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The Genomics of Industrial Process Through the
Qualia of Markovian Behavior
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Abstract—A technique for registering and relating events that
cause an observable and definable system state is proposed.
Discrete events of system-state transfer are expressed by event
tracking and clustering in the form of contiguous quanta of data.
This approach is capable of describing typical processes in indus-
trial systems in a chain of codes that contain system input/output
parameters. The constituent nodes of the Markovian Processes
chain form a series akin to genes in the deoxyribonucleic acid,
repeatable and predictable. The process genes are the quanta of
information that aligns to represent a chain of activities (process).
They describe the causal links between occurring events forming
a pattern (pathway) that leads to a well-specified output (e.g.,
a product with a defect or otherwise). The creation of process
genomics requires the knowledge of system observed or latent
parameters (state) as well as the state change at specified time
intervals (discretization). The process genomics theory is tested in
an industrial case study for quality assessment and control of glue
dispensing in micro-semiconductor manufacturing. The resulting
definitions of the system state and interrelationship of control
parameters contribute to the development of the process genes.
The outcome of the gene alignment is the geometric interpretation
of the glue droplet formation. A predicted or observed droplet
within the production tolerance leads to a nondefective prod-
uct. The principle of creating production genomics is to find and
rectify the defect-causing genes or to disrupt the sequences that
lead to producing defective products, leading to a zero-defect
manufacturing process.

Index Terms—Data driven, dispensing technology, machine
learning, manufacturing, Markovian process, prediction, quality,
real time.

I. INTRODUCTION

YSTEMS equipped with sensory inputs should be able

to recognize and predict temporal sequences of events.
A sequence defines as an ordered series of events. Depending
on the type of events forms sequences, discrete, continuous,
or binary sequences are some examples of different kinds of
sequences. In real-life applications, we face these types of
sequences that can be categorized between the essential forms
of sequences.
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Sequential behavior analysis is a key element of human
reasoning, complex problem solving and decision making.
Especially, sequence learning is a major module of learn-
ing domains, such as natural language processing, machine
learning, adaptive control, temporal prediction, financial engi-
neering, genome sequencing, and so on [1]. The process of this
temporal information is also one of the fundamental aspects
of human intellectual ability and his desire to replicate this in
industrial automation and computing.

A sequential phenomenon of events can be expressed in
the form of an ordered or random list of symbols or num-
bers. The knowledge about the list of events can be enhanced
by, for example, registering the time they occur (timestamp).
Event sequencing is, therefore, registering as an observed phe-
nomenon at specified time intervals. The reported sensory data
in such time series can be compared with earlier data, and state
changes or nonchange be determined. Equipped with such pre-
liminary data and logical inference, there is a possibility to go
beyond, and that is event sequence prediction (ESP). ESPs
consist of predicting the occurrence of the next symbol(s) in
a sequence based on the previously observed symbols. If such
an occurrence has not been observed previously, then a new
event is registered.

It is safe to declare that the logic and chain of rea-
soning (theorem) of the proposed genomics of industrial
process (GIP) is closely related to temporal sequence learn-
ing (TSL) terminology. Imitating the human brain, the GIP
learning process exploits the temporal sequence and its ratio-
nale to explain and project the state of systems in time-space.

Sequence prediction is classified as an application of
sequential data and attempts to predict elements of a sequence
based on the preceding elements in

Si, Siv1, Sit2, Sj—>Sj+1
(Si, Sig1, Siv2, Sj.is given and 1 <i <j <o00) (1)

S;+1 is the definitive prediction output. When i = 1, we
predict based on all the previously occurred elements of the
sequence. When i = j, we predict based on just the next
element (e.g., Markovian processes).

Sequence classification is another example of sequence
prediction. It includes the prediction of a class label for a
specified input sequence. For example, deoxyribonucleic acid
(DNA) sequence classification falls into this category. Given a
DNA sequence of A, C, G, T (where each letter represents one
of the four basic constituent molecules collectively known as
nucleotides: 1) cytosine (C); 2) guanine (G); 3) adenine (A);
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Fig. 1. Example of gene prediction (borrowed from [4]).

and 4) thymine (T)) values, predict whether the sequence
codes for a coding or noncoding region [2], [3]. A genomic
DNA segment, such as AGTACGTCCGATGACT, is a string
of amino acids without any temporal connotation attached
to their order in the sequence. Fig. 1 shows an example of
how genomic sequencing can be used for gene prediction by
open reading frames (ORFs). Gene prediction is the process
of determining where a coding gene might be in a genomic
sequence. The length of functional proteins is from where the
DNA transcription begins (i.e., start codon), to where it ends
(stop codon). Therefore, a functional protein is searchable by
codons start and stop points in a DNA sequence. This is impor-
tant in gene prediction because it can reveal where coding
genes are in an entire genomic sequence. In this example, a
functional protein can be discovered using ORF3 because it
begins with a start codon, has multiple amino acids, and then
ends with a stop codon, all within the same reading frame.

There are two steps to make a sequence prediction which
are described as follows.

