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5MART: A 5G sMART Scheduling Framework for
Optimizing QoS Through Reinforcement Learning

Ioan-Sorin Coms, a, Ramona Trestian, Gabriel-Miro Muntean, and Gheorghit, ̆a Ghinea

Abstract—The massive growth in mobile data traffic and
the heterogeneity and stringency of Quality of Service (QoS)
requirements of various applications have put significant pressure
on the underlying network infrastructure and represent an
important challenge even for the very anticipated 5G networks.
In this context, the solution is to employ smart Radio Resource
Management (RRM) in general and innovative packet scheduling
in particular in order to offer high flexibility and cope with
both current and upcoming QoS challenges. Given the increas-
ing demand for bandwidth-hungry applications, conventional
scheduling strategies face significant problems in meeting the
heterogeneous QoS requirements of various application classes
under dynamic network conditions. This paper proposes 5MART,
a 5G smart scheduling framework that manages the QoS
provisioning for heterogeneous traffic. Reinforcement learning
and neural networks are jointly used to find the most suitable
scheduling decisions based on current networking conditions.
Simulation results show that the proposed 5MART framework
can achieve up to 50% improvement in terms of time fraction
(in sub-frames) when the heterogeneous QoS constraints are met
with respect to other state-of-the-art scheduling solutions.

Index Terms—5G, Radio Resource Management, Machine
Learning, Scheduling, Traffic Prioritization, QoS Optimization.

I. INTRODUCTION

The fast proliferation of affordable and high-end mobile

devices and the increasing popularity of bandwidth-hungry

applications (e.g., 360◦ video streaming, Virtual Reality (VR),

autonomous cars, etc.) have led to an exponential increase in

mobile broadband traffic putting significant pressure on the

underlying wireless networks [1]. Recent predictions show

that smartphones will generate more than 86% of mobile data

traffic by 2021 with 15% of the world’s mobile data represent-

ing VR traffic [2]. Looking at the current environment, it is

apparent that these high expectations cannot be achieved with

just a simple increase in system capacity without rethinking

the entire network architecture. Thus, the next generation of

wireless networks will integrate a number of hybrid solutions

and key technologies, such as beamforming, massive antenna

arrays or even a flexible RRM [3].

However, the integration of these hybrid emerging tech-

nologies will increase the complexity of the system even

more. Thus, there is a need for intelligent decision-making

solutions to enable a self-optimizing and self-organizing en-

vironment. One promising solution that could boost network

performance is the use of Machine Learning (ML). In the

context of 5G, an important entity that could benefit from the
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integration of ML is the RRM. Within RRM, the scheduler

aims at dynamically sharing the available resources between

the mobile users in each Transmission Time Interval (TTI).

Many scheduling schemes have been adopted to deal with

different QoS provisioning strategies for a wide range of

applications. In the frequency domain, users are competing

to get radio resources according to some scheduling rules

that focus mainly on certain QoS objectives. For example,

the Proportional-Fair (PF) [4] scheduler provides a trade-off

between user fairness and throughput maximization. For real-

time applications, the EXPonential (EXP) rule deals with delay

minimization [5]. Other frequency-based schedulers such as

the Opportunistic Packet Loss Fair (OPLF) [6] and the Barrier

Function (BF) [7] are designed to deal with Packet Loss Rate

(PLR) minimization and with meeting the Guaranteed Bit Rate

(GBR) requirements, respectively.

Frequency domain schedulers are used in conjunction with

time domain schemes to attain a certain prioritization between

traffic classes with heterogeneous QoS requirements. Most of

these hybrid schedulers will always favor users with more

stringent QoS requirements to be scheduled in the frequency

domain [8]–[11]. Moreover, the QoS provisioning scheme is

divided among time and frequency domains. For example,

the scheduler in [8] preselects users with the highest head-

of-line packet delay and the frequency domain focuses more

on meeting the GBR requirement for each preselected user.

The Required Activity Detection Scheduler (RADS) [10] deals

with delay minimization in the time domain, whereas the

frequency domain performs the PF scheduling rule to achieve

proper throughput-fairness trade-offs. To minimize PLR and

packet delay, the Frame Level Scheduler (FLS) [11] estimates

in the time domain the amount of real-time data to be

transmitted in the next frame, while the same PF scheduling

rule is performed in the frequency domain. In the frequency

domain, other schedulers use heuristic algorithms to minimize

the throughput loss that can be caused by the time domain

prioritization [12], [13]. In multi-user, multi-service and multi-

network environments, these decoupled time-frequency sched-

ulers could be employed together with network reputation

algorithms [14] to select the most convenient network that

enables QoS provisioning.

Due to application diversity and the heterogeneity of QoS

requirements, most of these state-of-the-art schedulers are

rather static, being unable to meet the QoS requirements under

dynamic networking conditions [15]. By performing time

domain prioritization under the same static metric, some traffic

classes will be over-provisioned while others will be starved,

resulting in poor QoS provisioning. Moreover, only certain

QoS objectives are targeted in each scheduling domain while

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior 
to final publication. Citation information: DOI10.1109/tnsm.2019.2960849, IEEE Transactions on Network and Service Management

Copyright © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective 
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



2

the remaining ones are ignored. To improve the scheduling

performance and significantly increase the fraction of time

(in TTIs) when the heterogeneous QoS constraints are met,

Reinforcement Learning (RL) is seen as a promising solution

[16] that will learn the most convenient scheduling strategy to

be applied in each scheduler state.

In resource scheduling problems [17], different RL algo-

rithms are studied to get the best policy for on-line parame-

terization of the PF scheduling rule to meet a given fairness

criterion. The RL solution proposed in [18] selects at each

TTI in the frequency domain the most suitable scheduling

rule to maximize the multi-objective QoS target in terms of

GBR, delay and PLR for homogeneous traffic only. Similarly,

a RL framework is proposed in [19] for homogeneous traffic

with constant and variable bit rates, to deal with delay and

PLR objectives. The work in [19] provides a comparison

between different RL algorithms and aims to find the most

suitable scheduling policy for various time window lengths

used to compute the online PLR indicators. Compared to such

approaches where only homogeneous traffic is considered,

this work proposes an intelligent 5G downlink scheduling

framework aiming at improving QoS provisioning in terms of

GBR, delay and PLR requirements for heterogeneous traffic.

However, to deal with heterogeneous traffic scheduling, a two-

stage learning approach is proposed in [20]. The first stage

employs a separate learning phase for each traffic class to

approximate the best scheduling rule to be used. The second

stage decides the best prioritization order of the traffic classes

at each TTI. Only when both learning stages are completed,

the entire structure can be exploited. Compared to [20], in

this work, the proposed framework will learn both decisions

at once, involving a much lower system complexity.

A. Contributions

We propose an intelligent 5G scheduler for OFDMA down-

link systems that makes use of dynamic traffic class selection

at each TTI in order to avoid QoS over-provisioning of some

classes while affecting others. The conventional OFDMA

access scheme is considered less complex and very efficient

when compared to the non-orthogonal schemes, making it

suitable for 5G networks [21]. In this context, the main

contributions of this work are as follows:

1) 5MART Scheduler Framework: an intelligent 5G downlink

scheduler able to change dynamically (at each TTI) based on

current scheduler states: a) the traffic class to be prioritized at

first in the time domain and b) the most convenient scheduling

rule to be performed in the frequency domain; the aim is to

increase the fraction of time (in TTIs) when the heterogeneous

QoS constraints are met.

2) Neural Network Approximation: Due to its simplicity and

reduced complexity, a Neural Network (NN) is employed as a

non-linear function approximator to provide scheduling deci-

sions at each TTI. The neural network takes the instantaneous

scheduler state as input and provides as output the multi-

dimensional decision vector which is decoded in traffic class

prioritization and scheduling rule selection.

3) 5MART RL-based Intelligent Controller: an intelligent

controller that uses a light-weight Actor-Critic RL algorithm to

Fig. 1. Proposed 5MART framework.

update at each TTI the neural network based on the interaction

with the 5MART scheduler; we extend [22] by focusing on low

complexity in order to target online deployment.

4) State Space Compression: Additionally, an aggregation

technique is introduced for the scheduler state space to elim-

inate the dependence on the number of users for each traffic

class. This reduces the complexity of the proposed 5MART
framework and enhances the learning performance.

B. Paper Organization

This paper is organized as follows: Section II presents

the system model. Section III introduces the 5MART RL

framework and the Actor-Critic RL scheme is detailed in

Section IV. Simulation results are presented and discussed in

Section V and the paper is concluded in Section VI.

