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In this letter, probability density function (PDF) of the sum and max-
imum of non-identical fluctuating two-ray (FTR) variates are derived
in terms of the power and exponential functions. To this effect, novel
mathematically tractable expressions of the outage probability (OP) and
average bit error probability (ABEP) for both the maximal ratio com-
bining (MRC) and selection combining (SC) diversity receptions are
provided. The numerical results are affirmed by the Monte-Carlo simu-
lations for different scenarios.

Introduction: The sum and maximum of the random variables (RVs)
have been widely used to analyze the performance of the wireless
communication systems with maximal ratio combining (MRC) and
selection combining (SC) diversity techniques, respectively [1]. Hence,
the probability density function (PDF) of the sum of independent and
non-identically distributed (i.n.d.) Nakagami-m variates was derived
in [2] with applications to the outage probability (OP) and average bit
error probability (ABEP) of the MRC receivers. The PDF, cumulative
distribution function (CDF), and moment generating function (MGF) of
the maximum of i.n.d. Nakagami-m RVs were given in [3].

Recently, the fluctuating two-ray (FTR) distribution has been widely
employed in the literature. This is because, when it is used in modelling
the fading channel of the millimeter wave (mmWave) communications,
it gives more closer results to the practical measurements than the con-
ventional models [4, 5]. Accordingly, the OP and ABEP of the MRC di-
versity reception were analysed in [6] via using the statistics of the sum
of squared FTR RVs. However, both the PDF and CDF of [6] are eval-
uated numerically. This is because they include the confluent multivari-
ate hypergeometric function, �

(L)
2 (·), that is not available in the popular

software packages. Furthermore, the PDF of the maximum of arbitrar-
ily distributed FTR RVs was derived in terms of the multivariate Fox’s
H -function [7], whereas the performance of identical dual-branch SC
diversity was investigated in [8].

Motivated by the above considerations, the exact and asymptotic at
high average SNR values of the PDF of both the sum and maximum of
i.n.d. FTR variates are provided. In contrast to [6, 7], our expressions are
given in terms of power and exponential functions. Based on the derived
results, novel simple accurate mathematically tractable expressions of
the exact and asymptotic of the OP, ABEP, and EC of multiple-input
single-output (MISO) systems are obtained.

Statistics of ftr fading channel: The CDF of the instantaneous SNR at
ith receiver, γi, over FTR fading channel is given by [5, equation (7)]

Fγi (γ ) =
∞∑

ji=1

� ji

�( ji)(2σ 2
i )− ji

G
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)
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i K
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i d ji
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, mi is the fading severity index, Ki is the

average power ratio between the dominant component and the scatter-
ing multipath, 2σ 2

i = γ̄i/(1 + Ki) with γ̄i is the received average SNR,
G(·, ·) is the lower incomplete gamma function [9, equation (8.350.1)],

and the coefficient d ji is expressed as [10, equation (19)]
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where �i ∈ [0, 1] is the similarity of two dominant waves and Rμ
υ (z) is

defined in [10], equation (20)].
The asymptotic of the CDF in (1) at high average SNR values is ex-

pressed as [11, equation (18)]

Fγi (γ ) � mi(1 + Ki)d ji=1

�(mi)γ̄i
γ (3)

where d ji=1 is the value of d ji in (2) at ji = 1.
The MGF of γi is derived as [6, equation (4)]

Mγi (s) =
∞∑

ji=1

� ji (2σ 2
i ) ji

(1 − 2σ 2
i s) ji

(4)

Substituting (3) into Mγ (s) = sL[Fγ (x); s], where L[·] stands for
Laplace transform and recalling [9, equation (3.381.4)], the asymptotic
of the MGF at γ̄i → ∞ is deduced as

Mγi (s) � mi(1 + Ki)d ji=1

�(mi)γ̄is
(5)

Pdf of the sum of FTR variates: Let γi ∼ FT R(mi, Ki,�i, 2σ 2
i ), for

i = 1, . . . , L where L is the number of the RVs, following i.n.d. FTR
distribution. Then, substituting (4) into Mγ Sum (s) = ∏L

i=1 Mγi (s), the

MGF of γ Sum = ∑L
i=1 γi is written as

Mγ Sum (s) =
∞∑

j1,..., jL=1
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(6)