Step 1: Training sequences are the task of training of
a sequence prediction model by using some
previously seen sequences. For instance, a sequence
prediction model can be trained for machine opera-
tional and control sensors data for the prediction of
a specific type of defect in the manufacturing plant.
Use the trained sequence prediction model to
predict the new sequences (i.e., predict the next
element of a new sequence). For example, using
the trained defect prediction model to predict the
upcoming defects.

Interpreting and relating the sequence of events that occur in
a production process allows formulating the causal relationship
between events. The expectation of this activity is to create a
genetic construction of the process and is the main contribu-
tion of this research work. Such a construction is analogous to
medicine (i.e., good gene causes healthy outcomes, and bad
gene causes illness). It provides a perspective to predict the
outcome of a process (e.g., end product Defect/Pass) based
on the genetic constellation of the process, as the contigu-
ous, i.e., events chain up during the process life cycle. The
genetic register of the process will be saved in a gene/DNA of
the process library, where the “good genes” (optimum solu-
tion creating events) and “bad genes” (fail conducing events)

Step 2:
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and the sequence of their occurrences will be registered and
used for optimization purposes by encouraging good genes
and eliminating bad genes. In the latter case, by adjusting
machines, material, logic, etc., to prevent/avoid the occurrence
of bad genes (e.g., defect inducing events).

For ease of understanding and to explain event-based pro-
cess sequencing, the proposed GIP concept borrows some of
the classical terms and descriptors of genetics and genome
sequencing from biology science.

The proposed GIP registering technique is tested and vali-
dated through an industrial case study for quality assessment
in printed circuit board (PCB) fabrication and assembly man-
ufacturing. The creation of production genomics helps in
the prediction of defects and prevention through rectifica-
tion of the defect, causing genes, leading to a zero-defect
manufacturing process. To the best of our knowledge, such
an approach to in-process Quality Control and Management
is a step change compared with classical online—offline and
post-process quality analysis.

In the following sections, a review of the most rele-
vant sequence learning methods available in the literature is
presented, followed by a detailed description of the proposed
method and its application in an industrial case study. For
performance comparison purpose, the same experiment is con-
ducted by GIP and some other neural network (NN) methods
for defect prediction. The comparison helps the authors to
explain the merits and applicability of the proposed method
for problem solving in real-world industrial applications.

II. RELATED WORKS

Sequence learning’s problems complexity and diversity are
so varying that a single approach could be able to suffice
to master the field. In the literature, there are many differ-
ent applications for sequential learning, from the prediction
scheme in navigation [5] to pattern recognition and prediction
in [6]-[8].

Depending on the nature of the system and type of data,
several methods have been proposed and applied. In this sec-
tion, several relevant methods to the proposed technique will
be reviewed.

Machine learning techniques examine the pattern of seen
data and generate rules to discover recurring patterns. Machine
learning algorithms learn from a sequence of events and “expe-
riences” with respect to a class of tasks [9]. The concept of
machine learning is, therefore, the study of approaches and
methods which can be applied to generalization and learning
observed/seen instances pattern and construct rules in order to
make a prediction when faced with new instances [10]-[13].

A taxonomy of machine learning methods is presented in
Fig. 2 [10]. Different machine learning methods have different
approaches to learn sequences patterns. In the continue, some
methods which use TSL will be explained briefly.

Hidden Markov models (HMM) is a method deployed for
sequence learning (including both generation and recognition).
This model learns fundamental state transition probability dis-
tributions from observed data. The sequence generation can
apparently be managed by this type of model. A comparison
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Fig. 2. Types of learning.

of supervised and unsupervised learning approaches of HMMs
has been reviewed in [14]. After a theoretical comparison
of both methods, a controlled experiment compares results
obtained. The outcomes present that supervised learning meth-
ods performance is poor because they impose binding condi-
tions in terms of data labeling, involves applicants’ biases,
calculate unreliable results due to the absence of constructs
an efficient Maps with higher performance, and fewer appli-
cants intervene. Temporal-Difference [15] (used mainly in
reinforcement learning) and NN learning methods [16] are
other examples of sequential learning of temporal patterns.

A time series represents a sequence of acquired values that
are measured through time span. Such a series includes an
ordered sequence of observations of a finite-sequence length,
which are often taken through time span or space. For decades,
time series have been applied in prediction and forecast-
ing applications and theories. However, mostly, they rely
on mathematical equations, simulation and/or learning tech-
niques to represent the evolution of time series data. The
body of literature in time series is devoted to time-series
classification applications in machine learning and a wide
range of industries [17]-[19].
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One popular TSL-based machine-learning technique is
instance-based learning (IBL) [12]. In this technique, an
instance dictionary stores the set of representative instances.
New unseen instances would be classified according to their
relationship to previously seen stored instances. k-NN is
an example of the instance selection methods which were
developed based on IBL algorithms. £-NN is a typical example
of classification methods, in which a new instance is assigned
the label of many of the k dictionary instances according
to domain-specific “closest” or “similarity” measurement. In
temporal-sequence domains, the similarity or closest measure
is often taken to be the Euclidean distance [22]. This classifi-
cation method is between top-performing methods. However,
the complexity of IBS increases by growing the volume
of data. A distinctive problem in k-NN is deciding which
instances should be stored for generalization. Storing too many
instances require large memory space and slow computation
execution speed [23].

