stochastic methods on the model in nesting optimization structure without modification. Table III and 
Fig.7 shows the results. From Table III and Fig.7, the proposed algorithm achieves more than 300 times faster than GA. And the 
optimum achievement of the proposed algorithm is similar and even a little bit better than GA.  
Table III: Performance Comparison Between The Proposed Algorithm and Genetic Algorithm Under Different Number of OSCs 

Number 
of OSCs Item Proposed Algorithm Genetic Algorithm  

5 

Algorithm Convergence Time（s） 15.9 7437.8  

Power Generation Cost Reduction($) 18027  0.11% 17422  0.11%  

Average OSCs Bill Reduction($) 1466  2.00% 1467  2.00%  

Agent Profit Increasing($) 10699  0.99% 10087  0.94%  

10 

Algorithm Convergence Time（s） 14.3 7658.6  

Power Generation Cost Reduction($) 30361  0.19% 28505  0.18%  

Average OSCs Bill Reduction($) 1466  2.00% 1473  2.01%  

Agent Profit Increasing($) 15704  1.46% 13775  1.28%  

15 

Algorithm Convergence Time（s） 37.5 14061.7  

Power Generation Cost Reduction($) 36786  0.23% 35067  0.22%  

Average OSCs Bill Reduction($) 1470  2.01% 1481  2.02%  

Agent Profit Increasing($) 14732  1.37% 12846  1.19%  

20 Algorithm Convergence Time（s） 48.8 16483.2  
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Power Generation Cost Reduction($) 41762  0.27% 38423  0.24%  

Average OSCs Bill Reduction($) 1475  2.01% 1486  2.03%  

Agent Profit Increasing($) 12261  1.14% 8694  0.81%  

25 

Algorithm Convergence Time（s） 53.8 17832.7  

Power Generation Cost Reduction($) 44305  0.28% 39535  0.25%  

Average OSCs Bill Reduction($) 1467  2.00% 1485  2.03%  

Agent Profit Increasing($) 7619  0.71% 2409  0.22%  

30 

Algorithm Convergence Time（s） 60 19560.9  

Power Generation Cost Reduction($) 45679  0.29% 40924  0.26%  

Average OSCs Bill Reduction($) 1469  2.00% 1492  2.04%  

Agent Profit Increasing($) 1620  0.15% -3843  -0.36%  

35 

Algorithm Convergence Time（s） 61.3 19091.4  

Power Generation Cost Reduction($) 46881  0.30% 40047  0.25%  

Average OSCs Bill Reduction($) 1479  2.02% 1506  2.05%  

Agent Profit Increasing($) -4884  -0.45% -12651  -1.17%  

40 

Algorithm Convergence Time（s） 91.6 23516  

Power Generation Cost Reduction($) 47601  0.30% 39920  0.25%  

Average OSCs Bill Reduction($) 1479  2.02% 1512  2.06%  

Agent Profit Increasing($) -11541  -1.07% -20552  -1.91%  

 

 
Fig.7: Optimization Time Between The Proposed Algorithm and Genetic Algorithm Under Different Number of OSCs 

VI.  CONCLUSION AND FUTURE WORK 
Facing the over-shifting phenomenon from typical TOU, this paper proposes a new deregulated demand response scheme to 

reduce city’s peak load. This scheme tries to determine the large load flexible-changing consumers and offers independent 
dynamic prices to minimize power system’s cost. Due to the number scale of large load flexible-changing consumers is small, 
the proposed scheme prevents risk and cost from influencing extremely large number of consumers. The peak reduction effect is 
still significant for the load changing capability of the selected consumers.  

One issue of the scheme application is that OSCs should be determined before optimization. The predetermination can ensure 
that consumers with large shiftable load can take part in the scheme. Also, it ensures that information from OSCs can be 
obtained before optimization. 