Inserting (6) in fγ Sum (γ ) = L−1[Mγ Sum (s); γ ], where L−1[·] denotes
the inverse Laplace transform. Thereafter, following the same steps as in
[12] to calculate L−1[

∏L
i=1(s − 1

2σ 2
i

)− ji ; γ ], the PDF of γ Sum = ∑L
i=1 γi

is obtained as
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When γ̄i → ∞, the asymptotic of (7) is obtained via inserting (5) in
fγ Sum (γ ) = L−1[Mγ Sum (s); γ ] and invoking [13, equation (5.4.1)]

fγ Sum (γ ) �
(

L∏
i=1

mi(1 + Ki)d ji=1

�(mi)γ̄i

)
γ L−1

�(L)
(9)
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Pdf of the maximum of FTR variates: The CDF of γ Max =
max{γ1, γ2, . . . , γL} of i.n.d. FTR variates can be computed via plug-
ging (1) in Fγ Max (γ ) = ∏L

i=1 Fγi (γ ) and utilizing [9, equation (8.352.6)].
Thus, this yields

Fγ Max (γ ) =
∞∑
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Employing equation (30) from [3], (10) can be rewritten as

Fγ Max (γ ) =
∞∑

j1,..., jL=1
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Applying Mγ Max (s) = sL[Fγ Max (γ ); s] for (11) and making use of
equation (3.478.1) from [9], the MGF of γ Max is derived as

Mγ Max (s) =
∞∑

j1,..., jL=1


 ji � ji �(1 + ϑ ji )s

(s + ϕt )1+ϑ ji
(13)

Using fγ Max (γ ) = L−1[Mγ Max (s); γ ] for (13) and with help of [13,
equation (5.4.4)] and [9, equation (8.970.1)], the PDF of γ Max is ex-
pressed as

fγ Max (γ ) =
∞∑

j1,..., jL=1


 ji � ji ϕtγ
ϑ ji e−ϕt γ (14)

The asymptotic of (14) can be obtained after inserting (3) in
Fγ Max (γ ) � ∏L

i=1 Fγi (γ ) and taking the partial derivative with respect to
γ , namely, fγ Max (γ ) = ∂Fγ Max (γ )/∂γ , to obtain

fγ Max (γ ) � L
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)
γ L−1 (15)

Truncating the derived pdfs: Assume each infinite series is truncated for
N terms with truncating error, ε(N ), that is given by [, equation (5)]

ε(N ) =
∫ ∞

0
fγ (γ )dγ −

∫ ∞

0
f̂γ (γ )dγ (16)

where f̂γ (γ ) is the approximate PDF.
Truncating each infinite series of (7) up to N terms, we obtain
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Plugging (7) and (17) in (16) and using the fact that
∫ ∞

0 fγ (γ )dγ � 1
and [9, equation (3.478.1)], this yields

εSum(N ) = 1 −
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(−2σ 2
i )l
il (18)

Similarly, εMax(N ) for the maximum of FTR RVs is obtained as

εMax(N ) = 1 −
N1,...,NL∑

j1,..., jL=1


 ji � ji �(1 + ϑ ji )

ϕ
ϑ ji
t

(19)

Table 1 explains the number of terms, N , that is required to satisfy
ε(N ) ≤ 10−5 for different L and channel parameters. It is noticed that
28 and 33 terms are sufficient to obtain the required accuracy for (18)

Table 1. Required N of (18), [6] , (19), and [7] to Satisfy ε ≤ 10−5

L mi Ki �i N (18) N [6] N (19) N [7]

1 8.5 5 0.35 23 28 30 32

2 8.5 5 0.35 25 29 33 35

2 5 3 0.5 28 31 34 37

3 25.5 3 0.48 16 18 23 25

and (19), respectively. Additionally, Table 1 shows that (18) and (19)
converge faster than [6, equation (9)/equation (10)] and [7], respectively.

Outage probability: The OP, Po, can be computed by [1, equation (1.4)]

Po =
∫ ϒ

0
fγ (γ )dγ = Fγ (ϒ) (20)

where ϒ is a certain threshold value.
According to (20), the OP of the MRC scheme, PMRC

o , is derived as
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o =

∞∑
j1,..., jL=1

	 ji

L∑
i=1

ji∑
l=1


ilG
(

l, ϒ

2σ 2
i

)
�(l )(−2σ 2

i )−l
(21)

The asymptotic expression of the OP is given as

PMRC
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)
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The diversity gain, Gd , that shows the increase in the slope of the OP
versus γ̄ , can de deduced from P∞

o � γ̄ −Gd . Hence, one can notice from
(22) that Gd is proportional to L.