II. SYSTEM MODEL

The OFDMA downlink transmission is considered, where

the available bandwidth is divided in Resource Blocks (RBs),

the smallest resource unit that can be allocated to a user within

a single TTI. In order to accommodate bandwidth-hungry

traffic classes with very high data rates, we make use of carrier

aggregation where a number of C carrier components are

considered. Since a user can be scheduled on multiple carrier

components, both time and frequency prioritization domains

support joint scheduling on multiple carrier components. A

User Equipment (UE) is characterized by a wide range of

traffic classes, such as: 360◦ video, virtual reality, augmented

reality, gaming, 2D video, VoIP, File Transfer Protocol (FTP),

etc. Each of these traffic classes are constrained by different

QoS requirements in terms of GBR, PLR and packet delay.

Any UE can switch its state from idle to active and back

to create a dynamic environment. The set of most used

parameters is listed in Table I.

A. 5MART Scheduling Model

Fig. 1 presents the proposed 5MART system model as an

interaction framework between a specialized controller and the

decoupled time-frequency packet scheduler. In TTI t, a state is

perceived including observations and network measurements,

such as: QoS indicators, channel quality measurements, etc.

Each perceived state is used by: a) the intelligent controller to

decide the traffic class to be prioritized in the time domain and

the scheduling rule to be employed in the frequency domain; b)
the packet scheduler to perform the resource allocation given

the priority order and the scheduling rule a priori decided.

The scheduler controller compresses the initial scheduler state
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Table I List of Notations
Parameter Description

P Set of traffic classes in the priority order given by [23]
p, P Arbitrary traffic p ∈ P , max. no. of traffic classes
D Set of scheduling rules
d Arbitrary scheduling rule d ∈ D
D Max. no. of scheduling rules
B Set of resource blocks from different carriers
b Arbitrary resource block b ∈ B
B Max. no. of resource blocks
Up Set of active users belonging to class p ∈ P
u Arbitrary user u ∈ Up

Up Max. no. of users belonging to class p ∈ P
O, o Set of objectives, arbitrary objective o ∈ O
xo,p,u QoS indicator of o ∈ O, user u and class p ∈ P
x̄o,p,u QoS requirement of o ∈ O, user u and class p ∈ P
Γd,u Utility function of rule d ∈ D and user u ∈ Up

S Continuous and multi-dimensional scheduler state space
s Momentary scheduler state s ∈ S at TTI t
c Controllable sub-state at TTI t as a subset of s ∈ S
A Discrete and two-dimensional controller action space
a Momentary action a ∈ A decided at TTI t

r(c′, c) System reward value received at TTI t+1
z Controller state at TTI t (compressed scheduler state)

H̄∗(z) Approximation of optimal state-value function
A(z) Approximation of optimal action-value function
L,LH Total number of NN layers, number of hidden layers

W+
l,l+1 Biased matrix of weights between layers l and l+1

ec, ea Critic and actor errors, respectively
π(A | z) Probability of selecting decision vector A in state z

in order to obtain a fixed dimension and make the learning

procedure possible. The internal structure makes use of a

feed forward neural network which is learnt over time by

an actor-critic RL algorithm to approximate based on the

received compressed state, at each TTI, the best traffic class

to be prioritized and the best scheduling rule to be applied

in the frequency domain. For time domain scheduling, we

consider the set P of traffic classes initially prioritized, as

follows: P={1(red square),...,p(green circle),...,P (blue trian-

gle)}, where class 1 requires the highest priority while class

P is associated with the lowest priority among P number

of traffic classes. However, at TTI t, the proposed 5MART
controller may decide to violate the initial ordering scheme

by deciding to prioritize class p ∈ P (green circle) over

other traffic classes. In frequency domain scheduling, users

requesting traffic p ∈ P are competing to each other in

order to get the maximum number of radio resources. We

consider the frequency band as a set of equally distributed

RBs over a number of C carrier components, as follows:

B = {1, 2, ..., B}, where B is the number of aggregate

RBs. To exchange the scheduling information (e.g., controller

decision, QoS indicators, etc.) between multiple component

carriers, the frequency prioritization or the RB allocation is

jointly performed on all carriers. The selected scheduling rule

aims to quantify the selection of each RB b ∈ B for each

user belonging to p ∈ P in terms of QoS provisioning.

Once these metrics are computed for each b ∈ B and user,

the frequency prioritization allocates each RB to the user

with the highest utility metric. Once the RB allocation is

performed, the Transport Block (TB) size and the Modulation

and Coding Scheme (MCS) computation for each scheduled

user are separately performed on each carrier component.

For each traffic class p ∈ P , we associate the set of users

at TTI t defined as: Up = {u1, u2, ..., uUp
}, where Up is

the total number of users belonging to class p ∈ P . For

each user u ∈ Up, we define a set of three QoS objectives

O = {o1, o2, o3}, where o1 = GBR, o2 = PLR and o3 =
DELAY . Furthermore, we consider xo,p,u the QoS indicator

corresponding to objective o ∈ O and x̄o,p,u its associated QoS

requirement. Objective o ∈ O of user u ∈ Up is fulfilled if and

only if xo,p,u meets its requirement x̄o,p,u. To this extent, it is

said that all three QoS objectives O are met for user u ∈ Up,

if the QoS vector xp,u = [xo1,p,u, xo2,p,u, xo3,p,u] respects

its requirement vector x̄p,u = [x̄o1,p,u, x̄o2,p,u, x̄o3,p,u]. On

a larger scale, the set of objectives O is met for the entire

set of users Up if the vector of QoS indicators for class

p ∈ P xp = [xp,u1
,xp,u2

, ...,xp,uUp
] respects the intra-

class requirement vector x̄p = [x̄p,u1 , x̄p,u2 , ..., x̄p,uUp
]. On

the largest scale, our proposal aims to take the most suitable

prioritization decisions in order to increase the fraction of time

(in TTIs) when the QoS vector x = [x1,x2, ...,xP ] respects

the QoS requirements from vector x̄ = [x̄1, x̄2, ..., x̄P ].
In the time domain, a Static Prioritization (SP) scheme re-

veals that, regardless of the network conditions, the scheduling

process is conducted following the order P = {1, 2, ..., p −
1, p, p + 1, ..., P}, where the first prioritized class takes al-

ways most of the radio resources while degrading the QoS

provisioning of other classes with lower priority. To avoid this

drawback, the 5MART framework will decide at each TTI t a

new prioritization set P[t] = {p, 1, 2, ..., p−1, p+1, ..., P}, in

which, an arbitrary class p ∈ P will be allocated firstly, being

followed by the rest of classes from {1, 2, ..., p−1, p+1, ..., P}
depending on the amount of remaining resources. A more

ambitious framework would be able to modify at each TTI the

entire traffic order, such as for instance: {p, 5, p+ 1..., P, p−
1, ..., P − 1}. However, this approach would require a much

higher output dimension for the neural network that increases

the computational complexity of the system to the extent of

making it unsuitable for real-time scheduling.
In the frequency domain, users u ∈ Up are prioritized to

get as many resources as possible through the use of some

scheduling rules. We define the set of scheduling rules D =
{1, 2, .., D}, where each scheduling rule d ∈ D has a different

impact on meeting objectives {o1, o2, o3} ∈ O based on

current network conditions and traffic class requirements. Each

scheduling rule has an associated utility function Γd,p(xp,u),
that takes as input the QoS vector xp,u and provides the

priority order for each pre-selected user to be allocated in

the frequency domain on each RB b ∈ B [24]. Alongside

time domain prioritization, the 5MART controller is able to

dynamically select at each TTI a different utility function Γd

(the same for all classes each time) in order to contribute

to the framework performance by increasing the fraction of

time (in TTIs) when the heterogeneous requirements x̄ are

met by x. Once Pp[t] and Γd[t] are decided, the resource

allocation procedure follows four steps: metrics calculation,

RBs allocation, TB size calculation and MCS assignment. If

some RBs remain unoccupied once class p ∈ P is allocated,

then the scheduling is repeated for other classes by following

the order {1, 2, ..., p− 1, p+ 1, ..., P}.
B. Optimization Problem

Compared to classical resource allocation and user selec-

tion problem, the proposed optimization framework is more
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difficult to solve in real-time scheduling since both traffic

class and scheduling rule assignments need to be performed

at the same time. Our aim is to find the most suitable decision

variables (e.g., scheduling rule, traffic class, user selection and

RB allocation) that can maximize the optimization problem

from (1), subject to some constraints (1.a)-(1.m).

max
m,n,j

∑
d∈D

∑
p∈P

∑
u∈Up

∑
b∈B

md,p[t] · np,u[t] · ju,b[t] · Γd,p(xp,u[t])

