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THE CALABI PROBLEM FOR FANO THREEFOLDS

CAROLINA ARAUJO, ANA-MARIA CASTRAVET, IVAN CHELTSOV, KENTO FUJITA,
ANNE-SOPHIE KALOGHIROS, JESUS MARTINEZ-GARCIA, CONSTANTIN SHRAMOV,

HENDRIK SÜSS, NIVEDITA VISWANATHAN

Abstract. There are 105 irreducible families of smooth Fano threefolds, which have
been classified by Iskovskikh, Mori and Mukai. For each family, we determine whether its
general member admits a Kähler–Einstein metric or not. We also find all Kähler–Einstein
smooth Fano threefolds that have infinite automorphism groups.
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Introduction

The Kähler–Einstein K-stability correspondence for Fano varieties is one of the most
important contributions achieved in the 21st century [66, 203, 73, 77, 55, 205]. It links
together complex algebraic geometry and analytic geometry:

a smooth Fano variety admits a Kähler–Einstein metric ⇐⇒ it is K-polystable.

However, the notion of K-stability is elusive and often difficult to check (see Section 1).
On the other hand, for two-dimensional Fano varieties, Tian and Yau proved

Theorem ([206, 202]). Let S be a smooth del Pezzo surface. Then S is K-polystable if
and only if it is not a blow up of P2 in one or two points.

Smooth Fano threefolds have been classified in [113, 114, 150, 151] into 105 families,
which are labeled as �1.1, �1.2, �1.3, . . ., �9.1, �10.1 (see the Big Table in Section 6).
Threefolds in each of these 105 deformation families can be parametrized by a non-empty
irreducible rational variety [153, 155]. We pose the following problem.

Calabi Problem. Find all K-polystable smooth Fano threefolds in each family.

This problem has already been solved for many families, and partial results are known in
many cases [157, 203, 14, 209, 7, 74, 43, 44, 193, 36, 88, 64, 112, 52, 190, 138, 217, 2, 3, 96].
In particular, it has been proved in [88] that all smooth threefolds in the 26 families

�2.23, �2.28, �2.30, �2.31, �2.33, �2.35, �2.36, �3.14,
�3.16, �3.18, �3.21, �3.22, �3.23, �3.24, �3.26, �3.28, �3.29,
�3.30, �3.31, �4.5, �4.8, �4.9, �4.10, �4.11, �4.12, �5.2

are divisorially unstable (see Definition 1.2.3), so that all of them are not K-polystable.
We show that all smooth Fano threefolds �2.26 are not K-polystable, and prove

Main Theorem. Let X be a general Fano threefold in the family �N . Then

X is K-polystable ⇐⇒ N ̸= 2.26 and N ̸∈



2.23, 2.28, 2.30, 2.31, 2.33,

2.35, 2.36, 3.14, 3.16, 3.18,

3.21, 3.22, 3.23, 3.24, 3.26,

3.28, 3.29, 3.30, 3.31, 4.5,

4.8, 4.9, 4.10, 4.11, 4.12, 5.2


Corollary. Let X be a general Fano threefold in the family �N ̸= 2.26. Then

X is K-polystable ⇐⇒ X is divisorially semistable ⇐⇒ X is K-semistable.

Note that K-stability is an open property [162, 75, 18, 139]. Therefore, to prove that
general element of a given deformation family is K-polystable, it is enough to produce
at least one K-stable (possibly singular) threefold in this family. However, such approach
does not always work, because many deformation families contain only Fano threefolds
with infinite automorphism groups [42], so that none of these threefolds are K-stable, but
some of them a priori could be K-polystable.

Before we finished the proof of Main Theorem, its assertion has been already known
for 65 deformation families (see Sections 3 and 4.1 for more details). These families are

�1.1, �1.2, �1.3, �1.4, �1.5, �1.6, �1.7, �1.8, �1.10, �1.11,
�1.12, �1.13, �1.14, �1.15, �1.16, �1.17, �2.4, �2.6, �2.23, �2.28,
�2.29, �2.30, �2.31, �2.32, �2.33, �2.34, �2.35, �2.36, �3.1, �3.11,
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�3.14, �3.16, �3.18, �3.19, �3.20, �3.21, �3.22, �3.23, �3.24, �3.26,
�3.27, �3.28, �3.29, �3.30, �3.31, �4.4, �4.5, �4.7, �4.8, �4.9,
�4.10, �4.11, �4.12, �5.2, �5.3, �6.1, �7.1, �8.1, �9.1, �10.1.

For some families, we solved the Calabi Problem for all smooth threefolds in the family.
For details, see the proof of Main Theorem and check the Big Table in Section 6.

Example (see Section 4.7). Smooth Fano threefolds �2.24 are divisors in P2 × P2 that
have degree (1, 2). For an suitable choice of coordinates ([x : y : z], [u : v : w]) on P2×P2,
these smooth Fano threefolds can be described as follows.

(1) One parameter family that consists of threefolds given by

(⋆) xu2 + yv2 + zw2 + µ
(
xvw + yuw + zuv

)
= 0,

where µ ∈ C such that µ3 ̸= −1. All such threefolds are K-polystable.
(2) One non-K-polystable threefold given by (u2 + vw)x+ (uw + v2)y + w2z = 0,
(3) One non-K-polystable threefold given by (u2 + vw)x+ v2y + w2z = 0.

If µ3 = −1 or µ = ∞, then (⋆) defines a singular K-polystable Fano threefold.

Smooth Fano threefolds with infinite automorphism groups have been described in [42].
We completely solve the Calabi Problem for all of them. To be precise, we proved

Theorem. Let X be a smooth Fano threefold in the family �N such that Aut0(X) ̸= 1.
Then X is K-polystable if and only if either

N ∈
{
1.15, 1.16, 1.17, 2.20, 2.22, 2.27, 2.32, 2.34, 2.29, 3.5, 3.8, 3.9, 3.12, 3.15, 3.17,

3.19, 3.20, 3.25, 3.27, 4.2, 4.3, 4.4, 4.6, 4.7, 4.13, 5.1, 5.3, 6.1, 7.1, 8.1, 9.1, 10.1

}
or one of the following cases hold:

• N = 1.10 and Aut0(X) ∼= PGL2(C) or Aut0(X) ∼= Gm;
• N = 2.21 and Aut0(X) ∼= PGL2(C) or Aut0(X) ∼= Gm;
• N = 2.24 and Aut0(X) ∼= G2

m;
• N = 3.10 and either Aut0(X) ∼= G2

m, or Aut0(X) ∼= Gm and X can be obtained
by blowing up the smooth quadric threefold in P4 given by

w2 + xy + zt+ a(xt+ yz) = 0

along two conics that are given by w2 + zt = x = y = 0 and w2 + xy = z = t = 0,
where a ∈ C such that a ̸∈ {0,±1}, and x, y, z, t, w are coordinates on P4;

• N = 3.13 and Aut0(X) ∼= PGL2(C) or Aut0(X) ∼= Gm.

At present, the Calabi Problem is not yet completely solved for the following 34 families:

�1.9, �1.10, �2.1, �2.2, �2.3, �2.4, �2.5, �2.6,
�2.7, �2.8, �2.9, �2.10, �2.11, �2.12, �2.13, �2.14,

�2.15, �2.16, �2.17, �2.18, �2.19, �2.20, �2.21, �2.22, �3.2,
�3.3, �3.4, �3.5, �3.6, �3.7, �3.8, �3.11, �3.12, �4.1.

For 27 of these families, we expect the following to be true:

Conjecture. All smooth Fano threefolds in the deformation families

�1.9, �2.1, �2.2, �2.3, �2.4, �2.5, �2.6, �2.7, �2.8,
�2.9, �2.10, �2.11, �2.12, �2.13, �2.14, �2.15, �2.16, �2.17,
�2.18, �2.19, �3.2, �3.3, �3.4, �3.6, �3.7, �3.11, �4.1

are K-stable and, in particular, they are K-polystable.
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All remaining seven families �1.10, �2.20, �2.21, �2.22, �3.5, �3.8, �3.12 contain
non-K-polystable smooth Fano threefolds, but their general members are K-polystable.
We present conjectural characterizations of their K-polystable members in Section 7.

In Section 1, we present some K-stability results used in the proof of Main Theorem.
In Section 2, we prove the Tian–Yau theorem and find δ-invariants of del Pezzo surfaces.
In Sections 3, 4, 5, we prove Main Theorem. In Section 6, we present the Big Table that
summarizes our results. In Appendix A, we present technical results used in the book.

Notations and conventions. Throughout this book, all varieties are assumed to be
projective and defined over the field C. For a variety X, we denote by Eff(X), NE(X)
and Nef(X) the closure of the cone of effective divisors on X, the Mori cone of X, and
the cone of nef divisors on X, respectively. For a subgroup G ⊂ Aut(X), we denote by
ClG(X) and PicG(X) the subgroups in Cl(X) and Pic(X) consisting of Weil and Cartier
divisors whose classes are G-invariant, respectively.

A subvariety Y ⊂ X is said to be G-irreducible if Y is G-invariant and is not a union of
two proper G-invariant subvarieties. We also denote by Aut(X, Y ) the group consisting
of automorphisms in Aut(X) that maps Y into itself.

We denote by Fn the Hirzebruch surface P(OP1 ⊕OP1(n)). In particular, F0
∼= P1 ×P1,

and the surface F1 is the blow up of P2 at a point.
For a divisor D on P = Pn1 ×Pn2 ×· · ·×Pnk , we say that D has degree (a1, a2, . . . , ak) if

D ∼
k∑
i=1

pr∗i
(
OPni (ai)

)
,

where pri : P → Pni is the projection to the ith factor. For a curve C ⊂ P, we say that C
has degree (a1, a2, . . . , ak) if pr

∗
i (OPni (1)) · C = ai for every i ∈ {1, . . . , k}.

We denote by µn the cyclic group of order n, we denote by D2n the dihedral group of
order 2n, where n ⩾ 2 and D4 = µ2

2. Similarly, we denote by Sn and An the symmetric
group and its alternating subgroup, respectively. We denote by Ga the one-dimensional
unipotent additive group, and we denote by Gm the one-dimensional algebraic torus.
We denote by Gm ⋊ µ2 the unique non-trivial semi-direct product of Gm and µ2, we

denote by Gm ⋊ S3 the unique non-trivial semi-direct product of Gm and S3, and we
denote by Ga ⋊Gm the semidirect product such that Gm acts on Ga as x 7→ tx.
For positive integers n > k1 > . . . > kr, we denote by PGLn;k1,...,kr(C) the parabolic

subgroup in PGLn(C) that consists of images of matrices in GLn(C) preserving a flag of
subspaces of dimensions k1, . . . , kr. For n ⩾ 5, we denote by PSOn;k(C) the parabolic sub-
group of PSOn(C) preserving an isotropic linear subspace of dimension k. By PGL(2,2)(C)
we denote the image in PGL4(C) of the group of block-diagonal matrices in GL4(C) with
two 2 × 2 blocks. This group acts on P3 preserving two skew lines. By PGL(2,2);1(C) we
denote the stabilizer in PGL(2,2)(C) of a point on one of these lines.
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1. K-stability

1.1. What is K-stability? Let X be a Fano variety of dimension n ⩾ 2 that has Kawa-
mata log terminal singularities. In most of cases we consider, the varietyX will be smooth.
Set L = −KX . A (normal) test configuration of the (polarized) pair (X;L) consists of

• a normal variety X with a Gm action,
• a flat Gm-equivariant morphism p : X → P1, where Gm acts naturally on P1 by(

t, [x : y]
)
7→ [tx : y],

• a Gm-invariant p-ample Q-line bundle L → X and a Gm-equivariant isomorphism(
X\p−1(0),L

∣∣
X\p−1(0)

)
∼=
(
X ×

(
P1\{0}

)
, pr∗1(L)

)
.

where pr1 is the projection to the first factor, and 0 = [0 : 1].

For such test configuration, we let

(1.1.1) DF
(
X ;L

)
=

1

Ln

(
Ln ·KX/P1 +

n

n+ 1
Ln+1

)
.

This number is called Donaldson–Futaki invariant of the test configuration (X ,L).

Remark 1.1.2. Quite often, we will omit L in DF(X ;L) and write it as DF(X ).

Denote the central fibre p−1(0) by X0, and denote the fibre at infinity p−1(∞) by X∞,
where ∞ = [1 : 0]. The test configuration (X ,L) is said to be

• trivial if there is a Gm-equivariant isomorphism(
X\X∞,L

∣∣
X\X∞

)
∼=
(
X ×

(
P1\∞

)
, pr∗1(L)

)
,

• product-type if we have an isomorphism X\X∞ ∼= X × (P1\∞),
• special if the fiber X0 is irreducible, reduced, and (X ,X0) has purely log terminal
singularities, so that X0 is a Fano variety with Kawamata log terminal singularities.

Definition 1.1.3. The Fano variety X is said to be K-semistable if for every its test
configuration (X ,L) one has DF(X ;L) ⩾ 0. Similarly, the Fano variety X is said to
be K-stable if for every its non-trivial test configuration (X ,L) one has DF(X ;L) > 0.
Finally, the Fano variety X is said to be K-polystable if it is K-semistable and

DF(X ;L) = 0 ⇐⇒ (X ,L) is of the product type.

Thus, we have the following implications:

X is K-stable =⇒ X is K-polystable =⇒ X is K-semistable.

If X is not K-semistable, we say that X is K-unstable. Similarly, if X is K-semistable,
but the Fano variety X is not K-polystable, we say that X is strictly K-semistable.

Theorem 1.1.4 ([6, 147]). If X is K-polystable, then Aut(X) is reductive.
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Theorem 1.1.5 ([20, Corollary 1.3]). If X is K-stable, then Aut(X) is finite.

Corollary 1.1.6. If Aut(X) is finite, then X is K-stable if and only if it is K-polystable.

By the Chen–Donaldson–Sun theorem, product of smooth K-polystable Fano varieties
is K-polystable. This can be proved purely algebraically:

Theorem 1.1.7 ([215]). Let V and Y be Fano varieties that have Kawamata log terminal
singularities. If both V and Y are K-polystable, then V × Y is K-polystable.

Let G be a reductive subgroup in Aut(X). A given test configuration (X ,L) is said to
be G-equivariant if the product G×Gm acts on (X ,L) such that

• {1} ×Gm acting on (X ,L) is the original Gm-action,
• the Gm-equivariant isomorphism(

X\p−1(0),L
∣∣
X\p−1(0)

)
∼=
(
X ×

(
P1\{0}

)
, pr∗1(L)

)
.

is G×Gm-equivariant.

Definition 1.1.8. The Fano variety X is said to be G-equivariantly K-polystable if for
every itsG-equivariant test configuration (X ,L) one has DF(X ;L) ⩾ 0, and DF(X ;L) = 0
if only if (X ,L) is of the product type.

Remark 1.1.9. It has been proved in [135, 84] that it is enough to consider only special
test configurations in Definitions 1.1.3 and 1.1.8.

If X is K-polystable, then X is G-equivariantly K-polystable. Surprisingly, we have

Theorem 1.1.10 ([63, 134, 140, 216]). Suppose that X is G-equivariantly K-polystable.
Then X is K-polystable.

Remark 1.1.11. One can naturally define K-polystability for Fano varieties defined over
an arbitrary field F of characteristic 0. By [216, Corollary 4.11], if X is defined over F,
and G is a reductive subgroup in AutF(X), then

X is G-equivariantly K-polystable over F ⇐⇒ X is K-polystable over F,
where F is the algebraic closure of the field F.

Let us conclude this section by briefly explaining how K-stability behaves in families.

Theorem 1.1.12 ([162, 75, 18, 19, 139]). Let η : X → Z be projective surjective morphism
such that X is Q-Gorenstein, Z is a normal, and all fibers of η are Fano varieties with
at most Kawamata log terminal singularities. For every closed point P ∈ Z, let XP be
the fiber of the morphism η over P . Then the set{

P ∈ Z
∣∣XP is K-stable

}
is a Zariski open subset of the variety Z. Similarly, the set{

P ∈ Z
∣∣XP is K-semistable

}
is a Zariski open subset of the variety Z. Furthermore, the set{

P ∈ Z
∣∣XP is K-polystable

}
is a constructible subset of the variety Z.

7



Thus, ifX is a K-polystable smooth Fano threefold such that the group Aut(X) is finite,
then X is K-stable by Corollary 1.1.6, so that general Fano threefolds in the deformation
family of X are K-stable. We will use this observation often in the proof of Main Theorem
to prove that a general member of a given family is K-stable. Vice versa, to prove that
a given Fano threefold is not K-polystable, we will use the following result (cf. [30, 162]).

Theorem 1.1.13 ([20, Theorem 1.1]). Let η : X → Z and η′ : X ′ → Z be projective
surjective morphisms such that both X and X ′ are Q-Gorenstein, Z is a smooth curve, and
all fiber of η and η′ are Fano varieties with at most Kawamata log terminal singularities.
Let P be a point in Z, and let XP and X ′

P be the fibers of the morphism η and η′ over P ,
respectively. Suppose that there is an isomorphism X \XP

∼= X ′\X ′
P that fits the following

commutative diagram:

X \XP

η

∣∣
X\XP ��

∼= // X ′ \X ′
P

η′
∣∣
X′\X′

P��
Z \ P Z \ P

If both XP and X ′
P are K-polystable, then they are isomorphic.

Together with Theorem 1.1.12, this result gives

Corollary 1.1.14. Let p : X → P1 be a test configuration for the Fano variety X such
that the fiber p−1(0) is a K-polystable Fano variety with at most Kawamata log terminal
singularities that is not isomorphic to X. Then X is strictly K-semistable.

In some cases, it is possible to prove that the general element of the deformation
family of a K-polystable Fano threefold X is also K-polystable, even when X has infinite
automorphism group. This is achieved by relating K-polystability and GIT polystability,
an idea first investigated in [25, 197] in the analytic context. Suppose that X is a smooth
K-polystable Fano variety of dimension n, and set d = −Kn

X . Let us briefly recall the setup
of deformation theory, proofs and details can be found in [185, 145].

The infinitesimal deformation functor of the Fano varietyX is denoted DefX ; recall that
for an Artinian local C-algebra A with residue field C, DefX(A) consists of isomorphism
classes of commutative diagrams:

X

��

� � // XS

��
{0}=Spec(C) � � // S=Spec(A)

An element {XS → S} ∈ DefX(A) is a deformation family of X over S. The tangent
space of the deformation functor DefX is T 1

X = Ext1(ΩX ,OX) and T
2
X = Ext2(ΩX ,OX)

is an obstruction space for DefX . As X is a smooth Fano, T 1
X = H1

(
X, TX

)
and T 2

X = 0
(deformations of X are unobstructed).

Let A be the noetherian complete local C-algebra with residue field C which is the hull
of the functor of deformations of X, in other words, the formal spectrum of A is the base
of the miniversal deformation of X. By the above, denoting by S = SpecA, TS,0 → T 1

X is
an isomorphism and S is smooth (deformations are unobstructed), so we can identify S
with an analytic neighbourhood of the origin in the affine space T 1

X .
8



Recall that G is a reductive subgroup in Aut(X). For instance, we may let G = Aut(X),
since Aut(X) is reductive by Theorem 1.1.4, because X is assumed to be K-polystable.
The group G acts on A and the Luna étale slice theorem for algebraic stacks [5] gives in
this case a cartesian square [

Spec(A) / G
]

��

//MKss
n,d

��

Spec(A)G // MKps
n,d

where MKss
n,d is the stack that parametrizes n-dimensional K-semistable Fano varieties

with at most Kawamata log terminal singularities that have anticanonical degree d [208],

and MKps
n,d is the algebraic space parametrizing n-dimensional K-polystable Fano varieties

with Kawamata log terminal singularities that have anticanonical degree d. The horizontal
arrows in this diagram are formally étale and map the closed point into the point corre-
sponding to X.

Lemma 1.1.15. Assume that the affine space T 1
X contains a Zariski open subset consisting

of GIT-polystable points with respect to the induced G-action. Then a general fibre Xt of
the miniversal deformation X → S of X is K-polystable.

Proof. An analytic formulation of this result is due to [25, 197]. Let Xt denote a general
fibre in the miniversal deformation of X. Then Xt is K-semistable by Theorem 1.1.12.
However, by the local description of K-moduli we can conclude that Xt is K-polystable.

Indeed, the general point in T 1
X is GIT-polystable with respect to the G-action, so that

it belongs to a closed G-orbit. But S coincides with a neighbourhood of the origin in
the tangent space T 1

X . By the Luna étale slice theorem for algebraic stacks, Xt gives rise
to a closed point in MKss

n,d , so that Xt is K-polystable. □

Corollary 1.1.16. Assume that Aut0(X) ∼= PGL2(C), then the general fibre Xt of
the miniversal deformation X → S of X is K-polystable.

Proof. Here, T 1
X is a sum of irreducible representations of Aut0(X), which are odd-

dimensional irreducible representations of SL2(C). Thus, an orbit of a general vector
in T 1

X is closed by [172, Theorem 1] and the result follows from Lemma 1.1.15. □

Corollary 1.1.17. Assume that Aut(X) ∼= Gm ⋊ G, where G is a finite group G, some
element of which acts on Gm by sending elements to their inverses. A general fibre Xt of
the miniversal deformation X → S of X is K-polystable.

Proof. The vector space T 1
X is a linear representation of Aut(X) ∼= Gm⋊G; it is entirely de-

termined by the Gm-weights for a chosen basis, and by the G-action on the basis elements.
If all weights are 0, then theGm-action is trivial, and the result follows from Lemma 1.1.15.
Now assume there is at least one non-zero weight u ̸= 0. Then, the G-orbit of the cor-
responding basis element contains a basis element of weight −u, and every vector in T 1

X

with non-zero coordinates with respect to those two basis elements has a closed Gm-orbit.
Now, the result follows from Lemma 1.1.15. □

Remark 1.1.18. If Aut0(X) ∼= Gn
m for n ⩾ 1, but a general fibre Xt of the miniversal

deformation X → S of X has finite automorphism group, then X → S contains strictly
K-semistable smooth members. Indeed, every Gm-fixed point in S lies in the closure
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of a maximal orbit, giving rise to a destabilising test configuration for family members
parametrised by these orbits.

1.2. Valuative criterion. Let X be a Fano variety with Kawamata log terminal sin-

gularities, let G be a reductive subgroup in Aut(X), let f : X̃ → X be a G-equivariant

birational morphism, let E be a G-invariant prime divisor in X̃, and let n = dim(X).

Definition 1.2.1. We say that E is a G-invariant prime divisor over the Fano variety X.
If E is f -exceptional, we say that E is an exceptional G-invariant prime divisor over X.
We will denotes the subvariety f(E) by CX(E). We say that E is dreamy if the algebra⊕

m,j∈Z⩾0

H0
(
X̃,OX̃

(
f ∗(−mKX)− jE

))
is a finitely generated C-algebra.

Let

SX(E) =
1

(−KX)n

∫ τ

0

vol(f ∗(−KX)− xE)dx,

where τ = τ(E) is the pseudo-effective threshold of E with respect to −KX , i.e. we have

τ(E) = sup
{
x ∈ Q>0

∣∣ f ∗(−KX)− xE is big
}
.

Let β(E) = AX(E)− SX(E), where AX(E) is the log discrepancy of the divisor E.

Theorem 1.2.2 ([90, 133, 20]). The following assertions holds:

• X is K-stable ⇐⇒ β(F ) > 0 for every prime divisor F over X;
• X is K-semistable ⇐⇒ β(F ) ⩾ 0 for every prime divisor F over X.

This criterion leads to the notion of divisorial stability, which is weaker than K-stability.

Definition 1.2.3 ([88, Definition 1.1]). The Fano variety X is said to be divisorially
stable (respectively, semistable) if β(F ) > 0 (respectively, β(F ) ⩾ 0) for every prime
divisor F in X. We say that X is divisorially unstable if it is not divisorially semistable.

For toric Fano varieties, divisorial semistability and K-polystability coincide by

Theorem 1.2.4 ([209, 88]). Let X be a toric Fano variety, and let P be its associated
polytope in M ⊗Z R, where M be the character lattice of the torus. Then

X is divisorially semistable ⇐⇒ X is K-polystable ⇐⇒ the baricenter of P is 0.

To prove K-polystability, we can use the following handy criterion:

Theorem 1.2.5 ([216, Corollary 4.14]). Suppose that β(F ) > 0 for every G-invariant
dreamy prime divisor F over X. Then X is K-polystable.

Proof. Let (X ,L) be some G-equivariant special test configuration, so that X0 is integral.
By Remark 1.1.9 and Theorem 1.1.10, it is enough to prove that DF(X ;L) > 0.
The fiber X0 defines aG-invariant prime divisor overX×A1, since X is clearly birational

to the product X×A1. This gives us a divisorial valuation ordX0 : C(X)(t)∗ → Z, so that
we can consider the restricted valuation:

vX0 := ordX0|C(X)∗ : C(X)∗ → Z.
10



This valuation is non-trivial and G-invariant by construction. Then, by [23, Lemma 4.5],
there exists a G-invariant prime divisor F over X such that

vX0 = c · ordF
for some integer c > 0. Moreover, it follows from [90, Theorem 5.1] that F is dreamy and

DF(X ;L) = AX(F )− SX(F ),

so that AX(F )− SX(F ) > 0 by our assumption. □

Remark 1.2.6. By [216, Corollary 4.14], Theorem 1.2.5 can be generalized for varieties
defined over arbitrary fields as follows. If X is a Fano variety defined over an arbitrary
field F of characteristic 0, and G is a reductive subgroup in AutF(X) such that β(F ) > 0
for every G-invariant geometrically irreducible divisor F over X, then X is K-polystable
over the algebraic closure of the field F.

In some cases, it is not easy to compute SX(E), but one can estimate it using basic
properties of the volumes. To explain this in details, let V be an arbitrary n-dimensional

normal projective variety, let L be a big and nef Q-divisor on V , let h : Ṽ → V be

a birational morphism such that Ṽ is also normal projective variety, and let F be prime

divisor in Ṽ . Abusing our previous notations, we let τ = sup{x ∈ Q>0 | h∗(L)−xF is big}.
Fix a ∈ (0, τ). Then∫ τ

0

vol(h∗(L)− xF )dx ⩽
∫ a

0

vol(h∗(L)− xF )dx+ (τ − a)vol(h∗(L)− aF )

because vol(h∗(L) − xF ) is a decreasing function on x. This observation is very handy,
since the volume function vol(h∗(L)−xF ) is often difficult to compute for large x ∈ (0, τ).
Using log concavity of the volumes and the restricted volumes [132, 82], we can improve
the latter inequality. Namely, arguing as in the proof of [91, Proposition 2.1], we get

(1.2.7)

∫ τ

0

vol(h∗(L)− xF )dx ⩽
∫ a

0

vol(h∗(L)− xF )dx+
n

n+ 1
(τ − a)vol(h∗(L)− aF ).

Furthermore, it follows from the proof of [92, Proposition 2] that

(1.2.8) vol(h∗(L)− xF ) ⩽ vol(h∗(L)− aF )

(
1− (x− a)ϕ(a)

vol(h∗(L)− aF )

)n

for any x ∈ (a, τ), and τ ⩽ a+ vol(h∗(L)−aF )
ϕ(a)

, where ϕ(x) = − 1
n
∂
∂x
vol(h∗(L)− xF ).

1.3. Complexity one T-varieties. LetX be a Fano variety with Kawamata log terminal
singularities, let T be the maximal torus in Aut(X), and let C(X)T be the subfield in C(X)
consisting of all T-invariant rational functions.

Definition 1.3.1. The complexity of the T-action on X is the number dim(X)−dim(T).

First, we observe that the complexity of the T-action is 0 if and only if X is toric.
If the complexity of the T-action is 1 then C(X)T = C(Y ) for some smooth curve Y , and
the inclusion of fields C(Y ) = C(X)T ⊂ C(X) gives the rational quotient map π : X 99K Y .
Moreover, we have Y ∼= P1, since X is rationally connected [214].

Let M be the character lattice of T, and let N be the dual lattice of one-parameter
subgroups of the torus T. We will denote by ⟨·, ·⟩ the natural pairing between M and N .
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Remark 1.3.2. Let w be an element in N . We write λw for the induced Gm-action on X.
We will consider N to be an additive group. But once we pass to λw, we will write
the composition of two such Gm-actions multiplicatively: λw+w′ = λwλw′ for any w′ ∈ N .

Denote by C(X)(T) the multiplicative subgroup in C(X)T consisting of non-zero semi-
invariant functions. We now fix a group homomorphism M → C(X)(T) given by u 7→ χu,

where χu is semi-invariant function in C(X)
(T)
u that has weight u. Given two semi-invariant

functions fu and gu of the same weight u, their quotient fu/gu must be T-invariant.
Hence, every semi-invariant function can be expressed as fχu with f ∈ C(X)T.

Let E be a T-invariant prime divisor over X (see Definition 1.2.1).

Definition 1.3.3. The divisor E is said to be vertical if a maximal T-orbit in E has
the same dimension as the torus T. Otherwise, the divisor E is said to be horizontal.

Remark 1.3.4. If X is toric, then all T-invariant divisors in X are horizontal.

If E is horizontal, then the generic T-orbit in the divisor E has dimension dim(T)− 1,
so that the generic stabilizer must be a one-dimensional subtorus of the torus T, which
corresponds to rank-one sublattice, which we will denote by NE ⊂ N .
Fix an integer ℓ≫ 0, so that −ℓKX is an ample Cartier divisor. Let L = OX(−ℓKX).

For every Gm-action λ on the threefold X and its the canonical linearization for L, we set

wk(λ) =
∑
m

m · dim
(
H0
(
X,L⊗k)

m

)
,

where H0(X,L⊗k)m is the subspace of the semi-invariant sections of λ-weight m.

Definition 1.3.5. The function

FutX(λ) := − lim
k→∞

wk(λ)

k · lk · ℓ
,

is called the Futaki character of the Fano variety X.

The following lemma summarizes properties of the Futaki character that we need:

Lemma 1.3.6. The following assertions hold:

(1) For two commuting Gm-actions λ and λ′ on the threefold X, we have

FutX
(
λλ′
)
= FutX

(
λ
)
+ FutX

(
λ′
)

where λλ′ stands for the composition λ ◦ λ′.
(2) Let (X ,L) be a special test configuration for (X,L), and let λ be the corresponding

action of the group Gm on the variety X . Then

(1.3.7) DF
(
X ,L

)
= FutX0(λ)

for the induced Gm-action λ on the central fiber X0. Moreover, we have

FutX
(
λ′
)
= FutX0

(
λ′
)

for a Gm-action λ
′ on (X ,L) that acts along the fibres of p : X → P1.

Proof. The first assertion is obvious. The equality DF(X ,L) = FutX0(λ) is the original
definition of the Donaldson–Futaki invariant DF(X ,L) that is given in Tian’s work [203].
The equality (1.3.7) is proved in [210], see also [135]. The final equality follows from
the flatness of L over P1, which implies the flatness of its homogeneous components. □
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Now, we are ready to present a generalization of Definition 1.2.3.

Definition 1.3.8. We say that X is divisorially polystable if the following holds:

• β(F ) > 0 for every vertical T-invariant prime divisor F on the variety X,
• β(F ) = 0 for every horizontal T-invariant prime divisor F on the variety X.

By Lemma 1.3.6, if X is K-polystable, then FutX = 0. This is Futaki’s theorem [105].
If X is toric, it follows from Theorem 1.2.4, [187, Proposition 3.2] and [134, Theorem 1.4]
that the Fano variety X is K-polystable ⇐⇒ it is divisorially polystable ⇐⇒ FutX = 0.
The aim of this section is to prove the following result:

Theorem 1.3.9. Suppose that the complexity of the T-action on X is 1. Then the Fano
variety X is K-polystable ⇐⇒ it is divisorially polystable and FutX = 0.

Let us prove Theorem 1.3.9. Suppose that the complexity of the T-action on X is 1.
For our T-invariant prime divisor E over X, let ν = ordE be the associated divisorial
valuation. Consider the graded algebra

R =
⊕
k

Rk =
⊕
k

H0
(
X,Lk

)
.

Recall from [208] that E induces a test configurations via the filtration of R defined by

Fp
νRk =

{
s ∈ Rk

∣∣ν(s) ⩾ p
}
,

where ν(s) = ν(f) with s = f · e for f ∈ C(X) and e being a local generator of the line
bundle L at the generic point of the divisor E. Let

Rν =
⊕
k

⊕
p

Fp
νRk ·

1

tp
.

If the algebra Rν is finitely generated, then the Rees construction gives rise to a polarized
family Xν → A1 = Spec(C[t]) with central fiber (Xν)0. In this case, Xν = ProjA1 (Rν),
where the Proj is taken with respect to the k-grading. Here, we have Rν ⊂ R[t, t−1] and

Xν \
(
Xν

)
0
∼= X × C∗,

so that we can compactify the variety Xν by gluing it with X × P1 \ [1 : 0] along X ×C∗.
Let X ν be the result of this gluing, and let p : X ν → P1 the corresponding projection.
Then the Gm-action λν on the variety X ν is given by the p-grading.
Since E is T-invariant, the filtration Fp

νR must respect the corresponding M -grading,
so that X ν admits a T-action along the fibres of p that commutes with the Gm-action λν .
Then p−1(0) is given by the associated graded ring of the filtration: (Xν)0 ∼= Proj(grFν).
By construction, the variety X ν is naturally equipped with a p-ample line bundle Lν such
that the pair (X ν ,Lν) is a test configuration for the pair (X,L), see [208] for details.
Choosing ν = 0 leads to the trivial test configuration X ν = X × P1.

Remark 1.3.10. In the presented construction of the test configuration X ν , we can replace
the valuation ν with the valuation aν for some a ∈ Z>0. Then we have (Xaν)0 ∼= (Xν)0,
because grFaν is the ath Veronese subring of grFν . Then DF(X aν ,Laν) = a ·DF(X ν ,Lν),
because the induced Gm-actions would be λaν .

The following lemma follows from [171, Proposition 3.14] or [207, Section 16].
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Lemma 1.3.11. The following assertions hold:

(1) the divisor E is horizontal ⇐⇒ there exists w ∈ N such that ν(fu) = ⟨w, u⟩ for
every fu ∈ C(X)(T). Moreover, in this case, w ∈ NE.

(2) If E is vertical, there are w ∈ N and a ∈ Z>0 such that ν(fχu) = ⟨w, u⟩+aordP (f)
for every non-zero f ∈ C(X)T, where P = π(E) ∈ Y ∼= P1.

Proof. The restriction ν|C(X)T defines a discrete valuation on C(X)T = C(Y ), which we
denote by ν̂. Then either ν̂ = 0 or ν̂(f) = aordP (f) for some P ∈ Y and a ∈ Z>0.
Since π corresponds to the field inclusion, it follows that P = π(E) in the latter case.
In either case, we get ν(fχu) = ν̂(f) + ν(χu), where χ : M → C(X)(T) is a section fixed
earlier. Since ν : C(X)∗ → Z is a homomorphism, the map M → Z given by u 7→ ν(χu)
must be linear, i.e. it given by an element w ∈ N = M∗. Thus, it remains to show that
the divisor E is horizontal exactly if ν̂ is trivial and that w ∈ NE.

First assume that ν̂ = 0. Consider the M -graded ideal sheaf I of E. Then the semi-
invariant sections of I are those for which ν(fu) > 0. Hence, we have

I =
⊕

⟨w,u⟩>0

(
OX

)
u
,

so that (OX/I)u ̸= 0 only if ⟨w, u⟩ = 0. So, the Z-grading on OX/I induced by w must
be trivial. Therefore, we see that the corresponding Gm-action on the divisor E is trivial,
so that E is horizontal with w ∈ NE.
Now, we assume that E is horizontal and ν(f) ̸= 0 for some T-invariant function f .

We may pick any u ∈ M with both ⟨NE, u⟩ ≠ 0 and ⟨w, u⟩ ≠ 0. Then ν(faχbu) = 0 for
an appropriate choice of integers a and b. Hence, we have (OX/I)au ̸= 0 and therefore
the Gm-action on the divisor E induced by NE ⊂ N is not trivial. This is a contradiction.
Hence, ν(fχu) = ⟨w, u⟩ and we have seen already that in this case w ∈ NE. □

Now, we are ready to prove

Proposition 1.3.12. Let E1 and E2 be two T-invariant prime divisors over the variety X.
We let ν1 = a1 · ordE1 and ν2 = a2 · ordE2, where a1 and a2 are some positive integers.
Then the following two conditions are equivalent

(1) There exists w ∈ N such that ν1(fu) = ν2(fu) + ⟨w, u⟩ for every fu ∈ C(X)(T).
(2) There is an isomorphism φ : Rν1

∼= Rν2 of (M ×Z2)-graded algebras with φ(t) = t
and inducing the identity on Rν1/(t− 1) = Rν2/(t− 1).

Moreover, if the two equivalent conditions hold, then there exists ℓ ∈ Z such that φ sends
homogeneous elements of weight (u, k, p) to elements of weight (u, k, p+ ⟨w, u⟩+ kℓ).

Proof. Assume that (1) holds. Consider the homomorphism Rν2 → Rν1 given by

(1.3.13) sk,ut
p 7→ sk,ut

p+⟨w,u⟩+kℓ,

where su,k is a section in H0(X,Lk) of weight u ∈ M and ℓ = ⟨w, u1 − u2⟩ with ui being
weight of a local generator of L at the centre CX(Ei). Then ν1(su,k) = ν2(su,k)+⟨w, u⟩+k·ℓ,
so that Rν2 → Rν1 is the required isomorphism.
For the other direction, assume that we have an isomorphism φ : Rν1

∼= Rν2 as in (2).
The condition that φ induces the identity on Rν1/(t− 1) = Rν2/(t− 1) implies that

ϕ
(
su,kt

p
)
= su,kt

p+m.
14



Since ϕ is a graded isomorphism, we have m = F (u, k, p) for some linear form F (u, k, p).
But the equality φ(t) = t implies that F (0, 0, p) = 0, so that F (u, k, p) = ⟨w, u⟩+ ℓ · k for
some w ∈ N and ℓ ∈ Z. Then φ is given by (1.3.13). Since φ is an isomorphism, we get

Fp+⟨w,u⟩+kℓ
ν1

Rk = Fp
ν2
Rk

for any integers p and k. Then ν1(su,k) = ν2(su,k) + ⟨w, u⟩+ kℓ. Now, for

fu =
su+u′,k
su′,k

∈ C(X)(T),

we have ν1(fu) = ν2(fu) + ⟨w, u⟩ as claimed. □

Corollary 1.3.14. In the notations and assumption of Proposition 1.3.12, suppose that
there is w ∈ N such that ν1(fu) = ν2(fu) + ⟨w, u⟩ for every fu ∈ C(X)(T). Then

DF
(
X ν1

)
= DF

(
X ν2

)
+ FutX

(
λw
)

Proof. By Proposition 1.3.12, we have X0 := (X ν1)0
∼= (X ν2)0 and λν1 = λν2λw. Then

DF
(
X ν1

)
= FutX0

(
λν1
)
= FutX0

(
λν2λw

)
by Lemma 1.3.6. Then, by Lemma 1.3.6, we obtain

DF
(
X ν1

)
= FutX0

(
λν2
)
+ FutX0

(
λw
)
.

Now, applying Lemma 1.3.6 again, we conclude that FutX0(λν2) = DF(X ν2), which implies
that FutX0(λw) = FutX(λw) by Lemma 1.3.6. This gives us the desired result. □

Corollary 1.3.15. The test configuration X ν is of product-type ⇐⇒ E is horizontal.
In this case, the corresponding Gm-action on (X ν)0 ∼= X is given by λw with w ∈ NE.

Proof. By Lemma 1.3.11, the divisor E is horizontal ⇐⇒ ν(fu) = ⟨w, u⟩ for w ∈ NE.
We have Xν

∼= X × A1 if ν = 0. Now, the claim follows from Proposition 1.3.12. □

Corollary 1.3.16. Suppose E is horizontal. Then β(E) = FutX(λw) for some w ∈ NE.

Proof. Using Corollary 1.3.15, we see that the test configuration X ν is of product-type.
By Lemma 1.3.6, we have DF(X ν) = FutX(λw) for some w ∈ NE. On the other hand, it
follows from [90, Theorem 5.1] that DF(X ν) = β(E). □

Let G be a subgroup in AutT(X) such that T ⊂ G and G ∼= T⋊W for some group W.
Note that AutT(X)/T is a finite group by [194, Lemma 2.9], so that W is finite as well.
Then the quotient map π : X 99K Y is G-equivariant, so that W naturally acts on Y ∼= P1.
The following result is a reformulation of the main result of [112].

Proposition 1.3.17. Suppose that the following two conditions hold:

(1) FutX = 0,
(2) for every point P ∈ Y that is fixed by W, there exists at least one irreducible

component D of the fiber π−1(P ) such that β(D) > 0.

Then X is K-polystable.

Proof. By Theorem 1.1.10, it is enough to consider G-equivariant special test configura-
tions to check K-polystability. Moreover, given a special G-equivariant test configuration,
it follows from [90, Theorem 5.1] that there is a G-invariant prime divisor F over X such
that the test configuration is obtained as X c·ordF for some c ∈ Z>0. If F is horizontal then

ordF
(
f · χu

)
= ⟨wF , u⟩.
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and X c·ordF is of product-type, so that its Donaldson–Futaki invariant is 0 by Lemma 1.3.6.
If F is vertical, then it follows from Lemma 1.3.11 that

ordF
(
f · χu

)
= ⟨w, u⟩+ aordP (f).

with a > 0 and π(F ) = P ∈ P1. Note that P is W-invariant, since F is G-invariant.
By assumption, there is an irreducible component D of the fiber π−1(P ) with β(D) > 0.
Then D is a T-invariant prime divisor on X, so that Lemma 1.3.11 gives

ordD(f · χu) = ⟨w′, u⟩+ b · ordP (f)

for some w ∈ N and b ∈ Z⩾0. Hence, we have

(1.3.18) bordF (fu) = aordD(fu) + ⟨bw − aw′, u⟩

for a semi-invariant funcion fu of weight u ∈M . It follows by Corollary 1.3.14 that

bDF
(
X c·ordF

)
= DF

(
X aordD

)
+ FutX

(
λbw−aw′

)
= by (1.3.18) and Corollary 1.3.14

= DF
(
X aordD

)
+ 0 =

= a DF
(
X ordD

)
= by Remark 1.3.10

= a · β(D) > 0 by [90, Theorem 5.1].

This also shows that β(D′) > 0 for every other component D′ of the fibre π−1(P ). □

Corollary 1.3.19. If FutX = 0 and Y has no W-fixed points, then X is K-polystable.

Corollary 1.3.20. Suppose that FutX = 0, all G-invariant fibers of π are irreducible,
and β(D) > 0 for one fiber D of the map π. Then X is K-polystable.

Proof. This follows from Proposition 1.3.17, since fibers of π are rationally equivalent. □

Corollary 1.3.21. Suppose that FutX = 0, not all G-invariant fibers of π are irreducible,
and β(D) > 0 for at least one irreducible component D of every reducible G-invariant
fiber of the map π. Then X is K-polystable.

Proof. Using Proposition 1.3.17, we see that to prove the required assertion it is enough
to check that β(F ) > 0 for an irreducible fiber F of the map π. Observe that F ∼ D+D′,
where D is an irreducible component of some reducible fiber of π such that β(D) > 0,
and D′ is an effective divisor on X. Then β(F ) ⩾ β(D) > 0 as required. □

Therefore, if FutX = 0, then to check the K-polystability of the variety X, it is enough
to check that β(D) > 0 for finitely many T-invariant divisors D in X.

Proof of Theorem 1.3.9. First, we suppose that FutX = 0 and X is divisorially polystable.
Then X is K-polystable by Proposition 1.3.17.

Now, we suppose that X is K-polystable. Then we must have DF(X ,L) = 0 for every
test configuration (X ,L) of product-type. By Lemma 1.3.6, this is equivalent to FutX = 0.
Moreover, we have

β(D) = DF
(
X ordD

)
> 0

for every T-invariant prime divisor D on X such that X ordD is not of product-type.
By Lemma 1.3.15, the latter condition is equivalent to D being vertical. □
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1.4. Tian’s criterion. Let X be a Fano variety with at most Kawamata log terminal
singularities of dimension n ⩾ 2, and let G be a reductive subgroup in Aut(X). Then

αG(X) = sup

ϵ ∈ Q

∣∣∣∣∣∣ the log pair
(
X,

ϵ

m
D
)

is log canonical for any m ∈ Z>0

and every G-invariant linear system D ⊂
∣∣−mKX

∣∣
 .

This number, also known as the global log canonical threshold (see [45, Definition 3.1]),
has been defined by Tian in [201] in a very different way (see also [204, Appendix 2]).
However, both the definitions coincide by [43, Theorem A.3].

Lemma 1.4.1. Suppose that G = Gr
m ⋊B for some finite group B. Then

αG(X) = sup

{
ϵ ∈ Q

∣∣∣∣ the log pair (X, ϵD) is log canonical for every

G-invariant effective Q-divisor D ∼Q −KX

}
.

Proof. Let D be an effective G-invariant Q-divisor on X that satisfies D ∼Q −KX . Take
a positive integer r such that rD is a Cartier Z-divisor. Then rD is a G-invariant zero-

dimensional linear subsystem in | − rKX |, and lct(X;D) = lct(X;rD)
r

. This gives

αG(X) ⩽ sup

{
ϵ ∈ Q

∣∣∣∣ the log pair (X, ϵD) is log canonical for every

G-invariant effective Q-divisor D ∼Q −KX

}
.

Thus, to complete the proof, we have to prove the opposite inequality.
Let m be large positive integer, let D be a G-invariant linear subsystem in | −mKX |,

and let c = lct(X; 1
m
D). Then c ⩾ αG(X), and we can choose m and D in | − mKX |

such that c is arbitrary close to αG(X). On the other hand, the linear system D contains
a Gr

m-invariant divisor. Denote it by D. Then for every g ∈ B, we have g∗(D) ∈ D and
the log pair (X, c

m
g∗(D)) is not Kawamata log terminal (cf. [124, Theorem 4.8]). Let

D =
1

m|B|
∑
g∈B

g∗(D).

Then D is an effective G-invariant divisor such that D ∼Q −KX . Moreover, it follows
from the proof of [124, Theorem 4.8] that (X, cD) is not Kawamata log terminal, so that

αG(X) ⩾ sup

{
ϵ ∈ Q

∣∣∣∣ the log pair (X, ϵD) is log canonical for every

G-invariant effective Q-divisor D ∼Q −KX

}
,

because c can be arbitrary close to αG(X). □

If G is a trivial group, we let α(X) = αG(X). By Lemma 1.4.1, we have

α(X) = inf
{
lct(X,D)

∣∣ D is effective Q-divisor such that D ∼Q −KX

}
All possible values of the α-invariants of smooth del Pezzo surfaces are found in [29, 146],
and we presented them in Section 1.5. Similarly, α-invariants of del Pezzo surfaces with at
most Du Val singularities have been computed in a series of papers [167, 30, 168, 169, 33].
For smooth Fano threefolds, we only know partial results about their α-invariants [43].
Observe that the invariant α(X) has a global nature. It measures the singularities of

effective Q-divisors on X that are Q-linearly equivalent to the anticanonical divisor −KX .
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We can also localize α(X) as follows. Let Z be a proper irreducible subvariety in X. Let

αZ(X) = sup

{
λ ∈ Q

∣∣∣∣ the log pair (X,λD) is log canonical at general point of Z

for every effective Q-divisor D on X such that D ∼Q −KX

}
.

Clearly, we have
α(X) = inf

P∈X
αP (X),

where the infimum is taken by all (closed) points in X. If the subvariety Z is G-invariant,
we can also define the number αG,Z(X) as follows:

αG,Z(X) = sup

{
λ ∈ Q

∣∣∣∣ the pair (X,λD) is log canonical at general point of Z for any

effective G-invariant Q-divisor D on X such that D ∼Q −KX

}
.

Then αG(X) ⩽ αG,Z(X).

Remark 1.4.2 ([95, Lemma 2.5]). Let f : X̃ → X be an arbitrary G-equivariant birational

morphism, let F be a G-invariant prime divisor in X̃ such that Z ⊆ f(F ), and let

τ(F ) = sup
{
x ∈ Q>0

∣∣ f ∗(−KX)− xF is big
}
.

Then AX(F )
τ(F )

⩾ αG,Z(X). Indeed, fix any positive rational number x < τ(F ), let D be

the image on the varietyX of the (non-empty) complete linear system |M(f ∗(−KX)−xF )|
for sufficiently large and divisible integerM . Then D is G-invariant. If F is f -exceptional,

then the log pair (X, AX(F )
xM

D) is not Kawamata log terminal along f(F ). Similarly, if

the divisor F is not f -exceptional, then (X, 1
xM

D + f(F )) is not Kawamata log terminal

along f(F ), and 1
xM

D + f(F ) ∼Q
1
x
(−KX). Thus, in both cases αG,Z(X) ⩽ AX(F )

x
, which

implies the required inequality, since we can choose x to be as close to τ(F ) as we wish.

Corollary 1.4.3. In the notations and assumptions of Remark 1.4.2, we have

AX(F )

SX(F )
⩾
n+ 1

n
αG,Z(X).

Proof. By [17, Proposition 3.11], on has 1
n+1

τ(F ) ⩽ SX(F ) ⩽ n
n+1

τ(F ), so that the result
follows from Remark 1.4.2. □

In some cases, this inequality can be improved a little bit:

Lemma 1.4.4. In the notations and assumptions of Remark 1.4.2, suppose in addition
that X is smooth and dim(Z) ⩾ 1. Then

AX(F )

SX(F )
>
n+ 1

n
αG,Z(X).

Proof. By [89, Proposition 3.2], we have SX(F ) <
n
n+1

τ(F ), so that the required result
follows from Remark 1.4.2. □

We can also define α-invariants for

• log Fano varieties (see Section 1.5);
• weak Fano varieties (see Lemma 1.4.6, Example 4.1.11 and Section 4.1);
• Fano varieties defined over arbitrary fields (see Theorem 1.4.11 and Appendix A.5).

To save space and to keep the exposition simple, we leave these definitions to the reader.
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Lemma 1.4.5. Suppose that G is finite. Let Y = X/G, let π : X → Y be the quotient
morphism, and let ∆ be the effective Q-divisor on Y such that π∗(KY + ∆) = KX .
Then the log pair (Y,∆) has Kawamata log terminal singularities, −(KY +∆) is ample,
and α(Y,∆) = αG(X).

Proof. The required assertion is [45, Remark 3.2]. Let DY be an effective Q-divisor on
the variety Y such that DY ∼Q −(KY +∆). Then π∗(DY ) ∼Q π∗(KY + ∆) ∼Q −KX ,
the divisor π∗(DY ) is G-invariant, and lct(X; π∗(DY )) = lct(Y,∆;DY ) by [124, Propo-
sition 3.16]. This immediately gives αG(X) ⩾ α(Y,∆). Vice versa, for every effective
G-invariant divisor D on X such that D ∼Q −KX , one has D = π∗(DY ) for some effec-
tive Q-divisor DY on the variety Y such that DY satisfies DY ∼Q −(KY +∆). As above,
this gives αG(X) ⩽ α(Y,∆). □

Lemma 1.4.6. Let π : Y → X be a G-equivariant birational morphism such that Y has
Kawamata log terminal singularities, and −KY ∼Q π

∗(−KX). Then αG(Y ) = αG(X).

Proof. The proof is similar to the proof of Lemma 1.4.5, so it is left to the reader. □

The α-invariants are important because of the following result:

Theorem 1.4.7 ([63, 140, 216, 201]). The Fano variety X is K-semistable if

αG
(
X
)
⩾

n

n+ 1

Moreover, if αG(X) > n
n+1

, then X is K-polystable.

Remark 1.4.8. By [216, Corollary 4.15], Theorem 1.4.7 can be generalized for varieties
defined over arbitrary fields of characteristic 0 as follows. If X is a Fano variety defined
over an arbitrary field F of characteristic 0, and G is a reductive subgroup in AutF(X)
such that αG(X) > n

n+1
, then X is K-polystable over the algebraic closure of the field F.

If G is trivial, we also have the following result:

Theorem 1.4.9 ([89, 163]). If X is smooth and α(X) ⩾ n
n+1

, then X is K-stable.

Recall that we assume that the group G is reductive.

Theorem 1.4.10. If X is smooth and αG(X) ⩾ n
n+1

, then X is K-polystable.

Proof. Suppose that the Fano variety X is smooth and αG(X) ⩾ n
n+1

. We must show
that X is K-polystable. By Theorem 1.4.7, we may assume αG(X) = n

n+1
.

Let f : X̃ → X be a G-equivariant birational morphism, and let E be a G-invariant

prime divisor in X̃. By Theorem 1.2.5, it is enough to show that β(E) > 0 provided that
E is dreamy (see Section 1.1).
Suppose that E is dreamy. By Remark 1.4.2, we have

AX(E) ⩾ αG(X)τ(E) =
n

n+ 1
τ(E).

If AX(E) > SX(E), then we are done. Thus, we may assume that AX(E) ⩽ SX(E).
Since AX(E) ⩾ n

n+1
τ(E), we get X ∼= Pn by [90, Theorem 1]. Then X is K-polystable. □

To estimate αG(X) in the case when X is a smooth (or mildly singular) Fano threefold,
we will use the following result, which is a refinement of [157, Theorem 0.1] for threefolds.
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Theorem 1.4.11. Let X be a Fano threefold that has canonical Gorenstein singularities,
let G be a reductive subgroup of Aut(X), and let µ be a positive number such that µ ⩽ 1.
Suppose that αG(X) < µ. Then one of the following assertions holds:

(1) There exists a G-invariant irreducible normal surface S on X such that

−KX ∼Q λS +∆,

where ∆ is effective Q-divisor, and λ ∈ Q such that λ > 1
µ
.

(2) There exists a G-invariant point P ∈ X. Moreover, the following holds:
(2.1) if there is a del Pezzo fibration π : X → P1, and F is its scheme fiber that

contains the point P , then

α(F ) ⩽ αΓ(F ) < µ,

where Γ is the image in Aut(F ) of the stabilizer of the fiber F in the group G,
and we assume that αΓ(F ) = 0 in the case when F is not a del Pezzo surface
with Du Val singularities.

(3) There exists a smooth rational G-invariant curve C ⊂ X such that

−KX · C ⩽
(−KX)

3

2
+ 2.

Moreover, in this case, the following additional assertions hold:
(3.1) if µ < 1, then −KX · C < 2

1−µ , e.g. if µ = 3
4
, then −KX · C < 8;

(3.2) if there is a del Pezzo fibration π : X → P1, then F · C ∈ {0, 1} and

α(F ) ⩽ αΓ(F ) < µ,

where F is any fiber of the fibration π that intersects (or contains) the curve C,
and Γ is the image in Aut(F ) of the stabilizer of F in the group G;

(3.3) if in (3.2) we have F · C = 1, then

α
(
Fπ
)
⩽ αΓ

(
Fπ
)
< µ,

where Fπ is the (scheme) generic fiber of the fibration π, which is a del Pezzo
surface with Du Val singularities defined over the function field of the line P1,
and Γ is the image in Aut(Fπ) of the stabilizer of the fiber Fπ in the group G.

Proof. By definition, there exists a G-invariant linear system D ⊂ |−nKX | for some n ⩾ 1
such that the log pair (X, ϵ

n
D) is strictly log canonical for some positive rational ϵ < µ.

We write ϵ
n
D = BX + MX , where BX is a G-invariant effective Q-divisor on X, and

MX is a G-invariant mobile boundary (see Appendix A.3). Let Z be the G-orbit of its
minimal log canonical center. Then, using Lemma A.4.6, we may assume that the only
log canonical centers of the log pair (X, ϵ

n
D) are the irreducible components of Z.

The irreducible components of Z cannot intersect by Lemma A.2.5, On the other hand,
it follows from Corollary A.1.7 that the locus Z is connected, so that Z is an irreducible
G-invariant subvariety of the threefold X.

If Z is a surface, then we get (1), since Z must be normal by Theorem A.2.6. Thus, we
assume that Z is not a surface.

Suppose that Z is a point. Then we get (2). To prove (2.1), we suppose that there
is a del Pezzo fibration π : X → P1. Let F be its scheme fiber over π(Z), and let Γ be
the image in Aut(F ) of the stabilizer of the fiber F in the group G. Suppose that F is
an irreducible normal surface that has at most Du Val singularities. Write BX = aF +∆
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where a is a non-negative rational number, and ∆ is an effective Q-divisor, whose support
does not contain the surface F . Then a < 1, because otherwise F would be a log canonical
center of the log pair (X,BX + MX), which is not the case, since Z is the unique log
canonical center of this log pair. Then the pair (X,F+∆+MX) is not log canonical at Z.
Now using Theorem A.2.1, we see that (F,∆|F +MX |F ) is not log canonical at Z. On
the other hand, ∆|F + MX |F ∼Q ϵ(−KF ) and ∆|F + MX |F is Γ-invariant, so that we
have αΓ(F ) < ϵ. Then α(F ) ⩽ αΓ(F ) < µ, which proves (2.1).
Thus, we may assume that Z is a curve, so that we let C = Z. Then the curve C is

smooth and rational by Theorem A.2.6.
Let IC be the ideal sheaf of the curve C. Then h1(IC ⊗ OX(−KX)) = 0 by Theo-

rem A.1.6. Thus, we have the following exact sequence of G-representations

1 −→ H0
(
IC ⊗OX(−KX)

)
−→ H0

(
OX(−KX)

)
−→ H0

(
OC ⊗OX(−KX)

)
−→ 1,

which, in particular, gives

(−KX)
3

2
+ 3 = h0

(
OX(−KX)

)
⩾ h0

(
OC ⊗OX(−KX)

)
= −KX · C + 1,

which gives −KX · C ⩽ (−KX)3

2
+ 2 as required in (3).

Observe that (3.1) follows from Corollary A.2.7.
To prove (3.2), we suppose (again) that there exists a del Pezzo fibration π : X → P1.

Let F be a fiber of this fibration such that F ∩C ̸= ∅. Then either C ⊂ F and F ·C = 0,
or the intersection F ∩C consists of finitely many points. Arguing as in the proof of (2.1),
we see that α(F ) ⩽ αΓ(F ) ⩽ ϵ < µ, where Γ is the image in Aut(F ) of the stabilizer of
the fiber F in the group G.

Let us show that F · C ∈ {0, 1}. Suppose that F · C ̸= 0. Let us show that F · C = 1.
Let S be a general fiber of the fibration π. Then S is a del Pezzo surface with Du Val
singularities, and S ∩ C consists of F · C ⩾ 1 distinct points. On the other hand, the log
pair (X,BX |S +MX |S) is not Kawamata log terminal at any point of S ∩ C, and is log
canonical away from this set. Since BX

∣∣
S
+MX

∣∣
S
∼Q −ϵKS and ϵ < 1, it follows from

Corollary A.1.7 that that S ∩ C is connected, so that F · C = 1. This proves (3.2).
Finally, to prove (3.3), let Fπ be the generic fiber of the fibration π, let F be the function

field of the line P1, and let Γ be a subgroup in G such that π is Γ-equivariant and Γ acts
trivially on its base. Then Γ is the stabilizer of the fiber Fπ in the group G, and we
can identify Γ with a subgroup of Aut(Fπ). Then Fπ is a del Pezzo surface with Du Val
singularities defined over F, the curve C defines a Γ-invariant F-point in Fπ, the log pair
(Fπ, BX |Fπ +MX |Fπ) is not Kawamata log terminal at this point, and BX |Fπ +MX |Fπ is
Γ-invariant. This gives αΓ(Fπ) ⩽ ϵ, which proves (3.3). □

Let us present several corollaries of Theorem 1.4.11, which are easier to apply.

Corollary 1.4.12 ([157, Corollary 4.1]). Let X be a Fano threefold that has canonical
Gorenstein singularities, and let G be a finite subgroup in Aut(X) such that X does
not have G-orbits of length 1 or 2, and G does not admit an epimorphisms to any of
the following groups A4, S4 or S5. Suppose that X does not contain any G-invariant
irreducible surface S such that −KX ∼Q λS +∆ for some positive rational number λ > 1
and an effective Q-divisor ∆. Then αG(X) ⩾ 1.

Proof. Apply Theorem 1.4.11 and use classification of finite subgroups in PGL2(C). □
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Corollary 1.4.13. Let X be a smooth Fano threefold, and let G be a finite simple non-
abelian subgroup in Aut(X) such that G ̸∼= A5, G ̸∼= PSL2(F7). Suppose that X does
not contain any G-invariant irreducible surface S such that −KX ∼Q λS + ∆ for some
positive rational number λ > 1 and an effective Q-divisor ∆. Then αG(X) ⩾ 1.

Proof. Apply Theorem 1.4.11. The condition Theorem 1.4.11(1) is not satisfied by as-
sumption. Since G ̸∼= A5 and G ̸∼= PSL2(F7), the group G does not have faithful three-
dimensional representations, so that the threefold X does not have G-invariant points by
Lemma A.4.1. Thus, since G ̸∼= A5, we see that X does not contain rational G-invariant
curves. □

Corollary 1.4.14. Let V be a weak Fano threefold that has canonical Gorenstein singu-
larities, let G be a reductive subgroup of Aut(V ), let π : V → P1 be a G-equivariant weak
del Pezzo fibration. Suppose that the following three conditions are satisfied:

(i) π does not have G-invariant fibers,
(ii) V does not contain G-invariant (irreducible) sections of π;
(iii) V does not contain G-irreducible surface S such that −KV ∼Q λS + ∆ for some

rational number λ > 1 and effective Q-divisor ∆.

Then αG(V ) ⩾ 1.

Proof. If V is a Fano threefold, then the required assertion follows from Theorem 1.4.11.
In general, it follows from from the proof of this theorem. Indeed, suppose αG(V ) < 1.
Then there are rational number µ < 1 and G-invariant linear system D ⊂ | − nKV | for
some n ⩾ 1 such that (V, µ

n
D) is strictly log canonical. Let us seek for a contradiction.

Let C be an center of the log canonical singularities of the log pair (V, µ
n
D) that has

maximal dimension, and let Z be its G-orbit. Then Z is a G-irreducible subvariety of V ,
so that C is not a surface by (iii). In particular, the locus Nklt(V, µ

n
D) is at most one-

dimensional.
If C is a point, then the locus Nklt(V, µ

n
D) is zero-dimensional. Since it is connected by

Corollary A.1.7, we conclude that Z = C must be a G-invariant point in this case, which
is impossible by (i). Thus, we see that C is a curve.
Let F be a general fiber of π. If F ·Z ̸= 0, then the log pair (F, µ

n
D|F ) is not Kawamata

log terminal at every intersection point in F ∩Z, and Nklt(F, µ
n
D|F ) is zero-dimensional,

so that F · Z = 1 and Z = C by Corollary A.1.7. The latter is impossible by (ii). Hence,
we see that F · Z = 0.
Thus, the locus Nklt(V, µ

n
D) is one-dimensional, and each its irreducible component is

contained in a fiber of the G-equivariant fibration π. On the other hand, this locus is
connected by Corollary A.1.7. This shows that Z = C and C is contained in a fiber of π,
which must be G-invariant. The latter is impossible by (i). □

Corollary 1.4.15. Let V be a weak Fano threefold that has canonical Gorenstein singu-
larities, let G be a reductive subgroup of Aut(V ), let π : V → P1 be a G-equivariant weak
del Pezzo fibration, and let Fπ be the (scheme-theoretic) generic fiber of the fibration π,
which is a weak del Pezzo surface with Du Val singularities that is defined over the function
field of P1. Suppose that π does not have G-invariant fibers. Then αG(V ) ⩾ α(Fπ).

Proof. The assertion follows from the proof of Theorem 1.4.11. Indeed, suppose that
αG(V ) < α(Fπ). Then there is a G-invariant linear system D ⊂ | − nKV | for some n ⩾ 1
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such that (V, µ
n
D) is strictly log canonical for some positive rational number µ < α(Fπ).

Note that α(Fπ) ⩽ 1, because | −KFπ | is not empty.
Let Z = Nklt(V, µ

n
D). If an irreducible component of the locus Z is not contained in

any fiber of the fibration π, then the log pair (Fπ,
µ
n
D|Fπ) is not Kawamata log terminal

and D|Fπ ⊂ |−nKFπ |, so that µ ⩾ α(Fπ), which is a contradiction. Therefore, we conclude
that each irreducible components of the locus Z is contained in a fiber of the fibration
π. But Z is connected by Corollary A.1.7. Hence, the whole locus Z is contained in one
fiber of the fibration π, so that this fiber must be G-invariant which is impossible, since
π does not have G-invariant fibers by assumption. □

Corollary 1.4.16. Let V be a weak Fano threefold with isolated canonical Gorenstein sin-
gularities, let G be a reductive subgroup of Aut(V ), and let π : X → P1 be a G-equivariant
fibration whose general fiber is a smooth quintic del Pezzo surface. Suppose, in addition,
that rkCl(V ) = 2, and π does not have G-invariant fibers. Then α(V ) ⩾ 4

5
.

Proof. Apply Corollary 1.4.15 and Lemma A.5.7. □

Let us conclude this section by presenting one application of Corollary 1.4.12.

Example 1.4.17. Let x0, · · · , x4 be coordinates on P4, and for each t ∈ C, let

Xt =

{
4∑
i=0

x4i +
( 4∑
i=0

xi

)4
= t

(
4∑
i=0

x2i +
( 4∑
i=0

xi

)2)2}
⊂ P4.

Then the threefold Xt is singular. If t =
1
4
, then Xt has canonical Gorenstein singularities.

Moreover, if t ̸= 1
4
, then Xt has isolated ordinary double points by [107, Theorem 4.1].

Observe that the threefold Xt admits a natural action of the symmetric group S6. Then

• the smallest S6-orbit on Xt contains at least six points [49].
• the subgroup of S6-invariant divisors in Cl(X) is generated by −KX , see [34].

By Corollary 1.4.12, αS6(X) ⩾ 1, and X is K-stable by Theorem 1.4.7 and Corollary 1.1.6,
because the automorphism group of Xt is finite. Explicitly, [34, Lemma 3.4] shows that

Aut(Xt) ∼=


PSp4

(
F3

)
if t =

1

2
,

S6 if t ̸= 1

2
.

1.5. Stability threshold. The paper [97] introduces a new invariant of Fano varieties,
called δ-invariant, that serves as a criterion for K-stability. In this section, we will give
slightly simplified definition of the δ-invariant together with its equivariant counterpart,
and we will also consider some applications, e.g. Proposition 1.5.9 and Corollary 1.5.21.

Let X be a normal projective variety of dimension n, let ∆ be an effective Q-divisor
on it such that the log pair (X,∆) has at most Kawamata log terminal singularities, and
let L be an ample Q-divisor on X. Let f : Y → X be a projective birational morphism
with normal variety Y , and let E be a (not necessarily f -exceptional) prime divisor in Y .
Then E is a divisor over X (see Definition 1.2.1). Let

AX,∆(E) = 1 + ordE

(
KY − f ∗(KX +∆

))
,

and we let

SL(E) =
1

Ln

∫ ∞

0

vol(L− xE)dx.
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If (X,∆) is a log Fano variety and L = −(KX+∆), we set SX,∆(E) = SL(E) for simplicity.
Note that this (infinite) integral is actually finite, since vol(L − xE) = 0 for x > τL(E),
where τL(E) is the pseudo-effective threshold:

τL(E) = sup
{
λ ∈ R>0

∣∣ vol(L− λE) > 0
}
.

Following [17], let us define α(X,∆;L) and δ(X,∆;L) as follows:

α(X,∆;L) = inf
E/X

AX,∆(E)

τL(E)
,

and

δ(X,∆;L) = inf
E/X

AX,∆(E)

SL(E)
,

where both infima are taken over all prime divisors over X. Then

α(X,∆;L) = inf
{
lct
(
X,∆;D

) ∣∣ D is effective Q-divisor such that D ∼Q L
}
,

which can be shown arguing as in Remark 1.4.2. This equality can be restated as

α(X,∆;L) = sup

{
λ ∈ Q

∣∣∣∣∣ the log pair
(
X,∆+ λD

)
is log canonical

for any effective Q-divisor D ∼Q −KX

}
.

If (X,∆) is a log Fano variety, we let

α(X,∆) = α
(
X,∆;−(KX +∆)

)
,

δ(X,∆) = δ
(
X,∆;−(KX +∆)

)
.

In this case important case, the number δ(X,∆) is also known as the stability threshold,
because of the following result (cf. Theorem 1.2.2).

Theorem 1.5.1 ([97, 90, 133, 17, 59, 139]). If (X,∆) is a log Fano variety, then

• δ(X,∆) > 1 ⇐⇒ (X,∆) is K-stable;
• δ(X,∆) ⩾ 1 ⇐⇒ (X,∆) is K-semistable.

Actually, we did not defined the K-stability and K-semistability for log Fano varieties.
Both these notions can be defined similar to what we did for Fano varieties in Section 1.1.
For details, we refer the reader to the excellent survey [208].

Theorem 1.5.2 ([215]). Suppose that X = X1 ×X2, ∆ = ∆1 ⊠∆2, L = L1 ⊠ L2, where

• X1 and X2 are projective varieties,
• ∆1 is an effective Q-divisor on X1 such that (X1,∆1) is Kawamata log terminal,
• ∆2 is an effective Q-divisor on X2 such that (X2,∆2) is Kawamata log terminal,
• L1 and L2 are ample divisors on on X1 and X2, respectively.

Then δ(X,∆;L) = min{δ(X1,∆1;L1), δ(X2,∆2;L2)}.

We can also define local analogues of the numbers α(X,∆;L) and δ(X,∆;L) as follows.
For a point P ∈ X, we let

αP (X,∆;L) = inf
E/X

P∈CX(E)

AX,∆(E)

τL(E)
,
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and

δP (X,∆;L) = inf
E/X

P∈CX(E)

AX,∆(E)

SL(E)
,

where infima are taken over all prime divisors over X whose centers on X contain P . Then

α(X,∆;L) = inf
P∈X

αP (X,∆;L),

δ(X,∆;L) = inf
P∈X

δP (X,∆;L).

By [17, Proposition 3.11], we have 1
n+1

τL(E) ⩽ SL(E) ⩽ n
n+1

τL(E) for any prime divisor

E over X. Thus, we have n+1
n
αP (X,∆;L) ⩽ δP (X,∆;L) ⩽ (n + 1)αP (X,∆;L), which

implies that n+1
n
α(X,∆;L) ⩽ δ(X,∆;L) ⩽ (n+ 1)α(X,∆;L).

Arguing as in Remark 1.4.2, one can show that

αP (X,∆;L) = inf
{
lctP

(
X,∆;D

) ∣∣ D is effective Q-divisor such that D ∼Q L
}
,

which is the original definition of αP (X,∆;L). Note that it can be restated as

αP (X,∆;L) = sup

{
λ ∈ Q

∣∣∣∣∣ the log pair
(
X,∆+ λD

)
is log canonical at P

for every effective Q-divisor D ∼Q −KX

}
.

It would be useful to have a similar alternative definition of δP (X,∆;L), which uses log
canonical thresholds of some divisors on X. To give this alternative definition, we need

Definition 1.5.3. For effective Q-divisor D such that D ∼Q L, we say that D is cool if
the inequality ordE(D) ⩽ SL(E) holds for every prime Weil divisor E over X.

The following result can considered as an alternative definition of the δ-invariant.

Proposition 1.5.4. Let P be a point in X. Then

δP (X,∆;L) = inf
{
lctP

(
X,∆;D

) ∣∣ D is cool effective Q-divisor such that D ∼Q L
}
.

We can restate the equality in this proposition as follows:

δP (X,∆;L) = sup

{
λ ∈ Q

∣∣∣∣∣ the log pair
(
X,∆+ λD

)
is log canonical at P

for any effective cool Q-divisor D ∼Q −KX

}
.

Corollary 1.5.5. One has

δ(X,∆;L) = inf
{
lct
(
X,∆;D

) ∣∣ D is cool effective Q-divisor such that D ∼Q L
}
.

To prove this result, we need the following auxiliary

Lemma 1.5.6. Fix any ϵ ∈ Q>0. Then there exists an effective Q-divisor D ∼Q L such
that ordE(D) ⩽ ϵτL(E) for every divisor E over X.

Proof. Let π : X̃ → X be the log resolution of the pair (X,∆), let N be a sufficiently
divisible integer such that N ⩾ n

ϵ
, and let D1, D2, . . . , DN be general divisors in the linear

system |NL|. By Bertini’s theorem, the divisor π∗(D1) + ...+ π∗(DN) has simple normal
crossing singularities, since we may assume that |NL| is base point free. Let

D =
1

N2

N∑
i=1

Di.
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Then D ∼Q L. Let us show that D is the required divisor.

Let E be any prime divisor over X, and let CX̃(E) be the center on X̃ of the discrete
valuation defined by E. Then CX̃(E) is contained in the support of at most n divisors
among π∗(D1), . . . , π

∗(DN). If CX̃(E) ̸⊂ Supp(π∗(Di)), then we get ordE(Di) = 0. On
the other hand, if CX̃(E) ⊂ Supp(π∗(Di)), then ordE(Di) ⩽ NτL(E). Thus, we have

ordE(D) ⩽
n

N2
NτL(E) =

n

N
τL(E) ⩽ ϵτL(E)

as required. □

We also need the following useful lemma. For the precise definition of m-basis type
divisors, see [97].

Lemma 1.5.7 ([17, Corollary 3.6]). Fix ϵ > 0. Then there exists m0(ϵ) ∈ Z>0 with
the following property: for every integer m ⩾ m0(ϵ) such with mL a Cartier divisor and
for every prime divisor E over X, one has ordE(Dm) ⩽ (1 + ϵ)SL(E) for any m-basis
type divisor Dm ∼Q L.

Let us now prove Corollary 1.5.5. The proof of Proposition 1.5.4 is almost identical, so
that we omit it.

Proof of Corollary 1.5.5. Let F be any prime divisor over X. We have to prove that

δ(X,∆;L) = inf
F/X

AX,∆(F )

sup
{
ordF (D) | D is cool effective Q-divisor such that D ∼Q L

} .
To do this, it is enough to prove that the denominator in this formula is equal to SL(F ).
But this denominator does not exceed SL(F ). Thus, we only have to prove that

(1.5.8) sup
{
ordF (D) | D is cool effective Q-divisor such that D ∼Q L

}
⩾ SL(F ),

Fix a prime divisor F over X and ϵ > 0. Let m0(ϵ) be the constant from Lemma 1.5.7.
Take a sufficiently large and divisible integer k ⩾ m0(ϵ) such that kL is a Cartier divisor,
and |kL| is not empty. It follows from [17, Corollary 3.6] that for eachm ∈ N divisible by k,
there exists a m-basis type divisor Dm ∼Q L such that

lim
m→∞

ordF (Dm) = SL(F ).

But it follows from Lemma 1.5.6 that there is an effective Q-divisor D′ ∼Q L such that

ordE
(
D′) ⩽ 1

2(n+ 1)
τL(E) ⩽

1

2
SL(E)

for every prime divisor E over X. Moreover, by construction of the divisor D′, we may
assume that ordF (D

′) = 0. Now for every positive m divisible by k, we let

D =
1− ϵ

1 + ϵ
Dm +

2ϵ

1 + ϵ
D′.

Then D ∼Q L. We claim that D is cool. Indeed, since m ⩾ k ⩾ m0(ϵ), for every prime
divisors E over X, we have

ordE(D) ⩽
1− ϵ

1 + ϵ
(1 + ϵ)SL(E) +

2ϵ

1 + ϵ
× 1

2
SL(E) < SL(E)
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by Lemma 1.5.7. On the other hand, we have

ordF (D) ⩾
1− ϵ

1 + ϵ
ordF

(
Dm

)
,

where ordF (Dm) → SL(F ) as m→ ∞. This gives (1.5.8) as required. □

Let us use δ-invariant to prove the following generalization of [64, Theorem 1.1], which
we obtained after a communication with Ziquan Zhuang.

Proposition 1.5.9. Let X be a Fano variety of dimension n ⩾ 2 that has Kawamata log
terminal singularities. Suppose that there exists a cyclic cover f : X → Y of degree m
such that Y is also a Fano variety that has at most Kawamata log terminal singularities,
and f is branched along an effective reduced divisor B ⊂ Y such that B ∼Q b(−KY ) for
some positive rational number b < m

m−1
. Suppose that one of the following holds:

(1) the log pair (Y,B) is log canonical and δ(Y ) > m− (m− 1)b,
(2) the log pair (Y,B) is log canonical, δ(Y ) = m − (m − 1)b, and for every prime

divisor F over Y such that AY,B(F ) = 0, one has AY (F )
SY (F )

> m− (m− 1)b.

Then X is K-stable.

Proof. Let L = −KY . Let us show that the log pair (Y, m−1
m
B) is K-stable, which would

imply the required result by [140, Proposition 3.4].
Let (Y ,L) be any non-trivial test configuration of the pair (Y, L) over P1 such that its

central fiber Y0 is reduced and irreducible, and let Mt be the non-Archimedean Mabuchi
functional of (Y ,L) defined in [23, Definition 7.13], where t ∈ [0, 1]. Then

Mt =
1

Ln
Ln ·

(
KY/P1 + tB

)
− n

n+ 1

Ln−1 · (KY + tB)

Ln
(Ln+1),

where B is the closure of B × (P1\[0 : 1]) in Y . Moreover, it follows from [135] that to

prove K-stability of (Y, m−1
m
B), it is enough to prove that Mt > 0 for t = (m−1)

m
.

Let ν := ordY0|C(Y )∗ : C(Y )∗ → Z be the divisorial valuation given by Y . Then there
exists a prime divisor F over Y such that ν = c ordF for some c ∈ Z>0. Moreover, it follows
from [90, Theorem 5.1] and [94, Theorem 3.2] thatMt = A(Y,tB)(F )−(1−tb)SY (F ). Thus,
in order to prove that Mm−1

m
> 0, it is enough to prove that

A
(Y,

(m−1)B
m

)
(F ) >

(
1− (m− 1)b

m

)
SL(F ).

Since (Y,B) is log canonical, we have A(Y,B)(F ) ⩾ 0, so that

A
(Y,

(m−1)B
m

)
(F ) ⩾

1

m
AY (F ).

Moreover, we have δ(Y ) ⩾ m− (m− 1)b, which gives AY (F )
SL(F )

⩾ m− (m− 1)b. Thus, using

conditions (1) or (2), we see that

A
(Y,

(m−1)B
m

)
(F ) ⩾

1

m
AY (F ) >

(
1− (m− 1)b

m

)
SL(F )

or

A
(Y,

(m−1)B
m

)
(F ) >

1

m
AY (F ) =

(
1− (m− 1)b

m

)
SL(F ),

respectively. This proves the proposition. □
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Using Proposition 1.5.9 and Theorem 1.5.1, we get

Corollary 1.5.10 ([64]). Suppose that X is a smooth Fano variety of dimension n ⩾ 2,
and there is a cyclic cover f : X → Y of degree m such that Y is a smooth Fano variety,
and f is branched along an effective reduced divisor B ⊂ Y such that B ∼Q b(−KY ) for
a rational number b such that 1 ⩽ b < m

m−1
. If Y is K-semistable, then X is K-stable.

Let G be a reductive algebraic subgroup in Aut(X,∆) such that the class of the ample
divisor L in the group Pic(X)⊗Q is G-invariant. As in Section 1.4, we can define

αG(X,∆;L) = sup

ϵ ∈ Q

∣∣∣∣∣∣
(
X,∆+

ϵ

m
D
)

is log canonical for any m ∈ Z>0 such that

mL is Z-divisor and any G-invariant subsystem D ⊂
∣∣mL∣∣

 .

Note that we can reformulate the definition of αG(X,∆;L) as follows:

αG(X,∆;L) = inf

{
lct
(
X,∆;

1

m
D
) ∣∣∣∣∣ m is a positive integer such that mL is Z-divisor

and D is a G-invariant linear subsystem in
∣∣mL∣∣

}
.

Moreover, arguing as in Remark 1.4.2, one can show that

(1.5.11) αG(X,∆;L) = inf
E/X

AX,∆(E)

τL(E)
,

where the infimum is taken over all G-irreducible (not necessarily prime) divisors over X.
If (X,∆) is a log Fano variety, then we let αG(X,∆) = αG(X,∆;−(KX +∆)).

Remark 1.5.12. In (1.5.11), we cannot take infimum over all G-invariant prime divisors
over X in general. But if (X,∆) is a log Fano variety, L = −(KX+∆) and αG(X,∆) < 1,
then we can assume that the infimum in (1.5.11) is taken over all G-invariant prime
divisors over X. This follows from Corollary 1.4.12, Lemma A.4.6 and [216, Lemma 4.8].

Inspired by [140, Definition 2.5] and Theorem 1.2.5, we can define

δG
(
X,∆;L

)
= inf

E/X

AX,∆(E)

SL(E)
,

where the infimum is taken over all possible G-invariant prime divisors over the variety X.
If (X,∆) is a log Fano variety, we also let

δG(X,∆) = δG
(
X,∆;−(KX +∆)

)
.

In this case, the strict inequality δG(X,∆) > 1 implies that (X,∆) is K-polystable [216].
Similarly, if X is a Fano variety, we let δG(X) = δG(X, 0;−KX).
In the remaining part of this section, we will show another way to define δG(X,∆;L),

which resembles the original definition of the δ-invariant given in [97].
First, we fix a positive integer m such that mL is a very ample Cartier divisor, and

the action of G lifts to its linear representation in H0(X,mL). We let Nm = h0(X,mL).
For every linear subspace W ⊆ H0(X,mL), we denote by |W | the corresponding linear
subsystem in |mL|. If the subspace W is G-invariant, we say that |W | is G-invariant.
Note that H0(X,mL) splits as a sum of irreducible G-representations [191, Section 4.6.6].
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Definition 1.5.13. Fix positive integersm1, . . . ,mt such that each divisormiL is Cartier,
and take positive rational numbers a1, . . . , at such that

t∑
i=1

aimi = 1.

Let D1, . . . ,Dt be linear subsystems in |m1L|, . . . , |mtL|, respectively. Then

D =
t∑
i=1

aiDi

is said to be a Q-system of the ample Q-divisor L. If each linear system Di is G-invariant,
then we say that D is G-invariant. Similarly, if each Di does not have fixed components,
we say that D is mobile [4, 28]. We say that D is m-decomposed if the following holds:

(1) m1 = · · · = mt = m, so that each Di is given by a subspace Wi ⊂ H0(X,mL),
(2) one has

H0
(
X,mL

)
=

t⊕
i=1

Wi,

(3) for each i ∈ {1, . . . , t}, one has ai =
dim(Wi)
mNm

.

Note that 1
m
|mL| is G-invariant m-decomposed Q-system of the divisor L. Likewise, if

D =
1

mNm

Nm∑
i=1

Di

is a m-basis type Q-divisor of L, then D is a m-decomposed Q-system of the divisor L,
where each linear system Di consists of one divisor Di.

Let Vm = H0(X,mL). Consider a G-invariant filtration F of the space Vm given by

H0
(
X,mL

)
= F0Vm ⊇ F1Vm ⊇ F2Vm ⊇ · · · ⊇ F tVm ⊇ {0},

where each F jVm is a G-invariant vector subspace of the vector space H0(X,mL).
Since the group G is reductive by assumption, the vector space H0(X,mL) decomposes
as a direct sum of G-subrepresentations W1 ⊕W2 ⊕ · · · ⊕Wt such that

F jVm =
t⊕
i=j

Wi.

Note that this decomposition is not necessarily unique. We set

DF
m =

t∑
i=0

dim(Wi)

mNm

∣∣Wi

∣∣.
Then DF

m is a G-invariant m-decomposed Q-system of the divisor L, which can depend on
the decomposition of the vector space H0(X,mL) into the sum of G-subrepresentations.
Now, for a G-invariant prime divisor F over X, we consider G-invariant filtration

H0
(
X,mL

)
= F0

FVm ⊇ F1
FVm ⊇ F2

FVm ⊇ · · · ⊇ F s
FVm ⊇ {0},
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where F j
FVm = H0(X,mL−jF ), and s is the largest integer such that h0(X,mL−sF ) ̸= 0.

We set DF
m = DFF

m . This means that the G-representation H0(X,mL) decomposes as
a direct sum of G-subrepresentations U1 ⊕ U2 ⊕ · · · ⊕ Us such that

H0(X,mL− jF ) =
s⊕
i=j

Ui

and

(1.5.14) DF
m =

s∑
i=0

dim(Ui)

mNm

∣∣Ui∣∣.
Then

Sm(F ) = ordF
(
DF
m

)
=

s∑
j=0

h0(X,mL− jF )− h0(X,mL− (j + 1)F )

mNm

=
∞∑
i=1

h0(X,mL− iF )

mNm

.

Lemma 1.5.15. One has

Sm(F ) = sup
{
ordF

(
D
) ∣∣ D is G-invariant m-decomposed Q-system of the divisor L

}
.

Proof. We only need to prove the ⩾-part of the assertion, because Sm(F ) = ordF (DF
m).

Let D be a G-invariant m-decomposed Q-system of the divisor L. Then

D =
t∑
i=1

aiDi,

where Di = |Wi| and ai = dim(Wi)
mNm

for some G-invariant linear subspace Wi ⊂ H0(X,mL),

and H0(X,mL) decomposes as a direct sum of G-subrepresentations W1⊕W2⊕· · ·⊕Wt.
For every j ∈ {1, . . . , t}, one has

Wj =
s⊕
i=1

(
Wj ∩ Ui

)
,

whereWj∩Ui isG-invariant for every i and j. Therefore, we have the followingG-invariant
decomposition:

H0
(
X,mL

)
=

t⊕
j=1

s⊕
i=1

(
Wj ∩ Ui

)
.

Therefore, we can set

D′ =
t∑

j=1

s∑
i=1

dim(Wj ∩ Ui)
mNm

∣∣Wj ∩ Ui
∣∣,

We observe that D′ is a G-invariant m-decomposed Q-system of the ample Q-divisor L.
On the other hand, we have ordF (|Wj ∩Ui|) = i for each i and j. Thus, we conclude that

ordF
(
D′) = 1

mNm

t∑
j=1

s∑
i=1

i · dim
(
Wj ∩ Ui

)
=

1

mNm

s∑
i=1

i · dim
(
Ui
)
= Sm(F ).

But ordF (D) ⩽ ordF (D′) by construction, which completes the proof of the lemma. □
30



Now, we define

δ̂G,m
(
X,∆;L

)
= inf

{
lct
(
X,∆;D

) ∣∣ D is G-invariant m-decomposed Q-system of L
}

and

δ̂G
(
X,∆;L

)
= lim sup

m∈Z>0
mL is Cartier

δ̂G,m
(
X,∆;L

)
.

As above, if (X,∆) is a log Fano variety, we simply let δ̂G(X,∆) = δ̂G(X,∆;−(KX+∆)).

Likewise, if X is a Fano variety, we let δ̂G(X) = δ̂G(X, 0;−KX).

Note that the number δ̂G(X,∆;L) differs from δG(X,∆;L), and δ̂G(X,∆;L) also differs
from the counter-part of the number δG(X,∆;L) defined in [84].

Proposition 1.5.16 (cf. [17, § 4]). One has

δ̂G
(
X,∆;L

)
⩽ δG

(
X,∆;L

)
.

Proof. Let m be a sufficiently large and divisible integer. Then

δ̂G,m
(
X,∆;L

)
= inf

D
inf
E/X

AX,∆(E)

ordE
(
D)

,

where the first infimum is taken over all G-invariant m-decomposed Q-system of L, and
the second infimum is taken over all prime divisors over X. Using Lemma 1.5.15, we get

δ̂G,m
(
X,∆;L

)
⩽ inf

E/X

AX,∆(E)

Sm(E)
,

where the infimum now is taken over all G-invariant prime divisors over the variety X.
Therefore, we conclude that

δ̂G
(
X,∆;L

)
⩽ lim sup

m∈Z>0
mL is Cartier

inf
E/X

AX,∆(E)

Sm(E)
⩽ inf

E/X
lim sup
m∈Z>0

mL is Cartier

AX,∆(E)

Sm(E)
= inf

E/X

AX,∆(E)

SL(E)
,

where E runs through all G-invariant prime divisors over X. □

Thus, applying Theorem 1.2.5 and [216, Corollary 4.14], we get

Corollary 1.5.17. Suppose that (X,∆) is a log Fano variety such that δ̂G(X,∆) > 1.
Then (X,∆) is K-polystable.

If (X,∆) is a log Fano variety, L = −(KX +∆) and δ̂G(X,∆;L) < 1, then

δ̂G
(
X,∆;L

)
= lim

m∈Z>0
mL is Cartier

δ̂G,m
(
X,∆;L

)
= δG(X,∆),

which can be shown using Lemma 1.5.7 and the arguments presented right after (1.5.11).

However, in general, one has δ̂G(X,∆;L) ̸= δG(X,∆;L).

Example 1.5.18. Suppose that X = P1, ∆ = 0, L = −KX and G is the infinite group
that is generated by the transformations [x : y] 7→ [y : x] and [x : y] 7→ [x : λy] for λ ∈ C∗.

Then δ̂G(X,∆;L) = 2. But δG(X,∆;L) = +∞, since X does not have G-fixed points.
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As in Definition 1.5.3, we say that a Q-system D of L is cool if ordE(D) ⩽ SL(E) for
every prime Weil divisor E over X. Then, inspired by Proposition 1.5.4, we let

δ̃G(X,∆;L) = inf
{
lct
(
X,∆;D

) ∣∣ D is G-invariant cool Q-system of the divisor L
}
.

If (X,∆) is a log Fano variety, we let δ̃G(X,∆) = δ̃G(X,∆;−(KX + ∆)) for simplicity.

Similarly, if X is a Fano variety, we simply let δ̃G(X) = δ̃G(X, 0;−KX).

Lemma 1.5.19. Let F be a G-invariant prime divisor over X. Then

sup
{
ordF

(
D
) ∣∣ D is a G-invariant cool Q-system of the divisor L

}
= SL(F ).

Proof. The inequality ⩽ is trivial. Lets us prove the inequality ⩾. Take very small ϵ > 0.
By Lemma 1.5.7, there exists a sufficiently divisible integerm≫ 0 such thatmL is Cartier
and ordE(DF

m) ⩽ (1 + ϵ)SL(E), where DF
m is defined in (1.5.14). Now, we let

D =
1

1 + ϵ
DF
m +

ϵ

(1 + ϵ)k
|kL|

for some sufficiently large positive integer k such that kL is a very ample Cartier divisor.
Then D is a G-invariant cool Q-system of the divisor L. On the other hand, we have

ordF
(
D
)
=

1

1 + ϵ
ordF

(
DF
m

)
=

1

1 + ϵ
Sm(F ),

which gives the required inequality since Sm(F ) → SL(F ) when m→ ∞. □

Now, arguing as in the proof of Proposition 1.5.16 and using our Proposition 1.5.19,

we can prove that δ̃G(X,∆;L) ⩽ δG(X,∆;L). In fact, we can say more.

Proposition 1.5.20. One has δ̃G(X,∆;L) ⩽ δ̂G(X,∆;L).

Proof. Take any sufficiently small ϵ > 0. By Lemmas 1.5.7 and 1.5.15, there is a positive
integer m0 such that ordE(D) ⩽ (1 + ϵ)SL(E) for every m-decomposed Q-system D of
the divisor L, where m is any integer such that m ⩾ m0 and mL a Cartier divisor. As in
the proof of Proposition 1.5.19, we let

D′ =
1

1 + ϵ
D +

ϵ

(1 + ϵ)k
|kL|

for some sufficiently large positive integer k such that kL is a very ample Cartier divisor.
Then D′ is a cool Q-system of the divisor L, since ordE(D) = (1 + ϵ)ordE(D′). This
inequality also implies that

δ̂G,m(X,∆;L) ⩾
1

1 + ϵ
δ̃G(X,∆;L).

Since ϵ can be chosen arbitrary small, we get δ̃G(X,∆;L) ⩽ δ̂G(X,∆;L). □

By Propositions 1.5.16 and 1.5.20, we have δ̃G(X,∆;L) ⩽ δ̂G(X,∆;L) ⩽ δG(X,∆;L).
Therefore, applying Theorem 1.2.5 and [216, Corollary 4.14], we get

Corollary 1.5.21. Suppose that (X,∆) is a log Fano variety such that δ̃G(X,∆) > 1.
Then (X,∆) is K-polystable.

Let us show how to apply this corollary.
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Example 1.5.22. Let G = S5. Consider G-action on P3, which is given by the standard
representation of the group G. Then P3 contains unique G-invariant quadric surface, and
it contains unique G-invariant cubic surface. Denote them by S2 and S3, respectively.
Let C = S2 ∩ S3, let π : X → P3 be the blow up of the curve C , and let Q be the proper
transform of the surface S2 on the threefold X. Then C is a G-invariant smooth curve,
which is known as the Bring’s curve, X is a smooth Fano threefold �2.22, and there
exists the following G-equivariant commutative diagram:

X
π

~~

ϕ

  
P3 ψ // V3

where V3 is a cubic threefold with one singular point, which is an ordinary double point,
the morphism ϕ is a contraction of the surface Q to the singular point of the cubic V3,
and ψ is given by the linear system of cubic surfaces that contain C . Let

ε = max
{
SX(E), SX(Q), SX(H),

4

5

}
where H is the proper transform on X of a plane from P3. Then ε < 1 by Theorem 3.7.1.

We claim that δ̃G(X) ⩾ 1
ε
, which would imply that X is K-polystable by Corollary 1.5.21.

Namely, suppose that δ̃G(X) < 1
ε
. Then there exists a G-invariant cool Q-system D of

the divisor −KX such that the log pair (X,λD) is strictly log canonical for some positive
rational number λ < 1

ε
. Write D = aQ +∆, where a is a non-negative rational number,

and ∆ is a Q-system whose support does not contain Q. Then a ⩽ SX(Q) ⩽ ϵ, because
the Q-system D is cool. On the other hand, we have

∆|Q ∼Q −KX

∣∣
Q
− aQ

∣∣
Q
∼ −(1 + a)Q

∣∣
Q
,

so that ∆|Q is a Q-system on Q ∼= P1×P1 of degree (1 + a, 1 + a). But Q does not contain
G-invariant curves of degree (1, 0), (0, 1), (1, 1), which implies that Nklt(Q, λ∆|Q) is zero-
dimensional, so that Nklt(Q, λ∆|Q) = ∅ by Corollary A.1.7, sinceQ has noG-fixed points.
Then Nklt(X,λD) ∩ Q = ∅ by Theorem A.2.1. Note that Nklt(X,λD) is at most one-
dimensional. Indeed, if S is an irreducible surface in X, then S ̸⊂ Nklt(X,λD), because
we have ordS(D) ⩽ ε, since one of the divisors S −Q, S −E or S −H is pseudoeffective.
Denote by Z the union of all irreducible components of the locus Nklt(X,λD) that have
maximal dimension. Then Z is either a G-invariant curve or a union of G-orbits. Suppose
that Z is a union of G-orbits in X. Since Z is disjoint from Q, we see that

ϕ(Z) ⊆ Nklt
(
V3, λϕ(D)

)
⊂ ϕ(Z) ∪ ϕ(Q),

so that the locus Nklt(V3, λϕ(D)) is a finite set that consists of at least |Z| ⩾ 1 points.
Now, applying Corollary A.1.9 to the log pair (V3, λϕ(D)), we immediately get |Z| ⩽ 5.
In particular, we see that Z ̸⊂ E, since E does not contain G-orbits of length less than 24,
because C does not contain G-orbits of length less than 24 by [50, Lemma 5.1.5]. Then

π(Z) ⊆ Nklt
(
P3, λπ(D)

)
⊂ π(Z) ∪ C

and π(Z) ̸⊂ C . Now, applying Corollary A.1.9 to the log pair (P3, λπ(D)), we get |Z| ⩽ 4.
But P3 has no G-orbits of length less that 5. This shows that Z is a G-invariant curve.
Suppose that Z ̸⊂ E. Let C be any G-irreducible component of Z such that C ̸⊂ E.
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Then π(C) is a G-irreducible curve in P3. Let d be its degree. Since C is disjoint from Q,
we have 0 = C ·Q = 2d− E · C, so that d ⩾ 12, because

24 ⩽ |C ∩ π(C)| ⩽ |E ∩ C| ⩽ E · C = 2d.

On the other hand, the log pair (P3, λπ(D)) is not Kawamata log terminal along π(C).
Thus, applying Corollary A.1.11 to this pair with S = |OP3(1)|, S = P2 and LS = OP2(2),
we immediately get d ⩽ 6, which is a contradiction. Therefore, we conclude that Z ⊂ E.
Now, let S be a general hyperplane section of the cubic threefold V3. Then ϕ(D) ∼Q 2S.
Then, applying Corollary A.1.11 with S = |S| and LS = OP4(2)|S, we get S · ϕ(Z) ⩽ 10,
so that 0 ̸= ϕ∗(S) · Z = S · ϕ(Z) ⩽ 10. Then

π∗(OP3(1)
)
· Z =

(
ϕ∗(S)−Q

)
· Z = ϕ∗(S) · Z ⩽ 10,

which implies that ϕ∗(S) · Z = 6 and Z is a section of the natural projection E → C .
Thus, we see that Z is a smooth curve of genus 4 that is G-equivariantly isomorphic to C .
The locus Nklt(V3, λϕ(D)) consists of the curve ϕ(Z) and a (possibly empty) finite set.
Observe also that the smooth curve ϕ(Z) ∼= Z cannot be a minimal center of log canonical
singularities of the log pair (V3, λϕ(D)), because otherwise Corollary A.2.7 would give

6 = ϕ∗(S) · Z = S · ϕ(Z) > 12.

Thus, applying Lemma A.4.6, we obtain a G-invariant Q-system DV3 on V3 together
with a rational number µ < 1

ε
such that DV3 ∼Q −KV3 , the locus Nkl(V3, µDV3) is zero-

dimensional, and the intersection Nkl(V3, µDV3)∩ϕ(Z) contains a non-empty finite subset.
Applying Corollary A.1.9, we see that |Nkl(V3, µDV3) ∩ ϕ(Z)| ⩽ 5, which is impossible,
because ϕ(Z) ∼= C contains no G-orbits of length less than 24. The obtained contradiction

shows that δ̃(X) ⩾ 1
ε
> 1. Thus, the threefold X is K-polystable.

Let us present localized versions of the invariants δ̃G(X,∆;L), δ̂G(X,∆;L), δG(X,∆;L).
Fix a proper closed subvariety Z ⊂ X. Let

δG,Z(X,∆;L) = inf
E/X

Z⊆CX(E)

AX,∆(E)

SL(E)
,

where the infimum runs over all G-invariant prime divisors over X such that Z ⊆ CX(E).
We also define

δ̂G,Z,m
(
X,∆;L

)
= sup

{
λ ∈ Q

∣∣∣∣ (X,∆;λD) is log canonical at general point of Z

for every G-invariant m-decomposed Q-system D of L

}
.

and
δ̂G,Z

(
X,∆;L

)
= lim sup

m∈Z>0
mL is Cartier

δ̂G,m
(
X,∆;L

)
.

Finally, we let

δ̃G,Z(X,∆;L) = sup

{
λ ∈ Q

∣∣∣∣ (X,∆;λD) is log canonical at general point of Z for

every G-invariant cool Q-system D of the divisor L

}
.

Then, arguing as in the proof of Propositions 1.5.16 and 1.5.20, we obtain

(1.5.23) δ̃G,Z(X,∆;L) ⩽ δ̂G,Z(X,∆;L) ⩽ δG,Z(X,∆;L).

As above, if (X,∆) is a log Fano variety, we let δ̃G,Z(X,∆) = δ̃G,Z(X,∆;−(KX + ∆)).

Finally, if X is a Fano variety, we let δ̃G,Z(X) = δ̃G,Z(X, 0;−KX).
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1.6. Equivariant Stibitz–Zhuang theorem. Let us consider a log Fano variety (X,∆).
This simply means that X is a normal variety, ∆ is an effective Q-divisor on X such that
the log pair (X,∆) has Kawamata log terminal singularities, and −(KX +∆) is an ample
Q-Cartier divisor. As in Section 1.5, let us fix a reductive algebraic subgroup G ⊆ Aut(X)
such that the divisor ∆ is G-invariant. Suppose, in addition, that we have rkClG(X) = 1.
This condition means the following: for every every Weil divisor D on the variety X such
that its class in Cl(X) is G-invariant, one has D ∼Q −λ

(
KX +∆

)
for some λ ∈ Q.

Remark 1.6.1. It should be noted that the condition rkClG(X) = 1 is rather restrictive.
For instance, if X is a smooth Fano threefold, then the condition rkClG(X) = 1 implies
that either Cl(X) ∼= Z, or X is contained in one of the families �2.6, �2.12, �2.21,
�2.32, �3.1, �3.13, �3.27, �4.1. See [176] for details. Note also that every smooth
Fano threefold in these eight deformation families is fibre-like [108], i.e. it can appear as
the fibre of a Mori fibre space.

Let us also assume that dim(X) ⩾ 2. In this section, we prove the following result.

Theorem 1.6.2 (cf. [192, Theorem 1.2]). Suppose that αG(X,∆) ⩾ 1
2
and

(⋆) for any G-invariant mobile linear system M on X, the pair (X,∆+ λM) has log
canonical singularities for λ ∈ Q>0 such that λM ∼Q −(KX +∆).

Then (X,∆) is K-semistable. Moreover, (X,∆) is K-polystable if αG(X,∆) > 1
2
or

(♦) for any G-invariant mobile linear system M on X, the pair (X,∆ + λM) has
Kawamata log terminal singularities for λ ∈ Q>0 such that λM ∼Q −(KX +∆).

For the definition of αG(X,∆), see Section 1.5. If ∆ = 0, we let αG(X) = αG(X,∆).

Corollary 1.6.3. Suppose that ∆ = 0, αG(X) ⩾ 1
2
and

(♡) for any G-invariant mobile linear system M on X, the pair (X,λM) has canonical
singularities for λ ∈ Q>0 such that λM ∼Q −KX .

Then X is K-polystable.

The condition (♡) is equivalent to X being G-birationally super-rigid [50, § 3.1.1].
Therefore, Corollary 1.6.3 can be restated as follows:

Corollary 1.6.4 (cf. [192, Theorem 1.2]). Let V be a Fano variety with at most terminal
singularities, let G be a reductive subgroup of the group Aut(V ) such that rkClG(V ) = 1.
Suppose that X is G-birationally superrigid and αG(V ) ⩾ 1

2
. Then V is K-polystable.

This corollary naturally leads to the following

Conjecture 1.6.5 (cf. [122, Conjecture 1.1.1]). Let V be a Fano variety with terminal sin-
gularities, and let G be a reductive subgroup of the group Aut(V ) such that rkClG(V ) = 1.
Suppose that X is G-birationally superrigid. Then V is K-polystable.

This conjectures says that we can remove the condition αG(V ) ⩾ 1
2
from Corollary 1.6.4,

which leads to the following

Question 1.6.6 (cf. [192, Question 1.5]). Let V be a Fano variety with at most terminal
singularities, let G be a reductive subgroup of the group Aut(V ) such that rkClG(V ) = 1.
Is it always true that αG(V ) ⩾ 1

2
?
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Let us prove Theorem 1.6.2. First, we observe that to prove that (X,∆) is K-semistable
it is enough to show that β(F ) ⩾ 0 for every G-invariant dreamy prime divisor F over X.
This follows from [216, Theorem 4.14] and [19, Lemma 3.2]. Similarly, we have

Lemma 1.6.7. To prove that (X,∆) is K-polystable it is enough to show that β(F ) > 0
for every G-invariant dreamy prime divisor F over X.

Proof. We may assume that (X,∆) is K-semistable. If (X,∆) is not K-polystable, then,
arguing as in the proof of [216, Corollary 4.11], we see that there exists a G-equivariant
special test configuration for (X,∆) whose central fiber is a K-polystable log Fano pair.
The Donaldson–Futaki invariant of this test configuration vanishes, so that there exists
a G-invariant dreamy prime divisor F over X with β(F ) = 0 by [90, Theorem 5.1]. □

Suppose that αG(X,∆) ⩾ 1
2
and (⋆) holds. Let us fix some G-invariant dreamy prime

divisor F over X. To prove Theorem 1.6.2, it is enough to prove the following assertions:

(1) β(F ) ⩾ 0;
(2) if αG(X,∆) > 1

2
or (♦) holds, then β(F ) > 0.

Since F is dreamy, there exists a G-equivariant birational morphism σ : Y → X such
that Y is normal, and one of the following two possibilities holds:

• either σ is an identity map, and F is a G-invariant prime divisor on X;
• or the prime divisor F is the σ-exceptional locus, and −F is σ-ample.

For simplicity, we set n = dim(X), L = −(KX + ∆), A = AX,∆(F ) and S = SX,∆(F ).
Let τ = sup{t ∈ R | σ∗(L)− tF is pseudo-effective}. Then β(F ) = A− S and

S =
1

Ln

∫ τ

0

vol
(
σ∗(L)− tF

)
dt.

Note that τ > S. Thus, to prove Theorem 1.6.2, we may assume that τ > A.

Lemma 1.6.8. Suppose that σ is an identity map. Then β(F ) > 0.

Proof. One has F ∼Q λL for some λ ∈ Q>0. Then the pair (X,∆+ 1
2λ
F ) is log canonical,

since αG(X) ⩾ 1
2
. In particular, we see that λ ⩾ 1

2
> 1

n+1
, because n ⩾ 2 by assumption.

Now, applying [88, Lemma 9.2], we get A > S, so that β(F ) = A− S > 0. □

To proceed, we may assume that F is σ-exceptional. Take any x ∈ (A, τ) ∩Q.

Lemma 1.6.9. There exists a G-irreducible effective Weil divisor D in X such that
the inequality ordF (µD) > x holds for µ ∈ Q>0 such that µD ∼Q L. Moreover, such
divisor D is unique.

Proof. To prove the existence part, take sufficiently large and divisible integer m ≫ 0.
Now, we consider the G-invariant complete (non-empty) linear system |m(σ∗(L)− xF )|.
Let MY be its mobile part, let FY be its fixed part, and let M and F be their proper
transforms on X, respectively. Then M ≠ ∅, M and F are G-invariant, M+F ∼Q mL.
But there exists ϵ ∈ Q⩾0 such that F ∼Q ϵL. Then 1

m−ϵM ∼Q L and ϵ < m, so that

the log pair (X,∆+ 1
m−ϵM) is log canonical, which gives

0 ⩽ A− 1

m− ϵ
ordF

(
M
)
= A− 1

m− ϵ

(
mx− ordF

(
F
))

= A+
ordF

(
F
)
−mx

m− ϵ
,

which implies that ϵ ̸= 0 and ordF (F) > xϵ, because x > A.
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If F is G-irreducible, we let D = F and µ = 1
ϵ
. Otherwise, we have

F =
r∑
i=1

aiDi,

where each Di is a G-irreducible effective Weil divisor, and each ai is a positive integer.
For every i ∈ {1, . . . , r}, there is µi ∈ Q>0 such that µiDi ∼Q L, so that ordF (µjDj) > x
for some j ∈ {1, . . . , r}. Thus, we let D = Dj and µ = µj. This proves the existence part.
To prove the uniqueness part, suppose that D is not unique. Then there exists another

G-irreducible effective Weil divisor D′ on X with ordF (µ
′D′) > x, where µ′ is a positive

rational number such that µ′D ∼Q L. Then aD ∼ bD′ for some positive integers a and b,
because rkClG(X) = 1. Let P be the pencil ⟨aD, bD′⟩. Then P is mobile, because both
divisors D and D′ are G-irreducible, and D ̸= D′. But ordF (

µ
a
P) > x and µ

a
P ∼Q L.

Since x > A, this implies that (X,∆+ µ
a
P) is not log canonical, which contradicts (⋆).

This shows that D is unique. □

Let D be the divisor constructed in Lemma 1.6.9, and let µ ∈ Q>0 such that µD ∼Q L.
By Lemma 1.6.9, the divisor D is unique, so that it does not depend on x ∈ (A, τ) ∩ Q.
But ordF (µD) > x for every x ∈ (A, τ) ∩ Q by construction. This gives ordF (µD) ⩾ τ .
On the other hand, we have ordF (µD) ⩽ τ by the definition of τ , which implies

Corollary 1.6.10. One has ordF (µD) = τ .

Let D̃ be the proper transform of D on Y . Then µD̃ ∼Q σ
∗(L)−τF by Corollary 1.6.10.

Lemma 1.6.11. For every t ∈ [A, τ ], one has

vol
(
σ∗(L)− tF

)
=
( τ − t

τ − A

)n
vol
(
σ∗(L)− A · F

)
.

Proof. Since vol(σ∗(L)− tF ) is a continues function, we may assume that t ∈ (A, τ)∩Q.

Suppose that σ∗(L)− tF ∼Q R+aµD̃ for some effective Q-divisor R on the variety Y and
some a ∈ Q⩾0. Then the class of the divisor R in Cl(Y )⊗Q is G-invariant, a < 1 and

R ∼Q σ
∗(L)− tF − aµD̃ ∼Q σ

∗(L)− tF − a
(
σ∗(L)− τF

)
∼Q

∼Q (1− a)σ∗(L)− (t− aτ)F ∼Q (1− a)
(
σ∗(L)− t− aτ

1− a
F
)
.

Thus, arguing as in the proof of Lemma 1.6.9 and using the uniqueness of the divisor D,

we see that Supp(R) contains D̃ provided that t−aτ
1−a > A. But t−aτ

1−a > A ⇐⇒ a < t−A
τ−A .

Thus, arguing as in the proof of [95, Proposition 3.2], we obtain

vol
(
σ∗(L)− tF

)
= vol

(
σ∗(L)− tF − t− A

τ − A
µD̃
)
.

On the other hand, we have

σ∗(L)− tF − t− A

τ − A
µD̃ ∼Q

τ − t

t− A

(
σ∗(L)− A · F

)
,

so that

vol
(
σ∗(L)− tF

)
= vol

( τ − t

t− A

(
σ∗(L)− A · F

))
=
( τ − t

t− A

)n
vol
(
σ∗(L)− A · F

)
as required. □
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Now, using Lemma 1.6.11 and [95, Proposition 3.1], we conclude that S ⩽ (n−1)A+τ
n+1

.

On the other hand, it follows from (1.5.11) that A ⩾ τ
2
, because αG(X,∆) ⩾ 1

2
, so that

S ⩽
(n− 1)A+ τ

n+ 1
⩽

(n− 1)A+ 2A

n+ 1
= A,

so that β(F ) = A−S ⩾ 0. Similarly, if we have αG(X,∆) > 1
2
, then (1.5.11) gives A > τ

2
,

which implies that S < A, so that β(F ) = A− S > 0 as required. Finally, we get

Lemma 1.6.12. Suppose that (♦) is satisfied. Then β(F ) = A− S > 0.

Proof. We already know that A ⩾ S. Suppose that S = A. Let us seek for a contradiction.

Arguing as above, we conclude that A = τ
2
and S = (n−1)A+τ

n+1
.

Recall that vol(σ∗(L)− tF ) is a differentiable function for t ∈ [0, τ). Set

f(t) = − 1

n

∂

∂t
vol
(
σ∗(L)− tF

)
.

Arguing as in the proof of [95, Proposition 3.1] and using Lemma 1.6.11, we get

f(t) =


f(A)tn−1

An−1
if 0 ⩽ t ⩽ A,

f(A)(τ − t)n−1

An−1
if A ⩽ t < τ,

and Ln = τf(A). Thus, we have

vol
(
σ∗(L)− tF

)
= Ln − n

∫ t

0

f(ξ)dξ =


Ln
(
1− tn

2An

)
if 0 ⩽ t ⩽ A,

Ln
(τ − t)n

2An
if A ⩽ t < τ.

If t is sufficiently small, then σ∗(L)−tF is ample, so that vol(σ∗(L)−tF ) = (σ∗(L)−tF )n.
Now, using [89, Claim 3.3], we see that σ(F ) must be a point and (−F |F )n−1 = Ln

2An .
Then σ∗(L) − tF is nef for t ∈ [0, A] by [137, Lemma 10] (cf. [23, Proposition 1.12]),
so that the divisor σ∗(L)− A · F is semiample, because F is dreamy.
Take sufficiently divisible m≫ 0. Then |m(σ∗(L)−A · F )| is a G-invariant base point

free linear system. Let M be its proper transform on X. Then M is a G-invariant mobile
linear system such that 1

m
M ∼Q L, so that the log pair (X,∆+ 1

m
M) has Kawamata log

terminal singularities. Then A = ordF (M)/m > AX,∆ = A, which is absurd. □

Therefore, Theorem 1.6.2 is completely proved. Now, let us present its applications.
We start with the following result, which also follows from Proposition 1.5.9.

Theorem 1.6.13. Let π : X → P3 be a double cover such that π is branched over a sextic
surface S6 that has isolated ordinary double points. Then X is K-stable.

Proof. Let G be the subgroup in Aut(X) generated by the Galois involution of the double
cover π. Then ClG(X) is generated by −KX , since the quotient X/G is isomorphic to P3.
This implies that the Fano threefold X is G-birationally superrigid. Indeed, the required
assertion follows from the proof of [35, Theorem A]. The only difference is that one should
use Theorem A.3.5 instead of the standard Noether–Fano inequality.

We claim that αG(X) ⩾ 1
2
. In fact, this follows from the proof of [36, Proposition 3.2].

Indeed, suppose that αG(X) < 1
2
. Then there exists a G-invariant divisor in |−nKX | such
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that the pair (X, 1
2n
D) is not log canonical at some point P ∈ X. Using Corollary A.4.11,

we may assume that the divisor D is G-irreducible. Let us seek for a contradiction.
Since D is G-invariant, either n = 3 and D is the preimage of the sextic surface S6,

or D = π∗(F ) for some irreducible surface F ⊂ P3 of degree n ⩾ 2. In the former case,
the singularities of the log pair (X, 1

6
D) are log canonical, because S6 has at most isolated

ordinary double points. Thus, we are in the latter case. Then (P3, 1
2
S6 +

1
2n
F ) is not log

canonical at π(P ) by [124, Proposition 8.12]. Then π(P ) ∈ Sing(S6) by Lemma A.1.4, so
that P is a singular point of the threefold X.

Let η : X̃ → X be the blow up of the point P , let E be the η-exceptional surface,

and let D̃ be the proper transform on X̃ of the divisor D. Then D̃ ∼ η∗(−nKX) −mE

for some integer m ⩾ 0. Let S̃1 and S̃2 be proper transforms of two sufficiently general

surfaces in | −KX | that passes through P . Then S̃1 ∼ S̃2 ∼ η∗
(
−KX

)
− E, which gives

0 ⩽ S̃1 · S̃2 · D̃ =
(
η∗
(
−KX

)
− E

)2
·
(
η∗
(
− nKX

)
−mE

)
= 2n− 2m,

so thatm ⩽ n. But this inequality contradicts [57, Theorem 3.10] or [28, Theorem 1.7.20].
The obtained contradiction completes the proof of the theorem. □

Example 1.6.14 ([11]). Let S6 be the sextic surface in P3 that is given by

4
(
τ 2x2 − y2

)(
τ 2y2 − z2

)(
τ 2z2 − x2

)
= (1 + 2τ)w2

(
x2 + y2 + z2 − w2

)2
,

where τ = 1+
√
5

2
, and x, y, z and w are coordinates on P3. Then S6 has 65 singular

points, and all these points are ordinary double points. This surface is called the Barth
sextic. Let π : X → P3 be a double cover that is ramified over S6. Then the threefold X
is rational by [41, Proposition 3.6], and X is K-stable by Theorem 1.6.13.

Let us present more applications of Theorem 1.6.2.

Example 1.6.15 ([109, 40, 9]). Let us identify P3 with the hyperplane in P4 given by
the equation x0+x1+x2+x3+x4 = 0, where x0, x1, x2, x3 and x4 are coordinates on P4.
Let Sλ = {x40 + x41 + x42 + x43 + x44 = λ(x20 + x21 + x22 + x23 + x24)

2} ⊂ P3 for some number λ.
Let S5 be the symmetric subgroup in Aut(P3) that acts by permutation the coordinates.
Then the surface Sλ is S5-invariant, and Sλ has at most isolated ordinary double points.
To describe its singularities, let Σ5, Σ10, Σ

′
10, Σ15 be the orbits of the points

[−4 : 1 : 1 : 1 : 1], [0 : 0 : 0 : −1 : 1], [−2 : −2 : −2 : 3 : 3], [0 : −1 : −1 : 1 : 1],

respectively. Then |Σ5| = 5, |Σ10| = |Σ′
10| = 10 and |Σ15| = 15. Moreover, one has

Sing(Sλ) =



Σ5 if λ =
13

20
,

Σ10 if λ =
1

2
,

Σ′
10 if λ =

7

30
,

Σ15 if λ =
1

4
,

∅ otherwise.

Let π : X → P3 be the double cover branched over Sλ. Then X is a Fano threefold� 1.12.
Note that the S5-action lifts to X, so that we can identify S5 with a subgroup in Aut(X).
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Let G be the subgroup in Aut(X) generated by S5 and the involution of the cover π.
Then G ∼= S5×µ2, and X has no G-fixed points, so that αG(X) ⩾ 1

2
by Theorem 1.4.11.

If λ ̸= 13
20
, then X is G-birationally superrigid [9], so that X is K-polystable.

Example 1.6.16 ([48, 8, 138]). Now, we let X be the Segre cubic hypersurface in P4.
Then X has 10 ordinary double points, it admits a faithful action of the group G = S6,
and X is G-birationally superrigid [48]. Arguing as in Example 1.6.15, we get αG(X) ⩾ 1

2
.

Thus, the threefold X is K-polystable by Theorem 1.6.2.

Example 1.6.17. Let X be the smooth Fano threefold�3.13 with Aut0(X) ∼= PGL2(C).
Such threefold exists and it is unique [176, 42]. For its explicit description, see Section 5.19.
Let W be a smooth divisor in P2×P2 of degree (1, 1). Then there is PGL2(C)-equivariant
commutative diagram

P2

W

pr2

��

pr1

44

W

pr2

jj

pr1

��

X

f1

��

f2

jj

f3

44

P2 P2

W

pr1

jj

pr2

44

where each morphism fi is a blow up of a smooth curve of degree (2, 2). Let G = Aut(X).
One can show that G ∼= PGL2

(
C
)
×S3 and PicG(X) = Z[−KX ], see [176] or Section 5.19.