An evolutionary instance selection algorithm for IBL intro-
duced by de Haro-Garcia et al. [24]. Although evolutionary
algorithms are efficient in performance, a pitfall of them is
the essence of storing all training instances subsets in memory
space for large datasets, which might also impact the efficiency
of the testing task. A solution to this problem introduced
in [25] with an instance selection method that removes redun-
dant and noisy instances. Gong et al. [26] provided a survey
of existing techniques used to reduce storage requirements in
IBL algorithms, including different reduction and/or recon-
struction algorithms of the training set. However, such storage
reduction advantage usually becomes less interesting when
we know it compensates with accuracy reduction. One of the
recurrent problems with these instance selection methods is
that although significant reductions in storage requirements are
obtained, this reduction often comes at the cost of degraded
accuracy.

IBL algorithms have a wide range of applications,
from stock market prediction [27] to anomaly (Outlier)
detection [28]. In anomaly-detection tasks, the anomalies can
be formulated from learning of behaviors of the system in
terms of temporal sequences of data. Chandola et al. [29]
presented an approach to cast the anomaly-detection task
in an IBL framework. Their approach is to transform the
temporal unordered sequence of observations into metric time-
spaces via a similarity/closest measure that includes their
intraattribute dependencies.

With the growing availability of streaming online/real-
time data, there is a significant demand for online/real-time
sequence learning algorithms. With a focus on the TSL
terminology and IBL methods’ performance and storage
requirement problems, in the next section, an online/real-time
sequence learning algorithm named ESP technique with a
novel storage reduction method is introduced. This sequence
learning algorithm is more efficient in that it requires much
smaller computing and storage resources. The proposed ESP
technique learns the event of complex sequencing in real
time while existing types of learning (such as statistical
and machine learning) methods are not well suited to solve
such real and practical needs and desires from industrial
applications.
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ITI. SEQUENTIAL EVENT PREDICTION—THEORY OF
EVENT-BASE GENOMICS OF INDUSTRIAL PROCESS

The Microelectronic fabrication and assembly process at
times creates up to 50% defective products that need to be
thrown away. Classical quality control techniques mainly rely
on post-process quality assessment and statistical process con-
trol methods. Experts will then try to relate the patterns of
quality loss to machine and material states at the time of
production. Such techniques have limited impact and have
proven obsolete with modern manufacturing processes. The
intention here is to develop an accurate and applicable qual-
ity assessment and process correction system that could adjust
the production system so that during the process, potentials of
quality losses are identified in real time, the system is alerted,
and corrective measures taken, leading to the optimal prize
of zero-defect manufacturing (EU H2020 FoF Research and
Innovation Program under Grant 723906).

As reviewed in the related research and literature section,
all current data-driven and learning algorithms that could meet
such complex demand were not available. All learning-based
methods require training and large sets of data that neither
exists about the raw material feed, the state of the machine
and the type of defects generated. Furthermore, no formal and
verifiable data/knowledge exists of the correlations between
systems parameters that relate to quality loss (defect analytics).

The challenge was to develop and upgrade the real-time
data acquisition on the production process and find a method
of automatically interlinking the causal relationships between
raw material state as well as machine state and capability of
meeting product design specifications. This is especially timely
since, in industrial applications, quick understanding of the
state of the system (input parameters of system) and taking
action means savings and improvement in quality, productiv-
ity, energy efficiency and sustainability performance (latent
system outputs). Therefore, the closer the analysis and action
is to the live operations, the more useful they will be in prac-
tice. Furthermore, the application should be easy to implement
and follow by industrial controllers, operators, and decision-
makers. The proposed method introduces a general framework
for using the event-clustering technique [34] in ESP. It has
been named as a theory of event-based genealogy of process
since this prediction method borrows the terminology used
in genetics (in general terms) and, similarly, labels process
events. Akin to DNA chains, the string of events is symbol-
ized, representing manufacturing process causal relationships
and contiguous occurrences.

Analogous to the formation of polypeptides chains that man-
ifest themselves as functions of life at the molecular level, each
chain of signals in an industrial system registers function in
a process. The chains present the linear sequence of events
where a specific constellation can be interpreted as the build-
ing blocks of a process. For example, the chain of events that
forms the DNA of process that successfully produces a “good
product” or otherwise. The sequence of events that normally
leave a traceable signature produces a registrable gene. Some
constellations of genes (DNA) will lead to “good” products,
and some lead to defects. Identifying such defect generating
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events will eventually lead to detection and prediction of the
causes of a defect in a process (output). By identifying the
defect generating genes in the process, methods for detecting
them and countering (control reactions) or remedial actions
(change of pathway) will lead to reduction and elimination of
defect and waste in industrial systems. In this article, an exam-
ple of manufacturing, where the genome of defect type x is
presented as a sequence (or chain) of events (genes alphabet-
ically labeled) that shifts state of the system to the generation
of defect x is discussed. Defect x, for example, can be defined
as a combination of repeatable events labeled A-D (alphanu-
merically assigned), and defect x would happen if a sequence
of ABBCD occurs. A, B- - - are representative of distinguished
system states, which will be explained in detail in the next sec-
tions. Noteworthy, the application of this method is not limited
to quality control and could be used for other purposes such as
process control (stabilization) application. That is, instead of
the registration of bad genes that lead to defects, good genes
which make the system stable in an optimized or desired point
through registered scenarios/sequences can be registered.