·γu,b[t], (1)

s.t.∑
u
ju,b[t] ≤ 1, b = 1, ..., B, (1.a)∑

p
np,u[t] ≤ 1, u = u1, ..., uUp , p = 1, ..., P, (1.b)∑

u
np∗,u[t] = Up∗ , p∗ ∈ P, (1.c)∑

u
np⊗,u[t] = 0, ∀p⊗ ∈ P\{p∗}, (1.d)∑

d
md,p[t] = 1, p = 1, 2, ..., P, (1.e)∑

p
md∗,p[t] = P, d∗ ∈ D, (1.f)∑

p
md⊗,p[t] = 0, ∀d⊗ ∈ D\{d∗}, (1.g)

md,p[t] ∈ {0, 1}, ∀d ∈ D, ∀p ∈ P, (1.h)

np,u[t] ∈ {0, 1}, ∀p ∈ P, ∀u ∈ Up, (1.i)

ju,b[t] ∈ {0, 1}, ∀u ∈ Up, ∀b ∈ B, (1.j)

xo1,p,u[t+ 1] ≥ x̄o1,p,u, ∀p ∈ P, ∀u ∈ Up, (1.k)

xo2,p,u[t+ 1] ≤ x̄o2,p,u, ∀p ∈ P, ∀u ∈ Up, (1.l)

xo3,p,u[t+ 1] ≤ x̄o3,p,u, ∀p ∈ P, ∀u ∈ Up. (1.m)

In the maximization problem, γu,b[t] is the achievable rate

of user u ∈ Up on RB b ∈ B at TTI t. Basically, γu,b[t] is

the maximum number of bits that can be transmitted on RB

b ∈ B if user u ∈ Up would have the highest priority. This

number of bits is calculated based on the Channel Quality

Indicator (CQI) transmitted as a control message from each

UE to the base station, evaluating the link quality on each

RB b ∈ B. In (1), ju,b[t] is the resource allocation variable

(i.e., ju,b[t] = 1 if RB b ∈ B is allocated to user u ∈ Up
and ju,b[t] = 0, otherwise). These variables are subject to

constraints (1.a), according to which, a single user can get

more than one RB, but a RB itself cannot be allocated to more

than one UE. The variable np,u[t] selects the traffic class to

be prioritized (i.e., np,u[t] = 1, if class p ∈ P is prioritized,

and np,u[t] = 0, otherwise). Each user can receive at each TTI

at most one traffic class, as shown in (1.b). Constraints (1.c)

indicate that only the active users requesting the prioritized

service class p∗ ∈ P are passed to the frequency domain, while

other classes p⊗ ∈ P\{p∗} are avoided this time, as shown

by constraints (1.d). Indicator md,p[t] is the scheduling rule

assignation variable (i.e., md,p[t] = 1 if scheduling rule d ∈ D
is assigned for scheduling to class p ∈ P , and md,p[t] = 0,

otherwise). Only one scheduling rule can be assigned at once

for each active user of each class p ∈ P as shown by (1.e). For

complexity reasons, the same scheduling rule will be assigned

to all traffic classes. This is revealed by (1.f) and (1.g).

Constraints (1.h)-(1.j) make the entire problem combinatorial.

The adopted solution that solves the problem from (1), should

be able to select at each TTI the best assignation variables

{np,u,md,p} ∈ {0, 1}, such that constraints (1.k)-(1.m) are

met when the scheduling task evolves to the next TTI.

The optimization problem in (1) is difficult to solve due to:

a) the assignments of scheduling rule, prioritized traffic class,

users and RBs having to be jointly performed in order to keep

the linearity of the problem; this requires a very high decision

space where a solution must be found at each TTI; b) such

combinatorial problems are generally NP-hard; c) constraints

(1.k)-(1.m) require a priori knowledge on the performance of

QoS objectives at TTI t+1; in real-time systems, the QoS

provisioning in a given state is evaluated only when the system

evolves to the next state.

To solve such a complex optimization problem, we split the

framework in sub-optimal sub-problems where: (a) we decide

the traffic class to be prioritized and the scheduling rule to

be applied; and (b) we perform resource allocation according

to the pre-selected users and selected scheduling rule. To this

end, we use reinforcement learning to find the approximations

for the best scheduling decisions to be applied in every state.

C. 5MART RL-based Scheduling Solution

The proposed 5MART RL framework aims to determine the

assignment variables {md,p[t], np,u[t]} by deciding the most

appropriate traffic class prioritization and scheduling rule in

each current state. Based on the interaction with the RRM

environment, the intelligent controller learns over time to take

the best scheduling decisions such that the heterogeneous QoS

provisioning will reach the highest outcome in each state as

requested by constraints (1.k)-(1.m). This stage is entitled

learning. Since the state-action pairs cannot be enumerated

exhaustively due to multi-dimensional and very large scheduler

state space, we adopt the neural network representation to

approximate the best scheduling decisions at each TTI. To

improve the learning speed and accuracy, we employ an actor-

critic RL scheme that makes use of two neural networks:

a) the actor NN is learnt to provide appropriate scheduling

decisions; b) the critic NN is used to decide when the actor

NN weights are updated based on the applied scheduling

actions. In the exploitation stage, only the actor NN is im-

plemented at the controller level. In order to get aligned with

the terminology and data formats from the machine learning

domain, the upcoming section provides the prospects needed

when employing a RL-based solution to enhance the decision-

making in complex scheduling problems.

III. RL PROSPECTS IN SCHEDULING DECISIONS

At each TTI t, the RL controller perceives the current state
and takes an action. At TTI t+1, a new state is received based

on the previous applied action and scheduling/transmission

process. A reward value is calculated based on constraints

(1.k)-(1.m) to evaluate the effectiveness of applying the pre-

vious action in the previous state. The RL framework needs

a large number of state-to-state iterations in order to improve

over time its actions at each state. Then, at each iteration, the

selection of the previous action in the previous state must be

adapted based on the received reward value in current state.

When employing a NN-based RL framework to approximate

the decisions for our 5MART meta-scheduler, the adaptation
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process of the action selection at each iteration involves

essentially the refinement of neural network weights. In the

learning stage, the 5MART framework may decide to improve

or to evaluate the actor NN decisions according to some

probability distributions. If the improvement step is decided,

then a random output vector is considered to enlarge the

exploration of the scheduler state space. When the evaluation

step is decided, we aim to consider the output vector provided

by the actor NN. Whatever the decision is, the output vector

is decoded in traffic class prioritization and scheduling rule

selection. The actor NN weights are updated only when the

error to be reinforced through the critic NN is positive. The

learning stage continues for a high number of iterations until

the critic error gets stabilized and reaches a given threshold.

A. State Space
We define the measurable, multi-dimensional and contin-

uous scheduler state space as S = SC ∪ SU , where SC is

the controllable sub-space containing the QoS indicators and

users’ queue lengths; SU is the uncontrollable sub-space being

defined by CQI reports and data rates of given applications. As

the notations suggest, SC is related more to the scheduling de-

cisions taken each time, whereas SU is related to the stochastic

nature of the scheduling process. The momentary scheduler

state at TTI t is defined as: s[t] = [c[t],v[t]] ∈ S , where

c ∈ SC and v ∈ SU . The instantaneous controllable state is

a vector of c[t] = [x,x,q], where x = [x1,x2, ...,xP ] mea-

sures the accomplishment degree of QoS requirements, where

xp = [xp,u1
, ...,xp,uUp

] and xp,u = [xo1,p,u, xo2,p,u, xo3,p,u].
According to these values, we would like to know how far

each QoS indicator xo,p,u is from its own requirement x̄o,p,u.

For each objective, this element is calculated as follows:

xo,p,u =

⎧⎪⎨
⎪⎩
x̄o,p,u − xo,p,u, o = o1, x̄o,p,u > xo,p,u,

xo,p,u − x̄o,p,u, o ∈ {o2, o3}, xo,p,u > x̄o,p,u,

0, otherwise.
(2)

We try to highlight when these requirements are not met

in a momentary state in order to find out the best policy

of scheduling decisions that can immediately improve the

performance of QoS provisioning. Finally, q = [q1,q2, ...,qP ]
is the vector of queue lengths, qp = [qp,u1

, qp,u2
, ..., qp,uUp

],
where qp,u is the queue length of user u ∈ Up of class p ∈ P .

B. Action Space
The action space we are referring to is discrete and two-

dimensional being defined as: A = {a1, ... ,aD×P }, where

the action taken at TTI t a[t] = [p, d] gives to traffic class

p ∈ P the first priority to be scheduled and selects the

scheduling rule d ∈ D to perform the frequency prioritization.

Given the uncertainty v[t] = [v1,v2, ...,vP ], it is likely that

the controllable momentary state c[t] = [c1, c2, ..., cP ] will

evolve according to the decided action a[t] = [p, d]. Then, we

denote by c′(p,d) = [x′
(p,d),x

′
(p,d),q

′
(p,d)] the controllable state

that evolves according to the selected action and scheduling

transition function f : S ×A → SC :

c′(p,d) = f(s, p, d). (3)

The reward is calculated according to c′(p,d)[t+1] at each TTI.