Let E1, E2 and E3 be the exceptional surfaces of the birational morphisms f1, f2 and f3,
respectively. Then E1+E2+E3 ∼ −KX , and E1∩E2∩E3 is an irreducible smooth curve,
so that αG(X) ⩽ 2

3
. If αG(X) < 2

3
, then applying Theorem 1.4.11 with µ = 2

3
, we see that

there exists a G-invariant irreducible curve C such that −KX · C ⩽ 5, which gives

5 ⩾ −KX · C =
3∑
i=1

(pri ◦ fi)∗
(
OP2(1)

)
· C = 3(pr1 ◦ f1)∗

(
OP2(1)

)
· C,

so that pr1◦f1(C) must be a PGL2(C)-invariant line in the plane P2, which does not exist.
Therefore, we see that αG(X) = 2

3
. We claim that X is G-birationally super-rigid, because

otherwise X contains a G-invariant mobile linear system M such that (X,λM) does not
have has canonical singularities, where λ is a rational number such that λM ∼Q −KX .
Then (X,λM) is not canonical along E1 ∩ E2 ∩ E3, because E1 ∩ E2 ∩ E3 is the unique
G-invariant curve in X, and X does not contain G-invariant finite subsets. This gives

1

λ
=M · ℓ ⩾ multC

(
M
)
>

1

λ
,

where M is a general surface in M, and ℓ is a general fiber of the restriction f1|E1

The obtained contradiction shows that X is G-birationally super-rigid. Thus, we see that
the Fano threefold X is K-polystable by Corollary 1.6.4. This can also be proved using
the technique described in the next section (see the proof of Lemma 4.2.5).
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1.7. Abban–Zhuang theory. Let X be a normal variety of dimension n that has at
most Kawamata log terminal singularities, let Z ⊆ X be an irreducible subvariety,
let L be some big line bundle on X, and let M(L) be the set consisting of all positive
integers m such that h0(X,OX(mL)) ̸= 0. The δ-invariant δZ(X;L) along Z is defined by

δZ(X;L) = inf
E/X

Z⊆CX(E)

AX(E)

SL(E)
,

where the infimum runs over all prime divisors E over the varietyX such that Z ⊆ CX(E).
In the case when X is a Fano variety and L = −KX , we let

δZ(X) = δZ
(
X;L

)
.

In this section, we explain how to estimate δZ(X;L) using the technique developed in [2].
Let Y be a Cartier prime divisor in X such that Z ⊂ Y , and Y is not contained in

the supports of the negative part of the σ-decomposition of L, see [158, Definition III.1.12].
The latter condition always holds if L is nef. Then [2, Theorem 3.3] implies the following

Theorem 1.7.1. Let δZ(Y ;W Y
•,•) be the number defined in (1.7.4). Then

δZ(X,L) ⩾ min

{
1

SL(Y )
, δZ
(
Y ;W Y

•,•
)}
.

To define δZ(Y ;W Y
•,•), let us present notations from [2] that will be used throughout this

section and occasionally in other sections of this paper. Let LY = L|Y and M = −Y |Y .
For every m ∈ Z⩾0, we let Vm = H0(X,mL). Put

V X
• =

⊕
m⩾0

Vm.

The refinement of V X
• by the prime divisor Y is the Z2

⩾0-graded linear series

W Y
•,• =

⊕
m,j⩾0

Wm,j

such that

W Y
m,j = Im

(
H0
(
X,mL− jY

)
→ H0

(
Y,mLY + jM

))
where → is the restriction map. Observe that W Y

m,j ⊆ H0(Y,mLY + jM) for all m and j.

Moreover, the refinement W Y
•,• satisfies the following two conditions:

(1) there exists τ ∈ R⩾0 such that W Y
m,j = 0 whenever j/m > τ ,

(2) there is (m0, j0) and a decomposition

m0LY + j0M ∼Q A+ E,

where A is an ample Q-Cartier divisor on Y , and E is an effective Q-divisor on Y ,
such that H0(Y,mA) ⊆ W Y

mm0,mj0
for all sufficiently divisible m ∈ Z>0.

In the language of [2, Definition 2.11], these means conditions mean thatW Y
•,• has bounded

support, and W Y
•,• contains an ample linear series. Recall from [2, Definition 2.11] that

vol
(
V X
•
)
= vol(L) = lim

m→∞

dim(Vm)

mn/n!
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and

vol
(
W Y

•,•
)
= lim

m→∞

∑
j⩾0 dim

(
W Y
m,j

)
mn/n!

.

Similarly, one can define volumes of any Z⩾0-graded linear series and Z2
⩾0-graded linear

series with bounded support (see [2, Definition 2.11] for details).

Lemma 1.7.2. One has vol(W Y
•,•) = vol(V X

• ).

Proof. For all non-negative integers m and j, we have an isomorphism of vector spaces

W Y
m,j

∼=
Vm ∩H0(X,mL− jY )

Vm ∩H0(X,mL− (j + 1)Y )
,

so that
∑

j⩾0 dim(W Y
m,j) = dim(Vm) and the equality vol(W Y

•,•) = vol(V X
• ) follows. □

For every prime divisor F over Y with Z ⊆ CY (F ), we let

(1.7.3) S
(
W Y

•,•;F
)
=

1

vol(W Y
•,•)

∫ ∞

0

vol
(
F t
FW

Y
•,•
)
dt,

where for any t ∈ R⩾0 we define the Z2
⩾0-graded linear series F t

FW
Y
•,• on Y by

F t
FW

Y
•,• =

⊕
m,j⩾0

Fmt
F W Y

m,j

with
Fmt
F W Y

m,j =
{
s ∈ W Y

m,j

∣∣ ordF (s) ⩾ mt
}
.

Now, following [2, Lemma 2.21] and [2, Corollary 2.22], we are ready to define

(1.7.4) δZ
(
Y ;W Y

•,•
)
= inf

F/Y,
Z⊆CY (F )

AY (F )

S(W Y
•,•;F )

,

where the infimum is taken over prime divisors F over the variety Y with Z ⊆ CY (F ).

Remark 1.7.5. One can generalize S(W Y
•,•;F ) and δZ(Y ;W Y

•,•) for any Z2
⩾0-graded linear

series with bounded support that contains an ample linear series (see [2] for details).

Remark 1.7.6. LetD be a Q-Cartier divisor on Y , let g : Ŷ → Y be a birational morphism,

let F be a prime divisor in Ŷ , and let u be a real number. To make the exposition simpler,

we will abuse notations and write D − uF for the divisor g∗(D) − uF on the variety Ŷ .
In particular, vol(D − uF ) would mean the volume vol(g∗(D)− uF ).

As in Section 1.2, we let

τ = sup
{
v ∈ R>0

∣∣ L− vY is pseudo-effective
}
.

Similarly, for a prime divisor F over the variety Y with Z ⊆ CY (F ), we let

τ ′ = sup
{
v ∈ R>0 | LY + uM − vF is pseudo-effective for some u ∈ [0, τ ]

}
.

We let

Sm
(
W Y

•,•;F
)
=

1

mN
WY

•,•
m

mτ∑
j=0

∑
k⩾0

dim
(
Fk
FW

Y
m,j

)
.

where N
WY

•,•
m =

∑
j⩾0 dim(W Y

m,j). Note that Fk
FW

Y
m,j = 0 for k > mτ ′.
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Lemma 1.7.7 ([2, Lemma 2.21]). One has

S
(
W Y

•,•;F
)
= lim

m→∞
Sm
(
W Y

•,•;F
)
.

Proof. Let h(t) = vol(F t
FW

Y
•,•). Then

S
(
W Y

•,•;F
)
=

1

vol(W Y
•,•)

∫ τ ′

0

h(t)dt.

Let

hm(t) =
n!

mn

mτ∑
j=0

dim
(
F ⌈mt⌉W Y

m,j

)
.

Then h(t) = limm→∞ hm(t) = f(t). On the other hand, we have

lim
m→∞

Sm
(
W Y

•,•;F
)
=

1

vol
(
W Y

•,•
) lim
m→∞

n!

mn+1

mτ∑
j=0

mτ ′∑
k=0

dim
(
Fk
FW

Y
m,j

)
,

where

n!

mn+1

mτ∑
j=0

mτ ′∑
k=0

dim
(
Fk
FW

Y
m,j

)
=

1

m

mτ ′∑
k=0

fm
(
k/m

)
.

Thus, we have

lim
m→∞

1

m

mτ ′∑
k=0

fm
(
k/m

)
=

∫ τ ′

0

f(t)dt,

which implies the required equality. □

Remark 1.7.8. Lemma 1.7.7 holds for any Z2
⩾0-graded linear series with bounded support

that contains an ample linear series, where Sm(W
Y
•,•;F ) and S(W

Y
•,•;F ) should be replaced

by their counterparts. We state this lemma for W Y
•,• to simplify the exposition.

In this book, we will often use Theorem 1.7.1, which is a corollary of [2, Theorem 3.3].
Occasionally, we will use another (similar but more technical) corollary of this theorem.

To state it, suppose (temporarily) that there is a birational morphism π : X̂ → X such that

• the π-exceptional locus consists of a single prime divisor EZ such that π(EZ) = Z,
• the divisor −EZ is Q-Cartier and is π-ample,

• the log pair (X̂, EZ) has purely log terminal singularities [124].

The birational map π is known as a plt blowup of the subvariety Z. Write

KEZ
+∆EZ

=
(
KX̂ + EZ

)∣∣
EZ
,

where ∆EZ
is an effective Q-divisor on EZ known as the different of the log pair (X̂, EZ).

Note that the log pair (EZ ,∆EZ
) has at most Kawamata log terminal singularities, and

the divisor −(KEZ
+ ∆EZ

) is π|EZ
-ample. Similar to the refinement W Y

•,•, we can define

the refinement WEZ
•,• of the linear series V X

• by the prime divisor EZ . Namely, it is enough

to replace W Y
m,j in the definition of W Y

•,• by

WEZ
m,j = Im

(
H0
(
X̂,mπ∗(L)− jEZ

)
→ H0

(
EZ ,mπ

∗(L)
∣∣
EZ

− jEZ
∣∣
EZ

))
.
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Then, for every prime divisor F over EZ , we can define S(WEZ
•,• ;F ) similar to (1.7.3).

The following result is a special (but slightly different) case of [2, Theorem 3.3].

Theorem 1.7.9. Let Ẑ be an irreducible subvariety in EZ, and let

δẐ
(
X,L

)
= inf

E/X,

Ẑ⊆CY (E)

AX(E)

SL(E)
,

where the infimum is taken over prime divisors E over X such that Ẑ ⊆ CX̂(E). Then

(1.7.10) δẐ
(
X,L

)
⩾ min

{
AX(EZ)

SL(EZ)
, δẐ

(
EZ ,∆EZ

;WEZ
•,•

)}
,

where

δẐ

(
EZ ,∆EZ

;WEZ
•,•

)
= inf

F/EZ ,

Ẑ⊆CEZ
(F )

AEZ ,∆EZ
(F )

S
(
WEZ

•,• ;F
) ,

where the infimum is taken over all prime divisors F over EZ such that Ẑ ⊆ CEZ
(F ).

Moreover, if the inequality (1.7.10) is an equality and there exists a prime divisor E over

the variety X such that Ẑ ⊆ CX̂(E) ⊆ EZ and δẐ(X,L) =
AX(E)
SL(E)

, then δẐ(X,L) =
AX(EZ)
SL(EZ)

.

Proof. The required assertion follows from the proof of [2, Theorem 3.3]. For the reader’s
convenience, we present its proof here. Let F be a filtration on V X

• . For m ∈M(L), let

δẐ,m
(
V X
• ,F

)
= sup

λ ∈ Q

∣∣∣∣∣∣∣∣
(
X̂,
(
1− AX(EZ)

)
EZ + λπ∗(D)

)
is log canonical

at general point of the variety Ẑ for any m-basis type

Q-divisor D ∼Q L that is compatible with F

 .

See [2, Definition 2.8] for the definition of compatibility. We have

δẐ,m
(
V X
• ,F

)
= inf

D
inf
E/X,

Ẑ⊆C
X̂
(E)

AX̂,(1−AX(EZ))EZ
(E)

ordE(D)
,

where the first infimum is taken over all m-basis type divisors of the line bundle L that are
compatible with F , and the second infimum is taken over prime divisors E over X such

that Ẑ ⊆ CX̂(E). Swapping these infima and using [2, Proposition 3.2], we get

δẐ,m
(
V X
• ,F

)
= inf

E/X,

Ẑ⊆C
X̂
(E)

AX̂,(1−AX(EZ))EZ
(E)

sup
D

ordE(D)
= inf

E/X,

Ẑ⊆C
X̂
(E)

AX(E)

Sm
(
V X
• ;E

) ,
so that δẐ,m(V

X
• ,F) does not depend on the choice of the filtration F . We set

δẐ
(
V X
• ,F

)
= lim sup

m∈M(L)

δẐ,m(V
X
• ,F).

Then δẐ(V
X
• ,F) ⩽ δẐ(X,L). Moreover, it follows from the proof of [2, Lemma 2.21] that

for every ϵ > 0 there exists a positive integer m0(ϵ) such that

Sm
(
V X
• ;E ′) ⩽ (1 + ϵ)S

(
V X
• ;E ′)
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for every prime divisor E ′ over X and for every m ∈M(L) with m > m0(ϵ). Thus, we get

inf
E/X,

Ẑ⊆C
X̂
(E)

AX(E)

S
(
V X
• ;E

) ⩽ (1 + ϵ) lim sup
m∈M(L)

inf
E/X,

Ẑ⊆C
X̂
(E)

AX(E)

Sm
(
V X
• ;E

) = (1 + ϵ)δẐ
(
V X
• ,F

)
.

Therefore, we conclude that δẐ(V
X
• ,F) = δẐ(X,L).

Let M(WEZ
•,• ) be the set consisting of all positive integers m such that WEZ

m,j ̸= 0, and

let θ be the right hand side of (1.7.11). For every m ∈M(L) ∩M(WEZ
•,• ), we set

θm = min

{
AX(EZ)

Sm
(
V X
• ;EZ

) , δẐ,m(EZ ,∆Z ;W
EZ
•,•

)}
,

where δẐ,m(EZ ,∆Z ;W
EZ
•,• ) is defined similar to δẐ,m(V

X
• ,F). Then θm → θ as m→ ∞.

Now, let us show that δẐ,m(V
X
• ,F) ⩾ θm. Since δẐ,m(V

X
• ,F) does not depend on

the choice of the filtration F , we may assume that F is the filtration induced by EZ .
Arguing as in [2, § 3.1], we see that for every m-basis type divisor D of V X

• compatible
with F , one has

π∗(D) = Sm
(
V X
• ;EZ

)
EZ + Γ,

where Γ is an effective Q-divisor such that EZ ̸⊂ Supp(Γ), and Γ|EZ
is a m-basis type

divisor of WEZ
•,• . Note that

π∗(KX + θmD
)
= KX̂ + amEZ + θmΓ

with am = 1−AX(EZ) + θmSm(V
X
• ;EZ) ⩽ 1. Since (EZ ,∆EZ

+ θmΓ|EZ
) is log canonical

in a neighborhood of the subvariety Ẑ, we see that (X̂, EZ + θmΓ) is also log canonical in

a neighborhood of the subvariety Ẑ by Theorem A.2.1, so that (X̂, amEZ + θmΓ) is log

canonical in a neighborhood of Ẑ as well. This shows that δẐ,m(V
X
• ,F) ⩾ θm.

Moreover, since (X̂, EZ + θmΓ) is log canonical in a neighborhood of the subvariety Ẑ,

for every prime divisor E over X such that Ẑ ⊆ CX̂(E), we have

AX(E) ⩾ θmordE(D) + (1− am)ordE(EZ)

for every m-basis type divisor of V X
• that is compatible with F . This gives

AX(E) ⩾ θmSm
(
V X
• ;E

)
+
(
AX(EZ)− θmS

(
V X
• ;EZ

))
ordE(EZ).

Hence, taking the limit when m→ ∞, we get

(1.7.11) AX(E) ⩾ θS
(
V X
• ;E

)
+
(
AX(EZ)− θS

(
V X
• ;EZ

))
ordE(EZ),

where AX(EZ)− θS(V X
• ;EZ) ⩾ 0. This proves (1.7.11).

Finally, if there exists a prime divisor E over the variety X such that Ẑ ⊆ CX̂(E) ⊆ EZ
and AX(E) = θS(V X

• ;E), then AX(EZ) = θS(V X
• ;EZ) by (1.7.11), since ordE(EZ) > 0.

This completes the proof of Theorem 1.7.9. □

Theorem 1.7.9 implies the following corollary of [2, Theorem 3.3].

Corollary 1.7.12. One has

δZ(X,L) ⩾ min

{
AX(EZ)

SL(EZ)
, inf
Ẑ⊂EZ

δẐ

(
EZ ,∆EZ

;WEZ
•,•

)}
,
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where the infimum is taken over all irreducible subvarieties Ẑ ⊂ EZ such that π(Ẑ) = Z,
and δẐ(EZ ,∆EZ

;WEZ
•,• ) is defined in Theorem 1.7.9.

Now, we give a simple formula for S(W Y
•,•;F ) when X is a Mori Dream Space [121, 165].

This formula is especially simple when X is a Mori Dream Space with Nef(X) = Mov(X).
In this paper, we will mostly apply this formula in the following situation:

• X is a smooth Fano threefold,
• L = −KX ,
• Y is a smooth (explicitly described) surface in X,
• Z is an irreducible curve in Y , which is often also explicitly described.

Our formula is given in Theorem 1.7.19. Before presenting it, we consider one inspirational
example, which is redone in Section 4.4 using Theorem 1.7.19.

Example 1.7.13 (cf. Lemma 4.4.10). Suppose that X is a smooth Fano threefold� 2.15.
Then there exists a blow up π : X → P3 of a smooth curve C of degree 6 and genus 4.
Observe that C is contained in a unique quadric surface in P3, which we denote by S2.
Suppose that the quadric S2 is smooth. Then C is a curve of degree (3, 3) in S2

∼= P1×P1.
Let E be the π-exceptional divisor, let Q be the proper transform on X of the quadric S2,
let H be a hyperplane in P3, and let C = E ∩Q. Then Eff(X) = R⩾0[E] + R⩾0[Q] and

Nef(X) = Mov(X) = R⩾0

[
π∗(H)

]
+ R⩾0

[
3π∗(H)− E

]
.

We suppose that L = −KX , Y = Q and Z is an irreducible curve in Q. Then L3 = 22.
We claim that SX(Q) =

37
44
. Indeed, take u ∈ R⩾0 and observe that

−KX − uQ ∼Q (4− 2u)π∗(H)− (1− u)E,

Let P (u) be the positive (nef) part of the Zariski decomposition of the divisor −KX−xQ,
and let N(u) be its negative part. Then

P (u) =

{−KX − uQ if 0 ⩽ u ⩽ 1,

(4− 2u)π∗(H) if 1 ⩽ u ⩽ 2,

and

N(u) =

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)E if 1 ⩽ u ⩽ 2.

Note that −KX − uQ is not pseudo-effective for u > 2, so that τ = 2. Then

SX(Q) =
1

22

∫ 1

0

(
−KX − uQ

)3
du+

1

22

∫ 2

1

(4− 2u)3du =
37

44
.

Let us show that S(WQ
•,•;Z) <

37
44
. Let M be a divisor on Q of degree (1, 1). Then

WQ
m,j =


H0
(
Q, (m+ j)M

)
if 0 ⩽ j ⩽ m

(j −m)C +H0
(
Q, (4m− 2j)M

)
if m < j ⩽ 2m

0 otherwise.
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This follows from Kawamata–Viehweg vanishing or Theorem A.1.6. Then

vol
(
WQ

•,•
)
= lim

m→∞

∑
j⩾0 dim(Wm,j)

m3/3!
= lim

m→∞

( m∑
j=0

(m+ j +1)2 +
2m∑

j=m+1

(4m− 2j +1)2
)
=

= 3!
(∫ 1

0

(1 + x)2dx+

∫ 2

1

(4− 2x)2dx
)
= 22.

On the other hand, we have

S
(
WQ

•,•;Z
)
=

1

vol
(
WQ

•,•
) ∫ ∞

0

vol
(
F t
ZW

Z
•,•
)
dt.

First, let us compute S(WQ
•,•;Z) in the case when Z = C. If 0 ⩽ j ⩽ m, then

Fmt
C WQ

m,j =

{
⌈mt⌉C +H0

(
(m+ j)M − ⌈mt⌉C

)
if m+ j ⩾ 3mt,

0 otherwise.

Similarly, if m < j ⩽ 2m, then

Fmt
C WQ

m,j =


(j −m)C +H0

(
(4m− 2j)M

)
if j −m ⩾ mt,

⌈mt⌉C +H0
(
(m+ j)M − ⌈mt⌉C

)
if j −m < mt,m+ j ⩾ 3mt,

0 otherwise.

We now summarize this as follows. If 0 ⩽ t < 1
3
, we have

Fmt
C WQ

m,j =


⌈mt⌉C +H0

(
(m+ j)M − ⌈mt⌉C

)
if 0 ⩽ j < m(t+ 1),

(j −m)C +H0
(
(4m− 2j)M

)
if m(t+ 1) ⩽ j ⩽ 2m,

0 otherwise.

Similarly, if 1
3
⩽ t ⩽ 1, then

Fmt
C WQ

m,j =


0 if 0 ⩽ j < m(3t− 1),

⌈mt⌉C +H0
(
(m+ j)M − ⌈mt⌉C

)
if m(3t− 1) ⩽ j < m(t+ 1),

(j −m)C +H0((4m− 2j)M) if m(t+ 1) ⩽ j ⩽ 2m,

0 otherwise.

Finally, if t > 1, then Fmt
C WQ

m,j = 0 for all j,m ∈ Z2
⩾0. Thus, if 0 ⩽ t < 1

3
, then

vol
(
F t
CW

Q
•,•
)
= 3!

(∫ t+1

0

(1− 3t+ x)2dx+

∫ 2

t+1

(4− 2x)2dx
)
= 2
(
15t3 + 9t2 − 27t+ 11

)
.

Similarly, if 1
3
⩽ t ⩽ 1, then

vol
(
F t
CW

Q
•,•
)
= 3!

(∫ t+1

3t−1

(1− 3t+ x)2dx+

∫ 2

t+1

(4− 2x)2dx
)
= 24(1− t)3.

Hence, we have

S
(
WQ

•,•;C
)
=

1

22

∫ 1
3

0

2
(
15t3 + 9t2 − 27t+ 11

)
dt+

1

22

∫ 1

1
3

24(1− t)3dt =
35

132
<

37

44
.
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Now, we consider the case when Z ̸= C. We may assume that Z is a curve on Q = P1×P1

of degree (b1, b2) with 0 ⩽ b1 ⩽ b2 ̸= 0. If 0 ⩽ j ⩽ m, then

Fmt
Z WQ

m,j =

{
⌈mt⌉Z +H0

(
(m+ j)M − ⌈mt⌉Z) if mt ⩽ m+j

b2
,

0 otherwise.

Similarly, if m < j ⩽ 2m, then

Fmt
Z WQ

m,j =

{
(j −m)C + ⌈mt⌉Z +H0

(
(4m− 2j)M − ⌈mt⌉Z

)
if mt ⩽ 4m−2j

b2
,

0 otherwise.

We summarize this as follows. If 0 ⩽ t < 1
b2
, then

Fmt
Z WQ

m,j =


⌈mt⌉Z +H0

(
(m+ j)M − ⌈mt⌉Z

)
if 0 ⩽ j ⩽ m,

(j −m)C + ⌈mt⌉Z +H0
(
(4m− 2j)M − ⌈mt⌉Z

)
if m < j ⩽ m(2− 1

2
b2t),

0 otherwise.

Similarly, if 1
b2

⩽ t ⩽ 2
b2
, then

Fmt
Z WQ

m,j =


0 if 0 ⩽ j < m(b2t− 1),

⌈mt⌉Z +H0
(
(m+ j)M − ⌈mt⌉Z

)
if m(b2t− 1) ⩽ j ⩽ m,

(j −m)C + ⌈mt⌉Z +H0
(
(4m− 2j)M − ⌈mt⌉Z

)
if m < j ⩽ m(2− 1

2
b2t),

0 otherwise.

Finally, if t > 2
b2
, then Fmt

Z WQ
m,j = 0 for all j and m. Thus, if 0 ⩽ t < 1

b2
, then

vol
(
F t
ZW

Q
•,•
)
= 3!

(∫ 1

0

(1−b1t+x)(1−b2t+x)dx+
∫ 2− 1

2
b2t

1

(4−b1t−2x)(4−b2t−2x)dx
)
=

=
1

2

(
44− 30b1t− 30b2t+ 24b1b2t

2 − 3b1b
2
2t

3 + b32t
3
)
.

Likewise, if 1
b2

⩽ t < 2
b2
, then

vol
(
F t
ZW

Q
•,•
)
= 3!

(∫ 1

b2t−1

(1−b1t+x)(1−b2t+x)dx+
∫ 2− 1

2
b2t

1

(4−b1t−2x)(4−b2t−2x)dx
)
=

=
3

2
(4− 3b1t+ b2t)(b2t− 2)2.

Hence, if Z ̸= C, then

S
(
WQ

•,•, Z) =
1

22

∫ 1
b2

0

vol
(
F t
ZW

Q
•,•
)
dt+

1

22

∫ 2
b2

1
b2

vol
(
F t
ZW

Q
•,•
)
dt =

23

88

(3b2 − b1
b22

)
⩽

69

88
<

37

44
,

because 3b2−b1
b22

⩽ 3. Therefore, we see that S(WQ
•,•;Z) <

37
44
, so that

δZ
(
Q;WQ

•,•
)
=

AQ(Z)

S(WQ
•,•;Z)

=
1

S(WQ
•,•;Z)

>
44

37

Thus, it follows from Theorem 1.7.1 that δZ(X) ⩾ 44
37
.
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Starting from now and until the end of this section, we assume that X is Q-factorial,
and we assume that X is a Mori Dream Space. Consider the diagram

(1.7.14) X̃σ0

vv

σ1

uu ~~

σi

��

σp

))  
X0

f0 //

X1

f1
**

· · ·

  

Xi

fi
��

· · ·

~~

Xp

fp
ttX

where X0 = X and f0 = IdX , every Xi is a Q-factorial variety, every fi is a small

birational modification, X̃ is some smooth variety, and every σi is a birational morphism.
Let σ = σ0. By [165, Proposition 2.13], we may assume that the following holds:

(⋆) For any pseudo-effective R-divisor D on X, there is an i ∈ {0, . . . , p} such that

f ∗
i (D) ∼R Pi(D) +Ni(D),

where Pi(D) is a semiample divisor on Xi, and Ni(D) is an effective R-divisor
whose support consists of exceptional divisors of the birational morphism Xi → Yi
that corresponds to Pi(D). This is a Zariski decomposition of the divisor D in
the sense of [165, Definition 2.11], which also gives a Zariski decomposition

(1.7.15) σ∗(D) ∼R σ
∗
i

(
Pi(D)

)
+N

(
σ∗
i (D)

)
with (σi)∗(N(σ∗(D))) = Ni(D) and σ∗

i (Pi(D)) being semiample on X̃. Moreover,
if mD is a Z-divisor for a positive integer m, then

H0
(
X,mD

)
= H0

(
Xi, fi

∗(mD)
)
= H0

(
Xi,
⌊
mPi(D)

⌋)
= H0

(
X̃,
⌊
mσ∗

i

(
Pi(D)

)⌋)
.

Remark 1.7.16. The decomposition (1.7.15) is Nakayama’s σ-decomposition from [158].
Indeed, for a pseudo-effective R-divisor D on X, Nakayama’s σ-decomposition is given by

D ∼R Nσ(D) + Pσ(D)

for Pσ(D) = D −Nσ(D) and

Nσ(D) =
∑
E

σE(D)E,

where the sum runs over all prime divisors E in X, and σE(D) is defined as

σE(D) = inf
{
ordE

(
D′) ∣∣ D′ is a pseudo-effective R-divisors on X such that D′ ∼R D

}
in the case when D is big [158, Definition III.1.1]. If D is not big but pseudo-effective,
the value σE(D) is the limit of σE(D+ εA) as ε↘ 0 for some ample divisor A ∈ Pic(X).
Note that Nσ(xD) = xNσ(D) for all x ∈ R⩾0. Similarly, we have

Nσ

(
D1 +D2

)
⩽ Nσ

(
D1

)
+Nσ

(
D2

)
for any pseudo-effective divisors D1 and D2 on the variety X. If the divisor Pσ(D) is nef,
then the σ-decomposition is called Zariski decomposition [158, Definition III.1.12].
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Let Ỹ be the proper transform of the divisor Y on the variety X̃. For every u ∈ [0, τ ],
consider the Zariski decomposition of σ∗(L− uY ) described above:

σ∗(L− uY ) ∼R P̃ (u) + Ñ(u),

where P̃ (u) is a semiample R-divisor (the positive part), and Ñ(u) is its negative part.
We also consider the Nakayama–Zariski decomposition

L− uY ∼R P (u) +N(u),

where P (u) = Pσ(L−uY ) and N(u) = Nσ(L−uY ) as described earlier in Remark 1.7.16.
Recall that Y is not contained in the support of the divisor Nσ(L) by assumption, so that

the divisor Ỹ is not contained in Supp(Ñ(u)) by [158, Corollary 1.9].
Let LỸ = (σ|Ỹ )∗(LY ) and let MỸ = (σ|Ỹ )∗(M). Using the identification

H0
(
X,mL− jY

)
= H0

(
X̃, σ∗(mL− jY )

)
,

we can identify the image of the restriction map

H0
(
X̃, σ∗(mL− jY )

)
→ H0

(
Ỹ ,mLỸ + jMỸ

)
with the vector space W Y

m,j. In particular, the linear series W Y
•,• can be seen as a linear

series on Ỹ associated with LỸ and MỸ . Let V
Ỹ
•,• be the linear series on Ỹ defined by

V Ỹ
•,• =

⊕
m,j

V Ỹ
m,j,

where

V Ỹ
m,j =

⌈
mÑ

(
j/m

)⌉∣∣
Ỹ
+H0

(
Ỹ ,
⌊
mP̃

(
j/m

)⌋∣∣
Ỹ

)
for all (m, j) ∈ Z2

⩾0 such that 0 ⩽ j
m

⩽ τ , and V Ỹ
m,j = 0 otherwise.

Lemma 1.7.17. The linear series V Ỹ
•,• is Z2

⩾0-graded, it has bounded support and it con-
tains an ample linear series.

Proof. Take (j1,m1) and (j2,m2) in Z2
⩾0. Then the canonical map

H0
(
Ỹ ,m1LỸ + j1MỸ

)
⊗H0

(
Ỹ ,m2LỸ + j2MỸ

)
→ H0

(
Ỹ , (m1 +m2)LỸ + (j1 + j2)MỸ

)
maps V Ỹ

m1,j1
⊗V Ỹ

m2,j2
into V Ỹ

m1+m2,j1+j2
. Therefore, in order to show that V Ỹ

•,• is Z2
⩾0-graded,

it suffices to check that⌊
m1P̃

(
j1/m1

)⌋
+
⌊
m2P̃

(
j2/m2

)⌋
⩽
⌊
(m1 +m2)P̃

( j1 + j2
m1 +m2

)⌋
,

or equivalently that⌈
m1Ñ

(
j1/m1

)⌉
+
⌈
m2Ñ

(
j2/m2

)⌉
⩾
⌈
(m1 +m2)Ñ

( j1 + j2
m1 +m2

)⌉
.

The latter follows from Nσ(D1 +D2) ⩽ Nσ(D1) +Nσ(D2) applied to the divisors

D1 = Nσ

(
m1LỸ − j1Ỹ

)
= m1Ñ

(
j1/m1

)
,

D2 = Nσ

(
m2LỸ − j2Ỹ

)
= m2Ñ

(
j2/m2

)
.

Clearly, the linear series V Ỹ
•,• has bounded support. Moreover, it contains an ample

linear series, because V Ỹ
•,• contains W Y

•,•, and W
Y
•,• contains an ample linear series. □
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Let U•,• be the Z2
⩾0-graded complete linear series on Ỹ associated to LỸ and MỸ , i.e.

U•,• =
⊕
m,j

Um,j,

where Um,j = H0(Ỹ ,mLỸ + jMỸ ). Recall that σ
∗(mL− jY ) ∼Q mÑ(j/m) +mP̃ (j/m).

Note thatH0(X̃, σ∗(mL−jY )) = H0(X̃, ⌊mP̃ (j/m)⌋). It follows that for all (m, j) ∈ Z2
⩾0,

we have W Y
m,j ⊆ V Ỹ

m,j ⊆ Um,j, as we can identify

W Y
m,j =

⌈
mÑ

(
j/m

)⌉∣∣
Ỹ
+H0

(
X̃,
⌊
mP̃

(
j/m

)⌋
)
∣∣
Ỹ
.

Therefore, for all non-negative integers m and j, there are injective maps:

(1.7.18) V Ỹ
m,j

/
Wm,j ↪→ H1

(
X̃,
⌊
mP̃ (j/m

)⌋
− Ỹ

)
.

Theorem 1.7.19. The following assertions hold:

(1) One has

vol
(
W Y

•,•
)
= vol

(
V Ỹ
•,•
)
= vol(L) = n

∫ τ

0

(
P̃ (u)n−1 · Ỹ

)
du.

(2) For every prime divisor F over Y , one has

S
(
W Y

•,•;F
)
= S

(
V Ỹ
•,•;F

)
=

n

vol(L)

∫ τ

0

h(u)du,

where

h(u) =
(
P̃ (u)n−1 · Ỹ

)
· ordF

(
Ñ(u)

∣∣
Y

)
+

∫ ∞

0

vol
(
P̃ (u)

∣∣
Ỹ
− vF

)
dv.

To prove Theorem 1.7.19, we need the following auxiliary result.

Lemma 1.7.20. There are rational numbers 0 = τ0 < τ1 < . . . < τl = τ such that for
every i ∈ {1, . . . , l} and every u ∈ [τi−1, τi], the Nakayama–Zariski decomposition

σ∗(L− uY ) = P̃ (u) + Ñ(u)

satisfies

Ñ(u) =
τi − u

τi − τi−1

Ñ(τi−1) +
u− τi−1

τi − τi−1

Ñ(τi).

Proof. This follows from [165, Proposition 2.13]. The half line L − uY given by u ⩾ 0
intersects finitely many walls of the Mori chamber decomposition of Eff(X) at finitely
many rational values. If L is in the interior of a chamber, we denote these values by

0 < τ1 < . . . < τl = τ

and set τ0 = 0. If L is on a wall, set τ0 = 0 and denote the next values by τ1 < . . . < τl = τ .
By [165, Proposition 2.13], the Zariski decomposition is linear within each chamber.

In particular, Ñ(u) is an affine function of u on the interval [τi−1, τi], i.e. we have

Ñ(u) = uD1 +D2

for some pseudo-effective R-divisors D1 and D2 on the variety X̃. Hence, the required

formula follows by setting Ñ(τi) = τiD1 +D2 and Ñ(τi−1) = τi−1D1 +D2. □
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For every i ∈ {1, . . . , l}, we set

Ci = R⩾0(1, τi−1) + R⩾0(1, τi) ⊆ R2
⩾0.

We also let C = ∪li=1Ci. Then C is the region of R2
⩾0 that contains pairs (m, j) such that

the divisor mL− jY is pseudo-effective. Now, we choose n0 ∈ Z>0 such that

(1) all numbers n0τ1, . . . , n0τl are positive integers,
(2) the number n0

τi−τi−1
is an integer for every i ∈ {1, . . . , l},

(3) for any (m, j) ∈ C ∩ Z2
⩾0, both n0mÑ(j/m) and n0mP̃ (j/m) are Z-divisors.

Such n0 does exist. Indeed, we have j
m

∈ [τi−1, τi] for some i ∈ {1, . . . , l}, so that

Ñ
(
j/m

)
=

τi − j
m

τi − τi−1

Ñ(τi−1) +
j
m
− τi−1

τi − τi−1

Ñ(τi)

by Lemma 1.7.20. Hence, we can choose n0 to clear denominators appearing in all Ñ(τi),
as well as the denominators of τi − τi−1 for every i ∈ {1, . . . , l}.

Proof of Theorem 1.7.19. Letm0 = n4
0,W

Y

•,• = m0W
Y
•,•, V

Ỹ

•,• = m0V
Ỹ
•,• and U•,• = m0U•,•.

Then W
Y

m,j = W Y
m0m,m0j

, V
Ỹ

m,j = V Ỹ
m0m,m0j

and Um,j = Um0m,m0j for every m and j in Z⩾0.

For every t ∈ R⩾0, consider the Z2
⩾0-graded linear series F t

FU•,• ⊆ U•,• defined by

F t
FU•,• =

⊕
m,j∈Z⩾0

Fmt
F Um,j,

where

Fmt
F Um,j =

{
s ∈ Um,j

∣∣ ordF (s) ⩾ mt
}
.

Then F t
FU•,• is a filtration on U•,• in the sense of [2, Definition 2.17], which also induces

the filtrations F t
FW

Y

•,• and F t
FV

Ỹ

•,• on W
Y

•,• and V
Ỹ

•,•, respectively. Namely, we have

Fmt
F W

Y

m,j = W
Y

m,j ∩ Fmt
F Um,j

and

Fmt
F V

Ỹ

m,j := V
Ỹ

m,j ∩ Fmt
F Um,j.

It follows from (1.7.18) that for all t ∈ R⩾0 and (m, j) ∈ C ∩Z2
⩾0 there are injective maps

(1.7.21) FmtV
Ỹ

m,j

/
FmtWm,j ↪→ H1

(
X̃,m0mP̃

(
j/m

)
− Ỹ

)
.

In particular, when t = 0 we recover the usual inclusion (1.7.18). For m ∈ Z⩾0, we have∑
j⩾0

dim
(
V
Ỹ

m,j

)
−
∑
j⩾0

dim
(
W

Y

m,j

)
=

mτ∑
j=0

dim
(
V
Ỹ

m,j/W
Y

m,j

)
⩽

mτ∑
j=0

h1
(
X̃,m0mP̃

(
j/m

)
− Ỹ

)
.

Let us first prove that vol
(
W

Y

•,•
)
= vol(V

Ỹ

•,•). For this, it suffices to prove that

(1.7.22)
mτ∑
j=0

h1
(
X̃,m0mP̃

(
j/m

)
− Ỹ

)
⩽ O(mn−1).
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Further dividing the sum, it suffices to prove that for everyr i ∈ {1, . . . , l}, we have

(1.7.23)

mτi∑
j=mτi−1

h1
(
X̃,m0mP̃

(
j/m

)
− Ỹ

)
⩽ O(mn−1).

Assume that τi−1 ⩽
j
m

⩽ τi. By Lemma 1.7.20, we have

Ñ(u) =
τi − u

τi − τi−1

Ñ(τi−1) +
x− τi−1

τi − τi−1

Ñ(τi)

for any u ∈ [τi−1, τi]. In particular, we have

Ñ
(
j/m

)
=

τi − j
m

τi − τi−1

Ñ(τi−1) +
j
m
− τi−1

τi − τi−1

Ñ(τi).

Since P̃ (x) = σ∗(L− xY )− Ñ(x), we obtain

P̃
(
j/m

)
=

τi − j
m

τi − τi−1

P̃ (τi−1) +
j
m
− τi−1

τi − τi−1

P̃ (τi).

Since n2
0P̃ (τi−1) and n

2
0P̃ (τi) are Z-divisors. Hence, for m0 = n4

0, we can write

m0mP̃
(
j/m

)
= mA+ kB,

for k = n0(j −mτi−1), A = m0P̃ (τi−1) and

B =
n3
0

τi − τi−1

(
P̃ (τi)− P̃ (τi−1)

)
.

We also let a = n0(τi − τi−1). Then a and k are positive integers such that 0 ⩽ k ⩽ ma.

Furthermore, both A and B are Z-divisors. But A = m0P̃ (τi−1) and A+ aB = m0P̃ (τi).

Then A and A+aB are semiample. But the divisor P̃ (τi−1) is big, so that A is nef and big.

Then (1.7.23) follows from Lemma A.7.1 applied to A, B and D = Ỹ .

Observe that vol(V
Ỹ

•,•) = mn−1
0 · vol(V Ỹ

•,•) by the asymptotic Riemann–Roch theorem.
Thus, to finish the proof of part (1), it suffices to prove that

vol
(
V
Ỹ

•,•
)
= mn−1

0 · n
∫ τ

0

(
P̃ (u)n−1 · Ỹ

)
du.

By definition, we have

vol
(
V
Ỹ

•,•
)
= lim

m→∞

∑
j⩾0 dim(V

Ỹ

m,j)

mn/n!
= lim

m→∞

n!

mn
·
mτ∑
j=0

h0
(
Ỹ ,mm0P̃

(
j/m

)∣∣
Ỹ

)
.

The result now follows from asymptotic Riemann–Roch theorem [131, Corollary 1.4.41],

because the divisor P̃
(
j/m

)
|Ỹ is nef. Namely, we get

h0
(
Ỹ ,mm0P̃

(
j/m

)∣∣
Ỹ

)
=

mn−1

(n− 1)!

(
m0P̃

(
j/m

)∣∣
Ỹ

)n−1

+O(mn−2).

Then
mτi∑

j=mτi−1

h0
(
Ỹ ,mm0P̃

(
j/m

)∣∣
Ỹ

)
=

mτi∑
j=mτi−1

mn−1

(n− 1)!

(
m0P̃

(
j/m

)∣∣
Ỹ

)n−1

+O(mn−1),
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and hence we have

lim
m→∞

n!

mn
·

mτi∑
j=mτi−1

h0
(
Ỹ ,mm0P̃

(
j/m

)∣∣
Ỹ

)
=

= lim
m→∞

n

m
·

mτi∑
j=mτi−1

mn−1
0

(
P̃
(
j/m

)n−1 · Ỹ
)
= nmn−1

0 ·
∫ τi

τi−1

(
P̃ (u)n−1 · Ỹ

)
du.

This equality can be deduced from Lemma A.7.1 similarly to how we proved (1.7.23).
Together with Lemma 1.7.2, this finishes the proof of part (1).

Let us prove part (2). First, we prove that S(V Ỹ
•,•;F ) = S(W Y

•,•;F ). This follows from

S
(
V
Ỹ

•,•;F
)
= S

(
W

Y

•,•;F
)
,

since S(V
Ỹ

•,•;F ) = m0 · S(V Ỹ
•,•;F ) and S(W

Y

•,•;F ) = m0S(W
Y
•,•;F ) by [2, Lemma 2.24].

To prove the equality S(V
Ỹ

•,•;F ) = S(W
Y

•,•;F ), observe that part (1) gives

lim
m→∞

NV
Ỹ

m

mn/n!
= vol

(
V
Ỹ

•,•
)
= vol

(
W

Y

•,•
)
= lim

m→∞

NW
Y

m

mn/n!
,

where NV
Ỹ

m =
∑

j⩾0 dim(V
Ỹ

m,j) and N
W

Y

m =
∑

j⩾0 dim(W
Y

m,j). These limits are non zero,

becauseW
Y

•,• contains an ample linear series. By Lemma 1.7.7 and Remark 1.7.8, we have

S
(
V
Ỹ

•,•;F
)
= lim

m→∞
Sm
(
V
Ỹ

•,•;F
)
,

S
(
W

Y

•,•;F
)
= lim

m→∞
Sm
(
W

Y

•,•;F
)
,

where

Sm
(
V
Ỹ

•,•;F
)
=

1

mNV
Ỹ

m

mτ∑
j=0

∑
k⩾0

Fk
FV

Ỹ

m,j,

and

Sm
(
W

Y

•,•;F
)
=

1

mNW
Y

m

mτ∑
j=0

∑
k⩾0

Fk
FW

Y

m,j.

Thus, to prove the equality S(V
Ỹ

•,•;F ) = S(W
Y

•,•;F ), it is enough to prove that

lim
m→∞

1

mn+1

(
Sm
(
V
Ỹ

•,•;F
)
− Sm

(
W

Y

•,•;F
))

= 0.

This limit equals

lim
m→∞

1

mn+1

mτ∑
j=0

m0mτ ′∑
k=0

(
dim

(
Fk
FV

Ỹ

m,j

)
− dim

(
Fk
FW

Y

m,j

))
,

which is non-negative. Moreover, by (1.7.21), it is bounded from above by

lim
m→∞

1

mn+1

mτ∑
j=0

m0mτ ′∑
k=0

h1
(
X̃,m0mP̃

(
j/m

)
−Ỹ
)
= lim

m→∞

m0τ
′

mn

mτ∑
j=0

h1
(
X̃,m0mP̃

(
j/m

)
−Ỹ
)
.
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The latter limit equals 0 by (1.7.22). Hence, we proved that S(V Ỹ
•,•;F ) = S(W Y

•,•;F ).
To finish the proof of part (2), by using part (1), it suffices to prove that

vol
(
V
Ỹ

•,•
)
· lim
m→∞

Sm
(
V
Ỹ

•,•;F
)
= lim

m→∞

n!

mn+1

mτ∑
j=0

∑
k⩾0

Fk
FWm,j = nmn

0 ·
∫ τ

0

h(u)du.

The first equality is clear. To prove the second, recall that

V
Ỹ

m,j = mm0Ñ
(
j/m

)∣∣
Ỹ
+H0

(
Ỹ ,mm0P̃

(
j/m

)∣∣
Ỹ

)
,

since both mm0Ñ(j/m) and mm0P̃ (j/m) are Z-divisors. For m ⩾ 0, let

ϕj,m = ordF

(
Ñ
(
j/m

)∣∣
Ỹ

)
.

Then mm0ϕj,m is an integer, and we have

dim
(
Fk
FV

Ỹ

m,j

)
=

h
0
(
Ỹ ,mm0P̃

(
j/m

)∣∣
Ỹ

)
if 0 ⩽ k ⩽ mm0ϕj,m,

h0
(
Ỹ ,mm0P̃

(
j/m

)∣∣
Ỹ
− (k −mm0ϕj,m)F

)
if mm0ϕj,m ⩽ k.

Therefore, we have

Sm
(
V
Ỹ

•,•;F
)
=

Σ1 + Σ2

mNV
Ỹ

m

,

where

Σ1 =
mτ∑
j=0

mm0ϕj,m · h0
(
Ỹ ,mm0P̃

(
j/m

)∣∣
Ỹ

)
,

and

Σ2 =
mτ∑
j=0

mm0τ ′∑
s=0

h0
(
Ỹ ,mm0P̃

(
j/m

)∣∣
Ỹ
− sF

)
.

Since P̃
(
j/m

)
|Ỹ is nef, using asymptotic Riemann–Roch theorem, we get

lim
m→∞

n!

mn+1
Σ1 = lim

m→∞

n

m

mτ∑
j=0

m0ϕj,m ·
h0
(
Ỹ ,mm0P̃

(
j/m

)
|Ỹ
)

mn−1/(n− 1)!
=

= lim
m→∞

n

m

mτ∑
j=0

m0ϕj,m ·
(
m0P̃

(
j/m

)∣∣
Ỹ

)n−1

= mn
0 ·n

∫ τ

0

ordF

(
Ñ(u)|Ỹ

)(
P̃ (u)n−1 · Ỹ

)
du.

Furthermore, for the second sum Σ2, we have

lim
m→∞

n!

mn+1
Σ2 = lim

m→∞

n

m2

mτ∑
j=0

mm0τ ′∑
s=0

h0
(
Ỹ ,m

(
m0P̃

(
j/m

)
|Ỹ − s

m
F
))

mn−1/(n− 1)!
=

= n

∫ τ

0

∫ m0τ ′

0

vol
(
m0P̃ (u)|Ỹ − xF

)
dxdu = mn

0 · n
∫ τ

0

∫ ∞

0

vol
(
P̃ (u)|Ỹ − vF

)
dvdu.

Hence, it follows that

lim
m→∞

n!

mn+1

(
Σ1 + Σ2

)
= mn

0 · n ·
∫ τ

0

h(u)du,
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which completes the proof of Theorem 1.7.19. □

If Nef(X) = Mov(X), then all varieties X0, X1, . . . , Xp in (1.7.14) are isomorphic to X,

and we can also take X̃ = X and σ = IdX . Therefore, Theorem 1.7.19 implies

Corollary 1.7.24. Suppose that Nef(X) = Mov(X). For every u ∈ [0, τ ], write

L− uY ∼R P (u) +N(u),

where P (u) is the positive (nef) part of the Zariski decomposition of the divisor L− uY ,
and N(u) is its negative part. Then for every prime divisor F over Y , we have

S
(
W Y

•,•;F
)
=

n

vol(L)

∫ τ

0

h(u)du,

where

h(u) =
(
P (u)n−1 · Y

)
· ordF

(
N(u)

∣∣
Y

)
+

∫ ∞

0

vol
(
P (u)

∣∣
Y
− vF

)
dv.

If Y is normal, and Z is a prime divisor on Y , then (1.7.4) simplifies as

δZ
(
Y ;W Y

•,•
)
=

1

S(W Y
•,•;Z)

.

Corollary 1.7.25. In the assumption and notations of Corollary 1.7.24, suppose that
the variety Y is normal, and Z is a prime divisor on Y . Then δZ(Y ;W Y

•,•) =
1

S(WY
•,•;Z)

and

S
(
W Y

•,•;Z
)
=

n

vol(L)

∫ τ

0

h(u)du,

where

h(u) =
(
P (u)n−1 · Y

)
· ordZ

(
N(u)

∣∣
Y

)
+

∫ ∞

0

volY
(
P (u)

∣∣
Y
− vZ

)
dv.

Examples of varieties that satisfy the condition Nef(X) = Mov(X) are the following:

• two-dimensional Mori Dream Spaces [200],
• smooth Fano threefolds [149].

For smooth Fano threefolds, Corollary 1.7.25 and [2, Theorem 3.3] give the following
very handy corollary that will be often used in the proof of Main Theorem.

Corollary 1.7.26. Let X be a smooth Fano threefold, let Y be an irreducible normal
surface in the threefold X, let Z be an irreducible curve in Y , and let E be a prime divisor
over the threefold X such that CX(E) = Z. Then

(1.7.27)
AX(E)

SX(E)
⩾ min

{
1

SX(Y )
,

1

S
(
W Y

•,•;Z
)}

and

S
(
W Y

•,•;Z
)
=

3

(−KX)3

∫ τ

0

(
P (u)2·Y

)
·ordZ

(
N(u)

∣∣
Y

)
du+

3

(−KX)3

∫ τ

0

∫ ∞

0

vol
(
P (u)

∣∣
Y
−vZ

)
dvdu,

where P (u) is the positive part of the Zariski decomposition of the divisor −KX − uY ,
and N(u) is its negative part. Moreover, if the equality holds in (1.7.27), then

AX(E)

SX(E)
=

1

SX(Y )
.
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Remark 1.7.28. Observe that the assertion of Corollary 1.7.26 remains valid in the case
when X is a smooth Fano threefold, Y is a possibly non-normal irreducible surface in X,
and Z is an irreducible curve Y such that Z ̸⊂ Sing(Y ). In this case, we should replace
both P (u)|Y and N(u)|Y by their pull backs on the normalization of the surface Y .

Let us conclude this section by proving one very useful generalization of Corollary 1.7.26.
To state it, we fix the following assumptions:

• X is a smooth Fano threefold, so that Nef(X) = Mov(X);
• Y is an irreducible normal surface in X that has at most Du Val singularities;
• Z be an irreducible smooth curve in Y such that the log pair (Y, Z) has purely log
terminal singularities, e.g. Z is contained in the smooth locus of the surface Y .

• ∆Z is the different of the log pair (Y, Z), i.e. ∆Z is an effective Q-divisor on
the curve Z such that Supp(∆Z) = Sing(Y ) ∩ Z and KZ +∆Z = (KY + Z)|Z .

As usual, we denote by τ the largest u ∈ Q⩾0 such that −KX − uY is pseudo-effective.
For u ∈ [0, τ ], let P (u) be the positive part of the Zariski decomposition of this divisor,
and let N(u) be its negative part. Then

(1) Y ̸⊂ Supp(N(u)) for every u ∈ [0, τ ];
(2) N(u) is continuous at every point u ∈ [0, τ ];
(3) N(u) is a Q-divisor for u ∈ [0, τ ] ∩Q;
(4) N(u) is convex [158] in the following sense: for every u and u′ ∈ [0, τ ], one has

N
(
(1− s)u+ su′

)
⩽ (1− s)N

(
u
)
+ sN

(
u′
)

for every s ∈ [0, 1] ;
(5) the restriction P (u)|Y is nef and big for every u ∈ [0, τ).

Therefore, for every u ∈ [0, τ ], we can define the effective R-divisor

(1.7.29) N(u)
∣∣
Y
= d(u)Z +N ′

Y (u),

whereN ′
Y (u) is an effective divisor such that Z ̸⊂ Supp(N ′

Y (u)), and d(u) = ordZ(N(u)|Y ).
This gives the function d : [0, τ ] → R⩾0 given by u 7→ d(u), which is continuous and convex.
Now, for every u ∈ [0, τ ], we define the pseudo-effective threshold t(u) ∈ R⩾0 as follows:

t(u) = max
{
v ∈ R⩾0

∣∣ P (u)|Y − vZ is pseudo-effective
}
.

For v ∈ [0, t(u)], the divisor P (u)|Y − vZ is pseudo-effective. Let P (u, v) be the positive
part of the Zariski decomposition of this divisor, and let N(u, v) be its negative part.
Then the following assertions hold:

(1) N(u, 0) = 0 for every u ∈ [0, τ ], because P (u)|Y is nef for u ∈ [0, τ ];
(2) P (u, v) · Z > 0 and Z ̸⊂ Supp

(
N(u, v)

)
for every u ∈ [0, τ) and v ∈ (0, t(u));

(3) P (u, v) and N(u, v) are Q-divisors if both u, v ∈ Q.

Let V Y
•,• be the Z2

⩾0-graded linear series on Y defined by

V Y
•,• =

⊕
m,j

V Y
m,j,

where

V Y
m,j =


⌈
mN

(
j/m

)⌉∣∣
Y
+H0

(
Y,
⌊
mP

(
j/m

)⌋∣∣
Y

)
if 0 ⩽

j

m
⩽ τ ,

0 otherwise.
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Denote by W Y,Z
•,•,• the refinement of V Y

•,• by the curve Z in the sense of [2, Example 2.15].
For every point P ∈ Z, we also define

FP
(
W Y,Z

•,•,•
)
:=

6

(−KX)3

∫ τ

0

∫ t(u)

0

(
P (u, v) · Z

)
· ordP

(
N ′
Y (u)|Z +N(u, v)|Z

)
dvdu.

Theorem 1.7.30. Let P be a point in the curve Z. Then

(1.7.31) δP (X) ⩾ min

{
1− ordP (∆Z)

S(W Y,Z
•,•,•;P )

,
1

S(V Y
•,•;Z)

,
1

SX(Y )

}
,

where

S
(
W Y,Z

•,•,•;P
)
=

3

(−KX)3

∫ τ

0

∫ t(u)

0

(
P (u, v) · Z

)2
dvdu+ FP

(
W Y,Z

•,•,•
)
.

Moreover, if the inequality (1.7.31) is an equality and there exists a prime divisor E over

the threefold X such that CX(E) = P and δP (X) = AX(E)
SX(E)

, then δP (X) = 1
SX(Y )

.

Proof. By [2, Theorem 3.3] and Theorem 1.7.19, we have

δP (X) ⩾ min

{
1

SX(Y )
, δP
(
Y ;W Y

•,•
)}

=

= min

{
1

SX(Y )
, δP
(
Y ;V Y

•,•
)}

⩾ min

{
1

SX(Y )
,

1

S
(
V Y
•,•;Z

) , 1− ordP (∆Z)

S
(
W Y,Z

•,•,•;P
) }.

Moreover, if we have equality here, then [2, Theorem 3.3] gives δP (X) = 1
SX(Y )

provided

that there exists a prime divisor E over X such that CX(E) = P and δP (X) = AX(E)
SX(E)

.

Now, we set

∆Y,Z =
{
(u, v) ∈ R2

⩾0

∣∣ u ∈ [0, τ ], v ∈ [d(u), d(u) + t(u)]
}
.

The subset ∆Y,Z is closed and convex, since d+ t : [0, τ ] → R⩾0 is continuous and concave.
Then, as in [2, Corollary 2.26], we set

∆Supp = Supp
(
W Y,Z

•,•,•
)
∩
({

1
}
× R2

⩾0

)
.

We claim that ∆Supp = ∆Y,Z . Indeed, take any (u, v) ∈ R2
⩾0 \∆Y,Z such that (u, v) ∈ Q2.

If u > τ , then V Y
m,mu = 0, which gives W Y,Z

m,mu,mv = 0 for all sufficiently divisible m ∈ Z>0.

Similarly, if 0 ⩽ u ⩽ τ and v > d(u) + t(u), then W Y,Z
m,mu,mv = 0 as well for all sufficiently

divisible m ∈ Z>0, because

ordZ

(
m
(
N(u)

∣∣
Y

))
= md(u)

and m(P (u)|Y −(v−d(u))Z) does not have global sections, since it is not pseudo-effective.
This shows that ∆Supp ⊆ ∆Y,Z .

Similarly, to show that ∆Y,Z ⊆ ∆Supp, we take (u, v) ∈ Int(∆Y,Z) such that (u, v) ∈ Q2.
If m is a sufficiently divisible integer, then W Y,Z

m,mu,mv is the image of the restriction map

m
(
N ′
Y (u) +N(u, v − d(u))

)
+H0

(
Y,m

(
P (u, v − d(u))

)) rest−→
rest−→ m

(
N ′
Y (u)

∣∣
Z
+N(u, v − d(u))

∣∣
Z

)
+H0

(
Z,m

(
P (u, v − d(u))

)∣∣
Z

)
.
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The cokernel of this map lives in H1(Y,mP (u, v−d(u))−Z), whose dimension is bounded
when m goes to infinity by [101, Corollary 7], since P (u, v − d(u)) is nef and big. Then

volWY,Z
•,•,•

(u, v) = lim
m→∞

dim
(
W Y,Z
m,mu,mv

)
m

= P
(
u, v − d(u)

)
· Z > 0,

where the limit is taken over sufficiently divisiblem. In particular, we have (u, v) ∈ ∆Supp,
which proves that ∆Y,Z ⊆ ∆Supp. Thus, we see that ∆Supp = ∆Y,Z as claimed.
Let us prove the formula for S(W Y,Z

•,•,•;P ). For c ∈ Z⩾0, let W
Y,Z
(m,mu,mv),c = W Y,Z

cm,cmu,cmv.

Let ∆ = ∆(W Y,Z
•,•,•) be the Okounkov body ofW Y,Z

•,•,• that is associated to the flag {P} ⊂ Z.

Then ∆ ⊂ R3
⩾0. Let p : ∆ ↠ ∆Supp ⊂ R2 be the projection to the first two coordinates.

By [132, Theorem 4.21], for any (u, v) ∈ Int(∆Supp)∩Q2
⩾0, the preimage p−1(u, v) ⊂ R⩾0 is

the Okounkov body of W Y,Z
(1,u,v),• that is associated to the same admissible flag {P} ⊂ Z.

To be fully precise, the preimage p−1(u, v) is 1
m

of the Okounkov body of W Y,Z
(m,mu,mv),•,

where m is sufficiently divisible. On the other hand, we have p−1(∆) = [a, b], where{
a = ordP

((
N ′
Y (u) +N(u, v − d(u)

))∣∣
Z
,

b = ordP
((
N ′
Y (u) +N(u, v − d(u))

)∣∣
Z

)
+ P (u, v − d(u)) · Z.

The prime divisor P ∈ Z gives a filtration F = FP on W Y,Z
•,•,• (see [2, Example 2.9]).

For each t ∈ R⩾0, let W
Y,Z,t
•,•,• be the induced linear series defined by

W Y,Z,t
m,j,k = FmtW Y,Z

m,j,k,

and let ∆t = ∆(W Y,Z,t
•,•,• ) ⊂ ∆ be the associated Okounkov body (cf. [22, § 1.2], [2, § 2.6]).

For all (u, v, x) ∈ ∆, we let

G(u, v, x) = sup
{
t ∈ R⩾0

∣∣ (u, v, x) ∈ ∆t
}
.

Observe that vol(∆) = 1
3!
vol(W Y,Z

•,•,•) = 1
3!
vol(V Y

•,•) = 1
3!
(−KX)

3 by [2, Remark 2.12].
Therefore, arguing as in the proof of [2, Lemma 2.21], we get

S
(
W Y,Z

•,•,•;P
)
=

1

vol(∆)

∫
∆

Gdρ =
6

(−KX)3

∫
∆

Gdρ,

where ρ is the Lebesgue measure on Int(∆). Now, we let

Γ
(
W Y,Z

•,•,•
)
=
{(
m, j, k; ordP (s)

) ∣∣ s ∈ W Y,Z
m,j,k \ {0}

}
⊂ R4

⩾0

and let Σ(W Y,Z
•,•,•) be the closure of the cone spanned by Γ(W Y,Z

•,•,•). Then

∆
(
W Y,Z

•,•,•
)
= ∆ = Σ

(
W Y,Z

•,•,•
)
∩
(
1× R3

⩾0

)
.

For every (u, v, x) ∈ Int(∆)∩Q3
⩾0, we haveG((u, v, x)) = x. Indeed, for every sufficiently

divisible m≫ 0, it follows from [21, Lemma 1.13] that(
m,m(u, v, x)

)
∈ Γ
(
W Y,Z

•,•,•
)
,

so that there exists s ∈ Wm,mu,mv such that ordp(s) ⩾ mx. This gives G((u, v, x)) ⩾ x.
Vice versa, if G((u, v, x)) ⩾ x′ > x for some x′ ∈ Q, then ordP (s) ⩾ mx′ for every
sufficiently divisible m≫ 0 and every s ∈ W Y,Z

m,mu,mv \ {0}, so that(
m,m(u, v, x)

)
̸∈ Γ
(
W Y,Z

•,•,•
)
,
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which is contradiction. Therefore, we see that G((u, v, x)) = x.
Observe that the function G : ∆ → R⩾0 is concave on the interior Int(∆), which implies

that its restriction G|Int(∆) : Int(∆) → R⩾0 is just the projection to the third factor.
Now, since ∆Supp = ∆Y,Z ⊂ R2

⩾0, we obtain

S(W Y,Z
•,•,•;P ) =

6

(−KX)3

∫
∆

Gdρ =
6

(−KX)3

∫
(u,v)∈∆Supp

(∫
x∈p−1(∆)

x dx

)
dudv =

=
6

(−KX)3

∫ τ

u=0

∫ d(u)+t(u)

v=d(u)

∫ b

a

xdxdudv =
6

(−KX)3

∫ τ

u=0

∫ d(u)+t(u)

v=d(u)

b2 − a2

2
dudv =

=
6

(−KX)3

∫ τ

u=0

∫ t(u)

v=0

(
ordP

((
N ′
Y (u)+N(u, v)

)∣∣
Z

)
·
(
P (u, v)·Z

)
+
1

2

(
P (u, v)·Z

)2)
dvdu =

=
3

(−KX)3

∫ τ

u=0

∫ t(u)

v=0

(
P (u, v) · Z

)2
dvdu+ FP

(
W Y,Z

•,•,•
)
,

which is exactly what we want. □

In this paper, we will always apply Theorem 1.7.30 to a smooth surface Y , so that
the different ∆Z will always be zero in all our applications.

Remark 1.7.32. Let Q be a point in Y , let ε : Ỹ → Y be the plt blowup of the point Q,

and let Z̃ be the ε-exceptional curve. Then (Ỹ , Z̃) has purely log terminal singularities,

so that KZ̃ + ∆Z̃ ∼Q (KỸ + Z̃)|Z̃ , where ∆Z̃ is the different of the log pair (Ỹ , Z̃).

The formula in Theorem 1.7.30 remains valid if we replace (Z,∆Z) by (Z̃,∆Z̃) after
appropriate modifications. Let us state this more precisely. For every u ∈ [0, τ ], we let

t̃(u) = max
{
v ∈ R⩾0

∣∣ ε∗(P (u)|Y )− vZ̃ is pseudo-effective
}
.

For every v ∈ [0, t̃(u)], let us denote by P̃ (u, v) the positive part of the Zariski decom-

position of the divisor ε∗(P (u)|Y ) − vZ̃, and let us denote by Ñ(u, v) its negative part.

Let W Y,Z̃
•,•,• be the refinement of V Y

•,• by the curve Z̃. Finally, let N ′
Ỹ
(u) be the proper

transform on Ỹ of the divisor N(u). Then

(1.7.33) δQ(X) ⩾ min

{
min
P∈Z̃

1− ordP (∆Z̃)

S(W Y,Z̃
•,•,•;P )

,
AY (Z̃)

S(V Y
•,•; Z̃)

,
1

SX(Y )

}
,

where for every P ∈ Z̃ we have

S
(
W Y,Z̃

•,•,•;P
)
=

3

(−KX)3

∫ τ

0

∫ t̃(u)

0

((
P̃ (u, v) · Z̃

))2
dvdu+ FP

(
W Y,Z̃

•,•,•
)

and

FP
(
W Y,Z̃

•,•,•
)
=

6

(−KX)3

∫ τ

0

∫ t̃(u)

0

(
P̃ (u, v) · Z̃

)
× ordP

(
N ′
Ỹ
(u)
∣∣
Z
+ Ñ(u, v)

∣∣
Z̃

)
dvdu.

Moreover, if the inequality (1.7.33) is an equality and there exists a prime divisor E over

the threefold X such that CX(E) = Q and δQ(X) = AX(E)
SX(E)

, then we have δQ(X) = 1
SX(Y )

.

The proof of this assertion is essentially the same as the proof of Theorem 1.7.30.
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2. Warm up: smooth del Pezzo surfaces

Let S be a smooth del Pezzo surfaces. Then 1 ⩽ K2
S ⩽ 9, and the surface S can be

described as follows:

• if K2
S ∈ {6, 7, 8, 9}, then S is toric and one of the following cases hold:

– K2
S = 9 and S = P2;

– K2
S = 8 and S = P1 × P1;

– K2
S = 8 and S is a blow up of P2 in one point;

– K2
S = 7 and S is a blow up of P2 in two points;

– K2
S = 6 and S is a divisor in P1 × P1 × P1 of degree (1, 1, 1);

• of K2
S = 5, then the surface S is a unique up to isomorphism. It can be obtained as

a section of the Grassmannian Gr(2, 5) ⊂ P9 in its Plücker embedding by a linear
space of dimension 5;

• if K2
S = 4, then S is a complete intersection of two quadrics in P4;

• if K2
S = 3, then S is a cubic surface in P3;

• if K2
S = 2, then S is a quartic hypersurface in P(1, 1, 1, 2);

• if K2
S = 1, then S is a sextic hypersurface in P(1, 1, 2, 3).

In [206, 202], Tian and Yau proved that S is K-polystable ⇐⇒ it is not a blow up of P2

in one or two points. Let us illustrate methods described in Section 1 by giving a short
proof of this theorem. We will split the proof into ten lemmas, which show several ways
to prove or disprove the K-polystability of the corresponding surfaces.

Lemma 2.1. Suppose that S = P2. Then S is K-polystable.

Proof. Let G be a finite subgroup in Aut(S) such that S does not have G-fixed points,
e.g. G = A5 or G = PSL2(F7). Then, arguing as in the proof of [45, Theorem 3.21], we see
that αG(S) ⩾ 2

3
. Indeed, if αG(S) <

2
3
, then S contains a G-invariant effective Q-divisor

D ∼Q −KS such that the log pair (S, λD) is not log canonical for some positive rational
number λ < 2

3
. Since S does not contain G-invariant lines, the locus Nklt(S, λD) is zero-

dimensional. Now, using Corollary A.1.7, we see that the locus Nklt(S, λD) consists of
a G-fixed point. Thus, αG(S) ⩾ 2

3
, so that S is K-polystable by Theorem 1.4.10.

Alternatively, we can use Theorem 1.2.5 to show that the surface S is K-polystable.
Indeed, suppose that S is not K-polystable. By Theorem 1.2.5, there exists a G-invariant
prime divisor F over S such that β(F ) = AS(F )−SS(F ) ⩽ 0. Let Z = cS(F ). Then Z is
a curve, since S does not have G-fixed points by assumption. By Corollary 1.4.3, we have

αG,Z(S) ⩽
2

3

AS(F )

SS(F )
⩽

2

3
.

Since S does not containG-invariant lines, this immediately implies that Z is aG-invariant
conic, which would lead to a contradiction if G = PSL2(F7). In fact, using Lemma 1.4.4,
we conclude that αG,Z(X) < 2

3
, which implies that Z is a line, which is a contradiction,

since S does not contain G-invariant lines. Hence, we see that S is K-polystable. □

Lemma 2.2. Suppose that S = P1 × P1. Then S is K-polystable.

Proof. Let G be a finite subgroup in Aut(S) such that the following conditions hold:

(1) S does not have G-fixed points,
(2) S does not contains G-invariant curves of degree (1, 0) or (0, 1),
(3) S does not contains G-invariant curves of degree (1, 1).
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For instance, if G = A4 ×A4 or G = A5 ×A5, then these three conditions hold (cf. [53]).
Now, arguing as in the proof of Lemma 2.1, we see that S is K-polystable.

Alternatively, let S2 be a quadric in P3
R that is given by x2 + y2 + z2 + t2 = 0, where

x, y, z and t are coordinates on P3
R. Then S2 is defined over R, it does not contain real

points, and PicR(S) ∼= Z. This implies that β(F ) > 0 for every geometrically irreducible
divisor F over the surface S2, so that S2 is K-polystable over C by Remark 1.2.6, which
implies that S is K-polystable, since S ∼= S2 over complex numbers. □

Lemma 2.3. Suppose that S = F1. Then S is not K-semistable.

Proof. Observe that Aut(S) ∼= (B2×B2)⋊µ2, where B2 is the Borel subgroup of PGL2(C).
Since Aut(S) is not reductive, the surface S is not K-polystable by Theorem 1.1.4.

To show that S is not K-semistable, let E be the unique (−1)-curve in the surface S,
and let L be a fiber of the natural projection S → P1. Then −KX ∼ 3L+ 2E, so that

β(E) = 1− 1

8

∫ 2

0

(
3L+ (2− x)E

)2
dx = 1− 1

8

∫ 2

0

(8− 2x− x2)dx = −1

6
,

which implies that S is not K-semistabe by Theorem 1.2.2. □

Lemma 2.4. Suppose that K2
S = 7. Then S is not K-semistable.

Proof. First, we observe that Aut(S) ∼= G2
a⋊PGL2(C). Since this group is not reductive,

we conclude that the surface S is not K-polystable by Theorem 1.1.4.
To show that S is not K-semistable, let E1, E2 and E be (−1)-curves in S such that

we have E1 · E2 = 0, E1 · E = 1 and E2 · E = 1. Then −KS ∼ 3E + 2E1 + 2E2.
Let us compute β(E). Take x ∈ R>0. If x ⩽ 1, then −KS − xE is nef, so that

vol
(
−KS − xE

)
=
(
−KS − xE

)2
= 7− 2x− x2.

Similarly, if 1 < x ⩽ 3, then the Zariski decomposition of the divisor −KS − xE is

−KS − xE ∼R (3− x)
(
E + E1 + E2

)︸ ︷︷ ︸
positive part

+(x− 1)
(
E1 + E2

)︸ ︷︷ ︸
negative part

.

Thus, if 1 < x ⩽ 3, then vol(−KS−xE) = (3−x)2. Since−KS−xE is not pseudo-effective
for x > 3, we have

β(E) = 1− 1

7

∫ 3

0

vol
(
−KS − xE

)
dx = − 4

21
,

which implies that S is not K-semistabe by Theorem 1.2.2. □

Lemma 2.5. Suppose that K2
S = 6. Then S is K-polystable.

Proof. It is well known (see [72]) that there exists the following exact sequence of groups:

1 −→ G2
m −→ Aut(S) −→ S3 × µ2.

This implies that Aut(S) contains a finite subgroup G such that S has no G-fixed points
and PicG(S) = Z[−KS]. Now, the proof of Lemma 2.1 implies the required assertion. □

Lemma 2.6. Suppose that K2
S = 5. Then S is K-stable.

Proof. Recall from [72] that Aut(S) ∼= S5. Let G be a subgroup in Aut(S). Then

PicG(S) = Z[−KS] ⇐⇒ G is one of the following groups: µ5, D10, µ5 ⋊ µ4, A5, S5.
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Moreover, if G ∼= µ5, then αG(S) =
4
5
by [29, Lemma 5.8]. Thus, if PicG(S) = Z[−KS],

then αG(S) ⩾ 4
5
, cf. Lemma A.5.7. Hence, we see that S is K-stable by Theorem 1.4.7.

We can also prove the assertion using Remark 1.4.8. Namely, let f(t) be an irreducible
quintic polynomial in Q[t], and let ξ1, ξ2, ξ3, ξ4, ξ5 be its roots in C. Then

Gal
(
Q(ξ1, ξ2, ξ3, ξ4, ξ5),Q

)
is one of the following groups: µ5, D10, µ5 ⋊ µ4, A5, S5.

Let Σ be the reduced subscheme of the plane P2
Q that consists of the points [ξ1 : ξ21 : 1],

[ξ2 : ξ22 : 1], [ξ3 : ξ23 : 1], [ξ4 : ξ24 : 1], [ξ5 : ξ25 : 1], and let C be the conic {yz = x2} ⊂ P2
Q,

where x, y, z are coordinates on P2
Q. Then C contains Σ, and we have the diagram

S̃

π

��

ϕ

��
S5 P2

Q

where ϕ is a blow up of the subscheme Σ, and π is a birational contraction of the proper
transform of the conic C. Then S5 is a smooth del Pezzo surface, which is defined over Q.
Then we have PicQ(S5) = Z[−KS5 ] by construction, so that α(S5) ⩾ 4

5
by Lemma A.5.7.

Then S5 is K-stable over C by Remark 1.4.8 and Corollary 1.1.6, which implies that
the surface S is K-stable, since S ∼= S5 over complex numbers. □

Lemma 2.7. Suppose that K2
S = 4. Then S is K-stable.

Proof. It follows from [178, Proposition 2.1] that S can be given by

S =
{
x20 + x21 + x22 + x23 + x24 = 0, λ0x

2
0 + λ1x

2
1 + λ2x

2
2 + λ3x

2
3 = 0

}
⊂ P4

for some on-zero numbers λ0, λ1, λ2 and λ3, where x0, x1, x2, x3, x4 are coordinates on P4.
Let G be a subgroup in Aut(S) that is generated by

[x0 : x1 : x2 : x3 : x4] 7→
[
x0 : (−1)ax1 : (−1)bx2 : (−1)cx3 : (−1)dx4

]
for all possible a, b, c and d in {0, 1}. Then G ∼= µ4

2, the surface S has no G-fixed points,
and PicG(S) = Z[−KS]. Hence, all G-invariant prime divisors over S are curves in S. On
the other hand, if C is a curve in S, then C ∼ m(−KS) for some m ∈ N, which implies
that β(C) = 1− 1

3m
> 0, so that S is K-polystable by Theorem 1.2.5. Then S is K-stable

by Corollary 1.1.6, because the group Aut(S) is finite.
Arguing as in the proof of Lemma 2.1, we can also show that αG(S) ⩾ 1, cf. [142, 29].

This would imply that S is K-stable by Theorem 1.4.7 and Corollary 1.1.6.
Alternatively, we can prove the K-stability of the surface S using Corollary 1.5.10.

Indeed, the projection P4 99K P3 given by [x0 : x1 : x2 : x3 : x4] 7→ [x0 : x1 : x2 : x3] induces
a double cover S → S2, where S2 is a smooth quadric in P3. This double cover is branched
over a smooth anticanonical elliptic curve in S2, so that S is K-stable by Corollary 1.5.10,
because the quadric surface S2 is K-polystable by Lemma 2.2. □

Lemma 2.8. Suppose that K2
S = 3. Then S is K-stable.

Proof. We claim that α(S) ⩾ 2
3
. Indeed, suppose that α(S) < 2

3
. Then there is an effective

Q-divisor D on the surface S such that D ∼Q −KX , and the log pair (S, λD) is not log
canonical for some positive rational number λ < 2

3
. Let us seek for a contradiction.
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We claim that the locus Nklt(S, λD) does not contain curves. Indeed, if it does, then
the surface S contains an irreducible curve C such that D = aC +∆ for some a ⩾ 1

λ
> 3

2
,

where ∆ is an effective Q-divisor such that C ̸⊂ Supp(∆). Then

3 = −KS ·D = a(−KS) · C −KS ·∆ ⩾ a(−KS) · C >
3

2
(−KS) · C,

which gives −KS ·C < 2. Then −KS ·C = 1, so that C is a (−1)-curve in the surface S.
Since S is a cubic surface in P3, we see that C is a line. Let H be a general hyperplane
section of the surface S that contains C. Then H = C + Z, where Z is an irreducible
conic such that the intersection Z ∩C consists of two points. Moreover, the generality in
the choice of the hyperplane H implies that Z ̸⊂ Supp(D). Therefore, we have

2 = −KS · Z = D · Z = (aC +∆) · Z ⩾ aC · Z +∆ · Z ⩾ aC · Z = 2a,

so that a ⩽ 1. The obtained contradiction shows that Nklt(S, λD) contains no curves.
Using Corollary A.1.7, we see that the locus Nklt(S, λD) consists of a single point O.

Since O is contained in at most three (−1)-curves, S contains 6 disjoint (−1)-curves that
do not contain O. Let π : S → P2 be the birational contraction of these six (−1)-curves,
and let L be a line in P2 that does not contain π(O). Then L∪O ⊆ Nklt(P2, L+λπ(D)),
but Nklt(P2, L + λπ(D)) contains no curves except L. This contradicts Corollary A.1.7.
Then α(S) ⩾ 2

3
, so that S is K-stable by Theorem 1.4.9. □

Lemma 2.9. Suppose that K2
S = 2. Then S is K-stable.

Proof. In this case S is a double cover of P2 that is branched over a smooth quartic curve,
so that S is K-stable by Corollary 1.5.10. Alternatively, we can prove that S is K-stable
arguing as in the proof of Lemma 2.8. □

Lemma 2.10. Suppose that K2
S = 1. Then S is K-stable.

Proof. We claim that α(S) ⩾ 5
6
. Indeed, suppose that α(S) < 5

6
. Then there is an effective

Q-divisor D on the surface S such that D ∼Q −KX , and (S, λD) is not log canonical
at some point P ∈ S for some λ ∈ Q ∩ (0, 5

6
). Let C be a curve in | − KS| that

contains P . Then C is irreducible, and the log pair (S, λC) is log canonical. Thus,
using Lemma A.4.12, we may assume that C ̸⊂ Supp(D). Then

1 = K2
S = −KS ·D = C ·D ⩾ multP (D) >

1

λ
>

6

5
,

which is absurd. This shows that α(S) ⩾ 5
6
. Then S is K-stable by Theorem 1.4.7.

Alternatively,one can also show that the surface S is K-stable using Proposition 1.5.9.
Indeed, the surface S is a double cover of P(1, 1, 2) branched over a smooth sextic curve.
Then S is K-stable by Proposition 1.5.9, since δ(P(1, 1, 2)) = 3

4
by [17, Corollary 7.7]. □

All possible values of the number α(S) have been found in [29, 146], cf. Appendix A.5.
In particular, we know that α(S) ⩾ 2

3
⇐⇒ K2

S = 4. On the other hand, it is known that

3α(S)

2
⩽ δ(S) ⩽ 3α(S),

which gives certain estimates for δ(S). These estimates have been improved in [170, 54].
If K2

S ⩾ 6 or K2
S = 3, all possible values of the number δ(S) have been found in [17, 2].

In the remaining part of this section, we show how to compute δ(S) for K2
S ∈ {1, 2, 3, 4, 5}.

These results are summarized in the table below.
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Smooth del Pezzo surface S K2
S α(S) δ(S)

P2 9 1
3

1

P1 × P1 8 1
2

1

a blow up of P2 in one point 8 1
3

6
7

a blow up of P2 in two points 7 1
3

21
25

a divisor in P1 × P1 × P1 of degree (1, 1, 1) 6 1
2

1

a section of the Grassmannian Gr(2, 5) ⊂ P9 in
its Plücker embedding by a linear space of codimension four 5

1
2

15
13

a complete intersection of two quadrics in P4 4 2
3

4
3

a cubic surface in P3 with an Eckardt point 3 2
3

3
2

a cubic surface in P3 without an Eckardt point 3 3
4

27
17

a quartic surface in P(1, 1, 1, 2) such that
the linear system | −KS| contains a tacnodal curve 2

3
4

9
5

a quartic surface in P(1, 1, 1, 2) such that
the linear system | −KS| does not contain tacnodal curves 2

5
6

15
8

a sextic surface in P(1, 1, 2, 3) such that
the linear system | −KS| contains a cuspidal curve 1

5
6

15
7

a sextic surface in P(1, 1, 2, 3) such that
the linear system | −KS| does not contain cuspidal curves 1 1

12
5

In particular, we observe that δ(S) > 1 ⇐⇒ K2
S ⩽ 5. This gives another proof that

the surface S is K-stable ⇐⇒ K2
S ⩽ 5, which follows from Lemmas 2.6, 2.7, 2.8, 2.9, 2.10.

In the proof of the following five lemmas, we will use notations introduced in Section 1.7,
which include notations used in Theorem 1.7.1 and Corollaries 1.7.12, 1.7.24, 1.7.25.

Lemma 2.11. Suppose that K2
S = 5. Then δ(S) = 15

13
.

Proof. The surface S can be obtained by blowing up P2 at four points P1, P2, P3, P4 such
that no three of them are contained in one line. Let E1, E2, E3 and E4 be the exceptional
curves of this blow up that are mapped to the points P1, P2, P3 and P4, respectively.
For every 1 ⩽ i < j ⩽ 4, we denote by Lij the proper transform on S of the line in P2 that
passes through the points Pi and Pj. Then E1, E2, E3, E4, L12, L13, L14, L23, L24, L34 are
all (−1)-curves in the surface S, so that they generate the Mori cone of the surface S.
Moreover, the group Aut(S) ∼= S5 acts transitively on the set of these ten curves. Thus,
for every irreducible curve C ⊂ S, we have SS(C) ⩽ SS(E1).

Let us compute SS(E1). Take u ∈ R⩾0. Then −KS−uE1 ∼R (2−u)E1+L12+L13+L23,
so that the divisor −KS − uE1 is pseudo-effective ⇐⇒ u ⩽ 2. Moreover, if u ∈ [0, 1],
then −KS − uE1 is nef. Furthermore, if u ∈ [1, 2], then its Zariski decomposition is

−KS − uE1 ∼R (2− u)
(
E1 + L12 + L13 + L23

)︸ ︷︷ ︸
positive part

+(u− 1)
(
L12 + L13 + L23

)︸ ︷︷ ︸
negative part

.
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Thus, in the notations of Corollary 1.7.24 with X = S, Y = C, L = −KS, we have

P (u) =

{
(2− u)E1 + L12 + L13 + L23 if 0 ⩽ u ⩽ 1,

(2− u)
(
E1 + L12 + L13 + L23

)
if 1 ⩽ u ⩽ 2,

and

N(u) =

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)
(
L12 + L13 + L23

)
if 1 ⩽ u ⩽ 2.

Therefore, we have

vol
(
−KS − uE1

)
=

{
5− 2u− u2 if 0 ⩽ u ⩽ 1,

2(2− u)2 if 1 ⩽ u ⩽ 2.

Thus, integrating, we get SS(E1) =
13
15
. In particular, we have

δ(S) = inf
E/S

AS(E)

SS(E)
⩽
AS(E1)

SS(E1)
=

15

13
,

where the infimum is taken by all prime divisors over S.
Let us show that δ(S) ⩾ 15

13
. Suppose that this is not true. Then there exists a prime

divisor E over S such that AS(E)
SS(E)

< 15
13
. If E is a curve in S, then SS(E) ⩽ SS(E1) =

13
15
,

which is impossible. Thus, we see that CS(E) is a point. Let P = CS(E).
Let C be an irreducible smooth curve in the surface S that passes through the point P .

By Theorem 1.7.1 and Corollary 1.7.25, we have

15

13
>
AS(E)

SS(E)
⩾ min

{
1

SS(C)
,

1

S(WC
•,•;P )

}
,

where we use notations of Corollary 1.7.25 with X = S, Y = C, L = −KS and Z = P .
On the other hand, we have SS(C) ⩽ SS(E1) ⩽ 13

15
. Therefore, we have S(WC

•,•;P ) >
13
15
.

Moreover, it follows from Corollary 1.7.25 that

S
(
WC

•,•;P
)
=

2

K2
S

∫ τ

0

h(u)du =
2

5

∫ τ

0

h(u)du,

where τ is the largest real number such that −KS − uC is pseudo-effective, and

h(u) =
(
P (u) · C

)
× ordP

(
N(u)

∣∣
C

)
+

∫ ∞

0

volC
(
P (u)

∣∣
C
− vP

)
dv =

=
(
P (u)·C

)
×
(
N(u)·C

)
P
+

∫ P (u)·C

0

(
P (u)·C−v

)
dv =

(
P (u)·C

)
×
(
N(u)·C

)
P
+

(
P (u) · C

)2
2

.

Suppose that P ∈ E1. In this case, it is natural to let C = E1. Then we have τ = 2,
and both R-divisors P (u) and N(u) have been already computed earlier in the proof.
In particular, if P ̸∈ L12 ∪ L13 ∪ L34, then P ̸∈ Supp(N(u)) for every u ∈ [0, 2], so that

h(u) =
(
P (u)·E1

)
×
(
N(u)·E1

)
P
+

(
P (u) · E1

)2
2

=

(
P (u) · E1

)2
2

=


(1− u)2

2
if 0 ⩽ u ⩽ 1,

2(2− u)2 if 1 ⩽ u ⩽ 2,
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which gives S(WC
•,•;P ) =

11
15
. Similarly, if P ∈ L12 ∪ L13 ∪ L34, then

h(u) =


(
P (u) · E1

)2
2

if 0 ⩽ u ⩽ 1,

(u− 1)
(
P (u) · E1

)
+

(
P (u) · E1

)2
2

if 1 ⩽ u ⩽ 2,

so that

h(u) =


(1− u)2

2
if 0 ⩽ u ⩽ 1,

2(u− 1)(2− u) + 2(2− u)2 if 1 ⩽ u ⩽ 2,

which gives S(WC
•,•;P ) =

13
15
. Since know that S(WC

•,•;P ) >
13
15
, we conclude that P ̸∈ E1.

Similarly, we see that P is not contained in any (−1)-curve in S.
Let Z0, Z1, Z2, Z3, Z4 be the curves in the pencils |L12 + L34|, |L13 + E3|, |L24 + E4|,

|L13 +E1|, |L24 +E2|, respectively, that contains P . Then Z0, Z1, Z2, Z3, Z4 are smooth
and irreducible, because P is not contained in any (−1)-curve in S. In fact, these five
curves are all (0)-curves in S that pass through the point P , see the proof of Lemma A.5.7.

Let σ : S̃ → S be the blow up of the point P , let EP be the σ-exceptional curve, and

let Z̃0, Z̃1, Z̃2, Z̃3, Z̃4 be the proper transforms on S̃ of the curves Z0, Z1, Z2, Z3, Z4,
respectively. Then AS(EP ) = 2. Let us compute SS(EP ). To do this, we observe that

σ∗(−KS)− uEP ∼R

(5
2
− u
)
EP +

1

2

(
Z̃0 + Z̃1 + Z̃2 + Z̃3 + Z̃4

)
.

Abusing our previous notations, we denote by P (u) andN(u) the positive and the negative
parts of the Zariski decomposition of the divisor σ∗(−KS

)
− uEP , respectively. Then

P (u) =


σ∗(−KS)− uEP if 0 ⩽ u ⩽ 2,(5
2
− u
)(
EP + Z̃0 + Z̃1 + Z̃2 + Z̃3 + Z̃4

)
if 2 ⩽ u ⩽

5

2
,

and

N(u) =


0 if 0 ⩽ u ⩽ 2,

(u− 2)
(
Z̃0 + Z̃1 + Z̃2 + Z̃3 + Z̃4

)
if 2 ⩽ u ⩽

5

2
,

so that

vol
(
σ∗(−KS)− uEP

)
= P (u) · P (u) =

5− u2 if 0 ⩽ u ⩽ 2,

(5− 2u)2 if 2 ⩽ u ⩽
5

2
.

Integrating, we get SS(EP ) =
3
4
, so that AS(EP )

SS(EP )
= 4

3
> 15

13
, which implies that CS̃(E) ̸= EP .

On the other hand, it follows from Corollary 1.7.12 that

15

13
>
AS(E)

SS(E)
⩾ δP (S) ⩾ min

{
AS(EP )

SS(EP )
, inf
O∈EP

δO
(
EP ;W

EP
•,•
)}
.

Thus, there is a point O ∈ EP such that δO(EP ;W
EP
•,• ) <

15
13
. Recall from (1.7.4) that

δO
(
EP ;W

EP
•,•
)
=

1

S(WEP
•,• ;O)

,
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so that S(WEP
•,• ;O) >

13
15
. But S̃ is a smooth (quartic) del Pezzo surface by construction.

Hence, we can apply Corollary 1.7.25 to compute S(WEP
•,• ;O). This gives

S
(
WEP

•,• ;O
)
=

2

5

∫ 5
2

0

((
P (u) ·EP

)
ordO

(
N(u)

∣∣
EP

)
+

∫ ∞

0

volEP

(
P (u)

∣∣
EP

−vO
)
dv

)
du =

=
2

5

∫ 5
2

0

((
P (u) · EP

)(
N(u) · EP

)
O
+

∫ P (u)·EP

0

(
P (u) · EP − v

)
dv

)
du =

=
2

5

∫ 5
2

0

((
P (u) · EP

)(
N(u) · EP

)
O
+

(
P (u) · EP

)2
2

)
du.

Now, using the description of P (u) and N(u) obtained earlier, we see that

S
(
WEP

•,• ;O
)
=

2

5

∫ 5
2

2

2(5− 2u)(u− 2)du×
((
Z̃0 + Z̃1 + Z̃2 + Z̃3 + Z̃4

)
· EP

)
O
+

+
2

5

∫ 2

0

u2

2
du+

2

5

∫ 5
2

2

2(5− 2u)2du =
1

30

((
Z̃0 + Z̃1 + Z̃2 + Z̃3 + Z̃4

)
· EP

)
O
+

2

3
.

Thus, if O ∈ Z̃0 ∪ Z̃1 ∪ Z̃2 ∪ Z̃3 ∪ Z̃4, then S(W
EP
•,• ;O) =

7
10
. Otherwise, S(WEP

•,• ;O) =
2
3
.

Then S(WEP
•,• ;O) <

13
15
, which is a contradiction. □

Lemma 2.12. Suppose that K2
S = 4. Then δ(S) = 4

3
.

Proof. There exists a birational morphism π : S → P2 that blows up five (general) points.
Let E1, E2, E3, E4, E5 be the exceptional curves of the morphism π, let C be the proper
transform on S of the conic in P2 that passes through π(E1), π(E2), π(E3), π(E4), π(E5),
and let Lij be the proper transform on S of the line that passes through π(Ei) and π(Ej),
where 1 ⩽ i < j ⩽ 5. Then the curves E1, E2, E3, E4, E5, C, L12, L13, L14, L15, L23, L24,
L25, L34, L35, L45 are all (−1)-curves in the del Pezzo surface S. Moreover, arguing as in
the proof of Lemma 2.11, we see that SS(Z) =

17
27

for any (−1)-curve Z in the surface S.

Let σ : S̃ → S be the blow up of the point E1 ∩ C, let E be the σ-exceptional curve,

let Ẽ1 and C̃ be the proper transforms on S̃ of the (−1)-curves E1 and C, respectively,

and let L̃ be the proper transform on S̃ of the line in P2 that is tangent to π(C) at π(E1).

Then σ∗(−KS)− uE ∼R (3− u)E + Ẽ1 + C̃ + L̃, where u is a non-negative real number.

Moreover, the curves Ẽ1, C̃ and L̃ are disjoint, and we have Ẽ2
1 = C̃2 = −2 and L̃2 = −1.

Therefore, we conclude that the divisor σ∗(−KS) − uE is pseudo-effective ⇐⇒ u ⩽ 3.
Denote by P (u) and N(u) the positive and the negative parts of its Zariski decomposition,
respectively. Then

P (u) =


(3− u)E + Ẽ1 + C̃ + L̃ if 0 ⩽ u ⩽ 1,

(3− u)
(
E +

1

2
Ẽ1 +

1

2
C̃
)
+ L̃ if 1 ⩽ u ⩽ 2,

(3− u)
(
E +

1

2
Ẽ1 +

1

2
C̃ + L̃

)
if 2 ⩽ u ⩽ 3,
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and

N(u) =


0 if 0 ⩽ u ⩽ 1,

u− 1

2

(
Ẽ1 + C̃

)
if 1 ⩽ u ⩽ 2,

u− 1

2

(
Ẽ1 + C̃

)
+ (u− 2)L̃

)
if 2 ⩽ u ⩽ 3.

Now, integrating vol(σ∗(−KS)− uEP ) = P (u) · P (u) from u = 0 to u = 3, we get

SS(E) =
1

4

∫ 1

0

(4− u2)du+
1

4

∫ 2

1

(5− 2u)du+
1

4

∫ 3

2

(u− 3)2du =
3

2
,

so that δ(S) ⩽ AS(E)
SS(E)

= 4
3
. Moreover, if P = E1∩C, then Corollary 1.7.12 and (1.7.4) give

4

3
⩾ δP (S) ⩾ min

{
AS(E)

SS(E)
, inf
O∈E

δO
(
EP ;W

EP
•,•
)}

= min

{
4

3
, inf
O∈E

1

S(WEP
•,• ;O)

}
,

But S̃ is a weak del Pezzo surface, so that Corollary 1.7.25 gives

S
(
WE

•,•;O
)
=

1

2

∫ 3

0

((
P (u) · E

)(
N(u) · E

)
O
+

(
P (u) · E

)2
2

)
du ⩽

17

24

for every point O ∈ E. Therefore, if P is the intersection point E1 ∩ C, then δP (S) = 4
3
.

Likewise, we see that δP (S) =
4
3
if P is an intersection point of any two (−1)-curves in S.

Now, let us show that δP (S) ⩾ 4
3
for every point P ∈ C. Take u ∈ R⩾0. Then

−KS − uC ∼R

(3
2
− u
)
C +

1

2

(
E1 + E2 + E3 + E4 + E5

)
,

so that the divisor −KS−uC is pseudo-effective ⇐⇒ u ⩽ 3
2
, cf. the proof of Lemma 2.11.

Abusing our previous notations, denote by P (u) and N(u) the positive and the negative
parts of the Zariski decomposition of the divisor −KS − uC, respectively. Then

P (u) =


−KS − uC if 0 ⩽ u ⩽ 1,

(3− 2u)π∗(OP2(1)
)
if 1 ⩽ u ⩽

3

2
,

and

N(u) =


0 if 0 ⩽ u ⩽ 1,

(u− 1)
(
E1 + E2 + E3 + E4 + E5

)
if 1 ⩽ u ⩽

3

2
,

so that

vol
(
−KS − uC

)
=

4− 2u− u2 if 0 ⩽ u ⩽ 1,

(3− 2u)2 if 1 ⩽ u ⩽
3

2
,

which gives SS(C) =
17
24
, as we already mentioned. Now, using Corollary 1.7.25, we get

S(WC
•,•;P ) =

1

2

∫ 3
2

0

((
P (u) · C

)(
N(u) · C

)
P
+

(
P (u) · C

)2
2

)
du =

=
1

2

∫ 3
2

0

(
P (u) · C

)2
2

du =
1

2

∫ 1

0

(1 + u)2

2
du+

1

2

∫ 3
2

1

(6− 4u)2

2
du =

3

4
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for every point P ∈ C \ (E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5). Hence, it follows from Theorem 1.7.1
that δP (C) ⩾ 4

3
for every point P ∈ C. Similarly, we see that the same inequality holds

for every point of the surface S that is contained in a (−1)-curve.
Let P be a point in S that is not contained in any (−1)-curve. To complete the proof,

it is enough to show that δP (S) ⩾ 4
3
. We will do this arguing as in the proof of Lemma 2.11.

Let υ : Ŝ → S be the blow up of the point P , let EP be the υ-exceptional divisor,

let L̂P be the proper transform on Ŝ of the line in P2 that passes through π(P ) and π(E1),

let Ẑ be the proper transform of the conic that contains π(P ), π(E2), π(E3), π(E4), π(E5),

and let u be a non-negative real number. Then υ∗(−KS)− uEP ∼R (2− u)EP + Ẑ + L̂P ,

the curves Ẑ and L̂P are disjoint, and Ẑ2 = L̂2
P = −1. Using this, we conclude that

the divisor υ∗(−KS)− uEP is pseudo-effective ⇐⇒ υ∗(−KS)− uEP is nef ⇐⇒ u ⩽ 2.

This implies that SS(EP ) =
4
3
, so that AS(EP )

SS(EP )
= 3

2
. Now, using Corollary 1.7.12, we get

δP (S) ⩾ min

{
3

2
, inf
O∈EP

δO
(
EP ;W

EP
•,•
)}
.

But Ŝ is a smooth cubic surface. Hence, using Corollary 1.7.25, we get

1

δO
(
EP ;W

EP
•,•
) = S

(
WEP

•,• ;O
)
=

1

2

∫ 2

0

(
P (u) · EP

)2
2

du =
1

4

∫ 2

0

u2du =
2

3

for every point O ∈ EP . This shows that δP (S) ⩾ 3
2
> 4

3
, which completes the proof. □

The next lemma has been proved in [2]. We present its (slightly simplified) proof.

Lemma 2.13. Suppose that S is a smooth cubic surface in P3. Then

δ(S) =


3

2
if S contains an Eckardt point,

27

17
if S does not contain Eckardt points.

Proof. Let P be a point in S, and let T be the hyperplane section of the surface S such
that the curve T is singular at the point P . Then we have the following cases:

(1) T is a union of 3 lines that pass through P , i.e. P is an Eckardt point;
(2) T is a union of a line and a conic that intersect transversally at P ;
(3) T is a union of 3 lines such that not all of them pass through P ;
(4) T is a union of a line and a conic that are tangent at P ;
(5) T is an irreducible curve that has a cuspidal singularity at P ;
(6) T is an irreducible curve that has a nodal singularity at P ;

It is well known general smooth cubic surface in P3 does not contain Eckardt points.
However, if S does not not contain an Eckardt point, then there exists a hyperplane
section of the surface S that consists of a line and a conic that are tangent at some point.
Thus, to prove the required assertion, it is enough to prove the following assertions:

• δP (S) = 3
2
if P is an Eckardt point;

• δP (S) = 27
17

if T is a union of a line and a conic that are tangent at P ;

• δP (S) ⩾ 27
17

in all remaining cases.
70



We will do this case by case. But first, let us unify the notations that we will use.

Let σ : S̃ → S be the blow up of the point P , let EP be the σ-exceptional divisor,
let u be a non-negative real number, and let τ be the largest real number such that
the divisor σ∗(−KS)− uEP is pseudo-effective. For every number u such that 0 ⩽ u ⩽ τ ,
we will denote by P (u) the positive part of the Zariski decomposition of σ∗(−KS)−uEP ,
and we will denote its negative part by N(u). For every irreducible curve Z ⊂ S, we will

denote by Z̃ its proper transform on S̃. Observe also that S̃ is a weak del Pezzo surface,
so that it is a Mori Dream Space [200].

Case 1. Suppose that T = L1 + L2 + L3, where L1, L2 and L3 are lines containing P .

Then σ∗(−KS) − uEP ∼Q (3 − u)EP + L̃1 + L̃2 + L̃3, the curves L̃1, L̃2, L̃2 are disjoint,

and L̃2
1 = L̃2

2 = L̃2
3 = −2. This implies that τ = 3 and

P (u) =

(3− u)EP + L̃1 + L̃2 + L̃3 if 0 ⩽ u ⩽ 1,

(3− u)
(
EP +

1

2
L̃1 +

1

2
L̃2 +

1

2
L̃3

)
if 1 ⩽ u ⩽ 3,

and

N(u) =


0 if 0 ⩽ u ⩽ 1,

u− 1

2

(
L̃1 + L̃2 + L̃3

)
if 1 ⩽ u ⩽ 3,

so that

vol
(
σ∗(−KS)− uEP

)
= P (u) · P (u) =


3− u2 if 0 ⩽ u ⩽ 1,

(u− 3)2

2
if 1 ⩽ u ⩽ 3,

which gives SS(EP ) =
4
3
. Then δ(S) ⩽ δP (S) ⩽

AS(EP )
SS(EP )

= 3
2
. For every O ∈ EP , we get

S
(
WEP

•,• ;O
)
=

2

3

∫ 3

0

((
P (u) · EP

)(
N(u) · EP

)
O
+

(
P (u) · EP

)2
2

)
du =

=
2

3

∫ 3

1

(u− 1)(3− u)

4
du× ordO

(
L̃1 + L̃2 + L̃3

)
+

2

3

∫ 1

0

u2

2
du+

2

3

∫ 3

1

(3− u)2

8
du

by Corollary 1.7.25, so that

S
(
WEP

•,• ;O
)
⩽

2

3

∫ 3

1

(u− 1)(3− u)

4
du+

2

3

∫ 1

0

u2

2
du+

2

3

∫ 3

1

(3− u)2

8
du =

5

9
.

Recall from (1.7.4) that δO
(
EP ;W

EP
•,•
)
= 1

S
(
W

EP
•,• ;O

) . Now, using Corollary 1.7.12, we get

δP (S) ⩾ min

{
AS(EP )

SS(EP )
, inf
O∈EP

δO
(
EP ;W

EP
•,•
)}

= min

{
3

2
,
9

5

}
=

3

2
.

This shows that δP (S) =
3
2
as required.

Case 2. Suppose T = C + L, where C is a smooth irreducible conic, and L is a line

that intersects C transversally at P . Let ρ : Ŝ → S̃ be the blow up of the point L̃ ∩ EP ,
let F be the exceptional curve of the blow up ρ, let L̂, Ĉ and ÊP be the proper transforms

on Ŝ of the curves L̃, C̃ and EP , respectively. Then (σ ◦ ρ)∗(−KS) ∼ L̂+ Ĉ + 2ÊP + 3F .
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Let ϕ : Ŝ → S be the contraction of the curve ÊP , let L = ϕ(L), C = ϕ(C), ϕF = υ(F ).

Then ϕ(ÊP ) = C ∩ F is an isolated ordinary double singular point of the surface S, and
the intersections of the curves L, C and F are contained in following table:

L C F

L −3 1 1

C 1 −1
2

1
2

F 1 1
2

−1
2

Observe that the divisor −KŜ is big. Then Ŝ is a Mori Dream Space by [200, Theorem 1],

so that S is also a Mori Dream Space. Moreover, we have commutative diagram

S̃

σ

��

Ŝ
ρoo

ϕ
��

S S
υoo

where υ is a weighted blow up of P with weights (1, 2), and the υ-exceptional curve is F .
Then υ∗(−KS) − uF ∼R L + C + (3 − u)F . Using this equivalence, we conclude that
the divisor υ∗(−KS) − uF is pseudo-effective ⇐⇒ u ∈ [0, 3]. For u ∈ [0, 3], the Zariski
decomposition of this divisor can be described as follows. If 0 ⩽ u ⩽ 1, then υ∗(−KS)−uF
is nef. If 1 ⩽ u ⩽ 14

5
, then

υ∗(−KS)− uF ∼R C +
4− u

3
L+ (3− u)F︸ ︷︷ ︸

positive part

+
u− 1

3
L︸ ︷︷ ︸

negative part

.

Finally, if 14
5
⩽ u ⩽ 3, then

υ∗(−KS)− uF ∼R (3− u)
(
5C + 2L+ F

)︸ ︷︷ ︸
positive part

+(2u− 5)L+ (5u− 14)C︸ ︷︷ ︸
negative part

.

Therefore, we have

vol
(
υ∗(−KS)− uF

)
=



3− u2

2
if 0 ⩽ u ⩽ 1,

3− u2

2
+

(u− 1)2

3
if 1 ⩽ u ⩽

14

5
,

4(3− u)2 if
14

5
⩽ u ⩽ 3.

Integrating this function, we get SS(F ) =
9
5
, so that δP (S) ⩽

AS(F )

SS(F )
= 5

3
, since AS(F ) = 3.

On the other hand, it follows from Corollary 1.7.12 that

δP (S) ⩾ min

{
AS(F )

SS(F )
, inf
O∈F

δO
(
F ,∆F ;W

F
•,•
)}
,

where ∆F is an effective Q-divisor on F ∼= P1 known as the “different”, which is defined
via the subadjunction formula (KS+F )|F = KF+∆F . In our case, we have ∆F = 1

2
C∩F .
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Let O be a point in the curve F . Recall from [2] that

δO
(
F ,∆F ;W

F
•,•
)
=

AF ,∆F
(O)

S
(
W F

•,•;O
) ,

where AF ,∆F
(O) = 1

2
if O = C ∩ F , and AF ,∆F

(O) = 1 otherwise. On the other hand,

using Corollary 1.7.25, we get

S
(
W F

•,•;O
)
=

2

3

(
ϵO +

∫ 1

0

u2

8
du+

∫ 14
5

1

(u+ 2)2

72
du+

∫ 3

14
5

(12− 4u)2

2
du

)
=

2

3
ϵO +

3

10
,

where

ϵO =


131

300
if O = L ∩ F ,

1

75
if O = C ∩ F ,

0 otherwise.

Using this we get that

AF ,∆F
(O)

S(W F
•,•;O)

=



225

133
if O = L ∩ F ,

225

139
if O = C ∩ F ,

10

3
otherwise.

Combining our inequalities, we get 1.666 ≈ 5
3
⩾ δP (S) ⩾ 225

139
≈ 1.612, so that δP (S) >

27
17
.

In fact, it follows from [2] that δP (S) =
225
241

+ 72
241

√
6 ≈ 1.665.

Case 3. Suppose that T = L1+L2+L3 for lines L1, L2, L3 such that L1∩L2 = P ̸∈ L3.

Then σ∗(−KS)− uEP ∼R (2− u)EP + L̃1 + L̃2 + L̃3, so that τ = 2. Moreover, we have

P (u) =

(2− u)EP + L̃1 + L̃2 + L̃3 if 0 ⩽ u ⩽ 1,

(2− u)EP +
3− u

2

(
L̃1 + L̃2

)
+ L̃3 if 1 ⩽ u ⩽ 2,

and

N(u) =


0 if 0 ⩽ u ⩽ 1,

u− 1

2

(
L̃1 + L̃

)
if 1 ⩽ u ⩽ 2,

so that

vol
(
σ∗(−KS)− uEP

)
=

{
3− u2 if 0 ⩽ u ⩽ 1,

4− 2u if 1 ⩽ u ⩽ 2.

Integrating this function, we get SS(EP ) =
11
9
. Hence, we see that δP (S) ⩽

AS(EP )
SS(EP )

= 18
11
.

On the other hand, it follows from Corollary 1.7.25 that

S
(
WEP

•,• ;O
)
⩽

2

3

(∫ 2

1

u− 1

2
du+

∫ 1

0

u2

2
du+

∫ 2

1

1

2
du

)
=

11

18

for every point O ∈ EP . Now, using Corollary 1.7.12, we get δP (S) =
18
11
.

Case 4. Suppose that T = C + L, where C is a smooth conic, and L is a line that

tangents the conic C at the point P . Let ρ : Ŝ → S̃ be the blow up of the point L̃∩C̃∩EP ,
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let F be the exceptional curve of the blow up ρ, and let L̂, Ĉ, ÊP be the proper transforms

on Ŝ of the curves L̃, C̃, EP , respectively. Then (σ ◦ ρ)∗(−KS) ∼ L̂+ Ĉ + 2ÊP + 4F .

Let ϕ : Ŝ → S be the contraction of the curve ÊP , let L = ϕ(L), C = ϕ(C), F = ϕ(F ).

Then ϕ(ÊP ) is an ordinary double point of the surface S. But ϕ(ÊP ) ̸∈ L and ϕ(ÊP ) ̸∈ C.
The intersections of the curves L, C and F are contained in following table:

L C F

L −3 0 1

C 0 −2 1

F 1 1 −1
2

Observe that the divisor −KŜ is big. Then Ŝ is a Mori Dream Space by [200, Theorem 1],

so that S is also a Mori Dream Space. Moreover, we have commutative diagram

S̃

σ

��

Ŝ
ρoo

ϕ
��

S S
υoo

where υ is a contraction of the curve F . Observe that υ∗(−KS)−uF ∼R L+C+(4−u)F .
Using this, we conclude that the divisor υ∗(−KS)−uF is pseudo-effective ⇐⇒ u ∈ [0, 4].
For u ∈ [0, 4], the Zariski decomposition of the divisor υ∗(−KS) − uF can be described
as follows. If 0 ⩽ u ⩽ 1, then υ∗(−KS)− uF is nef. If 1 ⩽ u ⩽ 2, then

υ∗(−KS)− uF ∼R C +
4− u

3
L+ (4− u)F︸ ︷︷ ︸

positive part

+
u− 1

3
L︸ ︷︷ ︸

negative part

.

Finally, if 2 ⩽ u ⩽ 4, then

υ∗(−KS)− uF ∼R (4− u)
(1
2
C +

1

3
L+ F

)
︸ ︷︷ ︸

positive part

+
u− 1

3
L+

u− 2

2
C︸ ︷︷ ︸

negative part

.

Therefore, we have

vol
(
υ∗(−KS)− uF

)
=



3− u2

2
if 0 ⩽ u ⩽ 1,

3− u2

2
+

(u− 1)2

3
if 1 ⩽ u ⩽ 2,

(4− u)2

3
if 2 ⩽ u ⩽ 4.

Integrating this volume function, we see that SS(F ) =
17
9
, so that δP (S) ⩽

AS(F )

SS(F )
= 27

17
.

Now, using Corollary 1.7.12, we see that

δP (S) ⩾ min

{
27

17
, inf
O∈F

AF ,∆F
(O)

S
(
W F

•,•;O
)},
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where ∆F = 1
2
ϕ(ÊP ). Let O be a point in the curve F . Then Corollary 1.7.25 gives

S
(
W F

•,•;O
)
=



5

9
if O = L ∩ F ,

7

18
if O = C ∩ F ,

13

54
otherwise,

so that

27

17
<

AF ,∆F
(O)

S(W F
•,•;O)

=



9

5
if O = L ∩ F ,

18

7
if O = C ∩ F ,

27

13
if O = ϕ

(
ÊP
)
,

54

13
otherwise.

Therefore, we see that δP (S) =
27
17

as required.

Case 5. Suppose that T has a cusp. Let ρ : Ŝ → S̃ be the blow up of the point T̃ ∩EP ,
let F be the exceptional curve of the blow up ρ, let T̂ and ÊP be the proper transforms on

the surface Ŝ of the curves T̃ and EP , respectively. Then (σ ◦ ρ)∗(−KS) ∼ T̂ +2ÊP +3F .

Let η : S → Ŝ be the blow up of the point T̂ ∩ ÊP ∩ F , let G be the η-exceptional curve,

and let T , EP , F be the proper transforms on S of the curves T̂ , ÊP , F , respectively.
Then (σ ◦ ρ ◦ η)∗(−KS) ∼ T + 2EP + 3F + 6G.
Let ϕ : S → S be the contraction of the curves EP and F , let T = υ(T ) and G = ϕ(G).

Then ϕ(F ) is an ordinary double point of the surface S , and ϕ(EP ) is its quotient singular
point of type 1

3
(1, 1). Note that these singular points are not contained in the curve T .

Note also that T 2 = −3, G 2 = −1
6
and T · G = 1. Observe that

−KS ∼Q (σ ◦ ρ ◦ η)∗
(
− 1

3
KS

)
+

2

3
T +

1

3
EP ,

so that −KS is big. Then S is a Mori Dream Space by [200, Theorem 1], which implies
that S is also a Mori Dream Space. Moreover, we have commutative diagram

S̃

σ

��

Ŝ
ρoo S

ηoo

ϕ
��

S S
υoo

where υ is a weighted blow up of P with weights (2, 3), and the υ-exceptional curve is G .
Since υ∗(−KS)− uG ∼R (6− u)G + T , υ∗(−KS)− uG is pseudo-effective ⇐⇒ u ⩽ 6,
and this divisor is nef ⇐⇒ u ⩽ 3. If 3 ⩽ u ⩽ 6, then the positive part of its Zariski
decomposition is (6− u)G + 6−u

3
T , and the negative part is u−3

3
T . This gives

vol
(
υ∗(−KS)− uG

)
=


3− u2

6
if 0 ⩽ u ⩽ 3,

(6− u)2

6
if 3 ⩽ u ⩽ 6.
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Integrating this function, we get SS(G ) = 3, so that δP (S) ⩽
AS(G )
SS(G )

= 5
3
, since AS(G ) = 5.

Now, to get a lower bound for δP (S), we use Corollary 1.7.12 that gives

δP (S) ⩾ min

{
5

3
, inf
O∈G

AG ,∆G
(O)

S
(
W G

•,•;O
)},

where ∆G = 2
3
ϕ(EP ) +

1
2
ϕ(F ). On the other hand, if O is a point in G , then

S
(
W G

•,•;O
)
=


1

3
if O = G ∩ T ,

1

6
otherwise,

by Corollary 1.7.25, so that

AG ,∆G
(O)

S(W G
•,•;O)

=


3 if O = G ∩ T ,

3 if O = ϕ
(
EP

)
,

2 if O = ϕ
(
F
)
,

6 otherwise.

This gives δP (S) ⩾ 5
3
> 27

17
.

Case 6. Finally, we suppose that T is an irreducible cubic curve that has a node at P .

Then σ∗(−KS)− uEP ∼R (2− u)EP + T̃ and T̃ 2 = −1, so that τ = 2. Moreover, we have

P (u) =


(2− u)EP + T̃ if 0 ⩽ u ⩽

3

2
,

(2− u)
(
EP + 2T̃

)
if
3

2
⩽ u ⩽ 2,

and

N(u) =


0 if 0 ⩽ u ⩽

3

2
,

(2u− 3)T̃ if
3

2
⩽ u ⩽ 2,

so that

vol
(
σ∗(−KS)− uEP

)
=


3− u2 if 0 ⩽ u ⩽

3

2
,

3(2− u)2 if
3

2
⩽ u ⩽ 2.

Integrating this function, we get SS(EP ) =
7
6
. Hence, we see that δP (S) ⩽

AS(EP )
SS(EP )

= 12
7
.

Now, using Corollary 1.7.25, we conclude that S(WEP
•,• ;O) ⩽

7
12

for every point O ∈ EP .

Hence, it follows from Corollary 1.7.12 that δP (S) =
12
7
. This completes the proof. □

To compute δ-invariants of smooth del Pezzo surfaces of degree 2, we have to recall few
basic facts about (−1)-curves in these surfaces. Let us present them in the following

Remark 2.14. Suppose thatK2
S = 2. Then there exists a ramified double cover π : S → P2,

which is branched over a smooth curve of degree four [69]. Let us denote this curve by R.
The double cover π induces an involution τ ∈ Aut(S) that is known as a Geiser involution.
For any (−1)-curve L in the surface S, the curve τ(L) is a (−1)-curve, L · τ(L) = 2 and

L+ τ(L) ∼ −KS,
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so that π(L) = π◦τ(L) is a line in P2, which is a bi-tangent (or four-tangent) of the curveR.
Therefore, we see that (−1)-curves in S always come in pairs. There are 28 of such pairs,
which correspond to 28 bi-tangents of the quartic curve R. This gives 56 (−1)-curves.
For every line ℓ ⊂ P2, its preimage on S via π is a reduced curve C ⊂ | −KS| such that
exactly one of the following possibilities holds:

(1) if ℓ intersects R transversally, then C is a smooth elliptic curve;
(2) if ℓ tangents R at one point that is not an inflection point, then C is an irreducible

curve of arithmetic genus 1 that has one node;
(3) if ℓ is tangent to R at an ordinary inflection point (not a hyperinflection point),

then C is an irreducible curve of arithmetic genus 1 that has one cusp;
(4) if ℓ tangents R at two distinct points, then C = L+ τ(L) for a (−1)-curve L such

that the intersection L ∩ τ(L) consists of two points, so that C is nodal;
(5) if ℓ is tangent to R at a hyperinflection point, then ℓ ∩ R consists of one point,

and C = L+τ(L) for a (−1)-curve L such that the curves L and τ(L) are tangent,
so that the anticanonical curve C has a tacnodal singularity.

The inflection points of the curve R are precisely the intersection points of this curve with
its Hessian sextic curve, which intersects the quartic curve R transversally at ordinary
inflection points and meets R at hyperinflection points (undulations) with multiplicity 2.
In particular, we see that the quartic curve R always has at least one inflection points.
However, if the curve R is sufficiently general, then it does not have hyperinflection points.
Surprisingly, it may happen that R does not have any ordinary inflection points [79, 127].
In fact, there are exactly two such curves: the Fermat quartic curve, and the curve given by

x4 + y4 + z4 + 3
(
x2y2 + y2z2 + z2x2

)
= 0,

where x, y, z are coordinates on P2. This phenomenon has been discussed in [38, § 6.1].
If L and L′ are two distinct (−1)-curves in S, then

1 = L′ ·
(
−KS

)
= L′ ·

(
L+ τ(L)

)
= L′ · L+ L′ · τ(L),

so that we have one of the following three mutually excluding possibilities:

(1) L′ ∩ L = ∅, L′ · L = 0 and L′ · τ(L) = 1;
(2) L′ ∩ τ(L) = ∅, L′ · L = 1 and L′ · τ(L) = 0;
(3) L′ = τ(L) and L′ · L = 2.