What distinguishes the proposed ESP techniques from other
sequence learning techniques is its simplicity and the speed at
which it extracts and learns all existing sequential learning as
well as its storage reduction technique and then processes the
necessary information in near real time. There is no reliance
on a set of predefined rules, such as good or bad genes or
time-consuming investigation on the patterns. More impor-
tantly, unlike heuristic methods, the proposed technique does
not rely on any prejudgment of the data relevancy, that is, nor-
mally a characteristic of expert interference and in that respect,
it is an unbiased method.

A. Theorem of GIP

The assumptions and basic parameters of the proposed
EventTracker and Event clustering (EventiC), such as dis-
crete event system (DES), tigger data (TD) and event
data (ED), trigger and event threshold (TT, ET) are presented
in [30] and [31]. Further parameters of the proposed sequenc-
ing method are as the following.

1) Sequence: A Sequence is expressed as the value or state
of the actual I/O data at a given time instance. These
data can be expressed in a binary, integer, or decimal
format. For instance

(I, I, ..., If(Oq, ...

f;(01, ..., O,) represents the value of outputs at a
specified time instance.

2) GIP: A GIP is the sequence of events that lead to a
definitive output(s). The definitive outputs are observ-
able/measurable states (e.g., defect type x) called a
genome (process) of defect type x formation.

3) Length of GIP: The length of GIP is the number of ele-
ments (i.e., genes) in a sequence. At present, determining
the length of genomes are specified by the definition of
process (processing steps) or expert knowledge. Trial
and error in the period of learning can also be an
alternative.

, On). @
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B. Sequence Database

All labeled genomes are stored in a database called a lookup
table. These genomes are labeled, timestamped, and contain
a definition. This database is continuously updated with new
events and repeated events; thus, the gene pool will be iden-
tified after a period of observing the system. For each type
of industry, such genes become unique or shared. Thus, the
family trees of processes, machines, tools, and networks could
emerge.

C. Sequence-Generating Rules, Genealogy of Process

A set of rules and protocols govern the constraints and
objectives of the system. For example, a definitive output or
input boundaries and constraints could be defined by these
rules and with respect to the nature of the system studied.
A genealogy of process will emerge. With the advent of
machine networks and large-scale monitoring and integrated
systems, the necessary data for this process will exist. For
example, a specific machine that produces micro semiconduc-
tors will have a pedigree with shared genes with the same
brand, and more importantly, with other brands, such interre-
lationships will build the family trees, where behaviors and
patterns can be extracted for better control logic. New genera-
tions of machines/processes can be created by eliminating fault
generating machines leading to evolution and optimization of
the design.

D. Sample Scan Rate

Sample scan rate is a specified time interval, where the dura-
tion can potentially range from microseconds (high frequency)
to hours (low frequency) and is chosen by the system expert
based on the nature of the application. For example, appli-
cations such as safety systems require shorter scan intervals
between events, whilst other applications, such as wastewater
plant process require longer intervals [31].

E. ESP Algorithm

The proposed ESP ranks and groups the relationship
between system input and output parameters. A combination
of event tracking [31] and rank-order clustering (ROC) [30]
groups and assigns weights to the system input against
system outputs. The array of inputs and their weight vis-a-
vis system outputs are used in generating the event sequences
genomes and their likelihood of occurrence. In the following,
a step-by-step implementation of the method is presented.

1) Implementation of the EventiC Algorithm: The ESP
algorithm begins with dimensionality reduction through an
ROC technique. EventiC sensitivity analysis helps to find a
correlation between inputs and output and then calculate the
weight of impact of each input on the output parameters. It
runs ROC (See in Fig. 3) to identify the group of most relevant
inputs and outputs.

2) Definition of Rules and Definitive Output(s): The system
inputs boundaries and definitive output(s) are defined by a set
of rules. The system inputs boundary and constraint help the
outliers, such as noise removed from the dataset. Moreover, the
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Fig. 4. Genome labeling and sequential differentiation example.

rules set includes the definitive system outputs. The definitive
outputs are the range of outputs we are searching for as the
objective of our prediction. For example, if the aim is to predict
defects by the ESP algorithm, the definitive system output(s) is
the specific type of defects and their properties.

3) Genome Labeling and Sequential Event Differentiation:
The next step in the ESP algorithm is the labeling of the
events. According to the definitions, states (e.g., defect) detec-
tion is conducted. Then, based on the chosen genome length,
all contiguous sequences of events prior to the defect state are
labeled.