C. Reward Function

The reward function measures the performance of applying

a given action a[t] = [p, d] ∈ A in state s[t] ∈ S such as [25]:

r(s, p, d)
(def)
= E

[
Rt+1|s[t] = s,a[t] = [p, d]

]
, (4)

where Rt+1 is the reward value at TTI t+1 and the expectation

E[·] is given due to the fact that s[t] ∈ S is considered as

random such that P(s[t] = s) > 0 and P(a[t] = [p, d]]) > 0
holds for all p ∈ P and d ∈ D. Under its original form, the re-

ward function depends on both controllable and uncontrollable

states. This makes the computation more difficult since the

CQI reports for each user u ∈ Up and class p ∈ P need to be

taken into account at each TTI. This may actually involve some

pre-processing stages to compress the CQI state for each traffic

class that can increase the complexity of 5MART framework.

Theorem 1: For any prioritized traffic p ∈ P and selected

scheduling rule d ∈ D in state s[t] = s, the reward will

be a function of consecutive controllable states, such as:

r(s, p, d) = r(c′(p,d), c, p, d) (proof provided in Appendix A).

In real-time systems, the reward value for each applied ac-

tion is not known in advance. We can only determine its value

once the scheduling is performed and the entire system evolves

in the next state, at TTI t+1, for example. Here, the reward

function can be considered as: r(c′(p,d), c, p, d) = r(c′, c). In

the reward computation, we would like to know how much the

QoS indicators x′[t+ 1] have been improved when compared

to x[t] from the previous state. We are implementing our

proposed reward function as follows:

r(c′, c) = R(c′)−R(c), (5)

where, R : SC → R[0,1] is the reward value that evaluates the

performance of meeting the QoS requirements for all traffic

classes. However, in (5) when all QoS requirements are met

in between two consecutive states, and R(c′) = R(c) = 1,

the reward is r(c′, c) = 1. When computing R(c), the

standardized and static prioritization between traffic classes

must be considered in respect of P = {1, 2, ...p, .., P}. To

this end, we propose the following computation:

R(c) =
P∑

p=1

P + 1− p∑P
h=1 h

·Rp(cp), (6)

where Rp is the QoS revenue for traffic class p ∈ P .

The weight in (6) sets the importance on meeting the QoS

requirements for each traffic class by respecting the order of

P . The 5MART learning framework aims to always maximize

R(c) and avoids the starvation of some lower priority classes

by properly selecting at each TTI the most suitable class to

be prioritized. The intra-class reward Rp(cp) is determined by

weighting the QoS revenues for each active UE, such that:

Rp(cp) =

uUp∑
u=u1

1

Up
·Rp,u(cp,u), (7)

where cp,u = [xp,u,xp,u, qp,u]. The QoS revenue of each user

u ∈ Up is calculated based on the following equation:

Rp,u(cp,u) =
1

3

o3∑
o=o1

Ro,p,u(co,p,u), (8)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior 
to final publication. Citation information: DOI10.1109/tnsm.2019.2960849, IEEE Transactions on Network and Service Management



6

where, co,p,u = [xo,p,u, xo,p,u, qp,u]. The sub-reward Ro,p,u is

determined according to GBR, PLR or delay objectives:

Ro,p,u =

⎧⎪⎨
⎪⎩
1− xo,p,u

x̄o,p,u
, o = o1, xo,p,u > 0, qp,u �= 0,

1− xo,p,u

xo,p,u
, o = {o2, o3}, xo,p,u > 0, qp,u �= 0,

1, otherwise.
(9)

When the reward Ro,p,u = 1, the objective o ∈ O is met.

The purpose of the 5MART framework is to increase the

number of TTIs when all objectives o ∈ O are met for the

entire set of active users u ∈ Up of each traffic class p ∈
P . However, if R(c′) ≥ R(c), then the applied action has a

positive impact in improving the overall QoS provisioning.

An important objective to be considered when maximizing

the global reward r(c′, c) is the PLR reduction. In general, the

PLR indicator for each user encapsulates two sub-components:

a) packet loss due to congestion; b) packet loss due to channel

errors. Both elements must be minimized in order to meet the

PLR requirements at each TTI. Packet loss due to congestion

can happen when failing to meet: a) the GBR objective,

since the user decoder may drop certain packets if the rate

requirements are not respected; b) the delay objective, since

packets waiting in the scheduler queue longer than the given

time bounds are dropped and declared lost. Consequently, the

5MART meta-scheduler aims to minimize this packet loss by

properly selecting the scheduling rule oriented on GBR or

delay objectives. Moreover, lower delay requirements than the

ones specified by standards are set in order to improve the

delay budget and minimize the packet loss even more. To

reduce the packet loss induced by channel errors, the PLR-

based scheduling rule can be selected in certain states. By

dynamically selecting the traffic to be prioritized at each TTI,

the service class requesting higher number of re-transmissions

can get more frames to meet the PLR objective.

D. Value Functions

We define the scheduling policy as a function of π :
S × A → [0, 1] that maps scheduler states distributions

over discrete action space [25]. For the purpose of time and

frequency prioritization decisions, we define the stochastic

policy π[(p, d) | s] as the probability of an action a[t] = [p, d]
to be selected in state s[t] = s, being written as follows:

π[(p, d) | s] = P[a[t] = [p, d]|s[t] = s]. (10)

According to the reward value received in each state and

the scheduling policy defined in (10), we would like to find

the function that can measure the sum of rewards from each

state-to-state iteration that can eventually guarantee the best

prioritization decisions in each state when starting with a given

and random initial state s[0] = s. In this sense, we need a

function that measures the value of accumulated rewards from

the initial state s[0] and underlies the given scheduling policy

π[(p, d) | s]. In the literature, this function is known as state-
value or simpler, value function, defined as follows [25]:

V π(s)
(def)
= Eπ

[∑∞
t=0

γtRt+1|s[0] = s
]
, (11)

where, the process (γtRt+1; t ≥ 0) is the accumulated reward

value being averaged from state to state by the discount factor

γ ∈ [0, 1]. This function needs to be redefined in order to

keep the same form as the computed reward function which

depends strictly on two-consecutive controllable states only.

Theorem 2: For any policy π that aims to optimize the

maximization problem in (1) and being constrained by (1.a)-

(1.m), the new value function Hπ : SC × SC → R becomes:

Hπ(c′, c) = Eπ

[∑∞
t=1

γt−1Rt|c[1] = c′, c[0] = c
]
, (12)

where the scheduling policy takes the form of π[(p, d) | (c′, c)]
denoting the probability of prioritizing traffic class p ∈ P and

selecting the scheduling rule d ∈ D when the current state is

(c′, c). The proof is provided in Appendix B.

We thus learn to apply the best prioritization decisions based

on consecutive controllable states and we eliminate the direct

dependency on the uncertainty given by the uncontrollable

elements. The aim of the learning stage is to update the value

function Hπ(c′, c) by following a given policy π at each

iteration in order to represent each state as accurate as possible.

We need a relation of this function within two consecutive

new states such as: (c′, c) and (c′′, c′). By following (12)

and considering the reasoning from the temporal difference

learning [16], the value function can be rewritten as follows:

Hπ(c′, c) = r(c′, c, p, d) + γ ·Hπ(c′′, c′), (13)

where c′′ = c[t + 2]. Therefore, we are at TTI t+2 and we

would like to update the value function based on the reward

value r(c′, c, p, d) when class p ∈ P and scheduling rule d ∈
D are applied in state (c′, c). The aim is to update the value

function based on high number of state-to-state iterations until

the optimality condition is met. The optimal value H∗(c′, c)
of state (c′, c) ∈ SC × SC is the highest expected return

when the entire scheduling process is started from state (c′, c).
The optimal function H∗ : SC × SC → R is determined as:

H∗(c′, c) = maxπH
π(c′, c) [25]. By reloading (13), we have:

H∗(c′, c) = r(c′, c, p, d) + γ ·H∗(c′′, c′). (14)

As the scheduler states (c′, c) cannot be enumerated ex-

haustively, the optimality of Hπ(c′, c) cannot be guaranteed.

Then, we use a neural network to approximate the optimal

value function such that H̄∗(c′, c) ≈ H∗(c′, c). In the learning

stage, the weights of the neural network H̄∗(c′, c) are refined

according to the selected actions in such a way that the dif-

ference/error between the target and NN output is minimized.

IV. 5MART SCHEDULER FRAMEWORK

The state (c′, c) ∈ SC × SC has a variable dimension

because the number of users Up may change from one TTI to

another for each class p ∈ P . In order to avoid this drawback

and reduce the complexity of 5MART framework, we propose

a compression scheme for the scheduler state space, where its

components can be modeled as normally distributed variables.