For any point P ∈ S such that π(P ) ∈ R, there exists a unique curve C ⊂ | −KS| such
that C is singular at the point P , and every (−1)-curve in S that contains P must be
an irreducible component of the curve C, since C · L = 1 for every (−1)-curve L ⊂ S.
If P is a point in S such that π(P ) ̸∈ R, then | −KS| contains no curves singular at P .
In this case, the point P is contained in at most four (−1)-curves in S by [182, Lemma 5],
which can easily be derived directly from the intersection graph of all (−1)-curves in S.
This can also be proved as follows: if S has five (−1)-curves L1, L2, L3, L4, L5 that have
a common point, then contracting τ(L5) we obtain a smooth cubic surface that contains
four lines sharing a common point, which is impossible. Moreover, if P is a point in S
such that π(P ) ̸∈ R, then it follows from [69, Exercise 6.17] that the point P is contained
in four (−1)-curves ⇐⇒ π(P ) = [1 : 0 : 0] and R is given by x4+f2(y, z)x

2+f4(y, z) = 0
for an appropriate choice of coordinates x, y, z, where f2(y, z) and f4(y, z) are quadratic
and quartic forms, respectively. Intersections of four (−1)-curves in the surface S are
called generalized Eckardt points [182].
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Now, we are ready to prove

Lemma 2.15. Suppose that K2
S = 2. Then

δ(S) =


9

5
if | −KS| contains a tacnodal curve,

15

8
if | −KS| does not contain tacnodal curves.

Proof. Let us use notations that introduced earlier in Remark 2.14. Fix some point P ∈ S.

Let σ : S̃ → S be the blow up of the point P , and let EP be the σ-exceptional divisor.

Then S̃ is a weak del Pezzo surface, K2
S̃
= 1, and |−2KS̃| gives a morphism S̃ → P(1, 1, 2),

which has the following Stein factorization:

S̃

σ

��

ϑ // S
ω

��
S P(1, 1, 2)

where ϑ is a contraction of all (−2)-curves in the surface S̃ (if any), and ω is a double cover
branched over the union of a sextic curve in P(1, 1, 2) and the singular point of P(1, 1, 2).
Observe that S is a del Pezzo surface of degree 1 with at most Du Val singularities, and
the morphism ϑ is an isomorphism ⇐⇒ −KS̃ is ample ⇐⇒ S is smooth. Moreover,

if the divisor −KS̃ is not ample, then the surface S̃ contains at most four (−2)-curves.

Furthermore, if Z is a (−2)-curve in S̃, then either π(P ) ∈ R and σ(Z) is the curve
in the linear system | − KS| that is singular at P , or σ(Z) is a (−1)-curves that passes

through P . The double cover S → P(1, 1, 2) induces an involution ι ∈ Aut(S̃) such that

ι(EP ) = EP ⇐⇒ π(P ) ∈ R or P is a generalized Eckardt point.

The involution ι is known as a Bertini involution. It gives the involution σ◦ι◦σ−1 ∈ Bir(S),

which is biregular ⇐⇒ ι(EP ) = EP . Let ς = σ ◦ ι. Then ς : S̃ → S contracts ι(EP ).
Thus, we have the following commutative diagram:

S̃
σ

��

ς

��
S

σ◦ι◦σ−1
// S

If −KS̃ is ample, then EP + ι(EP ) ∼ −2KS̃. Similarly, if π(P ) ̸∈ R, then

EP + ι(EP ) +
(
the sum of all (−2)-curves in S̃

)
∼ −2KS̃.

In particular, if −KS̃ is ample, then EP · ι(EP ) = 3, so that ς(EP ) is an irreducible curve
in the linear system | − 2KS| that has a singular point of multiplicity 3 at the point P .

If π(P ) ∈ R, let us denote by CP the unique curve in | − KS| that is singular at P .
Then we have the following cases:

(1) the divisor −KS̃ is ample, so that S̃ is a del Pezzo surface;
(2) π(P ) ∈ R, and CP is an irreducible nodal curve;
(3) π(P ) ∈ R, and CP is an irreducible cuspidal curve;
(4) π(P ) ∈ R, and CP is a union of two (−1)-curves that meet transversally;
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(5) π(P ) ∈ R, and CP is a union of two (−1)-curves that are tangent at P ;
(6) π(P ) ̸∈ R, and P is contained in exactly one (−1)-curve;
(7) π(P ) ̸∈ R, and P is contained in exactly two (−1)-curves;
(8) π(P ) ̸∈ R, and P is contained in exactly three (−1)-curves;
(9) the point P is a generalized Eckardt point.

It follows from Remark 2.14 that to prove the required assertion, it is enough to prove
the following three assertions:

• δP (S) = 9
5
if π(P ) ∈ R, and CP is a tacnodal curve;

• δP (S) = 15
8
if π(P ) ∈ R, and CP is a cuspidal curve;

• δP (S) ⩾ 15
8
in all remaining seven cases.

We will do this case by case similar to what we did in the proof of Lemma 2.13.
Take u ∈ R⩾0. Let τ be the largest number such that σ∗(−KS)−uEP is pseudo-effective.

For every real number u ∈ [0, τ ], let us denote by P (u) and N(u) the positive and
the negative parts of the Zariski decomposition of the divisor σ∗(−KS)−uEP , respectively.
For every irreducible Z ⊂ S, let us denote by Z̃ its proper transform on the surface S̃.

For instance, if π(P ) ∈ R, then C̃P is the proper transform on S̃ of the curve CP .
Case 1. Suppose that −KS̃ is ample. Then EP + ι(EP ) ∼ σ∗(−2KS)− 2EP , so that

σ∗(−KS)− uEP ∼R
3− 2u

2
EP +

ι(EP )

2
,

which immediately implies that τ = 3
2
. Moreover, we have

P (u) =


3− 2u

2
EP +

ι(EP )

2
if 0 ⩽ u ⩽

4

3
,

3− 2u

2

(
EP + 3ι(EP )

)
if
4

3
⩽ u ⩽

3

2
,

and

N(u) =


0 if 0 ⩽ u ⩽

4

3
,

(3u− 4)ι(EP ) if
4

3
⩽ u ⩽

3

2
,

so that

vol
(
σ∗(−KS)− uEP

)
=


2− u2 if 0 ⩽ u ⩽

4

3
,

2(3− 2u)2 if
4

3
⩽ u ⩽

3

2
.

Integrating, we get SS(EP ) =
17
18
, so that δP (S) ⩽

AS(EP )
SS(EP )

= 36
17
. For every O ∈ EP , we get

S
(
WEP

•,• ;O
)
=

∫ 2
3

0

((
P (u) · EP

)(
N(u) · EP

)
O
+

(
P (u) · EP

)2
2

)
du =

=

∫ 3
2

4
3

(3u− 4)(12− 8u)du×
(
ι(EP ) · EP

)
O
+

∫ 4
3

0

u2

2
du+

∫ 3
2

4
3

(12− 8u)2

2
du =

=

(
ι(EP ) · EP

)
O

54
+

4

9
⩽
ι(EP ) · EP

54
+

4

9
=

3

54
+

4

9
=

1

2
,
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by Corollary 1.7.25. Now, using Corollary 1.7.12, we get

δP (S) ⩾ min

{
36

17
, inf
O∈EP

1

S(WEP
•,• ;O)

}
⩾ 2,

so that 36
17

⩾ δP (S) ⩾ 15
8
as required. In fact, we proved that δP (S) =

36
17

if |ι(EP )∩EP | ⩾ 2.
Case 2. Suppose that π(P ) ∈ R, and CP is an irreducible nodal curve. We have τ = 2,

because σ∗(−KS)− uEP ∼R (2− u)EP + C̃P . Moreover, we have

P (u) =

{
(2− u)EP + C̃P if 0 ⩽ u ⩽ 1,

(2− u)
(
EP + C̃P

)
if 1 ⩽ u ⩽ 2,

and

N(u) =

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)C̃P if 1 ⩽ u ⩽ 2,

so that

vol
(
σ∗(−KS)− uEP

)
=

{
2− u2 if 0 ⩽ u ⩽ 1,

(2− u)2 if 1 ⩽ u ⩽ 2.

Integrating, we get SS(EP ) = 1, so that δP (S) ⩽
AS(EP )
SS(EP )

= 2. For every O ∈ EP , we get

S
(
WEP

•,• ;O
)
=

∫ 2

0

((
P (u) · EP

)(
N(u) · EP

)
O
+

(
P (u) · EP

)2
2

)
du =

=

∫ 2

1

(u−1)(2−u)du×
(
C̃P ·EP

)
O
+

∫ 1

0

u2

2
du+

∫ 2

1

(2− u)2

2
du =

(
C̃P · EP

)
O

6
+
1

3
⩽

1

2

by Corollary 1.7.25. Now, using Corollary 1.7.12, we get

δP (S) ⩾ min

{
AS(EP )

SS(EP )
, inf
O∈EP

1

S(WEP
•,• ;O)

}
⩾ 2,

so that δP (S) = 2 > 15
8
as required.

Case 3. Suppose that π(P ) ∈ R, and CP is an irreducible curve that has a cusp at P .

Let ρ : Ŝ → S̃ be the blow up of the point C̃P ∩ EP , let F be the ρ-exceptional curve,

let ĈP and ÊP be the proper transforms on Ŝ via ρ of the curves C̃P and EP , respectively.
Then there exists commutative diagram

S̃

σ

��

Ŝ
ρoo S

ηoo

ϕ
��

S S
υoo

where η is the blow up of the point ĈP ∩ ÊP , the map ϕ is the contraction of the proper

transforms of the curves ÊP and F , and υ is the birational contraction of the proper
transform of the η-exceptional curve. It is not hard to see that the divisor −KS is big.
Then S is a Mori Dream Space [200], so that S is a Mori Dream Space as well.
Let G be the υ-exceptional curve, and let CP be the proper transform of the curve CP on

the surface S . Then G contains two singular points Q1 and Q2 such that Q1 is an ordinary
double point, and Q2 is a quotient singular point of type 1

3
(1, 1). However, these singular
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points are not contained in the curve CP . Note also that C 2 = −4, G 2 = −1
6
, C · G = 1.

Since υ∗(−KS)−uG ∼R (6−u)G +CP , the divisor υ
∗(−KS)−uG is nef ⇐⇒ u ⩽ 2, and

the divisor υ∗(−KS)−uG is pseudo-effective ⇐⇒ u ⩽ 6. If 2 ⩽ u ⩽ 6, then the positive
part of its Zariski decomposition is (6−u)(G + 1

4
CP ), and its negative part is u−2

4
CP . Then

vol
(
υ∗(−KS)− uG

)
=


2− u2

6
if 0 ⩽ u ⩽ 2,

(6− u)2

12
if 1 ⩽ u ⩽ 6.

Integrating this function, we obtain SS(G ) = 8
3
, which implies that δP (S) ⩽

AS(G )
SS(G )

= 15
8
.

On the other hand, it follows from Corollary 1.7.12 that

δP (S) ⩾ min

{
15

8
, inf
O∈G

AG ,∆G
(O)

S
(
W G

•,•;O
)},

where ∆G = 1
2
Q1 +

2
3
Q2. On the other hand, if O is a point in G , then

S
(
W G

•,•;O
)
=

1

9
+

2

9
ordO

(
CP

∣∣
G

)
=


1

3
if O = G ∩ C ,

1

9
otherwise,

by Corollary 1.7.25, so that

AG ,∆G
(O)

S(W G
•,•;O)

=


3 if O = G ∩ CP ,

9

2
if O = Q1,

3 if O = Q2,

9 otherwise.

This gives δP (S) =
15
8
as required.

Case 4. Suppose that π(P ) ∈ R, and CP = L1 +L2, where L1 and L1 are (−1)-curves

that intersect transversally at the point P . Then σ∗(−KS)−uEP ∼R (2−u)EP + L̃1+ L̃2.
This gives τ = 2. Moreover, we have

P (u) =

{
(2− u)EP + L̃1 + L̃2 if 0 ⩽ u ⩽ 1,

(2− u)
(
EP + L̃1 + L̃2

)
if 1 ⩽ u ⩽ 2,

and

N(u) =

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)
(
L̃1 + L̃2

)
if 1 ⩽ u ⩽ 2,

so that

vol
(
σ∗(−KS)− uEP

)
=

{
2− u2 if 0 ⩽ u ⩽ 1,

(2− u)2 if 1 ⩽ u ⩽ 2.
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Integrating, we get SS(EP ) = 1, so that δP (S) ⩽
AS(EP )
SS(EP )

= 2. For every O ∈ EP , we get

S
(
WEP

•,• ;O
)
=

∫ 2

0

((
P (u) · EP

)(
N(u) · EP

)
O
+

(
P (u) · EP

)2
2

)
du =

=

∫ 2

1

(u−1)(2−u)du×
((
L̃1+L̃2

)
·EP

)
O
+

∫ 1

0

u2

2
du+

∫ 2

1

(2− u)2

2
du =

((
L̃1 + L̃2

)
· EP

)
O

6
+
1

3

by Corollary 1.7.25, so that S(WEP
•,• ;O) ⩽

1
2
. Then δP (S) = 2 > 15

8
by Corollary 1.7.12.

Case 5. Suppose that π(P ) ∈ R, and CP = L1 +L2, where L1 and L1 are (−1)-curves

that are tangent at the point P . Let ρ : Ŝ → S̃ be the blow up of the point L̃1 ∩ L̃2 ∩EP ,
let F be the ρ-exceptional curve, and let L̂1, L̂2, ÊP be the proper transforms on Ŝ of

the curves L̃1, L̃2, EP , respectively. Then (σ ◦ ρ)∗(−KS) ∼ L̂1 + L̂1 + 2ÊP + 4F .

Let ϕ : Ŝ → S be the contraction of ÊP . Set L1 = ϕ(L1), L2 = ϕ(L2) and F = ϕ(F ).

Then ϕ(ÊP ) is an ordinary double point of the surface S, ϕ(ÊP ) ̸∈ L1 and ϕ(ÊP ) ̸∈ L2.
The intersections of the curves L1, L2 and F are contained in following table:

L1 L1 F

L1 −3 0 1

L2 0 −3 1

F 1 1 −1
2

Observe that −KŜ ∼Q L̂1 + L̂1 + ÊP + 2F , which implies that the divisor −KŜ is big.

Then Ŝ is a Mori Dream Space by [200, Theorem 1], so that S is a Mori Dream Space.
Moreover, we have commutative diagram

S̃

σ

��

Ŝ
ρoo

ϕ
��

S S
υoo

where υ is a contraction of the curve F . Then υ∗(−KS) − uF ∼R L1 + L2 + (4 − u)F ,
Using this, we conclude that the divisor υ∗(−KS)−uF is pseudo-effective ⇐⇒ u ∈ [0, 4].
Moreover, if 0 ⩽ u ⩽ 1, then the divisor υ∗(−KS)− uF is nef. Furthermore, if u ∈ [1, 4],
then the Zariski decomposition of this divisor can be described as follows:

υ∗(−KS)− uF ∼R
4− u

3

(
L1 + L2 + 3F

)
︸ ︷︷ ︸

positive part

+
u− 1

3

(
L1 + L2

)
︸ ︷︷ ︸

negative part

.

Therefore, we have

vol
(
υ∗(−KS)− uF

)
=


2− u2

2
if 0 ⩽ u ⩽ 1,

(4− u)2

6
if 1 ⩽ u ⩽ 4.
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Integrating this function, we get SS(F ) =
5
3
, so that δP (S) ⩽

AS(F )

SS(F )
= 9

5
, since AS(F ) = 3.

Now, using Corollary 1.7.12, we see that

δP (S) ⩾ min

{
9

5
, inf
O∈F

AF ,∆F
(O)

S
(
W F

•,•;O
)},

where ∆F = 1
2
ϕ(ÊP ). Let O be a point in the curve F . Then Corollary 1.7.25 gives

S
(
W F

•,•;O
)
=

∫ 4

0

((
P (u) · F

)
× ordO

(
N(u)

∣∣
F

)
+

(
P (u) · F

)2
2

)
du =

=

∫ 4

1

(u− 1)(4− u)

18
du×

((
L1+L2

)
·F
)
O
+

∫ 1

0

u2

8
du+

∫ 4

1

(4− u)2

72
du =

((
L1 + L2

)
· F
)
O

4
+
1

6
,

so that

S
(
W F

•,•;O
)
=



5

12
if O = L1 ∩ F ,

5

12
if O = L2 ∩ F ,

1

6
otherwise,

so that

AF ,∆F
(O)

S(W F
•,•;O)

=



12

5
if O = L1 ∩ F ,

12

5
if O = L2 ∩ F ,

3 if O = ϕ
(
ÊP
)
,

6 otherwise.

This gives δP (S) =
9
5
as required.

Case 6. Suppose that π(P ) ̸∈ R, and P is contained in exactly one (−1)-curve L.

Then EP + ι(EP )+ L̃ ∼ −2KS̃, so that σ∗(−KS)−uEP ∼R
3−2u
2
EP +

1
2
(ι(EP )+ L̃), which

gives τ = 3
2
, because the intersection form of the curves ι(EP ) and L̃ is negative definite.

Similarly, we see that

P (u) =



3− 2u

2
EP +

1

2

(
ι(EP ) + L̃

)
if 0 ⩽ u ⩽ 1,

3− 2u

2
EP +

1

2
ι(EP ) +

2− u

2
L̃ if 1 ⩽ u ⩽

7

5
,

3− 2u

2

(
EP + 5ι(EP ) + 3L̃

)
if
7

5
⩽ u ⩽

3

2
,

and

N(u) =


0 if 0 ⩽ u ⩽ 1,

u− 1

2
L̃ if 1 ⩽ u ⩽

7

5
,

(5u− 7)ι(EP ) + (3u− 4)L̃ if
7

5
⩽ u ⩽

3

2
.
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Note that EP · ι(EP ) = 2. Computing P (u) · P (u) for u ∈ [0, 3
2
], we get

vol
(
σ∗(−KS)− uEP

)
=


2− u2 if 0 ⩽ u ⩽ 1,

5− u2 − 2u

2
if 1 ⩽ u ⩽

7

5
,

3(3− 2u)2 if
7

5
⩽ u ⩽

3

2
.

Integrating, we get SS(EP ) =
19
20
, so that δP (S) ⩽

AS(EP )
SS(EP )

= 40
19
. For every O ∈ EP , we get

S
(
WEP

•,• ;O
)
=

∫ 3
2

0

((
P (u) · EP

)
×
(
N(u) · EP

)
O
+

(
P (u) · EP

)2
2

)
du =

=

∫ 3
2

0

(
P (u) ·EP

)
×
(
N(u) ·EP

)
O
du+

∫ 1

0

u2

2
du+

∫ 7
5

1

(1 + u)2

8
du+

∫ 3
2

7
5

(18− 12u)2

2
du =

=

(∫ 7
5

1

(u− 1)(1 + u)

4
du+

∫ 3
2

7
5

(3u− 4)(18− 12u)du

)
×
(
L̃ · EP

)
O
+

+

∫ 3
2

7
5

(5u− 7)(18− 12u)du×
(
ι(EP ) · EP

)
O
+

13

30
=

=
19

300

(
L̃ · EP

)
O
+

(
ι(EP ) · EP

)
O

100
+

13

30
⩽

19

300
L̃ · EP +

ι(EP ) · EP
100

+
13

30
=

31

60
by Corollary 1.7.25, Now, using Corollary 1.7.12, we get

40

19
⩾ δP (S) ⩾ min

{
40

19
, inf
O∈EP

1

S(WEP
•,• ;O)

}
⩾

60

31
,

so that 40
19

⩾ δP (S) ⩾ 60
31
. In particular, we see that δP (S) >

15
8
as required.

Case 7. Suppose that π(P ) ̸∈ R, and P is contained in two (−1)-curves L1 and L2.

Then EP + ι(EP ) + L̃1 + L̃2 ∼ σ∗(−2KS)− 2EP . This gives

σ∗(−KS)− uEP ∼R
3− 2u

2
EP +

1

2

(
ι(EP ) + L̃1 + L̃2

)
,

so that τ = 3
2
, because the intersection form of the curves ι(EP ), L̃1, L̃2 is semi-negative

definite. Moreover, we have

P (u) =


3− 2u

2
EP +

1

2

(
ι(EP ) + L̃1 + L̃2

)
if 0 ⩽ u ⩽ 1,

3− 2u

2
EP +

1

2
ι(EP ) +

2− u

2

(
L̃1 + L̃2

)
if 1 ⩽ u ⩽

3

2
,

and

N(u) =


0 if 0 ⩽ u ⩽ 1,

u− 1

2

(
L̃1 + L̃2

)
if 1 ⩽ u ⩽

3

2
,

so that

vol
(
σ∗(−KS)− uEP

)
=

2− u2 if 0 ⩽ u ⩽ 1,

3− 2u if 1 ⩽ u ⩽
3

2
.
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Integrating, we get SS(EP ) =
23
24
, so that δP (S) ⩽

AS(EP )
SS(EP )

= 48
23
. For every O ∈ EP , we get

S
(
WEP

•,• ;O
)
=

((
L̃1 + L̃2

)
· EP

)
O

16
+

5

12
⩽

23

48

by Corollary 1.7.25. Now, using Corollary 1.7.12, we get δP (S) =
48
23
> 15

8
.

Case 8. Suppose that π(P ) ̸∈ R, and P is contained in three (−1)-curves L1, L2, L3.

Then EP + ι(EP ) + L̃1 + L̃2 + L̃3 ∼ −KS̃ and EP · ι(EP ) = 0, so that the (−1)-curves EP
and ι(EP ) are disjoint. Then σ ◦ ι(EP ) = ς(EP ) is a (−1)-curve in S that does not pass
through P . We have ς(EP ) + L1 + L2 + L3 ∼ −2KS, which implies that ς(EP ) · L1 = 1,
ς(EP ) · L2 = 1 and ς(EP ) · L3 = 1. Let B = τ(ς(EP )). Then B is a (−1)-curve such that
B+ ς(EP ) ∼ −KS, that gives B ·L1 = B ·L2 = B ·L3 = 0. Thus, we see that B is disjoint
from L1, L2, L3. In particular, it does not contain P .

Now, we denote by B̃ the proper transform of the (−1)-curve B on the surface S̃.

Then B̃ is a (−1)-curve that is disjoint from EP , L̃1, L̃2, L̃3. Let Z̃ = ι(B) and Z = σ(Z̃).

We have Z̃ + B̃ ∼ −2KS̃. This gives Z̃ · L̃1 = Z̃ · L̃2 = Z̃ · L̃3 = 0 and Z̃ · EP = 2.

Thus, the curves Z̃, L̃1, L̃2, L̃3 are disjoint, Z +B ∼ −2KS and multP (Z) = Z̃ ·EP = 2.
Summarizing, we get Z+B ∼ −2KS, B+ς(EP ) ∼ −KS and ς(EP )+L1+L2+L3 ∼ −2KS.
Using these rational equivalences, we get L1 + L2 + L3 + Z ∼ −3KS. Then

σ∗(−KS)− uEP ∼R
5− 3u

3
EP +

1

3

(
Z̃ + L̃1 + L̃2 + L̃3

)
.

This gives τ = 5
3
, because the curves Z̃, L̃1, L̃2, L̃3 are disjoint and all of them have

negative self-intersections. Similarly, we see that

P (u) =



5− 3u

3
EP +

1

3

(
Z̃ + L̃1 + L̃2 + L̃3

)
if 0 ⩽ u ⩽ 1,

5− 3u

6

(
2EP + L̃1 + L̃2 + L̃3

)
+

1

3
Z̃ if 1 ⩽ u ⩽

3

2
,

5− 3u

6

(
2EP + 4Z̃ + L̃1 + L̃2 + L̃3

)
if
3

2
⩽ u ⩽

5

3
,

and

N(u) =


0 if 0 ⩽ u ⩽ 1,

u− 1

2

(
L̃1 + L̃2 + L̃3

)
if 1 ⩽ u ⩽

3

2
,

u− 1

2

(
L̃1 + L̃2 + L̃3

)
+ (2u− 3)Z̃ if

3

2
⩽ u ⩽

5

3
.

Now, computing P (u) · P (u) for u ∈ [0, 5
3
], we obtain

vol
(
σ∗(−KS)− uEP

)
=


2− u2 if 0 ⩽ u ⩽ 1,

u2 − 6u+ 7

2
if 1 ⩽ u ⩽

3

2
,

(5− 3u)2

2
if
3

2
⩽ u ⩽

5

3
.

85



Integrating, we get SS(EP ) =
35
36
, so that δP (S) ⩽

AS(EP )
SS(EP )

= 72
35
. For every O ∈ EP , we get

S
(
WEP

•,• ;O
)
=

∫ 5
3

0

((
P (u) · EP

)
×
(
N(u) · EP

)
O
+

(
P (u) · EP

)2
2

)
du =

=

∫ 5
3

0

(
P (u) ·EP

)
×
(
N(u) ·EP

)
O
du+

∫ 1

0

u2

2
du+

∫ 3
2

1

(3− u)2

8
du+

∫ 5
3

3
2

9(4− 3u)2

8
du =

=

(∫ 3
2

1

(u− 1)(3− u)

4
du+

∫ 5
3

3
2

3(u− 1)(5− 3u)

4
du

)
×
((
L̃1 + L̃2 + L̃3

)
· EP

)
O
+

+

∫ 5
3

3
2

3(2u− 3)(5− 3u)

2
du×

(
Z̃ ·EP

)
O
+
3

8
=

5

72

((
L̃1+L̃2+L̃3

)
·EP

)
O
+

(
Z̃ · EP

)
O

144
+
3

8

by Corollary 1.7.25, which gives

S
(
WEP

•,• ;O
)
=



4

9
if O ∈ L̃1 ∪ L̃2 ∪ L̃3,

3

8
+

(
Z̃ · EP

)
O

144
if O ∈ Z̃,

3

8
if O ̸∈ L̃1 ∪ L̃2 ∪ L̃3 ∪ Z̃,

so S(WEP
•,• ;O) ⩽

4
9
, since (Z̃ · EP )O ⩽ Z̃ · EP = 2. Then δP (S) =

72
35

by Corollary 1.7.12.
Case 9. Finally, we suppose that π(P ) ̸∈ R, and P is contained in four (−1)-curves.

Denote them by L1, L2, L3 and L4. Then L1 + L2 + L3 + L4 ∼ −2KS, so that

σ∗(−KS)− uEP ∼R (2− u)EP +
1

2

(
L̃1 + L̃2 + L̃3 + L̃4

)
.

This gives τ = 2, because the (−2)-curves L̃1, L̃2, L̃3, L̃4 are disjoint. Moreover, we have

P (u) =


(2− u)EP +

1

2

(
L̃1 + L̃2 + L̃3 + L̃4

)
if 0 ⩽ u ⩽ 1,

(2− u)
(
EP +

1

2

(
L̃1 + L̃2 + L̃3 + L̃4

))
if 1 ⩽ u ⩽ 2,

and

N(u) =


0 if 0 ⩽ u ⩽ 1,

u− 1

2

(
L̃1 + L̃2 + L̃3 + L̃4

)
if 1 ⩽ u ⩽ 2,

so that

vol
(
σ∗(−KS)− uEP

)
=

{
2− u2 if 0 ⩽ u ⩽ 1,

(2− u)2 if 1 ⩽ u ⩽ 2.

Integrating, we get SS(EP ) = 1, so that δP (S) ⩽
AS(EP )
SS(EP )

= 2. For every O ∈ EP , we get

S
(
WEP

•,• ;O
)
=

((
L̃1 + L̃2 + L̃3 + L̃4

)
· EP

)
O

12
+

1

3
⩽

5

12

by Corollary 1.7.25. Now, using Corollary 1.7.12, we get δP (S) = 2 > 15
8
. This completes

the proof of the lemma. □
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Let us conclude this section by proving the following lemma:

Lemma 2.16. Suppose that K2
S = 1. Then

δ(S) =


15

7
if | −KS| contains a cuspidal curve,

12

5
if | −KS| does not contain cuspidal curves.

Proof. Let P be a point in S, and let C be a curve in the pencil | −KS| that contains P .
Then C is an irreducible curve of arithmetic genus 1, so that either C is smooth at P , or
the curve C has a node at P , or the curve C has a cusp at P . Note that the pencil |−KS|
always contains singular curves. Observe also that SS(C) =

1
3
. Moreover, if the curve C

is smooth at P , then we have S
(
WC

•,•;P
)
= 1

3
by Corollary 1.7.25, so that δP (C) ⩾ 3 by

Theorem 1.7.1. Thus, to complete the proof, we must prove that

δP (S) =


15

7
if C has a cusp at P ,

12

5
if C has a node at P .

Therefore, we may assume that our curve C is singular at the point P .

Let σ : S̃ → S be the blow up of the point P , let EP be the σ-exceptional divisor,

let C̃ be the proper transform on S̃ of the curve C, and let u be a non-negative number.

Then C̃ is a smooth curve such that C̃2 = −3 and σ∗(−KS) − uEP ∼R (2 − u)EP + C̃.
Then σ∗(−KS) − uEP is pseudo-effective ⇐⇒ u ⩽ 2. This divisor is nef ⇐⇒ u ⩽ 1

2
.

Furthermore, if 1
2
⩽ u ⩽ 2, then its Zariski decomposition can be described as follows:

σ∗(−KS)− uEP ∼R (2− u)
(
EP +

2

3
C̃
)

︸ ︷︷ ︸
positive part

+
2u− 1

3
C̃︸ ︷︷ ︸

negative part

,

so that

vol
(
σ∗(−KS)− uEP

)
=


1− u2 if 0 ⩽ u ⩽

1

2
,

(2− u)2

3
if
1

2
⩽ u ⩽ 2,

which gives SS(EP ) =
5
6
. Thus, we have δP (S) ⩽

AS(EP )
SS(EP )

= 12
5
.

Note that the divisor −KS̃ is big. Then S̃ is a Mori Dream Space by [200, Theorem 1].
Therefore, we can apply Corollary 1.7.25 to compute S(WEP

•,• ;O) for every point O ∈ EP .
To be precise, if O is a point in EP , then Corollary 1.7.25 gives

S
(
WEP

•,• ;O
)
=

1

6
+

(
EP · C̃

)
O

4
,

which implies that S(WEP
•,• ;O) ⩽ 5

12
in the case when C has a nodal singularity at P .

Thus, if C has a node at P , then δP (S) =
12
5
by Corollary 1.7.12. Hence, we may assume

that the curve C has a cusp at P . Then the intersection C̃ ∩ EP consists of one point,

and C̃ is tangent to EP at this point.
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Let ρ : Ŝ → S̃ be the blow up of the point C̃ ∩ EP , let F be the ρ-exceptional curve,

let Ĉ and ÊP be the proper transforms on Ŝ via ρ of the curves C̃ and EP , respectively.
Then there exists commutative diagram

S̃

σ

��

Ŝ
ρoo S

ηoo

ϕ
��

S S
υoo

where η is the blow up of Ĉ∩ÊP , ϕ is the contraction of the proper transforms of the curves

ÊP and F , and υ is the contraction of the proper transform of the η-exceptional curve.
Let G be the υ-exceptional curve, and let C be the proper transform of the curve C on

the surface S . Then G contains two singular points Q1 and Q2 such that Q1 is an ordinary
double point, and Q2 is a quotient singular point of type 1

3
(1, 1). However, these singular

points are not contained in the curve C . Note also that C 2 = −5, G 2 = −1
6
, C · G = 1,

and S is Mori Dream Space by [200, Theorem 1], since −KS is big.
Since υ∗(−KS)− uG ∼R (6− u)G +C , the divisor υ∗(−KS)− uG is pseudo-effective if

and only if u ⩽ 6. Moreover, this divisor is nef ⇐⇒ u ⩽ 1. Furthermore, if 1 ⩽ u ⩽ 6,
then the positive part of its Zariski decomposition is (6− u)G + 6−u

5
C , and the negative

part of its Zariski decomposition is u−1
5

C . This gives

vol
(
υ∗(−KS)− uG

)
=


1− u2

6
if 0 ⩽ u ⩽ 1,

(6− u)2

30
if 1 ⩽ u ⩽ 6.

Integrating this function, we obtain SS(G ) = 7
3
, which implies that δP (S) ⩽

AS(G )
SS(G )

= 15
7
.

On the other hand, it follows from Corollary 1.7.12 that

δP (S) ⩾ min

{
15

7
, inf
O∈G

AG ,∆G
(O)

S
(
W G

•,•;O
)},

where ∆G = 1
2
Q1 +

2
3
Q2. On the other hand, if O is a point in G , then

S
(
W G

•,•;O
)
=


1

3
if O = G ∩ C ,

1

18
otherwise,

by Corollary 1.7.25, so that

AG ,∆G
(O)

S(W G
•,•;O)

=


3 if O = G ∩ C ,

9 if O = Q1,

6 if O = Q2,

18 otherwise.

This gives δP (S) =
15
7
as required. This completes the proof of the lemma. □

Let P be a point of the surface S. All possible values of αP (S) have been found in [37].
It would be interesting to find all values of δP (S). For K

2
S = 3, this is done in [2].
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3. Proof of Main Theorem: known cases

3.1. Direct products. Let S be a smooth del Pezzo surface. If S is not a blow up
of P2 in one or two points, then S is K-polystable (see Section 2), so that P1 × S is also
K-polystable by Theorem 1.1.7. Therefore, every smooth Fano threefold in the families
�2.34, �3.27, �5.3, �6.1, �7.1, �8.1, �9.1, �10.1 is K-polystable. On the other hand,
blow ups of the plane P2 in one or two points are K-unstable by Lemmas 2.3 and 2.4, so
that the smooth Fano threefolds �3.28 and �4.10 are K-unstable by Theorem 1.1.7.

3.2. Homogeneous spaces. The following smooth Fano threefolds are homogeneous
spaces: a smooth quadric threefold in P4 (family �1.16), P3 (family �1.17), a smooth
divisor in P2×P2 of degree (1, 1) (family �2.32), P1×P2 (family �2.34), and P1×P1×P1

(family �3.27). All of them are K-polystable by Theorem 1.2.5 or Theorem 1.4.7.

3.3. Fano threefolds with torus action. There are exactly 18 smooth toric Fano three-
folds [12, 212], and each such threefold is the unique member of the corresponding defor-
mation family. Theorem 1.2.4 tells us which of these threefolds are K-polystable [14, 209].

Family Short description K-polystable

�1.17 P3 Yes

�2.33 blow up of P3 in a line No

�2.34 P1 × P2 Yes

�2.35 V7 =blow up of P3 in a point No

�2.36 P
(
OP2 ⊕OP2(2)

)
No

�3.25 blow up of P3 in two disjoint lines Yes

�3.26 blow up of P3 in a line and a point No

�3.27 P1 × P1 × P1 Yes

�3.28 P1 × F1 No

�3.29
blow up of V7 in a line in

the exceptional divisor of the blow up V7 → P3 No

�3.30 blow up of V7 in a fiber of the P1-bundle V7 → P2 No

�3.31 blow up of the quadric cone in its vertex No

�4.9
blow up of the smooth Fano threefold �3.25 in a curve

contracted by the birational morphism to P3 No

�4.10 P1 × S7 No

�4.11
blow up of P1 × F1 in a curve that is

a (−1)-curve of a fiber of the projection P1 × F1 → P1 No

�4.12
blow up of the smooth Fano threefold �2.33 in two curves

contracted by the birational morphism to P3 No

�5.2

blow up of the smooth Fano threefold �3.25 in two curves
contracted by the birational morphism to P3

which are both contained in one exceptional surface
No

�5.3 P1 × S6 Yes
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Here, S6 and S7 the smooth del Pezzo surfaces of degree 6 and 7, respectively.

Smooth non-toric Fano threefolds admitting a faithful action of the two-dimensional
torus G2

m have been classified in [194], see also [42]. These are smooth Fano threefolds
�1.16, �2.29, �2.30, �2.31, �2.32, �3.18, �3.19, �3.20, �3.21, �3.22, �3.23, �3.24,
�4.4, �4.5, �4.7, �4.8, and two special threefolds in the families �2.24 and �3.10.
Their Futaki invariants have been found in [194]. This allowed to solve Calabi Problem
for all of them [193, 194, 112]. We summarize these results in the following table.

Fano threefold Short description Futaki invariant K-polystable

�1.16 Q =smooth quadric threefold in P4 zero Yes

�2.24 (special) divisor in P2 × P2 of degree (1, 2) zero Yes

�2.29 blow up of Q in a conic zero Yes

�2.30 blow up of Q in a point non-zero No

�2.31 blow up of Q in a line non-zero No

�2.32 W =divisor in P2 × P2 of degree (1, 1) zero Yes

�3.10 (special) blow up of Q in two disjoint conics zero Yes

�3.18 blow up of Q in a point and a conic non-zero No

�3.19 blow up of Q in two points zero Yes

�3.20 blow up of Q in two disjoint lines zero Yes

�3.21 blow up of P1 × P2 in a curve of degree (2, 1) non-zero No

�3.22 blow up of P1 × P2 in a curve of degree (0, 2) non-zero No

�3.23

blow up of Q in a point
and the strict transform of a line

passing through this point
non-zero No

�3.24 blow up of W in a curve of degree (0, 1) non-zero No

�4.4

blow up of Q in two non-collinear points
and the strict transform of a conic
passing through both of these points

zero Yes

�4.5

blow up of P1 × P2 in
a disjoint union of a curve of degree (2, 1)

and a curve of degree (1, 0)
non-zero No

�4.7

blow up of W in
a disjoint union of a curve of degree (0, 1)

and a curve of degree (1, 0)
zero Yes

�4.8 blow up of
(
P1
)3

in a curve of degree (0, 1, 1) non-zero No

Let us illustrate these results:

Lemma 3.3.1 ([112, Theorem 6.1]). Let X be the unique smooth Fano threefold � 3.19.
Then X is K-polystable.

Proof. Let Q be the smooth quadric hypersurface in P4 given by x20 + x1x2 − x3x4 = 0,
where x0, x1, x2, x3, x4 are coordinates on P4. ThenQ admits aG2

m-action that is generated
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by two commuting Gm-actions λ1 and λ2 defined as follows:

λ1(t).[x0 : x1 : x2 : x3 : x4] = [x0 : tx1 : x2/t : x3 : x4],

λ2(s).[x0 : x1 : x2 : x3 : x4] = [x0 : x1 : x2 : sx3 : x4/s],

where t ∈ Gm and s ∈ Gm. Now, we let P1 = [0 : 0 : 0 : 0 : 1] and P2 = [0 : 0 : 0 : 1 : 0].
Then P1 and P2 are G2

m-fixed. We may assume that X is a blow up of Q at these points.
Denote this blow up by ϕ, and denote the exceptional divisors by E1 and E2, respectively.
Let σ be the involution in Aut(Q) given by [x0 : x1 : x2 : x3 : x4] 7→ [x0 : x2 : x1 : x4 : x3].
Then σ swaps P1 and P2, so that both the G2

m-action and σ lifts to the threefold X.
Therefore, we may consider G2

m and ⟨σ⟩ as subgroups in Aut(X).
Let us apply results of Section 1.3 to X and T = G2

m. We will use notations introduced
in this section. First, we observe that σ acts on the Gm-actions λ1 and λ2 by conjugation
and sends λ1 to λ−1

1 and λ2 to λ−1
2 . Then by Lemma 1.3.6 we must have FutX = 0.

Let π : X 99K P1 be the quotient map. Then π ◦ ϕ−1 is given by

[x0 : x1 : x2 : x3 : x4] 7→ [x1x2 : x3x4],

because the field of G2
m-invariant rational functions on Q is generated by x1x2/x3x4.

Moreover, both divisors E1 and E2 are horizontal, because λ2 induces a trivial action on
both of them. Furthermore, the reducible fibres of the map π can be described as follows:

π−1
(
[0 : 1]

)
= D1 ∪D2,

π−1
(
[1 : 0]

)
= D3 ∪D4,

π−1
(
[1 : 1]

)
= 2D0,

where each Di is the proper transform on X of the hyperplane section of Q that are cut
out by xi = 0. Therefore, using Proposition 1.3.17, we see that to complete the proof, it
is sufficient to show that β(D1) > 0, β(D3) > 0 and β(D0) > 0.
Let H = ϕ∗(OP4(1)|Q). Then we have H−E1−E2 ∼ D0 ∼ D1 ∼ D3−E1, which implies

that β(D0) = β(D1) ⩽ β(D3). Hence, it is actually sufficient to check that β(D0) > 0.
This is easy. Since −KX ∼ 3H − 2E1 − 2E2, we have

SX
(
D0

)
=

1

38

∫ 2

0

(
(3− x)H − (2− x)E1 − (2− x)E1

)3
dx+

1

38

∫ 3

2

(
(3− x)H

)3
dx =

=
1

38

∫ 2

0

(
2(3− x)3 − 2(2− x)3

)
dx+

1

38

∫ 3

2

2(3− x)3dx =
65

76
,

so that β(D0) = 1− 65
76

= 13
76
> 0. This implies that X is K-polystable. □

3.4. Del Pezzo threefolds. Let Vd be a smooth Fano threefold such that −KVd ∼ 2H
for some H ∈ Pic(Vd) such that d = H3. Then Vd is a del Pezzo threefold of degree d.
One can show that a general surface in |H| is a smooth del Pezzo surface of degree d.
Moreover, it follows from [98, 99, 100, 102, 103] that we have the following possibilities:

• d = 1 and V1 is a sextic hypersurface in P(1, 1, 1, 2, 3);
• d = 2 and V2 is quartic hypersurface in P(1, 1, 1, 1, 2);
• d = 3 and V3 is a cubic hypersurface in P4;
• d = 4 and V4 is an intersection of two quadrics in P5;
• d = 5 and V5 is the quintic del Pezzo threefold (see Example 3.4.1 below);
• d = 6 and V6 is a divisor in P2 × P2 of degree (1, 1);
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• d = 6 and V6 = P1 × P1 × P1;
• d = 7 and V7 is a blowup of P3 at a point;
• d = 8 and V8 = P3.

Hence, Vd belongs to the family �1.11, �1.12, �1.13, �1.14, �1.15, �2.32, �3.27,
�2.35, respectively. From Sections 3.1, 3.2, 3.3, we know that V6 and V8 are K-polystable,
but V7 is not K-polystable, which will also be discussed later in Sections 3.6 and 3.7.
The family �1.15 contains a unique smooth Fano threefold, and it is K-polystable:

Example 3.4.1. Let V5 be a smooth intersection of the Grassmannian Gr(2, 5) ⊂ P9 in its
Plücker embedding with a linear subspace of dimension 5. Then V5 is the unique smooth
Fano threefold �1.15. By [44, Theorem 1.17], one has αG(V5) = 5

6
for G = Aut(V5),

where Aut(V5) ∼= PGL2(C), see, for example, [50, Proposition 7.1.10]. Thus, the smooth
Fano threefold V5 is K-polystable by Theorem 1.4.7.

Let us present K-stable smooth Fano threefolds in each of the remaining deformation
families �1.11, �1.12, �1.13, �1.14.

Example 3.4.2. Let V1 be a smooth sextic hypersurface in P(1, 1, 1, 2, 3) that is given by

w2 = t3 + x6 + y6 + z6,

where x, y, z are coordinates of weight 1, t and w are coordinates of weights 2 and 3,
respectively. Then V1 is a smooth Fano threefold �1.11, the group Aut(V1) is finite [42],
and αG(V1) ⩾ 1 by [44, Theorem 1.18], so that V1 is K-stable by Theorem 1.4.7.

Example 3.4.3. Let V2 be the quartic hypersurface in P(1, 1, 1, 1, 2) given by

w2 = t3y + 6txyz + tz3 + 2x4 + y3z,

where x, y, z and t are coordinates of weight one, and w is a coordinate of weight two.
Then V2 is a smooth Fano threefold�1.12, and it follows from [143] that Aut(V2) contains
a finite subgroup G such that G ∼= µ2 ×PSL2(F7) and G acts on V2 without fixed points.
Using Theorem 1.4.11, we see that αG(V2) ⩾ 1. Then V2 is K-stable by Theorem 1.4.7,
since Aut(V2) is a finite group [42].

Example 3.4.4. Let V3 be the Klein smooth cubic threefold in P4 that is given by

x0x
2
1 + x1x

2
2 + x2x

2
3 + x3x

2
4 + x4x

2
0 = 0,

and let G = Aut(V3). It follows from [1] that G ∼= PSL2(F11), and the cubic V3 does not
contain G-invariant hyperplane sections. Thus, αG(V3) ⩾ 1 by Corollary 1.4.13, so that
the cubic threefold V3 is K-stable by Theorem 1.4.7.

Example 3.4.5 ([157, § 6.2]). Let V4 be a smooth complete intersection of two quadrics
in P5. Then V4 is a Fano threefold in the family �1.14, and G = Aut(V4) is finite [42].
It follows from [178, Proposition 2.1] that

V4 ∼=
{
x20 + x21 + x22 + x23 + x24 + x25 = λ0x

2
0 + λ1x

2
1 + λ2x

2
2 + λ3x

2
3 + λ4x

2
4 + λ5x

2
5 = 0

}
⊂ P5

for some (pairwise distinct) numbers λ0, . . . , λ5, where x0, . . . , x5 are coordinates on P5.
If λi = ωi for a primitive sixth root of unity ω, then αG(V4) ⩾ 1 by Corollary 1.4.12,
so that V4 is K-stable by Theorem 1.4.7.

Thus, using Theorem 1.1.12, we conclude that general smooth Fano threefolds in
the families�1.11, �1.12, �1.13, �1.14 are K-stable. In fact, all smooth Fano threefolds
in these families are K-polystable [7, 64, 190, 138, 2].
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3.5. K-stable cyclic covers. Some smooth Fano threefolds are cyclic covers of other
smooth Fano threefolds. Therefore, it is tempting to apply Proposition 1.5.9 to these
threefolds to prove their K-stability. Let us present few examples that show how to apply
Proposition 1.5.9 or its Corollary 1.5.10 to smooth Fano threefolds.

Example 3.5.1 ([7, Theorem 3.2]). Let X be any smooth Fano threefold �1.1. Then
X is a smooth sextic hypersurface in P(1, 1, 1, 1, 3), so that X is a double cover of P3

branched over a smooth sextic surface. Then X is K-stable by Corollary 1.5.10.

Example 3.5.2 ([64, Theorem 1.1]). Let X be a smooth Fano threefold �1.2. Then X
can be obtained as a complete intersection in P(1, 1, 1, 1, 1, 2) given by{

λw + x2 + y2 + z2 + t2 + u2 = 0,

w2 = f(x, y, z, t, u),

for some λ ∈ C and a quartic polynomial f , where x, y, z, t, u are coordinates of weight 1,
and w is a coordinate of weight 2. If λ ̸= 0, then X is isomorphic to a smooth quartic
threefold in P4 that is given by (x2 + y2 + z2 + t2 + u2)2 = λ2f(x, y, z, t, u). If λ = 0,
then X is a double cover of the quadric in P4 given by x2 + y2 + z2 + t2 + u2 = 0, which
is branched over the smooth surface cut out on the quadric by f(x, y, z, t, u) = 0, where
we consider x, y, z, t, u as coordinate on P4. Applying Corollary 1.5.10, we see that
the threefold X is K-stable if λ = 0. Now, using Theorem 1.1.12, we deduce that general
quartic threefolds in P4 are also K-stable.

Example 3.5.3 ([64, Theorem 1.1]). Let X be the complete intersection{
x2 + y2 + z2 + t2 + u2 = 0, w3 = f(x, y, z, t, u)

}
⊂ P5,

where f(x, y, z, t, u) is a cubic polynomial, and x, y, z, t, u, w are coordinates on P5.
Then X is a smooth Fano threefold �1.3, which is a triple cover of the quadric threefold
in P4 branched over a smooth anticanonical surface. Applying Corollary 1.5.10, we see
that the threefold X is K-stable. Thus, general Fano threefolds �1.3 are also K-stable.

Example 3.5.4. Let X be a smooth Fano threefold �1.4. Suppose that

X =

{
5∑
i=0

x2i = 0,
5∑
i=0

λix
2
i = 0, x26 = f(x0, x1, x2, x3, x4, x5)

}
⊂ P6

for some pairwise different numbers λ1, . . . , λ5 and some quadratic polynomial f that does
not depend on x6, where x0, . . . , x6 are coordinates on P6. The projection to the first 6
coordinates gives a double cover ϖ : X → Y , where Y is the smooth complete intersection
of two quadrics in P4 described in Example 3.4.5. Since Y is K-stable by Example 3.4.5,
and the ramification divisor of ϖ is a smooth surface in |−KY |, we see that X is K-stable
by Corollary 1.5.10, so that a general Fano threefold �1.4 is K-stable.

Example 3.5.5 ([64, Theorem 1.1]). Let X be a smooth Fano threefold �1.5. Then X
can be obtained as an intersection of the cone V ⊂ P10 over the Grassmannian Gr(2, 5) in
its Plücker embedding in P9 with a quadric hypersurface and a linear subspace Λ of codi-
mension 3. If Λ does not contain the vertex of the cone Y , the threefold X is isomorphic
to an intersection of the Grassmannian Gr(2, 5) ⊂ P9 with a quadric hypersurface and
a linear subspace of codimension 2. If Λ contains the vertex of the cone, then X admits
a double cover of the unique smooth Fano threefold �1.15 that is branched in a smooth
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anticanonical surface. In this (special) case, X is K-stable by Corollary 1.5.10, because
the unique smooth Fano threefold �1.15 is K-polystable (see Example 3.4.1). Therefore,
a general Fano threefold in the family �1.5 is K-stable by Theorem 1.1.12.

Example 3.5.6 ([2, Corollary 4.9(5)], cf. Example 3.4.2). Let X be any smooth Fano
threefold �1.11. Then X is a sextic hypersurface in P(1, 1, 1, 2, 3). Let Y = P(1, 1, 1, 2).
There is a double cover ϖ : X → Y such that ϖ is branched over a smooth surface B such
that B ∼Q

6
5
(−KY ). Then δ(Y ) = 4

5
by [17, Corollary 7.7]. Since B does not contain

the only singular point of the threefold Y , the log pair (Y,B) is purely log terminal. Thus,
the only prime divisor F over Y such that AY,B(F ) = 0 is B. But SY (B) = 5

12
, which

implies that AY (B)
SY (B)

= 12
5
> 4

5
. Then X is K-stable by Proposition 1.5.9.

Example 3.5.7 ([64, Example 4.2], cf. Example 3.4.3). LetX be a smooth Fano threefold
in the family �1.12. Then X is a double cover of P3 branched over a smooth quartic
surface, so that the threefold X is K-stable by Corollary 1.5.10.

Example 3.5.8 ([64, Example 4.4]). Let P2×P2 ↪→ P8 be the Serge embedding, let V be
the projective cone in P9 over its image, let H be a hyperplane in P9, let Q be a quadric
in P9 such that X = V ∩ H ∩ Q is a smooth threefold. Then X is a Fano threefold
in the family �2.6, and every smooth Fano threefold in this family can be obtained in
this way. If Sing(V ) ̸∈ H, then X is isomorphic to a divisor in P2 × P2 of degree (2, 2).
If Sing(V ) ∈ H, then there is a double cover ϖ : X → W such that W is a smooth
divisor in P2 × P2 of degree (1, 1), and ϖ is branched over a surface in | −KW |. In this
(special) case, X is K-stable by Corollary 1.5.10, sinceW is K-polystable (see Section 3.2).
By Theorem 1.1.12, general smooth Fano threefolds �2.6 are K-stable.

Example 3.5.9 ([64, Example 4.4]). Let X be a smooth threefold in the family �3.1.
Then X is a double cover of P1×P1×P1 branched over a smooth surface of degree (2, 2, 2).
By Corollary 1.5.10, the threefold X is K-stable, because P1 × P1 × P1 is K-polystable.

3.6. Threefolds with infinite automorphism groups. Recall the following result:

Theorem 3.6.1 ([42, Theorem 1.2]). Every smooth Fano threefold that has an infinite
automorphism group is contained in one of the following 63 deformation families:

�1.10, �1.15, �1.16, �1.17, �2.20, �2.21, �2.22, �2.24, �2.26, �2.27,
� 2.28, �2.29, �2.30, �2.31, �2.32, �2.33, �2.34, �2.35, �2.36, �3.5,

�3.8, �3.9, �3.10, �3.12, �3.13, �3.14, �3.15, �3.16, �3.17, �3.18, �3.19,
�3.20, �3.21, �3.22, �3.23, �3.24, �3.25, �3.26, �3.27, �3.28, �3.29,
�3.30, �3.31, �4.2, �4.3, �4.4, �4.5, �4.6, �4.7, �4.8, �4.9, �4.10,
�4.11, �4.12, �4.13, �5.1, �5.2, �5.3, �6.1, �7.1, �8.1, �9.1, �10.1.

Each smooth threefold in the following 53 families has an infinite automorphism group:

�1.15, �1.16, �1.17, �2.26, �2.27, � 2.28, �2.29, �2.30, �2.31, �2.32,
�2.33, �2.34, �2.35, �2.36, �3.9, �3.13, �3.14, �3.15, �3.16, �3.17,
�3.18, �3.19, �3.20, �3.21, �3.22, �3.23, �3.24, �3.25, �3.26, �3.27,

�3.28, �3.29, �3.30, �3.31, �4.2, �4.3, �4.4, �4.5, �4.6, �4.7, �4.8, �4.9,
�4.10, �4.11, �4.12, �5.1, �5.2, �5.3, �6.1, �7.1, �8.1, �9.1, �10.1.

Each of the following 10 deformation families has at least one smooth member that has
an infinite automorphism group: �1.10, �2.20, �2.21, �2.22, �2.24, �3.5, �3.8,
�3.10, �3.12, �4.13, while their general members have finite automorphism groups.
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It follows from [42] that every smooth Fano threefold in the following 22 deformation
families has a non-reductive automorphism group: � 2.28, �2.30, �2.31, �2.33, �2.35,
�2.36, �3.16, �3.18, �3.21, �3.22, �3.23, �3.24, �3.26, �3.28, �3.29, �3.30, �3.31,
�4.8, �4.9, �4.10, �4.11, �4.12. Thus, smooth Fano threefolds in these families are
not K-polystable by Theorem 1.1.4. We will see in Section 3.7 that they are K-unstable.
We know from Sections 3.1, 3.2, 3.3 and Example 3.4.1 that smooth Fano threefolds
�1.15, �1.16, �1.17, �2.32, �2.34, �2.29, �3.19, �3.20, �3.25, �3.27, �4.4, �4.7,
�5.3, �6.1, �7.1, �8.1, �9.1, �10.1 are K-polystable. We know from Section 3.3 that
both smooth Fano threefolds �4.5 and �5.2 are K-unstable. For the remaining smooth
Fano threefolds that have infinite automorphism groups, Calabi Problem is solved in
Sections 3.7, 4.2, 4.4, 4.6, 4.7, 5.8, 5.9, 5.10, 5.14, 5.16, 5.17, 5.19, 5.20, 5.21, 5.22, 5.23.
We present a summary of these results in the table below.

Family Aut0(X) K-polystable K-semistable References

�1.10
Ga No Yes [52, Example 1.4]

Gm Yes Yes Example 4.1.12

PGL2(C) Yes Yes Example 4.1.12

�2.20 Gm Yes Yes Section 5.8

�2.21
Ga No Yes Remark 5.9.4

Gm Yes Yes Section 5.9

PGL2(C) Yes Yes Lemma 4.2.2

�2.22 Gm Yes Yes Section 4.4

�2.24
Gm No Yes Corollary 4.7.7

G2
m Yes Yes Lemma 4.7.6

�2.26
Ga ⋊Gm No No Lemma 5.10.1

Gm No Yes Corollary 5.10.3

�2.27 PGL2(C) Yes Yes Lemma 4.2.4

�3.5 Gm Yes Yes Section 5.14

�3.8 Gm Yes Yes Section 5.16

�3.9 Gm Yes Yes Section 4.6

�3.10
Gm Yes/No Yes Lemma 5.17.4, Corollary 5.17.7

G2
m Yes Yes Sections 3.3, Lemma 5.17.3

�3.12 Gm Yes Yes Section 5.18

�3.13
Ga No Yes Lemma 5.19.8

Gm Yes Yes Section 5.19

PGL2(C) Yes Yes Example 1.6.17, Lemma 4.2.5

�3.14 Gm No No Section 3.7

�3.15 Gm Yes Yes Section 5.20

�3.17 PGL2(C) Yes Yes Lemma 4.2.6

�4.2 Gm Yes Yes Section 4.6

�4.3 Gm Yes Yes Section 5.21

�4.6 PGL2(C) Yes Yes Lemma 4.2.1

�4.13 Gm Yes Yes Section 5.22

�5.1 Gm Yes Yes Section 5.23
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3.7. Divisorially unstable threefolds. Let X be an arbitrary smooth Fano threefold.
By [88, Theorem 10.1], the threefold X is divisorially unstable if and only if X is contained
in one of the following 26 deformation families:

�2.23, �2.28, �2.30, �2.31, �2.33, �2.35, �2.36, �3.14,
�3.16, �3.18, �3.21, �3.22, �3.23, �3.24, �3.26, �3.28, �3.29,
�3.30, �3.31, �4.5, �4.8, �4.9, �4.10, �4.11, �4.12, �5.2.

Recall from Theorem 1.2.2 that X is K-unstable if it is divisorially unstable.
In the proof of Main Theorem, we will often use the following relevant result:

Theorem 3.7.1 ([88, Theorem 10.1]). Let X be any smooth Fano threefold that is not
contained in the following 41 deformation families:

�1.17, �2.23, �2.26, �2.28, �2.30, �2.31, �2.33, �2.34, �2.35, �2.36,
�3.9, �3.14, �3.16, �3.18, �3.19, �3.21, �3.22, �3.23, �3.24, �3.25,
�3.26, �3.28, �3.29, �3.30, �3.31, �4.2, �4.4, �4.5, �4.7, �4.8, �4.9,
�4.10, �4.11, �4.12, �5.2, �5.3, �6.1, �7.1, �8.1, �9.1, �10.1.

Then SX(E) < 1 for every prime Weil divisor E ⊂ X, i.e. X is divisorially stable.

In the remaining part of this section, let us show that all smooth Fano threefolds in
the 26 deformation families listed above are divisorially unstable. To do this, it is enough
to present an irreducible surface S ⊂ X such that β(S) < 0. As in Section 1, we let

τ(S) = sup
{
u ∈ R

∣∣ the divisor −KX − uS is pseudo-effective
}
.

For every u ∈ [0, τ(S)], we denote by P (−KX − uS) and N(−KX − uS) the positive and
the negative parts of the Zariski decomposition of the divisor −KX − uS, respectively.

Lemma 3.7.2. Suppose that X is contained in one of the following 13 families: �2.33,
�2.35, �2.36, �3.26, �3.28, �3.29, �3.30, �3.31, �4.9, �4.10, �4.11, �4.12, �5.2.
Then X is divisorially unstable.

Proof. From Section 3.3, we know that the smooth Fano threefold X is toric, so that
the required assertion follows from Theorem 1.2.4. □

Example 3.7.3 (cf. Section 3.1). Let X = P1 × F1, let s be the (−1)-curve in F1, let f
be a fiber of the projection F1 → P1, and let S and F be the preimages of these curves
in X, respectively. Then −KX ∼ 2S + 3F + 2R, where R is a fiber of the projection to
the first factor X → P1. This implies that τ(S) = 2, and the divisor −KX − uS is nef for
every u ∈ [0, 2], which gives

β(S) = 1− 1

−K3
X

∫ 2

0

(
−KX − uS

)3
= du = 1− 1

48

∫ 2

0

6(2− u)(u+ 4)du = −1

6
< 0,

so that X is divisorially unstable (cf. Lemma 2.3).

To deal with the families �2.23, �2.28 and �2.30, we need the following lemma.

Lemma 3.7.4 ([88, Lemma 9.9]). Let Y be a smooth Fano threefold such that −KY ∼ rH
for an ample divisor H ∈ Pic(Y ) and an integer r ⩾ 2, let S1 and S2 be two irreducible
surfaces in Y such that S1 ∼ d1H and D2 ∼ d2H for some positive integers d1 ⩽ d2 < r.
Suppose, in addition, that the scheme-theoretic intersection C = S1∩S2 is a smooth curve.
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Let π : X → Y be the blow up of the curve C, and let S̃1 be the proper transform on X of
the surface S1. Suppose that X is a Fano threefold. Then

β
(
S̃1

)
=

2d31d2 + 3d21d
2
2 − 8d21d2r + 4d1r

3 − r4

4d1(d21d2 + d1d22 − 3d1d2r + r3)
.

Proof. Let E be the π-exceptional surface. Then −KX − uS̃1 ∼R ( r
d1

− u)S̃1 + ( r
d1

− 1)E,

which implies that τ(S̃1) =
r
d1
. We have (−KX−uS̃1)|S̃1

∼R (r−d2−u(d1−d2))π∗(H)|S̃1

and (−KX−uS̃1)
∣∣
E
∼R (r−d2+u(d2−d1))π∗(H)|E+(1−u)S̃2|E, where S̃2 is the proper

transform on X of the surface S2. Note that S̃2|E ∼ S̃1|E + (d2 − d1)π
∗(H)|E, so that

the divisor S̃2|E is nef. Therefore, we conclude that −KX − uS̃1 is also nef for u ∈ [0, 1].

If 1 ⩽ u ⩽ r
d1
, then P (−KX − uS̃1) = (r − ud1)π

∗(H) and N(−KX − uS̃1) = (u− 1)E.

One has (π∗(H))2 · E = 0 and (π∗(H)) · E2 = −H · C = −d1d2H3. Note also that

NC/Y
∼= OC

(
d1H|C

)
⊕OC

(
d2H|E

)
,

so that E3 = −c1(NC/Y ) = −(d1 + d2)H ·C = −d1d2(d1 + d2)H
3. Thus, if u ∈ [0, 1], then

vol
(
−KX − uS̃1

)
=
(
(r − ud1)

3 − 3d1d2(r − ud1)(1− u)2 + d1d2(d1 + d2)(1− u)3
)
H3.

Likewise, if 1 ⩽ u ⩽ r
d1
, then vol(−KX − uS̃1) = (r − ud1)

3H3. Now, integrating, we get

the required formula for β(S̃1). □

Lemma 3.7.5. Suppose that X is contained in one of the families �2.23, �2.28, �2.30.
Then X is divisorially unstable.

Proof. A smooth Fano threefold �2.23 is a blow up of a smooth quadric in P3 along its
section by a hyperplane and another quadric. Likewise, each smooth Fano threefold�2.28
can be obtained by blowing up P3 along an intersection of a plane and a cubic surface.
Finally, a smooth Fano threefold �2.30 is a blow up of P3 along an intersection of a plane
and a quadric surface. Thus, we can apply Lemma 3.7.4 with

• r = 3, d1 = 1, d2 = 2 if X is contained in the family �2.23,
• r = 4, d1 = 1, d2 = 3 if X is contained in the family �2.28,
• r = 4, d1 = 1, d2 = 2 if X is contained in the family �2.30.

This gives a surface S ⊂ X with β(S) = − 1
12
, β(S) = − 63

160
, β(S) = − 6

23
, respectively. □

In the remaining part of the section, we will deal with smooth Fano threefolds in
the families �2.31, �3.14, �3.16, �3.18, �3.21, �3.22, �3.23, �3.24, �4.5, �4.8.

Lemma 3.7.6. Suppose X is a smooth Fano threefold in the deformation family �2.31.
Then X is divisorially unstable.

Proof. Let Q be a smooth quadric hypersurface in P4, and let L be a line in the quadric Q.
Then we have the following commutative diagram:

X
π

��

ϕ

  
Q χ

// P2

where π is the blow up of the line L, the map χ is a projection from L, and ϕ is a P1-bundle.
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Let E be the π-exceptional surface, let HQ = π∗(OP4(1)|Q), and let HP2 = ϕ∗(OP2(1)).
Then −KX ∼ 3HP2 + 2E, so that τ(E) = 2, and −KX − uE is nef for u ∈ [0, 2], so that

β(E) = 1− 1

46

∫ 2

0

(−KX − uE)3du = 1− 1

46

∫ 2

0

(2− u)(23− u2 + 4u)du = − 2

23
< 0.

Therefore, X is divisorially unstable. □

Lemma 3.7.7. Suppose X is a smooth Fano threefold in the deformation family �3.14.
Then X is divisorially unstable.

Proof. Let C be a smooth plane cubic curve in P3, let Π be the plane in P3 that contains C ,
let P be a point in P3 such that P ̸∈ Π, let ϕ : V7 → P3 be the blow up of this point, and
let C be the proper transform on V7 of the cubic curve C . Then the threefold X can be
obtained as a blow up π : X → V7 along the curve C.

Let EC be the π-exceptional surface, and let EP , HC , F be the proper transforms on
the threefold X of the ϕ-exceptional surface, the plane Π, and the cubic cone in P3 over
the curve C with vertex P , respectively. We have the following commutative diagram:

P2 P
(
OP2 ⊕OP2(2)

)
oo // P(1, 1, 1, 2)

V7

ϕ
��

OO

X
πoo

ψ

OO

φ
��

σ // Ŷ

OO

��
P3 P̃3

ϖ
oo

ς
// Y

where ϖ is the blow up of the curve C , φ is the contraction of the surface EP , σ and
ψ are the contractions of the surfaces HC and F , respectively, ς is the contraction of
the surface φ(HC), Y is a Fano threefold that has a singular point of type 1

2
(1, 1, 1),

the morphism Ŷ → Y is a blow up of a smooth point of the threefold Y , both V7 → P2

and P(OP2 ⊕OP2(2)) → P2 are P1-bundles, the morphism P(OP2 ⊕OP2(2)) → P(1, 1, 1, 2)
is the contraction of the surface ψ(HC), and Ŷ → P(1, 1, 1, 2) is the contraction of σ(F ).
Observe that −KX ∼ 2HC + 2HP + EC , where HP is the proper transform on X of

a general plane in P3 containing P . Then τ(HC) = 2. For u ∈ [0, 2], we get

P
(
−KX − uHC

)
=

{
(2− u)HC + 2HP + EC if u ∈ [0, 1],

(2− u)
(
HC + EC

)
+ 2HP if u ∈ [1, 2],

and

N
(
−KX − uHC

)
=

{
0 if u ∈ [0, 1],

(u− 1)EC if u ∈ [1, 2].

Hence, we obtain

β(HC) = 1− 1

32

∫ 1

0

(
(2−u)HC+2HP+EC

)3
du− 1

32

∫ 2

1

(
(2−u)(HC+EC)+2HP

)3
du =

= 1− 1

32

∫ 1

0

(
32− 3u− 6u2 − 4u3

)
du− 1

32

∫ 2

1

(
56− 48u+ 12u2 − u3

)
du = − 15

128
< 0.

Therefore, the threefold X is divisorially unstable. □
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Lemma 3.7.8. Suppose X is a smooth Fano threefold in the deformation family �3.16.
Then X is divisorially unstable.

Proof. Let C be a twisted cubic curve in the space P3, let P be a point in the curve C ,
let ϕ : V7 → P3 be the blow up of this point, and let C be the proper transform of the cubic
curve C on the threefold V7. Then X can be obtained as a blow up π : X → V7 along
the curve C. One can see that X fits into the commutative diagram

W
p1

xx

p2

&&
P2 P2

X
φ

&&

π

xx

ψ

OO

V7

ϕ
&&

OO

P̃3

ϖ
xx

OO

P3

where W is a smooth divisor of degree (1, 1) in P2 × P2, both p1 and p2 are P1-bundles,

the morphism ϖ is the blow up of P3 along C , the morphism P̃3 → P2 is the P1-bundle
whose fibers are proper transforms of the secant lines in P3 of the twisted cubic curve C ,
the morphism V7 → P2 is the P1-bundle whose fibers are proper transforms of the lines in
the space P3 that pass through P , and φ is the blow up of the fiber of ϖ over P .

We denote by EC the π-exceptional surface, we denote by EP the φ-exceptional surface,
and we denote by F the ψ-exceptional surface. Then EC ∼= P1×P1, EP ∼= F1 and F ∼= F2,
since ϕ ◦ π(F ) is the unique quadric cone in P3 with vertex P that contains the curve C .
Let us compute β(EP ). First, we observe that τ(EP ) = 2, since −KX ∼ 2EP + 2F +EC .
Denote by s the (−1)-curve in EP , denote by f a fiber of the projection EP → P1, and

denote by ℓ the proper transform on X of a ruling of the cone ϕ ◦π(F ). Then s = EC |EP
,

and the curves s, f and ℓ generate the Mori cone NE(X). Moreover, one has(
−KX − uEP

)
· s = 1,(

−KX − uEP
)
· f = 1 + u,(

−KX − uEP
)
· ℓ = 1− u,

so that −KX−uEP is nef for u ∈ [0, 1]. If u ∈ [1, 2], then N(−KX−uEP ) = (u−1)F and

P
(
−KX − uEP

)
∼R (ϕ ◦ π)∗

(
OP3(6− 2u)

)
− (4− u)EP − (2− u)EC .

Therefore, we see that

β(D) = 1− 1

34

∫ 1

0

(
−KX − uEP

)3
du− 1

34

∫ 2

1

(
−KX − uEP + (1− u)F

)3
du =

= 1− 1

34

∫ 1

0

(
34− 9u− 6u2 − u3

)
du− 1

34

∫ 2

1

(
48− 36u+ 6u2

)
du = − 5

136
< 0,

so that X is divisorially unstable. □
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Lemma 3.7.9. Suppose X is a smooth Fano threefold in the deformation family �3.18.
Then X is divisorially unstable.

Proof. The Fano threefold X can be obtained as a blow up π : X → P3 along a disjoint
union of a smooth conic C and a line L. There is a commutative diagram

Q̃

yy &&
Q P1

X

π

��

ϕ

''

θ

xx

ψ

OO

V

φ
&&

η

OO

Y

ϑ
xx

OO

P3

where ϑ is the blow up of the line L, the morphism φ is the blow up of the conic C,
the morphism θ and ϕ are the blow ups of the proper transforms of the curves L and C,
respectively, Q is a smooth quadric in P4, the morphism η is a blow up of a point in Q,

the morphism Q̃ → Q is the blow up of a conic (the proper transform of the line L),

the morphism Y → P1 is a P2-bundle, the morphism Q̃ → P1 is a fibration into quadric
surfaces, and ψ is the contraction of the proper transform of the plane in P3 containing C.

Let EC and EL be the π-exceptional surfaces that are mapped to C and L, respectively,
let HC be the proper transform on the threefold X of the plane in P3 that contains C,
and let HL be the proper transform on X of a general plane in P3 that passes through L.
Then −KX ∼ 3HC + 2EC +HL, which implies that τ(HC) = 3. Let us compute β(HC).

First, we observe that HC
∼= F1. Denote by s the unique (−1)-curve in the surface HC ,

denote by f and ℓ fibers of the natural projections HC → P1 and EC → C, respectively.
Then the curves s, f and ℓ generate the Mori cone NE(X), and the corresponding extremal
contractions are ϕ, ψ and θ, respectively. Note also that HC |HC

∼ −s− f and HC · ℓ = 1.
Therefore, for u ∈ [0, 3], we have (−KX − uHC) · s = 1, (−KX − uHC) · f = 1 + u and
(−KX − uHC) · ℓ = 1 − u, so that −KX − uHC is nef for u ∈ [0, 1]. If u ∈ [1, 3], then
N(−KX − uEP ) = (u− 1)EC , so that P (−KX −uHC) ∼R (4−u)π∗(OP3(4))−EL. Then

β(HC) = 1− 1

36

∫ 1

0

(
36−9u−6u2−u3

)
du− 1

36

∫ 3

1

(
54−45u+12u2−u3

)
du = − 7

48
< 0,

so that X is divisorially unstable. □

Lemma 3.7.10. Suppose X is a smooth Fano threefold in the deformation family �3.21.
Then X is divisorially unstable.

Proof. Note that there is a blow up π : X → P1×P2 of a smooth curve C of degree (2, 1).
Let S be the proper transform on X of the surface in P1 × P2 of degree (0, 1) that passes
through the curve C, let ℓ1 and ℓ2 be the rulings of the surface S ∼= P1 × P1 such that
the curves π(ℓ1) and π(ℓ2) are curves in P1 × P2 of degree (1, 0) and (0, 1), respectively,
let E be the π-exceptional surface, and let ℓ3 be a fiber of the natural projection E → C.
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Then S|S ∼ −ℓ1−ℓ2, the curves ℓ1, ℓ2, ℓ3 generate the Mori cone NE(X), and the extremal
rays R⩾0[ℓ1] and R⩾0[ℓ2] give birational contractions X → U1 and X → U2, respectively.

It follows from the proof of [43, Lemma 8.22] that there is a commutative diagram

P1 × P2

vv ((P1 P2

X

((vv

π

OO

U1

((

OO

U2

vv

OO

V

where the morphism U1 → P1 is a quadric bundle, the morphism U2 → P2 is a P1-bundle,
the map U1 99K U2 is a flop, and V is a Fano threefold �1.15 with one isolated ordinary
double singularity. For details, we refer the reader to the case (2.3.2) in [199, Theorem 2.3].

We have τ(S) = 3, since −KX ∼ 3S+2E+(pr1 ◦π)∗(OP1(2)), where pr1 : P1×P2 → P1

is the projection to the first factor. If u ∈ [1, 3], then P (−KX − uS) = (u − 1)E and
P (−KX −uS) ∼R (3−u)(pr2 ◦π)∗(OP2(1))+ (pr1 ◦π)∗(OP1(2)), where pr2 : P1×P2 → P2

is the projection to the second factor. Integrating, we get β(S) = −17
76
< 0. □

Lemma 3.7.11. Suppose X is a smooth Fano threefold in the deformation family �3.22.
Then X is divisorially unstable.

Proof. Let pr1 : P1 × P2 → P1 and pr2 : P1 × P2 → P2 be the projections to the first and
the second factors, respectively, let H1 be a fiber of the map pr1, let H2 = pr∗2(OP2(1)),
and let C be a conic in H1

∼= P2. Then there is a blow up ψ : X → P1 × P2 along C.

Let EC be the ψ-exceptional surface, let H̃1 be the proper transform of the surfaceH1 on

the threefold X, let F be the surface in |H2| that contains C, and let F̃ be the proper
transform of this surface on X. We have the following commutative diagram:

P1 × P2

pr1

vv

pr2

**P1 P2

X
ϕ

**

π

vv

ψ

OO

Y

φ
((

η

OO

P
(
OP2 ⊕OP2(2)

)
ϖ

tt

σ

OO

P(1, 1, 1, 2)
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where π and ϕ are the contraction of the surfaces H̃1
∼= P2 and F̃ ∼= P1×P1, respectively,

the morphisms ϖ and φ are the contractions of the surfaces ϕ(H̃1) and π(F̃ ), respectively,
the morphism σ is a P1-bundles, and η is a fibration into del Pezzo surfaces such that all

its fibers except π(F̃ ) are isomorphic to P2, while π(F̃ ) ∼= P(1, 1, 4). Note that the Mori
cone NE(X) is generated by the extremal rays contracted by π, ϕ and ψ.

Let us compute β(H̃1). Take u ∈ R⩾0. Then

−KX − uH̃1 ∼R (2− u)H̃1 +
3

2
F̃ +

5

2
EC ∼R (2− u)H̃1 + EC + ψ∗(3H2

)
,

so that −KX − uH̃1 is pseudo-effective ⇐⇒ u ⩽ 2. Moreover, if u ∈ [0, 2], we have

P
(
−KX − uH̃1

)
=

{
(2− u)H̃1 + EC + ψ∗(3H2

)
if u ∈ [0, 1],

(2− u)
(
H̃1 + EC

)
+ ψ∗(3H2

)
if u ∈ [1, 2],

and

N
(
−KX − uH̃1

)
=

{
0 if u ∈ [0, 1],

(u− 1)EC if u ∈ [1, 2].

Hence, we see that β(HC) is equal to

1− 1

40

∫ 1

0

(
(2−u)H̃1+EC +ψ∗(3H2)

)3
du− 1

40

∫ 2

1

(
(2−u)(H̃1+EC)+ψ

∗(3H2)
)3
du =

= 1− 1

40

∫ 1

0

(
40− 3u− 6u2 − 4u3

)
du− 1

40

∫ 2

1

(
54− 27u

)
du = − 9

40
< 0.

Therefore, the threefold X is divisorially unstable. □

Lemma 3.7.12. Suppose X is a smooth Fano threefold in the deformation family �3.23.
Then X is divisorially unstable.

Proof. Let C be a smooth conic in the space P3, let P be an arbitrary point in the conic C ,
let ϕ : V7 → P3 be the blow up of the point P , and let C be the proper transform on
the threefold V7 of the conic C . Then X can be obtained as a blow up π : X → V7 along
the curve C. One can see that X fits into the commutative diagram

Q̂

xx &&P2 Q

X
φ

&&

π

xx

ψ

OO

V7

ϕ
&&

OO

P̃3

ϖ
xxxx

OO

P3

whereQ is a smooth quadric threefold in P4, the morphismϖ is the blow up of the conic C ,

the morphism P̃3 → Q is the contraction of the proper transform of the plane in P3 that
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contains C to a point, φ is a blow up of the fiber of the morphism ϖ over the point P ,

the morphism Q̂→ Q is the blow up of a line on Q that passes through the latter point,

and Q̂→ P2 is a P1-bundle.
Denote by EC the π-exceptional surface, denote by EP the φ-exceptional surface, and

denote by HC the proper transform on X of the plane in P3 that contains C. Then

−KX ∼ π∗(OP3(4)
)
− 2EP − EC ∼ 4HC + 2EP + 3EC ,

since HC ∼ (ϕ ◦ π)∗(OP3(1))− EP − EC . In particular, we have τ(HC) = 4.
Observe thatHC

∼= F1. Let s be the (−1)-curve inHC , and let f be a fiber of the natural
projection HC → P1. Denote by ℓ a fiber of the projection EC → C that is induced by π.
Then the curves s, f , ℓ generate the cone NE(X), the contractions of the corresponding
extremal rays are φ, ψ, π, respectively, and the intersections of the curves s, f , ℓ with
the divisors HC , EP , EC , −KX are contained in following table:

HC EP EC −KX

s 0 −1 1 1

f −1 1 1 1

ℓ 1 0 −1 1

Let u ∈ [0, 4]. Since −KX − uHC ∼R (4− u)HC + 2EP + 3EC , we obtain

P
(
−KX − uHC

)
=


(4− u)HC + 2EP + 3EC if u ∈ [0, 1],

(4− u)
(
HC + EC

)
+ 2EP if u ∈ [1, 2],

(4− u)
(
HC + EC + EP

)
if u ∈ [2, 4],

and

N
(
−KX − uHC

)
=


0 if u ∈ [0, 1],

(u− 1)EC if u ∈ [1, 2],

(u− 1)HC + (u− 2)EP if u ∈ [2, 4].

Hence, we obtain

β(HC) = 1− 1

42

∫ 1

0

(
42−9u−6u2−u3

)
du− 1

42

∫ 2

1

(
56−36u+6u2

)
du− 1

42

∫ 4

2

(4−u)3du,

so that β(HC) = − 53
168

< 0. Therefore, the threefold X is divisorially unstable. □

Lemma 3.7.13. Suppose X is a smooth Fano threefold in the deformation family �3.24.
Then X is divisorially unstable.

Proof. Note that there is a blow up π : X → P1×P2 of a smooth curve C of degree (1, 1).
Let E be the π-exceptional surface, and let S be the proper transform on X of the surface
in P1×P2 of degree (0, 1) that contains C. Then, arguing as in the proof of Lemma 3.7.10,
we see that τ(S) = 3. Similarly, we see that

P
(
−KX − uS

)
=

{−KX − uS if u ∈ [0, 1],

−KX − uS − (u− 1)E if u ∈ [1, 3],
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and

N
(
−KX − uS

)
=

{
0 if u ∈ [0, 1],

(u− 1)E if u ∈ [1, 3].

Integrating, we get β(S) = −1
7
< 0. Therefore, we see that X is divisorially unstable. □

Lemma 3.7.14. Suppose X is a smooth Fano threefold in the deformation family �4.5.
Then X is divisorially unstable.

Proof. There is a birational morphism π : X → P1 × P2 such that π is a blow up along
a disjoint union of a smooth curve C of degree (2, 1) and a smooth curve L of degree (1, 0).
Denote by EC and EL the π-exceptional surfaces such that π(EC) = C and π(EL) = L.
We also let H1 = (pr1 ◦π)∗(OP1(1)) and H2 = (pr2 ◦π)∗(OP2(1)), where pr1 : P1×P2 → P1

and pr2 : P1 × P2 → P2 are projections to the first and the second factors, respectively.
Then −KX ∼ 2H1 + 3H2 − EC − EL.

Let S be the proper transform on X of the surface in P1 × P2 of degree (0, 1) that
contains C, and let HL be a general surface in the pencil |H2 −EL|. Then S ∼ H2 −EC ,
so that −KX ∼ 2S + EC +HL + 2H1, cf. [88, p. 577]. We have

P
(
−KX − uS

)
=

{−KX − uS if u ∈ [0, 1],

−KX − uS − (u− 1)E if u ∈ [1, 2],

and

N
(
−KX − uS

)
=

{
0 if u ∈ [0, 1],

(u− 1)E if u ∈ [1, 2].

Therefore, we see that

β(S) = 1− 1

32

∫ 1

0

(
32− 2u3 − 6u2 − 6u

)
du− 1

32

∫ 3

1

6(2− u)(4− u)du = − 5

64
< 0.

Therefore, we see that X is divisorially unstable. □

Lemma 3.7.15. Suppose X is a smooth Fano threefold in the deformation family �4.8.
Then X is divisorially unstable.

Proof. For i ∈ {1, 2, 3}, let pri : P1 × P1 × P1 → P1 be the projection to the i-th factor,
and let Hi be a fiber of this projection. Let C be a curve of degree (1, 1) in H1

∼= P1×P1.
Then there exists a blow up π : X → P1 × P1 × P1 along the curve C.

Let E be the exceptional surface of the birational morphism π, and let H̃1 be the proper

transform of the surface H1 on the threefold X. Then H̃1 ∼ π∗(H1)− E, so that

−KX ∼ π∗(2H1 + 2H2 + 2H3

)
− E ∼ 2H̃1 + E + π∗(2H2 + 2H3

)
.

Let us find β(H̃1). Take u ∈ R⩾0. Then −KX−uH̃1 ∼R (2−u)H̃1+E+π∗(2H2+2H3),

so that −KX − uH̃1 is pseudo-effective ⇐⇒ u ⩽ 2. Moreover, if u ∈ [0, 2], we have

P
(
−KX − uH̃1

)
=

{
(2− u)H̃1 + E + π∗(2H2 + 2H3

)
if u ∈ [0, 1],

(2− u)π∗(H1

)
+ π∗(2H2 + 2H3

)
if u ∈ [1, 2],

and

N
(
−KX − uH̃1

)
=

{
0 if u ∈ [0, 1],

(u− 1)EC if u ∈ [1, 2].

Integrating, we get β(HC) = −13
76
< 0, so that X is divisorially unstable. □

104



4. Proof of Main Theorem: special cases

4.1. Prime Fano threefolds. A smooth Fano variety is prime if its anticanonical divisor
generates the Picard group. Smooth prime Fano threefolds were classified by Iskovskikh
in [113, 114]. They form ten deformation families, which we denote by: �1.1,�1.2,�1.3,
�1.4, �1.5, �1.6, �1.7, �1.8, �1.9, �1.10. We will present (at least one) K-stable Fano
threefold in each family. Thus, a general smooth prime Fano threefold is K-stable by
Theorem 1.1.12. With the exception of family �1.9, this is already known [3].

Example 4.1.1. Let X be a smooth Fano threefold�1.1. Then X is a double cover of P3

branched along a smooth surface B ∼ OP3(6), so that X is K-stable by Corollary 1.5.10.
Alternatively, one has

α(X) ∈

{
5

6
,
43

50
,
13

15
,
33

38
,
7

8
,
8

9
,
9

10
,
11

12
,
13

14
,
15

16
,
17

18
,
19

20
,
21

22
,
29

30
, 1

}
by [36, Proposition 3.7], so that X is K-stable by Theorem 1.4.7.

Example 4.1.2. A smooth Fano threefold X in this family is

(1.2a) either a quartic threefold X ⊂ P4,
(1.2b) or a double cover of a smooth quadric threefold in P4 branched along a smooth

surface of degree 8.

In the latter case, the K-stability of the Fano threefold X follows from by Corollary 1.5.10.
In the former case, α(X) ⩾ 3

4
by [27, Theorem 1.3] and X is K-stable by Theorem 1.4.7.

In the case where X is a Fermat hypersurface, the K-stability of X is proved in [201, 157].

Example 4.1.3 ([157, 6.3]). Let X be the complete intersection{ 6∑
i=0

xi =
6∑
i=0

x2i =
6∑
i=0

x3i = 0
}
⊂ P6.

Then X is a smooth Fano threefold�1.3, and X admits a faithful action of the symmetric
group S7. By Corollary 1.4.12, αS7(X) ⩾ 1, and X is K-stable by Theorem 1.4.7.

Example 4.1.4 ([157, 6.1]). Let a0, · · · , a6 and b0, · · · , b6 be complex numbers such that
every 3× 3 minor of the matrix 1 1 1 1 1 1 1

a0 a1 a2 a3 a4 a5 a6
b0 b1 b2 b3 b4 b5 b6


is invertible (this holds generically). Let X be the complete intersection{ 6∑

i=0

x2i =
6∑
i=0

aix
2
i =

6∑
i=0

bix
2
i = 0

}
⊂ P6,

and let G = Aut(X). Then X is a smooth Fano threefold �1.4, the group G is finite [42],
and αG(X) ⩾ 1 by Corollary 1.4.12, so that X is K-stable by Theorem 1.4.7.

Example 4.1.5. Now, we give another argument for the K-stability of a Fano threefold
in the family �1.5b from the one outlined in Example 3.5.5. Let V5 be the smooth Fano
threefold �1.15. Then Aut(V5) ∼= PGL2(C). Fix a subgroup A5 ⊂ Aut(V5). It follows
from [50, Theorem 8.2.1] that there is a pencil of A5-invariant anticanonical surfaces,

105



whose general member is smooth. Let π : X → V5 be the double cover of V5 branched
over a general A5-invariant anticanonical surface B. Then X is a smooth Fano threefold
that belongs to the deformation family �1.5b. Moreover, the threefold X is endowed with
a faithful action of the group G = A5 × µ2 and αG(X) ⩾ 1. Indeed, assume this is not
the case, i.e. that αG(X) < 1. Applying Theorem 1.4.11 to X with µ = 1, we obtain
a contradiction. First, there can be noG-invariant surface as in Theorem 1.4.11(1) because
the Picard group of X is generated by −KX . Second, there are no G-fixed points on X,
because there are no A5-fixed points on V5 by [50, Theorem 7.3.5], and Theorem 1.4.11(2)
doesn’t hold. Last, we show that X does not contain smooth G-invariant rational curves
of anticanonical degree less than 16, so that Theorem 1.4.11(3) fails as well. Let C be
such a curve. Since G does not act faithfully on P1 and V5 does not have A5-fixed points,
the action of the subgroup A5 on C is faithful, and the action of the Galois involution of
the double cover π on C is trivial, so that C lies on the ramification divisor. Therefore
π(C) ⊂ B is an irreducible A5-invariant curve in V5 of degree less than 16. There is no
such curve by [50, Theorem 13.6.1] and [50, Corollary 8.1.9], so that αG(X) ⩾ 1, and X
is K-stable by Theorem 1.4.7.

Example 4.1.6. Let X be the smooth Fano threefold constructed in [175, Example 2.11].
Then X belongs to the family �1.6 and Aut(X) ∼= SL2(F8), which is a simple group [60].
Let G = Aut(X). Then αG(X) ⩾ 1 by Corollary 1.4.13. Therefore, we conclude that
the threefold X is K-stable by Theorem 1.4.7.

Example 4.1.7. Let X be the smooth Fano threefold constructed in [175, Example 2.9].
Then X belongs to family �1.7, and it admits a non-trivial action of G ∼= PSL2(F11).
Since G is simple, αG(X) ⩾ 1 by Corollary 1.4.13 (see also the proof of [48, Theorem A.5]).
Thus, the threefold X is K-stable by Theorem 1.4.7.

Example 4.1.8. Let Cλ be the quartic curve{
x4 + y4 + z4 + λ

(
x2y2 + y2z2 + z2x2

)
= 0
}
⊂ P2

where λ ∈ C\{−1,±2}. Then Cλ is smooth, and Aut(Cλ) contains a subgroup isomorphic
to S4. In fact, by [69, Theorem 6.5.2], Aut(Cλ) ∼= S4 when λ ̸= 0 and λ2 + 3λ + 18 ̸= 0
(and is strictly larger otherwise). The action of Aut(Cλ) on the curve Cλ is induced by
its linear action on the plane P2. Let G ∼= S3 be a subgroup in Aut(Cλ) that acts on P2

by permuting the coordinates x, y and z. Set

P1 = [1 : s : s], P2 = [s : 1 : s], P3 = [s : s : 1],

P4 = [1 : ω : ω2], P5 = [1 : ω2 : ω], P6 = [1 : 1 : 1],

where ω is a primitive cube root of unity, and s ∈ C such that (λ+ 2)s4 + 2λs2 + 1 = 0,
so that s ̸= 0, s ̸= 1 and s ̸= 1

2
. One can check that {P1, P2, P3} is a G-orbit of length

3 contained in Cλ, {P4, P5} fis a G-orbit of length 2 contained in Cλ, P6 ̸∈ Cλ, and P6

is the only G-invariant point in P2. Moreover, no three points among P1, P2, P3, P4,
P5 and P6 are collinear, and the points P1, P2, P3, P4, P5 and P6 are not contained in
a conic. Let π : S → P2 be the blow up of the points P1, P2, P3, P4, P5, P6. Then S is
a smooth cubic surface in P3. By construction, G acts on S, and its action is induced by
the linear action on P3. Let Γλ be the proper transform of Cλ on S; Γλ is a G-invariant
smooth non-hyperelliptic curve of genus 3 and degree 7 in P3. By [114, 6.1] (see also
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the construction in [16]), we have a G-equivariant Sarkisov link:

W
χ //

σ
��

V

ϕ
��

P3 Xλ

where σ is the blow up of Γλ, χ is the composition of five Atiyah flops, and ϕ contracts
the proper transform of S to a smooth curve ℓ with−KX · ℓ = 1, and Xλ is a smooth Fano
in the family � 1.8. As Xλ has no G-fixed points, we conjecture that αG(Xλ) ⩾ 3

4
, which

would imply thatXλ is K-stable. Unfortunately, we were unable to show that αG(Xλ) ⩾ 3
4
.

Nevertheless, we know from [3] that Xλ is K-stable.

Example 4.1.9. Let W = P(OP1 ⊕ OP1 ⊕ OP1(1) ⊕ OP1(1)), and let π : W → P1 be
the natural projection. Denote by H the tautological line bundle and by F a fiber of π.
Write t0, t1 for the coordinates on P1, so that |F | =< t0, t1 > and x, y, z, t be coordinates
on the fibre with x, y sections of H and and w, z sections of H − F . Let V be the divisor
in |2H + F | defined by{

t1x
2 + t2y

2 + t22xz + t21yw + t1(t
2
1 − 4t22)z

2 + t2(t
2
2 − 4t21)w

2 = 0
}

Denote by C the curve {z = w = 0} ⊂ V , and by ϕ : V → P1 the restriction of π to V .
Then V is (2.3.8) in [199]: V is a Picard rank 2 weak Fano threefold with anticanonical
degree (−KV )

3 = 16. Further, the anticanonical map of V is small, and C is the only
curve with trivial intersection −KV · C = 0. The curve C is a smooth rational curve
that is a bisection of ϕ and NC/V

∼= OP1(−1) ⊕ OP1(−1). The morphism ϕ is a quadric
fibration, so that V is a Mori fibre space, since Pic(V ) = Z[H|V ] ⊕ Z[F |V ]. Moreover, it
follows from [199] that there is a Sarkisov link

(4.1.10) V
χ //

ϕ

�� ψ ��

V̂

ψ̂��

ϕ̂

��
P1 X P1

where the anticanonical map ψ contracts C to an ordinary double point of X, χ is

an Atiyah flop in C, ψ̂ is a birational morphism, and ϕ̂ is a del Pezzo fibration of degree 4.

Note that the map ϕ̂ ◦ χ is given by |(H − F )|V |, all surfaces in this pencil are singular
along C, and its general surface is smooth away from this curve. Let S be the surface in
the pencil |(H − F )|V | that is cut out by w = λz, where λ is one of the 16 roots of

75759616λ16 − 303812608λ12 − 759031797λ8 − 303812608λ4 + 75759616 = 0.

Then S is singular along C, and it is also singular at the point in W with coordinates:

x = 16951220863415104831488,

y = −774931922427914414456832λ15 + 2876118937068128419971072λ11+

+ 8753709667519885555073664λ7 + 5089346293183564791988224λ3,

z = 107957452800λ12 + 498001195008λ8 − 5599436221125λ4 − 5780173209600,

t1 = 150338377728,

t2 = −300841435136λ14 + 1487659560960λ10 + 1673023786335λ6 − 262136950912λ2.
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Thus, the pencil |(H −F )|V | contains at least 16 surfaces that are singular away from C.

This implies that the group Aut(V ) is finite. Indeed, Aut(V ) ∼= Aut(V̂ ) ∼= Aut(X), and
the link (4.1.10) is Aut(V )-equivariant, which gives an exact sequence of groups

1 −→ Γ −→ Aut(V̂ )
ν−→ PGL2(C)

where ν is given by the induced Aut(V̂ )-action on P1, and Γ acts trivially on P1 in (4.1.10).

It follows that Γ is finite, since it acts faithfully on a general fiber of the fibration ϕ̂. Since
im(ν) permutes points in P1 that corresponds to the surfaces in |(H − F )|V | that are
singular away from C, we see that im(ν) is finite. This shows that Aut(V ) is finite, which
can also be proved using [13, 118]. Let G be the subgroup in Aut(V ) generated by

A1 : (x, y, z, w, t1, t1) 7→ (y, x, w, z, t2, t1),

A2 : (x, y, z, w, t1, t1) 7→ (x,−y, z,−w, t1, t1),
A3 : (x, y, z, w, t1, t1) 7→ (ix, y,−iz, w,−t1, t1).

Observe that V is G-invariant, and G acts faithfully on V , so that we can identify G with
a subgroup in Aut(V ). Then ϕ is G-equivariant and the following assertions hold:

(i) V contains no G-invariant points,
(ii) |F |V | and |(H − F )V | do not contain G-invariant surfaces,
(iii) V contains no G-invariant irreducible curve C such that C · F ⩽ 1,
(iv) V contains no G-invariant irreducible surface S such that −KV ∼Q λS + ∆ for

some rational number λ > 1 and effective Q-divisor ∆ on the threefold V , because
the cone of effective divisors on V is generated by F |V and (H − F )|V .

Then αG(V ) ⩾ 1 by Corollary 1.4.14. But we have αG(X) = αG(V ) by Lemma 1.4.6,
where we identify G with a subgroup of Aut(X) using the fact that ψ is G-equivariant.
Thus, the singular Fano threefold X is K-polystable by Theorem 1.4.7 and hence K-stable
by Corollary 1.1.6. By [160, Theorem 11] and [117, Theorem 1.4], X has a smoothing
to a member of the family �1.8. Now, using Theorem 1.1.12, we conclude that general
smooth Fano threefold �1.8 is K-stable.

Example 4.1.11. Let Y be the smooth complete intersection in P5 given by{
x0x2 − x21 + x4(x1 + x3) + x5(x0 + x2) + x24 = 0,

x1x3 − x22 + x5(x2 + x0) + x4(x3 + x1) + x25 = 0,

Let G be the subgroup in Aut(P5) that is generated by the involutions

[x0 : x1 : x2 : x3 : x4 : x5] 7→ [x3 : x2 : x1 : x0 : x5 : x4],

[x0 : x1 : x2 : x3 : x4 : x5] 7→ [x0 : −x1 : x2 : −x3 : −x4 : x5].
Then G ∼= µ2×µ2, the threefold Y is G-invariant, G acts on Y faithfully, and G preserves
the three-dimensional subspace Λ = {x4 = x5 = 0} ⊂ P5. Then Λ ∩ Y is given by

x0x2 − x21 = x1x3 − x22 = 0.

It consists of a twisted cubic curve C and its secant line L that is cut out by x1 = x2 = 0.
Both C and L areG-invariant. LetH = OP5(1)|Y , and letH be the pencil in |H| consisting
of surfaces passing through C. Then H is cut out by λx4 + µx5 = 0, where [λ : µ] ∈ P1.

This pencil has no G-invariant surfaces. Let α : Ỹ → Y be the blow up of the curve C, and

let L̃ be the proper transform on Ỹ of the line L. Then −K3
Ṽ
= 18, the divisor −KṼ is nef,
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and L̃ is the only irreducible curve in Ṽ that has trivial intersection with the divisor −KṼ .
Moreover, there is G-equivariant commutative diagram (see [199, (2.13.3)]

Ỹ

α

��

β ��

χ // V

π

��

γ��
X

Y
ψ

// P1

where χ is a flop of the the curve L̃, the morphism β is the contraction of the curve L̃, the
morphism γ is a flopping contraction, π is a fibration into quintic del Pezzo surfaces, and ψ
is the map given by H. Then V is a smooth weak Fano threefold, X is a Fano threefold
with one Gorenstein terminal singular point such that −K3

X = 18 and Pic(X) ∼= Z[−KX ],
and the group Aut(X) is finite, since Aut(Y ) is finite [42]. Thus, applying Corollary 1.4.16,

we see that αG(V ) ⩾ 4
5
. But αG(X) = αG(V̂ ) by Lemma 1.4.6, so that X is K-stable by

Theorem 1.4.7 and Corollary 1.1.6. By [160, Theorem 11] and [117, Theorem 1.4], it has
a smoothing to a Fano threefold �1.9. Thus, a general Fano threefold in the damily �1.9
is K-stable by Theorem 1.1.12.

Example 4.1.12 ([74, 76, 65, 129, 52, 95]). Fix u ∈ C \ {0, 1}, and let Qu be the smooth
quadric in P4 given by u(xw − z2) + (z2 − yt) = 0, and let G the subgroup in PGL4(C)
generated by the involution [x : y : z : t : w] 7→ [w : t : z : y : x] and the transformations[

x : y : z : t : w
]
7→
[
x : λy : λ3z : λ5t : λ6w

]
,

where λ ∈ C∗. Then G ∼= C∗ ⋊µ2 and Qu is G-invariant, so that G is naturally identified
with a subgroup in Aut(Qu). Let S = {xw − z2 = z2 − yt = 0} ⊂ P4, and let Γ be
the sextic curve in P4 that is the locus

[
s60 : s50s1 : s30s

3
1 : s0s

5
1 : s61

]
, where [s0 : s1] ∈ P1.

Then S and Γ are G-invariant, Γ ⊂ S ⊂ Qu, and there is a G-equivariant diagram

Q̃u
χ //

π

~~

Ṽu
ϕ

��
Qu Vu

where Vu is a smooth Fano threefold in the family �1.10, π is the blow up of the curve Γ,
the morphism ϕ is the blow up of the threefold Vu along a (unique) G-invariant smooth
rational curve C2 with −KVu · C2 = 2, and χ is the flop of two smooth rational curves.
Every smooth Fano threefold �1.10 that admits an effective Gm-action can be obtained
in this way. We can identify G with a subgroup in Aut(Vu). Then

αG
(
Vu
)
=



4

5
if u ̸= 3

4
and u ̸= 2,

3

4
if u =

3

4
,

2

3
if u = 2.
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Therefore, if u ̸= 2, then Vu is K-polystable by Theorem 1.4.10. Moreover, it has been
proved in [95] that the threefold V2 is also K-polystable. If u ̸= −1

4
, then Aut(Vu) = G.

Vice versa, if u = −1
4
, then Aut(Vu) ∼= PGL2(C), and Vu is the unique smooth threefold

in the deformation family �1.10 with automorphism group PGL2(C), this threefold is
known as the Mukai–Umemura threefold [156].

It has been proved in [130] that there exists unique smooth Fano threefold�1.10 whose
automorphism group is Ga ⋊ µ4. By Theorem 1.1.4, this threefold is not K-polystable.
This Fano threefold and the Fano threefolds described in Example 4.1.12 are the only
smooth Fano threefolds in the family �1.10 that have infinite automorphism groups.
In particular, the threefold in the following example has finite automorphism group.

Example 4.1.13. There is a unique smooth Fano threefold �1.10 such that Aut(X)
contains a subgroup G ∼= PSL2(F7), and X has no G-fixed points [47]. Then αG(X) ⩾ 1
by Corollary 1.4.12, so that X is K-stable by Theorem 1.4.7.

Thus, a general Fano threefold in the family �1.10 is K-stable by Theorem 1.1.12.
Using Corollaries 1.1.16 or 1.1.17 instead, we can also deduce this from Example 4.1.12.
Similarly, other examples presented in this section shows that the general member of
the families �1.1, �1.2, �1.3, �1.4, �1.5, �1.6, �1.7, �1.8, �1.9 are also K-stable.
In fact, a much stronger assertion holds:

Theorem 4.1.14 ([3]). Every smooth Fano threefold in the families �1.1, �1.2, �1.3,
�1.4, �1.5, �1.6, �1.7, �1.8 is K-stable.

We expect that every smooth Fano threefold �1.9 is also K-stable.

4.2. Fano threefolds with PGL2(C)-action. Let X be a smooth Fano threefold such
that Aut0(X) ∼= PGL2(C). By [42], X is one of:

(1) the Mukai–Umemura threefold (Example 4.1.12),
(2) the del Pezzo threefold V5 (Example 3.4.1),
(3) the unique member of the family �2.21 with Aut0(X) ∼= PGL2(C),
(4) the unique member of family �2.27,
(5) the unique member of family �3.13 with Aut0(X) ∼= PGL2(C),
(6) the unique member of family �3.17,
(7) the unique member of family �4.6,
(8) P1 × S, where S is a smooth del Pezzo surface of degree K2

S ⩽ 5.

We know from Section 3.1 and Examples 4.1.12 and 3.4.1 that the threefolds (1), (2),
(8) are K-polystable. We now show that X is K-polystable in the remaining five cases.
By Corollaries 1.1.16 and 1.1.6, this implies that a general member of family �2.21 is
K-stable, and that a general member of the family �3.13 is K-polystable. We start with
the simplest case:

Lemma 4.2.1. The unique smooth Fano threefold in family �4.6 is K-polystable.

Proof. Let V be the vector space of 2× 2-matrices(
z0 z1
z2 z3

)
.

and denote by P3 = P(V). Consider the GL2(C)-action on V given by left (matrix)
multiplication; this action induces a faithful PGL2(C)-action on P3. The locus of invertible
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matrices in P3 is an open PGL2(C)-orbit, and its complement is the PGL2(C)-invariant
quadric

S = {det
(
z0 z1
z2 z3

)
= 0.} ⊂ P3

For each [a : b] ∈ P1, define a line

ℓa,b =

{[
a λ bλ
a µ bµ

]
∈ P3

∣∣∣ [λ : µ] ∈ P1

}
and note that ℓa,b lies on S and is a PGL2(C)-orbit.

Consider the subgroup of GL2(C) generated by

G =
〈(

0 1
−1 0

)
,

(
1 1
−1 0

)〉
.

Then G ∼= S3. As above, consider the G-action on V given by left matrix multiplication.
The G-action on P3 defined in this way is faithful and commutes with the PGL2(C)-action,
no PGL2(C)-invariant line is fixed by G, and G acts freely on {ℓ1,0, ℓ0,1, ℓ1,1}.
Since (up to change of coordinates) X is the blowup of P3 in ℓ1,0 ∪ ℓ0,1 ∪ ℓ1,1, both

the PGL2(C)-action and G-actions lift to X, so that PGL2(C) and G are identified with
subgroups of Aut(X). One can show that Aut(X) = ⟨PGL2(C), G⟩ ∼= PGL2(C) × S3.
The strict transform S of the quadric S on X is the unique proper Aut(X)-invariant
irreducible subvariety of X. Furthermore, it follows from Theorem 3.7.1 that β(S ) > 0,
so that X is K-polystable by Theorem 1.2.5. □

Now, we consider the member of family �2.21 with an effective PGL2(C)-action. Its
K-polystability could be proved using Theorem 1.6.2, but we give an alternative proof.

Lemma 4.2.2. Let X be the smooth Fano threefold�2.21 such that Aut0(X) ∼= PGL2(C).
Then X is K-polystable.

Proof. The smooth Fano threefold X can be constructed as follows. Let V be the standard
representation of GL2(C), denote by P4 = P(Sym4(V)), and let C ⊂ P4 be the image of
the 4th Veronese embedding of P(V). Then the GL2(C)-action on V induces an action of
the group PGL2(C) on P4 and C is PGL2(C)-invariant. The representation of GL2(C) on
Sym4(V) is irreducible, and there is a smooth invariant quadric Q ⊂ P4 that contains C.
Then X can be obtained as a blow up of Q along C.

Let f1 : X → Q be the blowup of the curve C, and let E1 be its exceptional divisor.
Then f1 is PGL2(C)-equivariant and the PGL2(C)-action lifts to X. The threefold X has
a second PGL2(C)-equivariant contraction f2 : X → Q. The f2-exceptional divisor E2 is
the proper transform of the surface E2 ⊂ Q that is cut out on Q by the secant variety of
the curve C, which is a singular cubic hypersurface. We thus have a PGL2(C)-equivariant
commutative diagram:

X
f1

��

f2

��
Q τ

// Q

where f2 is the contraction of the surface E2 to the curve C, and τ is a birational involution
that is given by the linear subsystem in |OP4(2)|Q| consisting of surfaces that contain C.
The birational action of τ lifts to a biregular action on X that swaps E1 and E2, and τ
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commutes with the PGL2(C)-action on X (this is [176, Example 2.4.1]). Thus, we have
Aut(X) ∼= PGL2(C)× µ2, where the factor µ2 is generated by τ .

LetG = Aut(X) and denote by C the smooth irreducibleG-invariant curve C = E1∩E2.
By Lemma A.6.1, we have E1

∼= E2
∼= P1 × P1, and C is the diagonal in both E1 and E2.

Note that C is the only G-invariant irreducible proper subvariety of X, and that E1 and
E2 are tangent along C, so that E1 · E2 = 2C. Since E1 + E2 ∼ −KX and E1 + E2 is
G-invariant, this implies αG(X) ⩽ 3

4
, because (X, 3

4
(E1 + E2)) is strictly log canonical.

We claim that αG(X) = 3
4
. Indeed, suppose αG(X) < 3

4
. Then there is a G-invariant

linear system D ⊂ |−nKX | such that the singularities of the log pair (X, 3
4n
D) are not log

canonical. Write 1
n
D = a(E1 +E2) + bM, where a and b are some non-negative numbers,

and M is the mobile part of the linear system D. Then a ⩽ 1, since

a(E1 + E2) + bM ∼Q −KX ∼ E1 + E2.

Furthermore, since (X, 3
4
(E1 + E2)) is log canonical, we have a < 1.

Using Corollary A.4.10, we may assume that a = 0. Indeed, let µ = a
1−a and let

D = (1 + µ)
(
aE1 + aE2 + bM

)
− µ(E1 + E2).

Then D ∼Q −KX and D = b
1−aM. On the other hand, we have

a(E1 + E2) + bM =
1

1 + µ
D +

µ

1 + µ
(E1 + E2),

so that (X, 3
4
D) is also not log canonical. Therefore, replacing a(E1+E2)+bM by b

1−aM,
we may assume that a = 0, so that D = M.
Since M is mobile, (X, 3

4n
M) is not log canonical, and X does not have G-invariant

zero-dimensional subschemes, and since C is the only G-invariant curve in X, C is a center
of non-log canonical singularities of (X, 3

4n
M). LetM be a general surface in M, and let ℓ

be a general fiber of the projection E → C. Then ℓ ̸⊂M and n =M ·ℓ ⩾ multC(M) > 4n
3
,

which is a absurd. Then αG(X) = 3
4
, so that X is K-polystable by Theorem 1.4.10. □

In Section 5.9, we will give another proof of Lemma 4.2.2 that relies on the more general
statement that all smooth Fano threefolds �2.21 with infinite reductive automorphism
group are K-polystable. Using Lemma 4.2.2, Corollaries 1.1.6 and 1.1.16, we obtain

Corollary 4.2.3 (cf. Remark 5.22.8). A general member of family �2.21 is K-stable.

Now, we consider the unique smooth Fano threefold in family �2.27.

Lemma 4.2.4. The smooth Fano threefold �2.27 is K-polystable.

Proof. Let C3 be a twisted cubic curve in P3, and let π : X → P3 be its blowup.
Since Aut(C3) ∼= PGL2(C), Aut(X) ∼= PGL2(C) as well, and by [196, §2], there exists
a PGL2(C)-equivariant commutative diagram

X
π

~~

ϕ

  
P3 // P2

where ϕ is a conic bundle and P3 99K P2 is the map defined by the net of quadrics
containing C3. The group G = PGL2(C) acts faithfully on P2, and P2 contains a unique
G-invariant conic C2, which is also the smooth conic of jumping lines of the bundle ϕ.
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Let E be the exceptional divisor of π, and let R be the preimage of the conic C2 in X.
The restriction of ϕ is a double cover E → P2 branched over C2. Let C be the intersection
R ∩E taken with reduced structure; then R and E are tangent along C and R ·E = 2C.
Moreover, the surface π(R) is the non-normal quartic surface that has an ordinary cusp
along the curve C3. This surface is spanned by the lines in P3 that are tangent to C3.
Then C ⊔ (R \ C) ⊔ (E \ C) ⊔ (X \ (R ∪ E)) is the decomposition of X into G-orbits.
Let υ : V → X be the blow up of the curve C, and let F be the υ-exceptional surface.

Denote by R̃ and Ẽ the proper transforms on V of the surfaces R and E, respectively.

Then F ∼= P1 × P1 and the intersection F ∩ R̃ ∩ Ẽ is a smooth rational curve C̃, which is
a divisor of degree (1, 1) on the surface F . Since C is G-invariant, the G-action lifts to V ,
but Aut(V ) is larger than G. Indeed, it follows from [166, Section 2] or [70, Example 3.4.4]

that there is a biregular involution τ ∈ Aut(V ) that swaps F and R̃ and leaves Ẽ invariant.
Thus, we can write the following G-equivariant diagram:

V
υ

~~

υ◦τ

  
ψ

��

X
π

~~

ϕ

  

X
π

  

ϕ

~~
P3 // P2 P3oo

where ψ is a conic bundle. The involution υ ◦ τ ◦υ−1 induced by the involution τ is an el-
ementary birational transformation of the P1-bundle ϕ. Note that τ induces a Cremona
transformation P3 99K P3, which (in appropriate coordinates) is given by the four partial
derivatives of the defining quartic polynomial of the surface π(R).

We claim that αG(X) = 3
4
. Indeed, observe that both divisors E and R are G-invariant

and −KX ∼ E +R, so that αG(X) ⩽ 3
4
, because (X, 3

4
(E +R)) is strictly log canonical.

Suppose that αG(X) < 3
4
. Then there is a G-invariant linear system D ⊂ |−nKX | such

that the singularities of the pair (X, 3
4n
D) are not log canonical. Write 1

n
D = aE+bR+cM

where M is the mobile part of the linear system D, and a, b and c = 1
n
are non-negative

rational numbers. Then a ⩽ 1 and b ⩽ 1, since aE + bR + cM ∼Q R + E. Furthermore,
since the pair (X, 3

4
(E+R)) is log canonical, we have a < 1 or b < 1. Moreover, it follows

from Lemma A.4.12 that we may assume that either a = 0 or b = 0.
If a = 0, then 1 = D · ℓ ⩾ multC(D) > 4

3
by Lemma A.1.4, where ℓ be a general fiber

of the natural projection E → C3. Thus, we see that a > 0, so that b = 0.

Let D̃ be the proper transform of D on the threefold V , and let L̃ be a general fiber of

the natural projection R̃ → C2. Then multC(D) ⩽ 2, because 0 ⩽ D̃ · L̃ = 2−multC(D).
Now, using Lemma A.4.3, we see that F contains an G-invariant section Z of the natural

projection F → C such that multC(D) + multZ(D̃) > 8
3
. On the other hand, it follows

from Lemma A.6.1 that C̃ is the only G-invariant curve in F , so that Z = C̃, which gives

multZ
(
D̃
)
⩽ D̃ · L̃ =

(
υ∗(−KX)−multC

(
D
)
F
)
· L̃ = 2−multC

(
D
)
,

where L̃ is a general fiber of the natural projection R̃ → C2. The obtained contradiction
shows that αG(X) = 3

4
, so that X is K-polystable by Theorem 1.4.10. □
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Now, we deal with deformation family �3.13. The K-polystability of this threefold has
been already shown in Example 1.6.17. Let us prove this using a different approach.

Lemma 4.2.5. Let X be the smooth Fano threefold �3.13 with Aut0(X) ∼= PGL2(C).
Then X is K-polystable.

Proof. The Fano threefold X can be described as follows. Take any smooth conic C ⊂ P2,
and consider the PGL2(C)-action on P2 that leaves C invariant. This defines the diagonal
action of the group PGL2(C) on P2 × P2, and there exists a smooth PGL2(C)-invariant
divisor W ⊂ P2 × P2 of degree (1, 1). Then all PGL2(C)-invariant irreducible closed
subvarieties in the threefold W are the surfaces E2 = pr−1

1 (C) and E3 = pr−1
2 (C), and

the smooth irreducible rational curve C = E2 ∩E3. The threefold X can be obtained by
blowing up W along the curve C (cf. [42]).
Let f1 : X → W be the blow up of the curve C. Then the PGL2(C)-action lifts to X.

Denote by E1 the f1-exceptional surface, and denote by E2 and E3 the proper transforms
on the threefold X of the surfaces E2 and E3. Then there exists a PGL2(C)-equivariant
commutative diagram:

P2

W

pr2

��

pr1

44

W

pr2

jj

pr1

��

X

f1

��

f2

jj

f3

44

P2 P2

W

pr1

jj

pr2

44

where f2 and f3 are contractions of the surfaces E2 and E3 to curves of degree (2, 2),
Moreover, it follows from [176] that Aut(X) ∼= PGL2(C)×S3 (see also Section 5.19), and
that the direct factor S3 permutes the surfaces E1, E2 and E3 transitively.

We let G = Aut(X). Then E1 ∩ E2 ∩ E3 = E1 ∩ E2 = E2 ∩ E3 = E1 ∩ E3 is a smooth
irreducible G-invariant curve, which we denote by C. Further, C is the only G-invariant
subvariety in X.
Let φ : Y → X be the blow up of C, and let E be the φ-exceptional surface, and

Ẽ1, Ẽ2, Ẽ3 the proper transforms of E1, E2, E3. Then Ẽ1, Ẽ2, Ẽ3 are pairwise disjoint, so

that Ẽ1|E, Ẽ2|E, and Ẽ3|E are three pairwise disjoint sections of the projection E → C.
This is only possible if E ∼= P1 × P1.
The G-action lifts to Y , and E is G-invariant. Applying Lemma A.6.1, we see that

PGL2(C) acts trivially on one factor of E ∼= P1 × P1, so that the sections of E → C are

PGL2(C)-orbits contained in E. On the other hand, the group S3 permutes Ẽ1|E, Ẽ2|E,
and Ẽ3|E transitively. This immediately implies that no section of E → C is G-invariant,
so that E contains no proper closed G-invariant subvarieties. Therefore, the surface E is
the only G-invariant prime divisor over X, and by Theorem 1.2.5, X is K-polystable if
and only if β(E) > 0.
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We claim that β(E) = 9
10
. Let t ∈ R⩾0, then since −KX ∼ E1 + E2 + E3, we have

φ∗(−KX)− tE ∼ Ẽ1 + Ẽ2 + Ẽ3 + 3E − tE = Ẽ1 + Ẽ2 + Ẽ3 + (3− t)E,

which implies that φ∗(−KX) − tE is pseudo-effective if and only if t ⩽ 3. Moreover,
the divisor φ∗(−KX) − tE is nef precisely when t ⩽ 1. When 1 < t < 3, the Zariski
decomposition of φ∗(−KX)− tE is

φ∗(−KX)− tE ∼R
3− t

2
(Ẽ1 + Ẽ2 + Ẽ3 + 2E)︸ ︷︷ ︸

positive part

+
t− 1

2
(Ẽ1 + Ẽ2 + Ẽ3)︸ ︷︷ ︸
negative part

.

Hence, we calculate

SX(E) =
1

30

∫ 1

0

(
φ∗(−KX)−tE

)3
dt+

1

30

∫ 3

1

(
φ∗(−KX)−tE−t− 1

2
(Ẽ1+Ẽ2+Ẽ3)

)3
dt =

=
1

30

∫ 1

0

(30− 18t2 + 4t3)dt+
1

30

∫ 3

1

2(3− t)3dt
)
=

11

10
,

which gives β(E) = AX(E)− SX(E) = 2− 11
10

= 9
10
, so that X is K-polystable. □

Therefore, a general member of the family �3.13 is K-polystable by Corollary 1.1.16.
In fact, with a single exception, all smooth Fano thrreefolds in this deformation family
are K-polystable, see Section 5.19 for details. Let us conclude this section by proving

Lemma 4.2.6. The unique smooth Fano threefold �3.17 is K-polystable.

Proof. Let X be the unique smooth Fano threefold �3.17. Then X is a smooth divisor
in P1 × P1 × P2 that has degree (1, 1, 1). It is well-known that Aut(X) ∼= PGL2(C)⋊µ2,
where µ2 is generated by an involution that swaps two P1-factors in P1 × P1 × P2.
There are birational contractions π1 : X → P1×P2 and π2 : X → P1×P2 that contracts

smooth irreducible surfaces E1 and E1 to smooth curves C1 and C2 of degrees (1, 2).
Moreover, there is PGL2(C)-equivariant commutative diagram

X
π1

vv

π2

((
P1 × P2

pr2
((

P1 × P2

pr2
wwP2

where pr2 is the projection to the second factor, the PGL2(C)-action on P2 is faithful,
and pr2(C1) = pr2(C2) is the unique PGL2(C)-invariant conic.