The OP of the SC, PSC
o , can be computed by (11) and its asymptotic

can be obtained after plugging (3) in PSC
o = ∏L

i=1 Fγi (ϒ). It is obvious
that the Gd of SC scheme also depends on L.

Average bit error probability: The ABEP can be calculated by [1, equa-
tion (9.11)]

Pe = 1

2�(b)

∫ ∞

0
�(b, aγ ) fγ (γ )dγ (23)

where (a, b) = (1, 0.5) for binary phase shift keying (BPSK) and
(a, b) = (1, 1) for differential BPSK (DBPSK).

Inserting (7) in (23) and using [11, equation (6.455.1)], the ABEP of
MRC, PMRC

e , is given as

PMRC
e =

∞∑
j1,..., jL=1

	 ji
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il (−1)l (2σ 2
i )l+bab(b)l
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i a

)
(24)

where (·)a is the Pochhammer symbol and 2F1(·; ·, .; ·) is the Gauss hy-
pergeometric function [9, equation (9.14.2)]. It can be noted that, in [9],
the expression of the ABEP includes a multivariate Lauricella hyperge-
ometric function F (L)

D (·) that cannot be evaluated for DBPSK.
Substituting (9) into (23) and making use of [14, equation (2.10.2.1)],

the asymptotic of PMRC
e is obtained as

PMRC
e �

(
L∏

i=1

mi(1 + Ki)d ji=1

�(mi )γ̄i

)
(L)b

2L�(b)aL
(25)

From (25), one can see that the diversity gain of PMRC
e is also propor-

tional to L.
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Plugging (14) in (23) and recalling [9, equation (6.455.1)], the ABEP
of SC, PSC

e , is provided as

PSC
e =

∞∑
j1,..., jL=1


 ji � ji ϕt ab(b)1+ϑ ji

2(1 + ϑ ji )(a + ϕt )1+ϑ ji +b

× 2F1(1, 1 + ϑ ji + b; ϑ ji + 2; ϕt

a + ϕt
) (26)

In comparison with [7, equation (17)], (26) is written in simple func-
tions.

When γ̄i → ∞, the ABEP of SC is derived via inserting (19) in (25)
and using [14], equation (2.10.2.1)]. Thus, this obtains

PSC
e �

(
L∏

i=1

mi(1 + Ki)d ji=1

�(mi)γ̄i

)
�(L + b)

aL
(27)

It is evident from (27) that Gd is related to L.

Analytical and simulation results: In this section, the results for the
derived performance metrics are demonstrated for different scenarios.
A comparison is carried out between L = 1, MRC and SC schemes
with L = 2 and L = 3 branches with the fading parameters m1 = 3.5,
m2 = 4.5, m3 = 5.5, K1 = K2 = K3 = 3, and �1 = �2 = �3 = 0.5. To
obtain ε ≤ 10−6, N is chosen to be 40 for all scenarios.

Figure 1 plots the OP versus ϒ for γ̄i = 5 dB, whereas Figure 2 shows
the ABEP for BPSK and DBPSK modulations versus γ̄i. As expected,
the results improve when the combining techniques are employed. This
refers to the increase in the average SNR or/and diversity gain which is
related to L. In addition, as anticipated, the MRC outperforms the SC for
both cases of the number of the branches. However, the MRC has higher
implementation intricacy than the SC. For example, at fixed γ̄ = 5 dB

for all branches, the ABEP of DBPSK for MRC diversity reception with
L = 3 is nearly 78.1% and 96.4% less than that for SC receivers with
L = 3 and L = 1, respectively.

In all figures, the numerical results and their simulations that are ob-
tained by 106 iterations are consistent which confirms the correctness of
our analysis. In the same context, the asymptotic approximations at high
γi perfectly coincided with the exact results.

Conclusions: In this letter, simple mathematically tractable exact and
asymptotic expressions of the PDF of the sum and maximum of i.n.d.
FTR variates were derived. Then, the OP, and ABEP of the MRC and
SC receivers were analysed. The results explained that the system per-
formance can be highly improved via using diversity techniques. The
provided PDFs of this work can be used for a wide range of applica-
tions, such as the secrecy analysis of the PHY of MISO system.
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