Another issue is the behaviour uncertainty, which is a practical issue faced by nearly all price based DRs. The uncertainty 
indicates that consumers may actually behave in a different way from the predefined or pre-estimated behaviours. The reason is 
that price based DRs use economic signal to promote consumers to change behaviors. But this promotion is not forced. 
Consumers may change their behavior for other reason, such as shutting down for an unpredictable disaster or keeping all 
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devices fully working for an unexpected order. The proposed scheme has already considered the bill reduction in Equation (3) in 
the independent price making from traditional tariff. The scheme recognizes OSCs to use ‘following their expected behaviors’ to 
exchange with ‘an independent price reducing their bill from traditional tariff to an expected level’. Also, the expected behavior 
is generated on parameters providing by OSCs themselves. So if an OSC does not follows its expected behaviors, it is 
recognized to violate the promise and should be punished. One typical policy to tackle this issue is to set the load allowance 
boundary for each OSC. This policy is also implemented in other price based DR [吴皖莉那篇 SCI]. The idea of the allowance 
boundary is that the agent of OSCs uses the load of expected behaviors as the upper boundary of their actually load. If the load 
of a certain time exceeds the boundary at this time, the exceeding power will be charged by not only the breach of contract but 
also a punishing price. The effectiveness of this policy is that it punishes unpredictable increasing power consumption. This 
punishment ensures that the period with expected lower load can obtain a lower boundary and OSCs may easily receive 
punishment if their increase load in this period. This punishment does not take effect on decreasing power consumption because 
decreasing load will not increase degree of load concentration in the peak load period. In this case, OSCs only needs to follow 
the requirement on breaching of trading contract. 

This paper also indicates that the effect differences may occur between the expectation and the deployment of demand 
response. Large load flexible-changing consumers can be recognized as an adjustable quantity or variable to relief this 
difference. Let the over-shifting phenomenon as an example. It is probable that load peak of the target city in Fig.1 appears 
between 9:00-11:00 am and 18:00-22:00 pm before deployment of TOU. The price maker may aim to reduce the peak in these 
two time periods. But they obviously underestimate the effect of TOU. This is the reason to time occurrence of high price period 
in TOU. In this case, those large load flexible-changing consumers can be the adjustable variable to reduce the excessive load 
shifting from TOU. The proposed scheme in this paper is one utilization method for large load-changing consumers. 

Actually, the proposed scheme is designed for a specific situation. The suitable scenario contains 2 prerequisites. The first 
condition is that significant Over-Shifting phenomenon occurs and a unique dynamic price shape is implemented. The second 
condition is that consumers with extremely large shiftable load exist. With the preconditions, the proposed scheme is capable to 
be deployed with positive effect in reducing the peak of consumptions. The principle of the proposed method is to offer and 
independent price shape to consumers with large shiftable load so that they can shift their load with directions other than main-
body consumers. 

Also, for areas with high degree deregulated power market, the proposed scheme is with less implementing potential. For 
example, Locational Marginal Price (LMP) can reflect the time period with high system cost by high price level, too. So the 
proposed scheme is more suitable for initially deregulation of regulated power market. Though there are prerequisites for 
scheme application, areas satisfying the prerequisites are still many. For example, power markets in 找到统一峰谷曲线的省份
in China, are all contains a unique dynamic price shape. Typical industrial cities in these provinces, such as XX, XX, XX (典型
的大工业城市) are all satisfying both conditions. 
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IX.  APPENDIX 

Appendix I. Proof of Lemma 1 
Lemma 1: Let X=[X1, X2]T is the argument of an optimization problem (OP1) with objective function OBJ=F({K},X). X1 and 

X2 are sections of argument elements. {K} is the set of boundary conditions of OBJ. X=[X1, X2]T is an extreme point of OP1. Let 
X’=[X2’] is the argument of an another optimization problem (OP2) with objective function OBJ= F({K, X1}, X2’). Difference 
between OP1 and OP2 is that argument section of X1 in OP1 and OBJ becomes boundary condition with value X1 in OP2 and 
OBJ’. Then X2 is also the extreme point of optimization OBJ’. 

 
Proof: 
(1)  X=[X1, X2]T is an extreme point of optimization OBJ. 