Let pr1 : P1 × P2 → P1 be the projection to the first factor. Using pr1 ◦ π1 and pr1 ◦ π2,
we obtain a PGL2(C)-equivariant P1-bundle ϕ : X → P1 × P1, where the PGL2(C)-action
on the surface P1 × P1 is diagonal. Let C = E1 ∩ E2. Then ϕ(C) is a diagonal curve.
Denote its preimage on X by R. Then C = R ∩ E1 ∩ E2. Moreover, the curve C and
the surface R are the only proper Aut(X)-invariant irreducible subvarieties in X.
Let G = Aut(X). Then αG(X) ⩽ 2

3
, because −KX ∼ E1 + E2 + R. Thus, we cannot

apply Theorem 1.4.10 to prove that X is K-polystable.
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Suppose that X is not K-polystable. By Theorem 1.2.5, there is a G-invariant prime
divisor F over X such that β(F ) ⩽ 0. Let Z = CX(F ). Then Z ̸= R by Theorem 3.7.1,
so that Z = C. Let us apply Corollary 1.7.26 with Y = E1 to show that Z ̸= C.

Let H1 = (pr1 ◦π1)∗(OP1(1)), let H2 = (pr1 ◦π2)∗(OP1(1)), let H3 = (pr2 ◦π2)∗(OP2(1)).
Then E1 ∼ 2H3−E2, E2 ∼ 2H3−E1, R ∼ H1+H2, −KX ∼ 2H1+3H3−E1, which gives

−KX − uE1 ∼R 2H2 +
(3
2
− u
)
E1 +

1

2
E2,

where u be a non-negative real number. Hence, the divisor−KX−uE1 is nef for u ⩽ 1, and
it is not pseudo-effective for u > 3

2
. Moreover, if 1 < u ⩽ 3

2
, its Zariski decomposition is

−KX − uE1 ∼R 2H2 +
(3
2
− u
)
(E1 + E1)︸ ︷︷ ︸

positive part

+(u− 1)E2︸ ︷︷ ︸
negative part

,

where E1 + E2 ∼ 2H3. Thus, in the notations of Corollary 1.7.26, we have

P (u) =


−KX − uE1 if 0 ⩽ u ⩽ 1,

2H2 + (3− 2u)H3 if 1 ⩽ u ⩽
3

2
,

and

N(u) =


0 if 0 ⩽ u ⩽ 1,

(u− 1)E1 if 1 ⩽ u ⩽
3

2
.

Using this, one can check that SX(E1) < 1, which also follows from Theorem 3.7.1.
Therefore, we have S(WE1

•,• ;C) ⩾ 1 by Corollary 1.7.26.

Let us compute S(WE1
•,• ;C). Recall that E1

∼= P1 × P1. Let f be a fiber of the natural

projection E1 → C1, and let s be the section of this projection such that s2 = 0 on E1.
Then E1|E1 ∼ −s+ 3f and C ∼ s+ f . Therefore, for any v ∈ R, we have

P (u)
∣∣
E1

− vC ∼R


(u+ 1− v)s+ (5− 3u− v)f if 0 ⩽ u ⩽ 1,

(2− v)s+ (6− 4u− v)f if 1 ⩽ u ⩽
3

2
.

Hence, using Corollary 1.7.26, we get

S
(
WE1

•,• ;C
)
=

3

(−KX)3

∫ 3
2

0

(
P (u)2 · E1

)
· ordC

(
N(u)

∣∣
E1

)
du+

+
3

(−KX)3

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
E1

− vC
)
dvdu =

1

12

∫ 3
2

1

(u− 1)
(
P (u)2 · E1

)
du+

+
1

12

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
E1

− vC
)
dvdu =

1

12

∫ 3
2

1

4(u− 1)(6− 4u)du+

+
1

12

∫ 1

0

∫ u+1

0

2(u+1−v)(5−3u−v)dvdu+ 1

12

∫ 3
2

1

∫ 6−4u

0

2(2−v)(6−4u−v)dvdu =
5

8
< 1,

which is a contradiction. □
116



4.3. Blow ups of del Pezzo threefolds in elliptic curve. Let Vd be a smooth threefold
such that−KVd ∼ 2H for an ample Cartier divisorH on the threefold Vd such that d = H3,
let H1 and H2 be two distinct surfaces in |H| such that C = H1 ∩H2 is a smooth curve,
let P be the pencil generated by H1 and H2, let π : X → Vd be the blow up of the curve C .
Then C is an elliptic curve, X is a Fano threefold, and there exists commutative diagram

(4.3.1) X
π

~~

ϕ

  
Vd

ψ
// P1

where ψ is the map given by P , and ϕ is a fibration into del Pezzo surfaces of degree d.
Let E be π-exceptional surface, let F be a sufficiently general fiber of the morphism ϕ,

and let H̃1 and H̃2 be proper transforms on X of the surfaces H1 and H2, respectively.

Then E ∼= C × P1, and F ∼ H̃1 ∼ H̃2 on the threefold X.
Recall from Section 3.4 that Vd is a smooth del Pezzo threefold of degree d, and we

have the following nine possibilities:

(1) d = 1, V1 is a Fano threefold �1.11, and X is a Fano threefold �2.1;
(2) d = 2, V2 is a Fano threefold �1.12, and X is a Fano threefold �2.3;
(3) d = 3, V3 is a Fano threefold �1.13, and X is a Fano threefold �2.5;
(4) d = 4, V4 is a Fano threefold �1.14, and X is a Fano threefold �2.10;
(5) d = 5, V5 is a Fano threefold �1.15, and X is a Fano threefold �2.14;
(6) d = 6, V6 is a divisor in P2 × P2 of degree (1, 1), and X is a Fano threefold �3.7;
(7) d = 6, V6 = P1 × P1 × P1, and X is a Fano threefold �4.1;
(8) d = 7, V7 = P(OP2 ⊕OP2(1)), and X is a Fano threefold �3.11;
(9) d = 8, V8 = P3, H = OP3(2), and X is a Fano threefold �2.25.

Smooth Fano threefolds in the family �4.1 have an alternative description — they are
divisors in P1 × P1 × P1 × P1 of degree (1, 1, 1, 1). This family contains one K-polystable
singular member — the toric Gorenstein terminal Fano threefold �625 in [26], so that
the general smooth member of the family �4.1 is also K-semistable by Theorem 1.1.12.
Let us present one very special smooth Fano threefold �4.1 that is K-stable:

Lemma 4.3.2. Let X be the divisor of (P1)4 defines as

x1x2x3x4+y1y2y3y4 = 2(x1x2y3y4+y1y2x3x4+x1y2x3y4+x1y2y3x4+y1x2x3y4+y1x2y3x4),

where [xi : yi] are coordinates on the i-th factor of (P1)4. Then X is smooth and K-stable.

Proof. The smoothness of the threefold X is easy to check. To prove its K-stability,
observe that Aut(X) contains a subgroup G ∼= µ2

2 ×S4 where σ ∈ S4 acts by(
[x1 : y1], [x2 : y2], [x3 : y3], [x4 : y4]

)
7→

7→
(
[xσ(1) : yσ(1)], [xσ(2) : yσ(2)], [xσ(3) : yσ(3)], [xσ(4) : yσ(4)]

)
,

while the generator τ of the first factor of µ2
2 acts by(

[x1 : y1], [x2 : y2], [x3 : y3], [x4 : y4]
)
7→
(
[y1 : x1], [y2 : x2], [y3 : x3], [y4 : x4]

)
,

and the generator ι of the second factor of µ2
2 acts by(

[x1 : y1], [x2 : y2], [x3 : y3], [x4 : y4]
)
7→
(
[x1 : −y1], [x2 : −y2], [x3 : −y3], [x4 : −y4]

)
.
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We claim that αG(X) ⩾ 1, so that X is K-stable by Theorem 1.4.7, since Aut(X) is finite.
Indeed, suppose that αG(X) < 1. Let us seek for a contradiction.

First, we observe that PicG(X) = Z[−KX ], and X does not contain G-fixed points,
Thus, applying Theorem 1.4.11 with µ = 1, we see that X contains a smooth G-invariant
curve C such that C · S = 1 for any fiber S of any of four (natural) projections X → P1.
Hence, the curve C is a curve of degree (1, 1, 1, 1).
Let Γ be the stabilizer in G of the surface S. If S is given by x4 = y4, then Γ ∼= µ2×S3,

where the group S3 acts by simultaneous permutations of coordinates xi and yi for i ̸= 4,
and µ2 = ⟨τ⟩. Then P1 = ([1 : −1], [1 : −1], [1 : −1], [1 : 1]) is the only Γ-invariant point
in the surface S, so that P1 = S ∩ C. Similarly, letting S to be the surfaces x4 + y4 = 0,
x4 = 0 and y4 = 0, we see that C contains the points

P2 = ([1 : 1], [1 : 1], [1 : 1], [1 : −1]),

P3 = ([1 : 0], [1 : 0], [1 : 0], [0 : 1]),

P4 = ([0 : 1], [0 : 1], [0 : 1], [1 : 0]).

Let pr12 : X → P1×P1 be the projection to the first two factors of (P1)4. The pr12(C) is
an irreducible curve of degree (1, 1). Observe that the projection pr12 is equivariant with
respect to the subgroup Ξ ∼= µ3

2 of the group G that generated by τ , ι and the involution(
[x1 : y1], [x2 : y2], [x3 : y3], [x4 : y4]

)
7→
(
[x2 : y2], [x1 : y1], [x3 : y3], [x4 : y4]

)
.

Thherefore, the curve pr12(C) is Ξ-invariant, so that C is contained in one of the following
four surfaces: x1x2 + y1y2 = 0, x1x2 = y1y2, x1y2 + y1x2 = 0, x1y2 = y1x2. Among them,
only the surface x1y2 = y1x2 contains all points P1, P2, P3, P4. Hence, this surface must
contain C. Since C is G-invariant, we see that C is contained in the subset given by{
x1y2 = y1x2, x1y3 = y1x3, x1y4 = y1x4, x2y3 = y2x3, x2y4 = y2x4, x3y4 = y3x4

}
⊂ (P1)4.

This system of equations defines the diagonal, which is not contained in X. The obtained
contradiction completes the proof. □

Therefore, we see that general Fano threefolds �4.1 are K-stable by Theorem 1.1.12.
In the remaining part of this section, we will present examples of K-stable smooth Fano
threefolds in the following families: �2.1,�2.3,�2.5,�2.10,�2.14,�2.25,�3.7,�3.11.
This implies that general threefolds in these families are also K-stable. In fact, we will
also prove that all smooth Fano threefolds in the family �2.25 are K-stable.

Setup for the rest of the section. Let G be some finite subgroup in Aut(Vd) such that
the curve C is G-invariant. Since (4.3.1) is G-equivariant, we can identify G with a sub-
group in Aut(X). Since ϕ is G-equivariant, it gives a homomorphism υ : G→ Aut(P1),
so that we have the following exact sequence of groups:

(4.3.3) 1 −→ Θ −→ G −→ Γ −→ 1,

where Γ = im(υ) is a finite subgroup in Aut(P1), and Θ = ker(υ) is the largest subgroup in
the group G such that every surface in the pencil P is Θ-invariant.

Example 4.3.4. Suppose that d = 7, and let ϑ : V7 → P3 be the blowup of a point P .
Without loss of generality, we may assume that P = [0 : 0 : 1 : 0]. Let Q1 be the smooth
quadric surface {x2+y2+zt = 0} ⊂ P3, and letQ2 be the quadric {yz+t2 = 0} ⊂ P3, where
x, y, z, t are coordinates on P3. Set C = Q1∩Q2. Then C is smooth and P ∈ C. Now, we
let H1 and H2 to be the proper transforms on X of the surfaces Q1 and Q2, respectively,
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let C be the proper transform on V7 of the curve C, and letG = Aut(V7;C ). ThenG ∼= µ6.
Indeed, the group Aut(P3;C) contains the involution [x : y : z : t] 7→ [−x : y : z : t] and
also the automorphism of order three [x : y : z : t] 7→ [x : y : ωz : ωt], where ω is
a primitive cube root of unity. Since they fix P , their actions lift to V7, and they generate
a subgroup in G isomorphic to µ6. But G cannot be larger than µ6, since this group
acts faithfully on the curve C and it preserves a point in this elliptic curve. In this case,
the subgroup Θ is trivial and Γ ∼= µ6, where Θ and Γ are defined in (4.3.3). Arguing as
in the proof of [43, Lemma 8.12], we see that αG(X) = 1

2
. But X is K-stable [96].

For all remaining families, we will present an example consisting of a threefold Vd,
a smooth elliptic curve C , and a finite subgroup G ⊂ Aut(Vd;C ) such that αG(X) > 3

4
,

so that X is K-stable by Theorem 1.4.7 and Corollary 1.1.6, because Aut(X) is finite [42].
To proceed, we need one very easy auxiliary result.

Lemma 4.3.5. Suppose that PicG(Vd) = Z[H], and P contains no G-invariant surfaces.
Then X does not have G-fixed points. Moreover, let S be a G-irreducible surface in X such
that −KX ∼Q λS +∆ for some λ ∈ Q and effective Q-divisor ∆ on X. Then λ ⩽ 1.

Proof. Since P contains no G-invariant surfaces, P1 does not have Γ-invariant points,
which implies that X does not have G-invariant points.

Now, let us show that λ ⩽ 1. If S = E, then ∆|F ∼Q (1 − λ)E|F , which gives λ ⩽ 1.
Thus, we may assume that S ̸= E. Then S ∼ π∗(nH) −mE for some integers n and m
such that n ⩾ 1 and m ⩾ 0. If λ > 1, then n = 1. Further, restricting S to the surface F ,
we see that m ⩽ 1 in this case.
The case n = 1 and m = 1 is impossible, since P does not contain G-invariant surfaces.

If n = 1 and m = 0, then ∆|F ∼Q (1− λ)H|F , which gives λ ⩽ 1. □

Now we are ready to present explicit examples of K-stable smooth Fano threefolds in
the families �2.1, �2.3, �2.5, �2.10, �2.14 and �3.7,

Example 4.3.6. Suppose that d = 1, and V1 is the smooth hypersurface in P(1, 1, 1, 2, 3)
that is given by x60 + x61 + x62 + x33 + x24 = 0, where x0, x1, x2, x3, x4 are coordinates of
weights 1, 1, 1, 2, 3, respectively. Suppose that H1 and H2 are cut out by x0 = 0, x1 = 0,
respectively. Observe that the curve C is smooth, so that X is a smooth Fano threefold in
the family �2.1. Let G be the subgroup in Aut(V1) that is generated by two involutions:

[x0 : x1 : x2 : x3 : x4] 7→ [x0 : −x1 : x2 : x3 : x4]

and

[x0 : x1 : x2 : x3 : x4] 7→ [x1 : x0 : x2 : x3 : x4].

Then G ∼= µ2
2, the curve C is G-invariant, P does not contain G-invariant surfaces, and it

follows from Lemma A.5.4 that the α-invariant of a general fiber of ϕ does not exceed 5
6
.

Therefore, applying Lemma 4.3.5 and Corollary 1.4.15, we conclude that αG(X) ⩾ 5
6
.

Example 4.3.7. Suppose that d = 2. Let V2 be the hypersurface in P(1, 1, 1, 1, 2) given
by the equation x40+x

4
1+x

4
2+x

4
3+x

2
4 = 0, where x0, x1, x2, x3 are coordinates of weight 1,

and x4 is a coordinate of weight 2. Suppose that H1 = {x0 = 0} and H2 = {x1 = 0}.
Then the curve C is smooth, so that X is a smooth Fano threefold in the family �2.3.
Now, let G be the subgroup of the group Aut(V2) such that G ∼= µ2 × (µ3

4 ⋊ µ2), where
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the generator of the i-th factor of µ3
4 acts by multiplying the coordinate xi by

√
−1,

the generator of the non-normal subgroup µ2 ⊂ µ3
4 ⋊ µ2 acts by

[x0 : x1 : x2 : x3 : x4] 7→ [x1 : x0 : x2 : x3 : x4],

and the generator of the factor µ2 acts as [x0 : x1 : x2 : x3 : x4] 7→ [x0 : x1 : x2 : x3 : −x4].
Then C is G-invariant, Γ ∼= D8, Θ ∼= µ2 × µ2

4, and P1 does not contain Γ-fixed points.
Further, X does not contain G-invariant rational curves. Indeed, let C be such a curve.
Since V2 does not contain G-invariant points, π(C) is a rational curve. Since the largest
quotients of µ3

4 that admit a faithful action on P1 are µ4 and µ2
2, the curve π(C) must have

a trivial action of some non-cyclic subgroup in µ3
4 ⊂ G, which is impossible, since the fixed

points in V2 of every non-cyclic subgroup of µ3
4 are isolated. The obtained contradiction

shows that the smooth Fano threefold X does not contain G-invariant rational curves.
Now, applying Corollary 1.4.14 and Lemma 4.3.5, we see that αG(X) ⩾ 1.

Example 4.3.8. Now, suppose that d = 3. Let V3 = {x30 + x31 + x32 + x33 + x34 = 0} ⊂ P4,
where x0, x1, x2, x3 and x4 are coordinates on P4. Let H1 = {x0 = 0} and H2 = {x1 = 0}.
Then C is smooth, so that X is a smooth Fano threefold �2.5. Let G be the subgroup
such that G = µ4

3 ⋊ µ2, the generator of the i-th factor of µ4
3 acts by multiplying xi by

a primitive cube root of unity, while µ2 acts by

[x0 : x1 : x2 : x3 : x4] 7→ [x1 : x0 : x2 : x3 : x4].

Then C is G-invariant, and P does not contains G-invariant surfaces. Then αG(X) ⩾ 1.
Indeed, if αG(X) < 1, then Theorem 1.4.11 and Lemma 4.3.5 implies that X contains

a G-invariant curve C such that H̃1 ·C = 1, so that H1 ∩ π(C) is a point that is fixed by
the subgroup µ4

3 ⊂ G, which is impossible, since this subgroup has no fixed points in V3.

Example 4.3.9. Suppose that d = 4, and V4 is the complete intersection of two smooth
quadric hypersurfaces in P5 that is given by{

x20 + x21 + x22 + x23 + x24 + x25 = 0,

x20 − x21 + 2x22 − 2x23 + 3x24 − 3x25 = 0,

where x0, x1, x2, x3, x4 and x5 are coordinates on P5. Suppose that H1 and H2 are cut
out by the equations x0 = 0 and x1 = 0, respectively. Then C is a smooth elliptic curve,
and X is a smooth Fano threefolds �2.10. Let G be a subgroup such that G = µ5

2 ⋊ µ2,
where the generator of the i-th factor of µ5

2 acts by changing the sign of the coordinate xi,
while the generator of the non-normal subgroup µ2 acts by

[x0 : x1 : x2 : x3 : x4 : x5] 7→ [x1 : x0 : x3 : x2 : x5 : x4].

Then C is G-invariant, P has no G-invariant surfaces, and the subgroup µ5
2 ⊂ G does not

have fixed points in V4. Thus, arguing as in Example 4.3.8, we see that αG(X) ⩾ 1.

Example 4.3.10. Suppose that d = 5 and V5 is the unique smooth Fano threefold� 1.15.
Then Aut(V5) ∼= PGL2(C), see [50, Proposition 7.1.10]. Fix a subgroup A5 ⊂ Aut(V5),
and let G be its subgroup such that G ∼= D10. Then the actions of these groups lift to their
linear action on H0(OV5(H)). By [50, Lemma 7.1.6], we have H0(OV5(H)) ∼= W3 ⊕W4,
where W3 and W4 are irreducible A5-representations of dimensions 3 and 4, respectively.
As G-representation, the representations W3 and W4 split as follows:

• W3 is a sum of one-dimensional and irreducible two-dimensional representations;
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• W4 is a sum of two (different) irreducible two-dimensional representations.

Let us denote by M the two-dimensional linear subsystem in |H| that corresponds to W3.
By [50, Lemma 7.5.8], its base locus is a A5-orbit of length 5, which we denote by Σ5.
By [50, Lemma 7.3.4], this orbit is the unique A5-orbit in V5 consisting of at most 5 points.
Without loss of generality, we may assume that H is the unique G-invariant surface in M.
Let P be the pencil in M that is given by the two-dimensional G-subrepresentation inW3,
let H1 and H2 be two distinct surfaces in P , and let C = H1 ∩ H2. Then H ∩ C = Σ5,
so that C is reduced. We claim that it is smooth. Indeed, suppose that C is not smooth.
Then it is reducible, since otherwise it would have one singular point, but V5 does not
have G-fixed points. Since G acts transitively on Σ5, we conclude that C is G-irreducible.
Then C is a union of 5 lines, which are disjoint away from Σ5 by [50, Corollary 9.1.10],
so that C is not connected, which is absurd, since it is an intersection of two ample divisors.
Therefore, we conclude that C is smooth, so that X is a smooth Fano threefold �2.14.
Using Corollary 1.4.16 and Lemma 4.3.5, we get α(X) ⩾ 4

5
.

Example 4.3.11. Suppose that d = 6, and V6 = {x0y0 + x1y1 + x2y2 = 0} ⊂ P2 × P2,
where [x0 : x1 : x2] and [y0 : y1 : y2] are homogeneous coordinates on the first and
the second factors of P2 × P2, respectively. Suppose also that H1 and H2 are given by

x0y1 + ωx1y2 + ω2x2y0 = 0,

x0y2 + ωx1y0 + ω2x2y1 = 0,

respectively, where ω is a non-trivial cube root of unity. One can check that C is smooth.
Then X is smooth Fano threefold �3.7. Let G be a subgroup such that G ∼= µ2

3 ⋊ µ2,
the generator of the first factor µ3 acts by(

[x0 : x1 : x2], [y0 : y1 : y2]
)
7→
(
[x2 : x0 : x1], [y2 : y0 : y1]

)
,

the generator of the second factor µ3 acts by(
[x0 : x1 : x2], [y0 : y1 : y2]

)
7→
(
[x0 : ωx1 : ω

2x2], [y0 : ω
2y1 : ωy2]

)
,

and the generator of µ2 acts by ([x0 : x1 : x2], [y0 : y1 : y2]) 7→ ([y0 : y1 : y2], [x0 : x1 : x2]).
Then V6 and C are G-invariant. We claim that

(1) P2 × P2 does not have µ2
3-invariant points

(2) P2 × P2 does not contain µ2
3 ⋊ µ2-invariant rational curves.

Indeed, let π1 : V6 → P2 and π2 : V6 → P2 be the projections to the fist and the second
factors of P2 × P2, respectively. Then π1 and π2 are µ2

3-equivariant. Observe that

(1) the action of µ2
3 on P2 has no fixed points,

(2) no rational curve in P2 is µ2
3-invariant, since P1 admits no faithful µ2

3-action.

Thus, if a point P ∈ V6 is fixed by µ2
3, then π1(P ) is fixed by µ2

3, which is impossible.
Likewise, if C is a µ2

3-invariant rational curve in V6, then π1(C) or π2(C) is a µ2
3-invariant

rational curve, which is impossible. Then αG(X) ⩾ 1 by Lemma 4.3.5 and Theorem 1.4.11.

Now, let us show that all smooth Fano threefolds in the family � 2.25 are K-stable.
From now on and till the end of this section, we assume that d = 8. Recall that V8 = P3,
and π : X → Vd is the blow up of the smooth elliptic curve curve C , which is an intersection
of two quadric surfaces H1 and H2. Note that Lemma 4.3.5 is not applicable in this case.
Because of this, we need the following similar but more specific result.
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Lemma 4.3.12. Suppose that G is a finite group of order 2r such that r ⩾ 2 and Γ ∼= µ2
2.

Then the following assertions hold:

(i) X does not contain G-invariant points,
(ii) the pencil P does not contain G-invariant surfaces,
(iii) P3 contains neither G-invariant points nor G-invariant planes,
(iv) X does not contain G-invariant irreducible curve C such that C · F ⩽ 1.
(v) X contains no G-invariant irreducible normal surface S such that −KX ∼Q λS+∆

for some rational number λ > 1 and effective Q-divisor ∆ on the threefold X.

Proof. Observe that Γ has no fixed points in P1, so that P contains noG-invariant surfaces,
and X does not have G-invariant points. This proves (i) and (ii).
Since G is not cyclic, the curve C does not have G-invariant points, so that P3 does not

have G-invariant points by (i). Then P3 contains no G-invariant planes. This proves (iii).
To prove (iv), suppose that F · C ⩽ 1 for some G-invariant irreducible curve C ⊂ X.

Then F · C = 1, because P1 contains no G-invariant points. Then C ∼= P1 and

1 = F · C =
(
π∗(H)− E

)
· C = π∗(H) · C − E · C,

so that E ·C is odd, because H = OP3(2). But C does not contain G-orbits of odd length,
because |G| = 2r. Then C ⊂ E, so that π(C) = C , since P3 has no G-invariant points.
But π(C) ̸= C , because C is not rational. The obtained contradiction proves (iv).

Finally, to prove (v), we suppose that the threefold X contains a G-invariant irreducible
normal surface S such that 2F + E ∼ −KX ∼Q λS +∆ for some rational number λ > 1
and effective Q-divisor ∆ on the threefold X. Then

2

λ
F +

1

λ
E − 1

λ
∆ ∼Q S ∼Q aF + bE

for some non-negative rational numbers a and b, since F and E generates the cone Eff(X).
Since λ > 1, we have a < 2 and b < 1. On the other hand, we have 2a ∈ Z and b− a ∈ Z,
since Pic(X) is generated by π∗(OP3(1)) and E. This gives (a, b) ∈ {(1, 0), (2, 1), (3, 1)}.
If (a, b) = (1, 0), then π(S) is a G-invariant plane in V8 = P3, which is impossible by (iii).
Similarly, if (a, b) = (2, 1), then π(S) is a G-invariant surface in P , which contradicts (ii).
Thus, we see that π(S) is a G-invariant cubic surface in P3 that contains the curve C .

Let S3 = π(S). Then S3 has isolated singularities, because S is normal by assumption,
and S3 cannot be singular along the quartic curve C . Note that G acts faithfully on S3,
and this action lifts the linear action of the group G on H0(OS3(−KS3))

∼= H0(OP3(1)).
Then G is not abelian, since P3 has no G-fixed points. Thus, we have r ⩾ 3.
Suppose that S3 is smooth. Then, looking on the list of automorphism groups of smooth

cubic surfaces [72, Table 4], we see that |G| = 8. Now, looking on the list of automorphism
groups of smooth cubic surfaces again, we conclude that G must have a fixed point in P3,
which is a contradiction. Thus, we conclude that S3 is singular.

Singular cubic surfaces have been classified in [24]. Note that |Sing(S3)| ⩽ 4. Further,
if S3 has 4 singular points, then we have Aut(S3) ∼= S4, and S3 can be given by

x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 = 0.

In this case, P3 has a G-fixed point, which contradicts (iii). Similarly, we see that S3

cannot have three singular points, because P3 does not have G-invariant points, and P3

does not have G-orbits of length 3. Thus, we conclude that S3 has two singular points.
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Let L be the line in P3 such that L contains both singular points of the surface S3.
Then L ⊂ S3, and there is a unique plane Π ⊂ P3 that is tangent to S3 along the line L.
Since L is G-invariant, Π is G-invariant, which contradicts (iii). This proves (v). □

Applying Theorem 1.4.11 and Lemma 4.3.12, we get

Corollary 4.3.13. Suppose that Θ ∼= µ3
2 and Γ ∼= µ2

2. Then αG(X) ⩾ 1.

To apply this corollary, take λ ∈ C∗ such that λ4 ̸= 1. Suppose that H1 is given by

x20 + x21 + λ(x22 + x23) = 0,

and suppose that H2 is given by

λ(x20 − x21) + x22 − x23 = 0,

Then C is a smooth quartic elliptic curve, so that X is smooth Fano threefold �2.25.
Moreover, every smooth Fano threefold �2.25 can be obtained in this way [78].

Recall that every surface in the pencil P is Θ-invariant. Using this, one can show that
the group Θ is contained in the subgroup in Aut(P3) that is generated by

(4.3.14) [x0 : x1 : x2 : x3] 7→
[
x0 : (−1)ax1 : (−1)bx2 : (−1)cx3

]
for all a, b, c in {0, 1}. Note that these automorphisms generate a group isomorphic to µ3

2.

Lemma 4.3.15. There exists a subgroup G ⊂ Aut(P3;C ) such that Θ ∼= µ3
2 and Γ ∼= µ2

2.

Proof. Let Σ be the subset in C consisting of the 16 points of the intersection of this curve
with the tetrahedron x0x1x2x3 = 0. Fix a point O ∈ Σ, and equip C with the group law
such that O is the identity element. By [81], the embedding C ↪→ P3 is given by the linear
system |4O|, and Σ \O consists of all points of order 4.
Let G be the subgroup in Aut(C ) generated by the translation by points in Σ and

the involution P 7→ −P . Then |G| = 32, and the embedding C ↪→ P3 is G-equivariant,
so that we can identify G with a subgroup in Aut(P3;C ).

We claim that G is the required group. Indeed, since Θ contains no elements of order 4,
the group Γ is one the following groups: µ2, µ

2
2, µ4. Using this, we see that Γ ∼= µ2 × µ2,

and Θ is generated by translations by elements of order 2 and the involution P 7→ −P .
Then Θ ∼= µ3

2 as required. □

Corollary 4.3.16. All smooth Fano threefolds �2.25 are K-stable

One can describe the group constructed in the proof of Lemma 4.3.15 in coordinates.
Namely, let ι be the involution in Aut(P3) given by

(4.3.17) [x0 : x1 : x2 : x3] 7→ [x1 : x0 : x3 : x2],

and let τ be the automorphism of order 4 in Aut(P3) that is given by

(4.3.18) [x0 : x1 : x2 : x3] 7→ [x2 : ix3 : x0 : ix1],

where i =
√
−1. Then C is ι-invariant and τ -invariant. Then the group constructed in

the proof of Lemma 4.3.15 is the group generated by ι, τ and all automorphisms (4.3.14).
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4.4. Blow up of P3 in curve lying on quadric surface. Let S2 be a smooth quadric
surface in P3, let C be a smooth curve in S2

∼= P1 × P1 of degree (a, b) with a ⩽ b, and
let π : X → P3 be the blow up of the curve C . Then C has degree a + b and genus
(a − 1)(b − 1), and X is a Fano threefold if and only if b ⩽ 3 by [16, Proposition 3.1].
This gives us the following possibilities:

• (a, b) = (3, 3), and X is a smooth Fano threefold �2.15,
• (a, b) = (2, 3), and X is a smooth Fano threefold �2.19,
• (a, b) = (1, 3), and X is a smooth Fano threefold �2.22,
• (a, b) = (2, 2), and X is a smooth Fano threefold �2.25,
• (a, b) = (1, 2), and X is a smooth Fano threefold �2.27,
• (a, b) = (1, 1), and X is a smooth Fano threefold �2.30,
• (a, b) = (0, 1), and X is a smooth Fano threefold �2.33.

Both smooth Fano threefolds �2.30 and �2.33 are K-unstable (see Sections 3.3, 3.6, 3.7).
In Section 4.2, we proved that the unique smooth Fano threefold �2.27 is K-polystable.
In Section 4.3, we proved that all smooth Fano threefolds in the family�2.25 are K-stable.
The goal of this section is to prove the following result:

Proposition 4.4.1. A general Fano threefold in the families �2.15, �2.19 and �2.22
is K-stable.

Thus, we assume that one of the following three cases holds:

�2.15 C is a curve of degree (3, 3), and its genus is 4,

�2.19 C is a curve of degree (2, 3), it is hyperelliptic, and its genus is 2

�2.22 C is a curve of degree (1, 3), and it is a smooth rational quartic curve.

In the first two cases, the group Aut(X) is finite [42]. In the third case, the automorphism
group Aut(X) is also finite with a single exception, which is described in

Example 4.4.2. Let S2 be the smooth quadric surface in P3 that is given by x0x3 = x1x2.
Fix the isomorphism S2

∼= P1 × P1 that is given by([
s0 : s1

]
,
[
t0 : t1

])
7→
[
s0t0 : s0t1 : s1t0 : s1t1

]
.

Let C be the curve of degree (1, 3) in S2 given by s30t0 = s31t1. Then its image in P3 is
the rational quartic curve given by [s0 : s1] 7→ [s0s

3
1 : s40 : s41 : s1s

3
0], and X is a smooth

Fano threefold in the family �2.22. Let G be the subgroup in Aut(P3) that is generated
by the involution [x0 : x1 : x2 : x3] 7→ [x3 : x2 : x1 : x0], and automorphisms[

x0 : x1 : x2 : x3
]
7→
[
λ3x0 : x1 : λ

4x2 : λx3
]
,

where λ ∈ Gm. Then G ∼= Gm ⋊ µ2, and the curve C is G-invariant. Thus, the action of
the group G lifts to the threefold X. Then X is the unique smooth Fano threefold �2.22
that has an infinite automorphism group [42].

Denote by Q the proper transform on X of the quadric S2. As shown in [16], there
exists the following commutative diagram:

(4.4.3) X
π

~~

ϕ

  
P3 ψ // Vn
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where ϕ is a contraction of the surface Q, ψ is a rational map given by the system of all
cubic surfaces that contain C , and Vn is a del Pezzo threefold in Pn+1 of degree n such
that we have the following three possibilities:

�2.15 n = 3, V3 is a singular cubic threefold in P4 that has one ordinary double point,
and ϕ is a blow up of this point,

�2.19 n = 4, V4 is a smooth complete intersection of two quadric hypersurfaces in P5,
and ϕ is the blow up of a line,

�2.22 n = 5, V5 is described in Example 3.4.1, and ϕ is a blow up of a smooth conic.

Let G be a subgroup in Aut(P3,C ). Then the diagram (4.4.3) is G-equivariant, so that
we can also identify G with a subgroup of Aut(X). Let E be the π-exceptional surface.
Then −KX ∼ 2Q+ E, and both Q and E are G-invariant, so that αG(X) ⩽ 1

2
.

Let us prove that each of the three families �2.15, �2.19 and �2.22 contains a special
threefold that is K-stable, so that Proposition 4.4.1 would follow from Theorem 1.1.12.
To describe these special Fano threefolds, we have to specify the curve C and the group G.
Let us do this in the next three example.

Example 4.4.4. Let G be the symmetric group S5, consider the G-action on P4 that
permutes the coordinates x0, . . . , x4, and identify P3 with theG-invariant hyperplane in P4.
Then P3 = P(V), where V is the irreducible 4-dimensional representation of the group G,
so that P3 does not contain G-fixed points, G-invariant lines and also G-invariant planes.
Note that the same assertion holds for the alternating subgroup A5 of the group G.
Let S2 be the smooth quadric surface in P3 that is given by its intersection with

x20 + x21 + x22 + x23 + x24 = 0,

let S3 be the cubic surface in P3 given by its intersection with x30+x
3
1+x

3
2+x

3
3+x

3
4 = 0, and

let C = S2 ∩ S3. Then C is a smooth curve of genus 4 and degree 6, which is canonically
embedded in P3. Clearly, both S2 and S3 are G-invariant, so that C is also G-invariant.
The curve C is known as the Bring’s curve. It is the unique smooth curve of genus 4
that admits a faithful action of the group S5. Therefore, the threefold X is the unique
smooth Fano threefold in the family �2.15 that admits a faithful action of the group S5.

Example 4.4.5. Recall the isomorphism S2
∼= P1 × P1 from Example 4.4.2. Let C ⊂ S2

be the curve of degree (2, 3) that is given by (s20 + s21)(t
3
0 + t31) + ε(s20 − s21)(t

3
0 − t31) = 0,

where ε is a general number. Then C is smooth. In particular, it is smooth for ε = 5.
Let τ : S2 → S2 be the involution that is given by ([s0 : s1], [t0 : t1]) 7→ ([s0 : −s1], [t0 : t1]),
let ι : S2 → S2 be the involution that is given by ([s0 : s1], [t0 : t1]) 7→ ([s1 : s0], [t1 : t0]),
and let γ : S2 → S2 be the automorphism of order 3 that is given by(

[s0 : s1], [t0 : t1]
)
7→
(
[s0 : s1], [t0 : ωt1]

)
,

where ω is a primitive cube root of unity. Let G = ⟨τ, ι, γ⟩ ⊂ Aut(S2). Then G ∼= D12,
and the curve C is G-invariant. Observe that the G-action extends to P3 as follows:

τ
(
[x0 : x1 : x2 : x3]

)
= [−x0 : −x1 : x2 : x3],

ι
(
[x0 : x1 : x2 : x3]

)
= [x3 : x2 : x1 : x0],

γ
(
[x0 : x1 : x2 : x3]

)
= [x0 : ωx1 : x2 : ωx3].

Then P3 = P(V), where V is a four-dimensional representation of the group G which
splits as a direct sum of two non-isomorphic irreducible two-dimensional representations.
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In particular, we conclude that P3 does not contain G-fixed points and G-invariant planes.
Moreover, S2 contains no G-invariant curves of degree (1, 0), (0, 1), (1, 1), (1, 2) and (2, 1).
The threefold X is a smooth Fano threefold in the family �2.19.

Example 4.4.6. As in Example 4.4.2, identify the quadric S2 with P1×P1. Let G = A4.
Fix a faithful G-action on P1, and consider the corresponding diagonal G-action on S2.
This action extends to P3 such that P3 = P(V), where V is the reducible four-dimensional
permutation representation of the group G. Then P3 does not contain G-invariant lines,
P3 contains one G-fixed point and one G-invariant plane, the G-fixed point in P3 is not
contained in S2, and the G-invariant plane in P3 intersects S2 by the diagonal curve ∆.
Let C a smooth G-invariant curve in S2 of degree (1, 3), which exists by Lemma A.6.11.
Then X is a smooth Fano threefold �2.22 on which the group G = A4 acts faithfully.
Moreover, arguing as in the proof of [42, Lemma 6.13], we see that Aut(X) ∼= Aut(S2,C ).
On the other hand, the group Aut(S2,C ) is finite by Lemma A.6.11.

In the remaining part of this section, we will assume that C is one of the curves
described in Examples 4.4.2, 4.4.4, 4.4.5, 4.4.6, so that X is a smooth Fano threefold
in the families �2.22, �2.15, �2.19, �2.22, and G is one of the groups Gm ⋊ µ2, S5,
D12, A4, respectively. We will refer to these cases as (2.22.D∞), (2.15.S5), (2.19.D12),
(2.22.A4), respectively. In the remaining part of this section, we will prove that X is
K-polystable in each case, so that X is K-stable in the cases (2.15.S5), (2.19.D12) and
(2.22.A4) by Corollary 1.1.6. This would imply Proposition 4.4.1 by Theorem 1.1.12.

Lemma 4.4.7. The following assertion holds:

(1) If we are in the case (2.15.S5), then P3 does not contain G-fixed points, P3 does
not contain G-invariant planes, S2 is the only G-invariant quadric in P3, and P3

does not contain G-invariant irreducible rational curves.
(2) If we are in the case (2.19.D12), then P3 does not contain G-fixed points, P3 does

not contain G-invariant planes, P3 does not contain G-invariant conics and cubics,
the only G-invariant lines in P3 are the lines x0 = x3 = 0 and x1 = x2 = 0, which
are not contained in S2 and do not intersects C .

(3) If we are in the case (2.22.A4), then P3 contains unique G-fixed point, which is
not contained in S2, P3 contain unique G-invariant plane, which intersects S2 by
the diagonal ∆, and P3 does not contain G-invariant lines.

(4) If we are in the case (2.22.D∞), then P3 does not contain G-fixed points, P3 does
not contain G-invariant planes, and the only G-invariant lines in P3 are the lines
{x0 = x3 = 0} and {x1 = x2 = 0}. Moreover, one has

{x0 = x3 = 0} ∩ S2 = {x0 = x3 = 0} ∩ C = [0 : 1 : 0 : 0] ∪ [0 : 0 : 1 : 0],

but {x1 = x2 = 0} ∩ S2 = [1 : 0 : 0 : 0] ∪ [0 : 0 : 0 : 1] and {x1 = x2 = 0} ∩ C = ∅.

Proof. The assertions (1.1), (1.2) and (1.3) immediately follows from Example 4.4.4. To
prove the assertion (1.4) observe that S5 cannot faithfully act on a rational curve, because
PGL2(P1) does not contain a subgroup isomorphic to S5. On the other hand, the group
G acts faithfully on any irreducible G-invariant curve in P3 in the case (2.15.S5), because
none of such curve can be contained in a hyperplane, because P3 = P(V) for the standard
irreducible four-dimensional representation of the group G. Thus, we see that P3 does
not contain G-invariant irreducible rational curves.
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Assertions (3) and (4) easily follows from Examples 4.4.6 and 4.4.2, respectively. So we
leave their proofs to the reader. Let us only prove assertion (2).

Suppose that we are in the case (2.19.D12). Then, as we already mentioned in Exam-
ple 4.4.5, the G-action on P3 lifts to its linear action on H0(P3,OP3(1)), which splits as
a sum of two irreducible two-dimensional representation of the group G. In particular,
the projective space P3 does not contain G-fixed points and G-invariant planes, so that it
does not contain G-invariant conics and G-invariant plane cubic curves.

Observe that H0(P3,OP3(1)) splits as a direct sum of two non-isomorphic two-
dimensional irreducibleG-representations. Thus P3 contains exactly twoG-invariant lines.
One can check that the lines x0 = x3 = 0 and x1 = x2 = 0 are indeed G-invariant, so
that these are the only G-invariant lines in P3. They are not contained in S2, because its
defining equation is x0x3 = x1x2. In fact, the line x0 = x3 = 0 intersects S2 = P1 × P1

transversally by the points ([0 : 1], [1 : 0]) and ([1 : 0], [0 : 1]), and the line x1 = x2 = 0
intersects S2 = P1 × P1 transversally by the points ([0 : 1], [0 : 1]) and ([1 : 0], [1 : 0]).
Using the equation of the curve C given in Example 4.4.5, we see that none of these four
points is contained in the curve C provided that ϵ ̸= ±1.

Finally, let us show that P3 does not contain G-invariant twisted cubic curves. Sup-
pose that P3 contains a G-invariant twisted cubic curve C3. Then the G-action on C3 is
faithful and C3

∼= P1. Let G′ be the subgroup in G generated by ι and γ. Then G′ ∼= S3,
so that P1 must contain G′-orbit or length 3, which is not contain in one line, since C3

is an intersection of quadrics. Thus, P3 contains a G′-invariant plane, which is impossi-
ble, since H0(P3,OP3(1)) splits as a sum of two isomorphic two-dimensional irreducible
representations of G′. This shows that P3 contains no G-invariant twisted cubics. □

Corollary 4.4.8. If X contains a G-fixed point, then we are in the case (2.22.A4), such
point is unique, and it is not contained in the surface Q.

Corollary 4.4.9. Suppose that we are in the case (2.19.D12). Then V4 contains neither
G-fixed points nor G-invariant hyperplane sections.

Proof. The threefold V4 does not have G-fixed points away from ϕ(Q), because X does
not have G-fixed points. Moreover, the conic ϕ(Q) does not contain G-fixed points either,
since curves contracted by ϕ|Q : Q → ϕ(Q) are mapped to lines in S2. By Lemma 4.4.7,
none of such lines are G-invariant, so that V4 does not contain G-fixed points.

To prove the final assertion, recall that ψ in (4.4.3) is given by the linear system of cubic
surfaces that pass through C . Thus, if there exist a G-invariant hyperplane section of
the threefold V4, then there exists a G-invariant surface S3 in P3 that contains the curve C .
If S3 = S2 + H for some hyperplane H in P3, then H is G-invariant, which contradicts
Lemma 4.4.7. Hence, S2 ̸⊂ S3 and S3|S2 is a curve of degree (3, 3) that contains C , which
implies that S3|S2 = C + ℓ for a G-invariant line ℓ. This contradicts Lemma 4.4.7. □

Now, we are ready to give a proof of the K-polystability of the threefold X that works in
all cases (2.15.S5), (2.19.D12), (2.22.A4), (2.22.D∞). Suppose that X is not K-polystable.
By Theorem 1.2.5, there exists a G-invariant prime divisor F over X such that β(F ) ⩽ 0.
Let us seek for a contradiction.

Let Z = CX(F ). By Theorem 3.7.1, we know that Z is not a surface, so that Z is either
a G-invariant irreducible curve or a G-fixed point. Moreover, if Z is a G-fixed point, then
it follows from Corollary 4.4.8 that we are in the case (2.22.A4), and Z is the unique
G-fixed point in X, which is not contained in the surface Q.
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Lemma 4.4.10. One has Z ̸⊂ Q.

Proof. Let us compute SX(Q). Let H be a hyperplane in P3, and let u be a non-negative
real number. Observe that −KX−uQ ∼R (4−2u)π∗(H)+(u−1)E ∼R (1−u)Q+2π∗(H).
Thus, the divisor −KX − uQ is nef for u ∈ [0, 1], and it is not pseudo-effective for u > 2.
Moreover, in the notations of Section 1.7, we have

P
(
−KX − uQ

)
=

{−KX − uQ if 0 ⩽ u ⩽ 1,

(4− 2u)π∗(H) if 1 ⩽ u ⩽ 2,

and N(−KX − uQ) = (u− 1)E for u ∈ [1, 2]. Note that SX(Q) < 1 by Theorem 3.7.1.
Now, we suppose that Z ⊂ Q. Then Z is a curve. Using Corollary 1.7.26, we conclude

that S(WQ
•,•;Z) ⩾ 1. Let us show that S(WQ

•,•;Z) < 1.

Let P (u) = P (−KX−uQ) and N(u) = N(−KX−uQ). Note that Q ∼= S2
∼= P1×P1. Set

n =


3 if we are in the case (2.15.S5),

4 if we are in the case (2.19.D12),

5 if we are in the cases (2.22.A4) or (2.22.D∞).

Then (−K3
X) = 10 + 4n, E|Q ∼ OQ(3, 6− n) and

P (u)|Q ∼R

{OQ(u+ 1, 4u+ n(1− u)− 2) if 0 ⩽ u ⩽ 1,

OQ(4− 2u, 4− 2u) if 1 ⩽ u ⩽ 2.

Therefore, if Z = E|Q, then Corollary 1.7.26 gives

S
(
WQ

•,•;Z
)
=

3

10 + 4n

∫ 1

0

∫ ∞

0

vol
(
OQ(u+1− 3v, 4u+n(1− u)− 2− (6−n)v)

)
dvdu+

+
3

10 + 4n

∫ 2

1

2(4−2u)2(u−1)du+
3

10 + 4n

∫ 2

1

∫ ∞

0

vol
(
OQ(4−2u−3v, 4−2u−(6−n)v)

)
dvdu =

=
3

10 + 4n

∫ 1

0

∫ u+1
3

0

2(u+ 1− 3v)(4u+ n(1− u)− 2− (6− n)v)dvdu+

+
2

10 + 4n
+

3

10 + 4n

∫ 2

1

∫ 4−2u
3

0

2(4−2u−3v)(4−2u−(6−n)v)dvdu =
7(3 + 4n)

36(5 + 2n)
< 1.

Hence, we may assume that Z ̸= E|Q. It follow from Lemma 4.4.7 that |Z −∆| ̸= ∅,
where ∆ is the diagonal curve in Q. Thus, using Corollary 1.7.26, we see that

S
(
WQ

•,•;Z
)
⩽ S

(
WQ

•,•; ∆
)
=

=
3

10 + 4n

∫ 1

0

∫ ∞

0

vol
(
OQ(u+ 1− v, 4u+ n(1− u)− 2− v)

)
dvdu+

+
3

10 + 4n

∫ 2

1

∫ ∞

0

vol
(
OQ(4− 2u− v, 4− 2u− v)

)
dvdu =

=
3

10 + 4n

∫ 1

0

∫ u+1

0

2(u+ 1− v)(4u+ n(1− u)− 2− v)dvdu+

+
3

10 + 4n

∫ 2

1

∫ 4−2u

0

2(4− 2u− v)2dvdu =
13 + 11n

40 + 16n
< 1.

The obtained contradiction completes the proof of the lemma. □
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To deal with the case (2.22.A4), we also needs the following result:

Lemma 4.4.11. Suppose that we are in the case (2.22.A4). Let H be the G-invariant
hyperplane in P3. Then π(Z) ̸⊂ H.

Proof. Suppose that π(Z) ⊂ H. Then, using Lemma 4.4.7, we see that Z is not a point,
so that Z is a G-invariant irreducible curve in H. Let us seek for a contradiction.
Observe thatH intersects the curve C transversally by 4 distinct points, sinceH ·C = 4,

and the curve C does not contain G-orbits of length less than 4 (recall that C ∼= P1).
Note also that the action of the group G on the surface H is faithful.
Let S be the proper transform on X of the surface H, let ϖ : S → H be birational

morphism induced by π and let C = Q ∩ S. Then S is a smooth del Pezzo surface of
degree 5, the morphism φ is a G-equivariant blow up of the four intersection points H∩C ,
the curve C is a G-invariant irreducible smooth curve such that

C ∼ 2ℓ− e1 − e2 − e3 − e4,

where ℓ is the proper transform on S of a general line in H, and e1, e2, e3 and e4 are
φ-exceptional curves. Moreover, the group PicG(S) is generated by the divisor classes
ℓ and e1 + e2 + e3 + e4. Furthermore, the cone of effective G-invariant divisors on S is
generates by C and e1 + e2 + e3 + e4, since C

2 = 0. Thus, since Z is irreducible, we have

Z ∼ aℓ− b(e1 + e2 + e3 + e4)

for some integers a and b ⩽ a
2
. Since H does not have G-invariant lines by Lemma 4.4.7,

the linear system |ℓ| does not have G-invariant curves. Hence, we see that a ⩾ 2, so that
the linear system |Z − C| is not empty. Observe also that |C| is a base point free pencil
that contains two G-invariant smooth curves [50, Lemma 6.2.2]. One of these curves is C.
Denote the other curve by C ′.

As in the proof of Lemma 4.4.10, let us compute SX(S). Take u ∈ R⩾0. Then

−KX−uS ∼R (4−u)π∗(H)−E ∼R Q+(2−u)π∗(H) ∼R (u−1)Q+(2−u)
(
π∗(3H)−E

)
,

and the restriction (−KX − uS)|Q is a divisor on Q ∼= P1 × P1 of degree (3 − u, 1 − u).
Let P (u) = P (−KX − uS) and N(u) = N(−KX − uS). Then

P
(
−KX − uS

)
=

{
−KX − uS if 0 ⩽ u ⩽ 1,

(2− u)
(
π∗(3H)− E

)
if 1 ⩽ u ⩽ 2,

and we have

N
(
−KX − uS

)
=

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)S if 1 ⩽ u ⩽ 2.

Here, we used notations of Section 1.7. Note that SX(S) < 1 by Theorem 3.7.1.
Since SX(S) < 1, S(W S

•,•;Z) ⩾ 1 by Corollary 1.7.26. Let us show that S(W S
•,•;Z) < 1.

It is enough to do this in the cases Z = C and Z = C ′. Indeed, the case Z = C is
special, because we have N(u)|S = (u−1)C for every u ∈ [1, 2]. Moreover, if Z ̸= C, then
S(W S

•,•;Z) ⩽ S(W S
•,•;C

′), because |Z −C ′| ≠ ∅. Observe also that Corollary 1.7.26 gives

S(W S
•,•;C) =

1

10

∫ 1

0

∫ ∞

0

vol
((

−KX − uS
)∣∣
S
− vC

)
dvdu+

1

10

∫ 2

1

5(u− 1)(2− u)2du+

+
1

10

∫ 2

1

∫ ∞

0

vol
(
(2−u)

(
π∗(3H)−E

)∣∣
S
−vC

)
dvdu =

5

120
+S(W S

•,•, C
′) ⩾ S(W S

•,•;C
′).
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because (π∗(3H)−E)2·S = 5 and C ∼ C ′. Thus, it is enough to show that S(W S
•,•;C) < 1.

For any u ∈ [0, 1], observe that(
−KX − uS

)∣∣
S
− vC ∼R

4− u− 2v

2
C +

2− u

2

(
e1 + e2 + e3 + e4

)
.

Therefore, if 0 ⩽ v ⩽ 1, then this divisor is nef, and its volume is equal to (u−2)(u+4v−6).
Similarly, if 1 ⩽ v ⩽ 4−u

2
, then its Zariski decomposition is(

−KX − uS
)∣∣
S
− vC ∼R (4− u− 2v)ℓ︸ ︷︷ ︸

positive part

+(v − 1)
(
e1 + e2 + e3 + e4

)︸ ︷︷ ︸
negative part

,

so that its volume is (4 − u − 2v)2. For v > 4−u
2
, this divisor is not pseudo-effective, so

that its volume is zero. Thus, we have∫ 1

0

∫ ∞

0

vol
((

−KX −uS
)∣∣
S
− vC

)
dvdu =

∫ 1

0

∫ 4−u
2

0

vol
((

−KX −uS
)∣∣
S
− vC

)
dvdu =

=

∫ 1

0

∫ 1

0

(u− 2)(u+ 4v − 6)dvdu+

∫ 1

0

∫ 4−u
2

1

(4− u− 2v)2dvdu =
143

24
.

Similarly, if u ∈ [1, 2], then, using (π∗(3H)− E)|S ∼ 3ℓ− e1 − e2 − e3 − e4, we get

(2− u)
(
π∗(3H)− E

)∣∣
S
− vC ∼R

6− 3u− 2v

2
C +

2− u

2

(
e1 + e2 + e3 + e4

)
.

Hence, if 0 ⩽ v ⩽ 2− u, then this divisor is nef, and its volume is (u− 2)(5u+ 4v − 10).
Likewise, if 2− u ⩽ v ⩽ 6−3u

2
, then its Zariski decomposition is(

−KX − uS
)∣∣
S
− vC ∼R (6− 3u− 2v)ℓ︸ ︷︷ ︸

positive part

+(v − 2 + u)
(
e1 + e2 + e3 + e4

)︸ ︷︷ ︸
negative part

,

and its volume is (6− 3u− 2v)2. For v > 6−3u
2

, this divisor is not pseudo-effective. Then∫ 2

1

∫ ∞

0

vol
(
(2− u)

(
π∗(3H)− E

)∣∣
S
− vC

)
dvdu =

=

∫ 2

1

∫ 2−u

0

(u− 2)(5u+ 4v − 10)dvdu+

∫ 2

1

∫ 6−3u
2

2−u
(6− 3u− 2v)2dvdu =

19

24
.

Therefore, we see that S(W S
•,•;C) =

5
120

+ 1
10

(
143
24

+ 19
24

)
= 43

60
< 1. The obtained contra-

diction completes the proof of the lemma. □

Using Lemma 1.4.4, we see that αG,Z(X) < 3
4
. Now, using Lemma 1.4.1, we see that

there are a G-invariant effective Q-divisor D on the threefold X and a positive rational
number λ < 3

4
such that D ∼Q −KX and Z is contained in the locus Nklt(X,λD).

Lemma 4.4.12. Suppose that the locus Nklt(X,λD) contains a G-irreducible surface.
Then either S = Q or π(S) is a G-invariant hyperplane in P3.

Proof. By assumption, we haveD = γS+∆, where γ is a rational number such that γ ⩾ 1
λ
,

and ∆ is an effective Q-divisor on X whose support does not contain S. If S = E, then

2Q+ E ∼ π∗(4H)− E ∼Q γE +∆,
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which implies that 2Q− (γ + 1)E is pseudo-effective. The latter is not the case, because
the cone Eff(X) is generated by Q and E. Then S ̸= E, so that S ∼ π∗(OP3(a))− bE for
some positive integer a and some non-negative integer b ⩽ a

2
. Moreover, we have γa ⩽ 4,

because OP3(4) ∼Q γπ(S) + π(∆). Thus, either a = 1 or a = 2, since γ > 4
3
.

If a = 2 and b = 0, then we immediately obtain a contradiction as in the case S = E.
If a = 2 and b = 1, then S = Q, because S2 is the only quadric surface in P3 that

contains the curve C . Thus, we conclude that S is a G-invariant plane. □

Therefore, if we are not in the case (2.22.A4), then Q is the only surface (a priori)
that can be contained in the locus Nklt(X,λD), because P3 does not contain G-invariant
hyperplanes in the cases (2.15.S5), (2.19.D12) and (2.22.D∞) by Lemma 4.4.7.

Lemma 4.4.13. The subvariety Z is not point.

Proof. Suppose that Z is a point. Then, by Lemma 4.4.7, we are in the case (2.22.A4),
and Z is the unique G-invariant point in the threefold X. For transparency, let P = Z.
Let H be the unique G-invariant plane in P3. Then P ̸∈ H, so that Nklt(X,λD) does not
contain surfaces that pass through P by Lemma 4.4.12.

Now, we observe that the action of the group G on the plane H is given by the standard
irreducible three-dimensional representation of the group G ∼= A4. The second symmetric
power of this representations is a sum of all irreducible representations of the group G.
This can be verified using the following GAP script:

G:=SmallGroup(12,3);

T:=CharacterTable(G);

Ir:=Irr(T);

V:=Ir[4];

S:=SymmetricParts(T,[V],2);

MatScalarProducts(Ir,S);

Geometrically, this means that H contains exactly three G-invariant irreducible conics.
Let us denote by S ′

2, S
′′
2 and S ′′′

2 the quadric cones in P3 over these conics with vertex P ,

and let us also denote by S̃ ′
2, S̃

′′
2 and S̃ ′′′

2 their proper transforms on X, respectively.
We will use these surfaces a bit later.

Second we observe that multP (D) ⩽ 4. This follows from the fact that π(D) ∼Q 4H.

Let f : X̂ → X be the blow up of the point P . Denote by F the f -exceptional surface.

Let D̂ be the proper transform on X̂ of the divisor D, let Ŝ ′
2, Ŝ

′′
2 and Ŝ ′′′

2 be the proper

transforms on X of the surfaces S̃ ′
2, S̃

′′
2 and S̃ ′′′

2 , respectively. Then

KX̂ + λD̂ +
(
λmultP (D)− 2

)
F ∼Q f

∗(KX + λD
)
,

so that (X̂, λD̂ + (λmultP (D)− 2)F ) is not Kawamata log terminal at some point in F .

Since λmultP (D)− 2 ⩽ 4λ− 2 < 1, we conclude that the log pair (X̂, λD̂+F ) is also not
log canonical at some point in F . Then, using Theorem A.2.1, we conclude that the log

pair (F, λD̂|F ) is not log canonical.

Now, we identify F = P2. Since λmultP (D) < 3, the divisor −(KF +λD̂|F ) is ample, so

that Nklt(F, λD̂|F ) is connected by Corollary A.1.7. But the G-action on F is given by its
irreducible three-dimensional representation, so that F does not contain G-fixed points

and G-invariant lines. This implies that Nklt(F, λD̂|F ) is a G-invariant irreducible conic.
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But F contains exactly three G-invariant conics — the conics F ∩ Ŝ ′
2, F ∩ Ŝ ′′

2 , F ∩ Ŝ ′′′
2 .

Thus, without loss of generality, we may assume that Nklt(F, λD̂|F ) = F ∩ Ŝ ′
2.

Let C = F ∩ Ŝ ′
2. We proved that C = Nklt(F, λD̂|F ). In fact, our proof implies that

• λmultP (D) > 2, so that the divisor λD̂ + (λmultP (D)− 2)F is effective.

• Nklt(X̂, λD̂ + (λmultP (D)− 2)F ) ∩ F ⊂ C.
Applying [126, Corollary 5.49] to (X̂, λD̂ + (λmultP (D) − 2)F ) and the morphism f ,

we see that Nklt(X̂, λD̂ + (λmultP (D)− 2)F )) ∩ F = C. since F has no G-fixed points.

Write D = aS̃ ′
2 +∆, where ∆ is an effective Q-divisor whose support does not contain

the surface S̃ ′
2, and a is a non-negative rational number. Then λa ⩽ 1 by Lemma 4.4.12.

Let ∆̂ be the proper transform of the divisor ∆ on the threefold X̂. Then

C ⊂ Nklt
(
X̂, λaŜ ′

2 + λ∆̂ + (2λa+ λmultP (∆)− 2)F
)
.

Hence, using Theorem A.2.1 again, we get C ⊂ Nklt(Ŝ ′
2, λ∆̂|Ŝ′

2
+(2λa+λmultP (∆)−2)C).

This simply means that ∆̂
∣∣
Ŝ′
2
= bC + Ω, where b is a non-negative rational number such

that λb+ 2λa+ λmultP (∆)− 2 ⩾ 1, and Ω is an effective Q-divisor on Ŝ ′
2 whose support

does not contain the curve C. Thus, we see that b ⩾ 3
λ
−a+multP (∆) > 4−a+multP (∆).

Now, we let ℓ̂ be the proper transform on X̂ of a general ruling of the cone S ′
2. Then

ℓ̂ · ∆̂ = ℓ̂ ·
(
(π ◦ f)∗

(
−KP3 − aS ′

2

)
− f ∗(E)−multP (∆)F

)
= 4− 2a−multP (∆).

Then 4 − 2a − multP (∆) = ℓ̂ · ∆̂ = b + ℓ̂ · Ω ⩾ b > 4 − a + multP (∆), which is absurd.
This completes the proof of the lemma. □

Therefore, we see that Z is a G-invariant irreducible curve.

Lemma 4.4.14. The curve Z is rational.

Proof. Let D = ϕ(D) and Z = ϕ(Z), where ϕ is the contraction of Q in (4.4.3). Since
Z ̸⊂ Q, we see that Z is a G-invariant irreducible curve, the induced map ϕ|Z : Z → Z
is birational, and Z ⊂ Nklt(Vd, λD). If Nklt(Vd, λD) does not have two-dimensional
components, then Z is a smooth rational curve by Corollary A.1.17.
To complete the proof, we may assume that Nklt(Vd, λD) contains a G-irreducible

surface S. Let S be its proper transform on X. Then S ⊆ Nklt(X,λD) and S ̸= Q, so
that π(S) is a hyperplane in P3 by Lemma 4.4.12. Then we must be in the case (2.22.A4),
so that d = 5, and the surface S is a hyperplane section of the threefold V5 ⊂ P5.

By Lemma 4.4.11, the curve π(Z) is not contained in π(S), so that Z ̸⊂ S.
Write D = γS+∆, where γ is a rational number such that γ ⩾ 1

λ
, and ∆ is an effective

Q-divisor such that S ̸⊂ Supp(∆). Then Z ⊂ Nklt(V5, λ∆). But ∆ ∼Q −(1 − γ
2
)KV5 ,

so that Z is rational by Corollary A.1.17, since Nklt(V5, λ∆) does not contain surfaces. □

Corollary 4.4.15. If we are in one of the cases (2.15.S5) or (2.19.D12), then Z ̸⊂ E.

Proof. By Lemma 4.4.14, the curve Z is rational. But π(Z) is not a point, since C does
not contain G-fixed points by Lemma 4.4.7. Therefore, if Z ⊂ E, then π(Z) = C , which
implies that C is also rational. But C is irrational in the cases (2.15.S5) or (2.19.D12), □
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By Lemma 4.4.15, we see that π(Z) is a G-invariant rational curve in the case (2.15.S5),
which contradicts Lemma 4.4.7. Thus, we see that the case (2.15.S5) is impossible, which
we already know from Example 1.5.22. In the remaining part of the section, we will show
that the cases (2.19.D12), (2.22.A4) and (2.22.D∞) are also impossible.

Lemma 4.4.16. One has Z ̸⊂ E.

Proof. Suppose that Z ⊂ E. Let us seek for a contradiction. Using Corollary 4.4.15, we
see that we are in one of the cases (2.22.A4) or (2.22.D∞). Then C is a smooth rational
quartic curve, so that E ∼= Fn for some n ∈ Z⩾0. Let us show that E ∼= F2 or E ∼= P1×P1.
Let s be a section of the projection E → C such that s2 = −n, and let l be its fiber.

Then −E
∣∣
E
∼ s + kl for some integer k. Then −n + 2k = E3 = −c1(NC /P3) = −14, so

that k = n−14
2

. Then

Q
∣∣
E
∼
(
π∗(OP3(2)

)
− E

)∣∣
E
∼ s+ (k + 8)l = s+

n+ 2

2
l,

which implies that Q|E ̸∼ s. Moreover, we know that Q
∣∣
E
is a smooth irreducible curve,

since the quadric surface S2 is smooth. Thus, since Q
∣∣
E
̸= s, we have

0 ⩽ Q
∣∣
E
· s =

(
s+

n+ 2

2
l
)
· s = −n+

n+ 2

2
=

2− n

2

so that n = 0 or n = 2. Note that n = 0 in the case (2.22.D∞) by [62, Theorem 3.2].
Now, we can obtain a contradiction arguing exactly as in the proof of Lemma 4.4.10.

But there is a simpler way to do this. Write D = aE+∆, where ∆ is an effective Q-divisor
whose support does not contain the surface E, and a is a non-negative rational number.
Then λa ⩽ 1 by Lemma 4.4.12.

Note that 2Q+E ∼ −KX , and Z ̸⊂ Nklt(X,λ2Q+λE), since Z ̸⊂ Q by Lemma 4.4.10.
Thus, using Lemma A.4.12, we can replace D by an effective Q-divisor D′ ∼Q D such that

• Z ⊂ Nklt(X,λD′),
• the support of the divisor D′ does not contain either Q or E (or both of them).

Therefore, we may assume that Supp(D) does not contain Q or E. In particular, if a > 0,
then ∆|Q is an effective Q-divisor on the surface Q ∼= P1 × P1 of degree (3 − a, 1 − 3a).
This shows that we always has the inequality a ⩽ 1

3
.

Using Theorem A.2.1, we get Z ⊂ Nklt
(
E, λ∆|E). This means that ∆

∣∣
E
= bZ + Ω,

where b is a rational number such that b ⩾ 1
λ
> 4

3
, and Ω is an effective Q-divisor whose

support does not contain the curve Z. On the other hand, if E ∼= P1 × P1, then

bZ + Ω = ∆
∣∣
E
∼Q −KX

∣∣
E
− aE

∣∣
E
∼Q s+ 9l+ a

(
s− 7l

)
= (1 + a)s+ (9− 7a)l,

because −E|E ∼ s− 7l in this case. Similarly, if E ∼= F2, then

bZ + Ω = ∆
∣∣
E
∼Q −KX

∣∣
E
− aE

∣∣
E
∼Q s+ 10l+ a

(
s− 6l

)
= (1 + a)s+ (10− 6a)l.

because −E|E ∼ s−6l in this case. In both cases, we immediately obtain a contradiction:

4

3
<

1

λ
⩽ b ⩽ bZ · l ⩽ bZ · l+ Ω · l =

(
bZ + Ω

)
· l = 1 + a ⩽

4

3
,

because Z · l ̸= 0, since π(Z) is not a point by Lemma 4.4.7. □
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Thus, we see that π(Z) is a G-invariant rational curve in P3 such that π(Z) ̸⊂ S2.
Moreover, if we are in the case (2.22.A4), then π(Z) is not contained in the G-invariant
hyperplane in P3 by Lemma 4.4.11.

Lemma 4.4.17. The curve π(Z) is a G-invariant line in P3.

Proof. Let D̂ = π(D) and Ẑ = π(Z). Then Ẑ ⊂ Nklt(P3, λD̂), and Ẑ is not contained in

any surface contained in Nklt(P3, λD̂) by Lemma 4.4.12. Now, apply Corollary A.1.13. □

Thus, using Lemma 4.4.7, we conclude that we are in the case (2.19.A4) or (2.22.D∞).
Then P3 contains two G-invariant lines by Lemma 4.4.7. These G-invariant lines are
the lines x0 = x3 = 0 and x1 = x2 = 0. For simplicity, let us call them L∞ and L0,
respectively. We know that either π(Z) = L∞ or Z = π(L0).
Let H be a a general hyperplane in P3 that contains π(Z), and let S be its proper

transform on X. Then S is smooth. Moreover, one of the following possibilities holds:

• if we are in the case (2.19.A4), then S is a smooth del Pezzo surface of degree 4,
• if we are in the case (2.22.D∞), then S is a smooth del Pezzo surface of degree 5.

Let u be a non-negative real number. Observe that −KX − uS ∼R (2 − u)π∗(H) + Q.
This implies that −KX −uS is nef for every u ∈ [0, 1], it is not pseudo-effective for u > 2.
Moreover, in the notations of Section 1.7, we have

P (−KX − uS) =

{
(4− u)π∗(H)− E if 0 ⩽ u ⩽ 1,

(2− u)
(
3π∗(H)− E

)
if 1 ⩽ u ⩽ 2,

and we have

N(−KX − uS) =

{
0 if 0 ⩽ u ⩽ 1,

(1− u)Q if 1 ⩽ u ⩽ 2,

so that Z ̸⊂ N(−KX − uS). Moreover, we have SX(S) < 1 by Theorem 3.7.1.
Then S(W S

•,•;Z) ⩾ 1 by Corollary 1.7.26. Let us compute S(W S
•,•;Z).

Let ϖ : S → H be the birational morphism induced by π. Then φ contracts d disjoint
smooth curves, where d is the degree of the curve C . Denote them by e1, e2, . . . , ed.
Then E|S = e1+e2+ · · ·+ed. Let C = Q|S, and let ℓ be the proper transform of a general
line in H on the surface S. Then φ(C) is the conic H ∩ S2, and

C ∼ 2ℓ−
9−d∑
i=1

ei,

so that C2 = 4− d ⩽ 0.

Lemma 4.4.18. Suppose that π(Z) ∩ C = ∅. Then S(W S
•,•;Z) < 1.

Proof. By Lemma 4.4.17, we have Z ∼ ℓ. Thus, if u ∈ [0, 1] and v ∈ R⩾0, then

P (−KX − uS)|S − vZ ∼R (4− u− v)ℓ−
9−d∑
i=1

ei ∼R (2− u− v)ℓ+ C.

which implies the following assertions:

• the divisor P (−KX − uS)
∣∣
S
− vZ is not pseudo-effective for v > 2− u,

• if d = 4, then P (−KX − uS)
∣∣
S
− vZ is nef ⇐⇒ v ⩽ 2− u,

• if d = 5, then P (−KX − uS)
∣∣
S
− vZ is nef ⇐⇒ v ⩽ 3−2u

2
,
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• if d = 5 and 3−2u
2

⩽ v ⩽ 2−u, the Zariski decomposition of P (−KX−uS)
∣∣
S
−vZ is

(2− u− v)
(
5ℓ− 2e1 − 2e2 − 2e3 − 2e4 − 2e5

)︸ ︷︷ ︸
positive part

+(2u+ 2v − 3)C︸ ︷︷ ︸
negative part

.

Thus, if u ∈ [0, 1], 0 ⩽ v ⩽ 2−u and d = 4, then vol(P (−KX−uS)|S−vZ) = (4−u−v)2−4.
Likewise, if u ∈ [0, 1], 0 ⩽ v ⩽ 2− u and d = 5, then

vol
(
P (−KX − uS)

∣∣
S
− vZ

)
=


(4− u− v)2 − 5 if v ⩽

3− 2u

2
,

5(2− u− v)2 if v ⩾
3− 2u

2
.

Similarly, if u ∈ [1, 2] and v ∈ R⩾0, then P (−KX−uS)|S−vZ ∼R (2−u−v)ℓ+(2−u)C,
which implies the following assertions:

• the divisor P (−KX − uS)
∣∣
S
− vZ is not pseudo-effective for v > 2− u,

• if d = 4, then P (−KX − uS)
∣∣
S
− vZ is nef ⇐⇒ 0 ⩽ v ⩽ 2− u,

• if d = 5, then P (−KX − uS)
∣∣
S
− vZ is nef ⇐⇒ 0 ⩽ v ⩽ 2−u

2
,

• if d = 5 and 2−u
2

⩽ v ⩽ 2−u, the Zariski decomposition of P (−KX−uS)
∣∣
S
−vZ is

P (−KX −uS)
∣∣
S
− vZ ∼R (2− u− v)

(
5ℓ− 2e1 − 2e2 − 2e3 − 2e4 − 2e5

)︸ ︷︷ ︸
positive part

+(2u+ v − 3)C︸ ︷︷ ︸
negative part

.

Therefore, if u ∈ [1, 2], 0 ⩽ v ⩽ 2− u and d = 4, then

vol
(
P (−KX − uS)

∣∣
S
− vZ

)
= (6− 3u− v)2 − 4(2− u)2.

Likewise, if u ∈ [1, 2], 0 ⩽ v ⩽ 2− u and d = 5, then

vol
(
P (−KX − uS)

∣∣
S
− vZ

)
=


(6− 3u− v)2 − 5(2− u)2 if v ⩽

2− u

2
,

5(2− u− v)2 if v ⩾
2− u

2
.

Now we are ready to compute S(W S
•,•;Z). If d = 4, then Corollary 1.7.26 gives

S(W S
•,•;Z) =

3

26

∫ 1

0

∫ 2−u

0

((4−u−v)2−4)dudv+
3

26

∫ 2

1

∫ 2−u

0

(
(6−3u−v)2−4(2−u)2

)
dudv,

so that S(W S
•,•;Z) =

39
54
< 1. Similarly, if d = 5, then

S(W S
•,•;Z) =

1

10

∫ 1

0

∫ 3−2u
2

0

((4− u− v)2 − 5)dudv +
1

10

∫ 1

0

∫ 2−u

3−2u
2

5(2− u− v)2dudv+

+
1

10

∫ 2

1

∫ 2−u
2

0

(
(6−3u−v)2−5(2−u)2

)
dudv+

1

10

∫ 2

1

∫ 2−u

2−u
2

5(2−u−v)2dudv =
119

240
< 1.

This completes the proof of the lemma. □

By Lemma 4.4.7, the lines L0 and L∞ are disjoint from the curve C in the case (2.19.A4).
Therefore, we are in the case (2.22.D∞), so that X is the threefold from Example 4.4.2,
and π(Z) is a line such that π(Z) ∩ C ̸= ∅.
Using Lemma 4.4.7, we see that π(Z) = L∞ and L∞ ∩ C = [0 : 1 : 0 : 0] ∪ [0 : 0 : 1 : 0].

We may assume that ϖ(e1) = [0 : 1 : 0 : 0] and ϖ(e2) = [0 : 0 : 1 : 0]. Then Z ∼ ℓ−e1−e2,
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so that Z is a (−1)-curve on the surface S that is disjoint from the (−1)-curves e3 and e4.
Let L34 be the proper transform on S of the line in H that contains ϖ(e3) and ϖ(e4).
If u ∈ [0, 1] and v ∈ R⩾0, then P (−KX−uS)|S−vZ ∼R (3−u−v)L+(2−u)(e1+e2)+L34,

which implies the following assertions:

• the divisor P (−KX − uS)
∣∣
S
− vZ is not pseudo-effective for v > 3− u,

• if 0 ⩽ v ⩽ 1, then P (−KX − uS)
∣∣
S
− vZ is nef,

• if 1 ⩽ v ⩽ 2− u, then the Zariski decomposition of P (−KX − uS)
∣∣
S
− vZ is

P (−KX − uS)
∣∣
S
− vZ ∼R (3− u− v)(L+ e1 + e2) + L34︸ ︷︷ ︸

positive part

+(v − 1)(e1 + e2)︸ ︷︷ ︸
negative part

.

• if 2− u ⩽ v ⩽ 3− u, then the Zariski decomposition of P (−KX − uS)
∣∣
S
− vZ is

P (−KX−uS)
∣∣
S
−vZ ∼R (3− u− v)(L+ e1 + e2 + L34)︸ ︷︷ ︸

positive part

+(v − 1)(e1 + e2) + (v + u− 2)L34︸ ︷︷ ︸
negative part

.

Therefore, if u ∈ [0, 1] and 0 ⩽ v ⩽ 3− u, then

vol
(
P (−KX − uS)

∣∣
S
− vZ

)
=


(4− u− v)2 − 2(v − 1)2 − 2 if v ⩽ 1,

(4− u− v)2 − 2 if 1 ⩽ v ⩽ 2− u,

2(3− u− v)2 if 2− u ⩽ v ⩽ 3− u.

If u ∈ [1, 2] and v ∈ R⩾0, then P (−KX−uS)|S−vZ ∼R (4−2u−v)L+(2−u)(e1+e2+L34),
which implies the following assertions:

• the divisor P (−KX − uS)
∣∣
S
− vZ is not pseudo-effective for v > 4− 2u,

• if 0 ⩽ v ⩽ 2− u, then P (−KX − uS)
∣∣
S
− vZ is nef,

• if 2− u ⩽ v ⩽ 4− 2u, then the Zariski decomposition of P (−KX − uS)
∣∣
S
− vZ is

P (−KX − uS)
∣∣
S
− vZ ∼R (4− 2u− v)(L+ e1 + e2 + L34)︸ ︷︷ ︸

positive part

+(v + u− 2)(e1 + e2 + L34)︸ ︷︷ ︸
negative part

.

Hence, if u ∈ [0, 2] and 0 ⩽ v ⩽ 4− 2u, then

vol
(
P (−KX−uS)

∣∣
S
−vZ

)
=

{
(6− 3u− v)2 − 2(u+ v − 2)2 − 2(2− u)2 if 1 ⩽ v ⩽ 2− u,

2(4− 2u− v)2 if 2− u ⩽ v ⩽ 4− 2u.

Now, using Corollary 1.7.26, we can compute S(W S
•,•;Z) as follows:

S(W S
•,•;Z) =

1

10

∫ 1

0

∫ 1

0

(
(4− u− v)2 − 2(v − 1)2 − 2

)
dudv+

+
1

10

∫ 1

0

∫ 2−u

1

(
(4− u− v)2 − 2

)
dudv +

1

10

∫ 1

0

∫ 3−u

2−u
2(3− u− v)2dudv+

+
1

10

∫ 2

1

∫ 2−u

0

(
(6− 3u− v)2 − 2(u+ v − 2)2 − 2(2− u)2

)
dvdu+

+
1

10

∫ 2

1

∫ 4−2u

2−u
2(4− 2u− v)2dvdu = 1.

Thus, using Corollary 1.7.26 again, we conclude that SX(F ) = 1 as well, which is not
the case by Theorem 3.7.1. The obtained contradiction proves that X is K-polystable.
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4.5. Threefolds fibred into del Pezzo surfaces. Many smooth Fano threefolds admit
a surjective morphism to P1 whose general fiber is a smooth del Pezzo surface. However, if
we want this del Pezzo fibration to be a Mori fibred space, the threefold belongs to one of
the families �2.1, �2.2, �2.3, �2.4, �2.5, �2.7, �2.10, �2.14, �2.18, �2.25, �2.33,
�2.34. In Section 4.3, we already proved that general Fano threefolds in the families
�2.1, �2.3, �2.5, �2.10, �2.14 are K-stable, and we also proved that every smooth
Fano threefold in the family �2.25 is K-stable. On the other hand, the unique smooth
Fano threefold �2.33 is K-unstable by Theorem 3.7.1. The family �2.34 contains unique
smooth threefold: P1×P2, and it is K-polystable. The goal of this section is to show that
general members of the families �2.2, �2.4, �2.7, �2.18 are K-stable.

First, we show that general members of the family �2.2 are K-stable. Every smooth
member of this family is a double cover of P1×P2 branched over a surface of degree (2, 4),
so that the projection to P1 gives a fibration into del Pezzo surfaces of degree 2.

Lemma 4.5.1. Let X be a smooth Fano threefolds �2.2 that satisfies the following gen-
erality condition: for every fiber S of the natural projection X → P1, the surface S has at
most Du Val singularities and α(S) ⩾ 3

4
. Then α(X) ⩾ 3

4
.

Proof. The assertion follows from Theorem 1.4.11, since Theorem 1.4.11(1) cannot hold,
since −KX ∼ S+HL, where HL is a pull back of a line via the conic bundle X → P2. □

If applicable, this lemma implies that a general member of the family �2.2 is K-stable
by Theorem 1.4.9, because all smooth Fano threefolds �2.2 have finite automorphism
groups [42]. Thus, we have to show that smooth Fano threefolds�2.2 that satisfy the gen-
erality condition of Lemma 4.5.1 do exist. This is done in the following example:

Example 4.5.2. Let X be a double cover of P1 × P2 that is branched over a divisor of
degree (2, 4) that is given by

u2
(
z3x+ yx3 − y3z

)
+ v2(x3z − xy3 − z4) = 0.

where ([u : v], [x : y : z]) are coordinates on P1×P2. Then the Fano threefold X is smooth.
Moreover, let S be a fiber of the natural projection X → P1 over a point P ∈ P1. Then S
has at most Du Val singularities and α(SP ) ⩾ 3

4
. Indeed, if the surface S is smooth,

then α(S) ⩾ 3
4
by Lemma A.5.4. Therefore, we may assume that S is singular. In

particular, P ̸= [0 : 1] and P ̸= [1 : 0]. Let t = v2

u2
. Then S is a double cover of P2,

which is branched over the quartic curve C4 = {z3x+ yx3 − y3z+ t(x3z− xy3 − z4) = 0}.
Note that C4 must be singular since S is singular. On the other hand, one can show that
the curve C4 is singular if and only if t is a root of the following polynomial:

14348907t27 + 43046721t25 + 47298249t24 + 73279809t23 + 88219206t22+

+ 160219620t21 + 136305504t20 + 141235569t19 + 230867372t18 + 180568521t17+

+ 91887093t16 + 200311947t15 + 129699756t14 + 50748768t13 − 18457896t12+

+ 103837464t11 − 60378876t10 − 55596213t9 − 32802534t8 − 6278553t7−
− 53247369t6 − 13308057t5 − 1577457t4 − 12252303t3 − 1058841t2 − 823543 = 0.

This polynomial is irreducible over Q. The singular locus of C4 consists of one ordinary
double point, so that we can apply Lemma A.4.15 to find α(S). Let O be the singular
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point of the curve C4. Then there are two lines L and L′ in P2 such that (L · C4)O ⩾ 3
and (L′ · C4)O ⩾ 3. Then Lemma A.4.15 gives

α(S) =


2

3
if (L · C4)O = 4 or (L′ · C4)O = 4,

3

4
if (L · C4)O = (L′ · C4)O = 3.

Note that L + L′ is defined over Q(t). Taking an appropriate change of coordinates, we
can assume that O = [0 : 0 : 1], and C4 is given by

z2q2(x, y) + zq3(x, y) + q4(x, y) = 0

where q2(x, y), q3(x, y) and q4(x, y) are polynomials of degrees 2, 3 and 4, respectively.
The quadratic form q2(x, y) is not degenerate (this is how we check that S has an ordinary
double point at O), and q2(x, y) = 0 define L + L′. Then (L · C4)O = (L′ · C4)O = 3 if
and only if the forms q2(x, y) and q3(x, y) are coprime. One can check that this is indeed
the case, so that α(S) = 3

4
by Lemma A.4.15.

Thus, using Lemma 4.5.1 and Theorem 1.4.9, we conclude that a general member of
the family �2.2 is K-stable. By Theorem 1.1.12, this also follows from Theorem 1.4.7
and the following

Example 4.5.3. Let ω be a primitive cubic root of unity, and let π : X → P1 × P2 be
a double cover branched over a smooth surface of degree (2, 4) that is given by

u2
(
x4 + y4 + z4

)
+ v2

(
x4 + ωy4 + ω2z4

)
= 0,

where ([u : v], [x : y : z]) are coordinates on P1 × P2. Then X is a smooth Fano threefold
in the family �2.2. It admits a faithful action of the group G = µ2

2 × (µ2
4 ⋊ µ3), where

the generator of one of the copies of µ2 is the Galois involution of the cover π, the generator
of another copy of µ2 acts by changing the sign of u and preserves all other coordinates,
generators of the two copies of µ4 multiply y0 (respectively, y1) by

√
−1 and preserve all

other coordinates, and a generator of µ3 acts by

u 7→ u, v 7→ ωv, x 7→ z, y 7→ x, z 7→ y.

The natural projection X → P2 is G-equivariant, so that it gives a homomorphism of
groups G → Aut(P2). Denote its image by Γ. Then Γ ∼= µ2

4 ⋊ µ3. Observe that P2 does
not contain Γ-invariant lines, which implies that it does not contain Γ-invariant rational
curves, because Aut(P1) does not have a subgroup isomorphic to Γ. Then X contains
neither G-invariant points nor G-invariant rational curves. Therefore, applying Theo-
rem 1.4.11 with µ = 1, we see that αG(X) ⩾ 1, because condition Theorem 1.4.11(1)
cannot hold (see the proof of Lemma 4.5.1).

Every smooth Fano threefold in the family �2.4 is a blow up of P3 in a smooth curve
that is the complete intersection of two cubic surfaces, so that admits a fibration into
cubic surfaces. Using this observation, one can prove the following

Lemma 4.5.4 ([43, Lemma 7.2]). Let X be a general enough smooth Fano threefold �2.4.
Then α(X) ⩾ 3

4
.

Since smooth Fano threefolds �2.4 have finite automorphism groups [42], Lemma 4.5.4
and Theorem 1.4.9 imply that general smooth Fano threefolds �2.4 must be K-stable.
By Theorem 1.1.12, this also follows from Theorem 1.4.7 and the following
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Example 4.5.5. Let C be the curve in P3 that is given by{
x30 + x31 + λ(x32 + x33) = 0,

λ(x30 − x31) + x32 − x33 = 0,

where λ ∈ C \ {0,±1,±i}. Then C is a smooth curve. Let X → P3 be a blow up of this
curve. Then X is a smooth Fano threefold �2.4. Observe that Aut(X) ∼= Aut(P3,C ),
so that we can identify these two groups. Let G = Aut(P3,C ). Let us describe this group.
Note that G contains transformations

[x0 : x1 : x2 : x3] 7→
[
x0 : ω

ax1 : ω
bx2 : ω

cx3
]

for all a, b, c in {0, 1, 2}, where ω is a primitive cube root of unity. These automorphisms
generate a subgroup in G isomorphic to µ3

3. Note also that the group G contains two
involutions

[x0 : x1 : x2 : x3] 7→ [x1 : x0 : x3 : x2]

and

[x0 : x1 : x2 : x3] 7→ [x2 : −x3 : x0 : −x1],
which generate a subgroup isomorphic to the Klein four group µ2

2. Thus, we constructed
a subgroup in G that is isomorphic to µ3

3 ⋊ µ2
2. On the other hand, the group G must

permute the points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1], because these
are the vertices of all cubic cones that are contained in the pencil generated by the cubic
surfaces x30 + x31 + λ(x32 + x33) = 0 and λ(x30 − x31) + x32 − x33 = 0. Using this, one can show
that G ∼= µ3

3 ⋊ µ2
2 when λ is general enough. In fact, one can show that

G =


µ3

3 ⋊ A4 if λ4 − 2λ3 + 2λ2 + 2λ+ 1 = 0,

µ3
3 ⋊D8 if λ4 + 6λ2 + 1 = 0,

µ3
3 ⋊ µ2

2 otherwise.

In each case, we use Theorem 1.4.11 to prove αG(X) ⩾ 1 as in the proof of Lemma 4.3.12.
Thus, the threefold X is K-stable by Theorem 1.4.7 and Corollary 1.1.6.

Now, let us show that general smooth Fano threefolds �2.7 are K-stable. To do this,
let Q, Q1 and Q2 be quadrics hypersurfaces in P4 that are given by the equations

x20 + x21 + x22 + x23 + x24 = 0,

x20 + ξ5x
2
1 + ξ25x

2
2 + ξ35x

2
3 + ξ45x

2
4 = 0,

ξ45x
2
0 + ξ35x

2
1 + ξ25x

2
2 + ξ5x

2
3 + x24 = 0,

respectively, where ξ5 is a primitive fifth root of unity. Let C = Q ∩ Q1 ∩ Q2. Then C is
a smooth curve of genus 5. Let σ be the automorphism of P4 of order 5 that acts by[

x0 : x1 : x2 : x3 : x4
]
7→
[
x1 : x2 : x3 : x4 : x0

]
,

let τ be the involution of P4 that acts as[
x0 : x1 : x2 : x3 : x4

]
7→
[
x4 : x3 : x2 : x1 : x0

]
,

let Γ ⊂ Aut(P4) be the subgroup such that Γ ∼= µ4
2, and the generator of its i-th factor acts

by multiplying the coordinate xi by −1. Set G = ⟨σ, τ,Γ⟩ ⊂ Aut(P4). Then G ∼= µ4
2⋊D10,

and C is G-invariant, so that there exists a monomorphism G ↪→ Aut(C). One can show
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that it is an isomorphism [128]. Observe that Q is also G-invariant, so that we may
identify G with a subgroup in Aut(Q).

Lemma 4.5.6. Let π : X → Q be the blow up along C. Then X is a Fano threefold � 2.7,
and we may identify G with a subgroup in Aut(X), because there exists G-equivariant
commutative diagram

(4.5.7) X
π

��

ϕ

  
Q

ψ
// P1

where ϕ is a fibration into del Pezzo surfaces of degree 4, and ψ is the map given by
the pencil generated by the surfaces Q1|Q and Q2|Q. Moreover, we have αG(X) ⩾ 1.

Proof. All required assertions are clear except for αG(X) ⩾ 1. To show that αG(X) ⩾ 1,
let us apply Theorem 1.4.11 with µ = 1. First, we observe that the diagram (4.5.7) gives
a homomorphism of groups ν : G → Aut(P1) such that ker(ν) = Γ and im(ν) ∼= D10.
Observe that P1 has no ν(G)-fixed points, so that X has no G-fixed points.

Let F be the proper transform on X of the surface Q1|Q, and let C be a G-invariant
irreducible curve in X. We claim that F ·C ̸∈ {0, 1}. Indeed, if F ·C = 0, then ϕ(C) must
be a ν(G)-fixed point in P1, which is impossible. Similarly, if F · C = 1, then F ∩ C is
a Γ-fixed point, so that Q1|Q contains a Γ-fixed point, which is not the case. This shows
that F · C ̸∈ {0, 1}.

Applying Theorem 1.4.11 with µ = 1, we see that αG(X) ⩾ 1 provided that X does
not contain a G-irreducible surface S such that −KX ∼Q λS + ∆ for some λ > 1 and
some effective Q-divisor ∆. Suppose that such surface S exists. Then

(4.5.8)
3

2
F +

1

2
E ∼ −KX ∼Q λS +∆.

Let us seek for a contradiction. If S = E, then (4.5.8) gives ∆|F ∼Q (1 − 2λ)(−KF ),
which is a contradiction, since ∆ is effective. Thus, we have S ∼ π∗(dH)−mE for some
integers d ⩾ 1 and m ⩾ 0, where H is a hyperplane section of the quadric Q. Then (4.5.8)
gives

λ
(
π∗(dH)−mE

)
+∆ ∼Q π

∗(3H)− E,

so that either d = 1 or d = 2. Moreover, we have S ∼Q
d
2
F + (d

2
−m)E, which implies

that S|F ∼Q (d
2
−m)E|F . This shows that m ⩽ d

2
.

If d = 1, then π(S) is a G-invariant hyperplane section of the quadric Q, which is
impossible, since P4 does not have G-invariant hyperplanes. Then d = 2 and m ∈ {0, 1}.

If m = 1, then S ∼ F , so that ϕ(S) is a ν(G)-fixed point in P1, which is impossible.
Then d = 2 and m = 0, so that S ∼Q F + E. Now, (4.5.8) gives ∆ ∼Q (1 − 2λ)(−KF ),
which is absurd. This shows that αG(X) ⩾ 1. □

Since all smooth Fano threefolds �2.7 have finite automorphism groups [42], we see
that the Fano threefold in Lemma 4.5.6 is K-stable by Theorem 1.4.7 and Corollary 1.1.6.
Hence, a general smooth Fano threefold in the family�2.7 is K-stable by Theorem 1.1.12.

Now, let us present one K-stable smooth Fano threefold � 2.18. Namely, let B be
the surface of degree (2, 2) in P1 × P2 that is given by

x20
(
y20 + ωy21 + ω2y22

)
+ x21

(
y20 + ω2y21 + ωy22

)
= 0,
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where ω is a primitive cubic root of unity, x0 and x1 are homogeneous coordinates on P1,
and y0, y1, y2 are coordinates on P2. Then B is smooth. Let π : X → P1×P2 be a double
cover branched over the surface B. Then X is a smooth Fano threefold �2.18, and we
have the following commutative diagram:

(4.5.9) X

π
��

γ1

vv

γ2

((P1 P1 × P2
π1

oo
π2

// P2

where π1 and π2 are natural projections, γ1 is a fibration into quadric surfaces, and γ2 is
a (standard) conic bundle. Let ι1 be the involution in Aut(P1 × P2) that is given by(

[x0 : x1], [y0 : y1 : y2]
)
7→
(
[x0 : x1], [y0 : −y1 : y2]

)
,

let ι2 be the involution that is given by ([x0 : x1], [y0 : y1 : y2]) 7→ ([x0 : x1], [y0 : y1 : −y2]),
let σ be the involution that is given by ([x0 : x1], [y0 : y1 : y2]) 7→ ([x0 : −x1], [y0 : y1 : y2]),
let ς be the involution that is given by ([x0 : x1], [y0 : y1 : y2]) 7→ ([x1 : x0], [y0 : y2 : y1]),
and let θ be the automorphism of order 3 that is given by(

[x0 : x1], [y0 : y1 : y2]
)
7→
(
[x0 : ωx1], [y2 : y0 : y1]

)
.

These automorphisms leaves the surface B invariant, and their actions on P1 × P2 lift to
the double cover X, so that we can consider them as automorphisms of the threefold X.
Let τ be the the Galois involution of the double cover π, and let G =

〈
ι1, ι2, σ, ς, θ, τ

〉
.

Then G is a finite group, because the whole automorphism group Aut(X) is finite [42].
Observe also that the commutative diagram (4.5.9) is G-equivariant.

Lemma 4.5.10. One has αG(X) ⩾ 1.

Proof. Let us apply Theorem 1.4.11 with µ = 1. Since P2 does not have G-fixed points,
the threefold X has no G-fixed points, so the assertion Theorem 1.4.11(2) does not hold.

Let F be the fiber of γ1 over (0 : 1), and let Ĝ be its stabilizer in G. Then F ∼= P1×P1

and Ĝ = ⟨ι1, ι2, σ, θ, τ⟩. Therefore, if X contains an irreducible G-invariant curve C such
that 0 ⩽ F ·C ⩽ 1, then either γ1(C) is a point or F ∩C consists of one point. The former
case is impossible, since P1 does not have G-fixed points. The later case is also impossible,

because F does not have Ĝ-fixed points. So, the assertion Theorem 1.4.11(3) is not true.
Finally, suppose that X contains a G-irreducible surface S such that −KX ∼Q λS+∆,

where ∆ is effective Q-divisor, and λ ∈ Q such that λ > 1. Then S ∈ |γ∗2(OP2(1))|, since

λS +∆ ∼Q −KX ∼ γ∗1
(
OP1(1)

)
+ γ∗2

(
OP2(2)

)
.

This is impossible, because P2 does not contain G-invariant lines. Therefore, we see that
the assertion Theorem 1.4.11(1) does not hold, so that αG(X) ⩾ 1. □

Thus, the smooth Fano threefold X is K-stable by Theorem 1.4.7 and Corollary 1.1.6,
so that general Fano threefold in the family �2.18 is also K-stable by Theorem 1.1.12.

In the remaining part of this section, we will use our construction of the threefold X to
present one smooth K-stable Fano threefold in the family �3.4, which would imply that
a general Fano threefold in this family is also K-stable.

Let O be the point [1 : 0 : 0] ∈ P2. Then the fiber of the conic bundle γ2 over O is
smooth. Let α : V → X be the blow up of this fiber. Then V is a smooth Fano threefold
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in the family �3.4, and (4.5.9) can be extended to the commutative diagram

(4.5.11) P1 × P1

pr2

��

pr1

��

V

α
��

γ

OO

η1

��

η2

..

ϕ

&&
X

π
��

γ1

ww

γ2

''

F1

β
��

υ
// P1

P1 P1 × P2
π1

oo
π2

// P2

where β is a blow up of the point O, υ is the natural projections, η1 is a fibration into
del Pezzo surfaces of degree 6, η2 and γ are conic bundles, ϕ is a fibration into del Pezzo
surfaces of degree 4, and pr1 and pr2 are projections to the first and the second factors,
respectively. Let Γ =

〈
ι1, ι2, σ, ς, τ

〉
. Then the fiber of γ2 over O is Γ-invariant, so that

the Γ-action lifts to V . Therefore, we can identify Γ with a subgroup in Aut(V ).

Lemma 4.5.12 (cf. the proof of Lemma 4.5.10). One has αΓ(V ) ⩾ 1.

Proof. Let us apply Theorem 1.4.11 with µ = 1. Since both P1 in (4.5.11) has no Γ-fixed
points, V does not have Γ-fixed points, so that Theorem 1.4.11(2) does not hold.

Let F a fiber of η1, let S be a fibers of ϕ, and let E be the exceptional divisor of α.
Then F , S and E generates the cone Eff(V ) (see [148]), and −KX ∼ F +2S+E, so that
Theorem 1.4.11(1) cannot be true, since |S| does not have Γ-invariant surfaces.

Finally, suppose that V contains a Γ-irreducible curve C such that 0 ⩽ F · C ⩽ 1 and
0 ⩽ S ·C ⩽ 1. Since both P1 in (4.5.11) do not have Γ-fixed points, we get F ·C = S ·C = 1.
Then γ(C) is a curve in P1 × P1 of degree (1, 1), which is impossible, since P1 × P1 does
not have Γ-invariant curves of degree (1, 1). Hence, we see that Theorem 1.4.11(3) does
not holds either, so that αΓ(V ) ⩾ 1. □

Thus, the threefold V is K-stable by Theorem 1.4.7 and Corollary 1.1.6, because its
automorphism group is finite [42], so that general Fano threefolds �3.4 are also K-stable.

4.6. Blow ups of Veronese and quadric cones. In this section, we will prove that all
smooth Fano threefolds in the families �3.9 and �4.2 are K-polystable.

Let S be one of the following surfaces: P2 or P1×P1. Then we fix a smooth irreducible
curve C in the surface S such that

• if S = P2, then C is a smooth quartic curve of genus 3,
• if P1 × P1, then C is a smooth elliptic curve of degree (2, 2).

Let pr1 and pr2 be projections of P1 ×S to the first and the second factors, respectively.
Put B = pr∗2(C ), put E = pr∗1([1 : 0]) and put E ′ = pr∗1([0 : 1]). Then B ∼= P1 × C , and

Aut
(
P1 × P2; E + E ′ + B

) ∼= Aut
(
S ;C

)
×
(
Gm ⋊ µ2

)
.

Here, the subgroup µ2 is generated by the involution ι that acts on P1 × S as(
[u : v], P

)
7→
(
[v : u], P

)
,

so that ι swaps E and E ′. Let η : W → P1×S be a double cover branched over E+E ′+B.
Denote by E, E

′
and B the preimages on W of the surfaces E , E ′ and B, respectively.
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ThenW is singular along the curves E∩B and E
′∩B, the composition pr1◦η is a fibration

into del Pezzo surfaces of degree 2 (when S = P2) or 4 (when S = P1 × P1). One has

Aut
(
W
) ∼= Aut

(
S ;C

)
×
(
Gm ⋊ µ2

)
.

Then η gives an epimorphism Aut(W ) → Aut(P1×P2, E+E ′+B), whose kernel is generated
by the Galois involution τ of the double cover η, which is contained in the torus Gm.

Let α : X̂ → W be the blow up of the curves E ∩ B and E
′ ∩ B, and let Ŝ and Ŝ ′ be

the exceptional surfaces of this blow up that are mapped to E∩B and E
′∩B, respectively,

let Ê, Ê ′ and B̂ be the proper transforms on X̂ of the surfaces E, E
′
and B, respectively.

Then X̂ is smooth. Note that B̂ ∼= P1 × C , Ê ∩ B̂ = ∅, Ê ′ ∩ B̂ = ∅, and Ê ∼= Ê ′ ∼= S .

If S = P2, then the normal bundles of the surfaces Ê and Ê ′ are isomorphic to OP2(−2).
If S = P1 × P1, then their normal bundles are line bundles of degree (−1,−1).

There is a birational morphism ψ : X̂ → X contracting B̂ to a curve isomorphic to C .

Let E, E ′, S and S ′ be proper transforms onX of the surfaces Ê, Ê ′, Ŝ and Ŝ ′, respectively.
Then X, E, E ′, S and S ′ are smooth, ψ is a blow up of the curve S ∩S ′, and there exists
the following commutative diagram

(4.6.1) X̂
ψ //

β

��

α

  

X
ϕ

��

ϕ′

  
Y

ϑ

��

W

θ

��

η

((

V

π   

V ′

π′~~
P1 × S

pr1
��

pr2
// S

P1 P1 P1

where β is a birational morphism contracting Ê and Ê ′ to isolated terminal singular points,
both θ and ϑ are fibrations into del Pezzo surfaces, ϕ and ϕ′ are birational morphisms
that contract S and S ′ to smooth curves, respectively, and both π and π′ are P1-bundles.

Note that Aut(X) ∼= Aut(X̂) ∼= Aut(Y ) ∼= Aut(W ). Moreover, we have V ∼= V ′ and these
threefolds can be described as follows:

• if S = P2, then V ∼= V ′ ∼= P(OP2 ⊕OP2(2)).
• if S = P1 × P1, then V ∼= V ′ is a blow up of the quadric cone in P4 in its vertex.

All birational morphisms in (4.6.1) are Aut(X)-equivariant except for π, π′, ϕ and ϕ′.
The involution ι swaps S and S ′, so that it does not acts on V and V ′ biregularly.
Let EV and E ′

V be the proper transforms on V of the surfaces E and E ′, respectively, let
EV ′ and E ′

V ′ be the proper transforms on V ′ of the surfaces E and E ′, respectively. Then
EV and E ′

V are disjoint sections of the P1-bundle π, while EV ′ and E ′
V ′ are disjoint sections

of the P1-bundle π′, so that EV ∼= E ′
V
∼= EV ′ ∼= E ′

V ′
∼= S . Moreover, if S = P2, then

EV |EV
∼= E ′

V ′|E′
V ′

∼= OP2(2) and E ′
V |E′

V

∼= EV ′ |EV ′
∼= OP2(−2). Similarly, if S = P1 × P1,

then both EV |EV
and E ′

V ′ |E′
V ′ are line bundles of degree (1, 1), but E

′
V |E′

V
and EV ′ |EV ′ are

line bundles of degree (−1,−1).
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Let S ′
V and SV ′ be the transforms on V and V ′ of the surfaces S ′ and S, respectively.

Put C = S ′
V ∩ E ′

V and C ′ = SV ′ ∩ EV ′ . Then S ′
V = π∗(C ), SV ′ = (π′)∗(C ), C ∼= C ′ ∼= C .

Note that ϕ and ϕ′ are blow ups of the curves C and C ′, respectively.
If S = P2, thenX is a Fano threefold�3.9, and all smooth Fano threefolds� 3.9 can be

obtained in this way. Similarly, if S = P1×P1, then X is a smooth Fano threefold �4.2,
and all smooth Fano threefolds �4.2 can be obtained in this way.

Let G = Aut(X) and C = S ∩ S ′ = ψ(B̂). Then C consists of all G-fixed points in X,
and every G-invariant irreducible curve in X is either C or a smooth fiber of π ◦ ϕ. Thus,
using Theorem 1.4.11, we obtain

Corollary 4.6.2. If S = P2 and S does not contain Aut(S ;C )-invariant lines and
conics, then αG(X) ⩾ 1. If S = P1 × P1 and S does not contain Aut

(
S ;C

)
-invariant

curves of degree (1, 0), (0, 1), (1, 1), then αG(X) ⩾ 1.

Example 4.6.3. Suppose that S = P2 and C = {xy3+yz3+zx3 = 0}, where x, y, z are
coordinates on P2. Then Aut(S ;C ) ∼= PSL2(F7), so that αG(X) = 1 by Corollary 4.6.2.
Then X is K-polystable smooth Fano threefold �3.9 by Theorem 1.4.7.

Example 4.6.4. Suppose that S = P1 × P1 and C = {x20y20 − x20y
2
1 − x21y

2
0 − x21y

2
1 = 0},

where [x0 : x1] and [y0 : y1] are coordinates on the first and the second factors of S ,
respectively. Then C is a smooth curve, and Aut(S ;C ) contains the transformations(

[x0 : x1], [y0 : y1]
)
7→
(
[y0 : y1], [x0 : x1]

)
and ([x0 : x1], [y0 : y1]) 7→ ([x1, x0], [y0 : iy1]). Then αG(X) = 1 by Corollary 4.6.2, so that
the theefold X is K-polystable by Theorem 1.4.7.

Let us use Corollary 1.7.26 and Theorem 1.7.30, to prove that X is always K-polystable.
Suppose that X is not K-polystable. By Theorem 1.2.5, there exists G-invariant prime
divisor F over X such that β(F ) ⩽ 0. Let Z = CX(F ).

Remark 4.6.5. Note that β(E) = β(E ′) = 0. Moreover, it follows from [88, Section 10]
that E and E ′ are the only irreducible surfaces in X that has non-positive β-invariant.
However, the surfaces E and E ′ are not G-invariant.

Therefore, either Z = C, or Z is a smooth fiber of π ◦ ϕ, or Z is a point in C.
Lemma 4.6.6. One has Z ̸= C.
Proof. Suppose that Z = C. Then Z ⊂ S. Let us apply results of Section 1.7 to S and Z.
As usual, we will use notations introduced in this section. Take x ∈ R⩾0. Let

a =

{
4 if S = P2,

2 if S = P1 × P1.

let P (x) = P (−KX−xS) and let N(x) = N(−KX−xS). Since −KX−xS is R-rationally
equivalent to a+1

a
S + 1

a
S ′ + 2E, −KX − xS is not pseudoeffective for x > a+1

a
. Then

P (x) =



a+ 1

a
S +

1

a
S ′ + 2E if 0 ⩽ x ⩽

1

a
,

d+ 1

d
S +

1

a
S ′ +

(
2 +

2

a
− 2x

)
E if

1

a
⩽ x ⩽ 1,

d+ 1

d
S +

(1
a
+ 1− x

)
S ′ +

(
2 +

2

a
− 2x

)
E if 1 ⩽ x ⩽

a+ 1

a
.
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and

N(x) =


0 if 0 ⩽ x ⩽

1

a
,(

2 +
2

a
− 2x

)
E if

1

a
⩽ x ⩽ 1,(

2 +
2

a
− 2x

)
E + (x− 1)S ′ if 1 ⩽ x ⩽

a+ 1

a
.

Let e = E|S, let s′ = S ′|S, and let ℓ be any fiber of the natural projection S → C .
Then Z = s′ ∼ 2aℓ+ e and −KX |S ∼ (2a+ 4)ℓ+ e. Moreover, on the surface S, we have
e2 = −2a, (s′)2 = 2a, e · s′ = 0, e · ℓ = s′ · ℓ = 1, ℓ2 = 0. Note that Z is contained in
Supp(N(x)|S) only when 1 ⩽ x ⩽ a+1

a
. Thus, if S = P2, then

S
(
W S

•,•;Z
)
=

3

26

∫ 5
4

1

∫ ∞

0

P (x)
∣∣
S
· P (x)

∣∣
S
(x− 1)dx+

+
3

26

∫ 1
4

0

∫ ∞

0

vol
(
(12− 8x− 8y)ℓ+ (1 + x− y)e

)
dydx+

+
3

26

∫ 1

1
4

∫ ∞

0

vol
(
(12− 8x− 8y)ℓ+

3− 3x− 3y

2
e
)
dydx+

+
3

26

∫ 5
4

1

∫ ∞

0

vol
(
(20− 16x− 8y)ℓ+

5− 4x− 2y

2
e
)
dydx =

=
3

26

∫ 5
4

1

∫ ∞

0

32(5− 4x)2(x− 1)dx+
3

26

∫ 1
4

0

∫ 1+x

0

8(2− 3x− y)(1 + x− y)dydx+

+
3

26

∫ 1

1
4

∫ 3
2
−x

0

2(3− 2x− 2y)2e
)
dydx+

3

26

∫ 5
4

1

∫ 5
2
−2x

0

2(5− 4x− 2y)2dydx =
319

832
< 1

by Corollary 1.7.26. Similarly, if S = P1 × P1, then

S
(
W•,•;Z

)
=

3

28

∫ 3
2

1

∫ ∞

0

P (x)
∣∣
S
· P (x)

∣∣
S
(x− 1)dx+

+
3

28

∫ 1
2

0

∫ ∞

0

vol
(
(8− 4x− 4y)ℓ+ (1 + x− y)e

)
dydx+

+
3

28

∫ 1

1
2

∫ ∞

0

vol
(
(8− 4x− 4y)ℓ+ (2− x− y)e

)
dydx+

+
3

28

∫ 3
2

1

∫ ∞

0

vol
(
(12− 8x− 8y)ℓ+ (3− 2x− y)e

)
dyd =

+
3

28

∫ 3
2

1

4(3− 2x)2(x− 1)dx+
3

28

∫ 1
2

0

∫ 1+x

0

4(1 + x− y)(3− 3x− y)dydx+

+
3

28

∫ 1

1
2

∫ 2−x

0

4(2− x− y)2dydx+
3

28

∫ 3
2

1

∫ 3−2x

0

4(3− 2x− y)2dyd =
13

28
< 1.

Therefore, using Remark 4.6.5 and Corollary 1.7.26, we get β(F ) > 0, which contradicts
our assumption. □
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Therefore, we see that either Z is a smooth fiber of π ◦ ϕ, or Z is a point in C.

Lemma 4.6.7. Suppose that S = P2. Then Z is a point in C.

Proof. Suppose Z is a smooth fiber of the morphism π◦ϕ. Let us seek for a contradiction.
LetH be a general surface in |(π◦ϕ)∗(OP2(1))| such thatH contains Z. ThenH is smooth.
Let us apply results of Section 1.7 to H and Z (using notations introduced in this section).

Take x ∈ R⩾0. If 0 ⩽ x ⩽ 1, then −KX − xH is nef. If 1 ⩽ x ⩽ 3, then

P
(
−KX − xH

)
= −KX − xH − x− 1

2

(
E + E ′)

and N(−KX − xH) = x−1
2
(E + E ′). If x > 3, then −KX − xH is not pseudoeffective.

Let e = E|H , e′ = E ′|H and ℓ = H|H . Then Z ∼ ℓ, −KX |H ∼ 3ℓ+ e+ e′ and

e2 = −2,
(
e′
)2

= −2, e · e′ = 0, e · ℓ = e′ · ℓ = 1, ℓ2 = 0.

Thus, since Z ̸⊂ Supp(N(−KX − xH)|H), it follows from Corollary 1.7.26 that

S
(
WH

•,•;Z
)
=

3

26

∫ 1

0

∫ ∞

0

vol
(
(3− x− y)ℓ+ e+ e′

)
dydx+

+
3

26

∫ 3

1

∫ ∞

0

vol
(
(3− x− y)ℓ+

3− x

2

(
e+ e′

))
dydx =

=
3

26

∫ 1

0

∫ 1−x

0

(
(3−x−y)ℓ+e+e′

)2
dydx+

3

26

∫ 3−x

1−x

∫ 1−x

0

(3− x− y)2

4

(
2ℓ+e+e′

)2
dydx+

+
3

26

∫ 3

1

∫ 3−x

0

(
(3− x− y)ℓ+

3− x

2

(
e+ e′

))2
dydx =

10

13
< 1.

Therefore, since S(V•;H) < 1 by Remark 4.6.5, Corollary 1.7.26 also gives β(F ) > 0,
which contradicts our assumption. □

Similarly, we prove the following

Lemma 4.6.8. Suppose that S = P1 × P1. Then Z is a point in C.

Proof. Let ℓ1 and ℓ2 be different rulings of S , let H1 = (π ◦ϕ)∗(ℓ1) and H2 = (π ◦ϕ)∗(ℓ2).
Then S ∼ H1 +H2 − E + E ′, S ′ ∼ H1 +H2 + E − E ′ and −KX ∼ 2H1 + 2H2 + E + E ′.
Moreover, it follows from [88, Section 10] that Pic(X) = Z[H1]⊕ Z[H2]⊕ Z[E]⊕ Z[E ′],

Nef(X) = R⩾0[H1]⊕ R⩾0[H2]⊕ R⩾0[H1 +H2 + E]⊕
⊕ R⩾0[H1 +H2 + E ′]⊕ R⩾0[H1 +H2 + E + E ′],

and
Eff(X) = R⩾0[H1]⊕ R⩾0[H2]⊕ R⩾0[E]⊕ R⩾0[E

′]⊕ R⩾0[S]⊕ R⩾0[S
′].

Let l1 and l2 be general fibres of the projections S → C and S ′ → C , respectively, let l3
and l4 be the rulings of E mapped by π ◦ ϕ to the rulings ℓ1 and ℓ2, respectively, let l5
and l6 be the rulings of E ′ mapped by π ◦ ϕ to the rulings ℓ1 and ℓ2, respectively. Then

NE(X) = R⩾0[l1] + R⩾0[l2] + R⩾0[l3] + R⩾0[l4] + R⩾0[l5] + R⩾0[l6].

See [148] and [88, Section 10].
Suppose that Z is a smooth fiber of the morphism π◦ϕ. Let us seek for a contradiction.

Let Y be the unique surface in |H1| that contains Z. Then Y is irreducible and normal.
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Note that Y is smooth along the curve Z. Let us apply results of Section 1.7 to Y and Z.
As usual, we will use notations introduced in this section.

Let e = E|Y , e′ = E ′|Y , ℓ = Y |Y . Then −KX |Y ∼ 2ℓ+ e+ e′ and Z ∼ ℓ. Moreover, on
the surface Y , we have e2 = −1, (e′)2 = −1, e · e′ = 0, e · ℓ = e′ · ℓ = 1, ℓ2 = 0. Note that
the surface Y is smooth in the case when the ruling π ◦ ϕ(Y ) intersects C transversally.
If the ruling π◦ϕ(Y ) is tangent to C , then it follows from [159, §2] that Y has one isolated
ordinary double point that is mapped to the point π ◦ϕ(Y )∩C by the conic bundle π ◦ϕ.
In both cases, Y is a del Pezzo surface of degree 6 that is smooth along Z, e and e′.
Fix x ∈ R⩾0. Then −KX−xY is pseudoeffective ⇐⇒ x ∈ [0, 2]. Moreover, if x ∈ [0, 1],

then this divisor is nef. If x ∈ [1, 2], then P (−KX − xY ) = −KX − xY − (x− 1)(E +E ′)
and N(−KX−xY ) = (x−1)(E+E ′). If 0 ⩽ x ⩽ 1, then P (−KX−xY )|Y ∼R 2ℓ+e+e′.
Similarly, if 1 ⩽ x ⩽ 2, then we have P (−KX − xY )|Y ∼R 2ℓ + (2 − x)(e + e′) and
N(−KX − xY )|Y = (x− 1)(e+ e′). Thus, by Corollary 1.7.26, S(W Y

•,•;Z) is equal to

3

28

∫ 1

0

∫ ∞

0

vol
(
(2− y)ℓ+e+e′

)
dydx+

3

28

∫ 2

1

∫ ∞

0

vol
(
(2− y)ℓ+(2−x)(e+e′)

)
dydx =

=
3

28

∫ 1

0

∫ 1

0

(
(2− y)ℓ+ e+ e′

)2
dydx+

3

28

∫ 1

0

∫ 2

1

(2− y)2
(
ℓ+ e+ e′

)2
dydx+

+
3

28

∫ 2

1

∫ x

0

(
(2− y)ℓ+ (2− x)(e+ e′)

)
dydx+

3

28

∫ 2

1

∫ 2

x

(2− y)2
(
ℓ+ e+ e′

)2
dydx =

=
3

28

∫ 1

0

∫ 1

0

(6− 4y)dydx+
3

28

∫ 1

0

∫ 2

1

2(2− y)2dydx+

+
3

28

∫ 2

1

∫ x

0

2(2− x)(2 + x− 2y)dydx+
3

28

∫ 2

1

∫ 2

x

2(2− y)2dydx =
45

56
< 1.

Therefore, as in the proof of Lemma 4.6.7, we get β(F ) > 0 by Corollary 1.7.26, which
contradicts our assumption. □

Hence, we see that Z is a point in C. Let us exclude the case S = P2.

Lemma 4.6.9. One has S = P1 × P1.

Proof. Suppose that S = P2. LetH be a general surface in |(π◦ϕ)∗(OP2(1))| containing Z.
Then H is smooth. Let e = E|H and e′ = E ′|H . Then e and e′ are disjoint (−2)-curves.
Moreover, we have S|H = f1 + f2 + f3 + f4, where f1, f2, f3 and f4 are disjoint (−1)-curves
that intersect transversally the curve e, and do not intersect the curve e′. Similarly, we
have S ′|H = f ′1 + f ′2 + f ′3 + f ′4, where f ′1, f

′
2, f

′
3 and f ′4 are disjoint (−1)-curves such that

fi · f ′j =
{
1 if i = j,

0 if i ̸= j.

The curves f ′1, f
′
2, f

′
3, f

′
4 intersect transversally e′, and they do not intersect the curve e.

Then Z is one of the four points f1 ∩ f ′1, f2 ∩ f ′2, f3 ∩ f ′3, f4 ∩ f ′4. Without loss of generality,
we may assume that Z = f1∩ f ′1. Now, we will apply results of Section 1.7 to H, f1 and Z.
We will use notations introduced in this section.

Let x be some real number, let P (x) = P (−KX − xH), let N(x) = N(−KX − xH),
and let ℓ be a general fiber of the conic bundle π ◦ ϕ|H : H → C . Then ℓ ∼ f1 + f ′1 on H.
As in the proof of Lemma 4.6.7, we see that −KX − xH is not pseudo-effective for x > 3.
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Similarly, if 0 ⩽ x ⩽ 3, we have

P (x)
∣∣
H
=


(3− x)ℓ+ e+ e′ if 0 ⩽ x ⩽ 1,

(3− x)ℓ+
3− x

2

(
e+ e′

)
if 1 ⩽ x ⩽ 3,

and

N(x)
∣∣
X
=


0 if 0 ⩽ x ⩽ 1,

x− 1

2

(
e+ e′

)
if 1 ⩽ x ⩽ 3.