A. State Compression

Let us regroup the controllable instantaneous state as fol-

lows: c = [xo1 ,xo2 ,xo3 ,xo1
,xo2

,xo3
,q], where c = [ck]

with k = {1, .., 7}. Each component is decomposed per traffic

class such as: ck = [ck,p] where p = {1, .., P}. Considering a

fixed number of traffic classes, we apply statistical modeling
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on each component ck,p = [ck,p,u], where u ∈ Up. Then, these

elements are normalized using the formula:

ĉk,p,u =
ck,p,u

1
Up
·∑u′ cn,p,u′

. (15)

In (15), each normalized component ĉk,p,u can be con-

sidered as a product of random variables due to the uncer-

tainty given by (3), in which the evolution of controllable

state at TTI t+1 depends on s[t] ∈ S that includes both

c[t] ∈ SC and v[t] ∈ SU . According to [17], each vec-

tor ĉk,p = [ĉk,p,u1 , ĉk,p,u2
, ..., ĉk,p,uUp

], k = {1, 2, ..., 7},
p = {1, 2, ..., P}, can be modeled as normally distributed

variables. This allows the implementation of the mean and

standard deviation functions based on the maximum likelihood

estimators [17]. These functions take the following forms:

μ(ĉk,p) =
1

Up
·
∑uUp

u=u1

ln(ĉk,p,u), (16.a)

σ(ĉk,p) =

√
1

Up
·
∑uUp

u=u1

[ln(ĉk,p,u)− μ(ĉk,p)]2, (16.b)

where {μ(ĉk,p), σ(ĉk,p)} : R
Up → [−1, 1] are the mean

and standard deviation functions, respectively. These func-

tions are able to provide general statistics on QoS provi-

sioning for each traffic class. Using (16.a) and (16.b) for

all controllable components, the current state dimension of

7 × (U1[t] + U2[t] + ... + UP [t]) × 2 will be reduced after

compression to 7× 2P × 2. Thus, we define a representation

for the controllable state at each TTI t, such as: ĉ = [x̂, x̂, q̂],
where: (a) x̂ = [x̂o1 , x̂o2 , x̂o3 ] is the vector of compressed

QoS values and x̂o = [μ(x̂o,1), σ(x̂o,1), ..., μ(x̂o,P ), σ(x̂o,P )];
(b) x̂ = [x̂o1 , x̂o2 , x̂o3 ] is the compressed vector of differ-

ences between the instantaneous QoS and the corresponding

requirements; x̂o = [μ(x̂o,1), σ(x̂o,1), ..., μ(x̂o,P ), σ(x̂o,P )];
(c) q̂ = [μ(q̂1), σ(q̂1), ..., μ(q̂P ), σ(q̂P )] is the compressed

queue vector. For simplicity, we consider z = [ĉ′, ĉ] as the

previous controller state and z′ = [ĉ′′, ĉ′] the current one.

Thus, the 5MART framework learns based on the tuple {z′, z}
the approximations of the best action pairs a[t] = [p, d] to be

applied in each current scheduler state.

B. Approximations of Scheduling Decisions
Fig. 2 illustrates the architecture of our proposed 5MART

controller. We approximate the optimal value function by H̄∗ :
Ŝ × Ŝ → [−1, 1], where ĉ ∈ Ŝ . However, this function relates

only the state value according to some applied actions. Hence,

an additional function approximator that decides the action to

be applied in each state is defined and labeled as action-value

function: A : Ŝ × Ŝ → [−1, 1]N , where N is the output

dimension, set based on the number of traffic classes to be

prioritized and the number of scheduling rules. Then, the non-

linear representations of these functions are defined as follows:

H̄∗(z) = gv[θvt , ϕ(z)],

A(z) = ga[θat , ϕ(z)],
(17)

where {gv, ga} are the neural networks corresponding to state-

value and action-value functions, respectively, ϕ(z) is the

feature vector and {θvt , θat } are vectors with NN weights that

must be tuned at each TTI in order to get good approximations

of optimal state-value and action-value functions, respectively.

Fig. 2. Proposed 5MART controller.

As seen in Fig. 2, the architecture of neural networks

contains a number of layers interconnected by weight matrices.

For our 5MART model, we consider the same topology for

layers and interconnection matrices for both state-value and

action-value functions. The only difference is that the output

layer for the state-value function has one output pin, whereas

the output layer of the action-value NN has a number of N
pins. In general, a neural network is composed of L number

of layers considering the hidden and output layers only, while

the input layer is not counted. Then, the number of hidden

layers for each neural network is LH = L − 1. Each layer

is composed of a number of Nl nodes or linear/nonlinear

transformations, where l ∈ {1, 2, ..., L+1}. Given the fact that

the number of nodes for the input and output layers are known

for both state-value and action-value NNs (N1 = 7× 2P × 2,

Nv
L+1 = 1 and Na

L+1 = N ), then the number of hidden

layers (LH ) and number of neurons (Nl, 2 ≤ l ≤ L) are

determined beforehand based on a priori tests. Furthermore,

we consider the interconnection matrix of weights Wl,l+1 =
{wy, y = 1, .., Nl} = {wy,i; y = 1, .., Nl, i = 1, ..., Nl+1}
between layer l and l+1, where l ∈ {1, 2, ..., L}. In general,

the functional form of a neural network when the momentary

state z ∈ Ŝ × Ŝ is Forward Propagated (FP) from the input to

the output layer takes the following form:

FP (−→z ) = −→L L...
−→
L l+1

−→
L l...

−→
L 1(

−→z ), (18)

where −→z = zT and Ll is the layer operator that takes as input

the output vector of layer l, z(l) (including the bias point) with

a dimension of Nl+1 and provides as output the vector z(l+1)

with the dimension of Nl+1. The operator for each layer is

determined based on the following equation:
−→
L l(

−→z (l)
+) = ψl+1(W

+T
l,l+1 · −→z (l)

+), (19)

where −→z (l)
+ = [z

(l)
1 , ..., z

(l)
Nl
, z

(l)
Nl+1]

T is the biased input vec-

tor meaning that a bias node z
(l)
Nl+1 is added to vector of nodes

z(l) of each layer l excepting the output layer. A bias node is

always set to z
(l)
Nl+1 = 1 aiming to increase the flexibility of

the neural network in order to fit more generalized input data.

A bias node is added at each layer by extending the original

interconnection matrix of weights Wl,l+1 between layers l and

l+1 as follows: W+
l,l+1 = {w+

y , y = 1, .., Nl, Nl+1}, where

wNl+1 = [wNl+1,1, ..., wNl+1,Nl+1
] is the additional vector of
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Fig. 3. State transition and refinement of critic NN weights.

weights connecting the bias point of layer l with the hidden

nodes from layer l + 1. The bias points could be beneficial

especially when all input state elements are 0 (the output of

neural networks would always be 0) and the tuned bias weights

w+
y can help the neural network to adjust its output to its

corresponding target value given by (14). At each TTI t, a

total number of
∑L

l=1(Nl+1) ·Nl+1 weights for each neural

network is tuned until a given convergence criterion is met.

In (19), ψl : R
Nl → R

Nl is the vector of activation functions

defined as ψl = [ψ
(l)
1 , .., ψ

(l)
Nl
]T . The same type of activation

function is used by all nodes within one layer.

C. 5MART RL Algorithm
The proposed 5MART framework uses actor-critic RL algo-

rithm, in which the action-value or the actor neural network

takes scheduling prioritization decisions and the state-value

or the critic neural network criticizes the action taken at each

current state. During the learning stage, the 5MART framework

takes scheduling decisions according to a given policy. We

assume the scheduling process at TTI t+2, where the current

controller state is z′ = [ĉ′′, ĉ′] ∈ Ŝ × Ŝ . As shown in Fig. 2,

the critic NN determines at each iteration the error between

the target value at state z′ based on (14) and the forwarded

value at state z = [ĉ′, ĉ] ∈ Ŝ × Ŝ . If this error is greater than

zero, then the action taken in the previous state z is a good

choice and the actor NN must be reinforced. We define the

critic error function as ec : [−1, 1]4Dim(Ŝ)+1 → [−1, 1] being

calculated at each TTI by following the equation [22]:

ect+2(θ
v
t+1, z

′, z) = r(z, p, d) + γ · H̄∗(z′)− H̄∗(z), (20)

where the action taken in the previous state a[t+1] = [p, d] is

decoded from the decision vector provided by the actor NN.
The actor decision can select the improvement step in which

a vector with random elements is preferred instead of selecting

the output vector of the actor neural network; or it can select

directly the output of the actor network if the exploitation

step is decided. If A is the actor decision, then the policy of

selecting A[t+ 2] = A in state z′[t+ 2] = z′ is:

π(A | z′) =
{
[ε
(1)
t+2, ε

(2)
t+2, ..., ε

(N)
t+2] υt+2 ≥ εt+2,

[z
′(L+1)
1 , ..., z

′(L+1)
N ] υt+2 < εt+2,

(21)

where [ε
(1)
t+2, ε

(2)
t+2, ..., ε

(N)
t+2] is the decision vector with random

variables, υt is a random variable at each TTI and εt is the

decision parameter that aims to select at each TTI whether

an improvement or exploitation step is decided. When εt is

small, more improvements steps are decided, while when εt
increases, the actor NN exploits more its output decisions.