(2)  Due to (1),  

(3)  At , Gradient of OBJ’ is  

(4)  Consider (2) and (3) together, we have  

(5)  Due to (4), X2 is the extreme point of optimization OP2. 
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Appendix II. Proof of Lemma 2 
Lemma 2: The optimal solution of optimization problem in Equation (10)-(12) contains the following feature: For any t1 and 

t2, if , then the optimal solution obeys . (Proof of Lemma 2 is in Appendix II) 
 

Proof by Contradiction: 

(1) Assume  is the optimal solution of optimization in 

Equation (10)-(12). And this optimal solution satisfy condition 1. 

 

(2) Due to ST_OPTn is the optimal solution, ST_OPTn satisfies constraint 3.1 and 3.2. That is . 

(3) Set another variable .  

ST_2n satisfies  

(4)  .  

 ST_2n is a candidate solution optimization problem in Equation (10)-(12).     
 

(5) Value of objective function on ST_OPTn is: 

 

 
(6) Value of objective function on ST_2n is: 
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(7) Consider step (3), (5) and step (6), we have: 

 

 

(8) Consider Step (1) and (7), we have  

 
(9) From step (8), the objective value on ST_2n is lower than ST_OPTn. Thus ST_OPTn is not the optimal solution. It conflicts 

to the assumption in step (1) that ST_OPTn is the optimal solution. It means that the optimal solution of optimization in 
Equation (10)-(12) does not satisfy condition 1. 
 

(10) From step (9), if optimal solution does not satisfy condition 1, then the optimal solution must satisfy the complementary set 
of condition 1. That is optimal solution satisfy the following condition, which is the statement of Lemma 2. 
 
For any t1 and t2, when , then the optimal solution obeys . When , then the 
optimal solution obeys  
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Appendix III. Data of City’s Base Load 
Table IV: Data of City’s Base Load 

 Basic Load(MW) 
L1 L2 L3 L4 L5 L6 L7 L8 L9 

Connected Bus B1 B2 B3 B4 B5 B6 B7 B8 B9 
1h 866  1149  797  531  249  531  549  416  308  
2h 842  1141  788  523  245  523  543  409  304  
3h 817  1109  763  507  236  507  527  394  294  
4h 808  1095  753  500  233  500  520  388  290  
5h 785  1065  730  485  225  485  505  376  281  
6h 772  1047  717  476  221  476  496  367  276  
7h 782  1061  728  483  224  483  503  373  280  
8h 803  1088  748  497  231  497  517  385  288  
9h 939  1255  929  619  270  617  624  526  349  
10h 1005  1342  995  661  308  661  666  564  375  
11h 1040  1392  1036  688  322  686  693  585  392  
12h 982  1317  978  648  287  648  655  554  369  
13h 1000  1356  950  661  302  661  652  550  371  
14h 1063  1457  1034  702  321  704  691  577  395  
15h 1058  1428  1005  697  320  705  689  586  393  
16h 1062  1406  996  687  315  688  677  563  386  
17h 1023  1384  972  690  306  676  665  553  379  
18h 938  1257  918  620  288  618  625  527  351  
19h 878  1171  871  578  267  576  582  489  326  
20h 882  1180  875  582  269  580  587  488  328  
21h 934  1248  925  616  286  614  621  523  348  
22h 944  1278  937  622  279  622  615  506  347  
23h 963  1305  931  635  286  636  627  517  355  
24h 898  1224  870  601  266  608  605  480  329  
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Appendix IV. Information of OSCs 
Table V: Load Connected by Each OSC 

  OSC1 OSC2 OSC3 OSC4 OSC5 OSC6 OSC7 OSC8 OSC9 OSC10 OSC11 
Connected with The 
No. of Basic Load L4 L6 L8 L1 L2 L3 L7 L8 L9 L5 L3 

 
Table VI: Typical Equipment Information of Steel Factories 

Device Name 
Power Working Hours 

Transfer or not 
kw h 

Feeder 48 6 1 
Vibration sieve 232 10 1 

Coal milling 1600 10 1 
Blast furnace 6800 24 0 

Converter 3130 19 1 
Purification fan 1400 15 0 
Gas recovery 2000 15 0 

Secondary dust collection 1250 18 0 
Continuous caster 770 12 0 

Bar line 21230 15 0 
Blast furnace fan 16000 15 1 

 
Table VII: Typical Equipment Information of Cement Factories 

Device Name 
Power Working Hours Transfer 

or not kw h 
Limestone crushing 1710 18 1 
Sandstone crushing 385 5 1 

Coal pre homogenization stockpile 235 10 1 
Coal pre homogenization reclaimer 235 15 1 