Recall from Remark 4.6.5 that SX(H) < 1.
Let us compute S(WH

•,•; f1). Take a non-negative real number y. If 0 ⩽ x ⩽ 1, then

P (x)
∣∣
H
− yf1 ∼R (3− x)ℓ+ e+ e′ − yf1 ∼R (3− x− y)f1 + (3− x)f ′1 + e+ e′.

Therefore, if 0 ⩽ x ⩽ 1, then the divisor P (x)|H − yf1 is pseudo-effective ⇐⇒ y ⩽ 3−x.
If 0 ⩽ x ⩽ 1 and 0 ⩽ y ⩽ 3− x, its Zariski decomposition can be described as follows:

• if 0 ⩽ y ⩽ 1− x, then P (x)|H − yf1 is nef,
• if 1− x ⩽ y ⩽ 1, then the Zariski decomposition is

(3− x− y)f1 + (3− x)f ′1 +
3− x− y

2
e+ e′︸ ︷︷ ︸

positive part

+
x+ y − 1

2
e︸ ︷︷ ︸

negative part

,

• if 1 ⩽ y ⩽ 2− x, then the Zariski decomposition is

(3− x− y)f1 + (4− x− y)f ′1 +
3− x− y

2
e+ e′︸ ︷︷ ︸

positive part

+
x+ y − 1

2
e+ (y − 1)f ′1︸ ︷︷ ︸

negative part

,

• if 2− x ⩽ y ⩽ 3− x, then the Zariski decomposition is

3− x− y

2

(
2f1 + 4f ′1 + e+ 2e′

)
︸ ︷︷ ︸

positive part

+
x+ y − 1

2
e+ (x+ 2y − 3)f ′1 + (x+ y − 2)e′1︸ ︷︷ ︸

negative part

.

Similarly, if 1 ⩽ x ⩽ 3, then P (x)|H − yf1 ∼R (3 − x − y)f1 + (3 − x)f ′1 +
3−x
2
(e + e′).

Therefore, if 1 ⩽ x ⩽ 3, then the divisor P (x)|H − vf1 is pseudo-effective ⇐⇒ y ⩽ 3−x.
If 1 ⩽ x ⩽ 3 and 0 ⩽ y ⩽ 3− x, its Zariski decomposition can be described as follows:

• if 0 ⩽ y ⩽ 3−x
2
, then the positive part of the Zariski decomposition is

(3− x− y)f1 + (3− x)f ′1 +
3− x− y

2
e+

3− x

2
e′,

and the negative part of the Zariski decomposition is y
2
e,

• if 3−x
2

⩽ y ⩽ 3− x, then the Zariski decomposition is

3− x− y

2

(
2f1 + 4f ′1 + e+ 2e′

)
︸ ︷︷ ︸

positive part

+
y

2
e+

x+ 2y − 3

2
e′ + (x+ 2y − 3)f ′1︸ ︷︷ ︸

negative part

,

Integrating the volume of the divisor P (x)|H − yf1, we get S(WH
•,•; f1) =

49
52
.
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Now, we compute S(WH,f1
•,• ;Z). Let P (x, y) be the positive part of the Zariski decom-

position of the divisor P (x)|H − yf1, and let N(x, y) be its negative part. Recall that

S
(
WH,f1

•,• ;Z
)
= FZ

(
WH,f1

•,•
)
+

3

26

∫ 3

0

∫ ∞

0

((
P (x, y) · f1

)
H

)2
dydx

by Theorem 1.7.30, where

FZ
(
WH,f1

•,•
)
=

6

26

∫ 3

0

∫ ∞

0

(
P (x, y) · f1

)
H
ordZ

(
N ′
H(x)

∣∣
f1
+N(x, y)

∣∣
f1

)
dydx.

Recall that N ′
H(x) is the part of the divisor N(x)|H whose support does not contain f1, so

that N ′
H(x) = N(x)|H in our case, which implies that ordZ(N

′
H(x)|f1) = 0 for x ∈ [0, 3].

Thus, we have

FZ
(
WH,f1

•,•
)
=

6

26

∫ 1

0

∫ 2−x

1

(3− x− y

2
+ y − (y − 1)

)
(y − 1)dydx+

+
6

26

∫ 1

0

∫ 3−x

2−x

(3− x− y

2
+ y − (x+ 2y − 3)

)
(x+ 2y − 3)dydx+

+
6

26

∫ 3

1

∫ 3−x

3−x
2

(3− x− y

2
+ y − (x+ 2y − 3)

)
(x+ 2y − 3)dydx =

67

208

by Theorem 1.7.30, which also gives

S
(
WH,f1

•,• ;Z
)
=

67

208
+

3

26

∫ 1

0

∫ 1−x

0

(1 + y)2dydx+

+
3

26

∫ 1

0

∫ 1

1−x

(3− x− y

2
+ y
)2
dydx+

3

26

∫ 1

0

∫ 2−x

1

(3− x− y

2
+ y − (y − 1)

)2
dydx+

+
3

26

∫ 1

0

∫ 3−x

2−x

(3− x− y

2
+y−(x+2y−3)

)2
dydx+

3

26

∫ 3

1

∫ 3−x
2

0

(3− x− y

2
+y
)2
dydx+

+
3

26

∫ 3

1

∫ 2−x

3−x
2

(3− x− y

2
+ y − (x+ 2y − 3)

)2
dydx =

49

52
.

Since SX(H) < 1 and S(WH
•,•; f1) < 1, we have β(F ) > 0 by Theorem 1.7.30. □

Let ℓ1 and ℓ2 be distinct rulings of the surface S that pass through the point π ◦ϕ(Z).
Then at least one of these rulings intersects the curve S transversally. Thus, without
loss of generality, we may assume that ℓ1 intersects the curve S transversally.
Let Y = (π ◦ ϕ)∗(ℓ1). Then Y is smooth. Let e = E|Y , let e′ = E ′|Y , let f and f ′ be

the irreducible components of the fiber (π ◦ ϕ)−1(Z) such that f intersects the curve e,
and f ′ intersects the curve e′. Then Z = f ∩ f ′ and e, e′, f and f ′ are (−1)-curves on Y ,
which is the smooth sextic del Pezzo surface. Let us apply Theorem 1.7.30 to Y , f , Z.
As usual, we will use notations introduced in Section 1.7.

Let x be a non-negative real number, P (x) = P (−KX−xY ) andN(x) = N(−KX−xY ).
It follows from the proof of Lemma 4.6.8 that −KX−xY is not pseudo-effective for x > 2.
Moreover, if 0 ⩽ x ⩽ 2, then

P (x)
∣∣
Y
∼R

{
2
(
f + f ′

)
+ e+ e′ if 0 ⩽ x ⩽ 1,

2
(
f + f ′

)
+ (2− x)

(
e+ e′

)
if 1 ⩽ x ⩽ 2,
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and

N(x)
∣∣
Y
=

{
0 if 0 ⩽ x ⩽ 1,

(x− 1)(e+ e′) if 1 ⩽ x ⩽ 2.

Thus, it follows from Corollary 1.7.26 that

S
(
W Y

•,•; f) =
3

28

∫ 1

0

∫ ∞

0

vol
(
P (x)

∣∣
Y
− yf

)
dydx =

=
3

28

∫ 1

0

∫ ∞

0

vol
(
(2−y)f+2f ′+e+e′

)
dydx+

3

28

∫ 2

1

∫ ∞

0

vol
(
(2−y)f+2f ′+(2−x)(e+e′)

)
dydx =

=
3

28

∫ 1

0

∫ 1

0

(
(2−y)f+2f ′+e+e′

)2
dydx+

3

28

∫ 1

0

∫ 2

1

(
(2−y)f+(3−y)f ′+(2−y)e+e′

)2
dydx+

+
3

28

∫ 2

1

∫ 2−x

0

(
(2− y)f + 2f ′ + (2− x)(e+ e′)

)2
dydx+

+
3

28

∫ 2

1

∫ x

2−x

(
(2− y)f + (4− x− y)f ′ + (2− x)(e+ e′)

)2
dydx+

+
3

28

∫ 2

1

∫ 2

x

(
(2− y)f + (4− x− y)f ′ + (2− y)e+ (2− x)e′

)2
dydx =

=
3

28

∫ 1

0

∫ 1

0

(6− 2y − y2)dydx+
3

28

∫ 1

0

∫ 2

1

(2− y)(4− y)dydx+

+
3

28

∫ 2

1

∫ 2−x

0

(2xy − 2x2 − y2 − 4y + 8)dydx+

+
3

28

∫ 2

1

∫ x

2−x
(2− x)(6 + x− 4y)dydx+

3

28

∫ 2

1

∫ 2

x

(2− y)(6− 2x− y)dydx = 1.

Here, we used the Zariski decomposition of P (x)|Y − yf that can be described as follows:

• if 0 ⩽ x ⩽ 1 and 0 ⩽ y ⩽ 1, then P (x)|Y − yf is nef,
• if 0 ⩽ x ⩽ 1 and 1 ⩽ y ⩽ 2, then

P (x)|Y − yf ∼R (2− y)f + (3− y)f ′ + (2− y)e+ e′︸ ︷︷ ︸
positive part

+(y − 1)e+ (y − 1)f ′︸ ︷︷ ︸
negative part

,

• if 1 ⩽ x ⩽ 2 and 0 ⩽ y ⩽ 2− x, then P (x)|Y − yf is nef,
• if 1 ⩽ x ⩽ 2 and 2− x ⩽ y ⩽ x, then

P (x)|Y − yf ∼R (2− y)f + (4− x− y)f ′ + (2− x)(e+ e′)︸ ︷︷ ︸
positive part

+(x+ y − 2)f ′︸ ︷︷ ︸
negative part

,

• if 1 ⩽ x ⩽ 2 and x ⩽ y ⩽ 2, then

P (x)|Y−yf ∼R (2− y)f + (4− x− y)f ′ + (2− y)e+ (2− x)e′︸ ︷︷ ︸
positive part

+(y − x)e+ (x+ y − 2)f ′︸ ︷︷ ︸
negative part

.
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Let P (x, y) be the positive part of the Zariski decomposition of the divisor P (x)|Y −yf ,
and let N(x, y) be its negative part. Arguing as in the proof of Lemma 4.6.9, we get

S
(
W Y,f

•,• ;Z
)
= FZ

(
W Y,f

•,•
)
+

3

28

∫ 2

0

∫ ∞

0

((
P (x, y) · f

)
Y

)2
dydx =

= FZ
(
W Y,f

•,•
)
+

3

28

∫ 1

0

∫ 1

0

(y+1)2dydx+
3

28

∫ 1

0

∫ 2

1

(3−y)2dydx+ 3

28

∫ 2

1

∫ 2−x

0

(2−x+y)2dydx+

+
3

28

∫ 2

1

∫ x

2−x
(4− 2x)2dydx+

3

28

∫ 2

1

∫ 2

x

(4− x− y)2dydx = FZ
(
W Y,f

•,•
)
+

39

56
.

Recall from Theorem 1.7.30 that

FZ
(
W Y,f

•,•
)
=

6

28

∫ 2

0

∫ ∞

0

(
P (x, y) · f

)
Y
ordZ

(
N ′
Y (x)

∣∣
f
+N(x, y)

∣∣
f

)
dydx,

where N ′
Y (x) is the part of the divisor N(x)|Y whose support does not contain the curve f .

In our case, we have N ′
Y (x) = N(x)|Y , so that Z is not contained in its support. Then

FZ
(
W Y,f

•,•
)
=

6

28

∫ 2

0

∫ ∞

0

(
P (x, y) · f

)
Y
ordZ

(
N(x, y)

∣∣
f

)
dydx =

=
6

28

∫ 1

0

∫ 2

1

(3− y)(y − 1)dydx+
6

28

∫ 2

1

∫ x

2−x
(4− 2x)(x+ y − 2)dydx+

+
6

28

∫ 2

1

∫ 2

x

(4− x− y)(x+ y − 2)dydx =
17

56
,

which implies that S(W Y
•,•; f) = 1. Since we also have SX(Y ) < 1 by Remark 4.6.5,

we conclude that β(F ) > 0 by Theorem 1.7.30, which is a contradiction. Therefore, we
proved that all smooth Fano threefolds �3.9 and 4.2 are K-polystable.

4.7. Ruled Fano threefolds. There exactly 21 families of smooth Fano threefolds such
that their members are P1-bundles over surfaces. To be precise, we have

Theorem 4.7.1 ([196]). Let X be a smooth Fano threefold such that X = P(E) for some
vector bundle E of rank two on a surface S. Then X can be described as follows:

(1) S = P2 and one of the following holds:
(a) X is a smooth Fano threefold �2.24, and E is a stable bundle;
(b) X is the unique smooth Fano threefold �2.27, and E is a stable bundle;
(c) X is the unique smooth Fano threefold �2.31, and E is a semistable bundle;
(d) X is the unique smooth Fano threefold �2.32, and E = TP2;
(e) X = P1 × P2, and E = OP2 ⊕OP2;
(f) X is the unique smooth Fano threefold �2.35, and E = OP2 ⊕OP2(1);
(g) X is the unique smooth Fano threefold �2.36, and E = OP2 ⊕OP2(2).

(2) S = P1 × P1 and one of the following holds:
(a) X is the unique smooth Fano threefold �3.17, and E is a stable bundle;
(b) X is the unique smooth Fano threefold �3.25, and E = OS(ℓ1)⊕OS(ℓ2);
(c) X = P1 × P1 × P1, and E = OS ⊕OS;
(d) X = P1 × F1, and E = OS ⊕OS(ℓ1) or E = OS ⊕OS(ℓ2);
(e) X is the unique smooth Fano threefold �3.31, and E = OS ⊕OS(ℓ1 + ℓ2);
where ℓ1 and ℓ2 are different rulings of the surface S.
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(3) S = F1 and one of the following holds:
(a) X is the unique smooth Fano threefold �3.24, and E = π∗(TP2);
(b) X = P1 × F1 and E = OS ⊗OS;
(c) X is the unique smooth Fano threefold �3.30, and E = π∗(OP2 ⊕OP2(1));
where π : S → P2 is a blow up of a point.

(4) S is a smooth del Pezzo surface such that K2
S ⩽ 7, X = P1×S, and E = OS⊕OS.

From Sections 3.1, 3.3, 3.6, 3.7, 4.2, we know the solution of the Calabi Problem for all
smooth Fano threefolds in Theorem 4.7.1 except for exactly one family: the family�2.24.
This is summarized in the table below, where Sd is a smooth del Pezzo surface of degree d..

S X = P(E) K-polystable E Aut(X) Sections

P2 Fano threefold �2.27 Yes stable reductive 4.2

P2 Fano threefold �2.31 No semistable non-reductive 3.6, 3.7

P2 Fano threefold �2.32 Yes stable reductive 3.2

P2 P1 × P2 Yes semistable reductive 3.2, 3.1, 3.3

P2 Fano threefold �2.35 No unstable non-reductive 3.6, 3.7

P2 Fano threefold �2.36 No unstable non-reductive 3.6, 3.7

P1 × P1 Fano threefold �3.17 Yes stable reductive 4.2

F1 Fano threefold �3.24 No stable non-reductive 3.6, 3.7

P1 × P1 Fano threefold �3.25 Yes semistable reductive 3.3

P1 × P1 P1 × P1 × P1 Yes semistable reductive 3.2, 3.1, 3.3

P1 × P1 P1 × F1 No unstable non-reductive 3.3, 3.6, 3.7

F1 P1 × F1 No semistable non-reductive 3.3, 3.6, 3.7

F1 Fano threefold �3.30 No unstable non-reductive 3.6, 3.7

P1 × P1 Fano threefold �3.31 No unstable non-reductive 3.6, 3.7

S7 P1 × S7 No semistable non-reductive 3.3, 3.6, 3.7

Sd P1 × Sd for d ⩽ 5 Yes semistable reductive 3.1

The goal of this section is to solve the Calabi Problem for the remaining family �2.24.
Let X be a smooth Fano threefold�2.24. Then X is a divisor in P2×P2 of degree (1, 2),

let pr1 : X → P2 and pr2 : X → P2 be the projections to the first and the second factors,
respectively. The morphism pr1 is a conic bundle, and pr2 is a P1-bundle, which is given by
the projectivization of a rank two stable vector bundle on P2 explicitly described in [10].
Let C be the discriminant curve of the conic bundle pr1. Then C is a reduced cubic curve.
Moreover, since X is smooth, the curve C is either smooth or nodal.

By Lemma A.7.10, we can can choose coordinates ([x : y : z], [u : v : w]) on P2 × P2

such that one of the following three cases holds:

• The threefold X is given by

(4.7.2)
(
µvw + u2

)
x+

(
µuw + v2

)
y +

(
µuv + w2

)
z = 0

for some µ ∈ C such that µ3 ̸= −1. In this case, the curve C is given by

µ2
(
x3 + y3 + z3

)
=
(
µ3 + 4

)
xyz.

It is singular ⇐⇒ µ ∈ {0, 2,−1±
√
3i} ⇐⇒ C is a union of thee lines.
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• The threefold X is given by

(4.7.3)
(
vw + u2

)
x+

(
uw + v2

)
y + w2z = 0.

In this case, the curve C is given by x3 + y3 − 4xyz = 0. It is singular.
• The threefold X is given by

(4.7.4)
(
vw + u2

)
x+ v2y + w2z = 0.

In this case, the curve C is given by x(x2 − 4yz) = 0. It is reducible.

In the remaining part of this section, we will show that X is K-polystable in the first case,
and X is strictly K-semistable in the other two cases.

Lemma 4.7.5. The group Aut(X) is finite except the following cases:

(1) X is given by (4.7.2) with µ ∈ {0, 2,−1±
√
3i},

(2) X is given by (4.7.4).

In the first case, one has Aut0(X) ∼= G2
m. In the second case, one has Aut0(X) ∼= Gm.

Proof. The assertion follows from the proof of [42, Lemma 10.2]. □

The four threefolds given by (4.7.2) with µ ∈ {0, 2,−1 ±
√
3i} are all isomorphic to

each other. There are known to be K-polystable [193]. The three singular Fano threefolds
given by (µvw + u2)x+ (µuw + v2)y + (µuv + w2)z = 0 with µ3 = −1 are isomorphic to
the threefold given by xvw + yuw + zuv = 0, see [211]. This threefold has three isolated
ordinary double points, and it is not Q-factorial.

Lemma 4.7.6. Let Y be a divisor in P2 × P2 that is contained in the pencil

λ
(
xu2 + yv2 + zw2) + µ

(
xvw + yuw + zuv

)
= 0,

where [λ : µ] ∈ P1. Then Y is a K-polystable Fano threefold.

Proof. Let G be the subgroup in Aut(P2×P2) generated by α, β and γ defined as follows:

α :
(
[x : y : z], [u : v : w]

)
7→
(
[y : x : z], [v : u : w)

]
,

β :
(
[x : y : z], [u : v : w]

)
7→
(
[y : z : x], [v : w : u)

]
,

γ :
[
(x : y : z], [u : v : w]

)
7→
(
[ϵx : ϵ2y : z], [ϵu : ϵ2v : w]

)
,

where ϵ is a primitive cube root of unity. Then G ∼= µ3⋊S3, it preserves Y , and it acts on
the threefold Y faithfully, so that we can identify the group G with a subgroup in Aut(Y ).

Let π1 : Y → P2 and π2 : Y → P2 be the projections to the first and the second factors,
respectively. Then both π1 and π2 are G-equivariant, and the induced G-actions on both
factors of P2 × P2 are faithful (cf. [72, Theorem 4.7]).

We claim that αG(Y ) ⩾ 1. To prove this claim, let us apply Theorem 1.4.11 with µ = 1.
First, we observe that Y has not G-fixed points, because P2 has no G-fixed points.

Suppose that Y contains a G-invariant irreducible rational curve C. Then π1(C) is not
a point and is not a line, since P2 does not have G-fixed points and G-invariant lines.
Then π1(C) is an irreducible G-invariant rational curve of degree at least 2, so that G acts
faithfully on its normalization, which is isomorphic to P1. But Aut(P1) does not contain
a subgroup that is isomorphic to µ3⋊S3. This shows that Y does not contain G-invariant
irreducible rational curves, so that αG(Y ) ⩾ 1 as required.

To prove that αG(Y ) ⩾ 1 it is enough to show that Theorem 1.4.11(1) does not hold.
Suppose it does. Then Y contains a G-irreducible surface S such that −KY ∼Q aS +∆,
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where a ∈ Q such that a > 1, and ∆ is an effective Q-divisor on Y . If Y is smooth, then
there are non-negative integers r and s such that

1

a
π∗
1

(
OP2(2)

)
+

1

a
π∗
2

(
OP2(1)

)
− 1

a
∆ ∼Q

1

a

(
−KY

)
− 1

a
∆ ∼Q S ∼ π∗

1

(
OP2(r)

)
+π∗

2

(
OP2(s)

)
,

which gives r = 1 and s = 0, since a > 1. But |π∗
1(OP2(1))| does not contain G-invariant

divisors. Thus, we may assume that Y is given by xvw + yuw + zuv.
Let Su,x, Sv,y, Sw,z be the surfaces {u = x = 0}, {v = y = 0}, {w = z = 0}, respectively,

let S ′
u,x, S

′
v,y, S

′
w,z be the surfaces {x = yw+ zv = 0}, {y = xw+ zu}, {z = xv+ yu = 0},

respectively. Then Su,x ∼= Sv,y ∼= Sw,z ∼= P1 × P1, S ′
u,x

∼= S ′
v,y

∼= S ′
w,z

∼= F1, and these six
surfaces are contained in Y . But S is not one of them, since they are not G-invariant.

Let ℓ be a general ruling of the surface Su,x ∼= P1×P1 that is contracted by π1 to a point.
Then ℓ∩Sing(Y ) = ∅ and 1 = −KY ·ℓ = aS ·ℓ+∆·ℓ > S ·ℓ, so that S ·ℓ = 0, which implies
that ℓ and S are disjoint. Similarly, let ℓ′ be a general ruling of the surface S ′

u,x
∼= F1.

Then ℓ′ and S must also be disjoint. Thus, if C is a general fiber of the conic bundle π1,
then S · C = S · (ℓ+ ℓ′) = 0, so that S is contracted by π1.

Since π1 does not contract surfaces to points, we see that π1(S) is an irreducible curve.
Then π1(S) ̸= C , since C is reducible in this case. This implies that S ∼ π∗

1(OP2(t)) for
some t ∈ Z>0. Arguing as above, we conclude that t = 1, which is impossible, because
the linear system |π∗

1(OP2(1))| does not contain G-invariant surfaces.
Thus, we conclude that αG(Y ) ⩾ 1, so that Y is K-polystable by Theorem 1.4.7. □

Corollary 4.7.7. If X is given by (4.7.3) or (4.7.4), then X is strictly K-semistable.

Proof. Suppose that X is given by (4.7.3). Let Xs be the divisor in P2 × P2 given by(
svw + u2

)
x+

(
suw + v2

)
y + w2z = 0.

where s ∈ C. Then Xs is smooth for all s. Moreover, scaling coordinates x, y, z, u, v, w,
we see thatXs

∼= X for every s ̸= 0. This gives us a test configuration forX, whose special
fiber is the threefold X0, which is a K-polystable smooth Fano threefold by Lemma 4.7.6.
Then X is strictly K-semistable by Corollary 1.1.14.

Similarly, we see that the threefold given by (4.7.4) is also strictly K-semistable. □

A general threefold in the family�2.24 has finite automorphisms group by Lemma 4.7.5,
so that it is K-stable by Theorem 1.1.12.

5. Proof of Main Theorem: remaining cases

5.1. Family�2.8. Let X be a smooth Fano threefold �2.8. Then there exists a quartic
surface S4 ⊂ P3 such that its singular locus consists of one (isolated) ordinary double
point O, and there following commutative diagram exists:

X

η   
θ

��

ϕ // V7

ϑ

��

ν~~
P2

V2 φ
// P3

``
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where φ is a double cover branched over S4, ϑ is a blow up of the point O, θ is the blow
up of the preimage of the point O, ϕ is a double cover branched over the proper transform
of the surface S4, ν is a P1-bundle, η is a (standard) conic bundle, and dashed arrow is
a linear projection from the point O.

Without loss of generality, we may assume that O = [0 : 0 : 0 : 1]. Then S4 is given by

t2f2(x, y, z) + tf3(x, y, z) + f4(x, y, z) = 0,

where f2, f3, f4 are homogeneous polynomials of degree 2, 3, 4, respectively, and x, y,
z and t are coordinates on P3. Let ∆ be the discriminant curve of the standard conic
bundle η. Then ∆ is given by f 2

3 (x, y, z)− 4f2(x, y, z)f4(x, y, z) = 0.

Denote by S4 the proper transform on V7 of the surface S4, and denote by S̃4 its

preimage on X. Then S̃4 and S4 are isomorphic smooth K3 surfaces, and ϑ induces

minimal resolutions S4 → S4. Similarly, we have the surfaces θ(S̃4) and S4 are isomorphic,

and θ induces minimal resolutions S̃4 → θ(S̃4).
Let E and EO be the exceptional divisors of the birational maps θ and ϑ, respectively.

Then E ∼= P1 × P1, EO ∼= P2, and ϕ induces a double cover E → EO, which is branched

over the conic EO ∩ S4 in EO. Let C = E ∩ S̃4. Then C is a curve of degree (1, 1) on E,
which is the preimage of the branching curve EO ∩ S4.
Let Q be the cone in P3 given by f2(x, y, z) = 0, let C2 be the conic in P2 given by

the same equation, where we consider x, y, z also as coordinates on P2, let Q be the proper

transform on V7 of the surface Q, and let Q̃ be its preimage on X. Then Q̃ ∩ E = C,

and Q̂ is the preimage of C2 via the conic bundle η. Moreover, this conic bundle induces

a double cover E → P2, which is branched over the conic C2. This shows that Q̃|E = 2C,

so that either Q̂ is tangent to E along C, or Q̃ is singular along the curve C, which
happens only if f2 divides f3.

Let H be a plane in P3. Then −KX ∼ S̃4 ∼ Q̃+E. Note that Q̃ and E are G-invariant

for every (finite) subgroup G ⊂ Aut(X), so that αG(X) ⩽ 3
4
, since lct(X, Q̃+ E) ⩽ 3

4
.

Lemma 5.1.1. Let S4 be the quartic surface in P3 that is given by

t2
(
x2+y2+z2+(x+y+z)2

)
+µt

(
x3+y3+z3−(x+y+z)3

)
+x4+y4+z4+(x+y+z)4 = 0,

where µ is a general complex number, e.g. µ = 5. Then S4 is smooth away from O, which
is an (isolated) ordinary double point of the surface S4. Moreover, the surface S4 admits
a natural action of the symmetric group S4. This action lifts to the threefold X, so that
we identify S4 with a subgroup in Aut(X). Let G be the subgroup in Aut(X) generated
by S4 and the Galois involution τ of the double cover η. Then αG(X) = 3

4
.

Proof. Let us say few words about the generality of µ ∈ C. We ask for two natural
conditions. First, we want S4 to be smooth away from O, since otherwise X would be
singular. Second, we want the following octic curve C8 ⊂ S4 to be irreducible and reduced:x

2 + y2 + z2 + (x+ y + z)2 = 0,

µt
(
x3 + y3 + z3 − (x+ y + z)3

)
+ x4 + y4 + z4 + (x+ y + z)4 = 0.

We will assume that both conditions are satisfied. For instance, this is true for µ = 5.
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Let C̃8 be the irreducible curve in S̃4 that is a proper transform of the octic curve C8 via

the birational morphism S̃4 → S4 induces by ϑ ◦ ϕ. Then C̃8 is smooth rational curve,

which is (−2)-curve on the K3 surface S̃4. One has S̃4 ∩ Q̃ = C̃8 ∪C and −KX · C̃8 = 10.
We already know that αG(X) ⩽ 3

4
. Let us apply Lemma A.4.8 to prove that αG(X) = 3

4
.

We know that X does not have G-fixed points, because η is G-equivariant (we already
used this implicitly), and the group S4 does not have fixed points in P2. Thus, we see
that the condition Lemma A.4.8(i) is satisfied.

We claim that the condition Lemma A.4.8(ii) is also satisfied for µ = 3
4
. Indeed,

suppose that X contains a G-invariant surface S such that −KX ∼Q aS + ∆, where
a is a positive rational number such that a > 4

3
, and ∆ is a G-invariant Q-divisor on

the threefold X whose support does not contain S. Now, intersecting aS + ∆ with
a general fiber of the conic bundle η, we see that S ̸= E, so that θ(S) is also a surface.
Since aθ(S) + θ(∆) ∼Q φ

∗(2H), we get θ(S) ∼ φ∗(H), so that φ ◦ θ(S) is the plane t = 0,
because this plane is the only S4-invariant plane in P3. Thus, we have S ∼ (ϑ ◦ ϕ)∗(H).
Let ℓ be a general fiber of η. As above, we have 2 = −KX ·ℓ = aS ·ℓ+∆·ℓ ⩾ aS ·ℓ = 2a > 8

3
,

which is absurd. Thus, the condition Lemma A.4.8(ii) is satisfied for µ = 3
4
.

Suppose that αG(X) < 3
4
. Applying Lemma A.4.8, we see that there is a G-invariant

effective Q-divisor D on the threefold X such that D ∼Q −KX , the pair (X,λD) is strictly
log canonical for some λ < 3

4
, and the only log canonical center of this log pair is a smooth

irreducible rational G-invariant curve Z. Let us seek for a contradiction.
By Corollary A.2.7, we have −KX · C ⩽ 8. Then Z ̸= C̃8, since −KX · C̃8 = 10.
Now, we observe that η(Z) is not a point, because P2 does not have S4-invariant points.

Similarly, we see that η(Z) is not a line. Then η(Z) must be a conic by Corollary A.1.16.
In particular, the subgroupS4 acts faithfully on the curve Z, because it must act faithfully
on the curve η(Z). Therefore, the Galois involution τ must act trivially on the curve Z,

because Z ∼= P1 does not admit a faithful G-action. This shows that Z ⊂ S̃4.
We claim that Z = C. Indeed, suppose that this is not the case. Then C ̸⊂ E, because

otherwise we would have Z = E ∩ S̃4 = C. Since η(Z) is a conic, we see that η(Z) = C2,

since C2 is the only S4-invariant conic in P2. Therefore, we have Z ⊂ Q̃, so that Z = C,

because we know that Z ̸= C̃8.

Recall that C = S̃4 ∩E and C = Q̃∩E. Observe that (X,λQ̃+λE) is log canonical at
general point of the curve C. Thus, using Lemma A.4.12, we may we may assume that

either Q̃ or E is not contained in the support of the divisor D. Similarly, we may assume

that the surface S̃4 is not contained in the support of the divisor D.
If E ̸⊂ Supp(D), we have 1 = D · L ⩾ multC

(
D
)
> 4

3
, where L is a general ruling of

the surface E ∼= P1 × P1. Therefore, we see that E ⊂ Supp(D), so that Q̃ ̸⊂ Supp(D).

Let ℓ be a general fiber of η that is contained in Q̃. Then multC(D) ⩽ D · ℓ = 2.

Let f : X̂ → X be the blow up of the curve C, and let F be the f -exceptional surface.

Then the action of the group G lifts to X̂. Since C ∼= P1 is a complete intersection of

the surfaces S̃4 and E, its normal bundle in X splits as OP1(−2)⊕OP1(2), so that F ∼= F4.
Let sF be the (−4)-curve in F , and let lF be a fiber of the P1-bundle F → C. Then,

since F 3 = 0, we have F |F = −sF − 2lF . Let Ê, Q̂, Ŝ4 be proper transforms on X̂ of

the surfaces Ẽ, Q̃, S̃4, respectively. Then Ê|F ∼ sF , Q̂|F ∼ sF +6lF and Ŝ4|F ∼ sF +4lF .

Thus, we see that Ê ∩ F = sF and Ŝ4 ∩ F are disjoint G-invariant smooth irreducible
curves, which are both sections of the P1-bundle F → C. On the other hand, we see that
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the intersection Q̂∩F consists of the curve sF and 6 fibers of the P1-bundle F → C, which

are mapped to a S4-orbit in C of length 6. This shows that the surface Q̂ is singular at
the points of this orbit, which can also be checked explicitly.

Let D̂ be the proper transform of the divisor D on X̂. Since λmultC(D) < 2, it
follows from Lemma A.4.3 that F contains a G-invariant irreducible curve C such that
C is a section of the projection F → C, the curve C is a log canonical center of the log

pair (X̂, λD̂ + (λmultC(D) − 1)F ), and multC(D) + multC(D̂) ⩾ 2
λ
> 8

3
. Moreover,

using Theorem A.2.1, we see that the log pair (F, λD̂|F ) is not log canonical along C.

Then D̂
∣∣
F

= δC + Υ, where δ is a rational number such that δ > 1
λ
> 4

3
, and Υ is

an effective Q-divisor whose support does not contain the curve C. But

D̂
∣∣
F
∼Q multC(D)sF +

(
2multC(D) + 2

)
lF .

Since multC(D) ⩽ 2 and δ > 4
3
, this equivalence implies that C ∼ sF + nLF for n ⩽ 4.

Now, using Lemma A.6.10, we conclude that either C = Ê ∩ F or C = Ŝ4 ∩ F .
Let ℓ̂ be the proper transform on X̂ of the general fiber of the conic bundle η that is

contained in Q̃. If C = Ê∩F , then ℓ̂ intersects C, so that multC(D̂) ⩽ D̂·ℓ̂ = 2−multC(D),

which contradicts multC(D) + multC(D̂) > 8
3
. This shows that C = Ŝ4 ∩ F .

Observe that Ŝ4
∼= S̃4, and ϑ ◦ ϕ ◦ f induces the minimal resolution h : Ŝ4 → S4, whose

exceptional curve is C. Let HS4 be a hyperplane section of the quartic S4, and let Ĉ8 be

the proper transform on Ŝ4 of the curve C8. Then Ĉ8 ∼ h∗(2HS4) − 3C, so that Ĉ8 is

a smooth (−2)-curve on the surface Ŝ4. In particular, we have Ĉ8 · C = 6. On the other

hand, we know that Ŝ4 ̸⊂ Supp(D̂). Write D̂|Ŝ4
= bC + cĈ8 + Ξ, where b and c are

non-negative numbers, and Ξ is an effective Q-divisor whose support does not contain

the curves C and Ĉ8. Note that b ⩾ multC(D̂) and D̂ ∼Q h∗(2HS4) − (1 + multC(D))C.
This gives

Ξ ∼Q h
∗(2HS4)−

(
1 + multC(D) + b

)
C ∼Q (1− b)Ĉ8 +

(
2−multC(D)− b

)
C,

where 2 −multC(D) − b ⩽ 2 −multC(D) −multC(D̂) < 0. Thus, since Ξ is an effective
divisor, we have b ⩽ 1, so that

0 ⩽ Ξ · Ĉ8 = (1− b)Ĉ2
8 +(2−multC(D)− b)C · Ĉ8 = −2(1− b)+ 6(2−multC(D)− b) < 0,

which is absurd. The obtained contradiction completes the proof of Lemma 5.1.1. □

Now, using Theorems 1.1.12 and 1.4.10, we see that general smooth Fano threefold in
the family �2.8 are K-stable, because their automorphisms groups are finite [42].

5.2. Family�2.9. In this section, we present one K-stable smooth Fano threefold�2.9.
By Theorem 1.1.12, this would imply that general Fano threefolds �2.9 are K-stable.

To start with, let G = µ5 and consider the action of G on P3 that is given by[
x : y : z : t

]
7→
[
ωx : ω2y : ω3z : ω4t

]
,

where ω is a primitive fifth root of unity. Let us denote by H a general hyperplane in P3.
Let us also introduce the following notations: let Px = [1 : 0 : 0 : 0], Py = [0 : 1 : 0 : 0],
Pz = [0 : 0 : 1 : 0], Pt = [0 : 0 : 0 : 1], let Lxy = {x = y = 0}, let Lxz = {x = z = 0}, let
Lxt = {x = t = 0}, let Lyz = {y = z = 0}, let Lyt = {y = t = 0}, let Lzt = {z = t = 0},
and let Hx, Hy, Hz, Ht be the planes {x = 0}, {y = 0}, {z = 0}, {t = 0}, respectively.
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These points, lines and planes are G-invariant. Moreover, these are all G-invariant
points, lines and planes in P3. Now, we introduce the following three cubic polynomials:

(1) h(x, y, z, t) = x2z + y2x+ z2t+ t2y,
(2) h′(x, y, z, t) = t2x+ tyz − x2y + z3,
(3) h′′(x, y, z, t) = txy + xz2 + y2z − t3.

Let S3 = {h = 0}, S ′
3 = {h′ = 0} and S ′′

3 = {h′′ = 0}. Then S3 is a smooth cubic surface,
which is isomorphic to the Clebsch cubic surface. On the other hand, the surfaces S ′

3 and
S ′′
3 are singular: S ′

3 has one node (ordinary double point) at the point Py, and S
′′
3 has one

node at the point Px. The surfaces S3, S
′
3 and S ′′

3 are G-invariant.

Remark 5.2.1. The intersections of G-invariant lines with S3 can be described as follows:
Lxy ∩ S3 = Pz ∪ Pt, and Lxy is tangent to S3 at the point Pt, Lxz ∩ S3 = Py ∪ Pt, and
Lxy is tangent to S3 at the point Py, Lxt is contained in S3, Lyz is contained in S3,
Lyt ∩ S3 = Px ∪ Pz, and Lyt is tangent to S3 at the point Pz, Lzt ∩ S3 = Px ∪ Py, and Lzt
is tangent to S3 at the point Px. The intersections of G-invariant lines with S ′

3 can be
described as follows: Lxy∩S ′

3 = Pt, Lxz is contained in S ′
3, Lxt∩S ′

3 = Py, Lyz∩S ′
3 = Px∪Pt,

and Lyz is tangent to S ′
3 at the point Px, Lyt ∩ S ′

3 = Px, Lzt ∩ S ′
3 = Px ∪ Py, and Lzt

intersects S ′
3 transversally at the point Px. The intersections of G-invariant lines with S

′′
3

can be described as follows: Lxy ∩S ′′
3 = Pz, Lxz ∩S ′′

3 = Py, Lxt ∩S ′′
3 = Py ∪Pz, and Lxy is

tangent to S ′′
3 at the point Pz, Lyz ∩ S ′′

3 = Px, Lyt ∩ S ′′
3 = Px ∪ Pz, and Lyt intersects S ′′

3

transversally at the point Pz, Lzt is contained in S ′′
3 .

Let C = {h(x, y, z, t) = 0, h′(x, y, z, t) = 0, h′′(x, y, z, t) = 0} ⊂ P3. Then C is a smooth
irreducible curve of genus 5 and degree 7. Note that C is G-invariant. We used the fol-
lowing Magma script to check the smoothness and the genus of this curve:

Q:=RationalField();

P<x,y,z,t>:=ProjectiveSpace(Q,3);

X:=Scheme(P,[x^2*z+y^2*x+z^2*t+t^2*y,

t^2*x+t*y*z-x^2*y+z^3,t*x*y+x*z^2+y^2*z-t^3]);

Degree(X);

IsNonsingular(X);

IsIrreducible(X);

Dimension(X);

IsCurve(X);

C:=Curve(X);

Genus(C);

We have C = S3 ∩ S ′
3 ∩ S ′′

3 . On the surface S3, we have C ∼ 2H
∣∣
S3

+ Lxt. This implies

that C has no 4-secants. Moreover, this rational equivalence can also be used to compute
the genus of the curve C. Observe that C contains Px and Py, but it does not contain Pz
and Pt. Note also that the quotient C/G is an elliptic curve.

Remark 5.2.2. The intersections of G-invariant planes with C can be described as follows:

• Hx|C = 2Py+ the G-obit of the point [0 : −1 : 1 : 1],
• Hy|C = 2Px+ the G-obit of the point [−1 : 0 : 1 : −1],
• Hz|C = 4Px + 3Py,
• Ht|C = Px + Py+ the G-obit of the point [−1 : 1 : 1 : 0].
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The intersections of G-invariant lines with C can be described as follows: Lxy ∩ C = ∅,
Lxz ∩ C = Py, and Lxz is tangent to C (ordinary tangency), Lxt ∩ C = Py, and Lxt
intersects C transversally at Py, Lyz∩C = Px, and Lyz is tangent to C (ordinary tangency),
Lyt∩C = Px, and Lyt intersects C transversally at Px, Lzt∩C = Px∪Py, and Lzt intersects
the curve C transversally at Px and Py.

Let us introduce three G-invariant conics in P3, which will be used later. Observe that
the intersection S3 ∩ S ′

3 consists of the curve C and the conic C ′
2 = {x = 0, yt+ z2 = 0}.

The intersection S3 ∩S ′′
3 consists of the curve C and the conic C ′′

2 = {t = 0, xz+ y2 = 0}.
Therefore, on the surface S3, we have C + C ′

2 ∼ C + C ′′
2 ∼ 3H|S3 . Observe also that

the intersection S ′
3 ∩ S ′′

3 consists of the curve C and the conic C ′′′
2 = {z = 0, xy− t2 = 0}.

Remark 5.2.3. The following assertions hold: Py ∈ C ′
2 ∋ Pt, Px ̸∈ C ′ ̸∋ Pz, Px ∈ C ′′

2 ∋ Pz,
Py ̸∈ C ′′

2 ̸∋ Pt, Px ∈ C ′′′
2 ∋ Py, Pz ̸∈ C ′′′

2 ̸∋ Pt, C ∩ C ′
2 consists of the point Py and

the G-orbit of the point [0 : −1 : 1 : 1], C ∩ C ′′
2 consists of the point Px and the G-orbit

of the point [−1 : 1 : 1 : 0], C ∩ C ′′′
2 = Px ∪ Py, Hx ∩ S3 = Lxt ∪ C ′

2, and Lxt is tangent
to C ′

2 at the point Py, Ht ∩ S3 = Lxt ∪ C ′′
2 , and Lxt is tangent to C ′′

2 at the point Pz,
Hx ∩ S ′

3 = Lxz ∪ C ′
2, and Lxz ∩ C ′

2 = Py ∪ Pt, Hz ∩ S ′
3 = Lxz ∪ C ′′′

2 , and Lxz is tangent to
C ′′′

2 at the point Py, Hz ∩ S ′′
3 = Lzt ∪ C ′′′

2 , and Lzt ∩ C ′′′
2 = Px ∪ Py, Ht ∩ S ′′

3 = Lzt ∪ C ′′
2 ,

and Lzt is tangent to C
′′
2 at the point Px.

Let π : X → P3 be the blow up of the curve C. Then it follows from [46, Theorem A.1]
that X is a smooth Fano threefold �2.9. Since the action of the group G lifts to X,
we identify G with a subgroup in Aut(X). Then there exists the following G-equivariant
commutative diagram:

X
π

~~

ϕ

  
P3

ψ
// P2

where ϕ is a conic bundle, and ψ is a rational map given by [x : y : z : t] 7→ [h : h′ : h′′].
The G-action on P2 has exactly three G-fixed points: [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1].
By construction, we have ψ(C ′

2) = [0 : 0 : 1], ψ(C ′′
2 ) = [0 : 1 : 0] and ψ(C ′′′

2 ) = [1 : 0 : 0].
The discriminant curve of the conic bundle ϕ is a quintic curve (we do not need this).

Proposition 5.2.4. The Fano threefold X is K-stable.

We will prove this proposition in several steps in the remaining part of this section.
To start with, let us consider some G-invariant surfaces and curves in the threefold X.

Let E be the π-exceptional surface. Denote by H̃, H̃x, H̃y, H̃z, H̃t, S̃3, S̃
′
3, S̃

′′
3 the proper

transforms on the threefold X of the surfaces H, Hx, Hy, Hz, Ht, S3, S
′
3, S

′′
3 , respectively.

Similarly, we denote by L̃xy, L̃xz, L̃xt, L̃yz, L̃yt, L̃zt, C̃
′
2, C̃

′′
2 and C̃ ′′′

2 the proper transforms
on the threefold X of the curves Lxy, Lxz, Lxt, Lyz, Lyt, Lzt, C

′
2, C

′′
2 and C ′′′

2 , respectively.
Let ℓx and ℓy be the fibers of the natural projection E → C over Px and Py, respectively.
Then ℓx and ℓy are G-invariant curves, and the group G acts faithfully on each of them,
because π(ℓx) and π(ℓy) are lines in P2, and the G-action on P2 fixes exactly three points.

Remark 5.2.5. The surfaces S̃3, S̃
′
3 and S̃ ′′

3 are smooth. Moreover, the blow up π induces

an isomorphism S̃3
∼= S3, and it induces birational morphisms S̃ ′

3 → S ′
3 and S̃

′′
3 → S ′′

3 that
contract the curves ℓy and ℓx, respectively.
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Let us introduce three smooth G-invariant curves in E that are sections of the natural
projection E → C. First, we let C̃ = S̃3|E. Second, we observe that S̃ ′

3

∣∣
E
= C̃ ′ + ℓy for

a smooth G-invariant curve C̃ ′ that is a section that of the natural projection E → C.

Similarly, we have S̃ ′′
3

∣∣
E
= C̃ ′′ + ℓx for a smooth G-invariant curve C̃ ′′ that is a section

that of the projection E → C. Note that C̃, C̃ ′, C̃ ′′ are distinct curves (isomorphic to C).

The incidence relation between the curves L̃xy, L̃xz, L̃xt, L̃yz, L̃yt, L̃zt, ℓx, ℓy, C̃
′
2, C̃

′′
2 ,

C̃ ′′′
2 , C̃, C̃

′, C̃ ′′ and the surfaces S̃3, S̃
′
3, S̃

′′
3 , H̃x, H̃y, H̃z, H̃t is given in the following table:

⊃ L̃xy L̃xz L̃xt L̃yz L̃yt L̃zt ℓx ℓy C̃ ′
2 C̃ ′′

2 C̃ ′′′
2 C̃ C̃ ′ C̃ ′′

S̃3 × × • • × × × × • • × • × ×

S̃ ′
3 × • × × × × × • • × • × • ×

S̃ ′′
3 × × × × × • • × × • • × × •

H̃x • • • × × × × • • × × × × ×

H̃y • × × • • × • × × × × × × ×

H̃z × • × • × • • • × × • × × ×

H̃t × × • × • • • • × • × × × ×
where • means that the curve is contained in the corresponding surface, and × means
that the curve is not contained in the corresponding surface.

Let P̃x, P̃y, P̃z, P̃t be the points in S̃3 that are mapped to Px, Py, Pz, Pt, respectively.

Then P̃x and P̃y are contained in C̃, the curve ℓx contain P̃x, the curve ℓy contains P̃y.
Each ℓx and ℓy has an additional G-fixed point. Denote them by Ox and Oy, respectively.

Corollary 5.2.6. The only G-fixed pints in X are P̃x, P̃y, P̃z, P̃t, Ox and Oy.

The points Ox and Oy are not contained in S̃3, so that they are not contained in C̃.

Observe also that S̃ ′
3 contains Oy, Ox, P̃y, P̃t, the surface S̃ ′

3 does not contain P̃x and P̃z,

the surface S̃ ′′
3 contains Ox, Oy, P̃x, P̃z, and S̃

′′
3 does not contain P̃y and P̃t.

Lemma 5.2.7. The incidence relation between L̃xy, L̃xz, L̃xt, L̃yz, L̃yt, L̃zt, ℓx, ℓy, C̃
′
2,

C̃ ′′
2 , C̃

′′′
2 , C̃, C̃

′, C̃ ′′ and the points Ox, Oy, P̃x, P̃y, P̃z, P̃t is given in the following table:

∈ L̃xy L̃xz L̃xt L̃yz L̃yt L̃zt ℓx ℓy C̃ ′
2 C̃ ′′

2 C̃ ′′′
2 C̃ C̃ ′ C̃ ′′

Ox × × × × • × • × × × • × • •

Oy × • × × × • × • × × • × • •

P̃x × × × • × • • × × • × • × ×

P̃y × × • × × × × • • × × • × ×

P̃z • × • × • × × × × • × × × ×

P̃t • • × • × × × × • × × × × ×
where • means that the point is contained in the corresponding curve, and × means that
the point is not contained in the corresponding curve.
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Proof. Since C does not contain Pz and Pt, the content of the last two rows of the table
follows from a corresponding statement about relevant curves in P3. By the same reason,
the content of the second column is obvious, since Lxy ∩ C = ∅.

Since Lxt and Lyz are contained in S3, the curves L̃xt and L̃yz do not contain Ox or Oy,
which implies the content of the fourth and the fifth columns. Similarly, we see that both

curves C̃ ′
2 and C̃ ′′

2 do not contain Ox or Oy, so that the content of the corresponding
columns follows from Remark 5.2.3.

Recall that Lxz and C are contained in S ′
3. This surface is smooth at the point Px,

so that S̃ ′
3 does not contain P̃x. Moreover, by construction, the curve C̃ ′ is the proper

transform of the curve C on the surface S̃ ′ via the birational map S̃ ′ → S ′ induced by π.

This implies that C̃ ′ contains Ox, this curve does not contain P̃x, and C̃
′ ∩ ℓy = L̃xz ∩ ℓy,

because the line Lxz is tangent to the curve C at the point Py. On the other hand, we know
from Remark 5.2.2 that the line Lxz is tangent to the cubic surface S3 at the point Py.

Moreover, we have (Lxz · S3)Py = 2 and π∗(S3) = S̃3 + E. Now, using projection formula

we get S̃3 · L̃xz = 1, since L̃xz is tangent to E at L̃xz ∩ ℓy. Then S̃3 ∩ L̃xz = P̃t, which

implies that L̃xz does not contain P̃y, so that it contains Oy. This implies the content of
the the third and the fourteenth columns.

The line Lyt intersects both C and S3 transversally at Px, which implies that L̃yt does

not contain P̃x, so that Ox ∈ L̃yt. The remaining content of the sixth column is obvious.

Recall that Lzt is contained in S ′′
3 . This surface is smooth at Py, so that P̃y ̸∈ S̃ ′′

3 .

Then Oy ∈ L̃zt. We also know that Lzt is tangent to S3 at the point Px, and it intersects

the curve C transversally at this point, which implies that L̃zt contains P̃x, so that it does
not contain Ox. This gives the content of the seventh column.
The contents of the eight and the ninth columns follow from the definition of ℓx and ℓy.
Recall from Remark 5.2.3 that both curves Lxz and C

′′′
2 are contained in the surface S ′

3,

and Lxz is tangent to C
′′′
2 at the point Py. This gives C̃

′′′
2 ∩ ℓy = L̃xz ∩ ℓy = Oy. Similarly,

both curves Lzt and C ′′′
2 are contained in S ′′

3 , and Lzt intersects transversally the conic

C ′′′
2 at the point Px. Since the induced birational morphism S̃ ′′

3 → S ′′
3 is the blow up of

the point Px, we conclude that C̃
′′′
2 ∩ ℓx ̸= L̃zt ∩ ℓx = P̃x, which implies that C̃ ′′′

2 ∩ ℓx = Ox

and P̃x ̸∈ C̃ ′′′
2 . This facts can also be shown as follows. The point Px is a smooth point of

the surface S ′
3, the point Ox is contained in S̃ ′

3, and the curve C ′′′
2 is contained in S ′

3, so

that we have P̃x ̸∈ C̃ ′′′
2 , which gives Ox ∈ C̃ ′′′

2 .

To complete the proof, it is enough to show that Ox ∈ C̃ ′′ ∋ Oy and P̃x ̸∈ C̃ ′′ ̸∋ P̃y.

Recall that C̃ ′′ is contained S̃ ′′
3 , which does not contain P̃y, so that P̃y ̸∈ C̃ ′′ and Oy ∈ C̃ ′′.

Moreover, S̃ ′′
3 contains L̃zt and C̃

′′
2 + L̃zt+ ℓx ∼ π∗(H)|S̃′′

3
, because Ht∩S ′′

3 = Lzt∪C ′′
2 and

Px = Lzt ∩ C ′′
2 by Remark 5.2.3. Furthermore, we have

3π∗(H)|S̃′′
3
− C̃ ′′ − ℓx ∼ S̃3|S̃′′

3
= C̃ ′′

2 ,

which implies that C̃ ′′ ∼ 2C̃ ′′
2 +3L̃zt+2ℓx. This gives C̃

′′ · L̃zt = 1, so that C̃ ′′∩ L̃zt = Oy.

In particular, the curve C̃ ′′ does not contain P̃x, because P̃x ∈ L̃zt. Then Ox ∈ C̃ ′′. □

Observe that every two curves among the smooth curves L̃xy, L̃xz, L̃xt, L̃yz, L̃yt, L̃zt, ℓx,

ℓy, C̃
′
2, C̃

′′
2 , C̃

′′′
2 intersects in at most one point, and it they intersect, then they intersect

transversally. The picture below describes their intersection graph.
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Since Aut(X) is finite [42], to prove the K-stability of the threefold X, it is enough to
show that X is K-polystable. Suppose that it is not. Then it follows from Theorem 1.2.5
that there is a G-invariant prime divisor F over X such that β(F ) ⩽ 0. Let Z = CX(F ).
By Theorem 3.7.1, we conclude that either Z is a G-invariant irreducible curve, or Z

is one of the points P̃x, P̃y, P̃z, P̃t, Ox, Oy. In both cases, we have αG,Z(X) < 3
4
by

Lemma 1.4.4. Thus, by Lemma 1.4.1, there exists a G-invariant effective Q-divisor D on
the threefold X such that D ∼Q −KX and Z ⊂ Nklt(X,λD) for some positive rational
number λ < 3

4
. Observe that Nklt(X,λD) contains no surfaces, since Eff(X) is generated

by E and S̃3. Moreover, if Z is a curve, then Z ∼= P1 by Corollary A.1.17, so that, in
particular, it contains a G-fixed point, because the group G is cyclic. Therefore, we see

that δP (X) ⩽ 1 for some point P ∈ {P̃x, P̃y, P̃z, P̃t, Ox, Oy}. Let us show that this is false.

Lemma 5.2.8. Let P be one of the points Ox, P̃x, P̃z or Oy. Then δP (X) > 1.

Proof. Let S = S̃ ′′
3 . Then S is smooth, it contains the points Ox, Oy, P̃x, P̃z, and it

contains the curves ℓx, L̃zt, C̃
′′
2 , C̃

′′′
2 and C̃ ′′. The intersections of these curves can be

described using Remark 5.2.3 and Lemma 5.2.7. Namely, we have

ℓx ∩ L̃zt = ℓx ∩ C̃ ′′
2 = L̃zt ∩ C̃ ′′

2 = P̃x, ℓx ∩ C̃ ′′′
2 = ℓx ∩ C̃ ′′ = Ox,

L̃zt ∩ C̃ ′′′
2 = L̃zt ∩ C̃ ′′ = Oy, C̃

′′
2 ∩ C̃ ′′′

2 = ∅, C̃ ′′′
2 ∩ C̃ ′′ = Ox ∪Oy,

and C̃ ′′
2 ∩ C̃ ′′ is the preimage of the G-orbit of the point [−1 : 1 : 1 : 0]. Note that P̃z ∈ C̃ ′′

2 .

Let HS = π∗(H)|S. Then C̃ ′′′
2 ∼ C̃ ′′

2 , C̃
′′
2 + L̃zt + ℓx ∼ HS, C̃

′′ ∼ 2C̃ ′′
2 + 3L̃zt + 2ℓx on S.

We explained these equivalences in the proof of Lemma 5.2.7. Recall that E|S̃3
= C̃ ′′+ ℓx.

The cubic surface S ′′
3 contains 6 lines that passes through Px, whose union is cut out

by the equation yt+ z2 = 0. One of these lines is Lzt. The remaining lines pass through
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a point in the G-orbit of the point [0 : −1 : 1 : 1]. The proper transforms of these five
lines on S are disjoint (−1)-curves that intersect ℓx transversally. Let L be their union.
Note that L is a G-invariant curve in S, which is a disjoint union of five (−1)-curves.

On the surface S, we have L + L̃zt + 3ℓx ∼ 2HS. Observe that there is a birational

morphism S → P2 that contracts the curves L and L̃zt, and maps the curve ℓx to a conic
in P2 that contains the images of these curves.

The intersections of HS, ℓx, L̃zt, C̃
′′
2 , C̃

′′′
2 , C̃

′′, L on S are given in table below.

• HS ℓx L̃zt C̃ ′′
2 C̃ ′′′

2 C̃ ′′ L

HS 3 0 1 2 2 7 5

ℓx 0 −2 1 1 1 1 5

L̃zt 1 1 −1 1 1 1 0

C̃ ′′
2 2 1 1 0 0 5 0

C̃ ′′′
2 2 1 1 0 0 5 0

C̃ ′′ 7 1 1 5 5 15 10

L 5 5 0 0 0 10 −5

Now, we are ready to prove that δP (X) > 1. We will prove this by applying the results
of Section 1.7 to S and a G-invariant curve that contains the point P . As usual, we will
use notations introduced in this section.

Take u ∈ R⩾0. Let P (u) = P (−KX − uS) and N(u) = N(−KX − uS). Then

−KX − uS ∼R (4− 3u)π∗(H) + (u− 1)E ∼R π
∗(H) + (1− u)S,

so that −KX − uS is nef ⇐⇒ u ∈ [0, 1], and −KX − uS is pseudo-effective ⇐⇒ u ⩽ 4
3
.

Moreover, we have

P (u) =


−KX − uS if 0 ⩽ u ⩽ 1,

(4− 3u)π∗(H) if 1 ⩽ u ⩽
4

3
,

and N(u) = (u− 1)E if 1 ⩽ u ⩽ 4
3
. Hence, if 0 ⩽ u ⩽ 4

3
, we obtain

P (u)
∣∣
S
=

(2− u)C̃ ′′′
2 + L̃zt + ℓx if 0 ⩽ u ⩽ 1,

(4− 3u)
(
C̃ ′′′

2 + L̃zt + ℓx
)
if 1 ⩽ u ⩽

4

3
,

and N(u)|S = (u− 1)(C̃ ′′ + ℓx) if 1 ⩽ u ⩽ 4
3
. Observe that SX(S) < 1 by Theorem 3.7.1.

Let us compute S(W S
•,•; ℓx). Take a non-negative real number v. If 0 ⩽ u ⩽ 1, then

P (u)
∣∣
S
− vℓx ∼R (2− u)C̃ ′′′

2 + L̃zt + (1− v)ℓx ∼R
4− u− 2v

2
ℓx +

2− u

2
L+

u

2
L̃zt.

Therefore, if 0 ⩽ u ⩽ 1, then the divisor P (u)|S − vℓx is pseudo-effective ⇐⇒ v ⩽ 4−u
2
.

If 0 ⩽ u ⩽ 1 and 0 ⩽ v ⩽ 4−u
2
, its Zariski decomposition can be described as follows. If

0 ⩽ v ⩽ 1, then P (u)|S − vℓx is nef. If 1 ⩽ v ⩽ 2− u, then the Zariski decomposition is

4− u− 2v

2

(
ℓx + L

)
+
u

2
L̃zt︸ ︷︷ ︸

positive part

+ (v − 1)L︸ ︷︷ ︸
negative part

.

163



Finally, if 2− u ⩽ v ⩽ 4−u
2
, then the Zariski decomposition is

4− u− 2v

2

(
ℓx + L+ L̃zt

)
︸ ︷︷ ︸

positive part

+(v − 1)L+ (u+ v − 2)L̃zt︸ ︷︷ ︸
negative part

.

Thus, if 0 ⩽ u ⩽ 1, then

vol
(
P (u)

∣∣
S
− vℓx

)
=


2uv − 2v2 − 4u− 2v + 7 if 0 ⩽ v ⩽ 1,

(v − 2)(3v + 2u− 6) if 1 ⩽ v ⩽ 2− u,

(u+ 2v − 4)2 if 2− u ⩽ v ⩽
4− u

2
.

Similarly, if 1 ⩽ u ⩽ 4
3
, then

P (u)
∣∣
S
−vℓx ∼R (4−3u)

(
C̃ ′′′

2 +L̃zt
)
+(4−3u−v)ℓx ∼R

12− 9u− 2v

2
ℓx+

4− 3u

2

(
L+L̃zt

)
.

Therefore, if 1 ⩽ u ⩽ 4
3
, then the divisor P (u)|S− vℓx is pseudo-effective ⇐⇒ v ⩽ 12−9u

2
.

If 1 ⩽ u ⩽ 4
3
and 0 ⩽ v ⩽ 12−9u

2
, its Zariski decomposition can be described as follows.

If 0 ⩽ v ⩽ 4 − 3u, then P (u)|S − vℓx is nef. If 4 − 3u ⩽ v ⩽ 12−9u
2

, then the Zariski
decomposition is

12− 9u− 2v

2

(
ℓx + L+ L̃zt

)
︸ ︷︷ ︸

positive part

+(3u+ v − 4)
(
L+ L̃zt

)︸ ︷︷ ︸
negative part

.

Thus, if 1 ⩽ u ⩽ 4
3
, then

vol
(
P (u)

∣∣
S
− vℓx

)
=

27u2 − 2v2 − 72u+ 48 if 0 ⩽ v ⩽ 4− 3u,

(12− 9u− 2v)2 if 4− 3u ⩽ v ⩽
12− 9u

2
.

Now, using Corollary 1.7.26, we get

S(W S
•,•; ℓx) =

3

16

∫ 4
3

0

(
P (u)·P (u)·S

)
ordℓx

(
N(u)|S

)
du+

3

16

∫ 4
3

0

∫ ∞

0

vol
(
P (u)

∣∣
S
−vℓx

)
dvdu =

=
3

16

∫ 4
3

1

(4−3u)2π∗(H)·π∗(H)·
(
3π∗(H)−E

)
(u−1)du+

3

16

∫ 4
3

0

∫ ∞

0

vol
(
P (u)

∣∣
S
−vℓx

)
dvdu =

=
3

16

∫ 4
3

1

3(4− 3u)2(u− 1)du+
3

16

∫ 4
3

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vℓx

)
dvdu =

=
1

192
+

3

16

∫ 4
3

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vℓx

)
dvdu =

=
1

192
+

3

16

∫ 1

0

∫ 1

0

(
2uv−2v2−4u−2v+7

)
dvdu+

3

16

∫ 1

0

∫ 2−u

1

(
(v−2)(3v+2u−6)

)
dvdu+

+
3

16

∫ 1

0

∫ 4−u
2

2−u
(u+ 2v − 4)2dvdu+

3

16

∫ 4
3

1

∫ 4−3u

0

(
27u2 − 2v2 − 72u+ 48

)
dvdu+

+
3

16

∫ 4
3

1

∫ 12−9u
2

4−3u

(12− 9u− 2v)2dvdu =
83

96
< 1.
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Now, we compute S(W S,ℓx
•,• ;Ox). Let P (u, v) be the positive part of the Zariski decom-

position of the divisor P (u)
∣∣
S
− vℓx, and let N(u, v) be its negative part. Recall that

FOx

(
W S,ℓx

•,•
)
=

6

−K3
X

∫ 4
3

0

∫ ∞

0

(
P (u, v) · ℓx

)
S
ordOx

(
N ′
S(u)

∣∣
ℓx
+N(u, v)

∣∣
ℓx

)
dvdu.

Here, N ′
S(u) is the part of the divisor N(u)

∣∣
S
whose support does not contain ℓx. Thus,

if 0 ⩽ u ⩽ 1, then N ′
S(u) = 0. Similarly, if 1 ⩽ u ⩽ 4

3
, then N ′

S(u) = (u − 1)C̃ ′′. Note

that C̃ ′′|ℓx = Ox. On the other hand, the curves L and L̃zt do not contain Ox. Hence, we
see that ordOx(N(u, v)|ℓx) = 0 in every possible case. Then

FOx

(
W S,ℓx

•,•
)
=

6

16

∫ 4
3

1

∫ 4−3u

0

((12− 9u− 2v

2
ℓx +

4− 3u

2
(L+ L̃zt)

)
· ℓx
)
(u− 1)dvdu+

+
6

16

∫ 4
3

1

∫ 12−9u
2

4−3u

(12− 9u− 2v

2

(
ℓx + L+ L̃zt

)
· ℓx
)
(u− 1)dvdu =

=
6

16

∫ 4
3

1

∫ 4−3u

0

2v(u− 1)dvdu+
6

16

∫ 4
3

1

∫ 12−9u
2

4−3u

(u− 1)(24− 18u− 4v)dvdu =

=
6

16

∫ 4
3

1

(u− 1)(3u− 4)2du+
6

16

∫ 4
3

1

1

2
(u− 1)(3u− 4)2du =

1

192
.

Thus, it follows from Theorem 1.7.30 that

S
(
W S,ℓx

•,• ;Ox

)
=

1

192
+

3

−K3
X

∫ 4
3

0

∫ ∞

0

((
P (u, v) · ℓx

)
S

)2
dvdu =

1

192
+

3

−K3
X

∫ 4
3

0

∫ ∞

0

((
P (u, v) · ℓx

)
S

)2
dvdu =

1

192
+

3

16

∫ 1

0

∫ 1

0

(
1− u+ 2v

)2
dvdu+

+
3

16

∫ 1

0

∫ 2−u

1

(
6− u− 3v

)2
dvdu+

3

16

∫ 1

0

∫ 4−u
2

2−u

(
8− 2u− 4v

)2
dvdu+

+
3

16

∫ 4
3

1

∫ 4−3u

0

(
2v
)2
dvdu+

3

16

∫ 4
3

1

∫ 12−9u
2

4−3u

(
24− 18u− 4v

)2
dvdu =

83

96
< 1.

Since SX(S) < 1 and S(W S
•,•; ℓx) < 1, we see that δOx(X) > 1 by Theorem 1.7.30.

Similarly, we see that δP̃x
(X) > 1 by Theorem 1.7.30, because

S
(
W S,ℓx

•,• ; P̃x
)
=

55

64
+FP̃x

(
W S,ℓx

•,•
)
=

55

64
+

6

16

∫ 1

0

∫ 4−u
2

2−u
(u+ v−2)

((
P (u, v) · ℓx

)
S

)
dvdu+

+
6

16

∫ 4
3

1

∫ 12−9u
2

4−3u

(3u+ v − 4)
((
P (u, v) · ℓx

)
S

)
dvdu =

=
55

64
+

6

16

∫ 1

0

∫ 4−u
2

2−u
(u+ v − 2)(8− 2u− 4v)dvdu+

+
6

16

∫ 4
3

1

∫ 12−9u
2

4−3u

(3u+ v − 4)(24− 18u− 4v)dvdu =
167

192
< 1,
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since L and C̃ ′′ do not pass through P̃x, and L̃zt|ℓx = P̃x.

Now, we will show that δP̃z
(X) > 1. Let us compute S(W S

•,•; C̃
′′
2 ) and S(W

S,C̃′′
2

•,• ; P̃z).

Take some v ∈ R⩾0. If 0 ⩽ u ⩽ 1, then P (u)|S − vC̃ ′′
2 ∼R (2 − u − v)C̃ ′′

2 + L̃zt + ℓx, so

that P (u)|S − vC̃ ′′
2 is pseudo-effective ⇐⇒ v ⩽ 2− u. If 0 ⩽ u ⩽ 1 and 0 ⩽ v ⩽ 2− u,

its Zariski decomposition can be described as follows:

• if 0 ⩽ v ⩽ 1− u, then P (u)|S − vC̃ ′′
2 is nef,

• if 1− u ⩽ v ⩽ 5−3u
3

, then the Zariski decomposition is

(2− u− v)C̃ ′′
2 + L̃zt +

3− u− v

2
ℓx︸ ︷︷ ︸

positive part

+
u+ v − 1

2
ℓx︸ ︷︷ ︸

negative part

,

• if 5−3u
3

⩽ v ⩽ 2− u, then the Zariski decomposition is

(2− u− v)
(
C̃ ′′

2 + 3L̃zt + 2ℓx
)︸ ︷︷ ︸

positive part

+(3u+ 3v − 5)L̃zt + (2u+ 2v − 3)ℓx︸ ︷︷ ︸
negative part

.

Thus, if 0 ⩽ u ⩽ 1, then

vol
(
P (u)

∣∣
S
− vC̃ ′′

2

)
=


7− 4u− 4v if 0 ⩽ v ⩽ 1− u,

15

2
− 5u− 5v + uv +

u2

2
+
v2

2
if 1− u ⩽ v ⩽

5− 3u

3
,

5(2− u− v)2 if
5− 3u

3
⩽ v ⩽ 2− u.

Similarly, if 1 ⩽ u ⩽ 4
3
, then

P (u)
∣∣
S
− vC̃ ′′

2 ∼R (4− 3u− v)C̃ ′′
2 + (4− 3u)

(
L̃zt + ℓx

)
.

Therefore, if 1 ⩽ u ⩽ 4
3
, then the divisor P (u)|S−vC̃ ′′

2 is pseudo-effective ⇐⇒ v ⩽ 4−3u.

If 1 ⩽ u ⩽ 4
3
and 0 ⩽ v ⩽ 4− 3u, its Zariski decomposition can be described as follows:

• if 0 ⩽ v ⩽ 8−6u
3

, then the positive part of the Zariski decomposition is

(4− 3u− v)C̃ ′′
2 + (4− 3u)L̃zt +

(
4− 3u− v

2

)
ℓx,

and the negative part is v
2
ℓx,

• if 8−6u
3

⩽ v ⩽ 4− 3u, then the Zariski decomposition is

(4− 3u− v)C̃ ′′
2 + (12− 9u− 3v)L̃zt + (8− 6u− 2v)ℓx︸ ︷︷ ︸

positive part

+(6u+ 3v − 8)L̃zt + (3u+ 2v − 4)ℓx︸ ︷︷ ︸
negative part

.

Thus, if 1 ⩽ u ⩽ 4
3
, then

vol
(
P (u)

∣∣
S
− vC̃ ′′

2

)
=


48− 72u− 16v + 12uv + 27u2 +

v2

2
if 0 ⩽ v ⩽

8− 6u

3
,

5(4− 3u− v)2 if
8− 6u

3
⩽ v ⩽ 4− 3u.

Using Corollary 1.7.26 and integrating, we get S(W S
•,•; C̃

′′
2 ) =

95
144

< 1.
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Now, we compute S(W
S,C̃′′

2
•,• ; P̃z). Let P (u, v) be the positive part of the Zariski decom-

position of the divisor P (u)
∣∣
S
− vC̃ ′′

2 , and let N(u, v) be its negative part. Then

S
(
W

S,C̃′′
2

•,• ; P̃z
)
= FP̃z

(
W

S,C̃′′
2

•,•
)
+

3

16

∫ 4
3

0

∫ ∞

0

((
P (u, v) · C̃ ′′

2

)
S

)2
dvdu =

=
3

16

∫ 4
3

0

∫ ∞

0

((
P (u, v) · C̃ ′′

2

)
S

)2
dvdu =

3

16

∫ 1

0

∫ 1−u

0

4dvdu+

+
3

16

∫ 1

0

∫ 5−3u
3

1−u

(5− u− v)2

4
dvdu+

3

16

∫ 1

0

∫ 2−u

5−3u
3

(10− 5u− 5v)2dvdu+

+
3

16

∫ 4
3

1

∫ 8−6u
3

0

(
8− 6u− v

2

)2
dvdu+

3

16

∫ 4
3

1

∫ 4−3u

8−6u
3

(20− 15u− 5v)2dvdu =
515

576
< 1

by Theorem 1.7.30. Here, we used the equality FP̃z

(
W

S,C̃′′
2

•,• ) = 0. It follows from the fact

that ℓx, C̃
′′ and the support of the divisor N(u, v) do not contain P̃z, because

FP̃z

(
W

S,C̃′′
2

•,•
)
=

6

−K3
X

∫ 4
3

0

∫ ∞

0

(
P (u, v) · C̃ ′′

2

)
S
ordP̃z

(
N ′
S(u)

∣∣
C̃′′

2
+N(u, v)

∣∣
C̃′′

2

)
dvdu,

where

N ′
S(u) = N(u)

∣∣
S
=


0 if 0 ⩽ u ⩽ 1,

(u− 1)ℓx + (u− 1)C̃ ′′ if 1 ⩽ u ⩽
4

3
.

Since S(W S
•,•; C̃

′′
2 ) < 1 and S(W

S,C̃′′
2

•,• ; P̃z) < 1, we see that δP̃z
(X) > 1 by Theorem 1.7.30.

Likewise, we can show that δOy(X) > 1. Indeed, recall that Oy ∈ C̃ ′′′
2 and C̃ ′′′

2 ∼ C̃ ′′
2 .

Then S(W S
•,•; C̃

′′′
2 ) ⩽ S(W S

•,•; C̃
′′
2 ) < 1, because C̃ ′′′

2 is not contained in Supp(N(u)|S).
Moreover, one can compute S(W

S,C̃′′′
2

•,• , Oy) similar to S(W
S,C̃′′

2
•,• , P̃z). Namely, we have

S
(
W

S,C̃′′′
2

•,• ;Oy

)
=

515

576
+ FOy

(
W

S,C̃′′′
2

•,•
)
,

but now we have FOy

(
W

S,C̃′′′
2

•,• ) ̸= 0. On the other hand, we have

FOy

(
W

S,C̃′′′
2

•,•
)
=

6

16

∫ 1

0

∫ 2−u

5−3u
3

(3u+ 3v − 5)
((
P (u, v) · C̃ ′′′

2

)
S

)
dvdu+

+
6

16

∫ 4
3

1

∫ 8−6u
3

0

((
P (u, v) · C̃ ′′′

2

)
S

)
(u− 1)

(
C̃ ′′ · C̃ ′′′

2

)
Oy
dvdu+

+
6

16

∫ 4
3

1

∫ 4−3u

8−6u
3

((
P (u, v) · C̃ ′′′

2

)
S

)(
(u− 1)

(
C̃ ′′ · C̃ ′′′

2

)
Oy

+ 6u+ 3v − 8
)
dvdu =

=
6

16

∫ 1

0

∫ 2−u

5−3u
3

(3u+3v−5)(10−5v−5v)dvdu+
6

16

∫ 4
3

1

∫ 8−6u
3

0

(
8−6u−v

2

)
(u−1)

(
C̃ ′′·C̃ ′′′

2

)
Oy
dvdu+

+
6

16

∫ 4
3

1

∫ 4−3u

8−6u
3

(
(u−1)

(
C̃ ′′·C̃ ′′′

2

)
Oy
+6u+3v−8

)
(20−15u−5v)dvdu =

65

1728
+

(
C̃ ′′ · C̃ ′′′

2

)
Oy

192
.
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because L̃zt intersect C̃
′′′
2 transversally at the point Oy. But (C̃

′′ · C̃ ′′′
2 )Oy ⩽ C̃ ′′ · C̃ ′′′

2 = 5.

Therefore, we have S(W
S,C̃′′′

2
•,• ;Oy) =

515
576

+ 65
1728

+
(C̃′′·C̃′′′

2 )Oy

192
⩽ 515

576
+ 5

192
= 1655

1728
< 1, which

implies that δOy(X) > 1 by Theorem 1.7.30. This completes the proof of the lemma. □

Finally, we conclude the proof of Proposition 5.2.4 by the following

Lemma 5.2.9. One has δP̃y
(X) > 1 and δP̃t

(X) > 1.

Proof. Let S = S̃ ′
3. Then the surface S is smooth, it contains the points Ox, Oy, P̃y, P̃t,

and it contains ℓy, L̃xz, C̃
′
2, C̃

′′′
2 , C̃

′. It follows from Remark 5.2.3 and Lemma 5.2.7 that

ℓy ∩ L̃xz = ℓy ∩ C̃ ′′′
2 = ℓy ∩ C̃ ′ = L̃xz ∩ C̃ ′′′

2 = L̃xz ∩ C̃ ′ = Oy,

ℓy∩ C̃ ′
2 = P̃y, L̃xz ∩ C̃ ′

2 = P̃t, C̃
′
2∩ C̃ ′′′

2 = ∅, C̃ ′′′
2 ∩ C̃ ′ = Ox∪Oy, and C̃

′
2∩ C̃ ′ consists of five

points that form the preimage of the G-orbit of the point [0 : −1 : 1 : 1].
The cubic surface S ′

3 contains 6 lines that passes through Py. One of then is the line Lxz.
The remaining five lines pass through a point in the G-orbit of the point [−1 : 0 : 1 : 1].
The proper transforms of these five lines on S are disjoint (−1)-curves that intersects

the curve ℓy transversally. Let L be their union. Then L is disjoint from L̃xz, C̃
′
2 and C̃

′′′
2 .

On the surface S, the intersection form of the curves ℓy, L̃xz, C̃
′
2, C̃

′′′
2 , C̃

′ and L is given
in the following table:

• ℓy L̃xz C̃ ′
2 C̃ ′′′

2 C̃ ′ L

ℓy −2 1 1 1 1 5

L̃xz 1 −1 1 1 1 0

C̃ ′
2 1 1 0 0 5 0

C̃ ′′′
2 1 1 0 0 5 0

C̃ ′ 1 1 5 5 15 10

L 5 0 0 0 10 −5

To prove that δP̃y
(X) > 1, we will apply Theorem 1.7.30 to S and the curve ℓy. Similarly,

to prove that δP̃t
(X) > 1, we will apply Theorem 1.7.30 to S and C̃ ′

2. As usual, we will
use notations introduced in Section 1.7.

Take a non-negative number u. Let P (u) = P (−KX−uS) and N(u) = N(−KX−uS).
As in the proof of Lemma 5.2.8, we see that −KX − uS is not pseudo-effective for u > 4

3
.

Moreover, if 0 ⩽ u ⩽ 4
3
, then

P (u)
∣∣
S
=

(2− u)C̃ ′
2 + L̃xz + ℓy if 0 ⩽ u ⩽ 1,

(4− 3u)
(
C̃ ′

2 + L̃xz + ℓy
)
if 1 ⩽ u ⩽

4

3
,

and

N(u)
∣∣
S
=


0 if 0 ⩽ u ⩽ 1,

(u− 1)
(
C̃ ′ + ℓy

)
if 1 ⩽ u ⩽

4

3
.

Observe that SX(S) < 1 by Theorem 3.7.1.
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Let us compute S(W S
•,•; ℓy). Take a non-negative real number v. If 0 ⩽ u ⩽ 1, then

P (u)
∣∣
S
− vℓy ∼R

4− u− 2v

2
ℓy +

2− u

2
L+

u

2
L̃xz.

Therefore, if 0 ⩽ u ⩽ 1, then the divisor P (u)|S − vℓy is pseudo-effective ⇐⇒ v ⩽ 4−u
2
.

If 0 ⩽ u ⩽ 1 and 0 ⩽ v ⩽ 4−u
2
, its Zariski decomposition can be described as follows:

• if 0 ⩽ v ⩽ 1, then P (u)|S − vℓy is nef,
• if 1 ⩽ v ⩽ 2− u, then the Zariski decomposition is

4− u− 2v

2

(
ℓy + L

)
+
u

2
L̃xz︸ ︷︷ ︸

positive part

+ (v − 1)L︸ ︷︷ ︸
negative part

,

• if 2− u ⩽ v ⩽ 4−u
2
, then the Zariski decomposition is

4− u− 2v

2

(
ℓy + L+ L̃xz

)
︸ ︷︷ ︸

positive part

+(v − 1)L+ (u+ v − 2)L̃xz︸ ︷︷ ︸
negative part

.

Thus, if 0 ⩽ u ⩽ 1, then

vol
(
P (u)

∣∣
S
− vℓy

)
=


2uv − 2v2 − 4u− 2v + 7 if 0 ⩽ v ⩽ 1,

(v − 2)(3v + 2u− 6) if 1 ⩽ v ⩽ 2− u,

(u+ 2v − 4)2 if 2− u ⩽ v ⩽
4− u

2
.

Similarly, if 1 ⩽ u ⩽ 4
3
, then

P (u)
∣∣
S
− vℓy ∼R

12− 9u− 2v

2
ℓy +

4− 3u

2

(
L+ L̃xz

)
.

Therefore, if 1 ⩽ u ⩽ 4
3
, then the divisor P (u)|S− vℓy is pseudo-effective ⇐⇒ v ⩽ 12−9u

2
.

If 1 ⩽ u ⩽ 4
3
and 0 ⩽ v ⩽ 12−9u

2
, its Zariski decomposition can be described as follows:

• if 0 ⩽ v ⩽ 4− 3u, then P (u)|S − vℓy is nef,
• if 4− 3u ⩽ v ⩽ 12−9u

2
, then the Zariski decomposition is

12− 9u− 2v

2

(
ℓy + L+ L̃xz

)
︸ ︷︷ ︸

positive part

+(3u+ v − 4)
(
L+ L̃xz

)︸ ︷︷ ︸
negative part

,

Thus, if 1 ⩽ u ⩽ 4
3
, then

vol
(
P (u)

∣∣
S
− vℓy

)
=

27u2 − 2v2 − 72u+ 48 if 0 ⩽ v ⩽ 4− 3u,

(12− 9u− 2v)2 if 4− 3u ⩽ v ⩽
12− 9u

2
.

Thus, using Corollary 1.7.26, we get

S(W S
•,•; ℓy) =

3

16

∫ 4
3

0

(
P (u)·P (u)·S

)
ordℓy

(
N(u)|S

)
du+

3

16

∫ 4
3

0

∫ ∞

0

vol
(
P (u)

∣∣
S
−vℓy

)
dvdu =

=
3

16

∫ 4
3

1

3(4− 3u)2(u− 1)du+
3

16

∫ 4
3

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vℓy

)
dvdu =

83

96
< 1.
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Now, we compute S(W
S,ℓy
•,• ; P̃y). Let P (u, v) be the positive part of the Zariski decom-

position of the divisor P (u)
∣∣
S
− vℓy, and let N(u, v) be its negative part. Recall that

S
(
W S,ℓy

•,• ; P̃y
)
= FP̃y

(
W S,ℓy

•,•
)
+

3

−K3
X

∫ 4
3

0

∫ ∞

0

((
P (u, v) · ℓy

)
S

)2
dvdu,

where

FP̃y

(
W S,ℓy

•,•
)
=

6

−K3
X

∫ 4
3

0

∫ ∞

0

(
P (u, v) · ℓy

)
S
ordP̃y

(
N ′
S(u)

∣∣
ℓy
+N(u, v)

∣∣
ℓy

)
dvdu.

Here, N ′
S(u) is the part of the divisor N(u)

∣∣
S
whose support does not contain ℓy. Then

N ′
S(u) =


0 if 0 ⩽ u ⩽ 1,

(u− 1)C̃ ′ if 1 ⩽ u ⩽
4

3
.

Therefore, since C̃ ′, L and L̃xz do not contain the point P̃y, we have FP̃y
(W

S,ℓy
•,• ) = 0.

Then S(W
S,ℓy
•,• ; P̃y) =

55
64
< 1, so that δP̃y

(X) > 1 by Theorem 1.7.30.

Now, let us show that δP̃t
(X) > 1. First, we compute S(W S

•,•; C̃
′
2). Take some v ∈ R⩾0.

If 0 ⩽ u ⩽ 1, then P (u)|S − vC̃ ′
2 ∼R (2 − u − v)C̃ ′

2 + L̃xz + ℓy, so that P (u)|S − vC̃ ′
2 is

pseudo-effective ⇐⇒ v ⩽ 2−u. If 0 ⩽ u ⩽ 1 and 0 ⩽ v ⩽ 2−u, its Zariski decomposition
can be described as follows:

• if 0 ⩽ v ⩽ 1− u, then P (u)|S − vC̃ ′
2 is nef,

• if 1 ⩽ v ⩽ 5−3u
3

, then the Zariski decomposition is

(2− u− v)C̃ ′
2 + L̃xz +

3− u− v

2
ℓy︸ ︷︷ ︸

positive part

+
u+ v − 1

2
ℓy︸ ︷︷ ︸

negative part

,

• if 5−3u
3

⩽ v ⩽ 2− u, then the Zariski decomposition is

(2− u− v)
(
C̃ ′

2 + 3L̃xz + 2ℓy
)︸ ︷︷ ︸

positive part

+(3u+ 3v − 5)L̃xz + (2u+ 2v − 3)ℓy︸ ︷︷ ︸
negative part

.

Thus, if 0 ⩽ u ⩽ 1, then

vol
(
P (u)

∣∣
S
− vC̃ ′

2

)
=


7− 4u− 4v if 0 ⩽ v ⩽ 1− u,

15

2
− 5u− 5v + uv +

u2

2
+
v2

2
if 1− u ⩽ v ⩽

5− 3u

3
,

5(2− u− v)2 if
5− 3u

3
⩽ v ⩽ 2− u.

Similarly, if 1 ⩽ u ⩽ 4
3
, then P (u)|S − vC̃ ′

2 ∼R (4− 3u− v)C̃ ′
2+(4− 3u)(L̃xz + ℓy), so that

P (u)|S − vC̃ ′
2 is pseudo-effective ⇐⇒ v ⩽ 4− 3u. If 1 ⩽ u ⩽ 4

3
and 0 ⩽ v ⩽ 4− 3u, its

Zariski decomposition can be described as follows:

• if 0 ⩽ v ⩽ 8−6u
3

, then the positive part of the Zariski decomposition is

(4− 3u− v)C̃ ′
2 + (4− 3u)L̃xz +

(
4− 3u− v

2

)
ℓy,

and the negative part is v
2
ℓy,
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• if 8−6u
3

⩽ v ⩽ 4− 3u, then the Zariski decomposition is

(4− 3u− v)C̃ ′
2 + (12− 9u− 3v)L̃xz + (8− 6u− 2v)ℓy︸ ︷︷ ︸

positive part

+(6u+ 3v − 8)L̃xz + (3u+ 2v − 4)ℓy︸ ︷︷ ︸
negative part

.

Thus, if 1 ⩽ u ⩽ 4
3
, then

vol
(
P (u)

∣∣
S
− vC̃ ′′

2

)
=


48− 72u− 16v + 12uv + 27u2 +

v2

2
if 0 ⩽ v ⩽

8− 6u

3
,

5(4− 3u− v)2 if
8− 6u

3
⩽ v ⩽ 4− 3u.

Using Corollary 1.7.26 and integrating, we get S(W S
•,•; C̃

′
2) =

377
576

< 1.

Now, we compute S(W
S,C̃′

2
•,• ; P̃t). Let P (u, v) be the positive part of the Zariski decom-

position of the divisor P (u)
∣∣
S
− vC̃ ′

2, and let N(u, v) be its negative part. Then

S
(
W

S,C̃′
2

•,• ; P̃t
)
= FP̃t

(
W

S,C̃′
2

•,•
)
+

3

16

∫ 4
3

0

∫ ∞

0

((
P (u, v)·C̃ ′

2

)
S

)2
dvdu = ordP̃t

(
F
(
W

S,C̃′
2

•,•
))

+
515

576

by Theorem 1.7.30. To compute FP̃t

(
W

S,C̃′
2

•,• ), recall that from Theorem 1.7.30 that

FP̃t

(
W

S,C̃′
2

•,•
)
=

6

−K3
X

∫ 4
3

0

∫ ∞

0

(
P (u, v) · C̃ ′

2

)
S
ordP̃t

(
N ′
S(u)

∣∣
C̃′′

2
+N(u, v)

∣∣
C̃′

2

)
dvdu,

where, since C̃ ′
2 is not contained in the support of the divisor N(u)|S, we have

N ′
S(u) = N(u)

∣∣
S
=


0 if 0 ⩽ u ⩽ 1,

(u− 1)ℓy + (u− 1)C̃ ′ if 1 ⩽ u ⩽
4

3
.

On the other hand, the curves ℓy and C̃ ′ do not contain the point P̃t. Thus, we have

FP̃t

(
W

S,C̃′
2

•,•
)
=

6

16

∫ 1

0

∫ 2−u

5−3u
3

(3u+ 3v − 5)
((
P (u, v) · C̃ ′

2

)
S

)
dvdu+

+
6

16

∫ 4
3

1

∫ 4−3u

8−6u
3

(6u+ 3v − 8)
((
P (u, v) · C̃ ′

2

)
S

)
dvdu =

=
6

16

∫ 1

0

∫ 2−u

5−3u
3

(3u+ 3v − 5)(10− 5u− 5v)dvdu+

+
6

16

∫ 4
3

1

∫ 4−3u

8−6u
3

(6u+ 3v − 8)(20− 15u− 5v)dvdu =
65

1728
.

Then S(W
S,C̃′

2
•,• ; P̃t) =

805
864

< 1. Since we already know that S(W S
•,•; C̃

′
2) < 1 and SX(S) < 1,

we get δP̃t
(X) > 1 by Theorem 1.7.30. This completes the proof of the lemma. □

Thus, Proposition 5.2.4 is proved, and general members of the family� 2.9 are K-stable.
171



5.3. Family �2.11. Let V be the cubic threefold in P4 that is given by

xu2 + 2yuv + zv2 + 2z2u+ 2x2v + ay3 + bxyz = 0.

where u, v, x, y, z are homogeneous coordinates on P4, and a and b are general numbers
such that V is smooth, e.g. a = 5 and b = 7. This threefold has been studied in [106].

Let G = D10 = ⟨α, ι | α5 = 1, ι2 = 1, α · ι = ι · α4⟩. Then G acts on P4 via

α
(
[u : v : x : y : z]

)
= [ω2u : ω3v : ωx : y : ω4z]

and ι([u : v : x : y : z]) = [v : u : z : y : x], where ω is a primitive fifth root of unity.
Moreover, the cubic V is G-invariant, and the only G-invariant linear subspaces in P4 are
the hyperplane {y = 0}, the plane Π = {x = z = 0}, the plane Π′ = {u = v = 0}, the line
L = {x = y = z = 0}, the line L′ = {v = v = y = 0}, and the point P = [0 : 0 : 0 : 1 : 0].
Observe that the point P does not lie on V . Let S3 be the cubic surface in V that is cut
out by the hyperplane y = 0. Then S3 is smooth, it contains the lines L and L′, and it is
isomorphic to the Clebsch cubic surface [72].

Let π : X → V be the blow-up of the line L. Then X is a Fano threefold �2.11, and
the action of the group G lifts to X, so that we identify G with a subgroup in Aut(X).
Moreover, there exists G-equivariant commutative diagram

X
π

��

ϕ

  
V

ψ
// P2

where ϕ is a conic bundle, and ψ is a rational map given by [u : v : x : y : z] 7→ [x : y : z].
Observe that the G-action on P2 has exactly one G-fixed point: [0 : 1 : 0].

Remark 5.3.1. The threefold X is given in P4 × P2 by the equations

sy = tx

sz = rx,

ry = tz,

u2x+ 2vx2 + 2uvy + ay3 + v2z + bxyz + 2uz2 = 0,

u2s+ 2vxs+ 2uvt+ ay2t+ v2r + bxyr + 2uzr = 0.

where s, t, r are coordinates on P2. The surface E is cut out on X by x = y = z = 0,
so that it is isomorphic to a surface in P1 × P2 given by u2s + 2uvt + v2r = 0, where we
consider u and v as coordinates on P1. The group G acts on P1 × P2 by

α
(
[u : v], [s : t : r]

)
=
(
[u : ωv], [ωs : t : ω4r]

)
and ι([u : v], [s : t : r]) = ([v : u], [r : t : s]). There are no G-fixed points on E, and
there are no G-invariant fibers of the projection E → L, because V does not have G-fixed
points. Observe that E ∼= P1 × P1.

Let H be a general hypeprlane section of the threefold V , let E be the π-exceptional
divisor, and let S be the proper transform of the cubic surface S3 on the threefold X.
Then −KX ∼ 2S + E, S ∼ π∗(H)− E, the conic bundle ϕ is given by |π∗(H)− E|, S is
the only G-invariant surface in the linear system |π∗(H)−E|, the cone of effective divisors
on X is generated by E and S, and the cone of nef divisors is generated by π∗(H) and S.
Note that π∗(H)3 = 3, π∗(H) · E2 = −1, π∗(H)2 · E = 0, E3 = 0, −K3

X = 18,
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Proposition 5.3.2. The Fano threefold X is K-stable.

Thus, since Aut(X) is finite [42], Theorem 1.1.12 implies that general smooth Fano
threefolds in the family �2.11 are K-stable.

Let us prove Proposition 5.3.2. By Corollary 1.1.6, it is enough to show that the three-
fold X is K-polystable. Suppose that X is not K-polystable. Then, by Theorem 1.2.5,

there are a G-equivariant birational morphism f : X̃ → X and a G-invariant dreamy

prime divisor F ⊂ X̃ such that β(F ) = AX(F )− SX(F ) ⩽ 0. Let Z = f(F ). Then Z is
not a surface by Theorem 3.7.1, so that Z is a G-invariant irreducible curve, because X
does not have G-fixed points. Let us seek for a contradiction.

Lemma 5.3.3 (cf. [87, § 4]). One has π(Z) ⊂ S3 ∪ Π ∪ Π′.

Proof. Observe that π(Z) is a curve. Suppose that this curve is not contained in S3∪Π∪Π′.
By Lemma 1.4.4, we have αG,Z(X) < 3

4
. Thus, there are a G-invariant effective Q-divisor

D on the threefold X and a positive rational number λ < 3
4
such that Z ⊆ Nklt(X,λD).

Recall that the cone Eff(X) is generated by E and S, and S is the only G-invariant
surface in the linear system |π∗(H)− E|. Thus, since −KX ∼ 2S + E, we conclude that
the locus Nklt(X,λD) does not contain surfaces except maybe S. Write D = aS + ∆,
where a ∈ Q⩾0, and ∆ is an effective Q-divisor on X whose support does not contain
the surface S. Let ∆ = π(∆). Then Z ⊆ Nklt(X,λ∆), so that π(Z) ⊆ Nklt(V, λ∆).
But ∆ ∼Q (2 − a)H. Thus, using Corollary A.1.7, we see that the locus Nklt(V, λ∆) is
connected union of finitely many curves. Since V does not have G-fixed points, π(Z) is
one of these curves.

Choose a positive rational number µ ⩽ λ, such that (V, µ∆) is strictly log canonical.
Then π(Z) is a minimal log canonical center of the log pair (V, µ∆) by Corollary A.4.9.
Therefore, the degree of the curve π(Z) is at most three by Corollary A.2.7. On the other
hand, the curve π(Z) is not a line, since L and L′ are contained in S. Moreover, since
π(Z) ̸⊂ Π and π(Z) ̸⊂ Π′, we see that π(Z) is not contained in a plane, since Π and Π are
the only G-invariant planes in P4. Thus, we conclude that π(Z) is a twisted cubic curve.
Then it is contained in the unique G-invariant hyperplane in P4, which is given by y = 0.
But π(Z) is not contained in S3, which is a contradiction. □

Our next step is

Lemma 5.3.4. One has Z ̸⊂ E.

Proof. Suppose that Z ⊂ E. Let us apply results of Section 1.7 to derive a contradiction.
Fix u ∈ R⩾0. Then −KX − uE ∼R 2π∗(H) − (1 + u)E, so that −KX − uE is nef if and
only if it is is pseudo-effective ⇐⇒ u ∈ [0, 1]. Using this, we see that SX(E) =

5
9
< 1.

Thus, applying Corollary 1.7.26, we see that S(WE
•,•;Z) ⩾ 1.

Recall from Remark 5.3.1 that E ∼= P1×P1. We may assume that a fiber of the natural
projection E → L is a divisor of degree (1, 0). Then π∗(H)|E is a divisor of degree (1, 0),
the divisor −E|E has degree (0, 1), and Z has degree (b1, b2) for some b1 ⩾ 0 and b2 ⩾ 0.
Then (b1, b2) ̸= (1, 0), since L has no G-fixed points. Therefore, we conclude that b2 > 0.
Thus, for a curve Z0 ⊂ E of degree (0, 1), one has

S
(
WE

•,•;Z
)
⩽ S

(
WE

•,•;Z0

)
=

3

18

∫ 1

0

∫ 1+u

0

4(1− u+ v)dvdu =
7

9
< 1

by Corollary 1.7.26. The obtained contradiction completes the proof of the lemma. □
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Observe that Π∩V = L∪C, where C is an irreducible conic. Similarly, Π′∩V = L′∪C ′

for an irreducible conic C ′. The conics C and C ′ are G-invariant. Moreover, these are
the only G-invariant conics contained in V .

Lemma 5.3.5. One has π(Z) is not the conic C.
Proof. Let T3 be a hyperplane section of V that is cut out by the equation λx+ µz = 0,
where λ and µ are complex numbers such that T3 is smooth. Such numbers always exists,
e.g. the cubic surface T3 is smooth for a = 5, b = 7, λ = 1 and µ = −1.

Note that the line L and the conic C are both contained in the surface T3 by construction.
But the surface T3 is not G-invariant. Let T be its proper transform on X. Then T ∼= T3.

Suppose that π(Z) = C. Then Z ⊂ T . Let us apply results of Section 1.7 to T and Z
to derive a contradiction. We will use the notations introduced in this section.

Fix u ∈ R⩾0. Then −KX − uT ∼R (2 − u)π∗(H) + (u − 1)E, so that −KX − uT is
pseudo-effective if and only if u ⩽ 2. Moreover, this divisor is nef if and only if u ∈ [0, 1].
Let P (u) = P (−KX − uT ) and N(u) = N(−KX − uT ). Then

P (u) =

{−KX − uT if 0 ⩽ u ⩽ 1,

(2− u)π∗(H) if 1 ⩽ u ⩽ 2,

and N(u) = (u− 1)E for u ∈ [1, 2]. Using this, we see that SX(T ) =
41
72
< 1. Now, using

Corollary 1.7.26, we conclude that S(W T
•,•; C) ⩾ 1 .

Let us compute S(W T
•,•; C). Take u ∈ [0, 2] and v ∈ R⩾0. If u ∈ [0, 1], then

P (u)
∣∣
T
− vC ∼R (2− u− v)C + L,

which easily implies that the divisor P (u)|T−vC is pseudo-effective if and only if v ⩽ 2−u.
If 0 ⩽ u ⩽ 1 and 0 ⩽ v ⩽ 3

2
− u, this divisor is nef and vol(P (u)|T − vC

)
= 7− 4u− 4v.

If 0 ⩽ u ⩽ 1 and 3
2
− u ⩽ v ⩽ 2− u, the Zariski decomposition of P (u)|T − vC is

(2− u− v)
(
C + 2L

)︸ ︷︷ ︸
positive part

+(2v + 2u− 3)L︸ ︷︷ ︸
negative part

,

so that vol(P (u)|T − vC) = 4(v + u− 2)2. If u ∈ [1, 2], then

P (u)
∣∣
T
− vC ∼R (2− u− v)C + (2− u)L,

so that P (u)|T − vC is pseudo-effective ⇐⇒ v ⩽ 2 − u. If 1 ⩽ u ⩽ 2 and 0 ⩽ v ⩽ 2−u
2
,

this divisor is nef and its volume is (2−u)(6−3u−4v). If 1 ⩽ u ⩽ 2 and 2−u
2

⩽ v ⩽ 2−u,
the Zariski decomposition of the divisor P (u)|T − vC is

(2− u− v)
(
C + 2L)︸ ︷︷ ︸

positive part

+(2v + u− 2)L︸ ︷︷ ︸
negative part

,

so that vol(P (u)|T − vC
)
= 4(v + u − 2)2. Now, using Corollary 1.7.26 and integrating,

we get S(W T
•,•; C) = 29

48
< 1. The obtained contradiction completes the proof. □

Lemma 5.3.6. One has π(Z) ̸= C ′.

Proof. Let T3 be a hyperplane section of V that is cut out by the equation λu+ µv = 0,
where λ and µ are complex numbers such that T3 is smooth. Such numbers always exists,
e.g. the cubic surface T3 is smooth for a = 5, b = 7, λ = 1 and µ = −1.

Observe that the line L′ and the conic C ′ are contained in the surface T3 by construction.
But the surface T3 is not G-invariant. Let T be its proper transform on the threefold X,
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let ϖ : T → T3 be the morphism that is induced by π, let O = T3∩L, let EO = E∩T , let R
be the hyperplane section of T3 that is singular at O, and let R̃ be its proper transform
on the surface T . Then ϖ is a blow up of the point O, and EO is its exceptional curve.
Observe that R is irreducible for general a and b, e.g. for λ = −µ = 1 and 2b ̸= ±a.
Thus, no line in T3 passes through O, so that T is a smooth del Pezzo surface of degree 2,

and R̃ is a (−1)-curve in T such that R̃ + EO ∼ −KT .

Let L̃′ and C̃ ′ be the proper transforms on T of the curves L′ and C ′, respectively.
Note that O ̸∈ L′ ∪ C ′. Thus, on the surface T , we have(
L̃′)2 = R̃2 = E2

O = −1,
(
C̃ ′)2 = C̃ ′·EO = L̃′·EO = 0, C̃ ′·L̃′ = R̃·C̃ ′ = R̃·EO = 2, R̃·L̃′ = 1.

Suppose that π(Z) = C ′. Then Z = C̃ ′. Let us apply results of Section 1.7 to T and C̃ ′

to derive a contradiction. Fix u ∈ R⩾0. Then −KX − uT ∼R (2 − u)π∗(H) − E. Thus,
the divisor −KX − uT is nef ⇐⇒ −KX − uT is pseudo-effective ⇐⇒ u ∈ [0, 1]. Using
this, we get SX(T ) =

3
8
< 1, so that S(W T

•,•;Z) ⩾ 1 by Corollary 1.7.26.

Let us compute S(W T
•,•;Z). Take u ∈ [0, 1] and v ∈ R⩾0. If u ∈ [0, 1], then

(−KX−uT )
∣∣
T
−vZ ∼R (2−u−v)Z+(2−u)L̃′−EO ∼R (2−u−v)R̃+vL̃′+(3−2u−2v)EO.

This implies that the divisor (−KX−uT )|T−vZ is pseudo-effective if and only if v ⩽ 3−2u
2

.

If 0 ⩽ u ⩽ 1 and 0 ⩽ v ⩽ 2−u
2
, this divisor is nef and

vol
(
(−KX − uT )

∣∣
T
− vZ

)
= 4v(u− 2) + 3(u− 2)2 − 1.

If 0 ⩽ u ⩽ 1 and 2−u
2

⩽ v ⩽ 3−2u
2

, the Zariski decomposition of (−KX − uT )|T − vZ is

(2− u− v)(R̃ + L̃′) + (3− 2u− 2v)EO︸ ︷︷ ︸
positive part

+(u+ 2v − 2)L̃′︸ ︷︷ ︸
negative part

,

so that vol((−KX − uT )|T − vZ) = (4− 2u− 2v)2 − 1. Now, using Corollary 1.7.26 and
integrating, we get S(W T

•,•; C ′) = 77
144

< 1. □

Thus, using Lemmas 5.3.3 and 5.3.4, we conclude that Z is contained in the surface S.
Observe that S ∼= S3, so that we can identify S with the cubic surface S3 in computations.
We also abuse notations and denote by L the curve E|S, and we denote by L′ the proper
transform on the threefold X of the line L′. Observe that L and L′ are G-invariant.

Lemma 5.3.7. Either Z − L or Z − L′ is pseudo-effective.

Proof. Let ρ : S 99K P1×P1 be the map that is given by [u : v : x : y : z] 7→ ([u : v], [x : z]).
Then ρ is a G-equivariant morphism. Moreover, this morphism blows up the points

P0 =
(
[−1 : 1], [1 : −1]

)
, P1 =

(
[−ω3 : 1], [1 : −ω]

)
, P2 =

(
[−ω : 1], [1 : −ω2]

)
,

P3 =
(
[−ω4 : 1], [1 : −ω3]

)
, P4 =

(
[−ω2 : 1], [1 : −ω4]

)
,

which form one G-orbit in the surface P1 × P1. We let Ai = ρ−1(Pi) for i ∈ {0, 1, 2, 3, 4}.
Then each Ai is the line {z+ωix = u+ω3iv = 0} ⊂ S, ρ(L)∩ρ(L′) = {P0, P1, P2, P3, P4},
and the curves ρ(L) and ρ(L′) are divisors in P1×P1 of degree (1, 2) and (2, 1), respectively.
Observe also that P1×P1 does not contain G-invariant curves of degree (1, 0), (0, 1), (1, 1).
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Let ℓ1 and ℓ2 be the fibers of the projections P1 × P1 → P1 to the first and the second
factors, respectively. Then ρ(Z) ∼ b1ℓ1+b2ℓ2 for some positive integers b1 and b2. One has

L ∼ ρ∗
(
ℓ1 + 2ℓ2

)
− A0 − A1 − A2 − A3 − A4,

L′ ∼ ρ∗
(
2ℓ1 + 1ℓ2

)
− A0 − A1 − A2 − A3 − A4,

Z ∼ ρ∗
(
b1ℓ1 + b2ℓ2

)
−m

(
A0 + A1 + A2 + A3 + A4

)
for some integer m ⩾ 0. If m = 0, then we are done. Thus, we assume that m > 0.
Intersecting the curve Z with the curve in |ℓ1| that passes through P0, we obtain b2 ⩾ m.

Similarly, intersecting Z with the curve in |ℓ2| that passes through P0, we obtain b1 ⩾ m.
Intersecting Z with the curve in |ℓ1 + ℓ2| that contains P0, P1, P2, we get b1 + b2 ⩾ 3m.
On the other hand, we have

Z −mL ∼ ρ∗
(
(b1 −m)ℓ1 + (b2 − 2m)ℓ2

)
,

Z −mL′ ∼ ρ∗
(
(b1 − 2m)ℓ1 + (b2 −m)ℓ2

)
.

Thus, to complete the proof, we may assume that b1 < 2m and b2 < 2m. Then

Z − L ∼ (2m− b1 − 1)L+ (b1 −m)L′ + ρ∗
(
(b1 + b2 − 3m)ℓ2

)
,

which implies that Z − L is pseudo-effective. □

Now, we apply the results of Section 1.7 to S and our curve Z to derive a contradiction.
Let us use the notations introduced in this section. Fix a non-negative real number u.
Let P (u) = P (−KX − uS) and N(u) = N(−KX − uS). We have

−KX − uS ∼R (2− u)π∗(H) + (u− 1)E ∼R π
∗(H) + (1− u)S.

Then −KX − uS is nef ⇐⇒ u ∈ [0, 1], and −KX − uS is pseudo-effective ⇐⇒ u ⩽ 2.
Thus, we have

P (u) =

{−KX − uS if 0 ⩽ u ⩽ 1,

(2− u)π∗(H) if 1 ⩽ u ⩽ 2,

and N(u) = (u− 1)E for u ∈ [1, 2]. This gives

vol
(
−KX − uS

)
=

{
6u2 − 21u+ 18 if 0 ⩽ u ⩽ 1,

3(u− 2)3 if 1 ⩽ u ⩽ 2,

and

P (u)2 · S =

{
7− 4u if 0 ⩽ u ⩽ 1,

3(u− 2)2 if 1 ⩽ u ⩽ 2.

Integrating, we get SX(S) =
41
72
< 1. Thus, we have S(W S

•,•;Z) ⩾ 1 by Corollary 1.7.26.
Recall from this corollary that

S(W S
•,•;Z) =

3

18

∫ 2

0

h(u)du,

where

h(u) =
(
P (u)2 · S

)
ordZ

(
N(u)|S

)
+

∫ ∞

0

vol
(
P (u)

∣∣
S
− vZ

)
dv.

Observe that ordZ(N(u)|S) = 0 unless Z = L. Moreover, if Z = L, then

ordZ
(
N(u)|S

)
=

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)L if 1 ⩽ u ⩽ 2.
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We us show that S(W S
•,•;Z) < 1, which would give us a contradiction. We start with

Lemma 5.3.8. One has S(W S
•,•;L) =

5
9
.

Proof. Take v ∈ R⩾0. If 0 ⩽ u ⩽ 1, then P (u)|S − vL ∼R (2− u)
(
−KS

)
+ (u− 1− v)L.

This divisor is nef ⇐⇒ v ⩽ 1, and it is not pseudo-effective if v > 1. So, if u ∈ [0, 1], then

h(u) =

∫ 1

0

(
− v2 + 2v(2u− 3) + (7− 4u)

)
dv =

11

3
− 2u.

Similarly, if 1 ⩽ u ⩽ 2, then

h(u) = 3(u− 2)2(u− 1) +

∫ ∞

0

vol
(
P (u)

∣∣
S
− vL

)
dv.

In this case, we have P (u)|S − vL ∼R (2 − u)
(
−KS

)
+ vL. Observe that this divisor is

nef ⇐⇒ v ⩽ 2− u, and it is not pseudo-effective if v > 2− u. Thus, if u ∈ [1, 2], then∫ ∞

0

vol
(
P (u)

∣∣
S
− vL

)
dv =

∫ 2−u

0

(
− v2 − 2v(2− u) + 3(2− u)2

)
dv =

5

3
(2− u)3,

so that h(u) = 1
3
(4u3 − 15u2 +12u+4) u ∈ [1, 2]. Integrating, we get S(W S

•,•;L) =
5
9
. □

Thus, we see that Z ̸= L. Then Z ̸⊆ N(u). Thus, if Z − L is pseudo-effective, then
the proof of Lemma 5.3.8 gives

S
(
W S

•,•;Z
)
⩽

1

6

∫ 2

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vL

)
dvdu ⩽ S

(
W S

•,•;L
)
=

5

9
.

Similarly, if Z − L′ is pseudo-effective, then

S
(
W S

•,•;Z
)
⩽

1

6

∫ 2

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vL′)dvdu = S

(
W S

•,•;L
′) = 179

288

by the following lemma:

Lemma 5.3.9. One has S(W S
•,•;L

′) = 179
288

.

Proof. Take u ∈ [0, 1] and v ∈ R⩾0. Then P (u)|S−vL′ ∼R (2−u)
(
−KS

)
−(1−u)L−vL′.

This divisor is pseudo-effective ⇐⇒ v ⩽ 3−u
2
, and it is nef ⇐⇒ v ⩽ 1. So, if v ⩽ 1 then

vol
(
P (u)

∣∣
S
− vL′) = −v2 + 2(u− 2)v + (7− 4u).

Similarly, if 1 ⩽ v ⩽ 3−u
2
, then the Zariski decomposition of P (u)

∣∣
S
− vL′ is

ρ∗
(
(3− u− 2v)ℓ1 + (2− v)ℓ2

)︸ ︷︷ ︸
positive part

+(v − 1)(A0 + A1 + A2 + A3 + A4)︸ ︷︷ ︸
negative part

,

which implies in this case that vol(P (u)|S − vL′) = 2(2− v)(3− u− 2v).
Now, we take u ∈ [1, 2] and v ∈ R⩾0. Then P (u)|S − vL′ ∼R (2− u)

(
−KS

)
− vL′, so

that this divisor is pseudo-effective ⇐⇒ it is nef ⇐⇒ v ⩽ 2− u. Hence, we have

vol
(
P (u)

∣∣
S
− L′) = −v2 − 2(u− 2)v + 3(2− u)2.

Using Corollary 1.7.26 and integrating, we get S(W S
•,•;L

′) = 179
288

as required. □

Since Z − L or Z − L′ is pseudo-effective by Lemma 5.3.7, we see that S(W S
•,•;Z) < 1.

But we already proved earlier that S(W S
•,•;Z) ⩾ 1. The obtained contradiction completes

the proof of Proposition 5.3.2.
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5.4. Family�2.12. Let ζ be a primitive seventh root of unity, and let Ĝ be the subgroup
in SL4(C) that is generated by the following matrices:

1 0 0 0
0 ζ 0 0
0 0 ζ4 0
0 0 0 ζ2

 , √−1√
7


1

√
2

√
2

√
2√

2 ζ2 + ζ5 ζ3 + ζ4 ζ + ζ6√
2 ζ3 + ζ4 ζ + ζ6 ζ2 + ζ5√
2 ζ + ζ6 ζ2 + ζ5 ζ3 + ζ4

 .
It follows from [80] that Ĝ ∼= SL2(F7), and Ĝ gives a subgroup PSL2(F7) ⊂ PGL4(C) that
has no fixed points in P3. Such subgroup in PGL4(C) is unique up to conjugation [80, 143].
Moreover, it follows from [80, 47] that P3 contains unique PSL2(F7)-invariant smooth
curve of degree 6 and genus 3. Denote this curve by C . We have the following result:

Proposition 5.4.1. Let M be a mobile PSL2(F7)-invariant linear subsystem in |OP3(n)|,
where n ∈ Z>0. Suppose that multC (M) ⩽ n

4
. Then (P3, 4

n
M) has canonical singularities.

Proof. This follows from the proof of [47, Theorem 1.9]. □

Let π : X → P3 be a blow up of the curve C . Then X is a Fano threefold �2.12, and
there exists PSL2(F7)-equivariant commutative diagram

X

π
��

σ // X

π
��

P3
τ

// P3

where τ is a birational involution given by the linear system of cubic surfaces containing C ,
and σ is a biregular involution.

Remark 5.4.2. The involution σ ∈ Aut(X) can be explicitly constructed as follows. Let

y0 = 2
√
2x1x2x3 − x30,

y1 = x20x1 +
√
2x0x

2
2 + 2x2x

2
3,

y2 = x20x2 +
√
2x0x

2
3 + 2x21x3,

y3 = x20x3 +
√
2x0x

2
1 + 2x1x

2
2.

By [80], the ideal sheaf of the curve C is generated by the cubic polynomials y0, y1, y2, y3,
where x0, x1, x2, x3 are homogeneous coordinates on P3. Let χ : P3 99K P3 be the rational
map given by [x0 : x1 : x2 : x3] 7→ [y0 : y1 : y2 : y3]. Then there is a commutative diagram

X
π

~~

ϖ

  
P3

χ
// P3

where ϖ is a morphism. Thus, we can consider X as the closure in P3 × P3 of the graph
of the rational map χ, cf. [56, § 29]. To be precise, the threefold X is given in P3 ×P3 by

(5.4.3) x0y1 + x1y0 −
√
2x2y2 = x0y2 + x2y0 −

√
2x3y3 = x0y3 + x3y0 −

√
2x1y1 = 0,

where we consider y0, y1, y2, y3 as coordinates on P3. Indeed, the threefold X is contained
in the subset (5.4.3), so that it should be X, because (5.4.3) defines a smooth irreducible
three-dimensional subvariety in P3 × P3, which can be checked using Magma:
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Q:=RationalField();

R<x>:=PolynomialRing(Q);

K<t>:=NumberField(x^2-2);

PxP<x0,x1,x2,x3,y0,y1,y2,y3>:=ProductProjectiveSpace(K,[3,3]);

X:=Scheme(PxP,[x0*y1+x1*y0-t*x2*y2, x0*y2+x2*y0-t*x3*y3, x0*y3+x3*y0-t*x1*y1]);

IsNonsingular(X);

IsIrreducible(X);

Dimension(X);

Now, we can define σ ∈ Aut(P3 × P3) as follows:(
[x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]

)
7→
(
[y0 : y1 : y2 : y3], [x0 : x1 : x2 : x3]

)
.

Then X is σ-invariant, so that we may identify σ with an element in Aut(X).

Let H be a hyperplane in P3, and let E be the π-exceptional surface. Then{
σ∗(E) ∼ 8π∗(H)− 3E,

σ∗(π∗(H)
)
∼ 3π∗(H)− E.

Using this and Proposition 5.4.1, one obtain

Theorem 5.4.4 ([47, Theorem 1.9]). The threefold P3 is PSL2(F7)-birationally rigid, and
the subgroup of PSL2(F7)-birational selfmaps of P3 is generated by PSL2(F7) and τ .

The involution σ commutes with the PSL2(F7)-action on X. Together, they generate
a finite subgroup G ⊂ Aut(X) that is isomorphic to PSL2(F7)×µ2, see [47, Lemma 3.8].
Then PicG(X) = Z[−KX ], so that X is a G-Mori fiber space.

Theorem 5.4.5. The threefold X is G-birationally super-rigid.

Proof. Suppose that X is not G-birationally super-rigid. It is well-known [50] that there
exists a G-invariant mobile linear system M on the Fano threefold X such that the log
pair (X,λM) does not have canonical singularities, where λ is a positive rational number
that is defined via λM ∼Q −KX . Let us seek for a contradiction.

Applying Proposition 5.4.1 to the log pairs (P3, λπ(M)) and (P3, λπ ◦ σ(M)), one can
easily show that (X,λM) is canonical away from the curve E∩σ(E). However, we would
prefer to avoid using Proposition 5.4.1, because its proof is difficult.

First, we suppose that (X,λM) is not canonical along some G-irreducible curve C ⊂ X.
LetM1 andM2 be sufficiently general surfaces inM. Then multC(M1) = multC(M2) >

1
λ
.

Thus, intersecting −KX with the effective one-cycle M1 ·M2, we get

−K3
X

λ2
= −KX ·M1 ·M2 ⩾

(
−KX · C

)
multC

(
M1

)
multC

(
M2

)
>

−KX · C
λ2

,

so that −KX · C < −K3
X = 20. On the other hand, since σ(C) = C, we have

4π∗(H) · C − E · C =
(
4π∗(H)− E

)
· C = −KX · C =

=
(
π∗(H) + σ∗(π∗(H)

))
· C = π∗(H) · C + σ∗(π∗(H)

)
· C = 2π∗(H) · C,

so that E · C = 2π∗(H) · C = −KX · C < 20. This shows that C ⊂ E and π(C) = C ,
because the surface E does not contain G-orbits of length less than 24, since C does not
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contain PSL2(F7)-orbits of length less than 24 by [47, Lemma 2.16]. Then

1

λ
=M1 · ℓ ⩾ multC

(
M1

)
>

1

λ
,

where ℓ is a general fiber of the natural projection E → C . The obtained contradiction
shows that the log pair (X,λM) has canonical singularities outside of finitely many points.

Let P be a point in X such that the log pair (X,λM) is not canonical at this point.
By [47, Lemma 3.2], one of the following two cases holds:

(1) the PSL2(F7)-orbit of the point π(P ) is the unique PSL2(F7)-orbit of length 8;
(2) the length of the PSL2(F7)-orbit of the point π(P ) is at least 24.

In the first case, the log pair (P3, λπ(M)) must be canonical at π(P ) by [47, Lemma 5.4],
so that the log pair (X,λM) must be canonical at P , because π(P ) ̸∈ C in this case.
Thus, we conclude that the length of the PSL2(F7)-orbit of the point π(P ) is at least 24.
In particular, the G-orbit of the point P consists of at least 24 points.
There is a prime divisor F over X with CX(F ) = P and ordF

(
λM

)
> AX(F )− 1 ⩾ 2.