In the learning stage, the critic neural network is updated at

each TTI based on the error ec(θvt+1, z
′, z) which is calculated

according to (20). If ec[t + 2] ≥ 0, then the previous action

taken based on (21) in state z is a good option and the actor

NN must be updated by reinforcing the error vector:

eat+2(θ
a
t+1, z) = A−A(z), (22)

where eat+2(θ
a
t+1, z) : [−1, 1]2Dim(Ŝ)+1 → [−1, 1]N is the

actor error function. When compared to the critic NN where

only one output error needs to be reinforced, the actor NN

reinforces the error vector ea = [ea1 , e
a
2 , ..., e

a
N ] each time

when ec ≥ 0, where N depends on P and D.

The entire set of errors {ec, ea1 , ea2 , ..., eaN} are back-

propagated through the critic and actor neural networks, re-

spectively, with the scope of updating the matrix of weights

W+
l,l+1 from layer to layer. The back-propagation follows

the same principle for both neural networks, with the only

difference that the actor NN reinforces a number of N errors

from the output layer. The functional form of the Back-

Propagation (BP) procedure is given by:

BP (←−e ) =←−L 1...
←−
L l
←−
L l+1...

←−
L L(

←−e ), (23)

where ←−e = eT and operator
←−
L l takes the errors ←−e (l+1)

as

input from the output of layer l + 1 and gives the vector of

errors ←−e (l)
as output at the output of layer l [26]:

←−
Ll(
←−e (l)

) =W+
l,l+1 ·∇ψl+1[W

+T
l,l+1 ·−→z (l)

+]�←−e (l+1)
, (24)

where l = {L, ..., 2, 1}, ∇ψl = [ψ
′(l)
1 , ψ

′(l)
2 , ..., ψ

′(l)
Nl
]T ,

←−e (l)
= [e

(l)
1 , ..., e

(l)
Nl
]T and � is the Hadamard product.

Once the FP and BP computations are completed, the

value of each weight must be updated. Fig. 3 depicts the

transition between three consecutive states, where within each

pair of states, the way how each weight is updated for the

critic NN is detailed. On each node y of each layer l, the

following computations are available: (a) z(l)y as a result of

FP computation of momentary state z[t+1] on each node; (b)
e
(l)
y as a result of the BP computation on each node of the critic

error calculated based on (20); and (c) the derivative activation
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function ψ
′(l)
y obtained by propagating z through each layer l

and node y. Therefore, each weight wy,i that interconnects the

node y = 1, 2, ..., Nl + 1 of layer l to node i = 1, 2, ..., Nl+1

of layer l+1 is updated at TTI t+2 such as [26]:

wy,i[t+ 2] = wy,i[t+ 1] + ηt+2 · z(l)y · ψ′(l+1)
i · e(l+1)

i , (25)

where ηt ∈ [0, 1] is the learning rate. The actor NN follows

the same computations when the critic error ec ≥ 0.

Both learning rate ηt and decision parameter εt play im-

portant roles and must be updated at each TTI as the learning

process evolves. Parameter εt is incremented with a given step

in such a way that, at the beginning of the learning stage

more improvements steps are chosen, whereas at the end of

the leaning stage the controller experiences a higher number of

exploitation steps. On the other hand, the learning rate ηt must

be decremented as the learning process evolves from higher to

lower values since it is expected that at the end of the learning

stage the interconnection matrices will be less updated.

D. Decoding Actor’s Decisions

In both learning and exploitation stages, the multi-

dimensional and continuous actor decisions A(z) and A(z),
respectively, must be decoded in two-dimensional and discrete

action space a[t] = [p, d] ∈ A according to the maximum

number of classes P and scheduling rules D. Let us assume

that NP is the number of output pins needed to decode the

traffic class prioritization and ND the number of pins used

to decode the scheduling rule to be applied each TTI for the

frequency prioritization, where N = NP + ND. If we set

NP = P and ND = D, then the scheduling decisions are

taken as follows: a) at each TTI, in the time domain, the

traffic class with the highest output pin value gets the highest

priority to be scheduled; b) similarly, the scheduling rule with

the highest pin value is selected to perform the frequency

prioritization for the traffic class selected in a). Therefore,

part of the decision vector of the actor NN will be unused and

consequently, the errors reinforced on those pins are noisy.

This can lead to a very poor generalization of the input state

space and can affect the learning performance of both NNs.

Our proposed decoding technique aims to set a threshold

for each output pin. Then, the number of traffic classes can

be decomposed as follows:

P =
∑X

x
2px+py, {px, py} ∈ N, px1

�= px2
, ∀{x1, x2} ∈ N.

(26)

Using this decomposition, the output pins are clustered into

X groups, where a group of px pins are decoded together.

Conversely, a number of py pins are decoded independently.

Therefore, the number of pins needed to decode the traffic

class prioritization at each TTI becomes:

NP = py +
∑X

x
px. (27)

The same principle is applied when deciding the number of

output pins ND necessary to decode the scheduling rule index

in each current state. However, by using (27), all output pins

of actor NN are used when taking the scheduling decisions.

Algorithm I summarizes the proposed 5MART scheduling

framework. At TTI t+2, a new state (c′′, c′) is observed

and the reward r(c′, c, p, d) is determined based on (4)-(9).

Algorithm 1: 5MART Scheduling Framework based on
Actor-Critic RL Algorithm

1: for each TTI t+2
2: observe current state (c′′, c′), recall the previous state
3: (c′, c) and previous action a[t+ 1] = [p, d]
4: calculate the reward r(c′, c, p, d) based on (4)-(9)
5: compress both consecutive states and get [z′, z]
6: according to (15), (16.a) and (16.b)
7: forward propagate compressed states [z, z′] through
8: gv[θvt+1, ϕ] based on (18) and (19)
9: calculate the critic error ec(θvt+1, z

′, z) based on (20)
10: // criticize previous action a[t+ 1] = [p, d]
11: if ec(θvt+1, z

′, z) ≥ 0
12: forward propagate the compressed state z ∈ Ŝ × Ŝ
13: through the actor NN ga[θat+1, ϕ] based on (18)-(19)
14: calculate the multi-dimensional error ea(θat+1, z)
15: based on (22)
16: back propagate error vector ea = [ea1 , e

a
2 , ..., e

a
N ]

17: based on (23)-(24)
18: update weights θat+1 according to (25)
19: end if
20: back propagate error ec(θvt+1, z

′, z) based on (23)-(24)
21: update weights θvt+1 according to (25)
22: // act based on the learned policy
23: determine the decision vector to follow in current state
24: z′ based on (21)
25: decode the decision vector A(z′) into discrete version
26: a[t+ 2] = [p′, d′] according to (26) and (27)
27: end for

According to Sub-section IV.A, the perceived state (c′′, c′)
is compressed onto z′ = [ĉ′′, ĉ′] and the previous state z is

recalled. Both compressed states are propagated through the

critic neural network and the error ect+2(θ
v
t+1, z

′, z) is calcu-

lated according to (20). If the critic error is ect+2(θ
v
t+1, z

′, z) ≥
0, then the actor NN is updated as follows: a) the previous

compressed state z is propagated through the actor NN and the

previous decision vector is recalled; b) the multi-dimensional

actor error eat+2(θ
a
t+1, z) is determined based on (22); this

error is back-propagated by using (23), (24), and the weights

are updated by using (25). Whether the actor NN is updated

or not, the critic error is reinforced at each TTI by following

the same reasoning of (23) and (24) and the critic weights

are updated based on (25). According to (21), a new decision

vector is determined in the learning stage and decoded into a

new action a[t+ 2] = [p′, d′] based on (26) and (27).

V. SIMULATION RESULTS

The proposed 5MART framework was implemented in a

RRM-Scheduler C/C++ object oriented simulator [27] that

inherits the LTE-Sim [28] by incorporating new features

such as: decoupled time-frequency scheduler based on carrier

aggregation, compression techniques for the scheduler states,

scheduler controllers (RL algorithms and neural network ap-

proximations), etc. To evaluate the performance of the pro-

posed framework, we have used an infrastructure of 10 Intel(R)

4-Core(TM) machines with i7-2600 CPU at 3.40GHz, 64 bits,

8GB RAM and 120 GB HDD Western Digital storage. The

performance of the 5MART framework was compared with

state-of-the-art schedulers in the same networking conditions.

The aim of this section is threefold: a) to identify the sim-

ulated scenario and parameter settings for network, scheduler
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Fig. 4. (a) Learning rate function; (b) Policy parameter function; (c) Critic error (mean value) under different configurations

of hidden layers and nodes; (d) Normalized system complexity over the training stage.