Raw milling 15000 15 1 
Exhaust gas treatment 11020 24 0 

Clinkering 7260 15 0 
Material cooling 780 24 0 
Material cooling 3810 15 0 

Gypsum admixture crushing 207 9 1 
Cement packaging 120 9 0 

Cement bulking 18 12 0 
Clinker bulking 20 10 0 

Air compressor station 1320 15 0 
limestone pre homogenization stockpile 470 13 1 
limestone pre homogenization reclaimer 470 15 1 

Cement grinding 31700 8 1 
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Appendix V. Data of Power Grid 
Table VIII: Information of Power Grid 

Item Value Item Value 
Lines_1 B1-B2 impedance(Ω) 0.0576 Lines_1 B1-B2 PLmax(MW) 250 
Lines_2 B2-B3 impedance(Ω) 0.092 Lines_2 B2-B3 PLmax(MW) 450 
Lines_3 B3-B4 impedance(Ω) 0.17 Lines_3 B3-B4 PLmax(MW) 350 
Lines_4 B4-B5 impedance(Ω) 0.0586 Lines_4 B4-B5 PLmax(MW) 450 
Lines_5 B5-B6 impedance(Ω) 0.1008 Lines_5 B5-B6 PLmax(MW) 180 
Lines_6 B6-B7 impedance(Ω) 0.072 Lines_6 B6-B7 PLmax(MW) 200 
Lines_7 B7-B8 impedance(Ω) 0.0626 Lines_7 B7-B8 PLmax(MW) 550 
Lines_8 B8-B9 impedance(Ω) 0.161 Lines_8 B8-B9 PLmax(MW) 250 
Lines_9 B9-B1 impedance(Ω) 0.085 Lines_9 B9-B1 PLmax(MW) 100 
Lines_10 B9-B2 impedance(Ω) 0.084 Lines_10 B9-B2 PLmax(MW) 150 
Lines_11 B7-B5 impedance(Ω) 0.163 Lines_11 B7-B5 PLmax(MW) 100 

 
Table IX: Information of Generator in Power Grid 

  Gmax(MW) Gmin(MW) A($/MW2) B($/MW) C($) 
Rmax

（MW/h） 
G1 1800 0.01 0.0333  24.43  75013.58  300 
G2 1200 0.01 0.0367  27.12  22567.01  300 
G3 1000 0.01 0.0350  31.75  26281.83  300 
G4 1050 0.01 0.1133  -9.11  35006.76  300 
G5 1000 0.01 0.0650  0.68  28254.66  300 
G6 1050 0.01 0.1133  -9.11  35006.76  300 
G7 1000 0.01 0.0650  0.68  28254.66  300 
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Appendix VI. Structure Deriving From Modification of Current Scheme in China 
 

This scheme is created to solve the over-shifting phenomenon in China. As described in section I, one critical reason to this 
phenomenon is that a same shape of TOU is offered to too many consumers. In China, two schemes with a same shape of TOU 
are applied currently.  

Ø Scheme 1: 
Fig.A.1 reveals the first schemes with fixed TOU shape (Scheme 1). This scheme is a typical structure of regulated power 

market. Most of consumers are offered a fixed electric price. The TOU is fixed by governmental pricing department and is 
offered to large consumers and sometimes residential consumers. Though prices for consumers under different voltage levels or 
different industries may be different, the shape of TOU price is the same [江苏地区大工业峰谷电价表]. Under this scheme, 
power grid utility is operating 3 functions. The first function is the agent of all consumers on electricity purchase under this 
scheme. The second function is the trading platform with generations. And the third function is the power grid operations. 
Though the second round reformation of electric power system in China is started in Oct 2015. There are about 20% of energy 
trading is released into deregulated market. 80% electricity trading are still under scheme 1 in Fig.A.1 [3个参考文献，说明第
二次电力体制改革只有部分开放].  