An example will demonstrate how patterns are discovered
patterns in event sequences. Fig. 4 illustrates the labeling and
sequence differentiation process. Here, the system observes
the definitive output(s) at 7 = 4. Then, the value of rele-
vant sequences will be read and labeled in the following time
sequences: to, 1, 12, 13, 4.

The first element in the sequence is registered at ty and
labeled as “A.” According to the EventiC output and TD/ED,
the second sequence labeled could be a new state differentiable
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to the prior state, only if the system state’s difference passes
the threshold, then a new label is assigned to the new state as
“B” this is continued until the moment of state E which is the
occurrence of the defect.

Subsequently, the formation of events from fg---t4, five
consecutive events form the genome strand “ABCDE.” Note
that in this example, only four prior events are considered
sufficient to form the genome of defect formation.

4) Training and Storing the Genomes: At the end of
the training period, all trained genomes/scenarios will be
stored in the sequence database as a lookup table. In real-
time prediction, these stored genomes will be used for the
prediction of the system trained definitive outputs(s) and
declaring the likelihood of occurrence. In the above exam-
ple, if during prediction, sequence A is detected, the likeli-
hood of defect will be 20% (1 out of five possible events.
Consequently, if “A”—“B”— “C”— “D” occurred in the real-
time prediction, more likely the next sequence is “E” unless
proven otherwise. However, if state E did not occur, and “F”’
occurs, the algorithm has detected two different genomes for
a definitive output, and the genome length must be extended
to six to generate new labels and genome.

E. Level of Confidence for ESP Results

The length of a GIP needs to be extended if the GIP
prediction leads to two different definitive outputs. The length
would be extended until the GIP meet a unique definitive out-
put. A case study is presented in the following section to
further explain the GIP implementation in a real industrial
case. Here, every step of the process is registered in the form of
a chain of events coded in the form of a sequence of genomes
representing the DNA of process scenarios that lead to good
or “defect” outcomes.

IV. DNA OF MICRO SEMICONDUCTOR
MANUFACTURING PROCESS

A defect-prone process of a PCB fabrication and assembly
is presented. The assembly process requires consists of dis-
pensing conductive glue on a Liquid Crystal Polymer (LCP)
substrate with tight design specifications; the microelectronic
components need to be precisely positioned on the wafer using
a machine. The process involves the placement and adhesion
of die/components the size of 800um x 900um) with con-
ductive paste into a laser-cut cavity. The assembly process is
undertaken on a mother panel containing 18 individual circuits
each circuit containing 20 components. Prior to the deploy-
ment of the proposed GIP, the placement machine did not
have any online optical inspection capability and no method
to automatically correct the amount of glue dispensed in real
time into the cavity. Consequently, a visual volumetric inspec-
tion of the assemblies (post-process quality control) took place
after batches of products were made; subsequently, an analysis
of machine and raw material states were made, and adjust-
ments were made to the machine retrospectively at a scheduled
maintenance period. Note that the old practice produced a
significant number of defects between 5% and 50%. As the
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Fig. 5. Single glue dot 2-D (left) and 3-D (right) images.

Air Pressure

Fig. 6. Time-pressure dispensing schematic [36].

design becomes more complex, the defects increase exponen-
tially. The glue dot dispensed volumes require to be controlled;
otherwise, it might lead to some severe defects. The possible
defects are as the following.

1) Excess of glue—leak up the excess of glue to the side

of the die causing solder shorts—action: reject to scrap.

2) Insufficient glue—it causes component adhesion

issues—action: rework/scrap.

The actual single glue dot is shown in Fig. 5. There is a
need to be able to improve this process and ideally control the
amount of glue being dispensed into the cavity automatically
and during the production process. As a first step, introducing
an online automated optical inspection machine would help to
provide the necessary data for analysis and trend learning.

A. Rheological Behavior of Glue

To define output system parameters (observational and
modeled), characterization of the time-dependent rheological
behavior of glue is conducted in [32]. With air compress-
ibility and liquid inertia consideration, an inferential model
of the dynamics of the flow rate of the dispensed liquid is
sensitive to the air volume in the syringe (i.e., the definitive
output). An experiment emulating the machine glue dispens-
ing was conducted in [33]. Given various glue characteristics,
needle conditions, operational and environmental conditions,
the experiments were repeated. Various control mechanisms
were deployed to capture and reduce inconsistency (e.g.,
defining the range of glue dispensing patterns; thus, the oper-
ational ideal (good drops) and nonideal drops (defective) were
extracted.

A schematic diagram of the system is shown in Fig. 6.
This is a schematic of a conventional time-pressure dispensing
process. An air supply is utilized to give pressurized air in a
blend with a valve to control the term of the pressurized air.
Through a transmission line, pressurized air is connected to
a syringe. In addition, the syringe pushes the liquid out of
the needle. Once the liquid is released from the needle, it



DANISHVAR et al.: GIP THROUGH QUALIA OF MARKOVIAN BEHAVIOR

drops onto a board, then it streams or spreads on the board
to the point that a balanced profile is shaped. The needle is
operational typically for 30 000 to 60000 and lasts 14 days.