Table II Parameter Settings
Parameter Value/Description

System Bandwidth/Cell Radius 100 MHz (500 RBs),
intra-band contiguous CA)/200m

Channel Model Jakes Model
Path Loss/Penetration Loss Urban Micro Cell/10dB

Carrier Frequency/DL Power 2GHz/43dBm
Frame Structure/Interfered Cells FDD/(6 for each CC)

User Speed/Mobility Model 3 Kmph/Random Walk
CQI Reporting Mode Full-band, periodic at each TTI

PUCCH Model Errorless
RLC ARQ Acknowledged Mode

(5 retransmissions)
AMC Levels QPSK, 16-QAM, 64-QAM
Target BLER 10%
Traffic Type Heterogeneous (20% 360◦ video,

60% 2D video, 15% VoIP, 5% FTP)
QoS Requirements [20Mbps, 10−3, 10ms] (360◦ video)

[1Mbps, 10−3, 150ms] (2D video)
[32kbps, 10−2, 50ms] (VoIP)
[256kbps, 10−6, 300ms] (FTP)

Max. No. of Users Variable: 12 (360◦ video),
36 (2D video), 9 (VoIP), 3 (FTP)

Time-Frequency Schedulers 5MART, RADS [10], FLS [11]
Frequency Schedulers PF [4], BF [7], EXP [5], OPLF [6]

RL Algorithm Actor-Critic
Learning/Exploitation Duration 10000s/500s

RL Discount Factor (γ) 0.99
NN Configuration (Optimum) (L = 2, LH = 1, Nl = 150).

and intelligent controller; b) to study different configurations

of neural networks and find the best trade-off between the

decision accuracy and system complexity; c) to compare the

performance of 5MART with RADS, FLS and SP schedulers.

A. Parameters Settings

We consider the OFDMA downlink scenario with a total

system bandwidth of 100MHz (500 RBs) consisting of C = 5
carrier components with 20MHz bandwidth each. Each car-

rier is represented by an urban micro-cell with a radius of

200m and FDD transmission mode. We consider the intra-cell

interference negligible while the inter-cell interference model

considers a cluster with 7 cells for each component carrier. We

run the 5MART framework only on the central cell of each

cluster, while other cells provide the inter-cell interference.

Jakes fading is used to model the downlink channels. More

details on the scenario settings can be found in Table II.

The packet scheduler works on the carrier component basis,

which means that separate Radio Link Control entities, re-

transmission schemes, TB and MCS calculations are consid-

ered for each carrier. Each RLC works in the acknowledged

mode and considers a maximum of 5 re-transmissions for each

erroneous packet. Packets failing to get successfully transmit-

ted within this period are declared lost. When computing the

QoS indicators such as PLR and average user throughput, we

use a moving time window of 1000 TTIs to collect the lost

packets and instantaneous user throughput, respectively. The

5MART framework takes decisions for both domains:

a) Time Domain Scheduling: we simulate P = 4 traffic

classes with the following load ratio [2]: 20% 360◦ video,

60% conventional video, 15% VoIP and 5% FTP traffic. The

QoS requirements for each traffic class are presented in Table

II [23]. We aim to increase the diversity of user channel

conditions to improve the generalization of the learnt feed

forward neural networks. Instead of considering each user

being characterized by all traffic types, we assume that each

user requests only one traffic type all the time. Then, the

total number of active users will be multiplied by four. In the

learning stage, we randomly switch UEs from idle to active

states and vice-versa to create a more dynamic environment,

where the maximum ranges are: U1 = 12, U2 = 36, U3 = 9
and U4 = 3. In the exploitation stage, the total number of

users is varied based on the predefined traffic load ratio.

b) Frequency Domain Scheduling: at each TTI, one of the

following scheduling rules is applied: PF oriented on fairness;

OPLF with the main focus on PLR; EXP rule that minimizes

the delay; BF that aims to respect the GBR requirements.

For the scheduler controller, the discount factor is γ = 0.99
to provide nearly the same importance when approximating

the value of two consecutive states. In Fig. 4.a, the learning

rate ηt is adjusted as the learning stage evolves in the sense

that, we learn more at the beginning of the learning stage by

setting higher ηt, and we learn less at the end of this stage by

decreasing ηt. As depicted in Fig. 4.b, parameter εt gets lower

values at the beginning of the learning stage to increase the

number of improvement steps and gets higher as the learning

stage progresses to increase the amount of exploitation steps.

Since a number of P = 4 traffic classes and a pool with

D = 4 scheduling rules are used, the actor neural network

needs 2 pins for each decision, where NP = ND = 2 and

(px = 2, py = 0). Therefore, the traffic class to be prioritized

is decided based on the following decoding principle: a)
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Fig. 5. Normalized number of TTIs when the QoS requirements are met by all users for: (a) 360◦ video traffic; (b) Conventional

video traffic. The 5th percentile of user throughput for: (c) 360◦ video traffic; (d) Conventional video traffic. Intra-class PLR

in terms of mean 95th percentile of packet loss rate in the range of: (e) [10,31] aggregate users; (f) [32,50] aggregate users.

prioritize class p = 1 if (z
(L+1)
1 ≤ 0, z

(L+1)
2 ≤ 0); b) prioritize

class p = 2 if (z
(L+1)
1 ≤ 0, z

(L+1)
2 > 0); c) prioritize class

p = 3 if (z
(L+1)
1 > 0, z

(L+1)
2 ≤ 0); d) prioritize class p = 4

if (z
(L+1)
1 > 0, z

(L+1)
2 > 0). Similarly, the other output pins

{z(L+1)
3 , z

(L+1)
4 } are decoded into scheduling rule decision.

The rest of the parameter setting is presented in Table II.

B. Learning Stage

Unfortunately, there is no measurable way to determine

in advance the internal structure of the neural networks in

terms of hidden layers and number of nodes for each hidden

layer. The optimal configuration of neural networks differs

from one optimization problem to another. In general, when

the neural network is too flexible (involving a high number

of hidden layers and nodes), the framework complexity is

higher and the obtained policy can overfit the input data if the

state space is not explored properly. On the other hand, when

the configuration is too inflexible (involving a low number

of hidden layers and nodes), the framework complexity is

lower but the learnt policy can underfit the data and gives

poor generalization of the scheduler state space. In both cases,

the critic error is continuously increasing given a certain point

in the learning stage. To minimize as much as possible the

overfitting and underfitting problems, the 5MART learning

framework aims to dynamically change the number of active

users within each traffic class at each 1000 TTIs. As it can

be observed from Fig. 4.c, the critic errors are generally

stable for the following configurations: LH = {1, 3, 5} and

Nl = {150, 200, 250, 300}, where l = 2, ..., L. The critic

mean error is much lower in the case of (LH = 5, Nl = 300)
due to the increased flexibility of the 5MART framework to

approximate the values of the previous states z ∈ Ŝ ×Ŝ in the

current states z′ ∈ Ŝ × Ŝ . The actor errors follow the same

trend for each considered configuration but at much lower

values. This is explainable since lower critic errors involve a

higher number of updates for the actor NN and consequently,

lower error values than other actor NN configurations.

In this context of learning in parallel different configurations

of neural networks, we also measure the accumulated reward

in order to get the error impact of different configurations.

Unfortunately, the highest reward gain between configuration

(LH = 5, Nl = 300) and (LH = 1, Nl = 150) is only

0.5%. Thus, we cannot get a much better performance from

the network by increasing the neural network topology. This

is because, when the network conditions are unfavorable

(high number of users, poor channel conditions), the reward

is still negative no matter what action is applied. Fig. 4.d

plots the normalized system complexity for the entire set of

configurations when considering the forward and backward

propagation procedures in the learning stages for both critic

and actor neural networks. In real-time scheduling systems,

it is not recommended to use the following configurations

for the 5MART scheduling framework: (LH = 3, Nl =
{200, 250, 300}) and (LH = 5, Nl = {150, 200, 250, 300}).
For these configurations, the learning stage requires a TTI

duration larger than 1ms, which is inappropriate even for the

LTE systems. However, when performing the offline learning

and exploiting the learned non-linear function in real-time

scheduling, we recommend the use of the neural network

configuration lower than (LH = 3, Nl = 200). By consid-

ering all these aspects, we compare our 5MART scheduling

framework with other state-of-the-art schedulers by taking into

consideration a minimal configuration of (LH = 1, Nl = 150).

C. Exploitation Stage

Figures (5.a)-(5.d) present the simulation results for 360◦

and conventional video traffic in the exploitation stage. First,

we monitor the normalized duration when all QoS require-

ments are met by all 360◦ video users under different config-

urations, as depicted in Fig. 5.a. As expected, the SP scheme
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Fig. 6. Intra-class QoS provisioning in terms of: (a) GBR requirements; (b) Delay requirements; (c) PLR requirements;

(d) GBR, delay and PLR requirements. Inter-class QoS provisioning in terms of: (e) heterogeneous PLR requirements; (f)

heterogeneous GBR, PLR and delay requirements.

that makes use of OPLF scheduling rule in the frequency

domain obtains the highest possible outcome in terms of

the time period when all QoS objectives are fulfilled. The

5MART scheduler provides a trade-off between SP-OPLF

and FLS/RADS scheduling schemes. Fig. 5.b illustrates the

normalized scheduling time when all QoS requirements are

met by all users belonging to the conventional video traffic

class. In this case, the FLS framework is over-provisioning

this second prioritized traffic class while the SP-OPLF scheme

is not able to provide video services when the number of

heterogeneous users goes above 20. The 5MART scheduler

represents a good trade-off between FLS and other schedulers

when the total number of users is U ≥ 30.