Thus, we have

ordF

(3
2
λM

)
= ordF

(
λM

)
+

ordF
(
λM

)
2

> AX(F )− 1 +
AX(F )− 1

2
⩾ AX(F ),

so that the log pair (X, 3λ
2
M) is not log canonical at P .

We claim that (X, 3λ
2
M) is Kawamata log terminal away from finitely many points.

Indeed, if the log pair (X, 3λ
2
M) is not Kawamata log terminal along some G-irreducible

curve C ⊂ X, then (M1 ·M2)C ⩾ 16
9λ2

by Theorem A.3.1, where M1 and M2 are general
surfaces in M. Using this, we see that

−K3
X

λ2
= −KX ·M1 ·M2 ⩾

(
−KX · C

)(
M1 ·M2

)
C
>

16(−KX · C)
9λ2

which gives 2π∗(H) ·C = −KX ·C ⩽ 11, so we conclude that π(C) is a PSL2(F7)-invariant
curve of degree at most 5. But P3 does not contain PSL2(F7)-invariant curves of degree
less that 6 by [47, Lemma 3.7]. This shows that Nklt(X, 3λ

2
M) consists of finitely many

points. Now, applying Corollary A.1.9, we get |Nklt(X, 3λ
2
M)| ⩽ h0(X,OX(−KX)) = 13,

which is impossible, because P ∈ Nklt(X, 3λ
2
M), and G-orbit of P consists of at least 24

points. This completes the proof of the theorem. □

Recall that PicG(X) = Z[−KX ]. Note also that G does not have fixed points on X,
because PSL2(F7) has no fixed points in P3, since the action of this group is given by
an irreducible four-dimensional representation of its central extension. This gives

Lemma 5.4.6. One has αG(X) ⩾ 1
2
.

Proof. If αG(X) < 1
2
, then applying Theorem 1.4.11 with µ = 1

2
, we see that there exists

a G-invariant irreducible rational curve C such that −KX · C ⩽ 3, so that

3 ⩾ −KX · C =
(
π∗(H) + σ∗(π∗(H)

))
· C = π∗(H) · C + σ∗(π∗(H)

)
· C = 2π∗(H) · C,

which implies that π∗(H) · C = 1, so that π(C) must be a PSL2(F7)-invariant line in P3,
which does not exists. □

Thus, applying Corollary 1.6.4, Theorem 5.4.5 and Lemma 5.4.6, we conclude that
the threefold X is K-polystable, which also follows from
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Lemma 5.4.7. One has αG(X) ⩾ 1.

Proof. Suppose that αG(X) < 1. Then, applying Theorem 1.4.11 with µ = 1, we see that
the Fano threefold X must contain a G-invariant irreducible smooth rational curve C.
But the action of the simple subgroup PSL2(F7) on the curve C must be trivial, so that
the group G/PSL2(F7) ∼= µ2 has a fixed point in C. Then X contains a G-fixed point,
which is not the case. □

Since Aut(X) is finite [42], our X is K-stable by Theorem 1.4.7 and Corollary 1.1.6.
Hence, general Fano threefold �2.12 is K-stable by Theorem 1.1.12.

5.5. Family �2.13. Consider the group G ∼= 2.S4
∼= GL2(F3). There exists a smooth

curve C of genus 2 with a faithful action of G, see e.g. [183, §3.2]. The hyperelliptic
double cover ν : C → P1 is G-equivariant, where G acts on P1 via its quotient S4. Recall
that the group S4 has no orbits of length less than 6 on P1, and it has a unique orbit Σ
of length 6. In particular, the hyperelliptic double cover is branched in Σ. So the curve C
does not contain G-invariant subsets of cardinality less than 6, and the only G-invariant
subset of cardinality 6 is the preimage of Σ on C, which we will also denote by Σ.

By the Riemann–Roch theorem, we know that the linear system |3KC | has dimension 4.
Hence, there exists a faithful action of G on P4, and a G-equivariant embedding C ↪→ P4.
Observe that that Σ ∈ |3KC |, and |3KC | contains a three-dimensional G-invariant linear
subsystem ν∗|OP1(3)|. So, we can identify P4 = |3KC |∨ = P(I⊕W), where I is the trivial
representation of the group G, and W is its unique irreducible four-dimensional represen-
tation. Hence, we conclude that P4 contains a unique G-invariant hyperplane H0 = P(W),
the group G acts on H0 via its quotient S4. Similarly, P4 has a unique G-fixed point P0,
which is not contained in H0.

Lemma 5.5.1. There is a unique G-invariant quadric Q ⊂ P4, and this quadric is smooth.

Proof. Let ρ : P4 99K H0 be the projection from P0. Put C = ρ(C). Then C is a twisted
cubic, ρ is G-equivariant, and ρ induces a double cover C → C, which is the hyperelliptic
double cover ν. We denote by Y the cone in P4 over the curve C with vertex P0.

Let Q be the linear system of quadrics in P4 that pass through C, and let Q be its
subsystem that consists of all quadrics that pass through Y . Then Q is three-dimensional
by the Riemann–Roch theorem, and Q is two-dimensional. Note that Q is G-invariant.
Thus, by the complete reducibility of the corresponding representation of the group G,
there exists a G-invariant quadric Q ∈ Q such that Q ̸∈ Q.

One can show that the linear system Q is the projectivization of an irreducible three-
dimensional representation of the group G, which implies that Q is the unique G-invariant
quadric in the linear system Q.

Observe that C = Y ∩ Q. This implies that Q is smooth. Indeed, if Q were singular,
then its vertex would be P0, which would imply that C is singular. □

Remark 5.5.2. We can also prove the existence of the G-invariant quadric Q as follows.
We have the following exact sequence of G-representations:

0 −→ H0
(
P4,OP4(2)⊗ IC

)
−→−→ H0

(
P4,OP4(2)

)
−→ H0

(
C,OP4(2)

∣∣
C

)
−→ 0,

where IC is the ideal sheaf of the curve C. On the other hand, since C does not contain
G-orbits of length 12, we see that 2Σ is the unique G-invariant divisor in |OP4(2)|C |, so
that H0(C,OP4(2)|C) has unique one-dimensional subrepresentation. One the other hand,
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the G-representation H0(P4,OP4(2)) ∼= Sym2(I⊕W) contains two trivial one-dimensional
subrepresentation of the group G. This can be checked using the following GAP script:

G:=SmallGroup(48,29);

T:=CharacterTable(G);

Ir:=Irr(T);

V:=Ir[1]+Ir[8];

S:=SymmetricParts(T,[V],2);

MatScalarProducts(Ir,S);

Therefore, we conclude that H0(P4,OP4(2)⊗IC) contains a unique one-dimensional sub-
representation of the group G, so that there exists a unique G-invariant quadric Q ⊂ P4.

Let π : X → Q be the blow up of the G-invariant quadric Q along the curve C.
Since C is an intersection of quadrics [85, Theorem (4.a.l)], the divisor −KX is ample
by Lemma A.7.2, so that X is a smooth Fano threefold from the family � 2.13. Since
the action of the group G lifts to X, we identify G with a subgroup in Aut(X).
Let H denote the pull-back of a hyperplane section of Q, and let E denote the excep-

tional divisor of π. Then the linear system |2H − E| is base point free, and it defines
a G-equivariant conic bundle ψ : X → P2, so that we have a G-equivariant diagram:

X
π

��

ψ

  
Q

χ // P2

where χ is the map given by the linear system Q described in the proof of Lemma 5.5.1.
SinceQ is the projectivization of an irreducible three-dimensionalG-representation, we see
that P2 contains neither G-invariant lines nor G-fixed points, so that X does not contain
G-fixed points either.

Lemma 5.5.3. One has αG(X) ⩾ 3
4
.

Proof. First, we claim that there does not exist a G-invariant effective divisor B such that
−KX ∼Q bB + ∆, where b > 4

3
and ∆ is an effective Q-divisor on X. Indeed, suppose

that B is such a divisor, and write ∆ ∼Q 3H − E − bB. If B = E, then

∆ ∼Q 3H − 3

2
E −

(
b+ 1− 3

2

)
E,

which is impossible, because the cone Eff(X) is generated by E and 2H − E. Thus, we
see that B ∼ mH + kE for some 1 ⩽ m ⩽ 2 and k ⩾ −m

2
. Moreover, one cannot have

B ∼ 2H −E, since otherwise B is the preimage of a line in P2 under ψ, while P2 contains
no G-invariant lines; in other words, we have k > −m

2
. This gives

∆ ∼Q (3− bm)H − (1 + bk)E ∼Q
3− bm

2

(
2H − E

)
+

(
3− bm

2
− bk − 1

)
E,

which is a contradiction, since 3−bm
2

− bk − 1 = 1
2
− b

(
k + m

2

)
⩽ 1

2
− b

2
< 0.

Now assume that αG(X) < 3
4
. By Lemma A.4.8, the threefold X contains an effective

G-invariant Q-divisor D ∼Q −KX and a smooth rational curve Z such that (X,λD) is
strictly log canonical for some rational number λ < 3

4
, and the curve Z is the unique log

canonical center of the log pair (X,λD).
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Note that π(Z) is not a point, since C does not contain G-invariant points. This implies
that Z is not contained in E, because Z ∼= P1, but C = π(E) is a curve of genus 2.
Using Corollary A.1.16, we see that (2H − E) · Z ⩽ 2, so that (2H − E) · Z = 2,

because P2 does not contain G-fixed points and G-invariant lines. Therefore, if E ·Z = 0,
then we have H ·Z = 1, so that π(Z) must be a G-invariant line in Q, which is impossible,
since P4 does not contain G-invariant lines. Then π(Z) ∩ C ̸= ∅, so that

E · Z ⩾ |E ∩ Z| ⩾ |C ∩ π(C)| ⩾ 6,

because the curve C does not contain G-invariant subsets of cardinality less than six.
This gives H · Z = 1 + E·Z

2
⩾ 4.

The pair (Q, λπ(D)) is not Kawamata log terminal at a general point of the curve π(Z).
Let µ be a positive rational number such that the pair (Q, µπ(D)) is strictly log canonical.
Then, since Q does not have G-fixed points, the curve π(Z) is a minimal log canonical
center of the log pair (Q, µπ(D)) by Corollary A.4.9, so that 3H · Z = −KQ · π(Z) ⩽ 7,
because µ < 3

4
. Thus, we see that H · Z ⩽ 2, which is impossible, since H · Z ⩾ 4. □

We see that X is K-stable by Theorem 1.4.10 and Corollary 1.1.6, since Aut(X) is finite.
Then general Fano threefold �2.13 is K-stable by Theorem 1.1.12.

5.6. Family �2.16. Let Q1 be the smooth quadric {x0x3 + x1x4 + x2x5 = 0} ⊂ P5, and
let Q2 be the quadric {x20+ωx21+ω2x22+x

2
3+ωx

2
4+ω

2x25+x0x3+ωx1x4+ω
2x2x5 = 0} ⊂ P5,

where ω is a primitive cubic root of unity, and x0, x1, x2, x3, x4, x5 are coordinates on P5.
Let V4 = Q1 ∩Q2. Then V4 is smooth. Let G ∼= µ2

2⋊µ3 be the subgroup in Aut(P5) such
that the generator of µ3 acts by [x0 : x1 : x2 : x3 : x4 : x5] 7→ [x1 : x2 : x0 : x4 : x5 : x3],
the generator of the first factor of µ2

2 acts by[
x0 : x1 : x2 : x3 : x4 : x5

]
7→
[
− x0 : x1 : −x2 : −x3 : x4 : −x5

]
,

and the generator of the second factor of µ2
2 acts by[

x0 : x1 : x2 : x3 : x4 : x5
]
7→
[
− x0 : −x1 : x2 : −x3 : −x4 : x5

]
.

Then G ∼= A4, and P5 = P(U3 ⊕ U3), where U3 is the unique (unimodular) irreducible
three-dimensional representation of the group G. Note that Q1 and Q2 are G-invariant,
so that V4 is also G-invariant. Thus, we may identify G with a subgroup in Aut(V4).

Note that P5 contains neitherG-fixed points norG-invariant lines, and everyG-invariant
plane in P5 is the plane {λx0+µx3 = λx1+µx4 = λx2+µx5 = 0} for some (λ, µ) ̸= (0, 0).
Using this, we see that V4 contains four G-invariant conics: C1 = V4∩{x0 = x1 = x2 = 0},
C2 = V4 ∩ {x3 = x4 = x5 = 0}, C3 = V4 ∩ ∩{x0 = ωx3, x1 = ωx4, x2 = ωx5}, and
C4 = V4∩{x3 = ωx0, x4 = ωx1, x5 = ωx2}. The conics C1, C2, C3, C4 are pairwise disjoint.
Let π : X → V4 be the blow up of the conic C1, and let E be the π-exceptional surface.

Then X is a smooth Fano threefold �2.16, and the G-action lifts to X, so that we also
consider G as a subgroup in Aut(X). Then there exists a G-equivariant diagram

X
π

~~

η

  
V4 χ

// P2
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Here, ψ is the linear projection from the plane {x0 = x1 = x2 = 0}, and η is a conic bundle
that is given by the net |π∗(H)−E|, where H is a hyperplane section of the threefold V4.
Note also that P2 = P(U3), and the discriminant curve of η is a smooth quartic curve.

Lemma 5.6.1. One has E ∼= P1 × P1.

Proof. We have E ∼= Fn for some non-negative integer n, and −E|E ∼ s + af for some
integer a, where s is a section of the projection E → C with s2 = −n, and f is a fiber
of this projection. Then −2 = E3 = (s + af)2 = −n + 2a. Thus, we see that a = n−2

2
.

But (π∗(H)−E)|E ∼ s+n+2
2
f . Thus, since |π∗(H)−E| is base point free, we get n ∈ {0, 2}.

If n = 2, then s is contracted by η to a point, which is impossible, since G does not have
fixed points in P2. Hence, we see that n = 0, so that E ∼= P1 × P1. □

Lemma 5.6.2. Let C be any G-invariant irreducible smooth rational curve in X such
that C ̸⊂ E and −KX · C < 8. Then π(C) is one of the conics C2, C3, C4.

Proof. Let C = π(C). Suppose that C is not one of the conics C2, C3, C4. Then

π∗(H) · C = H · C ⩾ 3,

since V4 contains no G-invariant lines, and C1, C2, C3, C4 are all G-invariant conics in V4.
Note also that η(C) is a curve, because G does not have fixed points in P2. Similarly, we
see that η(C) is not a line. Hence, we conclude that (π∗(H)−E) · C ⩾ 2. One the other
hand, the number E ·C is even since C has no G-orbits of odd length. Moreover, we have

7 ⩾ −KX · C = π∗(H) · C + (π∗(H)− E) · C ⩾ 5,

so that −KX · C = 6, π∗(H) · C = 3 and (π∗(H) − E) · C = 3, which gives E · C = 0.
Hence, we conclude that C is a smooth rational cubic curve. Then η(C) is a singular
cubic curve. This is impossible, since G does not have fixed points in P2. □

Now, we are ready to use results described in Section 1.7 to prove thatX is K-polystable.
Since Aut(X) is a finite group [42], this would imply that X is K-stable, so that general
member of the family �2.16 is K-stable. We will use notations introduces in Section 1.7.

Lemma 5.6.3. Let C be a G-invariant irreducible curve in E. Then S(WE
•,•;C) < 1.

Proof. Let u be any non-negative real number. Then

−KX − uE ∼R π
∗(2H)− (1 + u)E,

so that −KX − uE is pseudo-effective ⇐⇒ −KX − uE is nef ⇐⇒ u ⩽ 1.
It follows from Lemma 5.6.1 that E ∼= P1 × P1. Now, using notations introduced in

the proof of this lemma, we see that (−KX − uE)|E ∼R (1 + u)s+ (3− u)f .
Observe that |C − s| ̸= ∅, since C ̸∼ f as the conic C1 does not have G-fixed points.

Thus, using Corollary 1.7.26, we get

S
(
WE

•,•;C
)
=

3

22

∫ 1

0

∫ ∞

0

vol
(
(−KX − uE)|E − vC

)
dvdu ⩽

⩽
3

22

∫ 1

0

∫ ∞

0

vol
(
(−KX−uE)|E−vs

)
dvdu =

3

22

∫ 1

0

∫ ∞

0

vol
(
(1+u−v)s+(3−u)f

)
dvdu =

=
3

22

∫ 1

0

∫ 1+u

0

2(1 + u− v)(3− u)dvdu =
67

88
< 1

as required. □
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Let C̃2, C̃3, C̃3 be the proper transforms on X of the conics C2, C3, C4, respectively.

Lemma 5.6.4. Let C be one of the curves C̃2, C̃3, C̃3, let S be a general hyperplane
section of the threefold V4 that contains π(C), and let S be its proper transform on X.
Then S(W S

•,•;C) < 1.

Proof. Note that the surface S is smooth, and it intersects C1 transversally in two points,
so that the surface S is also smooth. Observe also that −KS ∼ (π∗(H)−E)|S andK2

S = 2,
so that S is a weak del Pezzo surfaces. Then η|S : S → P2 is the anticanonical map.

Note that |H|S − π(C)| is a base point free pencil. Let C ′ be the proper transform on
the surface S of a general conic in this pencil. On S, we have (C ′)2 = 0 and C · C ′ = 2.
Moreover, we have π∗(H)|S ∼ C + C ′.

Let u be a non-negative real number. Then −KX − uS ∼R (2 − u)π∗(H) − E, which
implies that −KX − uS is pseudo-effective ⇐⇒ −KX − uS is nef ⇐⇒ u ⩽ 1.
Suppose that u ∈ [0, 1]. Let v be a non-negative real number. Then

(−KX − uS)|S − vC ∼R −KS + (1− u− v)C + (1− u)C ′,

which implies that (−KX −uS)|S − vC is nef for v ⩽ 1−u. One the other hand, we have(
(−KX − uS)|S − vC

)
· C ′ =

(
−KS + (1− u− v)C + (1− u)C ′

)
· C ′ = 4− 2u− 2v,

so that (−KX − uS)|S − vC is not pseudo-effective for v > 2− u. Moreover, we have

vol
(
(−KX − uS)

∣∣
S
− (1− u)C

)
=
(
(−KX − uS)

∣∣
S
− (1− u)C)2 = 6− 4u,

Thus, using Corollary 1.7.26 and (1.2.7), we get

S
(
W S

•,•;C
)
=

3

22

∫ 1

0

∫ 2−u

0

vol
(
(−KX − uS)

∣∣
S
− vC

)
dvdu ⩽

⩽
3

22

∫ 1

0

∫ 1−u

0

(
(−KX − uS)

∣∣
S
− vC

)2
dvdu+

3

22

∫ 1

0

2

3
(6− 4u)dvdu =

=
3

22

∫ 1

0

∫ 1−u

0

(14− 16u− 8v + 4u2 + 4uv)dvdu+
4

11
=

37

44
< 1.

Alternatively, we could use (1.2.8) here to get S(W S
•,•;C) ⩽

1
44
(29 + log(16)) < 1. □

Now, we are ready to show that X is K-polystable. Suppose that it is not K-polystable.
By Theorem 1.2.5, there exists a G-invariant prime divisor F over X such that β(F ) ⩽ 0.
Let Z = CX(F ). Then Z is not a surface by Theorem 3.7.1, so that Z is a G-invariant
irreducible curve, because X does not contain G-fixed points.

Using Lemma 1.4.4, we conclude that αG,Z(X) < 3
4
. Therefore, by Lemma 1.4.1, there

exists a G-invariant effective Q-divisor D on the threefold X such that D ∼Q −KX and
the curve Z is contained in Nklt(X,λD) for some positive rational number λ < 3

4
.

Since |π∗(H)| does not contain G-invariant surfaces, we see that Nklt(X,λD) does not
contain surfaces. Now, using Corollaries A.4.9 and A.2.7, we conclude that Z is a smooth
rational curve such that −KX · Z < 8.

By Corollary 1.7.26 and Lemma 5.20.4, Z ̸⊂ E, since SX(E) < 1 by Theorem 3.7.1.

Then Z is one of the curves C̃2, C̃3, C̃4 by Lemma 5.6.2. Let S be a general surface in
the linear system |π∗(H)| that contains the curve C. Then SX(S) < 1 by Theorem 3.7.1,
so that S(W S

•,•;C) ⩾ 1 by Corollary 1.7.26. This contradicts Lemma 5.6.4.
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5.7. Family �2.17. Let C be the harmonic elliptic curve, i.e. the curve C/Z[i]. Then
Aut(C) has an automorphism θ of order 4 that fixes the zero element O ∈ C, which is
induced by the multiplication of C by i. Let V be the subgroup in Aut(C) that consists of
the translations by 5-torsion points in C. Then V ∼= µ2

5, and θ acts on V by conjugation.
If we identify V with the vector space F2

5, then this action is given by the linear operator(
a
b

)
7→
(

b
−a

)
.

This (1, 2)T is an eigenvector in F2
5 of this linear operator with the eigenvalue 2. Let Γ be

the eigenspace with eigenvalue 2. Then Γ is a subgroup in V that is θ-invariant, so that
Γ ∼= µ5. Let G be the subgroup in Aut(C) that is generated by Γ and the automorphism θ.
Then G ∼= µ5 ⋊ µ4, and Γ is a normal subgroup in G.

Remark 5.7.1. The group G is known as Frobenius group F5. In GAP, it can be ac-
cessed via SmallGroup(20,3) All irreducible linear representations of the group G can
be described as follows: unique four-dimensional representation, and 4 different one-
dimensional representations. One also has H2(G,Gm) = 0.

Let D be the sum of all 5-torsion points in C that corresponds to the subgroup Γ.
Then D is a G-invariant divisor by construction. Moreover, since H2(G,Gm) is trivial, we
see that the line bundle OC(D) is G-linearizable [67, Proposition 2.2], so that the action
of G on the curve G gives its linear action on H0(C,OC(D)), which is faithful, because
the divisor D is very ample. By the Riemann–Roch theorem, we have h0(C,OC(D)) = 5,
so that |D| gives a G-equivariant embedding C ↪→ P4. By construction, the projective
space P4 contains aG-fixed points, because |D| containsG-invariant divisor: the divisorD.
Therefore, H0(C,OC(D)) is a sum of the four-dimensional irreducible representation and
one-dimensional representation. In particular, our P4 contains unique G-fixed point.

Let ϕ : C 99K P3 be the composition of the embedding C ↪→ P4 and linear projection
from the unique G-fixed point. Then ϕ is a morphism, since the G-fixed point is not
contained in C, because stabilizers in G of every point in C are cyclic, since their actions
on the Zariski tangent spaces are faithful [50, Theorem 4.4.1]. Moreover, the morphism ϕ
is G-equivariant and ϕ(C) is G-invariant, where the G-action on P3 is given by the unique
irreducible four-dimensional representation of the group G. This implies that ϕ(C) is not
contained in a plane in P3, so that the induced morphism C → ϕ(C) is birational, and
ϕ(C) is a curve of degree 5. Observe also that ϕ(C) cannot have more than 2 singular
points, because otherwise the curve ϕ(C) would be contained in the plane that passes
through any 3 its singular points, which is impossible. Likewise, the curve ϕ(C) cannot
have 1 or 2 singular points, because P3 does not have G-orbits of length 1 or 2. Therefore,
we conclude that ϕ : C → P3 is an embedding. Let us identify C with its image in P3.

Let π : X → P3 be the blow up of the curve C. Then X is a smooth Fano threefold in
the deformation family �2.17 by [16, Theorem 1.1], because P3 does not have 4-secant
lines to C, since otherwise the projection from the 4-secant line would give a birational
map C 99K P1. Moreover, the action of the group G lifts to the threefold X, and we have
the following G-equivariant commutative diagram:

X
π

~~

ϕ

��
P3 χ // Q
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where Q is a smooth quadric surface in P4, the morphism ϕ is a blow up of a smooth
elliptic curve of degree 5, and χ is a rational map that is given by the linear system of
cubic surfaces in P3 that contains the curve C.

Lemma 5.7.2. One has αG(X) = 3
4
.

Proof. Arguing as above, one can show that P3 contains aG-invariant cubic surface S3 that
passes through C. Let H be a hyperplane in P3, let E be the π-exceptional surface, and

let S̃3 is the proper transform of S3 on X. Then −KX ∼Q
4
3
S̃3 +

1
3
E, so that αG(X) ⩽ 3

4
.

To prove that αG(X) = 3
4
, let us apply Theorem 1.4.11 with µ = 3

4
. We see that

Theorem 1.4.11(1) does not hold, because the cone of effective divisors on X is generated
by E and π∗(5H)−2E, and P3 does not contain G-invariant planes. Similarly, we see that
Theorem 1.4.11(2) does not hold either, since X does not have G-fixed points, because
P3 does not have G-fixed points. Therefore, we have αG(X) = 3

4
provided that X does

not contain G-invariant smooth rational curves.
Suppose that X contains a G-invariant smooth rational curve C . Then the natural

homomorphism G → Aut(C ) cannot be a monomorphism, because Aut(P1) does not
contain a subgroup that is isomorphic to µ5 ⋊µ4. Hence, its kernel is nontrivial, so that
it contains the group Γ, because X does not have G-fixed points and every non-trivial
normal subgroup of G contains Γ. These means that Γ fixes the curve C point-wise.
Then π(C ) is an irreducible G-invariant curve in P3 that is pointwise fixed by Γ, which
is impossible, because Γ fixes exactly four points in P3. Hence, we see that X does not
contain G-invariant smooth rational curves, so that αG(X) = 3

4
. □

Thus, we conclude that X is K-stable by Theorem 1.4.10 and Corollary 1.1.6, because
the group Aut(X) is finite [42]. Hence, general Fano threefold �2.17 is also K-stable.

Remark 5.7.3. In the proof of Lemma 5.7.2, we mentioned that there is a G-invariant
cubic surface S3 ⊂ P3 that passes through the curve C. It is not hard to see that this
surface is smooth. Going through the automorphism groups of smooth cubic surfaces [72],
we conclude that S3 is the Clebsch cubic surface. Therefore, we see that Aut(S3) ∼= S5.
Moreover, there is a G-equivariant diagram:

S3

α

��

β

##
S5 P1 × P1

where S5 is a smooth del Pezzo of degree 5, the morphism α is a blow up of a G-orbit of
length 2, and β is a blow up of a G-orbit of length 5. On S3, we have C ∼ −KS3 + ℓ1+ ℓ2,
where ℓ1 and ℓ2 are disjoint lines in S3 contracted by α. Then C ∩ ℓ1 = ∅, C ∩ ℓ2 = ∅,
and α(C) is a G-invartiant smooth anticanonical curve in S5. Therefore, we can construct
the curve C ⊂ P3 using the quintic del Pezzo surface and its G-equivariant geometry [213].

5.8. Family�2.20. Every smooth Fano threefolds�2.20 can be obtained by blowing up
the unique smooth Fano threefold �1.15 along a twisted cubic curve. To be more precise,
let V5 be the smooth Fano threefold described in Example 3.4.1. Then V5 is a smooth
intersection of the Grassmannian Gr(2, 5) ⊂ P9 in its Plücker embedding with a linear
subspace of codimension 3. Let C be a smooth twisted cubic in V5, and let X be a blow
up of the threefold V5 along the curve C. Then X is a smooth Fano threefold �2.20, and
every smooth threefold in this family can be obtained in this way.
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One has Aut(X) ∼= Aut(V5, C), where Aut(V5) ∼= PGL2(C). By [42, Lemma 6.10], there
is unique smooth Fano threefold �2.20 that has an infinite automorphism group. In this
case, we have Aut(X) ∼= Gm ⋊ µ2. We will prove later in this section that this special
smooth Fano threefold �2.20 is K-polystable, which would imply that general smooth
Fano threefold �2.20 is K-stable by Corollary 1.1.16.

For a subgroup A4 ⊂ PGL2(C), there is a unique A4-invariant singular twisted cubic
curve in V5 consisting of three distinct lines that meet in one point [104]. Blowing up this
curve, we obtain a singular Fano threefold �2.20. This threefold is K-unstable:

Lemma 5.8.1. Let O be a point in V5, let L1, L2, L3 be three lines in V5 that meet in O,
and let π : X → V5 be the blow up of the curve L1 + L2 + L3. Then X is K-unstable.

Proof. Let α : V̂5 → V5 be the blow up of the point O, let EO be the α-exceptional

surface, let L̂1, L̂2, L̂3 be the proper transforms on V̂5 of the lines L1, L2, L3, respectively,

let ζ : W → V̂5 be the blow up of the curve L̂1+L̂2+L̂3, let E1, E2, E3 be the ζ-exceptional

surfaces mapped to L̂1, L̂2, L̂3, respectively. Then there exists commutative diagram

(5.8.2) W
ζ

��

θ

��

υ // X

η

��

π

��
V5

ρ

88

V̂5
αoo

β ��

ϱ // U

γ
��

δ

��
V4 P2

where β is a flopping contraction of the curve L̂1 + L̂2 + L̂3, the threefold V4 is a singular

complete intersections of two quadrics in P5, the map ϱ is a flop of the curve L̂1+ L̂2+ L̂3,
the morphism θ is a birational contraction of the surfaces E1, E2, E3, the morphism γ is
the flopping contraction of the curves θ(E1), θ(E2), θ(E3), the morphism δ is a P1-bundle,
the rational map ρ is a linear projection from the linear span of the curve L1 + L2 + L3,
the morphism η is a conic bundle, and υ is a small birational map described below.
Note also that ρ contracts conics in V5 that pass through O.

Let S be the proper transform of EO via ζ, and let e1 = E1|S, e2 = E2|S, e3 = E3|S.
Then S is the del Pezzo surface of degree 6, and e1, e2, e3 are disjoint (−1)-curves on it.
Let ℓ1, ℓ2, ℓ3 be the remaining (−1)-curves in the surface S. Then υ is the flopping
contraction of the curves ℓ1, ℓ2, ℓ3. We can flop these curves σ : W 99K W ′ and obtain
the following equivariant commutative diagram:

W ′

ξ

xx
V ′
5

ϖ

��

W

ζ~~

σ

``

V5 Yα
oo
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where ξ is the contraction of the surface σ(S) ∼= P2 to a singular point of the threefold V̂5,
which is a quotient singularity of type 1

2
(1, 1, 1), and ϖ is the A4-extremal contraction.

Note that ϖ is the symbolic blow up of the curve L1+L2+L3 (see [177, Example 5.2.3]),
which also appears in the proof of [51, Proposition 5.1].

Let us compute β(S). Let H = (α ◦ ζ)∗(HV5), where HV5 is a hyperplane section of V5,
and let u be a non-negative real number. Then

−KW − uS ∼R (η ◦ υ)∗
(
OP2(2)

)
+ (2− u)S + E1 + E2 + E3.

Intersecting −KW − uS and general fibers of η ◦ υ, we see that −KW − uS is not pseudo-
effective for u > 2. Moreover, this divisor is nef for u ∈ [0, 1]. Similarly, if u ∈ [1, 2], then
the Zariski decomposition of the divisor −KW − uS is

−KW − uS ∼R (η ◦ υ)∗
(
OP2(2)

)
+ (2− u)

(
S + E1 + E2 + E3

)︸ ︷︷ ︸
positive part

+(u− 1)
(
E1 + E2 + E3

)︸ ︷︷ ︸
negative part

Hence, in the notations of Section 1.7, we have

P
(
−KW − uS

)
=

{
2H − (2 + u)S − (E1 + E2 + E3) if u ∈ [0, 1],

2H − (2 + u)S − u(E1 + E2 + E3) if u ∈ [1, 2],

and N(−KW − uS) = (u− 1)(E1 + E2 + E3) for u ∈ [1, 2]. Therefore, we have

SX(S) = SW (S) =
1

26

∫ 2

0

(
P (−KW − uS)

)3
du =

=
1

26

∫ 1

0

(
9u+ 34− (2 + u)3

)
du+

1

26

∫ 2

1

(
3u3 + 40− (2 + u)3

)
du =

119

104
> 1,

so that β(S) = − 15
104

. Thus, X is not K-semistable by Theorem 1.2.2. □

Now, let us prove that the smooth Fano threefold �2.20 with an infinite automorphism
group is K-polystable. To do this, we present an explicit construction of this threefold.
For an alternative construction, see Section 7.2.

Let Q be the smooth quadric in P4 given by xt = yz + w2, and let C3 be the twisted
cubic in Q parametrized as [r6 : r4s2 : r2s4 : s6 : 0], where [r : s] ∈ P1. Then C3 is
contained in the hyperplane w = 0. On Q, this hyperplane cuts out a smooth surface S2.
Let G be the subgroup in Aut(P4) that is generated by the involution τ that acts as
[x : y : z : t : w] 7→ [t : z : y : x : w], and the automorphisms λs that act as[

x : y : z : t : w
]
7→
[
x : s2y : s4z : s6t : s3w

]
,

where s ∈ Gm. Then G ∼= Gm⋊µ2, both Q and C3 are G-invariant, and G acts faithfully
on the quadric Q, so that we identify G with a subgroup in Aut(Q).

Let χ : Q 99K P6 be the rational map that is given by[
x : y : z : t : w

]
7→
[
wx : wy : wz : wt : w2 : xz − y2 : yt− z2

]
.

Then χ is G-equivariant for the following G-action on P6: the involution τ acts as[
x0 : x1 : x2 : x3 : x4 : x5 : x6

]
7→
[
x3 : x2 : x1 : x0 : x4 : x6 : x5

]
,

and the automorphisms λs act as[
x0 : x1 : x2 : x3 : x4 : x5 : x6

]
7→
[
s3x0 : s

5x1 : s
7x2 : s

9x3 : s
6x4 : s

4x5 : s
8x6
]
.
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The rational map χ is undefined exactly at the cubic curve C3, and it contracts the quadric
surface S2 to the G-invariant line L = {x0 = x1 = x2 = x3 = x4 = 0} ⊂ P6.
It is well known that the closure of the image of the map χ is isomorphic to the smooth

Fano threefold V5. In fact, we can find its explicit equations. Namely, observe that
the closure of the image of χ is contained in

x4x5 − x0x2 + x21 = 0,

x4x6 − x1x3 + x22 = 0,

x24 − x0x3 + x1x2 = 0,

x1x4 − x0x6 − x2x5 = 0,

x2x4 − x3x5 − x1x6 = 0.

These equations defines a smooth irreducible three-dimensional subscheme of degree 5,
which is the closure of the image of χ. Indeed, since V5 is an intersection of quadrics in P6,
we have

h0
(
P6,OP6(2)⊗ IV5

)
= h0

(
P6,OP6(2)

)
= h0

(
V5,OP6(2)

∣∣
V5

)
= 28− 23 = 5,

where IV5 is the ideal sheaf of the threefold V5. Thus, the above five linearly independent
quadratic equations scheme-theoretically define V5. Alternatively, we can check this using
the following Magma code:

Q:=RationalField();

P<x0,x1,x2,x3,x4,x5,x6>:=ProjectiveSpace(Q,6);

X:=Scheme(P,[x4*x5-x0*x2+x1^2,x4*x6-x1*x3+x2^2,

x4^2-x0*x3+x1*x2,x1*x4-x0*x6-x2*x5,x2*x4-x3*x5-x1*x6]);

Degree(X);

IsReduced(X);

IsNonsingular(X);

IsIrreducible(X);

Dimension(X);

In the following, we identify V5 with the closure of the image of the map χ.

Lemma 5.8.3. The threefold V5 does not contain G-fixed points.

Proof. The only G-fixed point in P6 is [0 : 0 : 0 : 0 : 1 : 0 : 0] ̸∈ V5. □

One has Pic(V5) = Z[HV5 ], where HV5 is a hyperplane section of V5. Moreover, we have
H3
V5

= 5 and −KV5 ∼ 2HV5 . By construction, the line L is contained in the threefold V5,
and it is also contained in the unique G-invariant hyperplane section of the threefold V5,
which is given by x4 = 0. Let us denote this hyperplane section by H. Then H is singular
along L and multL(H) = 2. Moreover, we have the following G-equivariant commutative
diagram:

(5.8.4) Y
α

��

β

��
Q χ

// V5
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where α is the blow up of the twisted cubic curve C3, and β is the blow up of the line L,
the α-exceptional surface is the proper transform of the surface H, and the β-exceptional
surface is the proper transform of the quadric surface S2.
Let us describe G-invariant irreducible curves in V5. Observe that each such curve

must contain a µ2-fixed point. Using the defining equation of the threefold V5, we can
find all such points and describe their G-orbits explicitly. In particular, this approach
implies that all G-invariant irreducible curves in H can be described as follows: the line
L, the twisted cubic C given parametrically as [r3 : r2s : rs2 : s3 : 0 : 0 : 0] for [r : s] ∈ P1,
and the smooth rational sextic curve Cγ that is given by the parametric equation

[r6 : −r4s2 : r2s4 : −s6 : 0 : γr5s : −γrs5],
where γ ∈ C∗ and [r : s] ∈ P1. One has L ∩ C = ∅ = L ∩ Cγ, and the curves C and Cγ
intersect transversally at [1 : 0 : 0 : 0 : 0 : 0 : 0] and [0 : 0 : 0 : 1 : 0 : 0 : 0].

Remark 5.8.5. Let EC3 be the α-exceptional surface. By [50, Lemma 7.7.3], EC3
∼= F1.

Let s be the unique (−1)-curve in EC3 , let fx and ft be the irreducible curves in EC3 that are
mapped by the blow up α to the points [1 : 0 : 0 : 0 : 0] and [0 : 0 : 0 : 1 : 0], respectively.
Then s is G-invariant, so that here is a G-equivariant birational morphism EC3 → P2 that
contracts the curve s. This easily implies the following assertions:

• |s+ fx| contains unique irreducible G-invariant curve C,
• |2s+2fx| contains a pencil P generated by the curves 2C and s+ fx+ ft such that
every other curve in P is G-invariant, irreducible and smooth.

These are all G-invariant irreducible curves in EC3 . Let FL be the β-exceptional curve.
It follows from the proof of [50, Lemma 13.2.1] that FL|EC3

= s and β∗(HV5)|EC3
∼ s+3fx.

This implies that β(s) = L, and β(C) is the twisted cubic curve C . Similarly, we see that
every smooth curve in P is mapped by β to the sextic curves Cγ for some γ ∈ C∗.

Similarly, we can describe all G-invariant irreducible curves in V5. But it is easier to
describe G-invariant irreducible curves in the quadric Q, and then use birational map χ.
Namely, let P be a µ2-fixed point in the quadric Q, and let C be the closure of its G-orbit.
Then either P = [a : b : b : a : c] for some numbers a, b and c such that a2 = b2 + c2, or
P = [a : b : −b : −a : 0] for some numbers a and b such that a2 = b2. In both cases, if
a2 = b2, then either C = C3, or C is another twisted cubic curve in S2 that is given by
the following parametrization:

(5.8.6)
[
r3 : −r2s : −rs2 : s3 : 0

]
.

Since we already describeG-invariant irreducible curves inH, we may assume that a2 ̸= b2.
Then the curve C is given by the parametrization: [ar6 : br4s2 : br2s4 : as6 : cr3s3], and
its image χ(C) is give by the parametrization:

(5.8.7)
[
acr6 : bcr4s2 : bcr2s4 : acs6 : c2r3s3 : b(a− b)r5s : b(a− b)rs5

]
.

If a = 0, then C is the conic x = t = yz+w2 = 0, and χ(C) is the smooth quartic curve C4

that given by the parametrization [0 : ir3s : irs3 : 0 : −r2s2 : −r4 : −s4], where i =
√
−1.

Similarly, if b = 0, then C is the conic y = z = xt − w2 = 0, and χ(C) is the conic C2

given by the parametrization [r2 : 0 : 0 : s2 : rs : 0 : 0]. If a ̸= 0 and b ̸= 0, then χ(C) is
a smooth rational sextic curve in V5. Since χ induces an isomorphism Q \ S2

∼= V5 \ H,
this gives us description of all G-invariant irreducible curves in V5. These are the curves
L, C2, C , C4, sextics Cγ, and sextics given by (5.8.7) with ab ̸= 0.
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Corollary 5.8.8. Let C be a G-invariant irreducible curve in V5 such that deg(C) < 6.
Then C is one of the curves L, C2, C , C4.

Remark 5.8.9. Observe that C2 = {x1 = x2 = x5 = x6 = x0x3 − x24 = 0} ⊂ P6. Note also
that the curve C is cut out on V5 by the equations x4 = x5 = x6 = 0, the curve C2 +C is
cut out by x5 = x6 = 0, and the curve L + C4 is cut out by x0 = x3 = 0. As we already
mentioned, L ∩ C = ∅. Similarly, we have C2 ∩ L = ∅ and C2 ∩ C4 = ∅. But

L ∩ C4 = [0 : 0 : 0 : 0 : 0 : 1 : 0] ∪ [0 : 0 : 0 : 0 : 0 : 0 : 1],

and the curves L and C4 intersect transversally at these points. Similarly, we have

C2 ∪ C = [1 : 0 : 0 : 0 : 0 : 0 : 0] ∪ [0 : 0 : 0 : 1 : 0 : 0 : 0],

and these curves intersect transversally. Finally, observe that the equations x1 = x2 = 0
cuts out on V5 the curve C2 + L + ℓ + ℓ′, where ℓ = {x0 = x1 = x2 = x4 = x5 = 0} and
ℓ′ = {x1 = x2 = x3 = x4 = x6 = 0}.

Let π : X → V5 be the blow up of the curve C , and let EC be the π-exceptional surface.
Then the action of the group G lifts to threefold X, so that we can identify G with
a subgroup of the group Aut(X).

Lemma 5.8.10. One has Aut(X) = G.

Proof. Observe that

Gm ⋊ µ2
∼= G ⊂ Aut(X) ∼= Aut(V5;C ) ⊂ Aut(V5) ∼= PGL2(C).

Now, using the classification of algebraic subgroups in PGL2(C), see [161], we conclude
that either Aut(V5;C ) = G or Aut(V5;C ) = Aut(V5). But Aut(V5;C ) ̸= Aut(V5), since
the curve C is not Aut(V5)-invariant. □

By [42, Lemma 6.10], the threefold X is the unique smooth Fano threefold �2.20 that
has an infinite automorphism group. Observe that |π∗(HV5)−EC | is free from base points
and defines a conic bundle η : X → P2, so that we have the following G-equivariant
commutative diagram

X
π

~~

η

  
V5 ρ

// P2

where ρ is the rational map that is given by [x0 : x1 : x2 : x3 : x4 : x5 : x6] 7→ [x4 : x5 : x6].
Therefore, the composition map ρ◦χ is given by [x : y : z : t : w] 7→ [w2 : xz−y2 : yt−z2].
Let H̃ be the proper transform on X of the surface H. We have H̃ ∈ |π∗(HV5) − EC |,

so that η(H̃) is the unique G-invariant line in P2. Observe that this line is an irreducible
component of the discriminant curve of the conic bundle η. The other irreducible com-

ponent is a G-invariant irreducible conic that intersects η(H̃) transversally.

Lemma 5.8.11. One has EC
∼= P1 × P1.

Proof. We have C ∼= P1 and NC /V5
∼= OP1(a)⊕OP1(b) for some integers a and b such that

a+ b = 4 and a ⩽ b. Then EC
∼= Fn for n = b− a. We have to show that n = 0.

Let s be a section of the projection EC → C such that s2 = −n, and let f be a fiber of
this projection. Then −EC |EC

∼ s + kf for some integer k. Then −n + 2k = E3 = −4,
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so that k = n−4
2
. Then H̃|EC

∼ s + (k + 3)f = s + n+2
2
f , which implies that H̃|EC

̸∼ s.

Moreover, we know that H̃|EC
is a smooth irreducible curve, since the surface H is smooth

along the curve C . Thus, we have

0 ⩽ H̃
∣∣
EC

· s =
(
s+

n+ 2

2
f
)
· s = −n+

n+ 2

2
=

2− n

2

so that n = 0 or n = 2. This can also be deduced from the fact that C is disjointed from L,
so that NC /V5

∼= NC/Y , where C ∼= P1 is the curve in EC3 described in Remark 5.8.5.
Now, using the exact sequence of sheaves

0 −→ NC/EC3
−→ NC/Y −→ NEC3

/Y

∣∣
C
−→ 0,

we get n ∈ {0, 2}, because NC/EC3

∼= OP1(1) and NEC3
/Y |C ∼= OP1(3).

If n = 0, then we are done. If n = 2, then (π∗(HV5)− EC )|EC
· s = (s + 2f) · s = 0, so

that s is contracted by η, which is impossible, since −KX · s = 3 in this case. □

The main result of this section is the following proposition, which also implies that
general Fano threefolds in the family �2.20 are K-stable by Corollary 1.1.17.

Proposition 5.8.12. The threefold X is K-polystable.

Let us prove Proposition 5.8.12. Suppose that the Fano threefold X is not K-polystable.
By Theorem 1.2.5, there is a G-equivariant prime divisor F over X such that β(F ) ⩽ 0.
Let Z = CX(F ). Then, using Theorem 3.7.1 and Lemma 5.8.3, we see that Z is a curve.
Let us use results of Section 1.7. We will use notation introduced in this section.

Lemma 5.8.13. One has Z ̸⊂ EC .

Proof. Suppose that Z ⊂ EC . Recall that EC
∼= P1 × P1 by Lemma 5.8.11. Let us use

notations introduced in the proof of this lemma. Observe that the pencil |f | does not
contain G-invariant curves, because X does not contain G-fixed points by Lemma 5.8.3.
Similarly, the pencil |s| also does not contain G-invariant curves — otherwise the inter-

section of such curve with H̃ would consists of a single point, since we have H̃|EC
∼ s+ f .

Hence, we conclude that Z ∼ as+ bl for some positive integers a and b.
Using Theorem 3.7.1, we see that SX(EC ) < 1. Using Corollary 1.7.26, we conclude

that S(WEC
•,• ;Z) ⩾ 1. Let us compute S(WEC

•,• ;Z).
Let u be a non-negative real number. Then −KX − uEC ∼R 2π∗(HV5)− (1 + u)EC , so

that −KX − uEC is nef ⇐⇒ −KX − uEC is pseudo-effective ⇐⇒ u ∈ [0, 1].
Let v be a non-negative real number. Then Corollary 1.7.26 gives

S
(
WEC

•,• ;Z
)
=

3

26

∫ 1

0

∫ ∞

0

vol
((

−KX − uEC

)∣∣
EC

− vZ
)
dvdu =

=
3

26

∫ 1

0

∫ ∞

0

vol
(
(1 + u− av)s+ (4− 2u− bv)f

)
dvdu ⩽

⩽
3

26

∫ 1

0

∫ ∞

0

vol
(
(1 + u− v)s+ (4− 2u− v)f

)
dvdu =

=
3

26

∫ 1

0

∫ 1+u

0

2(1 + u− v)(4− 2u− v)dvdu =
63

104
< 1.

The obtained contradiction completes the proof of the lemma. □
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Thus, we see that π(Z) is a G-invariant irreducible curve in V5 that is different from C .
Since we already know the classification of such curves, we can exclude them one by one
as in the proof of Lemma 5.8.13. We start with

Lemma 5.8.14. One has π(Z) ̸= L.

Proof. Suppose that π(Z) = L. Let σ : X̂ → X be the blow up along the smooth curve Z,

and let Ŝ be the σ-exceptional divisor. To start with, let us compute β(Ŝ). Take u ∈ R⩾0.

Let ÊC and Ĥ be the proper transforms on X̂ of the surfaces EC and H̃, respectively.

Then σ∗(−KX) − uŜ ∼R 2Ĥ + ÊC + (4 − u)Ŝ, so that the divisor σ∗(−KX) − uŜ is
pseudo-effective ⇐⇒ u ⩽ 4. In fact, this divisor is nef if u ⩽ 1. Moreover, for u ∈ [1, 4],
its Zariski decomposition can be described as follows. If u ∈ [1, 3], then

σ∗(−KX

)
− uŜ ∼R

5− u

2
Ĥ + ÊC + (4− u)Ŝ︸ ︷︷ ︸

positive part

+
u− 1

2
Ĥ︸ ︷︷ ︸

negative part

.

If u ∈ [3, 4], then

σ∗(−KX

)
− uŜ ∼R (4− u)

(
Ĥ + ÊC + Ŝ

)︸ ︷︷ ︸
positive part

+(2− u)Ĥ + (3− u)ÊC︸ ︷︷ ︸
negative part

.

Therefore, we see that

vol
(
σ∗(−KX

)
− uŜ

)
=


26− 6u2 if 0 ⩽ u ⩽ 1,

67

2
− 15u+

3

2
u2 if 1 ⩽ u ⩽ 3,

2(4− u)3 if 3 ⩽ u ⩽ 4.

Integrating, we get SX(Ŝ) =
89
52
, so that β(Ŝ) = AX(Ŝ)− SX(Ŝ) = 2− 89

52
= 15

52
> 0.

The action of the group G lifts to the threefold X̂, and the surface Ŝ is G-invariant.
Moreover, since L ∩ C = ∅, the G-equivariant diagram (5.8.4) gives a G-equivariant

isomorphism Ŝ ∼= S2. In particular, we see that Ŝ ∼= P1 × P1, and Ŝ contains exactly
two irreducible G-invariant curves, because we proved earlier that S2 contains exactly two
irreducible G-invariant curves: the curve C3, and the twisted cubic given by (5.8.6).

Let ℓ1 and ℓ2 be two distinct rulings of the surface Ŝ ∼= P1 × P1 such that σ(ℓ1) = Z,

and ℓ2 is a fiber of the projection Ŝ → Z. Then Ĥ|Ŝ ∼ 2ℓ1 + ℓ2, and Ĥ|Ŝ is a G-invariant

irreducible curve in Ŝ, which is the image of the curve C3. Similarly, the second irreducible

G-invariant curve in Ŝ is also contained in |2ℓ1+ ℓ2|. In particular, we see that Ŝ does not

contain irreducible G-invariant curves that are sections of the natural projection Ŝ → Z.
Recall that F is aG-invariant prime divisor overX such that β(X) ⩾ 0 and Z = CX(F ).

Thus, using (1.5.23), we see that δ̃G,Z(X) ⩽ 1, where δ̃G,Z(X) is the number defined in

Section 1.5. Let us show that δ̃G,Z(X) > 1.

We claim that δ̃G,Z(X) ⩾ 104
89
. Indeed, suppose that δ̃G,Z(X) < 104

89
. Then there exists

a G-invariant cool Q-system D of the divisor −KX such that Z ⊆ Nklt(X,λD) for some

rational number λ < 104
89
. Let D̂ be the proper transform on X̂ of the Q-system D. Then

KX̂ + λD̂ +
(
λmultZ

(
D
)
− 1
)
Ŝ ∼Q σ

∗(KX + λD
)
.
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On the other hand, we know that multZ(D) ⩽ SX(Ŝ) =
89
52
, since the Q-system D is cool.

Thus, using Lemma A.4.3, we see that Ŝ contains a smooth irreducible G-invariant curve

that is a section of the projection Ŝ → Z. But, as we explained earlier, such curve does
not exist. The obtained contradiction completes the proof of the lemma.

Alternatively, we can obtain a contradiction using Corollaries 1.7.12 and 1.7.25. Namely,
it follows from Corollary 1.7.12 that

AX(F )

SX(F )
⩾ δZ(X) ⩾ min

{
AX(Ŝ)

SX(Ŝ)
, inf
Ẑ⊂Ŝ

δẐ
(
Ŝ;W Ŝ

•,•
)}
,

where the infimum is taken over all irreducible curves Ẑ ⊂ Ŝ that are not contained in
the fibers of the projection Ŝ → Z. Therefore, since AX(F ) ⩽ SX(F ) and

AX(Ŝ)

SX(Ŝ)
= 104

89
,

we conclude that Ŝ contains an irreducible (horizontal) curve Ẑ such that δẐ(Ŝ;W
Ŝ
•,•) ⩽ 1,

Using (1.7.4), we get S(W Ŝ
•,•; Ẑ) ⩾ 1. But we can find S(W Ŝ

•,•; Ẑ) using Corollary 1.7.25.

Namely, we have Ĥ|Ŝ ∼ 2ℓ1 + ℓ2, ÊC ∩ Ŝ = ∅ and Ŝ|Ŝ ∼ −ℓ1, so that using the Zariski

decomposition of the divisor σ∗(−KX)− uŜ for u ∈ [0, 4] found earlier, we get

S
(
W Ŝ

•,•; Ẑ
)
=

3

26

∫ 1

0

∫ u
2

0

2(u− 2v)(2− v)dvdu+

+
3

26

∫ 3

1

(u− 1)(5− u)

2
du+

3

26

∫ 3

1

∫ 1
2

0

(1− 2v)(5− u− 2v)dvdu+

+
3

26

∫ 4

3

2(u− 2)(4− u)2du+
3

26

∫ 4

3

∫ 4−u
2

0

2(4− u− 2v)(4− u− v)dvdu =
63

104
.

in the case when Z̃ = Ĥ|Ŝ. Similarly, if Z̃ ̸= Ĥ|Ŝ, then Corollary 1.7.25 gives

S
(
W Ŝ

•,•; Ẑ
)
⩽ S

(
W Ŝ

•,•; ℓ1
)
=

3

26

∫ 1

0

∫ u

0

4(u− v)dvdu+

+
3

26

∫ 3

1

∫ 1

0

(1− v)(5− u)dvdu+
3

26

∫ 4

3

∫ 4−u

0

2(4− u− v)(4− u)dvdu =
47

104
.

Thus, we see that S(W Ŝ
•,•; Ẑ) < 1, which is a contradiction. □

The next step is

Lemma 5.8.15. One has π(Z) ̸= C2.

Proof. Suppose that π(Z) = C2. LetH be a general hyperplane section of V5 that contains
both curves C2 and C . By Remark 5.8.9, the curve C2+C is cut out on V5 by x5 = x6 = 0,
so that H is cut out on V5 by λx5+µx6 for general numbers λ and µ. Then H is smooth.
For instance, it is smooth for λ = µ = 1. Note that π−1

∗ (C2) is the fiber of the conic
bundle η : X → P2 over the point [1 : 0 : 0], this fiber is smooth, and H is the preimage
via the rational map η ◦ π−1 of a general line in P2 that passes through [1 : 0 : 0], which
also implies that H is smooth. Then H is a smooth quintic del Pezzo surface.
Let S be the proper transform of the surface H on the threefold X, and let C = EC |S.

Then S ∼= H and Z + C ∼ −KS ∼ π∗(HV5

)∣∣
S
. Observe that |C| is base point free and

gives a birational morphism ϖ : S → P2 that contracts four disjoint (−1) curves. Denote
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these curves by ℓ1, ℓ2, ℓ3, ℓ4. Then 2C ∼ Z + ℓ1 + ℓ2 + ℓ3 + ℓ4, because ϖ(Z) is a conic
that passes through the points ϖ(ℓ1), ϖ(ℓ2), ϖ(ℓ3), ϖ(ℓ4).

By Corollary 1.7.26, we have S(W S
•,•;Z) ⩾ 1, because SX(S) < 1 by Theorem 3.7.1.

Let us compute S(W S
•,•;Z). Let u be a non-negative real number. Then

−KX − uS ∼R (2− u)π∗(HV5)− (1− u)EC ∼R (2− u)H̃ + EC .

Then −KX−uS is nef ⇐⇒ u ∈ [0, 1], and −KX−uS is pseudo-effective ⇐⇒ u ∈ [0, 2].
If u ∈ [1, 2], then P (−KX − uS) = (2− u)π∗(HV5) and N(−KX − uS) = (u− 1)EC .

First, we suppose that 0 ⩽ u ⩽ 1. Let v be a non-negative real number. Then(
−KX − uS

)∣∣
S
− vZ ∼R (2− u− v)Z + C ∼R

(5
2
− u− v

)
Z +

1

2

(
ℓ1 + ℓ2 + ℓ3 + ℓ4

)
.

Then (−KX−uS)|S−vZ is pseudo-effective ⇐⇒ v ⩽ 5
2
−u. Moreover, if v ⩽ 2−u, then

the divisor (−KX −uS)|S − vZ is nef. For 2−u ⩽ v ⩽ 5
2
−u, its Zariski decomposition is(5

2
− u− v

)(
Z + ℓ1 + ℓ2 + ℓ3 + ℓ4

)
︸ ︷︷ ︸

positive part

+(v + u− 2)
(
ℓ1 + ℓ2 + ℓ3 + ℓ4

)︸ ︷︷ ︸
negative part

.

Thus, if 0 ⩽ u ⩽ 1 and 0 ⩽ v ⩽ 5
2
− u, then

vol
(
(−KX − uS)|S − vZ

)
=


9− 4u− 4v if 0 ⩽ v ⩽ 2− u,

4
(5
2
− u− v

)2
if 2− u ⩽ v ⩽

5

2
− u.

Now, we suppose that 1 ⩽ u ⩽ 2. Let v be a non-negative real number. Then

P
(
−KX−uS

)∣∣
S
−vZ ∼R (2−u−v)Z+(2−u)C ∼R

6− 3u− 2v

2
Z+

2− u

2

(
ℓ1+ℓ2+ℓ3+ℓ4

)
.

Then P (−KX−uS)|S−vZ is pseudo-effective ⇐⇒ v ⩽ 3
2
(2−u). Moreover, if v ⩽ 2−u,

then the divisor P (−KX − uS)|S − vZ is nef. Furthermore, if 2− u ⩽ v ⩽ 3
2
(2− u), then

the Zariski decomposition of this divisor is

6− 3u− 2v

2

(
Z + ℓ1 + ℓ2 + ℓ3 + ℓ4

)
︸ ︷︷ ︸

positive part

+(v + u− 2)
(
ℓ1 + ℓ2 + ℓ3 + ℓ4

)︸ ︷︷ ︸
negative part

.

Thus, if 1 ⩽ u ⩽ 2 and 0 ⩽ v ⩽ 3
2
(2− u), then

vol
(
P (−KX − uS)|S − vZ

)
=


(2− u)(10− 5u− 4v) if 0 ⩽ v ⩽ 2− u,(
6− 3u− 2v

)2
if 2− u ⩽ v ⩽

3

2
(2− u).

Now, using Corollary 1.7.26, we get S(W S
•,•;Z) =

171
208

, which is a contradiction. □

Our next step is the following lemma:

Lemma 5.8.16. The curve Z is not contained in H̃.

Proof. Suppose that Z ⊂ H̃. Then π(Z) is a smooth sextic curve Cγ for some γ ∈ C∗,
since π(Z) ̸= C and π(Z) ̸= L. In particular, the curve π(Z) is disjoint from the line L.
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By Corollary 1.7.26, we have S(W H̃
•,•;Z) ⩾ 1, because SX(S) < 1 by Theorem 3.7.1.

Let us compute S(W H̃
•,•;Z). Let u be a non-negative real number. Then

−KX − uH̃ ∼R (2− u)π∗(HV5)− (1− u)EC ∼R (2− u)H̃ + EC .

Then −KX−uH̃ is nef ⇐⇒ u ∈ [0, 1], and −KX−uH̃ is pseudo-effective ⇐⇒ u ∈ [0, 2].

If u ∈ [1, 2], then P (−KX − uH̃) = (2− u)π∗(HV5) and N(−KX − uH̃) = (u− 1)EC .

Recall that H̃ ∼= H, and this surface is non-normal — it is singular along the proper
transform of the line L. However, as we already mentioned, the curve Z is contained in

its smooth locus. Let ν : S → H̃ be the normalization, and let Z̃ = ν−1(Z). Then

S(W H̃
•,•;Z) =

3

26

∫ 2

0

∫ ∞

0

vol
(
ν∗
(
P (−KX − uH̃)|H̃

)
− vZ̃

)
dvdu.

by Corollary 1.7.26 and Remark 1.7.28. Observe also that the surface S is isomorphic to
the surface EC3 described in Remark 5.8.5. Let us use notations introduced in this remark.
Recall that EC3

∼= F1. As we mentioned in Remark 5.8.5, we have ν∗(π∗(HV5)|H̃) ∼ s+3f

and ν∗(EC |H̃) ∼ s+ f . We also observed in Remark 5.8.5 that Z̃ ∼ 2(s+ f).

Take v ∈ R⩾0. If 0 ⩽ u ⩽ 1, then ν∗(P (−KX−uH̃)|H̃)−vZ̃ ∼R (1−2v)s+(5−2u−2v)f .
This divisor is pseudo-effective if and only if it is nef, and it is nef if and only if v ⩽ 1

2
.

Likewise, if 1 ⩽ u ⩽ 2, then ν∗(P (−KX −uH̃)|H̃)− vZ̃ ∼R (2−u− 2v)s+(6− 3u− 2v)f .
This divisor is pseudo-effective ⇐⇒ it is nef ⇐⇒ v ⩽ 2−u

2
. Thus, we have

vol
(
ν∗
(
P (−KX−uH̃)|H̃

)
−vZ̃

)
=


(1− 2v)(9− 4u− 2v) if u ∈ [0, 1] and 0 ⩽ v ⩽

1

2
,

(2− u− 2v)(10− 5u− 2v) if u ∈ [1, 2] and 0 ⩽ v ⩽
2− u

2
.

Now, integrating, we get S(W H̃
•,•;Z) =

47
208

< 1, which is a contradiction. □

By Lemma 1.4.4, we have αG,Z(X) < 3
4
. Thus, by Lemma 1.4.1, there is a G-invariant

effective Q-divisor D on the threefold X such that D ∼Q −KX and Z ⊆ Nklt(X,λD) for
some positive rational number λ < 3

4
.

Lemma 5.8.17. If Nklt(X,λD) contains an irreducible surface S, then S = H̃.

Proof. This follows from the fact that Eff(X) is generated by H̃ and EC . □

Write D = aH̃ + ∆, where a is a non-negative rational number, and ∆ is an effective

Q-divisor whose support does not contain H̃. Then Z ⊆ Nklt(X,λ∆) by Lemma 5.8.16.
Let Z = π(Z) and ∆ = π(∆). Then Z ⊆ Nklt(V5, λ∆) and ∆ ∼Q (2 − a)HV5 , so that
the locus Nklt(V5, λ∆) must be connected and one-dimensional by Corollary A.1.7.

Choose a positive rational number µ ⩽ λ, such that (V5, µ∆) is strictly log canonical.
Then Z is a minimal log canonical center of the log pair (V5, µ∆) by Corollary A.4.9,
because V5 does not have G-fixed points. Then Corollary A.2.7 gives deg(Z) = HV5 ·Z < 4.
Thus, it follows from Corollary 5.8.8 that Z is one of the irreducible curves L, C2 or C .
But Z ̸= C , Z ̸= L and Z ̸= C2 by Lemmas 5.8.13, 5.8.14 and 5.8.15, respectively.
The obtained contradiction completes the proof of Proposition 5.8.12.
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5.9. Family �2.21. Smooth Fano threefolds �2.21 are blow ups of the smooth quadric
threefold in a twisted quartic curve. It follows from [42] that their automorphism groups
are finite with the following exceptions:

(1) one-dimensional family consisting of threefolds admitting an effective Gm-action,
(2) a threefold Xa such that Aut0(Xa) ∼= Ga, it is not K-polystable by Theorem 1.1.4,
(3) the K-polystable smooth Fano threefold described in the proof of Lemma 4.2.2,

which admits an effective PGL2(C)-action.
We already know from Corollary 4.2.3 that general threefolds in this family are K-stable.
In this section, we prove that every smooth Fano threefold �2.21 that admits an effective
action of the group Gm is K-polystable, which would also imply Lemma 4.2.2.

To describe all smooth Fano threefolds �2.21 that admit an effective Gm-action, we fix
the quartic curve C ⊂ P4 given by [u : v] 7→ [u4 : u3v : u2v2 : uv3 : v4], where [u : v] ∈ P1.
Let Q = {yt − s2xw + (s2 − 1)z2 = 0} ⊂ P4, where x, y, z, t, w are coordinates on P4,
and s ∈ C \ {0,±1}. Then Q is smooth, and C ⊂ Q. Fix the Gm-action on P4 given by

(5.9.1) [x : y : z : t : w] 7→ [x : λy : λ2z : λ3t : λ4w],

where λ ∈ Gm. Then Q and C are Gm-invariant, so that we identify Gm with a subgroup
in Aut(Q,C ), which also contains the involution ι : [x : y : z : t : w] 7→ [w : t : z : y : x].
Let Γ be the subgroup in Aut(Q,C ) that is generated by ι and Gm. Then Γ ∼= Gm ⋊µ2.
Let π : X → Q be the blow up of the curve C . Then the Aut(Q;C )-action lifts to X,

so that we can identify it with a subgroup in Aut(X). We see that X admits a Gm-action.

Lemma 5.9.2. Every smooth Fano threefold in the family �2.21 that admits an effective
action of the group Gm is isomorphic to X for an appropriate s ∈ C \ {0,±1}.

Proof. Let X ′ be a smooth Fano threefold �2.21 that admits an effective Gm-action.
Then X ′ can be obtained by a Gm-equivariant blow up of a smooth quadric Q′ ⊂ P4

along a smooth rational quartic curve C ′. Now, choosing appropriate coordinates on P4,
we may assume that C ′ = C .
The induces Gm-action on the quadric Q is effective. Moreover, this action lifts to

an effective action on P4. Furthermore, keeping in mind that the curve C ′ is Gm-invariant,
we see that Gm acts on P4 as in (5.9.1). Therefore, since Q′ is smooth and Gm-invariant,
it is given by yt− µxw+ λz2 = 0 for some non-zero numbers λ and µ. Since C ′ ⊂ Q′, we
see that λ = µ− 1. Now, letting µ = s2, we obtain the required assertion. □

Note that Aut0(X) = Aut0(Q;C ). Moreover, we have the following result:

Lemma 5.9.3. If s ̸= ±1
2
, then Aut(Q;C ) = Γ. If s = ±1

2
, then Aut(Q;C ) ∼= PGL2(C).

Proof. Observe that there exists a natural embedding of groups Aut(Q;C ) ↪→ Aut(P4;C ),
where the group Aut(P4;C ) is isomorphic to PGL2(C) and consists of all projective trans-
formations ϕ : P4 → P4 given by

[x : y : z : t : w] 7→ [a4x+ 4a3by + 6a2b2z + 4ab3t+ b4w :

: a3cx+ (a3d+ 3a2bc)y + (3a2bd+ 3ab2c)z + (3ab2d+ b3c)t+ b3dw :

: a2c2x+ (2a2cd+ 2abc2)y + (a2d2 + 4abcd+ b2c2)z + (2abd2 + 2b2cd)t+ b2d2w :

: ac3x+ (3ac2d+ bc3)y + (3acd2 + 3bc2d)z + (ad3 + 3bcd2)t+ bd3w :

c4x+ 4c3dy + 6c2d2z + 4cd3t+ d4w],
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where a, b, c and d are some numbers such that ad−bc = 1. Hence, to describe Aut(Q;C ),
we have to find all such a, b, c, d that Q = ϕ(Q). But ϕ−1(Q) is given by

(1− 4s2)a2c2xz+(1− 4s2)acxt+
(
abcd− s2(a2d2+2abcd+ b2c2)

)
xw+(4s2− 1)a2c2y2+

+
(
a2d2 + b2c2 − 8abcds2

)
yt+ (4s2 − 1)acyz + (1− 4s2)bd(ad+ bc)yw + (4s2 − 1)bdzt+

+
(
(s2 − 1)(d2a2 + b2c2) + (10s2 − 1)abcd

)
z2 − (4s2 − 1)d2b2zw + (4s2 − 1)b2d2t2 = 0.

Keeping in mind that our quadric Q is given by the equation yt− s2xw+ (s2 − 1)z2 = 0,
we conclude that Q = ϕ(Q) if and only if there exists non-zero λ such that

ad− bc = 1, (1− 4s2)a2c2 = 0, (1− 4s2)ac = 0, abcd− s2(a2d2 + 2abcd+ b2c2) = −λ,
(4s2−1)a2c2 = 0, a2d2+b2c2−8abcds2 = λ, (4s2−1)ac = 0, (1−4s2)bd = 0, (4s2−1)bd = 0,

(s2 − 1)(d2a2 + b2c2) + (10s2 − 1)abcd = λ(s2 − 1), (4s2 − 1)d2b2 = 0, (4s2 − 1)b2d2 = 0.

Solving this system of equations, we see that one of the following two cases hold:

• s ̸= ±1
2
and either a = d = 0 or b = c = 0,

• s = ±1
2
and a, b, c, d are any numbers with ad− bc = 1.

Thus, if s ̸= ±1
2
, then Aut(Q;C ) = Γ. If s = ±1

2
, then Aut(Q;C ) = Aut(P4;C ). □

Remark 5.9.4. Let ϵ ∈ C, and let Qϵ be the quadric threefold in P4 that is given by

ϵ(t2 − zw) + 3z2 − 4yt+ xw = 0.

Then Qϵ is smooth, and Qϵ contains C . If ϵ ̸= 0, we have Aut0(Qϵ,C ) ∼= Ga, so that
blowing up Qϵ along C , we get a threefold Xϵ in the family �2.21 with Aut0(Xϵ) ∼= Ga.
It is easy to see that all threefolds Xϵ for ϵ ̸= 0 are isomorphic to each other (this is
the threefold Xa mentioned above). If ϵ = 0, then Qϵ = Q0 is our quadric Q with s = ±1

2
,

so that blowing up Q0 along C , we get the unique smooth Fano threefold �2.21 that
admits an action of the group PGL2(C). We know from Lemma 4.2.2 that the latter
threefold is K-polystable, so that Xϵ is K-semistable for ϵ ̸= 0 by Theorem 1.1.12.

The group Aut(X) contains an additional involution σ ̸∈ Aut(Q;C ) such that there
exists the following Aut(Q;C )-equivariant commutative diagram:

X

π
��

σ // X

π
��

Q
τ // Q

and τ is a birational involution that is given by

[x : y : z : t : w] 7→
[
xz − y2 : s(xt− yz) : s2(xw − z2) : s(yw − zt) : zw − t2

]
.

Then Aut(X) is generated by Aut(Q;C ) and σ, and

(5.9.5)

{
σ∗(E) ∼ 3π∗(H)− 2E,

σ∗(π∗(H)
)
∼ 2π∗(H)− E,

where E is the π-exceptional surface, and H is a hyperplane section of the quadric Q.
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Remark 5.9.6. To see that τ is indeed a birational involution, one can argue as follows.
First, substituting τ([x : y : z : t : w]) into the defining equation of the quadric Q, we get

s2
(
yt+ (s2 − 1)wx− s2z2

)(
yt− s2xw + (s2 − 1)z2

)
= 0,

so that τ([x : y : z : t : w]) is contained in Q provided that [x : y : z : t : w] ∈ Q \ C .
This shows that τ is a rational selfmap of the quadric Q, which implies that τ is birational.
Moreover, let R be the surface in Q that is cut out on Q by h = 0, where

h = xt2 − 2yzt− xzw + y2w + z3.

Then S6 is singular along the curve C , which implies that τ contracts S6 to a twisted
quartic curve in Q. Now, we observe that S6 contains [2 − 4s2 : 2s : 4s2 : 2s : 2 − 4s2].
If s ̸= ±1

2
, this point is not contained in C , and it is mapped by τ to [1 : 1 : 1 : 1 : 1] ∈ C ,

which implies that τ(S6) = C . If s = ±1
2
, then S6 contains [972 : −189 : 18 : 9 : −8],

which is mapped by τ to [2025 : −675 : 225 : −75 : 25] ∈ C , so that τ(S6) = C as well.
Moreover, τ ◦ τ is given by [x : y : z : t : w] 7→ [h0 : h1 : h2 : h3 : h4], where

h0 = −s2hx,

h1 = −s2hy + s2
(
yt− s2xw + (s2 − 1)z2

)
(zt− yz),

h2 = −s2hz + s2
(
yt− s2xw + (s2 − 1)z2

)
(yt+ s2xw − (s2 + 1)z2),

h3 = −s2ht− s2
(
yt− s2xw + (s2 − 1)z2

)
(zt− yw),

h4 = −s2hw.
Since yt− s2xw + (s2 − 1)z2 = 0 is the defining equation of the quadric threefold Q, this
shows that τ ◦ τ : Q 99K Q is an identity map, so that τ is a birational involution.

Let G = ⟨σ,Γ⟩ ⊂ Aut(X). Then G ∼= Γ× µ2
∼= (Gm ⋊ µ2)× µ2, because σ commutes

with the subgroup Γ. In the remaining part of the section, we will show that αG(X) ⩾ 3
4
,

so that X is K-polystable by Theorem 1.4.10. We start with

Lemma 5.9.7. The quadric Q does not contain G-invariant lines and G-invariant twisted
cubics. Moreover, the only G-invariant conics in Q are the conic

(5.9.8)
{
y = 0, t = 0, (s2 − 1)z2 − s2xw = 0

}
and the conic

(5.9.9)
{
x = 0, w = 0, yt+ (s2 − 1)z2 = 0

}
.

Proof. All assertions are easy to prove. For instance, if C is a G-invariant twisted cubic,
then it must be contained in the hyperplane z = 0. On the other hand, the smooth
quadric surface that is cut out on Q by the equation z = 0 does not contain G-invariant
twisted cubics. We leave the proofs of the remaining assertions to the reader. □

Let us denote by C2 and C ′
2 the irreducible conics (5.9.8) and (5.9.9), respectively.

Observe that C ′
2∩C = ∅, but C2∩C = [0 : 0 : 0 : 0 : 1]∪ [1 : 0 : 0 : 0 : 0], and C2 intersects

the curve C transversally at these two points. Observe also that the equations{
xt− yz = 0, yw − zt = 0} ∩Q = C ∪ C2 ∪ {x = y = z = 0} ∪ {z = t = w = 0}.

Note also that the lines x = y = z = 0 and z = t = w = 0 are tangent to the curve C at
the points [0 : 0 : 0 : 0 : 1] and [1 : 0 : 0 : 0 : 0], respectively.
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Let C and C ′ be the proper transforms on X of the conics C2 and C ′
2, respectively. Then

the curve C is σ-invariant, while C ′ is not σ-invariant. Note that Lemma 5.9.7 implies

Corollary 5.9.10. Let C be a G-invariant irreducible curve in X such that −KX ·C ⩽ 7.
Then C is the conic C, which is given by (5.9.8).

Proof. We have π∗(H) · C ⩽ 3, because

8 > −KX · C =
(
π∗(H) + σ∗(π∗(H)

))
· C = π∗(H) · C + σ∗(π∗(H)

)
· C = 2π∗(H) · C,

so that π∗(H) ·C ⩽ 3. Thus, we see that either π(C) = C2 or π(C) = C ′
2 by Lemma 5.9.7.

On the other hand, we have 8 > −KX ·C = (E+σ∗(E)) ·C = E ·C+σ∗(E) ·C = 2E ·C,
so that E · C > 0. Therefore, since C ′

2 ∩ E = ∅, we have C = C, which also follows from
the fact that the curve C ′ is not σ-invariant. □

Observe that X contains no G-fixed points, since Q does not contain Γ-fixed points.
Note that PicG(X) = Z[−KX ], which follows from (5.9.5). Now, we are ready to prove

Proposition 5.9.11. One has αG(X) ⩾ 3
4
.

Proof. Suppose that αG(X) < 3
4
. Then, arguing as in the proof of Theorem 1.4.11 and

using Lemma 1.4.1, we see that there exist a rational number λ < 3
4
, an irreducible

(proper) G-invariant subvariety Z ⊂ X, and a G-invariant effective Q-divisor D on X
such that D ∼Q −KX , the log pair (X,λD) is strictly log canonical, and Z is its unique
log canonical center. Then Z is not a point, since X has no G-fixed points. Therefore,
since PicG(X) = Z[−KX ], we conclude that Z is a curve.

By Theorem A.2.6, the curve Z is smooth and rational. Moreover, using Corol-
lary A.2.7, we see that −KX · Z ⩽ 7, so that Z = C by Corollary 5.9.10.
We claim that multC(D) ⩽ 2. To prove this, let S = Q∩{α(xt−yz)+β(yw− tz) = 0},

where α and β are general numbers. Then S is a smooth del Pezzo surface of degree 4,
so that | − KS − C2| is a base point free pencil of conics. Let C be a general conic in

this pencil, and let C̃ be its proper transform on X. Then C ∩ C2 consists of two distinct

points, so that C̃ ∩ C also consists of two distinct points. But C ̸⊂ Supp(D), so that we
obtain 4 = D · C ⩾ 2multC(D), which gives multC(D) ⩽ 2 as claimed.

Let η : X̂ → X be the blow up of the curve C, and let F be the η-exceptional surface.

Then the action of the group G lifts to X̂, and it follows from Lemma A.4.3 that F has
a G-invariant section of the projection F → C. Let us show that G acts on F in such
a way that F does not contain any G-invariant sections of the projection F → C.

Let Sy, St, S and S ′ be the surfaces in Q that are cut out by y = 0, t = 0, xt− yz = 0
and yw − zt = 0, respectively. Then the following assertions holds:

(i) the surfaces Sy, St, S, S ′ are irreducible;
(ii) the surfaces Sy, St, S, S ′ are Gm-invariant;
(iii) the involution ι swaps the surfaces Sy and St;
(iv) the involution ι swaps the surfaces S and S ′;
(v) one has C2 = Sy ∩ St ∩ S ∩ S ′;
(vi) the surfaces Sy, St, S, S ′ are smooth at general point of the conic C2;
(vii) any two surfaces among Sy, St, S, S ′ intersect each other transversally at general

point of the conic C2.
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Let S̃y, S̃t, S̃, S̃ ′ be the proper transforms on X of the surfaces Sy, St, S, S ′, respectively.

Then we have C = S̃y ∩ S̃t ∩ S̃ ∩ S̃ ′, the surfaces S̃y, S̃t, S̃, S̃ ′ are smooth at general point

of the curve C, and any two surfaces among S̃y, S̃t, S̃, S̃ ′ meet each other transversally at
general point of the curve C. Moreover, we have the following additional two assertions:

(viii) the involution σ swaps the surfaces S̃y and S̃;
(ix) the involution σ swaps the surfaces S̃t and S̃ ′.

Let Ŝy, Ŝt, Ŝ, Ŝ ′ be the proper transforms on X of the surfaces S̃y, S̃t, S̃, S̃ ′, respectively.

Then each intersection Ŝy∩F , Ŝt∩F , Ŝ ∩F , Ŝ ′∩F contain unique irreducible component
that is a section of the projection F → C. This gives us 4 sections of the projection F → C,
which we denote by Zy, Zt, Z, Z ′, respectively. Then Zy, Zt, Z, Z ′ are distinct curves,

because any two surfaces among S̃y, S̃t, S̃, S̃ ′ intersect each other transversally at general
point of the curve C. Moreover, we have ι(Zy) = Zt, ι(Z) = Z ′, σ(Zy) = Z, σ(Zt) = Z ′,
and each curve among Zy, Zt, Z, Z ′ is Gm-invariant.

Now, using Corollary A.6.5, we conclude that F ∼= P1 ×P1. Then, using Lemma A.6.2,
we conclude that the G-action on F is given by (A.6.4) for some integers a > 0 and b.
This implies that F does not contain G-invariant sections, which is a contradiction.

We can prove that F does not contain G-invariant sections without using the explicit
description of the G-action on the surface F . Indeed, let ϱ : F 99K P1 be the quotient map
that is given by the Gm-action on F . Then

• ϱ is G-equivariant,
• ϱ(Zy), ϱ(Zt), ϱ(Z), ϱ(Z ′) are four distinct points,
• the group G/Gm

∼= µ2
2 permutes ϱ(Zy), ϱ(Zt), ϱ(Z), ϱ(Z ′) transitively.

Thus, the G/Gm-action on P1 is effective, which implies that P1 has no G/Gm-fixed points.
Therefore, we conclude that F does not have G-invariant fibers of the rational map ϱ,
so that F does not contain G-invariant sections of the projection F → C. □

Now, using Theorem 1.4.10, we see that the Fano threefold X is K-polystable, so that
that general smooth Fano threefold � 2.21 is also K-polystable by by Corollary 1.1.17.

5.10. Family �2.26. Up to isomorphism, there are exactly two smooth Fano threefolds
in this family. To describe them, let us recall from [180] the SL2(C)-action on the unique
smooth Fano threefold �1.15, which is described in Example 3.4.1.

Fix the standard SL2(C)-action on W = C2, let V = Sym4(W ) ∼= C5, and consider
the Plücker embedding Gr(2, V ) ↪→ P9 = P(

∧2 V ). As SL2(C)-representations, we have

2∧
V ∗ ∼= Sym2(W )⊕ Sym6(W ).

We set A = Sym2(W ) ⊂
∧2 V ∗ in this decomposition, and note that every nonzero form

in A has rank 4. Let V5 = Gr(2, V )∩P(A⊥). Then V5 is the unique smooth Fano threefold
in the family �1.15. By construction, this threefold is SL2(C)-invariant, so that it carries
a SL2(C)-action. In fact, this action is effective, and Aut(V5) ∼= PGL2(C).
Now, let us describe the Hilbert scheme of lines in V5, see [180, Proposition 2.20] and

[181, Proposition 3.23]. This scheme can be naturally identified with P2 = P(A) equipped
with the induced SL2(C)-action. Concretely, given a nonzero element a ∈ A, the kernel of
a is 1-dimensional, generated by a vector va ∈ V . The vector va induces a global section
of the quotient bundle V/U , where U is the restriction to V5 of the tautological vector
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bundle of the Grassmannian Gr(2, V ). The schematic zero locus of this global section
is precisely the line La in V5 associated to a. Using this identification, we can describe
the SL2(C)-orbits in P(A) as follows:

• the open GIT-polystable orbit,
• the unique invariant conic in P(A) that is given by the GIT-unstable orbit in A.

Now, let L be some line in V5. Then we have two choices for a normal bundle NL/V5 .
Namely, if L is contained the open SL2(C)-orbit in P(A), then NL/V5

∼= OP1 ⊕OP1 and we
say that L is a good line. If L is contained in the invariant conic in P(A), then we have
NL/V5

∼= OP1(−1) ⊕ OP1(1) and we say that L is a bad line. Up to the SL2(C)-action,
the threefold V5 contains exactly one good line and exactly one bad line.

Let σ : X → V5 be the blow up of the line L. Then X is one of two smooth Fano
threefolds �2.26. In both cases, there exists the following commutative diagram:

X
π

��

σ

  
Q V5

where Q is a smooth quadric in P4, and π is a blow up of a twisted cubic curve C3.
Let H be the hyperplane section of Q that contains C3. Then H is smooth if and only

if L is a good line. Let H̃ be the proper transform on X of the surface H, and let F

be the π-exceptional divisor. Then H̃ is the σ-exceptional surface and 2σ(F ) ∼ −KV5 .
Moreover, the surface σ(F ) is singular along the line L. Furthermore, if L is a bad line,
then Aut0(X) ∼= Gm⋊Ga by [42, Lemma 6.5], andX is not K-polystable by Theorem 1.1.4.
In fact, we can say more:

Lemma 5.10.1. Suppose that L is a bad line. Then X is K-unstable.

Proof. Let Z be the fiber of F → C3 over the point Sing(H), let f : X̂ → X be the blow
up of the curve Z, and let E be the f -exceptional divisor. Let us show that β(E) < 0.
Let sE and lE be the negative section and a ruling of the surface E ∼= F1, respectively.

We denote by Ĥ and F̂ the proper transforms on X̂ of the surfaces H̃ and F , respectively.

Then −E|E ∼ sE + lE and Ĥ ∼ sE + 2lE.

Now, we observe that H̃ ∼= F2 and F ∼= F3. Let sH̃ , sF , lH̃ , lF be the negative sections

and rulings of these surfaces, respectively. Then F |H̃ = sH̃ + C̃3, where C3 is the proper

transform via the induced birational map H̃ → H. Moreover, we have C̃3 ∼ sH̃ + 3lH̃ ,

−F |F ∼ sF−2lF , H̃|F ∼ sF+lF , −H̃|H̃ ∼ sH̃+lH̃ , −KX |H̃ ∼ sH̃+3lH̃ , −KX |F ∼ sF+7lF .
Observe that Z = sH̃ , so that we have Z ∼ lF on the surface F .

Take x ∈ R⩾0. Then f ∗(−KX) − xE ∼Q 3Ĥ + 2F̂ + (5 − x)E, which implies that
the divisor f ∗(−KX)− xE is psuedoeffective if and only if x ⩽ 5. Moreover, if x ∈ [0, 1],
then this divisor is nef, so that

vol
(
f ∗(−KX)− xE

)
= −K3

X − 3x2
(
−KX · Z

)
− x3

(
− deg

(
NZ/X

))
= 34− 3x2 − x3.

If x ∈ [1, 3], then the Zariski decomposition of the divisor f ∗(−KX)− xE is

f ∗(−KX)− xE ∼R

(
f ∗(−KX)− xE +

1

2
(1− x)Ĥ

)
︸ ︷︷ ︸

positive part

+
1

2
(x− 1)Ĥ︸ ︷︷ ︸

negative part

.
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Thus, if x ∈ [1, 3], then vol(f ∗(−KX)−xE) = 1
4
(x3−9x2−21x+149). Finally, if x ∈ [3, 5],

then vol(f ∗(−KX)− xE) = (5− x)3. Now, integrating, we see that β(E) = − 31
136

, which
implies that X is K-unstable by Theorem 1.2.2. □

Now, we suppose that L is a good line. Then it follows from [42] that Aut0(X) ∼= Gm.
Moreover, one can show that Aut(X) ∼= Gm ⋊ µ2. In the remaining part of the section,
we will show that X is K-semistable and not K-polystable, i.e. X is strictly semistable.
To do this, we may assume that Q = {x0x3−x1x2+x24 = 0} ⊂ P4, H = {x4 = 0}∩Q, and

C3 =
{
x0x3 − x1x2 = 0, x0x2 − x21 = 0, x1x3 − x22 = 0, x4

}
.

where x0, x1, x2, x3, x4 are coordinates in P4. Let Q be the family of quadrics given by

x0x3 − x1x2 + t · x24 = 0,

where t ∈ A1. Let Q̂ be its special member — the singular quadric x0x3 − x1x2 = 0.
Now, blowing up Q along C3 × A1, we obtain a special test configuration X → A1.
Its general fiber is X. Let Y be its special fibre. Then Y is a Fano variety, it has one

isolated ordinary double point, since Y is the blow-up of the quadric Q̂ in the curve C3,

which does not pass through Sing(Q̂).

Lemma 5.10.2. The Fano variety Y is K-polystable.

Proof. Let f : Y → Q̂ be the blow up of the curve C3, and let E be its exceptional

surface. Observe that Q̂ is a T-variety of complexity one. Namely, the quadric Q̂ admits
an effective action of the group G = G2

m ⋊ µ2, where the G2
m-action is given by

(t1, t2).[x0 : x1 : x2 : x3 : x4] = [x0 : t1x1 : t
2
1x2 : t

3
1x3 : t2x4]

and µ2 acts via the biregular involution σ : [x0 : x1 : x2 : x3 : x4] 7→ [x3 : x2 : x1 : x0 : x4].
Since the curve C3 is invariant under the G-action, the G-action lifts to the variety Y .
Let us use technique of Section 1.3 and Theorem 1.3.9 to show that Y is K-polystable.
In the following, we will use notations introduced in this section.

Consider the two one-parameter subgroups

w1 : Gm → G2
m; t→ (t, 1)

w2 : Gm → G2
m; t→ (1, t).

Those form a basis of N and σ acts on N via w1 7→ −w1 and w2 7→ w2. Let T be the prime

divisor in Q̂ given by x4 = 0, and let T̃ be its strict transform on Y . Then w2 acts trivially
on it, so that T is a horizontal divisor with wT = w2.

Let π : Y 99K P1 be the quotient map by G2
m. Then π ◦ f−1 is given by

[x0 : x1 : x2 : x3 : x4] 7→ [x0x2 : x
2
1].

Note, that on the quadric Q̂ we have [x0x2 : x
2
1] = [x22 : x1x3] whenever both are defined.

Let F be the fibre of the quotient map over [1 : 1]. Then F = {x0x2−x21 = x1x3−x22 = 0}.
Then C3 = F ∩ T . Since the domain of π ◦ f−1 intersects C3, we have π(E) = [1 : 1].

The involution σ acts on P1 by sending [y0 : y1] to [y1 : y0]. There are only two σ-fixed
points: [1 : 1] and [−1 : 1]. Moreover, the fibre of π over the point [−1 : 1] is integral,

and the fibre over [1 : 1] consists of the surfaces E and F̃ . Hence, by Proposition 1.3.17,
it is sufficient to show that FutY = 0 and β(E) > 0.
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Let us compute β(E). Take x ∈ R⩾0. Then −KY − xE ∼R (2 − x)E + 3T̃ , which
implies that −KY − xE is pseudo-effective ⇐⇒ x ⩽ 2. Similarly, it is nef ⇐⇒ x ⩽ 1

2
.

Moreover, if 2 ⩾ x > 1
2
, then the ample model of the divisor −KY − xE is given by

the contraction of the surface T̃ ∼= P1 × P1 to a curve. Using this, we compute

vol
(
−KY − xE

)
=


7x3 − 6x2 + 75x+ 34 if 0 ⩽ x ⩽

1

2
,

5(2− x)3 if
1

2
⩽ x ⩽ 2.

Integrating, we get SX(E) =
305
544

, so that β(E) = 1− SX(E) =
239
544

> 0.

Similarly, we see that β(T̃ ) = 0. Indeed, if 0 ⩽ x ⩽ 1, then −KY − xT̃ is nef, so that

vol
(
−KY − xT̃

)
=
(
−KY − xT̃

)3
=
(
f ∗((3− x)T

)
+ (x− 1)E

)3
=

= 2(3− x)3 + 3(3− x)(x− 1)2f ∗(T ) · E2 + (x− 1)3E3 =

= 2(3− x)3 − 9(3− x)(x− 1)2 − 7(x− 1)3 = 34− 6x2 − 12x.

Likewise, if 1 ⩽ x ⩽ 3, then the ample model of this divisor is the quadric Q̂, which implies

that vol(−KY − xT̃ ) = 2(3 − x)2, since f∗(−KY − xT̃ ) ∼R (3 − x)T . Now, integrating,

we get SX(T̃ ) = 1, so that β(T̃ ) = 0.
The Futaki character of Y is trivial. Indeed, since FutY is σ-invariant, FutY (λw1) = 0

by Lemma 1.3.6. Hence, it remains to show that FutY (λw2) = 0. Since T̃ is a horizontal

divisor with wT̃ = w2, we have FutY (λw2) = β(T̃ ) = 0 by Corollary 1.3.16. This shows
that Y is K-polystable. □

Now, using Corollary 1.1.14 and the existence of the test configuration for our smooth
Fano threefold X with special K-polystable fibre Y , we obtain

Corollary 5.10.3. The Fano threefold X is strictly K-semistable.

Therefore, the family �2.26 does not contain K-polystable threefolds.

5.11. Family�3.2. Now we construct one special K-stable smooth Fano threefold�3.2.
By Theorem 1.1.12, this would imply that general threefolds in this family are K-stable,
since all smooth threefolds in these family have finite automorphism groups [42].

Let S = P1 × P1, let H be the divisor of degree (1, 1) on S, let

P = P
(
OS ⊕OS(−H)⊕OS(−H)

)
,

let [s0 : s1; t0 : t1;u0 : u1 : u2] be homogeneous coordinates on the fourfold P such that
wt(s0) = (1, 0, 0), wt(s1) = (1, 0, 0), wt(t0) = (0, 1, 0), wt(t1) = (0, 1, 0), wt(u0) = (0, 0, 1),
wt(u1) = (1, 1, 1) and wt(u2) = (1, 1, 1), and let π : P → S be the natural projection.
Then the projection π is given by [s0 : s1; t0 : t1;u0 : u1 : u2] 7→ [s0 : s1; t0 : t1], where
we consider [s0 : s1; t0 : t1] as coordinates on S. Let G be the subgroup in Aut(P) that is
generated by the following two transformations:

A1 : [s0 : s1; t0 : t1;u0 : u1 : u2] = [s1 : s0; t1 : t0;u0 : u2 : u1],

A2 : [s0 : s1; t0 : t1;u0 : u1 : u2] = [s0 : −is1; t0 : −t1;u0 : u1 : iu2],

where i =
√
−1. Observe that G acts naturally and faithfully on S, and π is G-equivariant.

Note also that
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(1) S does not contain G-fixed points,
(2) S does not contain G-invariant curves of degree (1, 0), (0, 1) or (1, 1).

In particular, the fourfold P does not contain G-fixed points either.
Let L be the tautological line bundle on P over S, i.e. the line bundle of degree (2, 3, 2),

and let X be the divisor in the linear system |L⊗2 ⊗OS(2, 3)| that is given by

t0u
2
1 + t1u

2
2 + u0

(
s0t

2
0u1 + s1t

2
1u2 + s0t

2
1u1 + s1t

2
0u2
)
+ u20

(
s20t

3
0 + s21t

3
1 + s20t0t

2
1 + s21t

2
0t1
)
= 0.

Then X is a smooth Fano threefold �3.2, it is G-invariant, and G acts faithfully on it, so
that we can identify G with a subgroup in Aut(X).
Let S be the surface in X that is cut out by u0 = 0, let ϖ : X → S be the morphism

induced by π, let pr1 : S → P1 and pr2 : S → P1 be projections to the first and the second
factors, respectively. Then S ∼= P1×P1, ϖ is conic bundle, and there exists the following
G-equivariant commutative diagram:

(5.11.1) V̂

ϕ̂

��

ψ̂ // Y V

ϕ

��

ψoo

χ

}}

X

ϖ
��

γ̂

xx

γ

&&

α

OO

β̂

ff

β

88

P1 Spr1
oo

pr2
// P1

where Y is a non-Q-factorial Fano threefold with one isolated ordinary double point such
that −K3

V = 16 and Pic(V ) = Z[−KV ], α is a contraction of the surface S to the singular

point of V , β and β̂ are birational morphisms that contract S to smooth rational curves,
ψ and ψ̂ are small resolutions of the threefold V , χ is the Atiyah flop in the curve β(S ),

ϕ is a fibration into quadric surfaces, ψ̂ is a fibration into del Pezzo surfaces of degree 4,
γ and γ̂ are fibrations into del Pezzo surfaces of degree 3 and 6, respectively.

The diagram (5.11.1) first appeared in [116, Proposition 3.8]. Note that (5.11.1) extends
the diagram (4.1.10) in Section 4.1 for another singular Fano threefold in the family�1.8.

Lemma 5.11.2. One has αG(X) ⩾ 1.

Proof. Let us apply Theorem 1.4.11 with µ = 1. Let F and F̂ be general fibers of the del

Pezzo fibrations γ and γ̂, respectively. Then −KX ∼ S + F + 2F̂ , and it follows from

[88, 148] that the cone Eff(X) is generated by the surfaces S , F , F̂ . Thus, the condition

Theorem 1.4.11(1) cannot be satisfied, because the pencil |F̂ | does not contain G-invariant
surfaces, since S does not contain G-invariant curves of degree (1, 0). Similarly, we see
that X does not contain a G-invariant irreducible curve C such that F · C ⩽ 1 and
F̂ ·C ⩽ 1, because S does not contain G-fixed points, and S does not contain G-invariant
curves of degree (1, 0), (0, 1) and (1, 1). Finally, recall that X does not contain G-fixed
points. Thus, we have αG(X) ⩾ 1 by Theorem 1.4.11. □

Thus, the threefold X is K-stable by Theorem 1.4.7 and Corollary 1.1.6. Hence, general
Fano threefold�3.2 is also K-stable by Theorem 1.1.12. In fact, Lemma 5.11.2 also implies
that general Fano threefolds �1.8 are K-stable, which we already know from Section 4.1.
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Indeed, since G acts faithfully on Y , V and V̂ , we can identify G with the subgroups

in the automorphisms groups of these threefolds. Then αG(Y ) = αG(V ) = αG(V̂ ) by
Lemma 1.4.6. On the other hand, Lemma 5.11.2 gives

Corollary 5.11.3. One has αG(V ) ⩾ 1.

Proof. Suppose that αG(V ) < 1. Then there is an effective G-invariant Q-divisor D on
the threefold V such that D ∼Q −KV , and the log pair (V, λD) is not KLT for some
positive rational number λ < 1. Let us seek for a contradiction.

Observe that −KV ∼ β(F ) + 2β(F̂ ), the cone Eff(X) is generated by the surfaces

β(F ) and β(F̂ ), and the pencil |β(F̂ )| does not contain G-invariant surfaces. This shows
that Nklt(V, λD) does not contain surfaces. Moreover, the pencil |β(F )| does not have
G-invariant surfaces, so that, in particular, the threefold V does not have G-fixed points.
Thus, applying Corollary A.1.15, we see that the locus Nklt(V, λD) consists of a smooth
rational curve C such that β(F ) · C = 1.

Suppose that C ̸= β(C ). Let Ĉ and D̂ be the proper transforms of the curve C and

divisor D on the threefold V̂ , respectively. Then Ĉ is contained in the locus Nklt(V̂ , λD̂),
which does not contain surfaces, since χ is a flop. Applying Corollary A.1.15 again, we

see that β̂(βF ) · Ĉ = 1. Thus, φ ◦ β−1(C) is a G-invariant curve in S ∼= P1 × P1 of degree
(1, 1), which is impossible, since S does not contain G-invariant curves of degree (1, 1).
Thus, we see that C = β(C ). Let D be the proper transform of the divisor D on X.

Then D+(multC(D)− 1)S ∼Q −KX , and the log pair (X,D+(multC(D)− 1)S ) is not
log canonical. Since multC(D) > 1 by Lemma A.1.4, this contradicts Lemma 5.11.2. □

Thus, we have αG(Y ) ⩾ 1, so that it follows from Theorem 1.4.7 and Corollary 1.1.6
that Y is K-stable, because its automorphism group Aut(Y ) ∼= Aut(X) is finite. On
the other hand, it follows from [160, Theorem 11] and [117, Theorem 1.4] that Y has
a smoothing to a smooth Fano threefold �1.8. Thus, general Fano threefolds �1.8 are
K-stable by Theorem 1.1.12, which we already know from Example 4.1.9

5.12. Family �3.3. Let X be the threefold{
x1x

2
2 + y1y

2
2 + z1z

2
2 +w1w

2
2 = 0, x21 + y21 + z21 +w2

1 = 0, x2 + y2 + z2 +w2 = 0
}
⊂ P3 × P3,

where x1, y1, z1, w1 are coordinated on the first factor of P3 × P3, and x2, y2, z2, w2 are
coordinated on the second factor of P3 × P3. Then X is smooth Fano threefold �3.3.
Indeed, the threefold X is a divisor in P1 × P1 × P2 of degree (1, 1, 2), where we identify

• P1 × P1 with the quadric x21 + y21 + z21 + w2
1 = 0 in the first factor of P3 × P3,

• P2 with the hyperplane x2 + y2 + z2 + w2 = 0 in the second factor of P3 × P3.

Observe that we have the following commutative diagram:

P1 × P1

pr1

vv

pr2

))P1 X

ϕ
��

ω

OO

ν2 //ν1oo

ρ1

vv

ρ2

))

P1

P1 × P2

π1

OO

π2
// P2 P1 × P2

π1

OO

π2
oo
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where ρ1 and ρ2 are blow ups of smooth curves of genus 3, ϕ is a (non-standard) conic
bundle whose discriminant curve is a smooth plane quartic curve, ω is a (standard) conic
bundled whose discriminant curve is a smooth curve of bi-degree (3, 3), ν1 and ν2 are
fibrations into del Pezzo surfaces of degree 5, π1 and π2 are natural projections, and pr1
and pr2 are projections to the first the the second factor, respectively.

Let G = S4. Then X admits a natural faithful action of the group G that is given
by the (simultaneous) permutations of coordinates on both factors of P3 × P3. Observe
that X does not contain G-fixed points, the conic bundles ω and ϕ are G-equivariant.
the G-action on the quadric P1 × P1 permutes its rulings. Thus, we have PicG(X) ∼= Z2.
We identify G with a subgroup in Aut(X).

Lemma 5.12.1. One has αG(X) ⩾ 1.

Proof. Let S be any G-invariant surface S ⊂ X such that −KS ∼Q aS+∆, where a ∈ Q⩾0

and ∆ is an effective Q-divisor on X. Then a ⩽ 1, because

aS +∆ ∼Q −KX ∼ ν∗1(OP1(1)) + ν∗2(OP1(1)) + ϕ∗(OP2(1)),

and S ∼ ν∗1(OP1(m))+ ν∗2(OP1(m))+ϕ∗(OP2(n)) for some non-negative integers m and n.
Now, we suppose that αG(X) < 1. Since X does not contain G-fixed points, it follows

from Lemma A.4.8 that X contains an effective G-invariant Q-divisor D ∼Q −KX and
a smooth G-invariant irreducible rational curve Z such that the log pair (X,λD) is strictly
log canonical for some positive rational number λ < 1, and Z is the unique log canonical
center of the log pair (X,λD). Applying Corollary A.1.15 to the del Pezzo fibrations ν1
and ν2, we get Z · ν∗1(OP1(1)) ⩽ 1 and Z · ν∗2(OP1(1)) ⩽ 1. But P1 × P1 has no G-fixed
points, and PicG(P1 × P1) ∼= Z, so that ω(Z) is a curve of degree (1, 1). Since ω(Z) is
G-invariant, it is given by x1 + y1 + z1 + w1 = 0. Likewise, applying Corollary A.1.16 to
the conic bundle ϕ, we see that ϕ(Z) is a conic, because P2 does not have G-invariant
lines and G-fixed points. Moreover, since P2 contains unique G-invariant conic, we see
that ϕ(Z) is given by x22 + y22 + z22 + w2

2 = 0. Then Z is contained in the support of
the subscheme

x1x
2
2 + y1y

2
2 + z1z

2
2 + w1w

2
2 = 0,

x21 + y21 + z21 + w2
1 = 0, x22 + y22 + z22 + w2

2 = 0,

x2 + y2 + z2 + w2 = 0, x1 + y1 + z1 + w1 = 0.

 ⊂ P3 × P3.

Denote the later subscheme by C. Using the following Magma code

Q:=RationalField();

PxP<x1,y1,z1,x2,y2,z2>:=ProductProjectiveSpace(Q,[2,2]);

C:=Scheme(PxP,[x1*x2^2+y1*y2^2+z1*z2^2-(x1+y1+z1)*(x2+y2+z2)^2,

x1^2+y1^2+z1^2+(x1+y1+z1)^2,x2^2+y2^2+z2^2+(x2+y2+z2)^2]);

IsNonsingular(C);

IsIrreducible(C);

Dimension(C);

we conclude that the subscheme C is reduced, irreducible, one-dimensional, and smooth.
Then Z = C, and C is a smooth (hyperelliptic) curve of genus 3, which is absurd, since
the curve Z is rational. The obtained contradiction shows that αG(X) ⩾ 1. □

Therefore, the threefold X is K-stable by Theorem 1.4.7 and Corollary 1.1.6, because
the group Aut(X) is finite [42]. Then general Fano threefold �3.3 is also K-stable.
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5.13. Family �3.4. In Section 4.5, we presented one K-stable Fano threefold �3.4, so
that general threefolds in this family are K-stable by Theorem 1.1.12. In this section, we
prove the K-stability of another smooth Fano threefold �3.4. The proof is more involved
in this case, but we believe that it can be be used to prove K-stability that all smooth
Fano threefolds in the family �3.4 are K-stable.

Using notations of [179, Section 2.2], consider the scroll F1 = F(0, 1) with coordinates t0
and t1 of weight (1, 0), and coordinates u0 and u1 of weights (−1, 1) and (0, 1), respectively.
The blow up morphism β : F1 → P2 is given by [t0 : t1;u0 : u1] 7→ [u1 : t0u0 : t1u0], so that
it contracts the curve u0 = 0 to the point [1 : 0 : 0], the projection υ : F1 → P1 is given by
[t0 : t1;u0 : u1] 7→

[
t0 : t1], and the curve u1 = 0 is the preimage of a line in P2 that does

not contain the point [1 : 0 : 0]. We fix coordinates [s0 : s1] on the first factor of P1 × F1.
Let P1×F1 → P1×P1 be the morphism ([s0 : s1], [t0 : t1;u0 : u1]) 7→ ([s0 : s1], [t0 : t1]), and
we consider ([s0 : s1], [t0 : t1]) also as coordinates on P1×P1. Let µ1 be the transformation
in Aut(P1 × F1) given by ([s0 : s1], [t0 : t1;u0 : u1]) 7→ ([s0 : s1], [t1 : t0;u0 : −u1]), let
µ2 be the transformation ([s0 : s1], [t0 : t1;u0 : u1]) 7→ ([s0 : −s1], [t0 : t1;u0 : u1]), and
let G′ be the subgroup in Aut(P1 × F1) that is generated by µ1 and µ2. Then G′ ∼= µ2

2,
and the morphism P1 × F1 → P1 × P1 is G′-equivariant. Moreover, one can check that
the induced action of the group G′ on P1 × P1 has the following properties: P1 × P1 does
not have G′-fixed points, P1 × P1 does not contain G′-invariant curves of degree (1, 0),
the only G′-invariant curves of degree (0, 1) in P1×P1 are {t0+ t1 = 0} and {t0− t1 = 0},
and P1 × P1 does not contain G′-invariant curves of degree (1, 1).
Let B be the surface in P1 × F1 that is given by(

s20 + s21
)(
t20 + t21

)
u20 + 9

(
s20 + s21

)
u21 +

(
s20 − s21

)(
t20 − t21

)
u20+

+ 4
(
s20 + s21

)(
t0 − t1

)
u0u1 + 8

(
s20 − s21

)(
t0 + t1

)
u0u1 = 0,

ThenB is smooth andG′-invariant. Letϖ : V → P1×F1 be the double cover ramified inB.
Then V is a smooth Fano threefold �3.4, so that we can use notations used in (4.5.11).
Note that the G′-action lifts to V , and we can expand it to a larger subgroup G ⊂ Aut(V ),
which is generated by the subgroup G′ and the Galois involution of the double cover τ .
Then (4.5.11) isG-equivariant. In the following, we will use notations used in this diagram.
Let Hs and Ht be general fibers of the del Pezzo fibrations η1 and ϕ, respectively, and

let E be the α-exceptional surface. Then −KV ∼ Hs+2Ht+E, and Eff(X) is generated
by Hs, Ht, E. Note that |Ht| contains two G-invariant surfaces. They are the preimages
via γ of the two G′-invariant curves in P1 × P1 of degree (0, 1). Let H+ and H− be
the preimages via γ of the curves given by t0 ± t1 = 0, respectively. Let us apply results
of Section 1.7 to irreducible G-invariant curves in these two surfaces.

Lemma 5.13.1. Let Z be an irreducible G-invariant curve in H+. Then S(W
H+
•,• ;Z) ⩽ 5

9
.

Proof. The double cover ϖ gives a double cover H+ → ϖ(H+), where ϖ(H+) ∼= P1 × P1,
and we can identify ([s0 : s1], [u0 : u1]) with coordinates on ϖ(H+). Note that this double
cover is branched along the curve {2(s20 + s21)u

2
0 + 9(s20 + s21)u

2
1 + 16(s20 − s21)u0u1 = 0}.

This curve is smooth, so that H+ is a smooth del Pezzo of degree 4.
Fix u ∈ R⩾0. Let us consider the Zariski decomposition of the divisor −KX − uH+.

For u > 2, this divisor is not pseudo-effective. For u ∈ [0, 2], we have

P (u) =

{
Hs + (2− u)H+ + E if 0 ⩽ u ⩽ 1,

Hs + (2− u)(H+ + E) if 1 ⩽ u ⩽ 2,
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and

N(u) =

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)E if 1 ⩽ u ⩽ 2,

where P (u) = P (−KX − uH+) and N(u) = N(−KX − uH+).
Let ℓs and ℓu be the pull back onH+ of the curves inϖ(H+) that are given by s0 = 0 and

u0 = 0, respectively. Then P (u)|H+ ∼R ℓs+ℓu for u ∈ [0, 1]. Likewise, if u ∈ [1, 2], then we
have P (u)|H+ ∼R ℓs + (2− u)ℓu and N(u)|H+ = (u− 1)ℓu. If Z = E|H+ , then Z = ℓu and

S
(
WH+

•,• ;Z
)
=

3

18

∫ 1

0

∫ ∞

0

vol
(
ℓs + (1− v)ℓu

)
dvdu+

+
3

18

∫ 2

1

(u− 1)
(
ℓs + (2− u)ℓu

)2
du+

3

18

∫ 2

1

∫ ∞

0

vol
(
ℓs + (2− u− v)

)
dvdu =

=
1

6

∫ 1

0

∫ 1

0

4(1−v)dvdu+1

6

∫ 2

1

4(u−1)(2−u)du+1

6

∫ 2

1

∫ 2−u

0

4(2−u−v)dvdu =
5

9
< 1.

If Z ̸= E|H+ , then Z ∼ aℓs+ bℓu for some non-negative integers a and b, since G contains
the Galois involution of the double cover ϖ. Moreover, we have b ⩾ 1, because |ℓs| does
not contain G-invariant curves. This gives S(W

H+
•,• ;Z) ⩽ S(W

H+
•,• ; ℓu) =

5
9
as required. □

Lemma 5.13.2. Let Z be an irreducible G-invariant curve in H−. Then S(W
H−
•,• ;Z) ⩽ 8

9
.

Proof. The double cover ϖ gives a double cover H− → ϖ(H−), where ϖ(H−) ∼= P1 × P1,
and we can identify ([s0 : s1], [u0 : u1]) with coordinates on ϖ(H+). Note that this double
cover is branched along the curve given by(

s0 − is1
)(
s0 + is1

)(
2u0 + (4−

√
2i)u1

)(
2u0 + (4 +

√
2i)u1

)
= 0.

Therefore, we see that H− is the toric del Pezzo of degree 4 that has 4 nodes.
Let ℓs and ℓu be irreducible curves in H−1 that are preimages of the curves in ϖ(H−)

given by s0 − is1 = 0 and 2u0 + (4 −
√
2i)u1 = 0, respectively. Then Z ∼Q aℓs + bℓu for

some integers a ⩾ 0 and b ⩾ 1, because G contains the involution of the double cover ϖ,
and H− does not contain irreducible G-invariant curve that are Q-rationally equivalent
to nℓs for n ∈ Z>0.

Arguing as in the proof of Lemma 5.13.1, we see that P (−KX − uH−)|H− ∼R 2ℓs+2ℓu
and N(−KX−uH−) = 0 for u ∈ [0, 1]. If u ∈ [1, 2], then N(−KX−uH−)|H− ∼R (2u−2)ℓu
and P (−KX − uH−)|H− ∼R 2ℓs + (4 − 2u)ℓu. Thus, if Z = E|H− , then we compute

S(W
H+
•,• ;Z) = 5

9
as in the proof of Lemma 5.13.1. Similarly, if Z ̸= E|H− , then

S
(
WH−

•,• ;Z
)
⩽ S

(
WH−

•,• ; ℓu
)
=

3

18

∫ 1

0

∫ ∞

0

vol
(
2ℓs + (2− ℓt)

)
dvdu+

+
3

18

∫ 2

1

∫ ∞

0

vol
(
2ℓs + (4− 2u− v)ℓt

)
dvdu =

=
1

6

∫ 1

0

∫ 2

0

(4− 2v)dvdu+
1

6

∫ 2

1

∫ 4−2u

0

(8− 4u− 2v)dvdu =
8

9

as required. □

Now, we are ready to prove

Proposition 5.13.3. The threefold V is K-stable.
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Proof. Suppose that V is not K-stable. Then V is not K-polystable by Corollary 1.1.6,
because Aut(V ) is finite [42]. Then, by Theorem 1.2.5, there are a G-invariant prime
divisor F over V such that β(F ) = AV (F )− SV (F ) ⩽ 0. Let Z = CV (F ). Then Z is not
a surface by Theorem 3.7.1, so that Z is a G-invariant irreducible curve, because V does
not have G-invariant points.

Applying Corollary 1.7.26 and Lemma 5.13.1, we see that Z ̸⊂ H+, because SV (H+) < 1
by Theorem 3.7.1. Similarly, using Lemma 5.13.2, we see that Z ̸⊂ H−.
Using Lemma 1.4.4, we get αG,Z(V ) < 3

4
. Now, using Lemma 1.4.1, we see that there

exists a G-invariant effective Q-divisor D on the threefold V such that D ∼Q −KV and
Nklt(V, λD) contains Z for some positive rational number λ < 3

4
.

Since −KV ∼ Hs+2Ht+E and Eff(V ) is generated by Hs, Ht and E, the only possible
two-dimensional component of Nklt(X,λD) can be one of the surfaces H+ and H−. Since
Z ̸⊂ H+ ∪H−, we conclude that Z is an irreducible component of the locus Nklt(V, λD).
Now, applying Corollary A.1.15 to the del Pezzo fibrations η1 and ϕ, we conclude that
Hs · Z ⩽ 1 and Ht · Z ⩽ 1. One the other hand, we know that P1 × P1 does not contain
G-invariant points, it does not contain G-invariant curves of degree (1, 0), and it does not
contain G-invariant curves of degree (1, 1). Hence, we conclude that γ(Z) is a G-invariant
curve of degree (0, 1), which is impossible, since we already proved that Z ̸⊂ H+∪H−. □

5.14. Family �3.5. Let S = P1 ×P1, let C be a prime divisor in S of degree (1, 5), and
let G = Aut(S,C). We can choose coordinates ([u : v], [x : y]) on the surface S such that
the curve C is given by

(5.14.1) u
(
x5 + a1x

4y + a2x
3y2 + a3x

2y3
)
+ v
(
y5 + b1xy

4 + b2x
2y3 + b3x

3y2
)
= 0,

where each ai ∈ C and each bj ∈ C. If all numbers ai and bj vanish, then G ∼= Gm ⋊ µ2.
In all other cases, the group G is finite by [42, Corollary 2.7].
Consider the G-equivariant embedding S ↪→ P1 × P2 given by(

[u : v], [x : y]
)
7→
(
[u : v], [x2 : xy : y2]

)
.

Identify S and C with their images in P1×P2, identify G with a subgroup in Aut(P1×P2).
Let pr1 : P1×P2 → P1 and pr2 : P1×P2 → P2 be the projections to the first and the second
factors, respectively. Then C is a G-invariant curve of degree (5, 2) in P1 × P2, both
projections pr1 and pr2 are G-equivariant, pr2(S) is a G-invariant conic in P2.

Let π : X → P1×P2 be the blow up of the curve C. Then X is a Fano threefold � 3.5,
and the G-action lifts to X. Therefore, we can identify G with a subgroup in Aut(X).
In fact, it follows from the proof of [42, Lemma 8.7] that Aut(X) = G. In this section,
we will prove that X is K-stable for a special choice of the curve C, which would imply
that general Fano threefolds �3.5 are K-stable by Theorem 1.1.12.

Let S̃ be the proper transform on X of the surface S, let E be the π-exceptional surface,

let H1 = (pr1 ◦ π)∗(OP1(1)) and let H2 = (pr2 ◦ π)∗(OP2(1)). Then S̃ ∼ 2H2 − E, which
implies that

−KX ∼Q 2H1 +
3

2
S̃ +

1

2
E,

so that αG(X) ⩽ 2
3
.

Note that S̃ ∼= P1 × P1 and S̃|S̃ is a line bundle of degree (−1,−1). Therefore, there

exists a birational morphism ϖ : X → Y that contracts S̃ to an ordinary double point of
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the singular Fano threefold Y such that −K3
Y = 22 and Pic(Y ) = Z[−KY ]. Using this,

we obtain the following G-equivariant commutative diagram:

P1 × P2

pr1

ww

pr2

((P1 P2

X
ϕ1

hh

ϕ2

66π

OO

ϖ

��

σ1

vv

σ2

((
V

ψ1
((

φ1

OO

U

ψ2
vv

φ2

OO

Y

where ϕ1 is a fibration into quartic del Pezzo surfaces, ϕ2 is a conic bundle, V and U are

smooth weak Fano threefolds, σ1 and σ2 are birational contractions of the surface S̃ to
smooth rational curves, ψ1 and ψ2 are small resolutions of the threefold Y , ϕ1 is a fibration
into quintic del Pezzo surfaces, and ϕ2 is a P1-bundle.

Corollary 5.14.2. Suppose that |H1| contains no G-invariant surfaces. Then αG(Y ) ⩾ 4
5
.

Proof. By Lemma 1.4.6 and Corollary 1.4.16, we have αG(Y ) = αG(V ) ⩾ 4
5
. □

Fix an effective S4-action on P1, and consider the corresponding diagonal action on
the surface S = P1 × P1. By Lemma A.6.12, the surface S contains unique S4-invariant
curve of degree (5, 1), and this curve is irreducible and smooth.

Proposition 5.14.3. Suppose that C is S4-invariant. Then X and Y are K-stable.

Proof. Recall that G = Aut(S,C). Then G ∼= S4 by Lemma A.6.12, and

(1) P1 does not contain G-invariant points,
(2) P2 does not contain G-invariant points,
(3) P2 does not contain G-invariant lines,
(4) pr2(S) is the unique G-invariant conic in P2.

Indeed, the first assertion is obvious. The remaining assertions follows from the fact that
the G-action on P2 is given by an irreducible representation of the group G.

We have αG(Y ) ⩾ 4
5
by Corollary 5.14.2, so that Y is K-polystable by Theorem 1.4.7.

Since Aut(Y ) ∼= Aut(X) = G, we also conclude that Y is K-stable by Corollary 1.1.6.
Let us show thatX is K-stable. Suppose it is not. By Corollary 1.1.6 and Theorem 1.2.5,

there are aG-equivariant birational morphism f : X̃ → X and aG-invariant dreamy prime

divisor F ⊂ X̃ such that β(F ) = AX(F ) − SX(F ) ⩽ 0. Let Z = f(F ). Then Z is not
a surface by Theorem 3.7.1, so that Z is a G-invariant irreducible curve, because X has
no G-fixed points, since P2 has no G-fixed points.
Using Lemma 1.4.4, we get αG,Z(X) < 3

4
. Now, using Lemma 1.4.1, we see that there

are a G-invariant effective Q-divisor D on the threefold X and λ ∈ Q>0 such that λ < 3
4
,

D ∼Q −KX and Nklt(X,λD) contains Z.