The relationship between the amounts of dispensed glue,
glue level in the syringe, applied pressure, glue temperature
and machine depression (the needle age) have been taken
into consideration. This model shows a high sensitivity of
the amount of glue dispensed to applied pressure and glue
temperature, and the model can predict the amount of glue
dispensed.

B. Measuring the Volume of Glue Dot

Optical inspection is a nondestructive technique apply in the
electronic industry, including PCB defect detection. A com-
prehensive literature review in [34] appraises the techniques
used to detect defective PCBs. The review also analyzes the
inspection algorithms used for detection and interpretation of
defects in the electronic components. The algorithms include
data preprocessing, feature extraction, and classification.

Excess and insufficient glue on the PCB joints are two types
of defects that may occur during the manufacturing and assem-
bly process. Electric tests and human visual inspection tests
are common methods of detection and interpretation, but novel
automated optical inspection technologies alongside modern
inspection algorithms for PCB quality control are gaining
impetus [35], [36].

The detection and defect interpretation method in this
article deploys a high-resolution laser scanner that scans
the areas of interest on a PCB and extracts the geomet-
ric information in terms of three-dimensional (3-D) point
clouds. Moreover, a regression-net (RNet), a 3-D convolu-
tional NN (3-DCNN) framework, is used to estimate the
volume of the glue on the designated die attachment on
PCBs [37]. In this study, two well-known deep learning meth-
ods of VoxNet [38] and PointNet [39] have been adjusted to
the volume estimation with their final classification layer and
subnetwork replacement with a fully connected layer NN. In
the end, the applied RNet model accurately predicts the vol-
ume of glue deposits both before and after die attachment with
92% accuracy. The proposed system uses a custom scanning
component that extracts a high-resolution point cloud of a glue
deposit or, more interestingly, after die attachment when only
a small part of glue is visible from the glue fillet that is formed
around each die.

C. Dispensed Machine Data Parameters and Corresponding
Glue Volume

In this experiment, the dispensing machine dispenses
500 glue dots on 10 LCP substrates in 2.5-s intervals.
Date about machine state and the ambient conditions dur-
ing the dispensing were collected from installed operational
sensors (temperature sensor (tempSen), air pressure sen-
sor (supplyAps), vacuum sensor (HouseVa), dispensed volt-
age (DispensedVolt) and syringe pressure sensor (Syringe Psi))
on the dispensing machine and log to a repository to be stored
(Fig. 7). The operation data-sampling rate of the system is
set at 500 ms. This implies that the machine state is regis-
tered at 500-ms intervals; this allows a 5-event registration
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Fig. 7. Sensors and data logger installed on the dispensing machine.
TABLE I
EVENTIC OUTPUT BETWEEN THE DISPENSING MACHINE
SENSORS AND GLUE VOLUME

Input/output Glue Volume
SyringePsi 79%
HouseVa 57%
DispensedVolt 42%
TempSen 38%
SupplyAPsi 29%

prior to the next glue drop. The five contiguous system states
could be a good indicator of GIP length. Appendices A and
B (Figs. 12 and 13) present all the 500 glue samples of
ten LCP glue dots and corresponding machine operational and
environmental sensor parameters.

D. Sequential Event-Modeling Algorithm Training
(Scenarios of Process Genomes)

The step-by-step implementation of the proposed ESP is as
follows.

1) Event-Clustering Sensitivity Analysis Algorithm: The
sequential event-modeling algorithm begins with dimensional-
ity reduction through the ROC technique. EventiC [30] helps
to find the many-to-many correlation between inputs and out-
put parameters reveals the sensitivity of the glue shape (output)
against the machine and ambient state parameters (system
input).

The interpretation of the data series is based on triggers
and events. Only those fluctuations in the data series that are
interpreted as triggers represent state change. False-negative
and positive tests were conducted, as explained in [30], and
the trigger threshold was set at 5%. It means that any alteration
in input sensors (dispense machine operation data) and glue
volume, more than 5% has been considered as a new event.
The EventiC results are shown in Table 1.

These results show Syringe pressure has a high degree of
impact on the glue volume while “HouseVa” has a medium
impact, and these two sensors should be considered as impor-
tant sensors in the sequential algorithm. The remaining sensors
have a low degree of impact on the glue volume. The
low-ranking parameters could be ignored in the next steps
(dimension reduction).