To quantify the gains from Figs. 5.a and 5.b, we represent

in Figs. 5.c and 5.d the 5th percentile of the Cumulative

Distribution Function (CDF) for the user’s mean throughput

belonging to 360◦ and conventional video classes, respectively,

over the exploitation stage. In Fig. 5.c, only a slight difference

can be noticed in terms of user throughput between 5MART
and SP-OPLF when there are more than 30 aggregate users.

However, a degradation higher than 1Mbps can be observed

for other two conventional scheduling schemes (RADS and

FLS), meaning that, other objectives are also affected such as

PLR and packet delay. For conventional video (Fig. 5.d), we

notice that 5MART has a higher degradation when compared

to FLS and RADS. This is because the 5MART scheduler

gives more resources to the first prioritized traffic class under

a higher number of aggregate users while still maintaining a

good trade-off between all traffic classes.

As noticed in Figs. (5.a)-(5.d), for up to 30 heterogeneous

users, 5MART provides near similar results when compared

to the best schedulers for each traffic class such as SP-OPLF

and FLS, respectively. Above this threshold, 5MART offers a

performance trade-off between 360◦ and conventional video

classes. Fig. 5.e illustrates the intra-class 95th CDF percentile

for the user PLR when the number of heterogeneous users

belongs to the range of [10, 31]. For this scenario, 5MART
respects the PLR requirements for all traffic types meaning

that, it can afford a higher number of aggregate users to be

served at the same time when compared to other schemes.

Fig. 5.f plots the same performance metric when the range

of aggregate users is [32, 50]. As expected, we observe that

5MART can accommodate more users. Even though there is

a PLR degradation for the conventional video traffic class,

5MART can still achieve a good trade-off between all traffic

classes when compared to the other schemes.

The intra-class provisioning of different QoS objectives for

each traffic type is highlighted in Figs. (6.a)-(6.d). For the

GBR and delay requirements (see Figs. 6.a and 6.b), 5MART
provides the best trade-off between the traffic classes. When

optimizing the PLR and all QoS objectives (Figs. 6.c and 6.d),

for 360◦ video, conventional video and VoIP traffic classes,

the 5MART meta-scheduler is the second best alternative while

providing the best performance for the last prioritized class, the

FTP traffic. It can be concluded that: FLS is over-provisioning

the video and VoIP traffic classes at the expense of degrading

its performance for 360◦ video and FTP traffic types; SP-

OPLF is over-provisioning the first prioritized traffic class

while harming the others; RADS aims to find a good balance

between the four traffic classes; finally, the 5MART scheduler

outperforms other candidates by indicating the best trade-off

between the traffic classes in terms of average scheduling time

when the per-class QoS requirements are met.

To quantify the trade-off when measuring the intra-class

QoS, Figs. 6.e and 6.f analyze the inter-class QoS performance

of all traffic classes at the same time. Fig. 6.e indicates that

the 5MART scheduler provides the best performance among

the other candidates in terms of the normalized scheduling
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V π(s)
(11)
=

∑
p∈P

∑
d∈D

{
Eπ

[ ∞∑
t=0

γtRt+1|s[0] = s,a[0] = [p, d]
]
· π[(p, d) | s]

}
(3)
=

∑
p∈P

∑
d∈D

{
Eπ

[ ∞∑
t=0

γtRt+1|c[1] = f(s, p, d),

s[0] = s,a[0] = [p, d]
]
· π[(p, d) | s]

}
=

∑
p∈P

∑
d∈D

{
Eπ

[ ∞∑
t=0

γtRt+1|c[1] = f(s, p, d), c[0] = c,v[0] = v,a[0] = [p, d]
]
·

π[(p, d) | s]
}

(∗)
=

∑
p∈P

∑
d∈D

{
Eπ

[ ∞∑
t=0

γtRt+1|c[1] = c′(p,d), c[0] = c,a[0] = [p, d]
]
· π[(p, d) | (c′(p,d), c)]

}

= Eπ

[∑∞
t=0

γtRt+1|c[1] = c′(p,d), c[0] = c
]
= Hπ(c′(p,d), c). (29)

time when the heterogeneous PLR requirements are met. When

compared to 5MART meta-scheduler and RADS, FLS gets the

worst PLR performance. By correlating Fig. 6.e with Figs. 5.e,

5.f, and 6.c, this is explainable since FLS is over-provisioning

certain traffic classes while failing to met the PLR require-

ments of other ones. By considering the normalized fraction

of time (in TTIs) when all heterogeneous QoS requirements

are met (Fig. 6.f), the 5MART scheduler provides gains up

to 50% when compared to other schedulers for a range of

U ∈ [20, 40] aggregate active users.

D. Considerations of 5MART Framework on 5G Technology

The proposed 5MART meta-scheduler presents high flexi-

bility and scalability when considering the 5G characteristics,

such as: numerology, 5G New Radio (NR), higher frequen-

cies, non-orthogonal access, mmWave communications. As a

result of the 5G numerology increase, the time slot duration

is much tighter. The 5MART controller can be learnt to

provide the time-frequency decisions for much shorter TTI

duration. Alongside the traffic prioritization and scheduling

rule selection, the 5MART controller can also dynamically

decide the TTI duration at each iteration based on the net-

working conditions. With the development of 5G NR, the

5MART meta-scheduler can be used on any TDD or FDD

configuration and frequency band. The 5G NR CQI table does

not influence the functionality of 5MART controller since the

consecutive controllable states are perceived, while ignoring

the uncontrollable scheduler sub-states, such as CQI reports.

For non-orthogonal access schemes, only the frequency-based

schedulers must be adapted to support mixed frequency-power

allocation. In mmWave communications, the 5MART meta-

scheduler can employ an additional functionality for the beam

selection management.

VI. CONCLUSIONS

This paper proposes 5MART, a scheduling framework which

maximizes the average scheduling time when heterogeneous

QoS requirements are met for diverse traffic classes. To make

the 5MART framework suitable for real-time processes, we

use an actor-critic RL framework to learn in each scheduler

state about the traffic class to be prioritized in time domain

and the scheduling rule to be performed in frequency domain.

Also, we employ a neural network to approximate the best

scheduling decisions at each TTI. Additionally, an innovative

scheme for the scheduler state space compression is provided

in order to reduce framework complexity and speed-up learn-

ing. Through extensive simulation results, we show that the

proposed 5MART framework provides gains in excess of 50%

when compared to other state-of-the-art schedulers when using

the neural network approximator with the lowest complexity.
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APPENDIX A: PROOF OF THEOREM 1

By starting with the reward definition from (4), this equation

can be developed as follows:

r(s, p, d)
(4)
= E

[
Rt+1|s[t] = s, a[t] = [p, d]

]
(3)
= E

[
Rt+1|c[t+ 1] = f(s, p, d), s[t] = s,a[t] = [p, d]

]
= E

[
Rt+1|c[t+ 1] = c′(p,d), c[t] = c,v[t] = v,a[t] = [p, d]

]
(∗)
= E

[
Rt+1|c[t+ 1] = c′(p,d), c[t] = c,a[t] = [p, d]

]
= r(c′(p,d), c, p, d), (28)

where (*) indicates that the uncontrollable state v[t] ∈ SU

can be reproduced at TTI t+1, when both controllable states

{c, c′} ∈ SC are known. The arrival rate of user u ∈ Up can be

determined knowing the elements {qu, q′u, xo1,p,u} at TTI t+1.

Also, the SINR levels for the allocated RBs can be estimated

when knowing the set of user throughput {xo1,p,u, x′o1,p,u}
within TTIs t and t+1, respectively. Consequently, the CQI

reports can also be approximated and reproduced for each user

u ∈ Up of each traffic class p ∈ P .

APPENDIX B: PROOF OF THEOREM 2

Based on initial definition from (11), the state value function

can be developed as shown in (29). The state value function is

a sum of expectations being given the set of discrete actions

a[t] = [p, d] ∈ A [16]. Then, this sum of expectations keeps

exactly the same form when applying the transition function

from (3). The property (∗) has the same meaning as in (28)

in which the dependency on uncertainty v[t] ∈ SU can be

eliminated when knowing the controllable set {c, c′(p,d)} at

TTI t and t+1, respectively. Finally, the state-value function

can be written as a function that depends on the consecutive

controllable elements in each state.
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