We claim that S̃ is the only surface that can be contained in the locus Nklt(X,λD).
Indeed, if Nklt(X,λD) contains a G-invariant surface S, then −KX − S is big, so that
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either S ∈ |2H2 − E|, or S ∈ |H1|, or S ∈ |H1 + 2H2 − E|. But S̃ is the only divisor

in |2H2 − E|, and |H1| does not contain G-invariant divisors. Moreover, the surface S̃ is
the fixed locus of the linear system |H1+2H2−E|, and the pencil |H1| is its mobile part,
so that |H1 + 2H2 − E| contains no G-invariant divisors. Thus, if Nklt(X,λD) contains

a G-invariant surface S, then S = S̃.

Suppose that Z ⊂ S̃. Let us apply results of Section 1.7 to S̃ and Z. As in Section 1.7,
we denote by V• the anticanonical ring of the threefold X with its natural filtration, and

we denote by W S̃
•,• its refinement by the surface S̃. Using Corollary 1.7.26, we see that

either SX(S̃) ⩾ 1 or S(W S̃
•,•;Z) ⩾ 1 (or both). Let us compute SX(S̃). Take a positive

real number u. If 0 ⩽ u ⩽ 1, then −KX − uS̃ is nef. On the other hand, if 1 ⩽ u ⩽ 3
2
,

then P (−KX−uS̃) = 2H1+(3−2u)H2 and N(−KX−uS̃) = (u−1)E. Finally, if u > 3
2
,

then −KX − uS̃ is not pseudoeffective. This gives

SX
(
S̃
)
=

1

20

∫ 1

0

(
−KX − uS̃

)3
du+

1

20

∫ 3
2

1

(
2H1 + (3− 2u)H2

)3
du =

=
1

20

∫ 1

0

(
20− 2u3 − 6u2 − 6u

)
du+

1

20

∫ 3
2

1

6(2u− 3)2du =
31

40
,

so that SX(S̃) < 1, which also follows from Theorem 3.7.1. Thus, we have S(W S̃
•,•;Z) ⩾ 1.

Let us compute S(W S̃
•,•;Z). Let ℓ1 and ℓ2 be the rulings of the surface S̃ ∼= P1 × P1 that

are contracted by pr1 ◦ π and pr2 ◦ π, respectively. Then −KX |S̃ ∼ ℓ1 + ℓ2, H1|S̃ ∼ ℓ1,

H2|S̃ ∼ ℓ2, E|S̃ ∼ ℓ1+5ℓ2, S̃|S̃ ∼ −ℓ1−ℓ2. Thus, we have (−KX−uS̃)|S̃ ∼R (1+u)(ℓ1+ℓ2).

If 1 ⩽ u ⩽ 3
2
, then N(−KX−uS̃)|S̃ = (u−1)E|S̃ and P (−KX−uS̃)|S̃ ∼R 2ℓ1+(6−4u)ℓ2.

Thus, if Z = E|S̃, then Corollary 1.7.26 gives

S
(
W S̃

•,•;Z
)
=

3

20

∫ 1

0

∫ ∞

0

vol
(
(1 + u− v)ℓ1 + (1 + u− 5v)ℓ2

)
dvdu+

+
3

20

∫ 3
2

1

(
2ℓ1+(6−4u)ℓ2)

2(u−1)du+
3

20

∫ 3
2

1

∫ ∞

0

vol
(
(2−v)ℓ1+(6−4u−5v)ℓ2

)
dvdu =

=
3

20

∫ 1

0

∫ 1+u
5

0

2(1 + u− v)(1 + u− 5v)dvdu+
3

20

∫ 3
2

1

4(6− 4u)(u− 1)du+

+
3

20

∫ 3
2

1

∫ 6−4u
5

0

2(6− 4u− 5v)(2− v)dvdu =
193

1000
.

Similarly, if Z ̸= E|S̃, then

S
(
W S̃

•,•;Z
)
⩽

3

20

∫ 1

0

∫ ∞

0

vol
(
(1 + u− v)ℓ1 + (1 + u− v)ℓ2

)
dvdu+

+
3

20

∫ 3
2

1

∫ ∞

0

vol
(
(2− v)ℓ1 + (6− 4u− v)ℓ2

)
dvdu =

3

20

∫ 1

0

∫ 1+u

0

2(1 + u− v)2dvdu+

+
3

20

∫ 3
2

1

∫ 6−4u

0

2(6− 4u− v)(2− v)dvdu =
21

40
,

213



because |Z − ℓ1 − ℓ2| is not empty, since |ℓ1| and |ℓ2| do not contain G-invariant curves.

Hence, we see that S(W S̃
•,•;Z) < 1. The obtained contradiction shows that Z ̸⊂ S̃.

Since Z ̸⊂ S̃, the curve Z must be an irreducible component of the locus Nklt(X,λD).
Now, applying Corollary A.1.15 to the del Pezzo fibration pr1 ◦ π, we get H1 · Z ⩽ 1,
so that H1 · Z = 1, because |H1| does not have G-invariant surfaces. This gives Z ̸⊂ E.
Now, applying Corollary A.1.16 to the conic bundle pr2 ◦ π, we see that H2 · Z ⩽ 2.
Then pr2 ◦ π(Z) is either a point, a line, or a conic. Since pr2 ◦ π(Z) is also G-invariant,
we have pr2 ◦ π(Z) = pr2(S), so that Z ⊂ S̃, which is a contradiction. □

Thus, we see that general smooth Fano threefold �3.5 is K-stable by Theorem 1.1.12.

Remark 5.14.4. Using [160, Theorem 11] and [117, Theorem 1.4], we see that Y has
a smoothing to a Fano threefold �1.10. Using Proposition 5.14.3 and Theorem 1.1.12,
we conclude (again) that general smooth Fano threefold �1.10 is K-stable.

Recall from [42] that there is unique smooth Fano threefold �3.5 whose automorphism
group is infinite. If a1 = a2 = a3 = b1 = b2 = b3 = 0 in (5.14.1), then X is this threefold.
Let us prove that X is K-polystable in this case. To do this, we need two lemmas:

Lemma 5.14.5. Let P be a point in S̃. Then δP (X) ⩾ 80
73
.

Proof. Recall that S̃ ∼= P1 × P1. Denote by ℓ1 and ℓ2 the rulings of this surface that are
contracted by pr1 ◦π and pr2 ◦π, respectively. Let Z be the curve in |ℓ2| such that P ∈ Z.

Let us apply Theorem 1.7.30 to with Y = S̃ using notations introduced in this theorem.

Recall from the proof of Proposition 5.14.3 that SX(S̃) =
31
40
. Moreover, it follows from

the proof of Proposition 5.14.3 that

P (u)
∣∣
S̃
=


(1 + u)ℓ1 + (1 + u)ℓ2 if 0 ⩽ u ⩽ 1,

2ℓ1 + (6− 4u)ℓ2 if 1 ⩽ u ⩽
3

2
,

and

N(u)
∣∣
S̃
=


0 if 0 ⩽ u ⩽ 1,

(u− 1)C̃ if 1 ⩽ u ⩽
3

2
,

where C̃ = E ∩ S̃. Recall that C̃ ∼ ℓ1 + 5ℓ2. We have

S
(
W S̃

•,•;Z
)
=

3

20

∫ 1

0

∫ 1+u

0

2(1+u)(1+u−v)dvdu+ 3

20

∫ 3
2

0

∫ 6−4u

0

4(6−4u−v)dvdu =
61

80

and

S
(
W S̃,Z

•,•,•;P
)
= FP +

3

20

∫ 1

0

∫ 1+u

0

(1 + u)2dvdu+
3

20

∫ 3
2

1

∫ 6−4u

0

4dvdu = FP +
69

80
,

where FP = 0 if P ̸∈ C̃ and

FP =
6

20

∫ 3
2

1

∫ 6−4u

0

2(u− 1)dvdu =
1

20
.

Hence, it follows from Theorem 1.7.30 that δP (X) ⩾ 1

S(W S̃,Z
•,•,•;P )

⩾ 80
73

as required. □
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Lemma 5.14.6. Let T be a smooth surface in |H1|, and let P be a point in the surface T .
Then δP (X) > 1.

Proof. Using Lemma 5.14.5, we may assume that P ̸∈ S̃. First, let us compute SX(T ).
Let u be a non-negative real number. If 0 ⩽ u ⩽ 1, then the divisor −KX − uT is nef.
If 1 ⩽ u ⩽ 2, the positive part of the Zariski decomposition of the divisor −KX − uT is

P (u) = −KX − uT + (1− u)S̃ ∼R (2− u)H1 +
(5
2
− u
)
S̃ +

1

2
E,

and its negative part is N(u) = (u− 1)S̃. This gives

SX
(
T
)
=

1

20

∫ 1

0

(
−KX − uT

)3
du+

1

20

∫ 2

1

(
−KX − uT + (1− u)S̃

)3
du =

=
1

20

∫ 1

0

(
20− 12u

)
du+

1

20

∫ 3
2

1

(u− 2)(u2 + 2u− 11)du =
69

80
,

because the divisor −KX−uT is not pseudoeffective for u > 2. Thus, we have SX(T ) < 1,
which also follows from Theorem 3.7.1.

Since SX(T ) < 1, it follows from Theorem 1.7.1 that δP (X) > 1 if δP (T ;W
T
•,•) > 1.

Recall that from (1.7.4)

δP
(
T ;W T

•,•
)
= inf

{
AT (R)

S(W T
•,•;R)

∣∣∣ R is a prime divisor over T such that P ∈ CT (R)

}
,

where W T
•,• and S(W T

•,•;R) are defined in Section 1.7. Let us show that δP (T ;W
T
•,•) > 1.

Let C̃ = T ∩ S̃. Our computations of SX(T ) give

P (u)
∣∣
T
=

{
−KT if 0 ⩽ u ⩽ 1,

−KT + (1− u)C̃ if 1 ⩽ u ⩽ 2,

and

N(u)
∣∣
T
=

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)C̃ if 1 ⩽ u ⩽ 2.

Let R be any prime divisor over T . Since P ̸∈ C̃, it follows from Corollary 1.7.24 that

S
(
W T

•,•;R
)
=

3

20

∫ 1

0

∫ ∞

0

vol(−KT − vR)dvdu+
3

20

∫ 2

1

∫ ∞

0

vol(−KT + (1− u)C̃)dvdu.

But T is a smooth del Pezzo surface of degree 4, so that δ(T ) = 4
3
by Lemma 2.12. Then

1

4

∫ ∞

0

vol(−KT − vR)dv ⩽
3

4
AT (R).

Therefore, we have

S
(
W T

•,•;R
)
⩽

3

20

∫ 1

0

3AT (R)du+
3

20

∫ 2

1

3AT (R)du =
9

10
AT (R),

which implies that δP (T ;W
T
•,•) ⩾

10
9
> 1. □

Both Lemmas 5.14.5 and 5.14.6 hold for any smooth Fano threefold �3.5. They give

Corollary 5.14.7. If |H1| does not have G-invariant surfaces, then X is K-polystable.
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Proof. Let T be a general surface in |H1|, let F be a G-invariant prime divisor over X,
and let Z = CX(F ). If the pencil |H1| does not contain any G-invariant surfaces, then
the restriction of ϕ1|Z : Z → P1 is surjective, so that the intersection T ∩ Z is not empty.

In this case, for every point P ∈ T ∩Z, we have AX(F )
SX(F )

⩾ δP (X) > 1 by Lemma 5.14.6, so

that X is K-polystable by Theorem 1.2.5. □

This corollary implies Proposition 5.14.3 and the following result:

Corollary 5.14.8. Suppose that Aut(X) is infinite. Then X is K-polystable.

Proof. We may assume that C is given by ux5 + uy5 = 0. Then Aut(S,C) is generated
by transformations (

[u : v], [x : y]
)
7→
(
[λ5u : v], [x : λy]

)
for λ ∈ C∗ and the involution(

[u : v], [x : y]
)
7→
(
[v : u], [y : x]

)
.

Then G = Aut(S,C) ∼= Gm⋊µ2, and the pencil |H1| does not have G-invariant surfaces,
so that X is X is K-polystable by Corollary 5.14.7. □

5.15. Family �3.6. Now, we will construct a K-stable smooth Fano threefold in �3.6.
To do this, let us use assumptions and notations from Section 4.3 assuming that d = 8.
Then V8 = P3. Let ι and τ be automorphisms in Aut(P3) given by (4.3.17) and (4.3.18),
respectively. Let G = ⟨ι, τ⟩. Then G ∼= D8, Θ ∼= µ2 and Γ ∼= µ2

2.

Remark 5.15.1. Let η : GL4(C) → PGL4(C) = Aut(P3) be the natural projection, let

A =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 and B =


0 0 1 0
0 0 0 i
1 0 0 0
0 i 0 0


Then A = η(ι) and B = η(τ). Note that ⟨A,B⟩ ∼= 4.D8, and H

0(OP3(1)) splits as a sum
of two different two-dimensional representations of the group ⟨A,B⟩.

Let L = {x0 − x2 = x1 − x3 = 0} ⊂ P3, and let L′ = {x0 + x2 = x1 + x3 = 0} ⊂ P3.
Then L and L′ are G-invariant. They are the only G-invariant lines in P3.
Recall from Section 4.3 that X is a blow up of P3 along the elliptic curve C = H1∩H2,

where H1 = {x20 + x21 + λ(x22 + x23) = 0} and H2 = {λ(x20 − x21) + x22 − x23 = 0}, and λ is

a non-zero complex number such that λ4 ̸= 1. Let L̃ be the proper transform on X of

the line L, and let ρ : X̂ → X be its blow up. Then X̂ is a smooth Fano threefold �3.6.

Since the action of the group G lifts to X̂, we identify G with a subgroup in Aut(X̂).

Lemma 5.15.2. One has αG(X̂) ⩾ 1.

Proof. Suppose that αG(X̂) < 1. Since X does not have G-fixed points by Lemma 4.3.12,

we see that X̂ does not have G-fixed points. Thus, applying Theorem 1.4.11 with µ = 1,
we see that either Theorem 1.4.11(1) does not hold or Theorem 1.4.11(3) does not hold.

Let F̂ be the proper transform on the threefold X̂ of the surface F , where F is a general
fiber of the del Pezzo fibration ϕ : X → P1. If the condition Theorem 1.4.11(3) does not

hold, then X contains a G-invariant curve C such that F̂ ·C ⩽ 1. Since X̂ has no G-fixed
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points, we see that ρ(C) is a G-invariant curve, so that 1 ⩾ F̂ ·C = ρ∗(F ) ·C = F · ρ(C),
which is impossible by Lemma 4.3.12. We see that Theorem 1.4.11(1) holds.

Let R be the ρ-exceptional surface, and let Ê be the proper transform on X̂ of the excep-

tional surface E of the morphism π : X → P3. Then X̂ contains a G-invariant irreducible
normal surface S such that −KX̂ ∼Q λS+∆ for some rational number λ > 1 and effective

Q-divisor ∆ on the threefold X̂. On the other hand, it follows from [88] that

Eff
(
X̂
)
= R⩾0

[
Ê
]
+ R⩾0

[
R
]
+ R⩾0

[
(π ◦ ρ)∗

(
OP3(2)

)
− Ê

]
+ R⩾0

[
(π ◦ ρ)∗

(
OP3(1)

)
−R

]
.

This implies that S ̸= R. Then ρ(S) is a surface. Let S̃ = ρ(S) and ∆̃ = ρ(∆). Then

−KX ∼Q λS̃ + ∆̃. Thus, the surface S̃ cannot be normal by Lemma 4.3.12. Since S is

normal, we conclude that S̃ is singular along L̃. This implies that π(S̃) is a G-invariant

cubic surface that contains C and is singular along L. Then S ∼ (π◦ρ)∗(OP3(3))−Ê−2R,

which contradicts the description of the cone Eff(X̂) given above. □

Then X̂ is K-stable by Theorem 1.4.7 and Corollary 1.1.6, since Aut(X) is finite [42].
Therefore, general Fano threefolds �3.6 are K-stable by Theorem 1.1.12.

5.16. Family�3.8. Let X be a smooth threefold in the family�3.8. Then X ⊂ F1×P2.
In fact, the threefold X is a divisor in the linear system |(ς ◦ pr1)∗(OP2(1))⊗ pr∗2(OP2(2))|,
where pr1 : F1×P2 → F1 and pr2 : F1×P2 → P2 are projections to the first and the second
factors, respectively, and ς : F1 → P2 is the blow up of a point. Combining ς ◦pr1 and pr2,
we obtain a morphism σ : X → Y such that Y is a smooth divisor P2×P2 of degree (1, 2).
Let π1 : Y → P2 and π2 : Y → P2 be projections to the first and the second factors,

respectively. Then σ is a blow up of a smooth curve C that is a fiber of the morphism π1.
Let O = π1(C). Then ς is a blow up of the point O, and there exists commutative diagram

Xθ

��
pr1
��

σ //

pr2

!!
Y

π1
��

π2 // P2

P1 F1
ϑoo ς // P2

where ϑ is a natural projection, θ is a fibration into del Pezzo surfaces of degree 5.
The threefold Y is a smooth Fano threefold �2.24. By Lemma A.7.10, we can choose

coordinates ([x : y : z], [u : v : w]) on P2 × P2 such that Y is given by one of the following
three equations:

(5.16.1)
(
vw + u2

)
x+ v2y + w2z = 0,

(5.16.2)
(
vw + u2

)
x+

(
uw + v2

)
y + w2z = 0

(5.16.3)
(
µvw + u2

)
x+

(
µuw + v2

)
y +

(
µuv + w2

)
z = 0

for some µ ∈ C such that µ3 ̸= −1. Recall also that the morphism π1 is a conic bundle,
whose discriminant curve is a cubic curve, whose equation is given in Lemma A.7.10. This
cubic curve does not contain O, since C is smooth. For instance, if Y is given by (5.16.3)
and O = [1 : 1 : 1], then µ ̸= 2.
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Proposition 5.16.4. Suppose that one of the following two cases hold:

• O = [1 : 0 : 0] and Y is given by (5.16.1),
• O = [1 : 1 : 1] and Y is given by (5.16.3) with µ ̸= 2 and µ3 ̸= −1.

Then the Fano threefold X is K-polystable.

Remark 5.16.5. If O = [1 : 0 : 0] and Y is given by (5.16.1), then

Aut(X) ∼= Aut(Y ) ∼= Aut(Y, C) ∼= Gm ⋊ µ2,

so that X is the unique smooth Fano threefold�3.8 with an infinite automorphism group.
Vice versa, if O = [1 : 1 : 1] and Y is given by (5.16.3) with µ ̸= 2 and µ3 ̸= −1, then

Aut(X) ∼= Aut(Y, C) ∼= S3,

so that the smooth Fano threefold X is K-stable by Proposition 5.16.4 and Corollary 1.1.6.
Thus, using Theorem 1.1.12, we conclude that general Fano threefolds �3.8 are K-stable.

Let E be the exceptional surface of the blow up σ, and let E ′ be the surface pr−1
2 (π2(C)).

Then E ∼= P1×P1 and E ′ ∼= P1×P1, and E ′|E is a section of the natural projection E → C.
Moreover, there exists G-equivariant commutative diagram

X
θ

vv

pr2

((

π
��

P1 P1 × P2
p2

//
p1

oo P2

where π is a birational contraction of E ′ to a curve of degree (4, 2), and p1 and p2 are
projections to the first and the second factors, respectively. Let H1 = (σ ◦ π1)∗(OP2(1)),
H2 = (σ ◦ π2)∗(OP2(1)) and H3 = θ∗(OP1(1)). Then −KX ∼ H1 +H2 +H3, E ∼ H1 −H3

and E ′ ∼ 2H2 −H1 +H3.

Lemma 5.16.6. Let P be a point in E. Then δP (X) ⩾ 12
11
.

Proof. Let ℓ1 and ℓ2 be the rulings of E ∼= P1 × P1 contracted by θ and pr2, respectively.
On E, we have H1|E ∼ 0, H2|E ∼ 2ℓ2, H3|E ∼ ℓ1, E

′|E ∼ ℓ1 + 4ℓ2, −KX |E ∼ ℓ1 + 2ℓ2,
E|E ∼ −ℓ1. Let C be the curve in |ℓ2| that contains P . By Theorem 1.7.30, we have

δP (X) ⩾ min

{
1

SX(E)
,

1

S(WE
•,•;C)

,
1

S(WE,C
•,•,•;P )

}
,

where S(WE
•,•;C) and S(W

E,C
•,•,•;P ) are defined in Section 1.7. These two numbers can be

computed using Corollary 1.7.26 and Theorem 1.7.30, respectively.
By Theorem 3.7.1, we know that SX(E) < 1. Let us compute SX(E). Take u ∈ R⩾0.

Then −KX − uE is pseudo-effective ⇐⇒ u ⩽ 3
2
. For u ⩽ 3

2
, let P (u) be the positive

part of the Zariski decomposition of this divisor, and let N(u) be its negative part. Then

P (u) =


(1− u)H1 +H2 + (1 + u)H3 if 0 ⩽ u ⩽ 1,

(3− 2u)H2 + 2H3 if 1 ⩽ u ⩽
3

2
,

and

N(u) =


0 if 0 ⩽ u ⩽ 1,

(u− 1)E ′ if 1 ⩽ u ⩽
3

2
.
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Therefore, we have SX(E) =
1
24

∫ 1

0
(24− 12u− 6u2) du+ 1

24

∫ 3
2

1
6(3− 2u)2du = 17

24
.

Now, let us compute S(WE
•,•;C). If u ⩽ 1, thenN(u)|E = 0 and P (u)|E ∼ (1+u)ℓ1+2ℓ2.

Similarly, if 1 ⩽ u ⩽ 3
2
, then N(u)|E = (u−1)E||E and P (u)|E ∼ 2ℓ1+(6−4u)ℓ2. Observe

that C ̸= E ′|E. Thus, it follows from Corollary 1.7.26 that

S
(
WE

•,•;C
)
=

3

(−KX)3

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
E
− vC

)
dvdu =

=
3

24

∫ 1

0

∫ ∞

0

vol
(
(1+u)ℓ1+(2−v)ℓ2

)
dvdu+

3

24

∫ 3
2

1

∫ ∞

0

vol
(
2ℓ1+(6−4u−v)ℓ2

)
dvdu =

=
3

24

∫ 1

0

∫ 2

0

2(1 + u)(2− v)dvdu+
3

24

∫ 3
2

1

∫ 6−4u

0

4(6− 4u− v)dvdu =
11

12
.

Finally, let us compute S(WE,C
•,•,•;P ). Using Theorem 1.7.30, we see that

S
(
WE,C

•,•,•;P
)
= FP +

3

24

∫ 1

0

∫ 2

0

(1 + u)2dvdu+
3

24

∫ 3
2

1

∫ 6−4u

0

4dvdu = FP +
5

6
,

where

FP =


0 if P ̸∈ E ′,

6

24

∫ 3
2

1

∫ 6−4u

0

2(u− 1)dvdu =
1

24
if P ̸∈ E ′.

Thus, we have S(WE,C
•,•,•;P ) ⩽

7
8
, so that δP (X) ⩾ min

{
24
17
, 12
11
, 8
7

}
= 12

11
as required. □

Lemma 5.16.7. Let P be a point in X, and let S be a surface in the pencil |H3| that
passes through P . Suppose that S is smooth, and P ̸∈ E. Then δP (X) ⩾ 24

23
.

Proof. From Theorem 3.7.1, we know that SX(E) < 1. Let us compute SX(E) explicitly.
Let u be a non-negative real number. Then −KX − uS is pseudo-effective ⇐⇒ u ⩽ 2.
For every u ⩽ 2, let P (u) be the positive part of the Zariski decomposition of this divisor,
and let N(u) be its negative part. Then

P (u) =

{
H1 +H2 + (1− u)H3 if 0 ⩽ u ⩽ 1,

(2− u)H1 +H2 if 1 ⩽ u ⩽ 2,

and

N(u) =

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)E if 1 ⩽ u ⩽ 2.

Therefore, we have SX(S) =
1
24

∫ 1

0
(24− 15u) du+ 1

24

∫ 2

1
3(2− u)(5− 2u)du = 5

6
.

Let C = E ∩ S, and let ϖ : S → P2 be the birational morphism that is induced by pr1.
Then C is a smooth irreducible curve, S is a smooth del Pezzo surface of degree 5,
the morphism φ is a blow up of four distinct points in ϖ(C ), and ϖ(C ) is a conic, so
that C ∼ 2ℓ − e1 − e2 − e3 − e4, where e1, e2, e3, e4 are φ-exceptional curves, and ℓ is
the proper transform on S of a general line in P2. For every i < j in {1, 2, 3, 4}, let lij be
the proper transform on S of the line in the plane P2 that passes through the points ϖ(ei)
and ϖ(ej). Then e1, e2, e3, e4, l12, l13, l14, l23, l24, l34 are all (−1)-curves in the surface S.
Observe that |C | is a base point free pencil, which contains exactly three singular curves:
the curves l12 + l34, l13 + l24, l14 + l23.
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If P ∈ l12 ∪ l13 ∪ l14 ∪ l23 ∪ l24 ∪ l34, let C be a curve among l12, l13, l14, l23, l24, l34 that
contains the point P . Vice versa, if P ̸∈ l12 ∪ l13 ∪ l14 ∪ l23 ∪ l24 ∪ l34, let C be the unique
smooth curve in the pencil |C | that passes through P . In both cases, we have C ̸= C .

Moreover, it follows from Theorem 1.7.30 that δP (X) ⩾ min
{

6
5
, 1
S(WS

•,•;C)
, 1

S(WS,C
•,•,•;P )

}
,

where S(W S
•,•;C) and S(W

S,C
•,•,•;P ) are defined in Section 1.7. Let us compute them.

We have −KS ∼ C + ℓ and

P (u)
∣∣
S
∼R

{
C + ℓ if 0 ⩽ u ⩽ 1,

(2− u)C + ℓ if 1 ⩽ u ⩽ 2.

Let v be a non-negative real number, and let τ(u) be the largest real number such that
the divisor P (u)|S − vC is pseudo-effective. For v ∈ [0, τ(u)], let P (u, v) be the positive
part of the Zariski decomposition of the divisor P (u)|S−vC, and letN(u, v) be its negative
part. Let us describe P (u, v) and N(u, v).

Suppose that P ̸∈ l12 ∪ l13 ∪ l14 ∪ l23 ∪ l24 ∪ l34. Then C ∼ C . If u ∈ [0, 1], then

P (u)
∣∣
S
− vC ∼R (1− v)C + ℓ ∼Q

(3
2
− v
)
C +

1

2
(e1 + e2 + e3 + e4),

so that τ(u) = 3
2
. Moreover, if u ∈ [0, 1] and v ⩽ 3

2
, then

P (u, v) =


(1− v)C + ℓ if 0 ⩽ v ⩽ 1,

(3− 2v)ℓ if 1 ⩽ v ⩽
3

2
,

and

N(u, v) =


0 if 0 ⩽ v ⩽ 1,

(v − 1)(e1 + e2 + e3 + e4) if 1 ⩽ v ⩽
3

2
.

If u ∈ [1, 2], then P (u)|S − vC ∼R (2−u− v)C + ℓ ∼Q (5
2
−u− v)C + 1

2
(e1+ e2+ e3+ e4).

so that τ(u) = 5
2
− u. Furthermore, if u ∈ [1, 2] and v ⩽ 5

2
− u, then

P (u, v) =


(2− u− v)C + ℓ if 0 ⩽ v ⩽ 2− u,

(5− 2u− v)ℓ if 2− u ⩽ v ⩽
5

2
− u,

and

N(u, v) =


0 if 0 ⩽ v ⩽ 2− u,

(v − 2 + u)(e1 + e2 + e3 + e4) if 2− u ⩽ v ⩽
5

2
− u.

Hence, since C ̸= C , it follows from Corollary 1.7.26 that

S
(
W S

•,•;C
)
=

3

24

∫ 1

0

∫ 3
2

0

P (u, v) · P (u, v)dvdu+ 3

24

∫ 2

1

∫ 5
2
−u

0

P (u, v) · P (u, v)dvdu =

=
3

24

∫ 1

0

∫ 1

0

(5− 4v)dvdu+
3

24

∫ 1

0

∫ 3
2

1

(2v − 3)2dvdu+

+
3

24

∫ 2

1

∫ 2−u

0

(9− 4u− 4v)dvdu+
3

24

∫ 2

1

∫ 5−2u
2

2−u
(5− 2u− 2v)2dvdu =

9

16
.
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Similarly, it follows from Theorem 1.7.30 that

S
(
W S,C

•,•,•;P
)
= FP +

3

24

∫ 1

0

∫ 1

0

4dvdu+
3

24

∫ 1

0

∫ 3
2

1

(6− 4v)2dvdu+

3

24

∫ 2

1

∫ 2−u

0

4dvdu+
3

24

∫ 2

1

∫ 5−2u
2

2−u
(10− 4u− 4v)2dvdu = FP +

11

12
,

where FP = 0 if P ̸∈ e1 ∪ e2 ∪ e3 ∪ e4, and if P ∈ e1 ∪ e2 ∪ e3 ∪ e4, then

FP =
6

24

∫ 1

0

∫ 3
2

1

(6− 4v)(v − 1)dvdu+
6

24

∫ 2

1

∫ 5−2u
2

2−u
(10− 4u− 4v)(v − 2 + u)dvdu =

1

24
.

Thus, we have

S
(
W S,C

•,•,•;P
)
=


11

12
if P ̸∈ e1 ∪ e2 ∪ e3 ∪ e4,

23

24
if P ∈ e1 ∪ e2 ∪ e3 ∪ e4.

Therefore, we see that δP (X) ⩾ min
{

6
5
, 16

9
, 24
23

}
= 24

23
as required. This completes the proof

in the case when P ̸∈ l12 ∪ l13 ∪ l14 ∪ l23 ∪ l24 ∪ l34.
Suppose that P ̸∈ l12∪ l13∪ l14∪ l23∪ l24∪ l34. Without loss of generality, we may assume

that P ∈ l12 and C = l12. If u ∈ [0, 1], then P (u)|S − vC ∼R (2− v)C + l34 + e1 + e2, so
that τ(u) = 2. If u ∈ [0, 1] and v ⩽ 2, then

P (u, v) =

{
(2− v)C + l34 + e1 + e2 if 0 ⩽ v ⩽ 1,

(2− v)(C + l34 + e1 + e2) if 1 ⩽ v ⩽ 2,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ 1,

(v − 1)(l34 + e1 + e2) if 1 ⩽ v ⩽ 2.

Similarly, if u ∈ [1, 2], then P (u)|S − vC ∼R (3− u− v)C + (2− u)l34 + e1 + e2, so that
τ(u) = 3− u. Hence, if u ∈ [1, 2] and v ⩽ 3− u, then

P (u, v) =


(3− u− v)C + (2− u)l34 + e1 + e2 if 0 ⩽ v ⩽ 2− u,

(3− u− v)(C + e1 + e2) + (2− u)l34 if 2− u ⩽ v ⩽ 1,

(3− u− v)(C + l34 + e1 + e2) if 1 ⩽ v ⩽ 3− u,

and

N(u, v) =


0 if 0 ⩽ v ⩽ 2− u,

(v − 2 + u)(e1 + e2) if 2− u ⩽ v ⩽ 1,

(v − 1)l34 + (v − 2 + u)(e1 + e2) if 1 ⩽ v ⩽ 3− u.

Therefore, using Corollary 1.7.26, we get

S
(
W S

•,•;C
)
=

3

24

∫ 1

0

∫ 1

0

(5− 2v − v2)dvdu+
3

24

∫ 1

0

∫ 2

1

2(v − 2)2dvdu+

+
3

24

∫ 2

1

∫ 2−u

0

(9−4u−2v−v2)dvdu+ 3

24

∫ 2

1

∫ 1

2−u
(2u2+4uv+v2−12u−10v+17)dvdu+

+
3

24

∫ 2

1

∫ 3−u

1

2(3− u− v)2dvdu =
19

24
.
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Similarly, it follows from Theorem 1.7.30 that

S
(
W S,C

•,•,•;P
)
= FP +

3

24

∫ 1

0

∫ 1

0

(1 + v)2dvdu+
3

24

∫ 1

0

∫ 2

1

(4− 2v)2dvdu+

+
3

24

∫ 2

1

∫ 2−u

0

(1 + v)2dvdu+
3

24

∫ 2

1

∫ 1

2−u
(5− 2u− v)2dvdu+

+
3

24

∫ 2

1

∫ 3−u

1

(6− 2u− 2v)2dvdu = FP +
11

16
,

where FP is calculated as follows. If P ̸∈ e1 ∪ e2 ∪ l34, then FP = 0. If P = C ∩ l34, then

FP =
6

24

∫ 1

0

∫ 2

1

(4− 2v)(v − 1)dvdu+
6

24

∫ 2

1

∫ 3−u

1

(6− 2u− 2v)(v − 1)dvdu =
5

48
.

Finally, if P = C ∩ e1 or P = C ∩ e2, then

FP =
6

24

∫ 1

0

∫ 2

1

(4− 2v)(v − 1)dvdu+
6

24

∫ 2

1

∫ 1

2−u
(5− 2u− v)(v − 1)dvdu+

+
6

24

∫ 2

1

∫ 3−u

1

(6− 2u− 2v)(v − 1)dvdu =
5

48
.

Thus, we have S(W S,C
•,•,•;P ) ⩽

27
32
. Then δP (X) ⩾ min

{
6
5
, 24
19
, 32
27

}
= 32

27
> 24

23
as required.

This completes the proof of the lemma. □

Using Lemmas 5.16.6 and 5.16.7, we obtain

Corollary 5.16.8. Let G be a reductive subgroup in Aut(X) such that the pencil |H3|
does not have G-invariant surfaces. Then X is K-polystable.

Proof. Suppose that X is not K-polystable. Then it follows from Theorem 1.2.5 that
there exists a G-invariant prime divisor F over X such that β(F ) = AX(F )−SX(F ) ⩽ 0.
Let Z = CX(F ). Then the restriction of θ|Z : Z → P1 is surjective, because otherwise
the pencil |H3| would contain a G-invariant surface.

Let S be a general surface in |H3|. Then S is a smooth, and S ∩Z ̸= ∅. Therefore, for

any point P ∈ S ∩ Z, we have AX(F )
SX(F )

⩾ δP (X) > 1 by Lemmas 5.16.6 and 5.16.7, which

is a contradiction, since AX(F ) ⩽ SX(F ). □

Now, we can prove our Proposition 5.16.4. If O = [1 : 0 : 0] and Y is given by (5.16.1),
let G be the subgroup in Aut(Y ) that is generated by the involution(

[x : y : z], [u : v : w]
)
7→
(
[x : z : y], [u : w : u]

)
and the self-maps ([x : y : z], [u : v : w]) 7→ ([λ2x : y : λ4z], [λu : λ2v : w]) for λ ∈ C∗.
Likewise, if O = [1 : 1 : 1] and Y is given by (5.16.3) with µ ̸= 2 and µ2 ̸= −1, we let G
be the subgroup in Aut(Y ) generated by the involution(

[x : y : z], [u : v : w]
)
7→
(
[y : x : z], [v : u : w]

)
and the self-map ([x : y : z], [u : v : w]) 7→ ([y : z : x], [v : w : u]). Then G ∼= Gm ⋊ µ2 in
the former case, and G ∼= S3 in the later case. In both cases, the curve C is G-invariant,
so that the G-action lifts to the threefold X. Moreover, it is not hard to check that
the pencil |H3| does not contain G-invariant surfaces, so that X is K-polystable in both
cases by Corollary 5.16.8.
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5.17. Family �3.10. Now, we solve Calabi Problem for all smooth Fano threefolds in
the family �3.10 similar to what we did in Section 4.7 for the family �2.24.

Let Q be a smooth quadric threefold in P4, let C1 and C2 be two disjoint smooth
irreducible conics in Q, and let X be the blow up of the quadric Q in these two conics.
Then X is a smooth Fano threefold �3.10, and every smooth threefold in this family can
be obtained in this way. Moreover, we may assume that C1 = {w2 + zt = x = y = 0}
and C2 = {w2 + xy = z = t = 0}, where x, y, z, t, w are coordinates on P4. Then, using
an appropriate coordinate change, we may assume that the quadric Q is given by one of
the following three equations:

(ℶ) w2+xy+zt+a(xt+yz)+ b(xz+yt) = 0, where a ∈ C ∋ b such that a± b±1 ̸= 0;
(ג) w2 + xy + zt+ a(xt+ yz) + xz = 0, where a ∈ C such that a ̸= ±1;
(ℸ) w2 + xy + zt+ xt+ xz = 0.

The goal of this section is to prove the following result:

Proposition 5.17.1. The threefold X is K-polystable ⇐⇒ Q is given by (ℶ).

In all three cases, we have the following commutative diagram:

(5.17.2) Xα1

xx

γ1

vv

η
��

α2

&&

γ2

((
Y1

β1 //

π1 //

P1 P1 × P1
pr1oo

pr2 // P1 Y2
β2oo

π2ooQ
δ1

gg

δ2

77

ω

OO

where δ1 is a rational map given by [x : y : z : t : w] 7→ [x : y], the map δ2 is a rational
map given by [x : y : z : t : w] 7→ [z : t], the map ω is a rational map

[x : y : z : t : w] 7→
(
[x : y], [z : t]

)
,

the maps π1 and π2 are blow ups of the quadric Q at the conics C1 and C2, respectively,
the maps α1 and α2 are blow ups of the proper transforms of the these conics, respectively,
both β1 and β2 are fibrations into quadric surfaces, both γ1 and γ2 are fibrations into
sextic del Pezzo surfaces, η is a conic bundle, and pr1 and pr2 are natural projections.
Occasionally, we will consider [x : y] and [z : t] as coordinated on P1 × P1.
Let C be the discriminant curve in P1 ×P1 of the conic bundle η. Then C has at most

nodal singularities, and its degree is (2, 2). If Q is given by (ℶ), then C is given by

a2
(
x2t2+y2z2

)
+2ab

(
xyz2+xyt2+ztx2+zty2

)
+b2

(
x2z2+y2t2

)
+2
(
a2+b2−2

)
yzxt = 0.

If ab ̸= 0, the curve C is irreducible and smooth, which also implies that Aut(X) is finite.
If a = 0 or b = 0 (but not both), the curve C is reducible: it splits as a union of two smooth
curves of degree (1, 1), which meet at two points. In this case, we have Aut0(X) ∼= Gm.
Similarly, if a = 0 and b = 0, then Aut0(X) ∼= G2

m and the curve C is given by xyzt = 0,
so that X is the unique smooth Fano threefold �3.10 that admits an effective G2

m-action.
In the quadric Q is given by ,(ג) then C is given by the following equation:

a2t2x2 + (2a2 − 4)xyzt+ 2atzx2 + a2y2z2 + 2ayz2x+ z2x2 = 0.

If a ̸= 0, this curve is irreducible and has one node, which implies that Aut(X) is finite.
On the other hand, if a = 0, then the defining equation simplifies as zx(zx − 4yt) = 0,
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so that the curve C splits as a union of 3 smooth curves of degree (0, 1), (1, 0) and (1, 1),
which meet transversally at 3 distinct points. In this subcase, we have Aut0(X) ∼= Gm.
Finally, if Q is given by (ℸ), then the curve C is given by 2x(t2x+2txz−4tyz+xz2) = 0,

so that C is a union of a curve of degree (1, 0) and a smooth curve of degree (1, 2), which
implies that Aut(X) is also finite in this case.

Let H be the pull back on X of a general hyperplane section of the quadric threefold Q,
let E1 be the α1-exceptional surface, and let E2 be the α2-exceptional surface. Then

Eff(X) = R⩾0

[
E1

]
+ R⩾0

[
E1

]
+ R⩾0

[
H − E1

]
+ R⩾0

[
H − E2

]
+ R⩾0

[
2H − E1 − E2

]
,

the del Pezzo fibration γ1 is given by |H −E1|, the fibration γ2 is given by |H −E2|, and
the conic bundle η is given by the linear system |2H − E1 − E2|.

Let us show that X is K-polystable in the case when Q is given by (ℶ).

Lemma 5.17.3 ([193, Theorem 1.1]). Suppose that Q is given by (ℶ) and a = b = 0.
Then X is K-polystable.

Proof. Let G be the subgroup in Aut(P4) generated by the following transformations:

[x : y : z : t : w] 7→ [z : t : x : y : w],

[x : y : z : t : w] 7→ [y : x : z : t : w],

[x : y : z : t : w] 7→ [x : y : t : z : w],

[x : y : z : t : w] 7→ [x : y : rz : t/r : w],

[x : y : z : t : w] 7→ [sx : y/s : z : t : w],

where r ∈ C∗ and s ∈ C∗. Then G ∼= G2
m ⋊ (µ2

2 ⋊ µ2), the quadric Q is G-invariant, and
the locus C1∪C2 is G-invariant, so that the action of the group G lifts to the threefold X.
Therefore, we may identify G with a subgroup in Aut(X). Now, applying Theorem 1.4.11,
we obtain αG(X) ⩾ 1, so that X is K-polystable by Theorem 1.4.7. □

Lemma 5.17.4. Suppose that Q is given by (ℶ) and ab = 0. Then X is K-polystable.

Proof. By Lemma 5.17.3, we may assume that a ̸= 0 or b ̸= 0. Without loss of generality,
we may assume that a ̸= 0. Then b = 0. Let G be the subgroup in Aut(P4) generated by

[x : y : z : t : w] 7→ [y : x : t : z : w],

[x : y : z : t : w] 7→ [z : t : x : y : w],

[x : y : z : t : w] 7→ [x/s : ys : z/s : ts : w],

where s is any non-zero complex number. Then Q is G-invariant, and G ∼= (Gm⋊µ2)×µ2.
Moreover, the locus C1 ∪ C2 is G-invariant, so that the G-action lifts to the threefold X.
Therefore, we may identify G with a subgroup in Aut(X). Note that αG(X) ⩽ 2

3
.

Observe that X does not have G-fixed points, because Q does not have G-fixed points.
The conic bundle η in (5.17.2) is G-equivariant, and G acts on P1 × P1 such that P1 × P1

does not contain G-fixed points, P1 × P1 does not contain G-invariant curves of degree
(1, 0) or (0, 1), and the only G-invariant curves in P1 × P1 of degree (1, 1) are the curves
given by xt+ yz = 0 and xt− yz = 0.
Suppose X is not K-polystable. By Theorem 1.2.5, there exists a G-equivariant bira-

tional morphism f : X̃ → X such that β(F ) = AX(F )− SX(F ) ⩽ 0 for some G-invariant

dreamy prime divisor F ⊂ X̃. Let Z = f(F ). Then Z is not a surface by Theorem 3.7.1.
Thus, since X does not contain G-fixed points, Z is a G-invariant irreducible curve.
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Using Lemma 1.4.4, we conclude that αG,Z(X) < 3
4
. Thus, by Lemma 1.4.1, there is

a G-invariant effective Q-divisor D on the threefold X such that D ∼Q −KX and Z is
contained in Nklt(X,λD) for some positive rational number λ < 3

4
. By Theorem A.1.7,

the locus Nklt(X,λD) is connected. Moreover, since D ∼Q 3H−E1−E2, either the locus
Nklt(X,λD) is one-dimensional, or it contains one G-invariant surface, which is contained
in |2H −E1 −E2|. In the former case, the G-invariant surface in Nklt(X,λD) is mapped
by the conic bundle η to a G-invariant curve in P1 × P1 of degree (1, 1).
If Z is not contained in a two-dimensional component of the locus Nklt(X,λD), then

applying Corollary A.1.15 to (X,λD), we get (H − E1) · Z ⩽ 1 and (H − E2) · Z ⩽ 1,
so that either η(Z) is a point, or η(Z) is a G-invariant irreducible curve of degree (1, 1).
If Z is contained in a two-dimensional G-irreducible component of the locus Nklt(X,λD),
then this component is mapped by η to a G-invariant curve of degree (1, 1) in P1 × P1.
Hence, either η(Z) is a G-invariant point, or η(Z) is a G-invariant curve of degree (1, 1).
Since P1×P1 contains no G-fixed points, we see that η(Z) is a curve given by xt±yz = 0.

Let S be the unique surface in |2H−E1−E2| that contains Z, let S be its image in Q.
Then S = {w2 + xy + zt+ a(xt+ yz) = xt± yz = 0}, so that S is a singular quartic del
Pezzo surface, whose singular locus consist of 4 points. If η(Z) is given by xt + yz = 0,
these points are [1 : 0 : −1 : 0 : 0], [1 : 0 : 1 : 0 : 0], [0 : 1 : 0 : −1 : 0], [0 : 1 : 0 : 1 : 0].
Similarly, if η(Z) is given by xt− yz = 0, then the surface S is singular at the following
points: [−a ±

√
a2 − 1 : 0 : 1 : 0 : 0] and [0 : −a ±

√
a2 − 1 : 0 : 0 : 1]. In both cases,

the surface S contains C1 and C2, and Sing(S) is disjoint from these conics, so that S ∼= S.
Let H = H|S, C1 = E1|S, C2 = E2|S. Then |C1| and |H−C1| are base point free pencils,

and the surface S contains two curves ℓ and ℓ′ such that C1 ∼ C2 ∼ 2ℓ and H− C1 ∼ 2ℓ′.
Then ℓ2 =

(
ℓ′
)2

= 0 and ℓ·ℓ′ = 1
2
. One has H ∼ 2ℓ+2ℓ′. Moreover, there are non-negative

integers n and m such that Z ∼Q nℓ +mℓ′. If n = 0, then (2H − E1 − E2) · Z = 0, so
that η(Z) is a point, which is impossible. Then n ⩾ 1, so that Z − ℓ is pseudo-effective.

Let us apply results of Section 1.7 to S and Z using notations introduced in this
section. First, we note that SX(S) < 1 by Theorem 3.7.1. Hence, using Corollary 1.7.26,
we conclude that S(W S

•,•;Z) ⩾ 1. Let us show that this is not the case.
Let u ∈ R⩾0, let v ∈ R⩾0, let P (u) = P (−KX − uS) and let N(u) = N(−KX − uS).

Then−KX−uS is not pseudoeffective for u > 3
2
, since−KX−uS ∼R (3

2
−u)S+ 1

2
(E1+E2).

Moreover, if 0 ⩽ u ⩽ 1, then P (u)|S−vZ ∼R (2−nv)ℓ+(6−4u−mv)ℓ′ on the surface S,
because N(u) = 0 and P (u) = −KX − uS in this case. Similarly, if 1 ⩽ u ⩽ 3

2
, then we

have P (u)|S − vZ ∼R (6− 4u− nv)ℓ+ (6− 4u−mv)ℓ′, because N(u) = (u− 1)(E1 +E2)
and P (u) = (3− 2u)H in this case. Thus, if Z = C1 or Z = C2, then

S
(
W S

•,•;Z
)
=

3

26

∫ 3
2

1

(6− 4u)2(u− 1)du+
3

26

∫ 1

0

∫ ∞

0

vol
(
(2− 2v)ℓ+ (6− 4u)ℓ′

)
dvdu+

+
3

26

∫ 3
2

1

∫ ∞

0

vol
(
(6− 4u− 2v)ℓ+ (6− 4u)ℓ′

)
dvdu =

=
1

104
+

3

26

∫ 1

0

∫ 1

0

(2−2v)(6−4u)dvdu+
3

26

∫ 3
2

1

∫ 3−2u

0

(6−4u−2v)(6−4u)dvdu =
1

2
.

Likewise, if Z ̸= C1 and Z ̸= C2, then S(W S
•,•;Z) ⩽ S(W S

•,•; ℓ) =
51
52
. Thus, in every case we

have S(W S
•,•;Z) < 1, which is a contradiction, since we proved earlier that S(W S

•,•;Z) ⩾ 1.
The obtained contradiction shows that X is K-polystable. □
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Lemma 5.17.5. Suppose that Q is given by (ℶ) and a = b. Then X is K-polystable.

Proof. By Lemma 5.17.3, we may assume that a = b ̸= 0. Then the curve C is smooth,
and the group Aut(X) is finite. Let G be the finite subgroup in Aut(P4) generated by

[x : y : z : t : w] 7→ [y : x : z : t : w],

[x : y : z : t : w] 7→ [x : y : t : z : w],

[x : y : z : t : w] 7→ [z : t : x : y : w],

[x : y : z : t : w] 7→ [x : y : z : t : −w].
Then G ∼= µ2 × (µ2

2 ⋊ µ2), the quadric Q is G-invariant, and C1 ∪ C2 is G-invariant.
The action of the group G lifts to X, and we may identify G with a subgroup in Aut(X).
Then X contains no G-fixed points, η is G-equivariant, and G acts on P1 × P1 such that
the only G-fixed points in P1 × P1 are ([1 : 1], [1 : 1]) and ([1 : −1], [1 : −1]), P1 × P1 does
not contain G-invariant curves of degree (1, 0) or (0, 1), and the only G-invariant curves
of degree (1, 1) in P1 × P1 are reducible curves (x− y)(z − t) = 0 and (x+ y)(z + t) = 0.
Suppose X is not K-polystable. By Theorem 1.2.5, there is a G-invariant prime divisor

F overX such that β(F ) = AX(F )−SX(F ) ⩽ 0. Let Z = CX(F ). Then Z is not a surface
by Theorem 3.7.1, so that Z is a G-invariant curve, since X has no G-fixed points.
Arguing as in the proof of Lemma 5.17.4, we see that either η(Z) is a G-invariant point,

or η(Z) is an irreducible G-invariant curve of degree (1, 1). But P1 × P1 does not contain
irreducible G-invariant curves of degree (1, 1). Thus, we conclude that η(Z) is a point.
Then either η(Z) = ([1 : 1], [1 : 1]) or η(Z) = ([1 : −1], [1 : −1]), so that η(Z) ̸∈ C , which
implies that Z is a smooth fiber of the conic bundle η.
Let S be the unique surface in the linear system |H − E1| that contains the curve Z,

and let S be its image in Q. Then S is a smooth quadric surface, C1 ⊂ S, and S intersects
the conic C2 transversally in two points, so that S is a smooth sextic del Pezzo surface,
and π1 ◦ α1 = π2 ◦ α2 induces a birational morphism φ : S → S that is a blow up of
the intersection points S ∩C2. We have E2|S = e1 + e2, where e1 and e2 are (−1)-curves
in S contracted by φ. We also have E1|S ∼ H

∣∣
S
∼ ℓ1 + ℓ2 + e1 + e2, where ℓ1 and ℓ2

are (−1)-curves in S such that φ(ℓ1) and φ(ℓ2) are intersecting lines that pass through
the points φ(e1) and φ(e2), respectively. Then Z ∼ ℓ1 + ℓ2.

As in the proof of Lemma 5.17.4, we are going to apply results of Section 1.7 to S and Z.
By Theorem 3.7.1, we have SX(S) < 1, so that S(W S

•,•;Z) ⩾ 1 by Corollary 1.7.26.
Let P (u) = P (−KX − uS) and N(u) = N(−KX − uS), where u is a non-negative real

number. Observe that −KX−uS ∼R (2−u)S+(H−E2)+E1 ∼R (3−u)H−(1−u)E1−E2.
Then −KX−uS is nef ⇐⇒ u ∈ [0, 1], and −KX−uS is pseudo-effective ⇐⇒ u ∈ [0, 2].
Moreover, we have

P (u) =

{
(3− u)H − (1− u)E1 − E2 if 0 ⩽ u ⩽ 1,

(3− 2u)H if 1 ⩽ u ⩽ 2,

and N(u) = (u − 1)E1 if 1 ⩽ u ⩽ 2. Let v be a non-negative real number. If u ∈ [0, 1],
then P (u)|S−vZ ∼R (2−v)(ℓ1+ ℓ2)+e1+e2, so that P (u)|S−vZ is not pseudo-effective
for every v > 2. In this case, if v ∈ [0, 1], then the divisor P (u)|S−vZ is nef. Furthermore,
if v ∈ [1, 2], then its Zariski decomposition is

P (u)
∣∣
S
− vZ ∼R (2− v)

(
ℓ1 + ℓ2 + e1 + e2

)︸ ︷︷ ︸
positive part

+(v − 1)(e1 + e2)︸ ︷︷ ︸
negative part

.
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Similarly, if u ∈ [1, 2], then P (u)|S − vZ ∼R (3−u− v)(ℓ1+ ℓ2)+ (2−u)(e1+ e2), so that
the divisor P (u)|S − vZ is not pseudo-effective for v > 3− u. Moreover, if v ∈ [0, 1], then
this divisor is nef. Finally, if 1 ⩽ v ⩽ 3− u, then its Zariski decomposition is

P (u)
∣∣
S
− vZ ∼R (3− u− v)

(
ℓ1 + ℓ2 + e1 + e2

)︸ ︷︷ ︸
positive part

+(v − 1)(e1 + e2)︸ ︷︷ ︸
negative part

.

Thus, we have

S
(
W S

•,•;Z
)
=

3

26

∫ 1

0

∫ 1

0

(
(2− v)

(
ℓ1 + ℓ2

)
+ e1 + e2

)2
dvdu+

+
3

26

∫ 1

0

∫ 2

1

(
(2− v)

(
ℓ1 + ℓ2 + e1 + e2

))2
dvdu+

+
3

26

∫ 2

1

∫ 1

0

(
(3− u− v)

(
ℓ1 + ℓ2

)
+ (2− u)

(
e1 + e2

))2
dvdu+

+
3

26

∫ 2

1

∫ 3−u

1

(
(3− u− v)

(
ℓ1 + ℓ2 + e1 + e2

))2
dvdu =

=
3

26

∫ 1

0

∫ 1

0

(6− 4v)dvdu+
3

26

∫ 1

0

∫ 2

1

(2− v)2dvdu+

+
3

26

∫ 2

1

∫ 1

0

2(2− u)(4− u− 2v)dvdu+
3

26

∫ 2

1

∫ 3−u

1

2(3− u− v)2dvdu =
3

4
.

The obtained contradiction completes the proof of the lemma. □

Now, combining the proofs of Lemma 5.17.4 and 5.17.5 together, we obtain

Lemma 5.17.6. Suppose that Q is given by (ℶ). Then X is K-polystable.

Proof. By Lemma 5.17.3, we may assume that a ̸= 0 and b ̸= 0. Then C is smooth, and
the group Aut(X) is finite. Let G be the finite subgroup in Aut(P4) generated by

[x : y : z : t : w] 7→ [y : x : t : z : w],

[x : y : z : t : w] 7→ [z : t : x : y : w],

[x : y : z : t : w] 7→ [x : y : z : t : −w].

Then G ∼= µ3
2, the quadric Q is G-invariant, and the locus C1 ∪ C2 is G-invariant, which

implies that the G-action lifts toX, so that we may identify G with a subgroup in Aut(X).
Observe that X does not have G-fixed points, because Q does not have G-fixed points.

Recall that the conic bundle η in (5.17.2) is G-equivariant, and G acts on P1 ×P1 such
that ([1 : 1], [1 : 1]) and ([1 : −1], [1 : −1]) are the only G-fixed points in P1 × P1, and
P1×P1 contains no G-invariant curves of degree (1, 0) or (0, 1). Moreover, the G-invariant
curves of degree (1, 1) in P1×P1 can be described as follows: {xt = yz}, {xt = yz}, and all
curves in the pencil P that is given by r(xt+yz) = s(xz+yt), where [r : s] ∈ P1. Note that
the pencil P contains two reducible curves: {(x− y)(z− t) = 0} and {(x+ y)(z+ t) = 0},
which correspond to [r : s] = [1 : 1] and [r : s] = [1 : −1], respectively.
Suppose X is not K-polystable. By Theorem 1.2.5, there exists a G-invariant prime

divisor F over X with β(F ) ⩽ 0. Let Z = CX(F ). Then dim(Z) ⩽ 1 by Theorem 3.7.1,
so that Z is a G-invariant irreducible curve, because X does not have G-fixed points.
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Arguing as in the proof of Lemma 5.17.4, we see that either η(Z) is a G-invariant
point, or η(Z) is an irreducible G-invariant curve of degree (1, 1). Furthermore, if η(Z)
is a point, then η(Z) ̸∈ C , so that Z is a smooth fiber of the conic bundle η. In this
case, for all admissible a and b, the unique surface in |H −E1| that contains the curve Z
is a smooth sextic del Pezzo surface, so that we are exactly in the situation of the proof
of Lemma 5.17.5 and, therefore, we can obtain a contradiction arguing exactly as in this
proof. This shows that η(Z) is a curve of degree (1, 1).
Let S be the surface in |2H − E1 − E2| that contains Z, and let S be its image in Q.

Then S is a quartic del Pezzo surface that contains C1 and C2. Since a ̸= 0 and b ̸= 0,
either the surface S is smooth, or S has exactly two isolated ordinary double points.
Furthermore, if S is singular, its singular locus is disjoint from the conics C1 and C2.
We will provide explicit computations in the end of the proof. In particular, one has S ∼= S.
Now, we can proceed as we did in the proof of Lemma 5.17.4.

Namely, let us apply results of Section 1.7 to S and Z using notations introduced in
this section. By Theorem 3.7.1, we have S(V•;S) < 1. Hence, using Corollary 1.7.26, we
conclude that S(W S

•,•;Z) ⩾ 1. Let us show that this is not the case.
Let H = H|S, C1 = E1|S and C2|S. Then C1 ∼ C2, both |C1| and |H− C1| are base point

free pencils. Let C ′ be a general curve in |H−C1|. Then C2
1 = 0, (C ′)2 = 0 and C1 · C ′ = 2.

Suppose that Z ∼Q
n
2
C1 + m

2
C ′ for some non-negative integers n and m. Then n ⩾ 1,

since otherwise η(Z) would be a point, which is not the case. Thus, if Z ̸= C1 and Z ̸= C2,
then to estimate S(W S

•,•;Z) from above we may assume that n = 1 and m = 0. In this
case, arguing as in the proof of Lemma 5.17.4, we see that

S
(
W S

•,•;Z
)
=

3

26

∫ 1

0

∫ ∞

0

vol

((
1− 1

2
v
)
C1 + (3− 2u)C ′

)
dvdu+

+
3

26

∫ 3
2

1

∫ ∞

0

vol

((
3− 2u− 1

2
v
)
C1 + (3− 2u)C ′

)
dvdu =

=
3

26

∫ 1

0

∫ 2

0

4
(
1− 1

2
v
)
(3−2u)dvdu+

3

26

∫ 3
2

1

∫ 6−4u

0

4
(
3−2u− 1

2
v
)
(3−4u)dvdu =

51

52
,

Similarly, if Z = C1 or Z = C2, then arguing as in the end of the proof of Lemma 5.17.4,
we obtain S(W S

•,•;Z) =
1
2
. Thus, we see that S(W S

•,•;Z) < 1, so that X is K-polystable.
To complete the proof of the lemma, it is enough to show that every G-invariant curve

on the surface S is Q-rationally equivalent to 1
2
(nC1+mC ′) for some n ∈ Z⩾0 andm ∈ Z⩾0.

Since S ∼= S, we identify S = S, so that now S is a quartic del Pezzo surface in P4.
Suppose that η(Z) is given by xt = yz. Then S = Q∩{xt = yz}. Therefore, the projec-

tion [x : y : z : t : w] 7→ [x : y : z : t] induces a G-equivariant double cover φ : S → Y such
that Y is the smooth quadric surface in P3 that is given by xt = yz, and the ramification
divisor of the double cover φ is the curve Y ∩{xy+zt+a(xt+yz)+b(xz+yt) = 0}, where
we consider x, y, z, t as coordinates on P3. Explicit computations shows that R is smooth,
since a ± b ̸= 1, a ± b ̸= −1 and b ̸= 0. Then S is also smooth. Since the involution of
the double cover φ is contained in G, every G-invariant curve in S is rationally equivalent
to ϕ∗(D) for some D ∈ Pic(Y ), which implies the required assertion.

Similarly, we see that the required assertion holds when η(Z) is given by xt = yz.
Therefore, we can proceed to the case when η(Z) is an irreducible curve in the pencil P .
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In this case, we have S = Q∩{r(xt+ yz) = s(xz+ yt)}, where r and s are some numbers
such that (r, s) ̸= (0, 0), [r : s] ̸= [1 : 1], [r : s] ̸= [1 : −1]. As in the previous case, there
exists a G-equivariant double cover φ : S → Y such that Y is the quadric in P3 given by

r(xt+ yz) = s(xz + yt),

and the ramification divisor of φ is the curve R = Y ∩{xy+zt+a(xt+yz)+b(xz+yt) = 0}.
Since [r : s] ̸= [1 : 1] and [r : s] ̸= [1 : −1], one can check that the quadric Y is smooth.
Thus, if the curve R is smooth, we obtain the required assertion as in the previous case.
Therefore, we may assume that the curve R is singular.

Since R is singular, explicit computations show that br+(a±1)s = 0 or (b±1)r+as = 0.
In the former case, we have R = Y ∩ {(x± z)(t± y) = 0}. Similarly, if (b± 1)r+ as = 0,
then R = Y ∩ {(y ± z)(t ± x) = 0}. In each case, the curve R splits as a union of two
smooth conics R1 and R2 that intersect transversally at two points, so that S has two
isolated ordinary double points, which are disjoint from C1 ∪C2. As in the previous case,
we see that every G-invariant Cartier divisor on S is rationally equivalent to ϕ∗(D) for
some D ∈ Pic(Y ). Since any Weil divisor on S becomes Cartier once it is multiplied by 2,
the assertion follows. This completes the proof of the lemma. □

Corollary 5.17.7. If Q is given by (ג) or (ℸ), then X is strictly K-semistable.

Proof. We only consider the case when Q is given by ,(ג) because the other case is similar.
Suppose that Q is given by .(ג) Let Qs = {w2 + xy + zt + a(xt + yz) + sxz = 0} ⊂ P4,
where s ∈ C. Then the quadric Qs is smooth, and Q contains both conics C1 and C2.
Let Xs → Qs be the blow up of the conics C1 and C2. Scaling coordinates x, y, z, t, w,
we see that Xs

∼= X for every s ̸= 0. This gives us a test configuration for X, whose
special fiber isX0, which is a K-polystable smooth Fano threefold�3.10 by Lemma 5.17.6.
Then X is strictly K-semistable by Corollary 1.1.14. □

Thus, Proposition 5.17.1 is completely proved.

5.18. Family �3.12. Let C be a twisted cubic in P3, and L be a line in P3 that is
disjoint from the curve C, let π : X → P3 be the blow up of the curves L and C. Then X
is a Fano threefold �3.12. Moreover, every Fano threefolds �3.12 can be obtained this
way. Observe that we have the following commutative diagram:

(5.18.1) P1 × P2

pr2

��

pr1

��

X σ

&&

η

xx

θ

vv

ϕ

((
ξ

��

ζ

OO

P1 Y
νoo

φ

''

V
ϑ

ww

ξ // P2

P3

88ff

where φ is the blow up of the line L, θ is the blow up of the curve C, ζ is the contraction
of the proper transforms of the (quartic) surface in P3 that is spanned by the secants of
the curve C that intersect the line L, ξ is a P1-bundle, ν is a P2-bundle, σ is a (non-
standard) conic bundle, η is a fibration into del Pezzo surfaces of degree 6, the left dashed
arrow is the linear projection from the line L, the right dashed arrow is given by the linear
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system of quadrics that contain C, and pr1 and pr2 are projections to the first and
the second factors, respectively.

Let H be a plane in P3, let EL be the exceptional surface of π that is mapped to L, let
EC be the exceptional surface of π that is mapped to C, and let R be the ζ-exceptional
surface. Then R ∼ π∗(4H)− 2EC −EL. This gives −KX ∼Q

1
2
R+2

(
π∗(H)−EL

)
+ 3

2
EL,

Thus, for every subgroup G ⊂ Aut(X), one has αG(X) ⩽ 2
3
, because R, EL and the linear

system |π∗(H)− EL| are all G-invariant.
In this section, we prove that one special Fano threefold�3.12 is K-polystable. Namely,

starting from now, we assume that L is the line x0 = x3 = 0, and the twisted cubic C is
given by [s3 : s2t : st2 : t3], where [s : t] ∈ P1. Let G be the subgroup in Aut(P3) that is
generated by the involution [x0 : x1 : x2 : x3] 7→ [x3 : x2 : x1 : x0], and automorphisms[

x0 : x1 : x2 : x3
]
7→
[
x0 : tx1 : t

2x2 : t
3x3
]
,

where t ∈ C∗, and x0, x1, x2, x3 are coordinates in P3. Then G ∼= Gm ⋊ µ2, and
the curve C is G-invariant. Thus, the action of the group G lifts to the threefold X, and
the diagram (5.18.1) is G-equivariant. By [42, Lemma 4.6], the threefold X is the unique
smooth Fano threefold �3.12 that has an infinite automorphism group.

Proposition 5.18.2. The Fano threefold X is K-polystable.

Thus, by Corollary 1.1.17, general smooth Fano threefolds �3.12 are K-stable.
The proof of Proposition 5.18.2 is very similar to the proof of Proposition 4.4.1 in

the case (2.22.D∞). As in the proof of Proposition 4.4.1, we first need to collect some
information about G-invariant subvarieties in P3. To do this, we denote by S2 the quadric
surface in P3 that is given by x0x3 = x1x2, and we denote by L′ the line in P3 that is given
by x1 = x2 = 0. For every q ∈ C∗, we let Cq be the twisted cubic [s3 : qs2t : qst2 : t3],
where [s : t] ∈ P1. Then S2, L

′ and Cq are G-invariant, L ∩ L′ = ∅ and C = C1. Finally,
we let S4 be the non-normal quartic surface in P3 that is given by x3x

3
1 = x0x

3
2.

Lemma 5.18.3. The following assertion holds:

(i) P3 contains neither G-fixed points nor G-invariant planes,
(ii) S2 is the only G-invariant quadric surface in P3 that contains C,
(iii) L and L′ are the only G-invariant lines in P3,
(iv) L, L′ and Cq are the only G-invariant irreducible curves in P3,
(v) S4 contains all G-invariant irreducible curves in P3,
(vi) L∩Q = [0 : 1 : 0 : 0]∪ [0 : 0 : 1 : 0], L′ ∩C = L′ ∩Q = [1 : 0 : 0 : 0]∪ [0 : 0 : 0 : 1].

Proof. Left to the reader. □

Corollary 5.18.4. The threefold X does not contain G-fixed points.

Let us prove Proposition 5.18.2. Suppose X is not K-polystable. By Theorem 1.2.5,
there exists a G-invariant prime divisor F over X such that β(F ) = AX(F )−SX(F ) ⩽ 0.
Let us seek for a contradiction. Let Z = CX(F ). Then Z is not a point by Corollary 5.18.4,
and Z is not a surface by Theorem 3.7.1, so that Z is a G-invariant irreducible curve.

Lemma 5.18.5. One has Z ̸⊂ EL.

Proof. Suppose that Z ⊂ EL. Observe that EL ∼= P1 × P1. Let s be the section of
the natural projection EL → L such that s2 = 0, and l be the fiber of this projection.
Then EL|EL

∼ −s + l, π∗(H)|EL
∼ f , R|EL

∼ s + 3l, and EC and EL are disjoint. Note
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that EL contains exactly two G-invariant irreducible curves. One of them is R|EL
, and

the other one is cut out on EL by the proper transform on X of the surface S4. Thus, we
conclude that Z ∼ s+ 3l.

Let us use notation introduced in Section 1.7. By Theorem 3.7.1, we have SX(EL) < 1.
Thus, we conclude that S(WEL

•,• ;Z) ⩾ 1 by Corollary 1.7.26. Let us compute S(WEL
•,• ;Z).

Take u ∈ R⩾0. Observe that−KX−uEL ∼R
1
2
R+2(π∗(H)−EL)+(3

2
−u)EL, which implies

that −KX − uEL is pseudo-effective if and only if u ⩽ 3
2
. Let P (u) = P (−KX − uEL)

and N(u) = N(−KX − uEL). Then

P (u) =


−KX − uEL if 0 ⩽ u ⩽ 1,

(8− 4u)π∗(H)− (3− 2u)EC − 2EL if 1 ⩽ u ⩽
3

2
,

and

N(u) =


0 if 0 ⩽ u ⩽ 1,

(u− 1)R if 1 ⩽ u ⩽
3

2
.

Take any v ∈ R⩾0. If u ∈ [0, 1], we have P (u)|EL
− vZ ∼R (1 + u − v)s + (3 − u − 3v)l.

Similarly, if u ∈ [1, 3
2
] and v ∈ R⩾0, then P (u)|EL

− vZ ∼R (2 − v)s + (6 − 4u − 3v)l.
Hence, if Z = R|EL

, then Corollary 1.7.26 gives

S
(
WEL

•,• ;Z
)
=

3

28

∫ 3
2

1

(u− 1)EL ·
(
(8− 4u)π∗(H)− (3− 2u)EC − 2EL

)2
du+

+
3

28

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
EL

− vZ
)
dvdu =

=
3

28

∫ 3
2

1

4(u− 1)(6− 4u)du+
3

28

∫ 1

0

∫ 3−u
3

0

2(1− u− v)(3− u− 3v)dvdu+

+
3

28

∫ 3
2

1

∫ 6−4u
3

0

2(2− v)(6− 4u− 3v)dvdu =
9

28
< 1.

Similarly, if Z ̸= R|EL
, then S(WEL

•,• ;Z) =
3
28
< 1. The obtained contradiction completes

the proof of the lemma. □

Let Q be the proper transform of the quadric surface S2 on the threefold X.

Lemma 5.18.6. One has Z ̸⊂ Q.

Proof. Suppose that Z ⊂ Q. Let us seek for a contradiction. Recall that π(Q) = S2 is
a smooth quadric surface in P3 that is given by x0x3 = x1x2. It contains the twisted cubic
curve C, and it does not contain the lines L and L′. Let us identify S2 = P1×P1 such that
C is a curve in S2 of degree (1, 2). Then π induces a birational morphism ϖ : Q→ P1×P1

that is a blow up of two intersection points S2∩L, which are not contained in the curve C.
Moreover, the surface Q is a smooth del Pezzo surface of degree 6, because the points of
the intersection S2 ∩ L are not contained in one line in S2 by Lemma 5.18.3.

Let us use notation introduced in Section 1.7. By Theorem 3.7.1, we have SX(Q) < 1.
Then S(WQ

•,•;Z) ⩾ 1 by Corollary 1.7.26. Let us show that S(WQ
•,•;Z) < 1, which would

give us the desired contradiction.
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Take u ∈ R⩾0. Then −KX−uQ ∼R 2π∗(H)−EL+(1−u)(2π∗(H)−EC), which implies
that −KX − uQ is nef for every u ∈ [0, 1]. On the other hand, we have

−KX − uQ ∼R (4− 2u)
(
π∗(H)− EL

)
+ (3− 2u)EL + (u− 1)EC ,

so that the divisor −KX − uS is pseudo-effective ⇐⇒ u ∈ [0, 3
2
]. Moreover, we have

P
(
−KX − uQ

)
=


−KX − uQ if 0 ⩽ u ⩽ 1,

(4− 2u)π∗(H)− EL if 1 ⩽ u ⩽
3

2
,

and N(−KX−uQ) = (u−1)EC if 1 ⩽ u ⩽ 3
2
. For simplicity, we let P (u) = P (−KX−uQ)

and N(u) = N(−KX − uQ).
Let us introduce some notation on Q. First, we denote by ℓ1 and ℓ2 the proper trans-

forms on Q of general curves in P1 × P1 of degrees (1, 0) and (0, 1), respectively. Second,
we denote by e1 and e1 the exceptional curves of φ. Third, we let F11, F12, F21, F22 be
the (−1)-curves on Q such that F11 ∼ ℓ1 − e1, F12 ∼ ℓ1 − e2, F21 ∼ ℓ2 − e1, F22 ∼ ℓ2 − e2.
Then π∗(H)|S ∼ ℓ1 + ℓ2, EL|S = e1 + e2 and EC |S ∼ ℓ1 + 2ℓ2.
It follows from Lemma 5.18.3 that either Z = EC |Q or π(Z) = C−1. In both cases, we

have Z ∼ ℓ1 + 2ℓ2. Moreover, if Z ̸= EC |Q, then Corollary 1.7.26 gives

S
(
WQ

•,•;Z
)
=

3

28

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
Q
−v(ℓ1+2ℓ2)

)
dvdu ⩽

3

28

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
Q
−vℓ1

)
dvdu.

Similarly, if Z = EC |Q, then

S
(
WQ

•,•;Z
)
=

3

28

∫ 3
2

0

(
P (u)·P (u)·Q

)
ordZ

(
N(u)

∣∣
Q

)
du+

3

28

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
Q
−vZ

)
dvdu =

=
3

28

∫ 3
2

1

(u−1)
(
(4−2u)π∗(H)−EL

)2·(2π∗(H)−EC
)
du+

3

28

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
Q
−vZ

)
dvdu =

=
3

28

∫ 3
2

1

(u− 1)
(
2(4− 2u)2 − 2

)
du+

3

28

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
Q
− vZ

)
dvdu =

=
5

224
+

3

28

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
Q
−v(ℓ1+2ℓ2)

)
dvdu ⩽

5

224
+

3

28

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
Q
−vℓ1

)
dvdu.

Thus, to show that S(WQ
•,•;Z) < 1, it is enough to show that the integral in the right

hand side of the last formula is less that 219
224

.
Suppose that u ∈ [0, 1]. Take v ∈ R⩾0. Then

P (−KX − uQ)|Q − vZ ∼R (3− u)ℓ1 + 2ℓ2 − e1 − e2 ∼R (3− u)ℓ1 + F21 + F22,

so that P (−KX − uQ)
∣∣
Q
− vZ is not pseudo-effective for v > 3− u. Taking intersections

with F21 and F22, we see that the divisor P (−KX − uQ)
∣∣
Q
− vZ is nef for v ⩽ 2 − u.

Similarly, if 2− u ⩽ v ⩽ 3− u, then its Zariski decomposition is

(3− u− v)(ℓ1 + F21 + F22)︸ ︷︷ ︸
positive part

+(v + u− 2)(F21 + F22︸ ︷︷ ︸
negative part

.
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Therefore, if u ∈ [0, 1] and 0 ⩽ v ⩽ 3− u, then

vol
(
P (−KX − uQ)

∣∣
Q
− vZ

)
=

{
4(3− u− v)− 2 if v ⩽ 2− u,

2(3− u− v)2 if 2− u ⩽ v ⩽ 3− u.

Now we suppose that u ∈ [1, 2]. For v ∈ R⩾0, we have

P (−KX − uQ)|Q − vZ ∼R (4− 2u− v)ℓ1 + (4− 2u)ℓ2 − e1 − e2.

Intersecting this divisor with (−1)-curves in Q, we see that it is nef for v ⩽ 3 − 2u.
Similarly, if 3− 2u ⩽ v ⩽ 6− 4u, its Zariski decomposition is

(4− 2u− v)ℓ1 + (10− 6u− 2v)ℓ2 − (4− 2u− v)(e1 + e1)︸ ︷︷ ︸
positive part

+(2u+ v − 3)(F21 + F22)︸ ︷︷ ︸
negative part

.

Moreover, if v ⩾ 6 − 4u, then the divisor P (−KX − uQ)
∣∣
Q
− vZ is not pseudo-effective.

Hence, if u ∈ [1, 3
2
] and 0 ⩽ v ⩽ 6− 4u, then

vol
(
P (−KX − uQ)

∣∣
Q
− vZ

)
=

{
2(4− 2u− v)(4− 2u)− 2 if 0 ⩽ v ⩽ 3− 2u,

2(4− 2u− v)(6− 4u− v) if 2− u ⩽ v ⩽ 6− 4u.

Now we can compute the required integral as follows:

3

28

∫ 3
2

0

∫ ∞

0

vol
(
P (u)

∣∣
Q
− vf1

)
dvdu =

3

28

∫ 1

0

∫ 2−u

0

(
4(3− u− v)− 2

)
dvdv+

+
3

28

∫ 1

0

∫ 3−u

2−u
2(3− u− v)2dvdu+

3

28

∫ 3
2

1

∫ 3−2u

0

(
2(4− 2u− v)(4− 2u)− 2

)
dvdu+

+
3

28

∫ 3
2

1

∫ 6−4u

3−uu
2(4− 2u− v)(6− 4u− v)dvdu =

109

112
,

so that S(WQ
•,•;Z) ⩽

5
224

+ 109
112

= 223
224

< 1. This completes the proof of the lemma. □

By Lemma 1.4.4, one has αG,Z(X) < 3
4
. Thus, by Lemma 1.4.1, there is a G-invariant

effective Q-divisor D on the threefold X such that D ∼Q −KX and Z ⊆ Nklt(X,λD) for
some positive rational number λ < 3

4
.

Lemma 5.18.7. Let S be an irreducible surface in X. Suppose that S ⊂ Nklt(X,λD).
Then either S = Q or S = EL.

Proof. The cone of effective divisors Eff(X) is generated by EL, EC , π
∗(H) − EL, Q, R.

On the other hand, we have D ∼Q 4π∗(H) − EC − EL and λ < 3
4
. Thus, arguing as in

the proof of Lemma 4.4.12, we see that S = EL, S ∼ Q or π(S) is a plane, so that either
S = EL or S = Q by Lemma 5.18.3. □

Corollary 5.18.8. One has Z ̸⊂ EC.

Proof. Suppose that Z ⊂ EC . Observe that π(Z) is not a point, since P3 does not have
G-fixed points by Lemma 5.18.3. Hence, we see that π(Z) is the twisted cubic C.

Let S be a general fiber of η. Then S · Z = 3, which contradicts Corollary A.1.15. □

We see that π(Z) is a G-invariant curve in P3 such that π(Z) ̸⊂ S2 and π(Z) ̸= L.

Lemma 5.18.9. The curve π(Z) is the line L′.
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Proof. The proof is essentially the same as the proof of Lemma 4.4.17. But now we have
to use Lemma 5.18.7. □

Let S be a general surface in the linear system |2π∗(H)−EC | that contains the curve Z.
Then π(S) is a smooth quadric surface in P3 that contains C and the line L′ = π(Z).
Note that π(S) is not G-invariant. Let us use notation introduced in Section 1.7.

Lemma 5.18.10. One has S(W S
•,•;Z) =

109
112

.

Proof. Identify π(S) = P1×P1 such that C is a curve of degree (1, 2). Then L′ is curve of
degree (1, 0). Moreover, the morphism π induces a birational morphism ϖ : S → P1 × P1

that is a blow up of two intersection points π(S) ∩ L. Observe that these points are not
contained in the curves L′ and C. Moreover, these two points are not contained in any
line line in π(S), because L is not contained in π(S). Hence, we see that S is a smooth del
Pezzo surface of degree 6. Thus, the proof of Lemma 5.18.6 gives S(W S

•,•;Z) =
109
112

. □

We have SX(S) < 1 by Theorem 3.7.1. Then S(W S
•,•;Z) ⩾ 1 by Corollary 1.7.26, which

contradicts Lemma 5.18.10. This completes the proof of Proposition 5.18.2.

5.19. Family �3.13. Let X be a smooth Fano threefold in the family �3.13. As it was
observed in [56, § 66], the threefold X is a complete intersection in P2 × P2 × P2 of 3
divisors of degrees (1, 1, 0), (0, 1, 1), (1, 0, 1), respectively. Thus, the threefold X can be
given by the following system of equations:

f(x0, x1, x2; y0, y1, y2) = 0,

g(y0, y1, y2; z0, z1, z2) = 0,

h(x0, x1, x2; z0, z1, z2) = 0,

where f , g, h are bilinear forms, and [x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2] are coordinates
on the first, the second and the third factor of P2 × P2 × P2, respectively. Observe that

f =
[
x0 x1 x2

]
Mx,y

 y0
y1
y2

 , g = [ y0 y1 y2
]
My,z

 z0
z1
z2

 , h =
[
x0 x1 x2

]
Mx,z

 z0
z1
z2


for some 3× 3 matrices Mx,y, My,z, Mx,z.

Lemma 5.19.1. One has det(Mx,y) ̸= 0, det(My,z) ̸= 0 and det(Mx,z) ̸= 0.

Proof. If det(Mx,y) = 0, there are [a0 : a1 : a2] and [b0 : b1 : b2] in P2 such that

[
a0 a1 a2

]
Mx,y =Mx,y

 b0
b1
b2

 = 0,

and we can find [c1 : c2 : c3] ∈ P2 such that

[
b0 b1 b2

]
My,z

 c0
c1
c2

 =
[
a0 a1 a2

]
Mx,z

 c0
c1
c2

 = 0,

which implies that X is singular at the point ([a0 : a1 : a2], [b0 : b1 : b2], [c0 : c1 : c2]).
This shows that det(Mx,y) ̸= 0. Similarly, we see that det(My,z) ̸= 0 ̸= det(Mx,z). □
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Let Wx,y, Wy,z, Wx,z be the threefolds in P2×P2 that are given by f = 0, g = 0, h = 0,
respectively. Then Wx,y, Wy,z, Wx,z are smooth by Lemma 5.19.1. Moreover, we have
the following commutative diagram:

(5.19.2) P2

Wx,y

prx,yx

��

prx,yy

44

Wy,z

pry,zy

jj

pry,zz

��

X
ηx

ss

ηz

++

ηy

OO

πx,z

��

πx,y

kk
πy,z

33

P2 P2

Wx,z

prx,zz

jj

prx,zz

44

where all morphisms are given by natural projections, e.g. the morphism πx,y is given by([
x0 : x1 : x2

]
,
[
y0 : y1 : y2

]
,
[
z0 : z1 : z2

])
7→
([
x0 : x1 : x2

]
,
[
y0 : y1 : y2

])
,

the morphism ηz is given by ([x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]) 7→ [z0 : z1 : z2], and
the projection pry,zy is given by ([y0 : y1 : y2], [z0 : z1 : z2]) 7→ [y0 : y1 : y2].

Note that the morphisms πx,y, πy,z, πx,z are birational — they blow up smooth rational
curves of degree (2, 2). Let Ex,y, Ey,z, Ex,z be their exceptional surfaces, respectively.
Then −KX ∼ Ex,y + Ey,z + Ex,z. Observe also that ηx, ηy and ηz are (non-standard)
conics bundles and −KX ∼ η∗x(OP2(1)) + η∗y(OP2(1)) + η∗z(OP2(1)).

Let ∆x, ∆y, ∆z be the discriminant curves of the conic bundles ηx, ηy, ηz, respectively.
Then the defining equations of the curves ∆x, ∆y, ∆z are

[
x0 x1 x2

]
Dx

 x0
x1
x2

 = 0,
[
y0 y1 y2

]
Dy

 y0
y1
y2

 = 0,
[
z0 z1 z2

]
Dz

 z0
z1
z2

 = 0

for some 3× 3 matrices Dx, Dy and Dz.

Lemma 5.19.3. One has

Dx =Mx,z

(
M−1

y,z

)
MT

x,y,

Dy =My,z

(
Mx,z

)−1
Mx,y,

Dz =MT
y,z

(
Mx,y

)−1
Mx,z.

Proof. Let P = [a0 : a1 : a2] ∈ P2, and let CP be the fiber of the conic bundle ηx over P .
Then there exists a natural embedding CP ↪→ P1 × P1 as a curve of degree (1, 1), where
the first factor of P1 × P1 is identified with the line in P2 given by

(5.19.4) [a0 a1 a2]Mx,y

 y0
y1
y2

 = 0,
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and the second factor of P1 × P1 is identified with the line in P2 given by

(5.19.5) [a0 a1 a2]Mx,z

 z0
z1
z2

 = 0.

Moreover, the curve CP is defined in this P1 × P1 by the equation

[y0 y1 y2]My,z

 z0
z1
z2

 = 0.

So, the curve CP is singular ⇐⇒ there is a point [c0 : c1 : c2] in the line (5.19.5) such that

[y0 y1 y2]My,z

 c0
c1
c2

 = 0

for every point [y0 : y1 : y2] ∈ P2 that satisfies the condition (5.19.4). Thus, we conclude
that CP is singular ⇐⇒ there is a point [c0 : c1 : c2] in the line (5.19.5) such that c0

c1
c2

 =M−1
y,zM

T
x,y

 a0
a1
a2

 .
Now, plugging [z0 : z1 : z2] = [c0 : c1 : c2] into (5.19.5), we see that

the curve CP is singular ⇐⇒ [a0 a1 a2]Mx,z

(
M−1

y,z

)
MT

x,y

 a0
a1
a2

 = 0.

But P ∈ ∆x,y ⇐⇒ CP is singular, so that we can let Dx =Mx,z(M
−1
y,z )M

T
x,y as required.

Similarly, we can prove the remaining formulas for Dy and Dz. □

In particular, we see that the conics ∆x, ∆y, ∆z are smooth.

Remark 5.19.6. Let Cx,y, Cy,z, Cx,z be the curves in Wx,y, Wy,z, Wx,z that are blown up
by the morphisms πx,y, πy,z, πx,z, respectively. Then Cx,y, Cy,z, Cx,z are given by

[
x0 x1 x2

]
Dx

 x0
x1
x2

 =
[
y0 y1 y2

]
Dy

 y0
y1
y2

 = f = 0,

[
y0 y1 y2

]
Dy

 y0
y1
y2

 =
[
z0 z1 z2

]
Dz

 z0
z1
z2

 = g = 0,

[
x0 x1 x2

]
Dx

 x0
x1
x2

 =
[
z0 z1 z2

]
Dz

 z0
z1
z2

 = h = 0,

respectively.

Linearly changing the coordinates ([x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]), we can
simplify the shapes of the polynomials f , g and h. To be precise, we have the following:
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Lemma 5.19.7 (cf. [144, 198]). One can choose coordinates on P2 × P2 × P2 such that
one of the following two cases holds:

(⋆) the threefold X is given by
x0y0 + x1y1 + x2y2 = 0,

y0z0 + y1z1 + y2z2 = 0,

(1 + s)x0z1 + (1− s)x1z0 − 2x2z2 = 0,

where s ∈ C such that s ̸= ±1.
(♦) the threefold X is given by

x0y0 + x1y1 + x2y2 = 0,

y0z0 + y1z1 + y2z2 = 0,

x0z1 + x1z0 + x1z2 − x2z1 − 2x2z2 = 0.

Proof. Linearly changing x0, x1, x2 and y0, y1, y2, we may assume that Mx,y =My,z = I3,
so that f and g are simplified as x0y0+x1y1+x2y2 and y0z0+y1z1+y2z2 = 0, respectively.
Then the equations of the curves ∆x, ∆y, ∆z simplify as

[
x0 x1 x2

]
Mx,z

 x0
x1
x2

 = 0,
[
y0 y1 y2

] (
M−1

x,z

) y0
y1
y2

 = 0,
[
z0 z1 z2

]
Mx,z

 z0
z1
z2

 = 0,

respectively. We can rewrite these equations as

[
x0 x1 x2

](Mx,z +MT
x,z

2

) x0
x1
x2

 = 0,

[
y0 y1 y2

](M−1
x,z +

(
M−1

x,z

)T
2

) y0
y1
y2

 = 0,

[
z0 z1 z2

](Mx,z +MT
x,z

2

) z0
z1
z2

 = 0,

respectively. In particular, we see that the matrix
Mx,z+MT

x,z

2
is not degenerate.

To simplify the bilinear form h, let us consider the coordinate change that corresponds
to the automorphism ϕA ∈ Aut(P2×P2×P2) which is given by the linear transformations x0

x1
x2

 7→ A

 x0
x1
x2

 ,
 y0
y1
y2

 7→
(
A−1

)T  y0
y1
y2

 ,
 z0
z1
z2

 7→ A

 z0
z1
z2

 ,
where A is some non-degenerate 3× 3 matrix. Then h is changed to

[
x0 x1 x2

]
ATMx,zA

 z0
z1
z2

 ,
and the bilinear forms f and g are preserved. We let K =

Mx,z+MT
x,z

2
and L =

Mx,z−MT
x,z

2
.

Since det(K) ̸= 0, we can choose A such that ATKA is any symmetric non-degenerate
237



matrix. In particular, swapping our matrix Mx,z with A
TMx,zA, we may assume that

K =

 0 1 0
1 0 0
0 0 −2

 ,

Then we write

L =

 0 u v
−u 0 w
−v −w 0

 ,

so that

Mx,z =

 0 1 + u v
1− u 0 w
−v −w −2

 .

If u = 0, v = 0 and w = 0, then X is given by (⋆) with s = 0. Thus, we may assume
that at least one number among u, v and w is not zero.

Now, we choose the matrix A such that ATKA = λK for some non-zero λ ∈ C, so that
our change of coordinates preserve the shape of the matrix Mx,z we already achieved.
Namely, we take

A =

 a2 b2 2ab
c2 d2 2cd
ac bd ad+ bc


where a, b, c and d are some complex numbers (to be chosen later) such that ad− bc ̸= 0.
Then det(A) = (ad − bc)3 ̸= 0. If v = 0 and u ̸= 0, we let a, b = w

2u
, c = 0 and d = 1,

which gives

ATMx,zA =

 0 1 + u 0
1− u 0 0
0 0 −2

 ,

so that h becomes (1 + u)x0z1 + (1− u)x1z0 − 2x2z2 and X is given by (⋆) with s = u.
Similarly, if v = u = 0, then w ̸= 0, so that we let a =

√
w, b = 1, c = 0 and d = 1√

w
,

which gives

ATMx,zA =

 0 1 0
1 0 1
0 −1 −2

 ,

so that h becomes x0z1+x1z0+x1z2−x2z1−2x2z2, which implies that X is given by (♦).
Thus, we may assume that v ̸= 0.

Let γ =
√
4vw + 4u2, so that w = γ2−4u2

4v
. If γ ̸= 0, we let a = −2u−γ

2γ
, b = −2u+γ

2v
,

c = v
γ
and d = 1, which gives

ATMx,zA =

 0 1− γ
2

0
1 + γ

2
0 0

0 0 −2

 ,
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so that h becomes (1+ γ
2
)x0z1 + (1− γ

2
)x1z0 − 2x2z2 and X is given by (⋆) with s = −γ

2
.

Similarly, if γ = 0, then 4vw + 4u2 = 0, so that w = −u2

v
and

Mx,z =

 0 1 + u v

1− u 0 −u2

v

−v u2

v
−2

 .

In this case, we let a = −u
v
, b = 1−u

v
, c = 1 and d = 1, so that

ATMx,zA =
1

v2

 0 1 0
1 0 1
0 −1 −2

 ,

so that our bilinear form h becomes x0z1 + x1z0 + x1z2 − x2z1 − 2x2z2 after scaling by v2,
which implies that X is given by (♦). This completes the proof of the lemma. □

If X is given by (⋆) with s = 0, then X is isomorphic to the threefold given by
x0y0 + x1y1 + x2y2 = 0,

y0z0 + y1z1 + y2z2 = 0,

x0z0 + x1z1 + x2z2 = 0,

which is the unique smooth Fano threefold�3.13 that admits an effective PGL2(C)-action.
In this case, the Fano threefold X is K-polystable by Example 1.6.17 and Lemma 4.2.5.
On the other hand, if X is given by (♦), then X is not K-polystable by

Lemma 5.19.8. Suppose that X is given by the equation (♦). Then Aut(X) ∼= Ga⋊S3.
Moreover, the threefold X is strictly K-semistable.

Proof. Suppose that the threefold X is given by (♦). For every a ∈ C, let us consider
the automorphism ϕa ∈ Aut(P2 × P2 × P2) given by the following linear transformations: x0

x1
x2

 7→ A

 x0
x1
x2

 ,
 y0
y1
y2

 7→
(
A−1

)T  y0
y1
y2

 ,
 z0
z1
z2

 7→ A

 z0
z1
z2

 ,
where

A =

 1 a2 2a
0 1 0
0 a 1

 .

Each such transformation ϕa leaves X invariant, so that we can assume that ϕa ∈ Aut(X).
One can check that these transformations form a subgroup in Aut(X) isomorphic to Ga.
Moreover, the group Aut(X) also contains involutions τx,z, τx,y, τy,z defined as

τx,z :
(
[x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]

)
7→

7→
(
[z0 : z1 : −z2], [y0 : y1 : −y2], [x0 : x1 : −x2]

)
,

τx,y :
(
[x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]

)
7→

7→
(
[y0 + 2y1 + y2 : 2y0 : y0 + y2], [x1 : x0 − x2 : 2x2 − x1], [z0 : z1 : −z2]

)
,
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τy,z :
(
[x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]

)
7→

7→
(
[x0 : x1 : −x2], [z1 : z0 + z2 : z1 + 2z2], [y0 + 2y1 − y2 : 2y0 : y2 − y0]

)
.

One can check that the involution τx,z, τx,y, τy,z together with transformations ϕa generate
the group Aut(X). Using this, we conclude that Aut(X) ∼= Ga.S3. This extension of
groups splits. To see this, let θ = τx,z ◦ τx,y ◦ ϕa for a = 1

3
. Then

θ :
(
[x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]

)
7→

7→
(
[9z0+z1+6z2 : 9z1 : 9z2+3z1], [9x1 : 9x0−2x1−3x2], [5y0+3y2+18y1 : 18y0 : −3y0−9y2]

)
.

Then θ3 = IdX and τx,z◦θ◦τx,z = θ2, so that ⟨τx,z, θ⟩ ∼= S3. This gives Aut(X) ∼= Ga⋊S3.
By Theorem 1.1.4, the threefoldX is not K-polystable. To show thatX is K-semistable,

observe that X is isomorphic to the threefold given by
x0y0 + x1y1 + x2y2 = 0,

y0z0 + y1z1 + y2z2 = 0,

x0z1 + x1z0 − 2x2z2 + ϵ(x1z2 − x2z1) = 0,

where ϵ is any non-zero number. As we already mentioned, if ϵ = 0, then these equations
define the K-polystable smooth Fano threefold that admits an effective PGL2(C)-action.
Now, arguing as in the proof of Corollaries 4.7.7 and 5.17.7, we can construct a test
configuration for the threefold X, whose special fiber is a K-polystable Fano threefold,
so that X is strictly K-semistable by Corollary 1.1.14. □

In the remaining part of this section, we will prove the following result:

Proposition 5.19.9. If X is given by (⋆), then X is K-polystable.

To prove this result, we suppose that X is given by (⋆). Then ∆x is given by x0x1 = x22,

the curve ∆y is given by z0z1 = z22 , and ∆z is given by y0y1 =
1−s2
4
y22. Now, let us describe

some automorphisms of the threefold X. For every λ ∈ C∗, the group Aut(X) contains
the automorphism φλ : X → X that is given by(
[x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]

)
7→

([
λx0 :

x1
λ

: x2

]
,
[y0
λ

: λy1 : y2

]
,
[
λz0 :

z1
λ

: z2

])
.

These automorphisms form a proper subgroup Γ ⊊ Aut(X), which is isomorphic to Gm.
The full automorphism group Aut(X) also contains the involution τx,z that is given by

τx,z :
(
[x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]

)
7→
(
[z1 : z0 : z2], [y1 : y0 : y2], [x1 : x0 : x2]

)
,

the group Aut(X) also contains the involution τx,y given by

τx,y :
(
[x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]

)
7→

7→

([
y0 :

y1
1− s2

: −y2
2

]
,
[
x0 : (1− s2)x1 : −2x2

]
,
[
(s+ 1)z1 :

z0
s+ 1

: z2

])
,
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and it contains the involution τx,y which is given by

τy,z :
(
[x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]

)
7→

7→

([
x1 : x0 : −x2

]
,
[
(1− s)z0 : (s+ 1)z1 : 2z2

]
,
[ y0
1− s

:
y1

s+ 1
:
y2
2

])
.

Let G be the subgroup in Aut(X) generated by Γ ∼= Gm and the involutions τx,y, τx,z, τy,z.
Then Γ is a normal subgroup in G. Note that G/Γ ∼= S3, so that we have G ∼= Gm.S3.
Actually, this extension of groups splits. To see this, we let ϑ = τx,z ◦ τx,y. Then

ϑ :
(
[x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]

)
7→

7→

([ z0
s+ 1

: (s+ 1)z1 : z2

]
,
[
(1− s2)x1 : x0 : −2x2

]
,
[ y1
1− s2

: y0 : −
y2
2

])
.

Then ϑ ◦ φλ = φλ ◦ ϑ. Now, we let ϑλ = ϑ ◦ φλ. Then(
ϑλ
)3

= IdX ⇐⇒ λ3 = (1− s2)(1 + s).

Moreover, if λ3 = (1− s2)(1 + s), then τx,z ◦ ϑλ ◦ τx,z = ϑ2
λ, which gives ⟨τx,z ◦ ϑλ⟩ ∼= S3.

Therefore, choosing λ ∈ Gm to be one of the three cube roots 3
√

(1− s2)(1 + s), we obtain
the subgroup ⟨τx,z, ϑλ⟩ ∼= S3 that gives us a section of the quotient map G→ G/Γ ∼= S3,
which defines a splitting G ∼= Gm ⋊S3.

Remark 5.19.10. If s = 0, then we have Aut(X) ∼= PGL2(C) × S3. Moreover, if s ̸= 0,
then one can show that Aut(X) = G. But we do not need this.

To prove the K-polystability of the threefold X, we need to prove one technical lemma.
To state it, we find it useful to replace the parameter s ∈ C \ {1,−1} as s = r3−1

r3+1
for

a non-zero number r such that r3 ̸= −1. Then (1− s2)(1 + s) = 8r6

(r3+1)3
, so that

3
√
(1− s2)(1 + s) =

{
2r2

r3 + 1
,
2ωr2

r3 + 1
,
2ω2r2

r3 + 1

}
,

where ω is a primitive cube root of unity.

Lemma 5.19.11. The following assertions holds:

(i) one has PicG(X) = Z[−KX ];
(ii) the threefold X does not have G-fixed points;
(iii) the threefold X contains exactly three distinct G-invariant irreducible curves, which

can be parametrically described as follows:

(5.19.12)
([
u2 : r(r2 − r + 1)v2 : ruv

]
,[

r(r2 − r + 1)v2 : ru2 : −(r3 + 1)uv
]
,[

ru2 : (r2 − r + 1)v2 : ruv
])
,
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(5.19.13)
([
ru2 : ω2(r + 1)(r + ω2)v2 : ruv

]
,[

ω(r + 1)(r + ω2)v2 : ωr2u2 : −(r3 + 1)uv
]
,[

ω2r3u2 : (r + 1)(r + ω2)v2 : r2uv
])
,

(5.19.14)
([
ru2 : ω(r + 1)(r + ω)v2 : ruv

]
,[

ω2(r + 1)(r + ω)v2 : ω2r2u2 : −(r3 + 1)uv
]
,[

ωr3u2 : (r + 1)(r + ω)v2 : r2uv
])
,

where [u : v] ∈ P1. All these three curves are smooth and rational.

Proof. Assertion (i) immediately follows from the description of the action of the group G.
If X contains a G-fixed point O, then ηx(O) is a fixed by the induced ⟨Γ, τy,z⟩-action,
which gives ηx(O) = [0 : 0 : 1]. Similarly, we get ηy(O) = [0 : 0 : 1] and ηz(O) = [0 : 0 : 1],
so that O = ([0 : 0 : 1], [0 : 0 : 1], [0 : 0 : 1]) ̸∈ X, which is a contradiction. This proves (ii).

Observe that the curves (5.19.12), (5.19.13) and (5.19.14) are distinct and G-invariant.
Thus, to prove assertion (iii), it is enough to show that X contains no other G-invariant
irreducible curves. To do this, let C be a G-invariant irreducible curve in the threefold X.
Let us show that C is one of the curves (5.19.12), (5.19.13) and (5.19.14).
To start with, observe that

−KX · C =
(
η∗x
(
OP2(1)

)
+ η∗y

(
OP2(1)

)
+ η∗z

(
OP2(1)

)))
· C =

= 3η∗x
(
OP2(1)

)
· C = 3η∗y

(
OP2(1)

)
· C = 3η∗z

(
OP2(1)

)
· C ⩾ 3,

so that ηx(C), ηy(C) and ηz(C) are irreducible curves, which are invariant with respect
to the induced actions on P2 of the subgroups ⟨Γ, τy,z⟩, ⟨Γ, τx,z⟩ and ⟨Γ, τx,y⟩, respectively.
Thus, if the curves ηx(C), ηy(C), ηz(C) are lines, these are the lines x2 = 0, y2 = 0, z2 = 0.
In this case, the curve C must be contained in the subset in P2 × P2 × P2 given by

x2 = 0,

y2 = 0,

z2 = 0,

x0y0 + x1y1 + x2y2 = 0,

y0z0 + y1z1 + y2z2 = 0,

(1 + s)x0z1 + (1− s)x1z0 − 2x2z2 = 0.

But this subset does not contain any curve that is surjectively mapped by ηx, ηy, ηz to
the lines x2 = 0, y2 = 0, z2 = 0, respectively. Hence, ηx(C), ηy(C), ηz(C) are not lines.

We see that there are non-zero numbers qx, qy, qz such that ηx(C), ηy(C), ηz(C) are
the conics x0x1 = qxx

2
2, y0y1 = qyy

2
2, z0z1 = qzz

2
2 , respectively. Therefore, we see that

each subgroup ⟨Γ, τy,z⟩, ⟨Γ, τx,z⟩, ⟨Γ, τx,y⟩ acts faithfully on the curve C, because they act
faithfully on the curves ηx(C), ηy(C), ηz(C), respectively. In particular, C is rational.

The action of the group G on the curve C induces a homomorphism υ : G → Aut(C).
On the other hand, we have ⟨Γ, ϑ⟩ ∼= Gm × µ3, and the group Aut(C) does not contain
subgroups isomorphic to Gm × µ3, since C is rational [161]. Therefore, since Γ acts on
the curve C faithfully, we get υ(ϑ) ∈ υ(Γ), so that ker(υ) contains ϑλ for some λ ∈ Gm.
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Let P = ([x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]) be a sufficiently general point in C.
Then ηx(P ), ηy(P ), ηz(P ) is not contained in the lines x2 = 0, y2 = 0, z2 = 0, respectively.
Thus, we may assume that x2 = y2 = z2 = 1 and (x0, x1, y0, y1, z0, z1) ̸= (0, 0, 0, 0, 0, 0).
On the other hand, we have(

[x0 : x1 : 1], [y0 : y1 : 1], [z0 : z1 : 1]
)
= P = ϑλ

(
P
)
=

=

([ λz0
s+ 1

:
(s+ 1)z1

λ
: 1
]
,
[(s2 − 1)x1

2λ
: −λx0

2
: 1
]
,
[ 2λy1
s2 − 1

: −2y0
λ

: 1
])
.

This gives the following system of linear equations:

0 4r3

(r3+1)2
2λ 0 0 0

− 2r3

r3+1
0 0 0 λ 0

0 0 0 2λ 4r3

(r3+1)2
0

0 −λ 0 0 0 2r3

r3+1

λ 0 0 2 0 0
0 0 2 0 0 λ




x0
x1
y0
y1
z0
z1

 = 0

The determinant of the matrix here is −4(λ− 2r2

r3+1
)2(λ− 2ωr2

r3+1
)2(λ− 2ω2r2

r3+1
)2. It must vanish,

since (x0, x1, y0, y1, z0, z1) ̸= (0, 0, 0, 0, 0, 0). Then λ ∈ { 2r2

r3+1
, 2ωr2

r3+1
, 2ω

2r2

r3+1
}. If λ = 2r2

r3+1
, then

solving the system above, we get

P =

([
a : −r

3 + 1

r
b : 1

]
,
[
b : − r2

r3 + 1
a : 1

]
,
[
ra : −r

3 + 1

r2
b : 1

])
for some (a, b) ∈ C \ (0, 0), so that f(P ) = g(P ) = h(P ) = 0 gives b = − 1

(r+1)a
and

P =

([
a :

r2 − r + 1

ra
: 1
]
,
[
− 1

(r + 1)a
: − ar2

r3 + 1
: 1
]
,
[
ra :

r2 − r + 1

ar2
: 1
])
,

which implies that P is contained in the curve (5.19.12), so that C is the curve (5.19.12).

In this case, we have qx =
r2−r+1

r
, qy =

r2

(r+1)(r3+1)
and qz =

r2−r+1
r

. Similarly, if λ = 2ωr2

r3+1
,

then C is the curve (5.19.13) and qx = ω2r2−r+ω
r

, qy = ω(rω+1)r2

(r2−r+1)(r3+1)
, qz = ω2r2−r+ω

r
.

Finally, if λ = 2ω2r2

r3+1
, then C is the curve (5.19.14) and qx =

ωr2−r+ω2

r
, qy =

ω2(rω2+1)r2

(r2−r+1)(r3+1)
,

qz =
ωr2−r+ω2

r
. This completes the proof and also shows that each morphism among ηx,

ηy, ηz maps the curves (5.19.12), (5.19.13), (5.19.14) to three different conics in P2. □

Now, we are ready to prove

Lemma 5.19.15. If s ̸= 0, then αG(X) = 1. If s = 0, then αG(X) = 2
3
.

Proof. First, let us recall that s = r3−1
r3+1

, where r is a non-zero number such that r3 ̸= −1.
If s = 0, we assume that r = 1 to avoid repeating computations.

Since −KX ∼ Ex,y +Ey,z +Ex,z, we can conclude that αG(X) ⩽ 1. Moreover, if s = 0,
then Ex,y, Ey,z and Ex,z meet along the curve (5.19.12), which gives αG(X) ⩽ 2

3
. Set

µ =


1 if s ̸= 0,

2

3
if s = 0.
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We see that αG(X) ⩽ µ. Suppose that αG(X) < µ. Let us seek for a contradiction.
Recall that PicG(X) = Z[−KX ] and X has no G-fixed points by Lemma 5.19.11.

Arguing as in the proof of Theorem 1.4.11 and using Lemma 1.4.1, we see that there
exist an irreducible G-invariant curve C ⊂ X and a G-invariant effective Q-divisor D on
the threefold X such that D ∼Q −KX , the log pair (X,λD) is strictly log canonical for
some rational number λ < µ, and C is its unique log canonical center. Then C is one of
the curves (5.19.12), (5.19.13), (5.19.14) by Lemma 5.19.11.

Since λ < 1 and C ⊆ Nklt(X,λD), we see that multC(D) ⩾ 1
λ
> 1

µ
⩾ 1.

Now, let us use assumptions and notations introduced in the proof of Lemma 5.19.11.
Let Sx, Sy, Sz be the surfaces in X that are cut out by x0x1 = qxx

2
2, y0y1 = qyy

2
2,

z0z1 = qzz
2
2 , respectively. Then C ⊂ Sx ∩ Sy ∩ Sz, the divisor Sx + Sy + Sz is G-invariant

and −KX ∼Q
1
2
(Sx + Sy + Sz). Moreover, if s = 0 and C is the curve (5.19.12), then we

have C = Ex,y∩Ey,z∩Ex,z and we have Sx = Ex,y+Ex,z, Sy = Ex,y+Ey,z, Sz = Ex,z+Ey,z.
In all other cases, the surfaces Sx, Sy, Sz are smooth at general point of the curve C, and
they meet each other pairwise transversally at general point of the curve C.

Indeed, to prove this claim, it is enough to check both assertions for Sx and Sy, because
the group G acts two-transitively on {Sx, Sy, Sz}. Let us show that Sx and Sy are smooth
at general point of the curve C, and they meet transversally at general point of the curve C.
This can be explicitly checked at the point P ∈ C that corresponds to [u : v] = [1 : 1] in
the parametrizations (5.19.12), (5.19.13) and (5.19.14). Thus, we can do this in the affine
chart x2 = y2 = z2 = 1. In this chart, the threefold X is given by

x0y0 + x1y1 + 1 = 0,

y0z0 + y1z1 + 1 = 0,

(1 + s)x0z1 + (1− s)x1z0 − 2 = 0,

the surface Sx is given by x0x1 = qx, and the surface Sy is given by y0y1 = qy, where we
consider now x0, x1, y0, y1, z0, z1 as coordinates on A6. If C is the curve (5.19.12), then

P =

(
1

r
, r2 − r + 1,− r

r + 1
,− r

r3 + 1
, 1,

r2 − r + 1

r

)
,

so that the Zariski tangent space to the intersection Sx ∩ Sy at the point P is given by


− r
r+1

− r
r3+1

1
r

r2 − r + 1 0 0

0 0 1 r2−r+1
r

− r
r+1

− r
r3+1

r2(r2 − r + 1) 1 0 0 r2 − r + 1 r2

r2 − r + 1 1
r

0 0 0 0
0 0 − r

r3+1
− r
r+1

0 0




x0 − 1

r
x1 − r2 + r − 1

y0 +
r
r+1

y1 +
r

r3+1

z0 − 1

z1 − r2−r+1
r

 = 0.

The determinant of the matrix formed by the first 5 columns of this matrix is (r2−r+1)(r−1)2

r+1
,

so that it vanishes if and only if s = 0. Thus, if s ̸= 0 and C is the curve (5.19.12), then
the Zariski tangent space to the intersection Sx∩Sy at the point P is one-dimensional, so
that both surfaces Sx and Sy are smooth at P , and intersect transversally at this point.
This proves our claim in the case when C is the curve (5.19.12).
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Similarly, if C is the curve (5.19.13), then

P =

(
1,
ω2(r + 1)(r + ω2)

r
,− ω

r + ω
,− ωr2

r3 + 1
, ω2r,

(r + 1)(r + ω2)

r2

)
,

and the dimension of the Zariski tangent space to the intersection Sx ∩ Sy at this point
equals the nullity of the following 5× 6 matrix:

− ω
r+ω

− ωr2

r3+1
1 ω2(r+1)(r+ω2)

r
0 0

0 0 w2r (r+1)(r+w2)
r2

− ω
r+ω

− ω
r3+1

r(r + 1)(r + ω2) w2r 0 0 ω2(r+1)(r+ω2)
r

r3

ω2(r+1)(r+ω2)
r

1 0 0 0 0

0 0 − ωr2

r3+1
− ω
r+ω

0 0

 .

The determinant of its submatrix formed by the first 5 columns is ω(r+1)(r−ω)2(r+ω2)
r+w

, so

that it never vanishes, because r3 ̸= −1 and r ̸= ω (if s = 0, then r = 1 by assumption).
Therefore, the Zariski tangent space to Sx ∩Sy at the point P is always one-dimensional,
so that both our surfaces Sx and Sy are smooth at P , and intersect transversally at P .
This proves our claim in the case when C is the curve (5.19.13). Now, swapping ω with ω2,
we also obtain the proof of our claim in the case when C is the curve (5.19.14).
Thus, unless s = 0 and C is the curve (5.19.12), the surfaces Sx, Sy, Sz are smooth at

general point of the curve C, and they meet each other pairwise transversally at general
point of the curve C. In particular, we see that C ̸⊆ Nklt(X, µ

2
(Sx + Sy + Sz)). Thus,

using Lemma A.4.12, we may assume that Sx, Sy, Sz are not contained in Supp(D).
If s = 0 and C is the curve (5.19.12), then 1 = D · ℓ ⩾ multC(D), where ℓ is a general

fiber of the projection Ex,y → πx,y(Ex,y). But multC(D) > 1. Therefore, we see that s ̸= 0
or C is not the curve (5.19.12). Then ηx(C) ̸= ∆x, ηy(C) ̸= ∆y and ηz(C) ̸= ∆z.
Let ℓ be a general fiber of the morphism ηx|Sx : Sx → ηx(C). Then ℓ is not contained in

the support of the divisor D, since Sx is not contained in its support. On the other hand,
the curve ℓ meets the curve C, so that 2 = D · ℓ ⩾ multC(D), which gives multC(D) ⩽ 2.

Let η : X̂ → X be the blow up of the curve C, and let F be the η-exceptional surface.

Then the G-action lifts to X̂, and it follows from Lemma A.4.3 that F contains a smooth
irreducible G-invariant curve C such that C is a section of the natural projection F → C.
Let us show that such curve does not exist.

Let Ŝx, Ŝy, Ŝz be the proper transforms on X̂ of the surfaces Sx, Sy, Sz, respectively.

Then each intersection among Ŝx∩F , Ŝy∩F , Ŝz∩F contains a unique component that is
a section of the projection F → C. Denote these sections by Cx, Cy, Cz, respectively. Then

• Cx, Cy, Cz are distinct curves,
• Cx, Cy, Cz are Γ-invariant, and Γ acts faithfully on each of these curves,
• the whole group G permutes the curves Cx, Cy, Cz two-transitively.

Thus, using Corollary A.6.9, we conclude that F = P1 × P1. Then, using Lemma A.6.6,
we conclude that the G-action on F is given by (A.6.8) for some integers a > 0 and b,
which implies that F does not contain G-invariant sections of the projection F → C,
which contradicts the existence of the curve C . □

Now, Proposition 5.19.9 follows from Theorem 1.4.10 and Lemma 4.2.5.
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5.20. Family �3.15. Let Q be the quadric {x20 + 2x1x2 + 2x1x4 + 2x2x3 = 0} ⊂ P4,
where x0, x1, x2, x3, x4 are homogeneous coordinates on P4. Then the quadric Q is smooth.
Let L be the line {x0 = x1 = x2 = 0}, let Π be the plane {x3 = x4 = 0}, and let C = Q∩Π.
Then L ⊂ Q, L ∩ Π = ∅, and C is a smooth conic. Let π : X → Q be the blow up along
the union L∪C. Then X is a smooth Fano threefold from the deformation family � 3.15.
By [42, Lemma 5.10], the threefold X is the unique smooth member of this family.

Proposition 5.20.1. The threefold X is K-polystable.

Let G the subgroup in Aut(Q) generated by the involution ι given by[
x0 : x1 : x2 : x3 : x4

]
7→
[
x0 : x2 : x1 : x4 : x3

]
and the transformations [x0 : x1 : x2 : x3 : x4] 7→ [λx0 : λ2x1 : x2 : λ2x3 : x4] for λ ∈ C∗.
Then G ∼= C∗ ⋊µ2. Since L and C are G-invariant, the action of the group G lifts to X.
To prove Proposition 5.20.1, we will apply Theorem 1.2.5 to X equipped with G-action.
But first, let us describe G-equivariant geometry of the threefold X.
Let R be the surface {x2x3 + x1x4 = 0} ∩Q, and let R be its proper transform on X.

Then the surface R is irreducible, it is singular along L, and it contains both L and C,
but R is smooth, and there is a G-equivariant birational morphism η : X → P1 × P2 that
contracts R to a curve. Thus, we have the following G-equivariant commutative diagram:

P1 × P2

pr1

ww

pr2

((P1 P2

X
ϕ

((

θ

vv

η

OO

π

��

Y

φ
((

υ

OO

V

ϑ
vv

ν

OO

Q

where ϑ is the blow up of the line L, φ is the blow up of the conic C, υ is a fibration into
quadric surfaces, ν is a P1-bundle, pr1 and pr2 are projections to the first and the second
factors, respectively, θ and ϕ are blow ups of the preimages of L and C, respectively.
Let EL and EC be the exceptional surfaces of the morphisms θ and ϕ, respectively.

let HQ = π∗(OP4(1)|Q), let H1 = (pr1 ◦ η)∗(OP1(1)) and let H2 = (pr2 ◦ η)∗(OP2(1)). Then

Pic(X) = Z[HQ]⊕ Z[EL]⊕ Z[EC ],
Nef(X) = R⩾0[HQ] + R⩾0[H1] + R⩾0[H2],

Eff(X) = R⩾0[EL] + R⩾0[EC ] + R⩾0[R] + R⩾0[H1].

Note that H2 ∼ HQ − EL, H1 ∼ HQ − EC , R ∼ 2HQ − 2EL − EC , and

(5.20.2) −KX ∼ 3HQ − EL − EC ∼ HQ +H1 +H2 ∼Q 2EL +
1

2
EC +

3

2
R,

so that αG(X) = 1
2
by [43, Lemma 8.15]. One can show that Aut(X) = G.
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Let L′ be the line {x0 = x1+2x3 = x2+2x4 = 0} ⊂ Q. Then the line L′ is G-invariant.
Similarly, for every non-zero t ∈ C, let Ct = {(1− t)x1−2tx3 = (1− t)x2−2tx4 = 0}∩Q.
Then Ct is an irreducible G-invariant conic for every non-zero t ∈ C. Note that C = C1.
Note also that L ∩ L′ = ∅, L ∩ Ct = ∅ and L′ ∩ Ct = ∅ for every t ̸= 0. Finally, observe
that the conics Ct1 and Ct2 are also disjoint for t1 ̸= t2.

Lemma 5.20.3. Let Z be an irreducible G-invariant curve in the quadric hypersurface Q.
Then either Z = L, or Z = L′, or Z = Ct for some non-zero t ∈ C.

Proof. Observe that the curve Z is rational, so that it contains a ι-fixed point P such
that the curve Z is the closure of the Gm-orbit of this point. Thus, looking at the ι-fixed
points in Q, we conclude that either P = [0 : 0 : 0 : 1 : −1], or P = [0 : 2 : −2 : −1 : 1], or

P = [4s : 4s2 : 4s2 : −2s2 − 1 : −2s2 − 1]

for some non-zero s ∈ C. Then either Z = L, or Z = L′, or Z = Ct for t = −2s2. □

In what follows, we will apply results from Section 1.7 to prove Proposition 5.20.1.
We will use notations of this section. Let Z be an irreducible G-invariant curve in X.

Lemma 5.20.4. Suppose that Z ⊂ EC. Then S(W
EC
•,• ;Z) ⩽

51
64
.

Proof. One has EC ∼= P1×P1. Let s a section of the projection EC → C such that s2 = 0,
and let f a fiber of this projection. Take u ∈ R⩾0. Then

−KX − uEC ∼R 2H1 +
1

2
R +

(3
2
− u
)
EC ,

so that −KX − uEC is pseudo-effective if and only if u ⩽ 3
2
. Moreover, if u ⩽ 3

2
, then

P
(
−KX − uEC

)
=


−KX − uEC if 0 ⩽ u ⩽ 1,

2H1 + (3− 2u)H2 if 1 ⩽ u ⩽
3

2
,

and we have

N
(
−KX − uEC

)
=


0 if 0 ⩽ u ⩽ 1,

(u− 1)R if 1 ⩽ u ⩽
3

2
.