2) Defect Detection: The second step in the sequential
event modeling algorithm is to ascertain the acceptable range
for glue volume. The minimum and maximum satisfactory
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Dispense SECONDS tempsensor Supplyair Housevacu Syringeai Dispenses Glue Genome I
number (o) (Psi) (Psi) (mv) Volume Label
51.78 21.993 96.41 -698.85 16.85 3875.6 A
51.89 21.993 96.41 -695.97 17.56 3875.6 A
52.00 21.984 96.43 -693.08 18.45 3875.6 B D
52.11 21.975 96.41 -690.20 19.48 3875.6 c a
21 52.22 21.984 96.44 -689.054 21.38 3875.6 0.31 D t
95.83 21.949 96.129 -689.04 16.52 3878.2 E a
95.94 21.949 96.129 -711.895 16.49 3878.2 E
96.05 21.949 96.129 -720.66 16.45 3878.2 F F
96.16 21.949 96.129 -753.87 16.43 3878.2 F |
40 96.27 21.949 96.129 -759.64 16.49 3878.2 0.039 G °
477.83 22.064 100.68 -680.069 16.62 3875.6 E w
478.28 22119 100.645 -706.338 16.55 3875.4 E
478.73 22374 100.663 -727.607 16.48 3875.2 F
479.18 22.429 100.698 -748.876 16.41 3875.1 F
209 479.64 22.038 100.68 -760.145 16.50 3874.9 0.04 G
480.09 22126 100.715 -700.339 16.40 3876.8 A
480.54 22.046 100.628 -698.027 16.55 3876.9 A
480.99 22.082 100.698 -695.715 16.39 3877.0 A
481.44 22117 100.715 -693.403 17.55 3877.0 B
210 481.89 2218 100.663 -691.091 19.44 3877.1 0.169 c
1011.70 21.958  95.900011 -691.635 16.65 3306.7 E
1012.15 21.975 95.850194 -691.635 16.49 33725 E
1012.60 21975 9586034  -715.575 16.42 33294 F
1013.05 22.029 95.854362  -740.45 16.41 32823 F
445 1013.50 22.029 95.847834  -755.24 16.34 3349.8 0.035 G v
Fig. 8. ESP training.

ranges for glue volume are 0.04 and 0.15 mm?, respectively.
Any larger (excess of glue) or smaller (Insufficient glue) glue
has been defined as a defect. In this experiment, as seen in
Appendix A, three insufficient glue types (dispense numbers of
40, 209, and 445) and two excess glue type (dispense numbers
of 21 and 210). The data associated with each event represent
the qualia of the system state for that specific time. The labels
are alphanumerically assigned (e.g., A—Z). For example, in this
experiment, defective drops are labeled as C, D, and G. The
reason for three different labels is that they have distinctive
defect types as far as glue dispensing is concerned (Fig. 8).

3) Genomes Labeling and Sequential Differentiation: In
the training process, a series of four events of machine
state is labeled, the fifth registered event is the glue state
(good/defective). Labeling begins with genome length selec-
tion. The default genome length is set at five since there are
five operational data samples between two consecutive glue
dispenses. As the glue state is determined (the fifth event),
the previous four machine events are labeled. Each detected
machine state is compared with previous labeled events. If the
difference is more than 5%, a new event and label is assigned;
otherwise, it will be considered as no new state is detected and
the same event added to the chain.

For this specific example, the values of “SyringePsi” and
HouseVa input parameters determine the state change of the
machine. Fig. 8 illustrates the results of running the algo-
rithm for 500 glue dots (ten LCPs), but only five instances
of the defect are displayed here. The first trained defect GIP
is: “AABCD” for “excess” type of defect’” 0.31 (i.e., defect
type D). There is also another GIP for defect type C, (i.e.,
excess of glue “0.15”), which is “AAABC”. For the “insuf-
ficient” type of defect, the GIP is “EEFFG.” Defect type G
occurred twice in this example. The results of gene definition,
labels, and their sequence of occurrence (DNA) are stored in
the process genes pool for the specified process (See Fig. 9).

In conclusion, there is a GIP of EEFFG whose trend is
to lower bound defect (insufficient glue volume) and were
repeated two times in the training dataset and a GIP of
AAABC with a trend to upper bound defect (excess of glue
volume). The ESP algorithm will be able to predict the dis-
pensing in real time for both types of defects through sequence
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Gene Label Dictionary Defects GIP list

Excess of Glue Insufficient
« AABCD Glue
« AAABC * EEFFG

Fig. 9. Database of gene labels dictionary and defects GIP pool.
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Fig. 11. Predicted data (red) through the RF model and actual data (blue)

in the test dataset.

differentiation and cross-check with the database of the Gene
labels dictionary and defects GIP list.

V. ESP PERFORMANCE COMPARED TO OTHER ML
ALGORITHMS

The performance of the prediction of ESP is compared with
the three most popular data mining and ML [40] methods.
Random forest (RF) Regression, k nearest neighbors (kNN),
and multilayer perceptron (MLP) network models were chosen
due to their high accuracy and application in similar industrial
applications.

RF Regression is one of the most effective and conven-
tional ML models for predictive analytics. The purpose of the
algorithm is to ascertain the output from multiple decision
trees instead of relying on individual decision trees [41], [42].
Hyperparameters are associated with an RF regression model
and used to optimize its performance and include the number
of decision trees (n_estimators) and the number of features
considered by each tree when splitting a node (max_feature).
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Fig. 12. 500 dispensed glue volumes profile.
TABLE II TABLE 111
MAE AND MSE BETWEEN THE ACTUAL AND PREDICTED RESULTS NUMBER OF ERRORS IN PREDICTION
AFTER TEN TIMES REPETITION
Method Number of errors
RF kNN MLP RF 1 (100%)

MAE 0.00084 0.00256 0.006541 ESP 0
MSE 7.436861e-06 3.24511e-05 0.00018

Hyperparameters optimization is performed by doing an
exhaustive search over selected parameter values. In this
article, we have set 50 for n_estimator and 20 for max_feature.