 
Fig.A.1: Scheme 1 with Fixed TOU Shape in China. 

Following the idea in this paper, the scheme 1 in Fig.A.1 can be modified into a new scheme in Fig.A.2. OSCs are selected 
from the consumers group and forms an OSCs group. Fixed shape TOU price and the fixed price are still offered to rest 
consumers (non-OSC). The selected OSC may choose to join the new tariff with independent dynamic price. In this case, the 
power grid utility still performs as the agent of OSCs, trading platform between OSCs and Generations, and the power grid 
operation. If the independent dynamic price can shift load of OSCs, then load concentration at peak time can be decreased.   

At the aspect of benefit, the entire profit comes from the trading cost reduction from generation for incremental cost of 
generation is reduced by peak reduction. OSCs and power utility will both share this profit. The benefit for OSCs is ensured by 
constraint 1 in Equation (3). The rest benefit will be left in power grid utility. Due to the suitability of payment on work duty, a 
more accurate description is that benefit other than OSCs belongs to the agent function of OSCs in power grid utility. 

 
Fig.A.2: Scheme 1 Modified with The Proposed Scheme 
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Ø Scheme 2: 
The other scheme with fixed TOU shape in shown in Fig.A.3. It is a kind of deregulated power market. Agents of 

consumers, power exchange centre and power grid utility are independent to each other. But the deregulated trading corpore is 
the entire energy quantity within a long time period for consumers. The relatively high/low relation between hourly prices are 
still fixed by a given TOU shape. In other words, bidding from consumers with higher/lower price in power exchange center 
means to raise/reduce the entire TOU price to higher/lower level without changing the shape.  Scheme 2 is generated in the 
second round reformation of electric power system in China is started in Oct 2015. In the reformation document released by 
Chinese central government, policies of daily dynamic pricing can be independently constructed by each power exchange centre 
with consideration of local situations [9号文]. Then power exchange centres in many provinces choose to keep the old TOU 
shape and only release the entire energy trading to the market. Typical areas with deregulated power market and fixed TOU 
shape includes Guangdong, Jiangsu, XXX [各省份的交易政策文件]. As the load shifting direction under a same shape of TOU 
are usually similar, scheme 2 may also forms over-shifting phenomenon.  

 
Fig.A.3: Scheme 2 with Fixed TOU Shape in China. 

Following the idea in this paper, the scheme 2 in Fig.R.3 can be modified into a new scheme in Fig.A.4. It is quite similar 
to Fig.A.2. OSCs are separated from consumer group and offered an independent agent. This new tariff is recognized as a small 
new market to trade with generations. In this case, agent can reduce the trading cost with generation by providing independent 
dynamic price to OSCs. Same as Fig.A.2, the entire profit comes from the trading cost reduction from generation for 
incremental cost of generation is reduced by peak reduction. The benefit for OSCs is ensured by constraint 1 in Equation (3). 
The rest benefit will be left in power grid utility 

Different from Fig.A.2, agent function, trading platform and the power grid are independent to each other. Thus, the benefit 
of the new tariff will be shared by OSCs and their agent. Benefit of OSCs is still ensure by Equation (3) and the rest belongs to 
agent. 
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Fig.A.4: Scheme 2 Modified with The Proposed Scheme 

Ø Summary: 
Due to the similarity between Fig.A.2 and Fig.A.4, the proposed idea can be summarized in Fig.A.5. It means that policy 

maker can promote a DR scheme to compensate the traditional scheme 1 or scheme 2, if facing over-shifting phenomenon. The 
newly proposed DR scheme is to select a section of consumers with large load shifting potential and willing so that their load 
can be shifted in non-peak period to reduce the entire peak load. Benefit from the peak load reduction is represents by the 
trading with generation. No matter facing scheme 1 or scheme 2, the proposed idea can be promoted in similar way. The 
difference between implementation on scheme 1 and scheme 2 is that the benefit of agent from the proposed scheme belongs to 
power utility in scheme 1. And the benefit of agent belongs to independent agent in scheme 2. 
 
 
 
 
 
 