MLP network is one of the most popular and practical
architectures of artificial NNs (ANNs). In MLP, every single
neuron is connected to its contiguous neuron, with varying
impact weights that represent the relativity of the different
neuron inputs to the others. The overall weights of the inputs
are shifted to the hidden neurons, where it is transformed
using an activation function. The other neurons use the out-
puts of these hidden neurons as inputs, in turn, where they
pass through another transformation [43]. The architecture of
the MLP that has been employed in this article is based on two
hidden layers with eight and ten neurons, respectively. In this
model, the weights and biases are modified using the adaptive
moment estimation (Adam) optimization function. Moreover,
the learning rate was set to 0.01.

To evaluate and compare the performance of the selected
methods with the proposed ESP, the same 500 experimental
datasets were deployed for the analysis. 90% of the dataset has
been selected as training data, assuming at least a defect from
each type in the training dataset. And the remaining 10% of the
data (i.e., 50 samples) were treated as testing data (unknown
or unseen data). Fig. 10 represents the model training and
prediction procedure.

Mean absolute error (MAE) and mean squared error (MSE)
between the observed and predicted results were used to com-
pare the results. Table II summarizes the outcome of the tests
after ten replications. The results show that both types of errors
in the RF model are less than KNN and MLP models in this
experiment. Then, in the continuation, RF method is selected
to be compared with the proposed ESP. However, even with
RF regression method, the predictive model will not be able
to predict all defects since there are limited observable defects
samples in the training dataset (see the RF model results for
sample 35 in Fig. 11). One of the pitfalls of classical ML mod-
els is their need for large sample sizes (i.e., observable defects)

to build an accurate inferential prediction model. Table III
presents the number of errors of both RF and ESP methods
in the training dataset.

The comparison between the proposed ESP and RF
predictive methods shows that RF method can only reduce
uncertainty if the number of observations is statically accept-
able. Since the number of observed defects normally in modern
industrial processes is very low, such a technique falls short
and, with the associated uncertainty, does not provide strong
decision support. In contrast, due to the nature of observa-
tion and detection of causal relations, the ESP methods do
not suffer from uncertainty. The proposed ESP builds a lookup
dictionary of genomes based on the occurred defects and corre-
sponding genomes. The proposed ESP method is also superior
to similar lookup table solutions used in failure prediction [44]
because implementing the EventiC method (dimension reduc-
tion) reduces memory usage significantly compared to other
lookup table methods. The second advantage of the ESP
method is its real-time self-training algorithm. This self-
training feature, in comparison to NN offline time-consuming
training algorithm, is beneficial.

VI. CONCLUSION AND FUTURE WORKS

This article described the practical implications of utilizing
modern data acquisition techniques, real-time data analytics,
and learning methods in industrial environments. The chal-
lenges posed by the complexity and timing demand of the
case study motivated us to go beyond the existing ML and
Al techniques that could not offer satisfactory results on their
own. The new technique for the real-time sequencing strat-
egy not only has the capability to predict events for key
performance indicators of a given industrial system but also
provides an alternative state-space description of industrial
processes in the identification of root causes of suboptimal
performances. A comparison of the proposed ESP method
and the RF machine learning method was conducted in their
performance and level of confidence. The results have helped
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Fig. 13. Dispense machine operational and environmental sensor parameters.

increase confidence that by deploying ML and Al in manufac-
turing/industrial processes, there is a possibility to build zero
defects—zero waste processes.

The proposed theory of process GIP takes its inspiration
from biology and genetic science, thus creating a process
for labeling and establishing sequential event differentiation
from observed information. These labeled genomes of the pro-
cess are being used to predict the events according to their
occurrence sequence. GIP can be classified as a Granular com-
puting (GrC) technique. GrC is an approach for reasoning a
system and dividing information into smaller pieces (Genes)
to see if they differ on a granular (trigger threshold) level. This
approach could become a new tool for deep and reinforcement

learning. A future pathway for research is to explore its abil-
ity to rationalize the existing imbalanced data labeling during
training datasets by reducing reliance on statistical means. This
problem is prevalent in manufacturing environments where
potentially a mixture of weighted factors could cause serious
misinterpretation and loss of productivity.

One of the applications of GIP to be explored is in the
enhancement of learning and reasoning capabilities of cog-
nitive digital twins (CDTs). The gene pool created by GIP
real-time gene recognition throughout the learning process
allows the nature of the physical process to be transformed into
reusable and referenceable knowledge. The gene sequencing
(DNA of the process) can be a powerful tool for interpreting
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and demonstrating the knowledge graphs in CDT. Another
potential area to explore is the role of GIP in simplifying and
relaxing rule-based models (e.g., [45] and [46]).

APPENDIX A
500 DISPENSED GLUE VOLUMES PROFILE

See Fig. 12.

APPENDIX B

DISPENSE MACHINE OPERATIONAL AND ENVIRONMENTAL

SENSOR PARAMETERS

See Fig. 13.
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