If u ⩽ 1, then we have P (−KX −uEC)|EC
∼ (1+u)s+(4− 2u)f . Similarly, if 1 ⩽ u ⩽ 3

2
,

then P (−KX − uEC)|EC
∼ 2s+ (6− 4u)f . Note that R|EC

is a smooth curve in |s+ 2f |.
Thus, if Z = R|EC

, then Corollary 1.7.26 gives

S
(
WEC

•,• ;Z
)
=

3

32

∫ 1

0

∫ ∞

0

vol
(
(1 + u− v)s+ (4− 2u− 2v)f

)
dvdu+

+
3

32

∫ 3
2

1

4(u− 1)(6− 4u)du+
3

32

∫ 3
2

1

∫ ∞

0

vol
(
(2− v)f + (6− 4u− 2v)s

)
dvdu =

=
3

32

∫ 1
2

0

∫ 1+u

0

2(4−2u−2v)(1+u−v)dvdu+ 3

32

∫ 1

1
2

∫ 2−u

0

2(4−2u−2v)(1+u−v)dvdu+

+
3

32

∫ 3
2

1

4(u− 1)(6− 4u)du+
3

32

∫ 3
2

1

∫ 3−2u

0

2(6− 4u− 2v)(2− v)dvdu =
15

32
<

51

64
.
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If Z ̸= R|EC
, then we have S(WEC

•,• ;Z) ⩽ S(WEC
•,• ; s), because |Z− s| ≠ ∅, since Z ̸∼ f as

the conic C does not have G-fixed points. Therefore, if Z ̸= R|EC
, then

S
(
WEC

•,• ;Z
)
⩽ S

(
WEC

•,• ; s
)
=

3

32

∫ 1

0

∫ ∞

0

vol
(
(1 + u− v)s+ (4− 2u)f)dvdu+

+
3

32

∫ 3
2

1

∫ ∞

0

vol
(
(2− v)f + (6− 4u)s

)
dvdu =

3

32

∫ 1

0

∫ 1+u

0

2(4− 2u)(1 + u− v)dvdu+

+
3

32

∫ 3
2

1

∫ 2

0

2(6− 4u)(2− v)dvdu =
51

64

by Corollary 1.7.26. □

Lemma 5.20.5. Suppose that Z ⊂ EL. Then S(W
EL
•,• ;Z) ⩽

29
32
.

Proof. First, we observe that EL ∼= F1. Let f be a fiber of the natural projection EL → L,
and let s the (−1)-curve in EL. Then R|EL

is a smooth curve in |2s+ 2f |.
Take u ∈ R⩾0. Using (5.20.2), we see that −KX − uEL is pseudo-effective ⇐⇒ u ⩽ 2.

Moreover, if u ⩽ 2, then

P
(
−KX − uEL

)
=

{−KX − uEL if 0 ⩽ u ⩽ 1,

(2− u)H1 + (3− u)H2 if 1 ⩽ u ⩽ 2,

and we have

N
(
−KX − uEL

)
=

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)R if 1 ⩽ u ⩽ 2.

If u ⩽ 1, then we have P (−KX − uEL)|EL
∼ (1 + u)s+ 3f . Similarly, if 1 ⩽ u ⩽ 2, then

we have P (−KX − uEL)|EL
∼ (3− u)s+ (5− 2u)f . Thus, if Z = R|EL

, then

S
(
WEL

•,• ;Z
)
=

3

32

∫ 1

0

∫ ∞

0

vol
(
(1 + u− 2v)s+ (3− 2v)f

)
dvdu+

+
3

32

∫ 2

1

(u− 1)(3−u)(7− 3u)du+
3

32

∫ 2

1

∫ ∞

0

vol
(
(3−u− 2v)s+(5− 2u− 2v)f

)
dvdu =

=
3

32

∫ 1

0

∫ 1+u
2

0

(u+1−2v)(5−u−2v)dvdu+
17

128
+

3

32

∫ 2

1

∫ 3−u
2

0

(3−u−2v)(7−3u+2v)dvdu

by Corollary 1.7.26, so that S(WEL
•,• ;Z) =

15
32
< 29

32
.

If Z ̸= R|EL
, then S(WEL

•,• ;Z) ⩽ S(WEL
•,• ; s), because |Z − s| ≠ ∅, since Z ̸∼ f as

the line L does not have G-fixed points. Hence, if Z ̸= R|EL
, then Corollary 1.7.26 gives

S
(
WEL

•,• ;Z
)
⩽ S

(
WEL

•,• ; s
)
=

3

32

∫ 1

0

∫ ∞

0

vol
(
(1 + u− v)s+ 3f

)
dvdu+

+
3

32

∫ 2

1

∫ ∞

0

vol
(
(3−u−v)s+(5−2u)f

)
dvdu =

3

32

∫ 1

0

∫ 1+u

0

(1+u−v)(5−u+v)dvdu+

+
3

32

∫ 2

1

∫ 3−u

0

(3− u− v)(7− 3u+ v)dvdu =
29

32

as required. □
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Let S be the surface Q∩{x1x4 = x2x3}. Then S is a del Pezzo surface of degree 4 that
has four ordinary nodes. It is well-known that S is toric, and it contains four lines [61, 39].
Two of them are the lines L and L′ described above, and the remaining two lines in S are
the disjoint lines ℓ = {x0 = x1 = x3 = 0} and ℓ′ = {x0 = x2 = x4 = 0}. Then

L ∩ ℓ = [0 : 0 : 0 : 0 : 1],

L′ ∩ ℓ = [0 : 0 : 2 : 0 : −1]

L ∩ ℓ′ = [0 : 0 : 0 : 1 : 0],

L′ ∩ ℓ′ = [0 : 2 : 0 : −1 : 0].

These are the singular points of S. By [39, Lemma 2.9], the lines L, L′, ℓ, ℓ′ generate Cl(S),
which has rank 2. On the surface S, we have 2L ∼ 2L′, 2ℓ ∼ 2ℓ′ and

−KS ∼ L+ L′ + ℓ+ ℓ′ ∼ 2(L+ ℓ).

The surface S also contains all conics Ct for t ∈ C∗ including the conic C = C1, each
conic Ct is contained in the smooth locus of the surface S, and Ct ∼ 2L for every t ∈ C∗.
Let us denote by S the proper transforms of the surface S on the threefold X.

Lemma 5.20.6. Suppose that π(Z) = Ct for t ∈ C \ {0, 1}. Then S(W S
•,•;Z) =

79
128

.

Proof. Take u ∈ R⩾0. Observe that

−KX − uS ∼R

(3
2
− u
)
S +

1

2
EL +

1

3
EL,

which implies that −KX − uS is pseudo-effective ⇐⇒ u ⩽ 3
2
. Moreover, if u ⩽ 3

2
, then

P
(
−KX − uS

)
=


−KX − uS if 0 ⩽ u ⩽ 1,

(3− 2u)HQ if 1 ⩽ u ⩽
3

2
,

and

N
(
−KX − uS

)
=


0 if 0 ⩽ u ⩽ 1,

(u− 1)(EL + EC) if 1 ⩽ u ⩽
3

2
.

In particular, we see that Z is not contained in the supports of the divisor N(−KX−uS)|S.
Therefore, using Corollary 1.7.26, we obtain

S
(
W S

•,•;Z
)
=

3

32

∫ 1

0

∫ ∞

0

vol
(
(−KX − uS)|S − vZ

)
dudv+

+
3

32

∫ 3
2

1

∫ ∞

0

vol
(
(3− 2u)HQ|S − vZ

)
dudv.

To compute these integrals, let us say few words about geometry of the surface S.
The morphism π induces a birational morphism ϖ : S → S, which is the minimal

resolution of the two singular points [0 : 0 : 0 : 1 : 0] and [0 : 0 : 0 : 0 : 1] of the surface S.
In particular, the surface S has exactly two singular points, and they are ordinary nodes.
Denote the proper transforms on S of the curves L, L′, ℓ, ℓ′ and Ct by the same symbols,
and denote by e and e′ the two ϖ-exceptional curves such that e∩ ℓ ̸= ∅ and e′∩ ℓ′ ̸= ∅.
Note that the Mori cone NE(S) is generated by the curves L, ℓ, ℓ′, e, e′.
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On the surface S, we have Ct ∼ 2L′, 2L + e + e′ ∼ 2L′ and 2ℓ + e ∼ 2ℓ′ + e′, and
the intersections of the curves L, L′, ℓ, ℓ′, e and e′ are given in the following table:

L L′ ℓ ℓ′ e e′

L −1 0 0 0 1 1

L′ 0 0 1
2

1
2

0 0

ℓ 0 1
2

−1
2

0 1 0

ℓ′ 0 1
2

0 −1
2

0 1

e 1 0 1 0 −2 0

e′ 1 0 0 1 0 −2

Let v be a non-negative real number. If u ⩽ 1, then

P (−KX − uS)|S − vZ ∼R

(3− u

2
− v
)
Z + (3− 2u)(ℓ+ ℓ′) +

2− u

2

(
e+ e′

)
,

so that the divisor P (−KX − uS)|S − vZ is pseudo-effective if and only if v ⩽ 3−u
2
.

Moreover, if u ⩽ 1 and v ⩽ 3−u
2
, its Zariski decomposition can be described as follows:

• if 0 ⩽ v ⩽ 1, then P (−KX − uS)|S − vZ is nef,
• if 1 ⩽ v ⩽ 3−u

2
, then the positive part of the Zariski decomposition is(3− u

2
− v
)
Z + (5− 2u− 2v)(ℓ+ ℓ′) +

2− u

2

(
e+ e′

)
,

and the negative part is 2(v − 1)(ℓ+ ℓ′).

Similarly, if 1 ⩽ u ⩽ 3
2
, then

P (−KX − uS)|S − vZ ∼R (3− 2u− v)Z + (3− 2u)(ℓ+ ℓ′) +
(3
2
− u
)(

e+ e′
)
.

so that this divisor is pseudo-effective ⇐⇒ it is nef ⇐⇒ v ⩽ 3− 2u. Hence, we obtain

S
(
W S

•,•;Z
)
=

3

32

∫ 1

0

∫ 1

0

(
3u2 + 8uv − 16u− 12v + 17

)
dudv+

+
3

32

∫ 1

0

∫ 3−u
2

1

(3−u−2v)(7−3u−2v)dudv+
3

32

∫ 3
2

1

∫ 3−2u

0

4(3−2u−v)(3−2u)dudv =
79

128
.

as claimed. □

Now, let H be the hyperplane section of the quadric threefold Q given by x0 = 0, and
let H be its proper transform on the threefold X. Then H is a smooth quadric surface
that contains the lines L and L′, and H is a smooth del Pezzo surface of degree six.

Lemma 5.20.7. Suppose that π(Z) = L′. Then S(WH
•,•;Z) =

49
64
.

Proof. Take u ∈ R⩾0. Note that −KX − uH ∼R (2− u)H +H1 +EL, which implies that
the divisor −KX − uH is pseudo-effective ⇐⇒ u ⩽ 2. Moreover, if u ⩽ 2, then

P
(
−KX − uS

)
=

{−KX − uH if 0 ⩽ u ⩽ 1,

H1 + (2− u)HQ if 1 ⩽ u ⩽ 2,
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and N(−KX−uS) = (u−1)EL for u ∈ [1, 2]. Then Z ̸⊂ Supp(N(−KX−uH)|H), so that

S
(
WH

•,•;Z
)
=

3

32

∫ 1

0

∫ ∞

0

vol
(
(−KX − uH)|H − vZ

)
dudv+

+
3

32

∫ 3
2

1

∫ ∞

0

vol
(
(H1 + (2− u)HQ)|H − vZ

)
dudv

by Corollary 1.7.26.
The conic C intersectsH transversally at P1 = [0 : 1 : 0 : 0 : 0] and P2 = [0 : 0 : 1 : 0 : 0],

which are not contained in the lines L and L′. Thus, the morphism π induces a birational
morphismϖ : H → H that blows up P1 and P2. Let e1 and e2 be the ϖ-exceptional curves
that are contracted to P1 and P2, respectively, let s1 and f1 be the proper transform on
the surface H of the two rulings of the surface H ∼= P1×P1 that pass through the point P1,
and let s2 and f2 be the proper transform on H of the two rulings that pass through P2.
We may assume that Z ∼ s1+ e1 ∼ s2+ e2, so that f1+ e1 ∼ f2+ e2 and f1+ s2 ∼ f2+ s1.
Observe that e1, e2, s1, s2, f1, f2 are all (−1)-curves in H.
Note that EL|H ∼ s1 + e1, HQ|H ∼ f1 + s1 + 2e1, H1|H ∼ f1 + s2 and H|H ∼ f1 + e1.
Let v be a non-negative real number. If u ⩽ 1, then

P (−KX − uH)|H − vZ ∼R (2− u)f1 + f2 + (2− v)s1 + (3− u− v)e1

so that this divisor is pseudo-effective if and only if v ⩽ 2. Moreover, it is nef for v ∈ [0, 1],
and its Zariski decomposition for v ∈ [1, 2] is

(3− u− v)
(
f1 + e1

)
+ (2− v)

(
s1 + f2

)︸ ︷︷ ︸
positive part

+(v − 1)(f1 + f2)︸ ︷︷ ︸
negative part

,

Similarly, if 1 ⩽ u ⩽ 2, then

P (−KX − uH)|H − vZ ∼R (2− u)f1 + f2 + (3− u− v)s1 + (4− 2u− v)e1

so that this divisor is pseudo-effective if and only if v ⩽ 4 − 2u − v. Moreover, it is nef
for v ⩽ 2− u, and its Zariski decomposition for v ⩾ 2− u is

(4− 2u− v)
(
f1 + e1

)
+ (3− u− v)

(
s1 + f2

)︸ ︷︷ ︸
positive part

+(v − 2 + u)(f1 + f2)︸ ︷︷ ︸
negative part

.

Hence, using Corollary 1.7.26, we obtain

S(WH
•,•;Z

)
=

3

32

∫ 1

0

∫ 1

0

(2uv− 4u− 6v+10)dvdu+
3

32

∫ 1

0

∫ 2

1

2(2− v)(3−u− v)dvdu+

+
3

32

∫ 2

1

∫ 2−u

0

(2u2+2uv−12u−6v+16)dvdu+
3

32

∫ 2

1

∫ 4−2u

2−u
2(3−u−v)(4−2u−v)dvdu =

49

64

as required. □

Now, we are ready to prove thatX is K-polystable. Suppose thatX is not K-polystable.
Then, by Theorem 1.2.5, there is aG-invariant prime divisor F overX such that β(F ) ⩽ 0.
Let Z = CX(F ). Then Z is not a surface by Theorem 3.7.1, so that Z and π(Z) are curves,
since Q has no G-fixed points. Now, applying Lemmas 5.20.3, 5.20.4, 5.20.5, 5.20.6, 5.20.7,
we get a contradiction with Corollary 1.7.26, since SX(EC) < 1, SX(EL) < 1, SX(S) < 1
and SX(H) < 1 by Theorem 3.7.1. Therefore, the threefold � 3.15 is K-polystable.
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5.21. Family �4.3. Let C be the curve in P1 × P1 × P1 of degree (1, 1, 2) given by{
x0y1 − x1y0 = 0,

x0z
2
1 + x1z

2
0 = 0,

where [x0 : x1], [y0 : y1] and [z0 : z1] are coordinates on the first, the second and the third
factors of P1 ×P1 ×P1, respectively. Observe that the curve C is smooth and irreducible.
Let π : X → P1×P1×P1 be the blow up of C. Then X is the smooth Fano threefold� 4.3.

Let G be the subgroup of Aut(P1×P1×P1) generated by the following transformations:

α :
(
[x0 : x1], [y0 : y1], [z0 : z1]

)
7→
(
[x1 : x0], [y1 : y0], [z1 : z0]

)
,

β :
(
[x0 : x1], [y0 : y1], [z0 : z1]

)
7→
(
[y0 : y1], [x0 : x1], [z0 : z1]

)
,

γλ :
(
[x0 : x1], [y0 : y1], [z0 : z1]

)
7→
(
[x0 : ϵ

2x1], [y0 : ϵ
2y1], [z0 : ϵz1]

)
,

where ϵ ∈ C∗. Then G ∼= (Gm⋊µ2)×µ2, and C is G-invariant, so that the G-action lifts
to the threefold X. Let RC be the G-invariant surface {x0y1 − x1y0 = 0} ⊂ P1 × P1 × P1,
let R be its proper transform via π on the threefold X, let E be the π-exceptional surface,
and let Hi = (pri ◦ π)∗(OP1(1)), where pri : P1 ×P1 ×P1 → P1 is the ith-projection. Then

−KX ∼ 2H1 + 2H2 + 2H3 − EC ,

and R ∼ H1 +H2 − E, because C ⊂ FC . Moreover, we have the following

Lemma 5.21.1. The following assertions holds:

(1) both P1 × P1 × P1 and X do not contain G-fixed points,
(2) if Z is a G-invariant curve in X, then Hi · Z ⩾ 2 for every i ∈ {1, 2, 3},
(3) the linear system |H1 +H2 +H3| contains no G-invariant surfaces,
(4) if D is a non-zero effective G-invariant Z-divisor on X such that −KX−D is big,

then D = F .

Proof. The first three assertions follow from the study of the G-action on P1 × P1 × P1.
The remaining assertion immediately follows from the description of the cone of effective
divisors of X, which is given in [88]. □

In the remaining part of the section, we will prove that X is K-polystable using results
from Section 1.7. As usual, we will use notations introduced in this section. We start with

Lemma 5.21.2. Let Z be a G-invariant irreducible curve in R. Then S(WR
•,•;Z) < 1.

Proof. Let us use the descriptions of the cones Nef(X) and Eff(X) that is given in [88] to
determine the (divisorial) Zariski decomposition of the divisor −KX−xR, where x ∈ R⩾0.
First, if 0 ⩽ x ⩽ 1, then −KX − xR is nef. Second, we have

−KX − xR ∼R (2− x)H1 + (2− x)H2 + 2H3 + (x− 1)E,

so that −KX − xR is not pseudoeffective for x > 2. Finally, if 1 ⩽ x ⩽ 2, then

P (−KX − xR) = (2− x)H1 + (2− x)H2 + 2H3

and N(−KX − xR) = (x− 1)E, where we use notations introduced in Section 1.7.
Let ℓ1 and ℓ2 be the rulings of the surfaceR ∼= P1×P1 such that ℓ1 is contracted by pr3◦π,

and ℓ2 is contracted by both pr1 ◦ π and pr3 ◦ π. Then (−KX − xR)|R ∼R 2ℓ1 + (x+1)ℓ2.
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Let C = R∩E. Then C ∼ 2ℓ1+ℓ1. If 1 ⩽ x ⩽ 2, then P (−KX−xR)|R ∼R (4−2x)ℓ1+2ℓ2
and N(−KX − xR)|R = (x− 1)C. Thus, if Z = C, then Corollary 1.7.26 gives

S
(
WR

•,•;Z) =
1

10

∫ 1

0

∫ ∞

0

vol
(
2ℓ1 + (x+ 1)ℓ2 − yZ

)
dydx+

+
1

10

∫ 2

1

(
(4− 2x)ℓ1 + 2ℓ2)

2(x− 1)dx+
1

10

∫ 2

1

∫ ∞

0

vol
(
(4− 2x)ℓ1 + 2ℓ2 − yZ

)
dydx =

=
1

10

∫ 1

0

∫ 1

0

2(2− 2y)(x+ 1− y)dydx+
1

10

∫ 2

1

4(4− 2x)(x− 1)dx+

+
1

10

∫ 2

1

∫ 2−x

0

2(4− 2x− 2y)(2− y)dydx =
29

60
< 1.

Therefore, to complete the proof, we may assume that Z ̸= C. Then

S
(
WR

•,•;Z) =
1

10

∫ 1

0

∫ ∞

0

vol
(
2ℓ1 + (x+ 1)ℓ2 − yZ

)
dydx+

+
1

10

∫ 2

1

∫ ∞

0

vol
(
(4−2x)ℓ1+2ℓ2−yZ

)
dydx ⩽

1

10

∫ 1

0

∫ ∞

0

vol
(
2ℓ1+(x+1)ℓ2−y(ℓ1+ℓ2)

)
dydx+

+
1

10

∫ 2

1

∫ ∞

0

vol
(
(4− 2x)ℓ1 + 2ℓ2 − y(ℓ1 + ℓ2)

)
dydx =

=
1

10

∫ 1

0

∫ x+1

0

2(2− y)(x+1− y)dydx+

∫ 2

1

∫ 4−2x

0

2(4− 2x− y)(2− y)dydx =
13

24
< 1

by Corollary 1.7.26. □

Now, we are ready to prove thatX is K-polystable. Suppose thatX is not K-polystable.

Then, by Theorem 1.2.5, there are a G-equivariant birational morphism f : X̃ → X and

a G-invariant prime divisor F ⊂ X̃ such that β(F ) = AX(F )−SX(F ) ⩽ 0. Let Z = f(F ).
Then Z is not a surface by Theorem 3.7.1, so that Z is a G-invariant irreducible curve,
becauseX does not haveG-invariant points by Lemma 5.21.1. Now, using Corollary 1.7.26
and Lemma 5.21.2, we see that Z ⊂ R, because SX(R) < 1 by Theorem 3.7.1.
Using Lemma 1.4.4, we get αG,Z(X) < 3

4
. By Lemma 1.4.1, there exists a G-invariant

effective Q-divisor D on the threefold X such that D ∼Q −KX and Z ⊂ Nklt(X,λD)
for a positive rational number λ < 3

4
. By Lemma 5.21.1, the only possible two-dimensional

component of Nklt(X,λD) is R. Since Z ̸⊂ R, we conclude that Z is an irreducible
component of the locus Nklt(X,λD). Applying Corollary A.1.15 to pr1 ◦ π, pr2 ◦ π,
pr3 ◦π, we get H1 ·Z ⩽ 1, H2 ·Z ⩽ 1, H3 ·Z ⩽ 1. But this is impossible by Lemma 5.21.1.
The obtained contradiction shows that X is K-polystable.

5.22. Family �4.13. Let X be a smooth Fano threefold �4.13. Then there is a bira-
tional morphism π : X → P1 × P1 × P1 that is a blow up of a smooth curve C of degree
(1, 1, 3). Moreover, one can choose coordinates ([x0 : x1], [y0 : y1], [z0 : z1]) on P1×P1×P1

such that the curve C is given by one of the following two equations:

(5.22.1) x0y1 − x1y0 = x30z0 + x31z1 + λ
(
x0x

2
1z0 + x20x1z1

)
= 0

for some λ ∈ C \ {±1,±3}, or
(5.22.2) x0y1 − x1y0 = x30z0 + x31z1 + x0x

2
1z0 = 0.
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We will prove that X is K-polystable if C is given by (5.22.1). This would imply

Corollary 5.22.3. Suppose that C is given by (5.22.2). Then X is strictly K-semistable.

Proof. Arguing as in the proof of Corollary 4.7.7, we construct a test configuration for X,
whose special fiber is the threefold X0, which is the Fano threefold �4.13 that is a blow
up of P1 × P1 × P1 at the smooth curve given by (5.22.1) with λ = 0. Assuming that X0

is K-polystable, we see that X is strictly K-semistable by Corollary 1.1.14. □

From now on, we suppose that the curve C is given by (5.22.1). Note that R ∼= P1×P1,
the equation x0y1−x1y0 = 0 defines this surface in P1×P1×P1, and C is a curve of degree
(3, 1) on the surface R. Moreover, the projection pr3 induces a triple cover C → P1. If
λ = 0, this triple cover is ramified at exactly 2 points, which implies that Aut0(X) ∼= Gm

by [42, Corollary 2.7], so that X is the unique smooth Fano threefold in the famly �4.13
that has an infinite automorphism group [42]. On the other hand, if λ ̸= 0, then the triple
cover is ramified at 4 distinct points. Now, arguing as in the proof of [42, Corollary 8.12],
we see that Aut(X) is a finite group provided that λ ̸= 0.
Observe that the group Aut(X) is actually not trivial for every λ ∈ C \ {±1,±3}.

Namely, let A1, A2 and A3 be the automorphisms of P1 × P1 × P1 defined as follows:

A1 :
(
[x0 : x1], [y0 : y1], [z0 : z1]

)
7→
(
[x0 : −x1], [y0 : −y1], [z0 : −z1]

)
,

A2 :
(
[x0 : x1], [y0 : y1], [z0 : z1]

)
7→
(
[x1 : x0], [y1 : y0], [z1 : z0]

)
,

A3 :
(
[x0 : x1], [y0 : y1], [z0 : z1]

)
7→
(
[y0 : y1], [x0 : x1], [z0 : z1]

)
.

Let G be the subgroup of Aut(P1 × P1 × P1) generated by A1, A2 and A3. Then |G| = 8,
and the curve C is G-invariant, so that the action of the group G lifts to the threefold X.
Thus, we can identify G with a subgroup of the group Aut(X).
Let us show that X is K-polystable, so that X is K-stable for λ ̸= 0 by Corollary 1.1.6.

Lemma 5.22.4. The following assertions holds:

(1) P1 × P1 × P1 does not contain G-fixed points.
(2) P1 × P1 × P1 does not contain G-invariant irreducible curves of degree (d1, d2, d3)

such that one of the non-negative integers d1, d2 or d3 is zero.
(3) P1 × P1 × P1 contains sixteen G-invariant irreducible curves of degree (1, 1, 1).

Four of them lie on R, and the remaining curves intersect R in 2 points.
(4) Let Γ be an irreducible curve of degree (1, 1, 1) in P1 × P1 × P1 such that Γ ̸⊂ R.

Then either Γ ∩ C = ∅ or Γ ∩ C = Γ ∩R.

Proof. Assertions (1) and (2) are obvious. To prove (3) and (4), let x = x1
x0
, y = y1

y0
, z = z1

z0

be the non-homogeneous coordinates on each factor of P1 × P1 × P1. There are precisely
four irreducible curves of degree (1, 1) on P1

x × Py, which are invariant under the induced
action of the group ⟨A1, A2⟩. These are the curves given by y = ±x±1. Similarly, there
are also 4 irreducible curves of degree (1, 1) on P1

x×Pz invariant under the induced action
of the group ⟨A1, A3⟩. These are the curves that are given by z = ±x±1. This gives
us 16 possibilities for a G-invariant curve in P1 × P1 × P1 of degree (1, 1, 1). These are
the curves l±x±1,±x±1 that are given by (y, z) = (±x±1,±x±1), respectively. Four of these

curves are contained in the surface R, which is given by y = x. On the other hand,
each of the remaining twelve curves meets R in precisely 2 points. The assertion on
the intersection with C is immediate to check. □
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Now, let us recall from [88] the descriptions of the Mori cone NE(X), the nef cone
and the cone of effective divisors of the Fano threefold X. Let l1, l2, l3 be the proper
transforms of curves of degree (1, 0, 0), (0, 1, 0) and (0, 0, 1) in P1 × P1 × P1 that meet C.
Denote by l4 the proper transform of a curve of degree (1, 1, 0) that is contained in R, and
denote by l5 a curve that contracted by π to a point. Then the cone NE(X) is generated
by the curves l1, l2, l3, l4 and l5. Let H1, H2 and H3 be general fibers of the del Pezzo
fibrations pr1 ◦ π, pr2 ◦ π and pr3 ◦ π, where pr1 and pr2 are projections to the first and
the second factors of P1×P1×P1, respectively. Denote by E1, E2 and E3 the exceptional
divisors of the contractions of the extremal rays generated by l1, l2 and l3, respectively.
Then E1 ∼ 3H2 +H3 − E, E2 ∼ 3H1 +H3 − E, R = E3 ∼ H1 +H2 − E,

Nef(X) = R⩾0[H1] + R⩾0[H2] + R⩾0[H3]+

+ R⩾0[2H1 +H2 +H3 − E] + R⩾0[H1 + 2H2 +H3 − E]

and

Eff(X) = R⩾0[H1] + R⩾0[H2] + R⩾0[H3] + R⩾0[H1 +H2 − E]+

+ R⩾0[3H1 +H3 − E] + R⩾0[3H2 +H3 − E] + R⩾0[E].

Lemma 5.22.5. Let D ̸= 0 be an effective G-invariant Z-divisor on the threefold X.
Suppose that −KX −D is big. Then D = R.

Proof. Since −KX ∼ 2R + E + 2H3, the divisor D must be linearly equivalent to one of
the following divisors: H1, H2, H3, H1+H3, H2+H3, H1+H2−E or H1+H2+H3−E.
But the linear systems |H1|, |H2|, |H3|, |H1 +H3|, |H2 +H3|, |H1 +H2 +H3 −E| do not
contains G-invariant divisors. Thus, we see that D ∼ H1 +H2 − E, so that D = R. □

In the following result and its proof, we use the notations introduced in Section 1.7.

Lemma 5.22.6. Let Z be a G-invariant irreducible curve in R. Then S(WR
•,•;Z) ⩽

27
52
.

Proof. Fix x ∈ R⩾0. Then the divisor −KX − xR is pseudo-effective if and only if x ⩽ 2.
Let P (x) = P (−KX − xR) and N(x) = N(−KX − xR). Then

P (x) =

{−KX − xR if 0 ⩽ x ⩽ 1,

(2− x)(H1 +H2) + 2H3 if 1 ⩽ x ⩽ 2,

and N(x) = (x− 1)E if 1 ⩽ x ⩽ 2.
Recall that R ∼= P1 × P1. Let ℓ1 and ℓ2 be the rulings of the surface R such that p ◦ π

contracts ℓ1, and pr3 ◦ π contracts ℓ2. Then −KX |R ∼ −R|R ∼ ℓ1 + ℓ2. Let C = R ∩ E.
Then C ∼ 3ℓ1 + ℓ2. If 0 ⩽ x ⩽ 1, then P (x)|R ∼ (1 + x)(ℓ1 + ℓ2). Likewise, if 1 ⩽ x ⩽ 2,
then P (x)|R ∼ (4− 2x)ℓ1 + 2ℓ2 and N(x)|R = (x− 1)C. Thus, if Z = C, then

S(WR
•,•;Z) =

3

26

∫ 1

0

∫ ∞

0

vol
(
(1 + x− 3y)ℓ1 + (1 + x− y)ℓ2

)
dydx+

+
3

26

∫ 2

1

(
(x−1)

(
(4−2x)ℓ1+2ℓ2)

2+

∫ ∞

0

vol
(
(4−2x−3y)ℓ1+(2−y)ℓ2

)
dy
)
dx =

44

117
<

27

52

by Corollary 1.7.26. Thus, to complete the proof, we may assume that Z ̸= C.
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Since linear systems |ℓ1| and |ℓ2| do not contain G-invariant curves by Lemma 5.22.4,
we have Z ∼ b1ℓ1 + b2ℓ2 for some positive integers b1 and b2. By Corollary 1.7.26, we get

S(WR
•,•;Z) =

3

26

∫ 1

0

∫ ∞

0

vol
(
(1 + x− b1y)ℓ1 + (1 + x− b2y)ℓ2

)
dydx+

+
3

26

∫ 2

1

∫ ∞

0

vol
(
(4− 2x− b1y)ℓ1 + (2− b2y)ℓ2

)
dydx ⩽

⩽
3

26

∫ 1

0

∫ ∞

0

vol
(
(1+x−y)(ℓ1+ℓ2)

)
dydx+

3

26

∫ 2

1

∫ ∞

0

vol
(
(4−2x−y)ℓ1+(2−y)ℓ2

)
dydx =

=
3

26

∫ 1

0

∫ 1+x

0

2(1 + x− y)2dydx+
3

26

∫ 2

1

∫ 4−2x

0

2(4− 2x− y)(2− y)dydx =
27

52
,

which is exactly what we want. □

Now we are ready to prove

Theorem 5.22.7. The threefold X is K-polystable.

Proof. Suppose that X is not K-polystable. By Theorem 1.2.5, there is G-invariant prime
divisor F over X such that β(F ) ⩽ 0. Let Z = CX(F ). Then Z is not a surface by
Theorem 3.7.1. Thus, since X does not have G-fixed points by Lemma 5.22.4. we see
that Z is a G-invariant irreducible curve. Now, using Lemma 1.4.4, we get αG,Z(X) < 3

4
.

By Lemma 1.4.1, there are a G-invariant effective Q-divisor D on the threefold X and
a positive rational number λ < 3

4
such that D ∼Q −KX , Z ⊆ Nklt(X,λD), and (X,λD)

is strictly log canonical at general point of the curve Z. Then Nklt(X,λD) contains no
surfaces except possible for the surface R by Lemma 5.22.5.

Using Corollary 1.7.26, Lemma 5.22.6 and Theorem 3.7.1, we see that Z ̸⊂ R. Hence,
using Lemma 5.22.4 and applying Corollary A.1.15 to (X,λD) and the morphisms pr1◦π,
pr2 ◦ π and pr3 ◦ π, we see that π(Z) is a curve of degree (1, 1, 1). Then π(Z) is one of
the twelve G-invariant curves described in Lemma 5.22.4.

Let φ : X → X ′ be a birational morphism that contracts R to an ordinary double point,
let D′ be the proper transform of the divisor D on the threefold X ′, and let Z ′ = φ(Z).
Then X ′ is a Fano threefold with terminal Gorenstein singularities, and D′ ∼Q −KX′ .
Moreover, the log pair (X ′, λD′) is strictly log canonical at general point of the curve Z ′,
and the locus Nklt(X ′, λD′) is one-dimensional. Then Z ′ is smooth by Corollary A.1.17.
Thus, using Lemma 5.22.4, we deduce that π(Z) ∩ C consists of two points.

Let Y be the unique surface in |H1+H2| that contains Z, let Y be its proper transform
on P1 × P1 × P1, and let φ : Y → Y be the birational morphism that is induced by π.
Then φ is the blow up of the intersection C ∩Y , which consists of two points that are not
contained in one ruling of the surface Y ∼= P1 × P1. Then Y is a sextic del Pezzo surface.
Let us apply results proved in Section 1.7 to Y and Z to derive a contradiction.

Fix a non-negative number x. Let P (x) = P (−KX − xY ) and N(x) = N(−KX − xY ).
Then −KX − xY is nef ⇐⇒ x ⩽ 1

2
, and −KX − xY is pseudo-effective ⇐⇒ x ⩽ 2.

Using the description of the effective and nef cones above, we have

P (x) =


(2− x)(H1 +H2) + 2H3 − E if 0 ⩽ x ⩽

1

2
,

(3− x)(H1 +H2) + 2H3 + (2x− 2)E if
1

2
⩽ x ⩽ 1,
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and N(x) = (2x− 1)R if 1
2
⩽ x ⩽ 1. Using Corollary 1.7.26, we get S(W Y

•,•;Z) ⩾ 1, since

we have SX(Y ) < 1 by Theorem 3.7.1. Let us compute S(W Y
•,•;Z).

Let e1 and e2 are exceptional curves of the morphism φ, let f1 and f2 be the proper
transform on Y of the rulings of the surface Y that are contracted by p and pass through
the points φ(e1) and φ(e2), respectively. Then, on the surface Y , we have E|Y = e1 + e2,
R|Y = f1+f2, H1|Y ∼ H2|Y ∼ f1+e1 ∼ f2+e2. Let h1 and h2 be the proper transform on
Y of the rulings of the surface Y that are contracted by the projection pr3 and pass through
φ(e1) and φ(e2), respectively. Then H3|Y ∼ h1 + e1 ∼ h2 + e2 and Z ∼ f1 + h2 ∼ f2 + h1.
Therefore, if 0 ⩽ x ⩽ 1

2
, then we have P (x)|Y ∼R (2− 2x)f1+2f2+(3− 2x)e1+ e2+2h1.

Similarly, if 1
2
⩽ x ⩽ 1, then P (x)|Y ∼R (3 − 4x)f1 + (3 − 2x)f2 + (3 − 2x)e1 + e2 + 2h1

and N(x)|Y = (2x− 1)(f1 + f2). Take y ∈ R⩾0. Then Corollary 1.7.26 gives

S(W Y
•,•;B) =

3

26

∫ 1
2

0

∫ ∞

0

vol
(
(2− 2x)f1 + 2f2 + (3− 2x)e1 + e2 + 2h1 − yZ

)
dydx+

+
3

26

∫ 1

1
2

∫ ∞

0

vol
(
(3− 4x)f1 + (3− 2x)f2 + (3− 2x)e1 + e2 + 2h1 − yZ

)
dydx,

where e1, e2, f1, f2, h1, h2 are (−1)-curves on the surface Y , and Z ∼ f1 + h2 ∼ f2 + h1.
If x ⩽ 1

2
and y ⩽ 1, then (2− 2x)f1 + 2f2 + (3− 2x)e1 + e2 + 2h1 − yZ is nef, so that

vol
(
(2− 2x)f1 + 2f2 + (3− 2x)e1 + e2 + 2h1 − yZ

)
= 4xy − 8x− 8y + 14.

If x ⩽ 1
2
and 1 ⩽ y ⩽ 2, then the Zariski decompositions of this divisor is

(4− 2x− y)
(
f1 + e1

)
+ (2− y)

(
h1 + e1

)︸ ︷︷ ︸
positive part

+(y − 1)
(
e1 + e2

)︸ ︷︷ ︸
negative part

,

so that its volume is 2(4− 2x− y)(2− y). For y > 2, this divisor is not pseudoeffective.
Similarly, if 1

2
⩽ x ⩽ 1 and 0 ⩽ y ⩽ 2− 2x, then

vol
(
(3− 4x)f1 + (3− 2x)f2 + (3− 2x)e1 + e2 + 2h1

)
= 4xy − 8x2 − 8x− 8y + 16.

If 2 − 2x ⩽ y ⩽ min{2, 6 − 6x}, then the volume of this divisor is 2(6 − 6x − y)(2 − y).
For y > min{2, 6 − 6x}, this divisor is not pseudoeffective. Now, using Corollary 1.7.26
and integrating, we get S(W Y

•,•;Z) =
257
312

< 1. This shows that X is K-polystable. □

Therefore, if λ ̸= 0, then X is K-stable by Corollary 1.1.6.

Remark 5.22.8. Let X ′ be the singular Fano threefold that has been constructed in
the proof of Theorem 5.22.7. One can show that Aut(X ′) ∼= Aut(X). Moreover, arguing
as in the proof of Theorem 5.22.7, one can prove that the threefold X ′ is K-polystable.
Furthermore, the threefold X ′ has a smoothing to a Fano threefold in the family �2.21,
so that Theorem 1.1.12 gives another proof of Corollary 4.2.3.

5.23. Family �5.1. This family contains unique smooth threefold. It is K-polystable.
To prove this, we have to describe this threefold explicitly and compute its automorphism
group. To start with, let Q be a smooth quadric {x1x2 + x2x3 + x3x1 + yz = 0} ⊂ P4,
where x1, x2, x3, y and z are homogeneous coordinates on P4. Let C be the smooth
conic in the quadric Q that is cut out by y = z = 0, and let P1 = [1 : 0 : 0 : 0 : 0],
P2 = [0 : 1 : 0 : 0 : 0], P3 = [0 : 0 : 1 : 0 : 0]. Then C contains the points P1, P2, P3.
Let θ : Y → Q be the blow up of the points P1, P2, P3, let C be the strict transform on Y
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of the conic C, and let η : X → Y be the blow up of the curve C. Then X is the unique
smooth Fano threefold �5.1.
Now, let us describe Aut(X). Let G be a subsgroup in Aut(Q) that is described as

G =
{
g ∈ Aut(Q)

∣∣ g(C) = C and g
(
{P1, P2, P3}

)
= {P1, P2, P3}

}
.

Observe that the action of the group G lifts faithfully on the Fano threefold X, so that
we can identify G with a subgroup of the automorphism group Aut(X). Moreover, using
the description of the Mori cone NE(X) given in [88], we conclude that Aut(X) = G.
Furthermore, we have G ∼= S3 × (Gm ⋊ µ2) and G acts on Q as follows:

• if σ ∈ S3, then σ acts by [x1 : x2 : x3 : y : z] 7→ [xσ(1) : xσ(2) : xσ(3) : y : z],
• if λ ∈ Gm, then λ acts by [x1 : x2 : x3 : y : z] 7→ [λx1 : λx2 : λx3 : λ

2y : z],
• if ι ∈ µ2, then ι acts by [x1 : x2 : x3 : y : z] 7→ [x1 : x2 : x3 : z : y].

Then Q does not contain G-invariant points. Let Z be the smooth conic in Q that is cut
out by x1 − x3 = x2 − x3 = 0. Then C ∩ Z = ∅.

Lemma 5.23.1. The curves C and Z are the only irreducible G-invariant curves in Q.

Proof. Let C be a G-invariant irreducible curve in Q that is different from C. Let us show
that C = Z. Since C ̸= C, it contains a point P = [x1 : x2 : x3 : y : 1] with y ̸= 0, which
implies that C = Gm.P . In particular, for every σ ∈ S3, there is λ ∈ C∗ such that[

xσ(1) : xσ(2) : xσ(3) : y : 1
]
=
[
x1 : x2 : x3 : λy :

1

λ

]
=
[
λx1 : λx2 : λx3 : λ

2y : 1
]
,

so that λ2 = 1. Now, using σ = (1, 2) and σ = (2, 3), we see that x1 = x2 = x3 ̸= 0, so
that C = Z. □

Let ϕC : YC → Q and ϕZ : YZ → Q be the blow up of the conics C and Z, respectively.
Denote by FC and FZ the exceptional surfaces of the blow ups ϕC and ϕZ , respectively.
Observe that the action of the group G on the quadric Q lifts to its actions on YC and YZ ,
and the surfaces FC and FZ are exceptional G-invariant prime divisors over Q.

Lemma 5.23.2. The only exceptional G-invariant prime divisors over Q are FC and FZ.

Proof. Recall that the center on Q of a G-invariant prime divisor over Q is a G-invariant
irreducible subvariety in Q. Therefore, by Lemma 5.23.1, it is enough to show that
the surfaces FC and FZ do not contain proper G-invariant irreducible subvarieties.

We start with FC . Let ψC : UC → P4 be the blow up of the linear span of the conic C,
i.e. the blow up of the plane y = z = 0. We have the following G-equivariant diagram:

YC
� � //

ϕC
��

UC

ψS

��
Q �
� // P4

Let us describe the G-action on UC . The fourfold UC can be covered by two charts.
The first one is given in P4 ×A1

y′ by y = y′z, and the second is given P4 ×A1
z′ by z = z′y.

Using these charts, the action of the group G can be described as follows:

• if σ ∈ S3, then σ acts by ([x1 : x2 : x3 : y : z], y′) 7→ ([xσ(1) : xσ(2) : xσ(3) : y : z], y′);
• if λ ∈ Gm, then λ acts by([

x1 : x2 : x3 : y : z
]
, y′
)
7→
([
x1 : x2 : x3 : λy :

z

λ

]
, λ2y′

)
;
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• if ι ∈ µ2, then ι acts by([
x1 : x2 : x3 : y : z

]
, y′
)
7→
([
x1 : x2 : x3 : z : y

]
,
1

y′

)
.

Let EC be the ψC-exceptional divisor. Then EC can be identified with P2
x1,x2,x3

× P1
y,z,

and FC can be identified with its subvariety that is given by x1x2 + x2x3 + x3x1 = 0.
Moreover, the action of the group G on the threefold EC can be described as follows:

• if σ ∈ S3, then σ acts by([
x1 : x2 : x3

]
,
[
y : z

])
7→
([
xσ(1) : xσ(2) : xσ(3)

]
,
[
y : z

])
;

• if λ ∈ Gm, then λ acts by([
x1 : x2 : x3

]
,
[
y : z

])
7→
([
x1 : x2 : x3

]
,
[
λy :

z

λ

])
;

• if ι ∈ µ2, then ι acts by([
x1 : x2 : x3

]
,
[
y : z

])
7→
([
x1 : x2 : x3

]
,
[
z : y

])
.

This easily implies that the surface FC does not contain irreducible G-invariant curves,
because C does not have S3-invariant points. Since FC does not contain G-invariant
points, we see that FC does not contain proper G-invariant irreducible subvarieties.
Similarly, we see that FZ does not contain proper G-invariant subvarieties. □

Now we are ready to prove

Theorem 5.23.3. The threefold X is K-polystable.

Proof. Let F be a G-invariant prime divisor over X. By Theorem 1.2.5, it is enough to
prove that β(F ) > 0. If F is a prime divisor on X, then β(F ) > 0 by Theorem 3.7.1.
Therefore, we may assume that F is exceptional over X. Let Z be the proper transform

on X of the curve Z, and let σ : X̃ → X be the blow-up of the curve Z. Then F is
the σ-exceptional surface by Lemma 5.23.2.

We claim that σ∗(−KX) − 2F is not big. To prove this fact, observe that there exits
the following commutative diagram:

X̃
σ //

ϑ̃
��

X

ϑ

��

η // Y

θ

��
ỸC

ς // YC
ϕC // Q

where ϑ is the blow up of the fibers of the projection FC → C over the points P1, P2, P3,
i.e. the blow up of the preimages of these points via ϕC , ς is the blow up of the proper

transform of the curve Z, and ϑ̃ is the blow up of the preimages of P1, P2, P3 via ϕC ◦ ς.
Thus, if σ∗(−KX) − 2F is big, then ς∗(−KYC ) − 2F̃ is big, where F̃ is the ς-exceptional

surface. But the pseudoeffective cone of the threefold ỸC is described in [88, Section 10].

Note that ỸC is a smooth Fano threefold �3.10. Now, using [88, Section 10], we conclude

that ς∗(−KYC )− 2F̃ is not big, so that σ∗(−KX)− 2F is not big either.
We see that the pseudo-effective threshold τ(F ) ⩽ 2 (see Section 1.2). Thus, it follows

from [91, Lemma 2.1] that SX(F ) ⩽ 3
4
τ(F ) ⩽ 3

2
< 2 = AX(F ), so that β(F ) > 0. Hence,

the threefold X is K-polystable. □
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6. The Big Table

In this section, we summarize our answers to Calabi Problem for Fano threefolds.
We settle the problem of determining whether the general member of each of the 105
deformation families of Fano threefolds is K-polystable/K-semistable. In some cases,
the general member of the family is K-polystable, while there is at least one member that
is not K-polystable. A finer problem is to classify, within each family, which smooth Fano
threefolds are K-polystable/K-semistable. This is accomplished for 71 of the 105 families.
A conjectural picture for each of the remaining cases is then discussed in the final section.

Table 1 below contains the list of smooth Fano threefolds. We follow the notation and
the numeration of the families in [115]. We also assume the following conventions.

• Sn denotes a smooth del Pezzo surface such that K2
Sn

= n and S8 ̸∼= P1 × P1.
• Q denotes a smooth quadric hypersurface in P4.
• W denotes a divisor in P2 × P2 of degree (1, 1).
• Vn denotes a smooth Fano threefold such that Vn ̸∼= W and

−KVn ∼ 2H

where H is a Cartier divisor on Vn such that H3 = n ∈ {1, 2, 3, 4, 5, 6, 7, 8}. Note
that V8 = P3 and V7 is a blow up of P3 at a point.

In the first column of Table 1, we give the identifier � for a smooth Fano threefold X.
The second and the third columns contain the degree −K3

X and

h1,2
(
X
)
=

1

2
h3
(
X,Z

)
of the corresponding Fano threefold X, respectively.
In the fifth column, we present the possibilities for the group Aut0(X) within a given

deformation class, so that 1 simply means that the group Aut(X) is finite.
In the sixth column, we put known results about the existence of a Kähler–Einstein

metric on smooth Fano threefolds, using following conventions:

Yes means that all smooth Fano threefolds in this family are K-polystable;

Yes ⋆ means that general Fano threefolds in this family are K-polystable;

No means that no smooth Fano threefolds in this family are K-polystable;

∃ No means that at least one smooth Fano threefold in this family is not K-polystable;

For instance, the combination of Yes ⋆ and ∃ No for Fano threefolds �1.10 means that
general threefolds in this family are K-polystable but some are not. A priori, we could
have a deformation family such that its general member is not K-polystable, but some
members are K-polystable. But that such situation is not possible by Main Theorem.

In the seventh column, we put results about K-semistability of smooth Fano threefolds.
Recall that the K-semistability is an open property. We use the following conventions:

Yes means that all smooth threefolds in this family are K-semistable;

Yes ⋆ means that general threefold in this family is known to be K-semistable;

No means that every smooth Fano threefold in this family is K-unstable;

∃ No means that at least one smoooth Fano threefold in this family is K-unstable.

Finally, in the last column of Table 1 we put references to the sections of this paper
where the corresponding smooth Fano threefolds are discussed in more details.
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Table 1: Smooth Fano threefolds

� −K3
X h1,2 Brief description Aut0(X) K-ps K-ss Sections

1.1 2 52 sextic hypersurface in P(1, 1, 1, 1, 3) 1 Yes Yes 3.5, 4.1

1.2a 4 30 quartic threefold in P4 1 Yes Yes 3.5, 4.1

1.2b 4 30 double cover of smooth quadric threefold 1 Yes Yes 3.5

1.3 6 20 intersection of quadric and cubic in P5 1 Yes Yes 3.5, 4.1

1.4 8 14 complete intersection of three quadrics P6 1 Yes Yes 3.5, 4.1

1.5a 10 10
section of Gr(2, 5) ⊂ P9 by quadric
and linear subspace of dimension 7 1 Yes Yes 3.5, 4.1

1.5b 10 10 double cover of the threefold V5 1 Yes Yes 3.5, 4.1

1.6 12 7

section of Hermitian symmetric space
M = G/P ⊂ P15 of type DIII

by linear subspace of dimension 8
1 Yes Yes 4.1

1.7 14 5
section of Gr(2, 6) ⊂ P14 by

linear subspace of codimension 5 1 Yes Yes 4.1

1.8 16 3

section of Hermitian symmetric space
M = G/P ⊂ P19 of type CI

by linear subspace of dimension 10
1 Yes Yes 4.1, 5.11

1.9 18 2

section of 5-dimensional rational
homogeneous contact manifold G2/P ⊂ P13

by linear subspace of dimension 11
1 Yes ⋆ Yes ⋆ 4.1

1.10 22 0

zero locus of three sections of rank 3
vector bundle

∧2Q where Q is
universal quotient bundle on Gr(7, 3)

1
Ga

Gm

PGL2(C)

∃ No

Yes ⋆ Yes ⋆ 3.6,4.1, 5.14
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1.11 8 21 V1 = sextic hypersurface in P(1, 1, 1, 2, 3) 1 Yes Yes 3.5, 3.4

1.12 16 10 V2 = quartic hypersurface in P(1, 1, 1, 1, 2) 1 Yes Yes 3.5, 3.4

1.13 24 5 V3 = cubic hypersurface in P4 1 Yes Yes 3.4

1.14 32 2 V4 = intersection of two quadrics in P5 1 Yes Yes 3.4

1.15 40 0 V5 = linear section of Gr(2, 5) in P9 1 Yes Yes 3.4

1.16 54 0 Q = quadric hypersurface in P4 PSO5(C) Yes Yes 3.2, 3.3

1.17 64 0 V8 = P3 PGL4(C) Yes Yes 3.2, 3.3, 3.4

2.1 4 22 blow up of V1 in elliptic curve 1 Yes ⋆ Yes ⋆ 4.3

2.2 6 20
double cover of P1 × P2

ramified in surface of degree (2, 4) 1 Yes ⋆ Yes ⋆ 4.5

2.3 8 11 blow up of V2 in elliptic curve 1 Yes ⋆ Yes ⋆ 4.3

2.4 10 10 blow up of P3 along intersection of two cubics 1 Yes ⋆ Yes ⋆ 4.5

2.5 12 6 blow up of V3 in elliptic curve 1 Yes ⋆ Yes ⋆ 4.3

2.6a 12 9 divisor on P2 × P2 of degree (2, 2) 1 Yes ⋆ Yes ⋆ 3.5

2.6b 12 9
double cover of W branched in

anticanonical surface 1 Yes Yes 1.5

2.7 14 5
blow up of quadric Q ⊂ P4 along

intersection of two surfaces in |OP4(2)|Q| 1 Yes ⋆ Yes ⋆ 4.5

2.8 14 9
double cover of V7 branched in

anticanonical surface 1 Yes ⋆ Yes ⋆ 5.1

2.9 16 5
blow up of P3 along curve of degree 7

and genus 5 that is intersection of cubics 1 Yes ⋆ Yes ⋆ 5.2
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2.10 16 3 blow up of V4 in elliptic curve 1 Yes ⋆ Yes ⋆ 4.3

2.11 18 5 blow up of V3 along line 1 Yes ⋆ Yes ⋆ 5.3

2.12 20 3
blow up of P3 along curve of degree 6

and genus 3 that is intersection of cubics 1 Yes ⋆ Yes ⋆ 5.4

2.13 20 2
blow up of Q ⊂ P4

along curve of degree 6 and genus 2 1 Yes ⋆ Yes ⋆ 5.5

2.14 20 1 blow up of V5 in elliptic curve 1 Yes ⋆ Yes ⋆ 4.3

2.15 22 4
blow up of P3 at curve of degree 6 and genus 4
that is intersection of quadric and cubic surfaces 1 Yes ⋆ Yes ⋆ 4.4

2.16 22 2 blow up of V4 ⊂ P5 along conic 1 Yes ⋆ Yes ⋆ 5.6

2.17 24 1
blow up of quadric Q ⊂ P4

along elliptic curve of degree 5 1 Yes ⋆ Yes ⋆ 5.7

2.18 24 2
double cover of P1 × P2

branched in surface of degree (2, 2) 1 Yes ⋆ Yes ⋆ 4.5

2.19 26 2 blow up of V4 ⊂ P5 along line 1 Yes ⋆ Yes ⋆ 4.4

2.20 26 0 blow up of V5 ⊂ P6 along twisted cubic
1
Gm

∃ No
Yes ⋆ Yes ⋆ 5.8

2.21 28 0 blow up of Q ⊂ P4 along twisted quartic

1
Ga

Gm

PGL2(C)

∃ No

Yes ⋆
Yes ⋆ 4.2, 5.22

2.22 30 0 blow up of V5 ⊂ P6 along conic
1
Gm

∃ No
Yes ⋆ Yes ⋆ 1.5, 4.4

2.23 30 1
blow up of quadric Q ⊂ P4

along elliptic curve of degree 4 1 No No 3.7

2
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2.24 30 0 divisor on P2 × P2 of degree (1, 2)

1
Gm

G2
m

∃ No
Yes ⋆ Yes ⋆ 4.7

2.25 32 1 blow up of P3 in elliptic curve 1 Yes Yes 4.3

2.26 34 0 blow up of V5 ⊂ P6 along line
Ga ⋊Gm

Gm
No

∃ No
Yes ⋆ 5.10

2.27 38 0 blow up of P3 along twisted cubic PGL2(C) Yes Yes 4.2

2.28 40 1 blow up of P3 along plane cubic (Ga)
3 ⋊Gm No No 3.6, 3.7

2.29 40 0 blow up of Q ⊂ P4 along conic Gm × PGL2(C) Yes Yes 3.3

2.30 46 0 blow up of P3 along conic PSO5;1(C) No No 3.3, 3.6, 3.7

2.31 46 0 blow up of Q ⊂ P4 along line PSO5;2(C) No No 3.3, 3.6, 3.7

2.32 48 0 W = divisor in P2 × P2 of degree (1, 1) PGL3(C) Yes Yes 3.2, 3.3, 3.4

2.33 54 0 blow up of P3 along line PGL4;2(C) No No 3.3, 3.6, 3.7

2.34 54 0 P1 × P2 PGL2(C)× PGL3(C) Yes Yes 3.1, 3.2, 3.3

2.35 56 0 V7 = blow up of P3 in one point PGL4;1(C) No No 3.3, 3.6, 3.7

2.36 62 0 P(OP2 ⊕OP2(2)) Aut
(
P(1, 1, 1, 2)

)
No No 3.3, 3.6, 3.7

3.1 12 8
double cover of P1 × P1 × P1

branched in surface of degree (2, 2, 2) 1 Yes Yes 3.5

3.2 14 3

divisor in P2-bundle
P(OP1×P1 ⊕OP1×P1(−1,−1)⊕OP1×P1(−1,−1))

such that X ∈ |L⊗2 ⊗OP1×P1(2, 3)|
where L is tautological line bundle

1 Yes ⋆ Yes ⋆ 5.11
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3.3 18 3 divisor in P1 × P1 × P2 of degree (1, 1, 2) 1 Yes ⋆ Yes ⋆ 5.12

3.4 18 2
blow up of smooth Fano threefold Y

that is contained in family �2.18 along
smooth fiber of conic bundle Y → P2

1 Yes ⋆ Yes ⋆ 4.5, 5.13

3.5 20 0

blow up of P1 × P2

along curve C of degree (5, 2) such that

C ↪→ P1 × P2 → P2 is embedding

1
Gm

∃ No

Yes ⋆ Yes ⋆ 5.14

3.6 22 1
blow up of P3 along disjoint union of
line and elliptic curve of degree 4 1 Yes ⋆ Yes ⋆ 5.15

3.7 24 1 blow up of W in elliptic curve 1 Yes ⋆ Yes ⋆ 4.3

3.8 24 0

blow-up of P1 × P2 along
complete intersection of two surfaces
that have degree (0, 2) and (1, 2)

1
Gm

∃ No

Yes ⋆ Yes ⋆ 5.16

3.9 26 3

blow up of cone W4 ⊂ P6 over
Veronese surface R ⊂ P5 at its vertex
and smooth quartic curve in R4

∼= P2
Gm Yes Yes 4.6

3.10 26 0
blow up of Q ⊂ P4 along

disjoint union of two conics

1
Gm

G2
m

∃ No
Yes ⋆ Yes ⋆ 5.17

3.11 28 1 blow up of V7 in elliptic curve 1 Yes ⋆ Yes ⋆ 4.3

3.12 28 0
blow up of P3 along

disjoint union of line and twisted cubic
1
Gm

∃ No
Yes ⋆ Yes ⋆ 5.18

3.13 30 0

intersection of three divisors
in P2 × P2 × P2 that have degree
(1, 1, 0), (0, 1, 1) and (1, 0, 1)

Ga

Gm

PGL2(C)

∃ No

Yes ⋆
Yes ⋆ 4.2
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3.14 32 1
blow up of P3 along plane cubic curve

and point that are not coplanar Gm No No 3.7

3.15 32 0
blow up of Q ⊂ P4 along

disjoint union of line and conic Gm Yes Yes 5.20

3.16 34 0

blow up of V7 along proper transform
via blow up V7 → P3 of twisted cubic

passing through blown up point
Ga ⋊Gm No No 3.6, 3.7

3.17 36 0 divisor on P1 × P1 × P2 of degree (1, 1, 1) PGL2(C) Yes Yes 4.2

3.18 36 0
blow up of P3 along

disjoint union of line and conic (Ga ⋊Gm)×Gm No No 3.3, 3.6, 3.7

3.19 38 0
blow up of Q ⊂ P4 at

two non-collinear points Gm × PGL2(C) Yes Yes 3.3

3.20 38 0
blow up of Q ⊂ P4 along
disjoint union of two lines Gm × PGL2(C) Yes Yes 3.3

3.21 38 0 blow up of P1 × P2 along curve of degree (2, 1) (Ga)
2 ⋊ (Gm)

2 No No 3.3, 3.6, 3.7

3.22 40 0
blow up of P1 × P2 along conic

in fiber of projection P1 × P2 → P1 (Ga ⋊Gm)× PGL2(C) No No 3.3, 3.6, 3.7

3.23 42 0

blow up of V7 along proper transform
via blow up V7 → P3 of irreducible conic

passing through blown up point
(Ga)

3 ⋊ ((Ga ⋊Gm)×Gm) No No 3.3, 3.6, 3.7

3.24 42 0
blow up of W along

one fiber of P1-bundle W → P2 PGL3;1(C) No No 3.3, 3.6, 3.7

3.25 44 0 blow up of P3 two skew lines PGL(2,2)(C) Yes Yes 3.3

3.26 46 0
blow up of P3 along

disjoint union of point and line (Ga)
3 ⋊ (GL2(C)×Gm) No No 3.3, 3.6, 3.7
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3.27 48 0 P1 × P1 × P1 (PGL2(C))3 Yes Yes 3.1, 3.2, 3.3

3.28 48 0 P1 × S8 = P1 × F1 PGL2(C)× PGL3;1(C) No No 3.3, 3.6, 3.7

3.29 50 0
blow up of V7 along line in exceptional
surface E ∼= P2 of blow up V7 → P3 PGL4;3,1(C) No No 3.3, 3.6, 3.7

3.30 50 0
blow up of V7 along

fiber of P1-bundle V7 → P2 PGL4;2,1(C) No No 3.3, 3.6, 3.7

3.31 52 0
blow up of quadric cone in P4

with one singular point at vertex
PSO6;1(C) No No 3.3, 3.6, 3.7

4.1 24 1 divisor in (P1)4 of degree (1, 1, 1, 1) 1 Yes ⋆ Yes ⋆ 4.3

4.2 28 1

blow up of quadric cone in P4

with one singular point at disjoint union
of vertex and elliptic curve of degree 4

Gm Yes Yes 4.6

4.3 30 0 blow up of (P1)3 at curve of degree (1, 1, 2) Gm Yes Yes 5.21

4.4 32 0

blow up of smooth Fano threefold Y
contained in family �3.19 along proper
transform of conic on quadric Q ⊂ P4

that contains both centers of blow up Y → Q

G2
m Yes Yes 3.3

4.5 32 0
blow up of P1 × P2 along disjoint union

of curves of degree (2, 1) and (1, 0) G2
m No No 3.3, 3.7

4.6 34 0 blow up of P3 along three skew lines PGL2(C) Yes Yes 4.2

4.7 36 0
blow up of W ⊂ P2 × P2 along disjoint

union of curves of degree (0, 1) and (1, 0) GL2(C) Yes Yes 3.3

4.8 38 0 blow up of P1×P1×P1 along curve of degree (0, 1, 1) (Ga ⋊Gm)× PGL2(C) No No 3.3, 3.6, 3.7
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4.9 40 0

blow up of smooth Fano threefold Y
contained in family �3.25 along curve C ∼= P1

that is contracted by blow up Y → P3
PGL(2,2);1(C) No No 3.3, 3.6, 3.7

4.10 42 0 P1 × S7 PGL2(C)× (Ga ⋊Gm)× (Ga ⋊Gm) No No 3.3, 3.6, 3.7

4.11 44 0

blow up of P1 × F1 along curve C ∼= P1

contained in fiber F ∼= F1 of the projection
P1 × F1 → P1 such that C2 = −1 on F

(Ga ⋊Gm)× PGL3;1(C) No No 3.3, 3.6, 3.7

4.12 46 0

blow up of smooth Fano threefold Y
contained in family �2.33 along

two curves contracted by blow up Y → P3
(Ga)

4 ⋊ (GL2(C)×Gm) No No 3.3, 3.6, 3.7

4.13 26 0
blow up of P1 × P1 × P1 along

curve of degree (1, 1, 3)
1
Gm

∃ No
Yes ⋆ Yes ⋆ 5.22

5.1 28 0

blow up of smooth Fano threefold Y
contained in family 2.29 along

three curves contracted by blow up Y → Q
Gm Yes Yes 5.23

5.2 36 0

blow up of smooth Fano threefold Y
contained in family �3.25 along two curves
C1 ̸= C2 contracted by blow up ϕ : Y → P3

that are contained in one ϕ-exceptional surface

GL2(C)×Gm No No 3.3, 3.7

5.3 36 0 P1 × S6 PGL2(C)×G2
m Yes Yes 3.1, 3.3

6.1 30 0 P1 × S5 PGL2(C) Yes Yes 3.1

7.1 24 0 P1 × S4 PGL2(C) Yes Yes 3.1

8.1 18 0 P1 × S3 PGL2(C) Yes Yes 3.1

9.1 12 0 P1 × S2 PGL2(C) Yes Yes 3.1

10.1 6 0 P1 × S1 PGL2(C) Yes Yes 3.1

2
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7. Conclusion

As presented in Table 1, we know which smooth Fano threefolds are K-polystable and
which are not for 71 of the 105 deformation families. For the remaining 34 families,

�1.9, �1.10, �2.1, �2.2, �2.3, �2.4, �2.5, �2.6, �2.7,
�2.8, �2.9, �2.10, �2.11, �2.12, �2.13, �2.14, �2.15, �2.16,
�2.17, �2.18, �2.19, �2.20, �2.21, �2.22, �3.2, �3.3, �3.4,

�3.5, �3.6, �3.7, �3.8, �3.11, �3.12, �4.1,

Main Theorem tells us that the general member is K-polystable. In most cases we expect
that all smooth members are K-polystable. More precisely, all smooth Fano threefolds in
the 27 deformation families

�1.9, �2.1, �2.2, �2.3, �2.4, �2.5, �2.6, �2.7, �2.8,
�2.9, �2.10, �2.11, �2.12, �2.13, �2.14, �2.15, �2.16, �2.17,

�2.18, �2.19, �3.2, �3.3, �3.4, �3.6, �3.7, �3.11, �4.1

have finite automorphism group, and we expect that they are all K-stable. On the other
hand, the 7 remaining families

�1.10, �2.20, �2.21, �2.22, �3.5, �3.8, �3.12

contain both K-polystable and non-K-polystable smooth Fano threefolds. In each of these
cases, we have a conjectural characterization of K-polystability.

7.1. Family �1.10. Members of the 6-dimensional Family �1.10 are often refered to
as Fano threefolds V22 or prime Fano threefolds of genus 12. They can be described as
follows. Set V = C7, and N = C3. For every smooth prime Fano threefold X of genus 12,
there is a net η :

∧2 V → N such that

X ≃ Gr(3, V, η) = {E ∈ Gr(3, V )| ∧2 E ⊂ ker η}.
The general member of this family has finite automorphism group. In Example 4.1.13,

we exhibited a K-stable Fano threefold in this family, and thus concluded that the general
member of the family �1.10 is K-stable, which also follows from [203].

Family �1.10 contains a unique smooth Fano threefold Xa
22 that has non-reductive

automorphism group, namely Ga⋊µ4 [130]. This special member is not K-polystable by
Theorem 1.1.4, but it is K-semistable by [52, Example 1.4].

There is a 1-parameter subfamily in the family �1.10 consisting of smooth Fano three-
folds admitting an effective Gm-action. As explained in Example 4.1.12, all the threefolds
in this subfamily are K-polystable. Together with Xa

22, these are all the smooth Fano
threefolds �1.10 with infinite automorphism group [173]. Among those, there is one with
automorphism group PGL2

(
C
)
, the Mukai–Umemura threefoldXMU

22 , see Example 4.1.12.
It can be constructed as Gr(3, V, η) by taking V to be the irreducible 7-dimensional repre-
sentation s6 of SL2(C) and N to be the 3-dimensional subspace of

∧
V ∗ that is the image

of the Lie algebra under the action; it naturally supports an induced SL2(C)-action.
We know that the general member of the family �1.10 is K-stable, and there are

members of this family that are not K-polystable. The general picture is predicted by
the following conjecture by Donaldson, see [74, Section 5.3] for a GIT interpretation of
this conjecture.

Conjecture 7.1.1 (Donaldson). Let X be a smooth Fano threefold in the family � 1.10.
Then X is K-polystable if and only if one of the following two conditions is satisfied:
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(1) either X admits an effective Gm-action,
(2) or no element of | −KX | has singularities of the form y2 = x3 + t4x or worse.

We discuss this conjecture from yet another perspective. In [155, 154], Mukai gives
several descriptions of prime Fano threefolds of genus 12, and shows that the moduli
space M22 of prime Fano threefolds of genus 12 is birational to the moduli space of plane
quartic curves, see also [184]. Namely, for a smooth prime Fano 3-fold X of genus 12,
the Hilbert scheme of lines of X is a (possibly singular) quartic curve

CX =
{
f(x, y, z) = 0

}
⊂ P2,

and the Fano threefold X can be recovered from the quartic curve CX as the closure of
the variety of its polar hexagons:

X = VSP(CX , 6) =
{
(L1, · · · , L6) ∈ Hilb6(P2)

∣∣ f(x, y, z) = l41 + · · ·+ l46

}
.

Here we write [x : y : z] for coordinates on P2, f(x, y, z) for the homogeneous quartic poly-
nomial defining the curve CX , and li = li(x, y, z) for the linear form defining the line Li.
For instance, if C is the Klein quartic curve, then VSP(C, 6) is the smooth Fano threefold
in the family �1.10 from Example 4.1.13.
If the threefold X is general, then the quartic curve CX is irreducible and nonsingular.

More generally, for every point P ∈ CX , either P is a smooth point of the curve CX
and the corresponding line ℓP ⊂ X has normal bundle NℓP /X

∼= OP1 ⊕ OP1(−1), or P is
a singular point of the curve CX and NℓP /X

∼= OP1(1)⊕OP1(−2).
For the members of the family with infinite automorphism group, we have the following

description of the curve CX .

• If X = Xa
22, then CX is a union of two smooth conics that meet at one point.

• If Aut0(X) ∼= Gm, then the quartic curve CX is a union of two smooth conics that
tangent to each other at two distinct points.

• X is the Mukai–Umemura threefold XMU
22 if and only if CX is a double conic [174].

In view of this correspondence between plane quartic curves and smooth members
of the family �1.10, it is interesting to compare Donaldson’s conjecture with the naive
induced correspondence between GIT of plane quartic curves and K-stability of threefolds.
Indeed, a plane quartic curve is known to be GIT-stable (respectively, strictly polystable)
precisely when it has no worse than A1 or A2 singularities (respectively, if it is a double
conic or 2 conics tangent at 2 points, at least one of which is smooth). In particular,
the members of the family with infinite automorphism group that are K-polystable do
have GIT-polystable Hilbert scheme of lines, while the one that is strictly semistable has
non-GIT-polystable Hilbert scheme of lines.

7.2. Family �2.20. The 3-dimensional family �2.20 contains a unique smooth Fano
threefold X with infinite automorphism group [42]. In Proposition 5.8.12 we showed that
this threefold is K-polystable, and proved that the general Fano threefold in the family
�2.20 is K-stable. It follows from Remark 1.1.18 that there is at least one member of
the family that is not K-polystable. We explicitly exhibit such a non K-polystable in
Lemma 7.2.5 below.

Recall that the Fano threefolds in the family �2.20 can be described as blow ups of
the unique smooth Fano threefold�1.15 described in Example 3.4.1, denoted by V5, along
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twisted cubic curves. In order to draw the conjectural picture of K-polystability for this
family, we describe the Hilbert scheme of twisted cubic curves in V5 following [111, 180].

The SL2(C)-action on V5 has been described in Section 5.10. We use the notation
introduced in the very beginning of that section. Recall from [180, Proposition 2.46] that
the Hilbert scheme of twisted cubic curves in the threefold V5 is SL2(C)-equivariantly
isomorphic to Gr(2, V ). To explain this, note that, as SL2(C)-representations, we have

Sym2(A) = Sym2
(
Sym2(W )

) ∼= V ⊕ I,

where I is the trivial representation. Composing the Veronese map A → Sym2(A) with
the projection V ⊕ I → V induces a SL2(C)-equivariant embedding

η : P2 = P(A) ↪→ P(V ) = P4.

Set S = im(η). Then S ∼= P2, and S ⊂ P4 is an SL2(C)-invariant surface of degree 4.
For later use, we also introduce the smooth rational quartic curve C ⊂ S ⊂ P(V ) that
is the image of the unique SL2(C)-invariant conic in P(A).

Let σ : Y → P4 be the blow up of the surface S . By [180, Remark 2.47], there
exists an SL2(C)-equivariant isomorphism Y ∼= P(U ), where U is the restriction to
the threefold V5 of the tautological vector bundle of the Grassmannian Gr(2, V ). Thus,
we obtain the following SL2(C)-equivariant commutative diagram:

(7.2.1) Y
ϕ

xx

σ

((
V5 P4 = P(V ),

where ϕ : Y → V5 is the induced P1-bundle. Let L be a line in P4 and let CL = ϕ∗(σ
∗(L)).

Then CL is a (possibly singular) twisted cubic curve in V5. Moreover, one can show that
the curve CL is a smooth if and only if L ∩ S = ∅.

Let XL be the blow up of the threefold V5 along the curve CL. Then XL is a possibly
singular Fano threefold�2.20. If the curve CL is smooth, the threefold XL is also smooth.
In this case, we expect that the smooth Fano threefold XL is K-polystable if and only if
the orbit of the line L considered as a point in Gr(2, V ) is GIT-polystable with respect
to the SL2(C)-action.

Next we look at the smooth members of the family �2.20 from a slightly different, but
more explicit, perspective. We fix the quartic curve C4 ⊂ P3 given by [r4 : r3s : rs3 : s4]
for [s : r] ∈ P1. Let G = Aut(P3, C4). Then G contains transformations[

x : y : z : t
]
7→
[
x : sy : s3z : s4t

]
for s ∈ C∗, and G contains the involution τ : [x : y : z : t] 7→ [t : z : y : x]. Since G is
naturally embedded to Aut(C4) ∼= PGL2(C), either G ∼= Gm ⋊ µ2 or G = Aut(C4) [161].
This is impossible, since H0(OP3(1)|C4) is an irreducible representation of Aut(C4), and
the embedding C4 ↪→ P3 is not linearly normal.
The curve C4 is contained in the G-invariant smooth surface S2 ⊂ P3 given by xt = yz.

Let χ : P3 99K P6 be the G-equivariant map given by[
x : y : z : t

]
7→
[
x(xt−yz) : y(xt−yz) : z(xt−yz) : t(xt−yz) : xz2−y2t : x2z−y3 : yt2−z3

]
.

Then χ is well-defined away from C4, and the closure of its image is isomorphic to V5.
Let C2 = χ(S2). Then C2 is the unique G-invariant smooth conic in V5 by Corollary 5.8.8.
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Thus, we have the following G-equivariant commutative diagram:

(7.2.2) Y
π

��

θ

��
P3 χ // V5

where π is a blow up of the twisted quartic curve C4, and θ is a blow up of the conic C2.
Let ℓ be a line in P3, and let Cℓ = θ∗(π

∗(ℓ)). Then Cℓ is a (possibly singular) twisted
cubic curve in V5. Moreover, the curve Cℓ is smooth ⇐⇒ ℓ ∩ C4 = ∅.

Lemma 7.2.3. Every smooth Fano threefold �2.20 can be obtained by blowing up
the threefold V5 along the image of a suitable line ℓ ⊂ P3 such that ℓ ∩ C4 = ∅.

Proof. Let us recall from [180, Proposition 2.32] the identification of the space of conics

in the variety V5 with P(V ∗). For a hyperplane H ⊂ P(V ), let H̃ be the proper transform

of H in the variety Y , and denote by ϖ : H̃ → H be the induced birational morphism.
Then ϖ is the blow up of the hyperplane H along a (possibly singular) quartic curve
H ∩ S , and we can expand diagram (7.2.1) as follows:

Y
ϕ

xx

σ

((
V5 P4 = P(V ).

H̃

ϑ

ff

ϖ // H
?�

OO

where ϑ is the blow up of a (possibly singular) conic CH ⊂ V5. Moreover, one can show
that CH is smooth ⇐⇒ H ∩S is smooth, and all conics in V5 are obtained in this way.

If CH is smooth, then H̃ is a smooth Fano threefold�2.22, and Aut(H̃) ∼= Aut(V5, CH).
In this case, we have the following possibilities:

• The curveH∩S is tangent to the curve C ⊂ S at two points, Aut(H̃) ∼= Gm⋊µ2,

and H̃ is the smooth Fano threefold constructed in Example 4.4.2.
• The curve H∩S is smooth, it is tangent to C ⊂ S at one point, and it intersects

the curve C in two extra points. In this case, Aut(H̃) is finite, and H̃ is the non-
K-polystable smooth Fano threefold �2.22 explicitly described in Section 7.4.

• The curve H ∩ S is smooth, it intersects C ⊂ S transversally, and Aut(H̃) is
finite.

Recall that every every smooth Fano threefold X in Family �2.20 is isomorphic to XL

for some line L ⊂ P(V ) such that L∩S = ∅. Let M be the linear subsystem in |OP4(1)|
consisting of all hyperplanes that contain L. Suppose that M contains a hypeprlane H
such that

(1) H is Gm-invariant for some subgroup Gm ⊂ SL2(C),
(2) the curve H ∩ S is smooth.

Then we can take (P3, C4, ℓ) = (H,H ∩ S , L) in the previous construction, and get that
X is the blow up of the threefold V5 along Cℓ. Notice that if there is a hypeprlane H in
M satisfying (1) and (2) above, then it must be tangent to C at two distinct points. Vice
versa, if M contains a hyperplane that is tangent to C at two distinct points, then this

272



hyperplane is Gm-invariant for the subgroup Gm ⊂ SL2(C) that fixes these two points,
and, moreover, this hyperplane must intersect S along a smooth curve. So, to complete
the proof, it is enough to show that

(⋆) M contains a hyperplane that is tangent to C at two distinct points.

Parameter count shows that (⋆) holds if the line L is general. However, we have to prove
this for every line L in P4 that does not meet the surface S .
The linear system M is a net (a two-dimensional linear system), and L is its base locus.

The restriction M|S is also a net, which does not have base points, since L ∩ S = ∅.
To prove (⋆), it is enough show that M|S contains a smooth curve that is tangent to
the curve C at two distinct points. In fact, it is enough to prove that M|S contains
a curve C such that C|C = 2P +2Q for two distinct points P and Q in the curve C . If we
find such a curve C, then it is automatically smooth, since it is cut out by a hyperplane
in P4.

Now, let us explicitly describe the SL2(C)-action on our P4 = P(V ). To do this, we fix
the embeddings P1 ↪→ P2 given by [u : v] 7→ [u2 : v2 : uv] and P2 ↪→ P5 given by[

x : y : z
]
7→
[
x2 : xz :

xy + 2z2

3
: yz : y2 : xy − z2

]
.

Then we equip both P2 and P5 with the SL2(C)-action such that our explicit embeddings
are SL2(C)-equivariant with respect to the standard action of the group SL2(C) on P1.

Let η : P2 → P4 be the morphism [x : y : z] 7→ [x2 : xz : xy+2z2

3
: yz : y2]. Then η is

a composition of the embedding P2 ↪→ P5 and projection from the SL2(C)-fixed point.
This gives us the SL2(C)-action on P4 such that η is equivariant. This action is given by
the monomorphism SL2(C) ↪→ SL5(C) given by

(
a b
c d

)
7→


a4 4a3b 6a2b2 4ab3 b4

a3c a3d+ 3a2bc 3a2bd+ 3ab2c 3ab2d+ b3c b3d
a2c2 2a2cd+ 2abc2 a2d2 + 4abcd+ b2c2 2abd2 + 2b2cd b2d2

c3a 3ac2d+ bc3 3acd2 + 3bc2d ad3 + 3bcd2 d3b
c4 4c3d 6c2d2 4cd3 d4

 .

It should be pointed out that S = im(η), and the SL2(C)-invariant curve C is given
by the parametrization [u4 : u3v : u2v2 : uv3 : v4], where [u : v] ∈ P1. For simplicity, let
us identify S = P2 via the embedding η. Then C is the conic in P2 given by xy = z2,
and the net M|S is a linear subsystem in |OP2(2)| that consists of conics

λ1x
2 + λ2(xy + 2z2) + λ3y

2 + λ4xz + λ5yz = 0,

where [λ1 : λ2 : λ3 : λ4 : λ5] ∈ P4. Then M|C is also a net, since M|S does not contain C .
Hence, to prove (⋆), it is enough show that the net M|C contains a divisor 2P + 2Q,
where P and Q are two distinct points in C . Suppose that the latter assertion is wrong.

Applying Lemma A.7.5, we see that the net M|C contains divisors 4P , 4Q and 3P +Q,
where P and Q are two distinct points in C . Since SL2(C) acts transitively on pairs of
distinct points in C , we may assume P = [0 : 1 : 0] and Q = [1 : 0 : 0]. Then 4P is cut
out on C by x2 = 0, 4Q is cut out by y2 = 0, and 3P + Q is cut out by xz = 0. Since
the net M|S is uniquely determined by the net M|C , we see that M|S is the net

µ1x
2 + µ2y

2 + µ3xz = 0,

where [µ1 : µ2 : µ3] ∈ P2. But this net contains a base point, which is a contradiction. □
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Remark 7.2.4. The choice of the line ℓ in Lemma 7.2.3 is not unique even up to G-action.
For instance, the following 4 distinct lines in P4 lie in different G-orbits:

(1) the line that passes through [12 : 0 : 3 : −12] and [0 : 3 : 0 : −3 : 12],
(2) the line that passes through [−48 : 12− 3 : 51] and [48 : −12 : 0 : −9 : 21],
(3) the line that passes through the points[

144+96
√
5 : −36 : 21−12

√
5 : 63−30

√
5
]
,
[
240+48

√
5 : −12

√
5+36 : −21+15

√
5 : −39+21

√
5
]
,

(4) the line that passes through the points[
1008−480

√
5 : −84+48

√
5 : 9 : 9+6

√
5
]
,
[
624−336

√
5 : −84+60

√
5 : 9−3

√
5 : −15−3

√
5
]
,

Moreover, they all are disjoint from the curve C4. On the other hand, one can show that
the corresponding smooth Fano threefolds �2.20 are isomorphic.

Let Xℓ be a blow up of the threefold V5 at the curve Cℓ. If Cℓ is smooth, then Xℓ is
a smooth Fano threefold�2.20. In this case, we expect that Xℓ is K-polystable if and only
if the G-orbit of the line ℓ considered as a point in Gr(2, 4) is GIT-polystable with respect
to the induced G-action. In the table below, we list all lines that are not GIT-stable:

Line ℓ Equation GIT-stability Cℓ

Lx,t x = t = 0 polystable smooth twisted cubic

Ly,z y = z = 0 polystable
union of a good line and two bad lines

such that bad lines intersect the good line

L1(a, b) x = t− ay − bz = 0 strictly semistable smooth twisted cubic

L2(a, b) t = x− ay − bz = 0 strictly semistable smooth twisted cubic

L3(a, b) y − ax = z − bx = 0 strictly semistable union of a conic and a bad line

L4(a, b) z − at = y − bt = 0 strictly semistable union of a conic and a bad line

Lx,z x = z = 0 unstable union of the conic C2 and a bad line

Ly,t y = t = 0 unstable union of the conic C2 and a bad line

Lx,y x = y = 0 unstable triple bad line

Lz,t z = t = 0 unstable triple bad line

Here, we assume that (a, b) ∈ C2 \ (0, 0) and we use conventions from Section 5.10.
If ℓ = Lx,t, then Xℓ is the unique smooth Fano threefold in the family �2.20 that has

an infinite automorphism group. This threefold is K-polystable by Proposition 5.8.12.

Lemma 7.2.5. Let ℓ = L1(a, b) or ℓ = L2(a, b). Then Xℓ is strictly K-semistable.

Proof. This immediately follows from Proposition 5.8.12 and Corollary 1.1.14. □

Our conjecture says that all smooth Fano threefolds in Family�2.20 other than the ones
from Lemma 7.2.5 are K-polystable. This conjecture cannot be extended to singular
threefolds: if ℓ is given by t− y = x− z = 0, then ℓ is GIT-stable, but ψ(ℓ) is a point, so
that Cℓ is a union of three lines that met at ψ(ℓ), and Xℓ is K-unstable by Lemma 5.8.1.
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7.3. Family �2.21. Smooth Fano threefolds of the 2-dimensional family �2.21 can be
described as blow ups of the smooth quadric threefold in P4 along a twisted quartic curve.
By [42, Lemma 9.2], the general member of this family has finite automorphism group,
and all smooth members that have infinite automorphism groups can be described as
follows.

(1) There is a one-dimensional subfamily in the family �2.21 consisting of smooth
threefolds admitting an effective Gm-action, see Section 5.9 for their description.

(2) There exists a unique smooth Fano threefold Xa in the family with non-reductive
automorphism group, and Aut0(Xa) ∼= Ga.

(3) There is a unique threefold X in the family with Aut0(X) ∼= PGL2

(
C
)
.

The threefold Xa in (2) is not K-polystable by Theorem 1.1.4. On the other hand, we
showed in Section 5.9 that all remaining smooth Fano threefolds �2.21 that have infinite
automorphism groups are K-polystable, and concluded in Corollary 4.2.3 that the general
smooth Fano threefold in family �2.21 is K-stable.

In order to draw the conjectural picture of K-polystability for this family, let us fix
the standard SL2(C)-action onW = C2, set V = Sym4(W ), let Z be the SL2(C)-invariant
twisted quartic curve in P4 = P(V ), which is given by [u : v] 7→ [v4 : uv3 : u2v2 : u3v : u4].
Then Z is given by the vanishing of the following quadratic forms:

f0 = x23 − x2x4, f1 = x2x3 − x1x4, f2 = x22 − x0x4,

f3 = x1x2 − x0x3, f4 = x21 − x0x2, f5 = 3x22 − 4x1x3 + x0x4.

Let Q be a (possibly singular) quadric threefold in P4 that contains the quartic curve Z,
and let π : X → Q be the blow up of the quadric Q along Z. Then Q is given by

s0f0 + s1f1 + s2f2 + s3f3 + s4f4 + s5f5 = 0

for some [s0 : s1 : s2 : s3 : s4 : s5] ∈ P(V ⊕ C). Applying Lemma A.7.3 to P(V ⊕ C)
equipped with a natural action of the group PGL2(C), we see that X is GIT-stable except
for the seven cases described in the table below.

Case Equation of Q Is X GIT-semistable? Aut0(X) Is Q smooth?

(0) f5 = 0 GIT-polystable PGL2(C) Yes

(1) 3f2 + λf5 = 0, λ ∈ C GIT-polystable Gm Yes if λ ̸∈ {0,−1, 3}

(2) f0 = 0 GIT-unstable Ga ⋊Gm No

(2′) f0 + f5 = 0 strictly GIT-semistable Ga Yes

(3a) f0 + 3f2 + λf5 = 0, λ ∈ C GIT-semistable 1 Yes if λ ̸∈ {0,−1, 3}

(3b) f1 = 0 GIT-unstable Gm No

(3b′) f1 + f5 = 0 strictly GIT-semistable 1 Yes

If Q is smooth (so that X is smooth as well), we expect that X is K-polystable if and
only if the threefold X is GIT-polystable. We point out that [164, Theorem 3.4] implies
the (⇒)-direction of this conjecture, which also follows from Corollary 1.1.14.
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7.4. Family�2.22. Let X be a smooth Fano threefold in the 1-parameter family�2.22.
Then X can be described both as the blow up of P3 along a smooth twisted quartic curve,
and the blow up of V5, the unique smooth threefold �1.15, along a smooth conic. More
precisely, there is a smooth twisted quartic curve C4 ⊂ P3, a smooth conic C ⊂ V5, and
a commutative diagram

X
π

~~

ϕ

  
P3 ψ // V5,

where π is the blow up of C4 ⊂ P3, ϕ is the blow up of C ⊂ V5, V5 is embedded in P6 as
described in Section 5.10, and ψ is given by the linear system of cubics containing C4.
The curve C4 is contained in a unique smooth quadric surface S2 ⊂ P3, and ϕ contracts

the proper transform of this surface. Note that Aut(X) ∼= Aut(P3, C4) ∼= Aut(S2, C4).
Choosing appropriate coordinates on P3, we may assume that S2 is given by x0x3 = x1x2,
where x0, x1, x2, x3 are coordinates on P3. Fix the isomorphism S2

∼= P1 × P1 given by(
[u : v], [x : y]

)
7→
[
xu : xv : yu : yx

]
,

where ([u : v], [x : y]) are coordinates in P1×P1. Swapping [u : v] and [x : y] if necessary, we
may assume that C4 is a curve of degree (1, 3) in S2, so that C4 = {uf3(x, y) = vg3(x, y)},
where f3(x, y) and g3(x, y) are co-prime cubic forms.

The projection ([u : v], [x : y]) 7→ [u : v] gives a triple cover C4 → P1, which is ramified
in at least two points. Hence, after an appropriate change of coordinates [u : v], we may
assume that this triple cover is ramified over the points [1 : 0] and [0 : 1]. This means
that both forms f3(x, y) and g3(x, y) have multiple roots. Hence, changing coordinates
[x : y] if necessary, we may assume that these roots are [0 : 1] and [1 : 0], respectively.
Keeping in mind that C4 is smooth, we see that C4 = {u(x3 + ax2y) = v(y3 + by2x)} for
some complex numbers a and b, after a suitable scaling of the coordinates. If a = b = 0,
then the curve C4 is given by ux3 = vy3, so that Aut(X) ∼= Gm⋊µ2, and X is the unique
smooth Fano threefold �2.22 with an infinite automorphism group [42]. In this case, we
know that X is K-polystable (see Section 4.4).

If a = 0 and b ̸= 0, we can scale the coordinates ([u : v], [x : y]) further and assume
that the curve C4 is given by

(7.4.1) ux3 = v
(
y3 + y2x

)
.

If a ̸= 0 and b = 0, then we can scale the coordinates and swap them to put the defining
equation of the curve C4 into (7.4.1). In this case, we have

Lemma 7.4.2. If C4 is given by (7.4.1), then X is strictly K-semistable.

Proof. This follows from Corollary 1.1.14, cf. the proof of Corollary 4.7.7. □

Hence, to solve the Calabi Problem for every smooth threefold in the family �2.22,
we may assume that a ̸= 0 and b ̸= 0. Therefore, scaling further the coordinates on S2,
we may assume that C4 = {u(x3+λx2y) = v(y3+λy2x)} for some λ ∈ C∗. Then λ ̸= ±1,
since C4 is smooth. Moreover, if λ = ±3, then we can change our coordinates such that
C4 is given by (7.4.1). Hence, we may also assume that λ ̸= ±3. We believe that X is
K-stable for all remaining values of the parameter λ. By Proposition 4.4.1, we know that
X is K-stable if λ is general. We remark that by taking λ = ±

√
3, we obtain the smooth

Fano threefold �2.22 with automorphism group A4 described in Example 4.4.6
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7.5. Family �3.5. Let X be a smooth Fano threefold in the 5-parameter family �3.5.
Then X can be described as the blow up of P1 × P2 along a curveof degree (5, 2). To
describe X explicitly, let S = P1 × P1, and let C be a smooth curve in S of degree (1, 5).
Arguing as in Section 7.4, we can choose coordinates ([u : v], [x : y]) on the surface S such
that the curve C is given by the following equation:

u
(
x5 + a1x

4y + a2x
3y2 + a3x

2y3
)
+ v
(
y5 + b1y

4x+ b2y
3x2 + b3y

2x3
)
= 0,

where a1, a2, a3, b1, b2, b3 are some complex numbers. The shape of this equation simply
means that the point ([1 : 0], [0 : 1]) and the point ([0 : 1], [1 : 0]) are among ramifications
points of the finite degree five cover η : C → P1 that is given by ([u : v], [x : y]) 7→ [u : v].
Note that the ramification index of the point ([1 : 0], [0 : 1]) is

2 if a3 ̸= 0,

3 if a3 = 0 and a2 ̸= 0,

4 if a3 = a2 = 0 and a1 ̸= 0,

5 if a3 = a2 = a1 = 0.

Similarly, the ramification index of the point ([0 : 1], [1 : 0]) is
2 if b3 ̸= 0,

3 if b3 = 0 and b2 ̸= 0,

4 if b3 = b2 = 0 and b1 ̸= 0,

5 if b3 = b2 = b1 = 0.

Without loss of generality, we may assume that ([1 : 0], [0 : 1]) has the largest ramification
index among all ramifications points of the morphism η : C → P1, and the ramification
index of the point ([0 : 1], [1 : 0]) is the second largest index. If both these indices are 5,
then a1 = a2 = a3 = b1 = b2 = b3 = 0, so that η does not have other ramification points,
and the equation of the curve C simplifies as ux5+vy5 = 0, so that Aut(S,C) ∼= Gm⋊µ2.
In all other cases, Aut(S,C) is finite by [42, Corollary 2.7].

Consider the Aut(S)-equivariant embedding S ↪→ P1 × P2 given by(
[u : v], [x : y]

)
7→
(
[u : v], [x2 : xy : y2]

)
,

which gives an embedding Aut(S) ↪→ Aut(P1 × P2). Let us identify S and C with their
images in P1×P2, and let us identify Aut(S) with a subgroup of the group Aut(P1×P2).
Then C is a smooth curve of degree (5, 2) in P1 × P2.
Let π : X → P1 × P2 be the blow up of the curve C. Then X is a Fano threefold �3.5,

and every smooth Fano threefold in this deformation family can be obtained in this way.
Since the Aut(S,C)-action lifts to X, we identify Aut(S,C) with a subgroup in Aut(X).
Arguing as in the proof of [42, Lemma 8.7], we get Aut(X) = Aut(S,C).
If a1 = a2 = a3 = b1 = b2 = b3 = 0, the threefold X is K-polystable by Corollary 5.14.8.

In Section 5.14, we proved that X is K-stable for a general choice of a1, a2, a3, b1, b2, b3.
On the other hand, arguing as in the proof of Corollary 4.7.7, we obtain

Lemma 7.5.1. Let (a1, a2, a3) = (0, 0, 0) ̸= (b1, b2, b3). Then X is strictly K-semistable.

Proof. Take λ ∈ C. Let Cλ be the curve in S given by

ux5 + v
(
y5 + λb1xy

4 + λ2b2x
2y3 + λ3b3x

3y2
)
= 0,
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and let Xλ be the Fano threefold�3.5 obtained by blowing up P1×P2 along the curve Cλ.
We know that X0 is K-polystable. On the other hand, we have Xλ

∼= X for every λ ̸= 0.
This gives a test configuration for X, whose special fiber is a K-polystable Fano threefold.
Then X is strictly K-semistable by Corollary 1.1.14. □

If (a1, a2, a3) ̸= (0, 0, 0), then we must have (b1, b2, b3) ̸= (0, 0, 0) by our assumption on
the ramification indices. We believe that X is always K-stable in this case. Let us restate
this conjecture in a coordinate-free language.

Let R be the effective divisor on C that is the ramification divisor of the finite cover η,
let P1 = ([1 : 0], [0 : 1]) and P2 = ([0 : 1], [1 : 0]). Then P1, P2 ∈ Supp(R), so that

R = n1P1 + n2P2 + n3P3 + n4P4 + n5P5 + · · ·+ nkPk︸ ︷︷ ︸
zero ⇐⇒ a1 = a2 = a3 = b1 = b2 = b3 = 0

for some points P3, . . . , Pk in the curve C, and some integers n1, n2, . . . , nk in {1, 2, 3, 4}.
Keeping in mind our assumptions on the ramification indices, we may further assume that
n1 ⩾ n2 ⩾ n3 ⩾ · · · ⩾ nk. By the Riemann–Hurwitz formula, we have n1 + · · ·+ nk = 8.
If the curve C is general, then k = 8 and n1 = n2 = n3 = · · · = nk = 1. Note that n1 = 4
if and only if a1 = a2 = a3 = 0. Similarly, we have a1 = a2 = a3 = b1 = b2 = b3 = 0 if
and only if R = 4(P1 + P2). If n1 = 4, then the log Fano curve (C, 1

5
R) is K-polystable if

and only if R = 4(P1 + P2) by [93, Corollary 1.6]. Likewise, if n1 ⩽ 3, then the log Fano
curve (C, 1

5
R) is K-stable. Thus, we can translate our conjecture as follows:

(1) X is K-polystable ⇐⇒ the log Fano curve (C, 1
5
R) is K-polystable;

(2) X is K-stable ⇐⇒ the log Fano curve (C, 1
5
R) is K-stable.

Observe that p1 ◦ π : X → P1 is a fibration by del Pezzo surfaces of degree 4, and each
singular fiber of this fibration is a normal del Pezzo surface that has Du Val singularities.
We can also restate our conjecture as follows: X is K-stable ⇐⇒ the singular fibers of
p1 ◦ π have singular points of type A1, A2 or A3. The (⇒)-direction of this conjecture
holds by Lemma 7.5.1.

7.6. Family �3.8. Let X be a smooth Fano threefold in the 3-parameter family �3.8.
Then X can be described as the blow up of P1 × P2 along a curve of degree (4, 2).
The explicit description of X is similar to that of family �3.5, so that we omit details.
Let S = P1 × P1, and let C be a smooth curve in S that is given by

u
(
x4 + a1x

3y + a2x
2y2
)
+ v
(
y4 + b1y

3x+ b2y
2x2
)
= 0

for some complex numbers a1, a2, b1, b2, where ([u : v], [x : y]) are coordinates on S.
Identify S and C with subvarieties in P1 × P2 via the embedding S ↪→ P1 × P2 given by(

[u : v], [x : y]
)
7→
(
[u : v], [x2 : xy : y2]

)
.

Let π : X → P1×P2 be the blow up along the curve C. Then X is a Fano threefold �3.8,
and every smooth Fano threefold in this deformation family can be obtained in this way.

If a1 = a2 = b1 = b2 = 0, then Aut(X) ∼= Gm ⋊ µ2, so that X is the unique smooth
threefold in the deformation family �3.8 that has an infinite automorphism group [42].
In this case, the threefold X is K-polystable by Proposition 5.16.4 and Remark 5.16.5.
In other cases, the group Aut(X) is finite, so that X is K-polystable ⇐⇒ it is K-stable.

Lemma 7.6.1. Let a1 = a2 = 0 and (b1, b2) ̸= (0, 0). Then X is strictly K-semistable.

Proof. See the proof of Lemma 7.5.1. □
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Let η : C → P1 be the quadruple cover given by the projection ([u : v], [x : y]) 7→ [u : v],
and let R be its ramification divisor. Write

R =
k∑
i=1

niPi,

where P1, P2, . . . , Pk are points in the curve C, and n1, n2, . . . , nk are integers in {1, 2, 3}.
Note that n1 + · · · + nk = 6, and Supp(R) contains ([1 : 0], [0 : 1]) and ([0 : 1], [1 : 0]).
Therefore, if k = 2, then n1 = 3 and n2 = 3, so that R = 3([1 : 0], [0 : 1])+3([0 : 1], [1 : 0]),
which means that a1 = a2 = b1 = b2 = 0. We know that X is K-polystable in this case.
Vice versa, if k > 2, then Aut(X) is finite, so that X is K-polystable ⇐⇒ it is K-stable.
Moreover, we expect that the Fano threefold X is K-stable if and only if ramification
indices of all ramification points of η are at most 3. We can restate this as follows:

X is K-stable ⇐⇒ each ni ⩽ 2 ⇐⇒ the log Fano curve
(
C, 1

4
R
)
is K-stable.

Alternatively, we can also restate this as follows: X is K-stable ⇐⇒ the singular fibers
of p1 ◦ π have singular points of type A1 or A2. Note that p1 ◦ π : X → P1 is a fibration
into del Pezzo surfaces of degree 5.

7.7. Family�3.12. Let X be a smooth Fano threefold in the 1-parameter family�3.12.
Then X can be described as the blow up of P1 × P2 along a curve of degree (3, 2). To
describe X explicitly, let S = P1 × P1, and let C be a smooth curve in S of degree (1, 3).
In Section 7.4, we showed that we can choose coordinates ([u : v], [x : y]) on S such that
the curve C is given by one of the following three equations:

(1) ux3 + vy3 = 0,
(2) ux3 + v(y3 + y2x) = 0,
(3) u(x3 + λx2y) + v(y3 + λy2x) = 0, where λ ∈ C∗ such that λ ̸= ±1 and λ ̸= ±3.

As in Sections 7.5 and 7.6, we identify S and C with subvarieties in P1×P2 using the em-
bedding S ↪→ P1×P2 given by ([u : v], [x : y]) 7→ ([u : v], [x2 : xy : y2]). Let π : X → P1×P2

be the blow up of the curve C. ThenX is a Fano threefold�3.12. Moreover, every smooth
Fano threefold in this family can be obtained in this way.

If C is given by ux3+vy3 = 0, then Aut(X) ∼= Gm⋊µ2, so that X is the unique smooth
threefold in the deformation family �3.12 that has an infinite automorphism group [42].
In this case, the threefold X is K-polystable by Proposition 5.18.2.

If C is given by ux3 + v(y3 + y2x) = 0, then, arguing as in the proof of Lemma 7.5.1,
we see that X is strictly K-semistable, so that, in particular, X is not K-polystable.

In the remaining case, we believe that the threefoldX is K-stable for all λ ̸∈ {0,±1,±3}.
In this case, the fibration p1 ◦ π : X → P1 has exactly four singular fibers, and each of
them has one singular point, which is an ordinary node.

We can describe X as a blow up of P3 along the line x0 = x3 = 0 and the twisted cubic{
x0x2 − x21 + ax1x3 = 0, x1x3 − x22 − ax23 + bx0x2 = 0, x0x3 − x1x2 + bx0x1 = 0

}
,

where a and b are some complex numbers. If a = 0 and b = 0, then X is the K-polystable
threefold with Aut(X) ∼= Gm ⋊ µ2. Vice versa if a = 0 or b = 0 (but not both), then we
can scale the coordinates appropriately and assume that b = 1 or a = 1, respectively, Up
to isomorphism, this gives us one special smooth Fano threefolds �3.12. This threefold is
our strictly K-semistable smooth Fano threefold �3.12 described above. Our conjecture
says that all other smooth Fano threefolds in this family are K-stable.
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Appendix A. Technical results used in the proof of Main Theorem

A.1. Nadel’s vanishing and Kollár–Shokurov connectedness. In this short section,
we present one important result, known as Nadel’s vanishing, and some of its corollaries.
To state it, we remind basics facts about singularities of pairs following [58, 123, 124, 126].

Let X be a normal variety such that KX is a Q-Cartier divisor, let π : X̂ → X be its
resolution of singularities. Denote the π-exceptional divisors by E1, . . . , Em. Then

(A.1.1) KX̂ +
m∑
i=1

eiEi ∼Q π
∗(KX

)
for some rational numbers e1, . . . , em. For each i ∈ {1, . . . ,m}, we let AX(Ei) = 1 − ei
and say that AX(Ei) is the log discrepancy of the divisor Ei. We say that

• X has terminal singularities if each ei < 0,
• X has canonical singularities if each ei ⩽ 0,
• X has Kawamata log terminal singularities if each ei < −1,
• X has log canonical singularities if each ei ⩽ −1.

One can show that these definitions do not depend on the choice of the morphism π.
If X is smooth, then its singularities are terminal. Moreover, if X is a surface, then

X is smooth if and only if it has terminal singularities. Similarly, if X is a surface, then
it has canonical singularities if and only if X has Du Val singularities. Likewise, if X
is a surface, then it follows from [124, Theorem 3.6] that X has Kawamata log terminal
singularities if and only if X has quotient singularities. In all dimensions, Kawamata log
terminal singularities are rational by [124, Theorem 11.1]. Starting from now, we assume
that the variety X has Kawamata log terminal singularities.

Let BX be an effective Q-divisor on X. Then

(A.1.2) BX =
r∑
i=1

aiBi,

where each Bi is a prime Weil divisor on X, and each ai is a non-negative rational number.
We say that (X,BX) is a log pair, BX is its boundary, and KX +BX is its log canonical
divisor. Let us define singularity classes for the log pair (X,BX) following [124, 126].

Let B̂1, . . . , B̂r be the proper transforms on X̂ of the divisors B1, . . . , Br, respectively.

Let us also replace (if necessarily) the resolution of singularities π : X̂ → X by a slightly
better one such that the divisor

r∑
i=1

B̂i +
m∑
i=1

Ei

has simple normal crossing singularities. Such resolution of singularities exists [110, 125],
and it is often called a log resolution of the log pair (X,BX). Suppose, in addition, that
the divisor BX is a Q-Cartier divisor. Then there are rational numbers d1, . . . , dm such
that

(A.1.3) KX̂ +
r∑
i=1

aiB̂i +
m∑
i=1

diEi ∼Q π
∗(KX +BX

)
.
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Using this, we define the log pull back of the pair (X,BX) as follows:(
X̂,

r∑
i=1

aiB̂i +
m∑
i=1

diEi

)
This new log pair is often denoted as (X̂, BX̂). We say that

• (X,BX) has Kawamata log terminal singularities if each ai < 1 and each dj < 1,
• (X,BX) has log canonical singularities if each ai ⩽ 1 and each dj ⩽ 1.

Both these definitions do not depend on the choice of the log resolution π : X̂ → X.
Moreover, it is easy to check (using definition) that (X,BX) has log canonical singularities

if and only if (X̂, BX̂) has log canonical singularities. Note that BX̂ is not always effective.
Nevertheless, our definition still works in this case. Similarly, one can show that the log

pair (X,BX) has Kawamata log terminal singularities if and only if the log pair (X̂, BX̂)
has Kawamata log terminal singularities.

Let P be a point in X. Then we can localize our definitions of singularities at this point.
Namely, we say that the pair (X,BX) has log canonical singularities at P if the following
two conditions are satisfied:

• for every B̂i in (A.1.3) such that P ∈ Bi, one has ai ⩽ 1,
• for every Ei in (A.1.3) such that P ∈ π(Ei), one has di ⩽ 1.

Likewise, we say that the log pair (X,BX) has Kawamata log terminal singularities at
the point P if the following two conditions are satisfied:

• for every B̂i in (A.1.3) such that P ∈ Bi, one has ai < 1,
• for every Ei in (A.1.3) such that P ∈ π(Ei), one has di < 1.

Lemma A.1.4. Suppose that X is smooth at P . Then the following assertions hold:

(i) if multP (BX) ⩽ 1, then (X,BX) is log canonical at P ;
(ii) if multP (BX) < 1, then (X,BX) is Kawamata log terminal at P ;
(iii) if multP (BX) > dim(X), then (X,BX) is not log canonical at P ;
(iv) if multP (BX) ⩾ dim(X), then (X,BX) is not Kawamata log terminal at P .

Proof. This is [124, Lemma 8.10] and [58, Exercise 6.18]. □

Example A.1.5. Suppose that X = P2. Let ℓ be a line in X. Then −KX ∼ 3ℓ, so
that α(X) ⩽ 1

3
. If α(X) < 1

3
, there is an effective divisor BX on the surface X such that

the log pair (X,BX) is not log canonical at a point P ∈ X, and BX ∼Q −λKX for some
positive rational number λ < 1

3
. Now, choosing ℓ to be a general line containing P , we

get 1 > 3λ = BX · ℓ ⩾ multP
(
BX

)
> 1 by Lemma A.1.4. This shows that α(X) = 1

3
.

To measure how far is the log pair (X,BX) from being log canonical, we can use
the following number, which is called log canonical threshold:

lct(X,BX) = sup
{
λ ∈ Q>0

∣∣ (X,λBX) has log canonical singularities
}
.

We can localize it at point P ∈ X as follows:

lctP (X,BX) = sup
{
λ ∈ Q>0

∣∣ (X,λBX) has log canonical singularities at P
}
.

Similarly, if Z is an irreducible subvariety of the variety X, we let

lctZ(X,BX) = sup
{
λ ∈ Q>0

∣∣ (X,λBX) is log canonical at every point in Z
}
.
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Now, let us denote by Nklt(X,BX) the subset in X consisting of all points where
the singularities of the pair (X,BX) are not Kawamata log terminal. To be precise, let

Nklt
(
X,BX

)
=

(⋃
ai⩾1

Bi

)⋃(⋃
di⩾1

π
(
Ei
))

⊊ X.

This locus has been introduced in [188, Definition 3.14] as the locus of log canonical
singularities of the log pair (X,BX). Because of this, it is often denoted by LCS(X,BX).
Observe that Nklt(X,BX) = ∅ ⇐⇒ (X,BX) has Kawamata log terminal singularities.
The locus Nktl(X,BX) can be equipped with a subscheme structure as follows: let

I
(
X,BX

)
= π∗

(
OX̂

(
−

m∑
i=1

⌊di⌋Ei −
r∑
i=1

⌊ai⌋Bi

))
.

Since the Q-divisor BX is assumed to be effective, I(X,BX) is an ideal sheaf [131, § 9.2],
which is commonly known as the multiplier ideal sheaf of the log pair (X,BX).
Since I(X,BX) is an ideal sheaf, it defines some subscheme of the variety X, which we

denote by L(X,BX). The subscheme L(X,BX) is usually called the log canonical singu-
larities subscheme of the log pair (X,BX). Note that Supp(L(X,BX)) = Nklt(X,BX). If
(X,BX) has log canonical singularities, then L(X,BX) is reduced (possibly empty).

Theorem A.1.6 ([131, Theorem 9.4.8]). Let D be an arbitrary Cartier divisor on X, and
let H be some nef and big Q-divisor on the variety X. Suppose that D ∼Q KX +BX +H.
Then H i(OX(D)⊗ I(X,BX)) = 0 for every i ⩾ 1.

Theorem A.1.6, known as Nadel’s vanishing theorem or simply Nadel’s vanishing [157],
implies the following result, which is known as Kollár–Shokurov connectedness theorem
or simply Kollár–Shokurov connectedness [188, 123].

Corollary A.1.7. If −(KX +BX) is big and nef, then Nklt(X,BX) is connected.

Proof. See the proof of Corollary A.1.9 below. □

This result is [188, Connectedness Lemma], [124, Theorem 17.4], [126, Corollary 5.49].

Example A.1.8. Suppose X = P1 × P1. Then α(X) ⩽ 1
2
, since −KX ∼ 2ℓ1 +2ℓ2, where

ℓ1 and ℓ2 are curves in X of degree (1, 0) and (0, 1), respectively. If α(X) < 1
2
, there exists

an effective divisor BX on the surface X such that the pair (X,BX) is not log canonical at
a point P ∈ X, and BX ∼Q −λKX for some positive rational number λ < 1

2
. In this case,

intersecting BX with ℓ1 and ℓ2, we see that the locus Nklt(X,BX) is zero-dimensional, so
that Nklt(X,BX) = P by Corollary A.1.7, which implies that Nklt(X, ℓ1 +BX) = ℓ1 ∪P .
But Nklt(X, ℓ1 + BX) is connected by Corollary A.1.7. Thus, choosing ℓ1 not passing
through the point P , we obtain a contradiction. This shows that α(X) = 1

2
.

Let us present more corollaries of Theorem A.1.6.

Corollary A.1.9. Let us use assumptions and notations introduced in Theorem A.1.6.
Let Σ be the union of zero-dimensional irreducible components of the locus Nklt(X,BX).
Then Σ contains at most h0(OX(D)) points of the variety X.

Proof. Let L = L(X,BX). Using the exact sequence of sheaves

0 −→ OX(D)⊗ I(X,BX) −→ OX(D) −→ OL ⊗OX(D) −→ 0,
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and applying Theorem A.1.6, we obtain the surjection

H0
(
OX(D)

)
↠ H0

(
OL ⊗OX(D)

)
,

which gives |Σ| ⩽ h0(OL ⊗OX(D)) ⩽ h0(OX(D)) as required. □

Corollary A.1.10. Let us use assumptions and notations introduced in Theorem A.1.6.
If the locus Nklt(X,BX) is a finite set, then |Nklt(X,BX)| ⩽ h0(OX(D)).

Corollary A.1.11. Let M be a non-empty linear system on X that is base point free,
let M be a general divisor in M, let Z be a union of some one-dimensional irreducible
components of the locus Nklt(X,BX), and let DM be a Cartier divisor on M such that

DM ∼Q KM +BX

∣∣
M

+HM

for some nef and big Q-divisor HM on the variety M . Then M · Z ⩽ h0(M,OM(DM)).

Proof. First, we observe that M is normal and has Kawamata log terminal singularities.
But (M,BX |M) is not Kawamata log terminal at every point of the intersection Z ∩M .
Moreover, these points are isolated components of the locus Nklt(M,BX |M), so that it
follows from Corollary A.1.9 that M · Z = |M ∩ Z| ⩽ h0(M,OM(DM)). □

Corollary A.1.12. Let M be a non-empty base point free linear system on the variety X,
let M be a general divisor in M, let Z be a union of some one-dimensional irreducible
components of Nklt(X,BX). Suppose that −KX is nef and big, and BX ∼Q −λKX for
some rational number λ < 1. Then M · Z ⩽ h0(S,OM(M |M)).

Proof. Apply Corollary A.1.11 with HM = −(1− λ)KX |M . □

Corollary A.1.13. Suppose X = P3 and BX ∼Q −λKX for some rational number λ < 3
4
.

Let Z be the union of one-dimensional components of Nklt(X,BX). Then OP3(1) ·Z ⩽ 1.

Proof. Apply Corollary A.1.11 with M = |OP3(1)| and DM = OM . □

Corollary A.1.14. Suppose that X is a smooth Fano threefold such that −KX ∼ 2H for
some ample Cartier divisor H on it, and BX ∼Q −λKX for some rational number λ < 1.
Let Z be the union of one-dimensional components of Nklt(X,BX). Then H ·Z ⩽ H3+1.

Proof. Observe that H is a smooth del Pezzo surface, −KH ∼ H|H and

h0
(
H,OH(−KH)

)
= K2

H + 1 = H3 + 1.

Thus, we can apply Corollary A.1.12 with M = |H|. □

Corollary A.1.15. Suppose that −KX is nef and big, BX ∼Q −λKX for some rational
number λ < 1, and there exists a surjective morphism with connected fibers ϕ : X → P1.
Set H = ϕ∗(OP1(1)). Let Z be the union of one-dimensional components of Nklt(X,λBX).
Then H · Z ⩽ 1.

Proof. Apply Corollary A.1.11 with M = |H| and DM = OM . □

Corollary A.1.16. Suppose that −KX is nef and big, BX ∼Q −λKX for some rational
number λ < 1, and there exists a surjective morphism with connected fibers ϕ : X → P2.
Set H = ϕ∗(OP2(1)). Let Z be the union of one-dimensional components of Nklt(X,λBX).
Then H · Z ⩽ 2.

Proof. Apply Corollary A.1.11 with M = |H| and DM =M |M . □
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Let us conclude this section by the following known application of Theorem A.1.6.

Corollary A.1.17. Suppose that −(KX+BX) is nef and big, and dim(Nklt(X,BX)) = 1.
Then the locus Nklt(X,BX) has the following properties:

(o) the locus Nklt(X,BX) is connected,
(i) each its irreducible component is isomorphic to P1,
(ii) any two intersecting irreducible components intersect transversally by one point,
(iii) no three irreducible components intersects at one point,
(iv) no irreducible components form a cycle.

Proof. Note that assertion (o) follows from Corollary A.1.7, and all other assertions follow
from [157, Theorem 4.1]. For the convenience of the reader, let us prove assertion (i), which
also follows from [87, Theorem 6.3.5].

Let C be an irreducible component of the locus Nklt(X,BX), let IC be its ideal sheaf,
let J = I(X,BX), and let L = L(X,BX). Then J ⊆ IC , while L is one-dimensional.
But h1(X,J ) = 0 and h2(X,J ) = 0 by Theorem A.1.6. Hence, using the exact sequence

0 −→ J −→ OX −→ OL −→ 0,

we get the following exact sequence of cohomology groups:

0 = H1
(
OX

)
−→ H1

(
OL
)
−→ H2

(
J
)
= 0,

which gives h1(OL) = 0. Now, looking at the exact sequence of sheaves

0 −→ IC/J −→ OL −→ OC −→ 0

on the subscheme L, we get the following exact sequence of cohomology groups:

0 = H1
(
OL
)
−→ H1

(
OC

)
−→ H2

(
IC/J

)
,

where h2(IC/J ) = 0, because L is one-dimensional. Thus, we see that h1(OC) = 0, which
implies that C is a smooth rational curve (see [157, Section 4] for details). □

A.2. Inversion of adjunction and Kawamata’s subadjunction. Let X be a normal
projective variety that has Kawamata log terminal singularities, and let BX be an effective
Q-divisor on the variety X that is given by (A.1.2). The following result is commonly
known as the inversion of adjunction.

Theorem A.2.1 ([126, Theorem 5.50]). Suppose that a1 = 1, B1 is a Cartier divisor,
and B1 has Kawamata log terminal singularities. The following assertions are equivalent:

• (X,BX) is log canonical at every point of the divisor B1;
• the singularities of the log pair (B1,

∑r
i=2 aiBi|B1) are log canonical.

Corollary A.2.2. Suppose that X is a surface, (X,BX) is not log canonical at some
point P ∈ B1, and the curve B1 is smooth at this point. If a1 ⩽ 1, then( r∑

i=2

aiBi

)
·B1 ⩾

(( r∑
i=2

aiBi

)
·B1

)
P

> 1.

Note that Corollary A.2.2 can be proved without using more powerful Theorem A.2.1.
Instead, one can use basics of intersection multiplicities (see the proof of [31, Theorem 7]).
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Example A.2.3 (cf. Example A.1.8). Suppose X = P1 × P1. If α(X) < 1
2
, there exists

an effective divisor BX on the surface X such that the pair (X,BX) is not log canonical at
a point P ∈ X, and BX ∼Q −λKX for some rational number λ < 1

2
. Write BX = aℓ+∆,

where a is a non-negative rational number, ℓ is the curve in X of degree (1, 0) that passes
through the point P , and ∆ is an effective Q-divisor whose support does not contain ℓ.
Since BX is a Q-divisor of degree (2λ, 2λ) and λ < 1

2
, we see that a < 1, so that

1 > 2λ = BX · ℓ = ∆ · ℓ ⩾
(
∆ · ℓ

)
P
> 1

by Corollary A.2.2, so that α(X) ⩾ 1
2
.

Let Z be a proper irreducible subvariety of the varietyX. Following [119, Definition 1.3],
we say that Z is a center of log canonical singularities or a log canonical center of the log
pair (X,BX) if one of the following conditions is satisfied:

• Z = Bi for B̂i in (A.1.3) such that ai ⩾ 1,
• Z = π(Ei) for some Ei in (A.1.3) such that di ⩾ 1,

for some choice of the log resolution π : X̂ → X. If Z is a log canonical center of the log
pair (X,BX), then Z ⊆ Nklt(X,BX). Using Lemma A.1.4, we get

Corollary A.2.4. Suppose that X is non-singular at general point of the subvariety Z.
If Z is a center of log canonical singularities of the log pair (X,BX), then multZ(BX) > 1.

From now on and until the end of this section, we assume, additionally, that

(⋆) the pair (X,BX) has log canonical singularities in every point of the subvariety Z.

We need this additional assumption, because centers of log canonical singularities behave
much better under it. It can be illustrated by the following result:

Lemma A.2.5 ([119, Proposition 1.5]). Let Z ′ be a proper irreducible subvariety in X.
Suppose that Z and Z ′ are centers of log canonical singularities of the log pair (X,BX).
Then every irreducible component of the intersection Z ∩ Z ′ is a center of log canonical
singularities of the log pair (X,BX).

If Z is a log canonical center of the log pair (X,BX), we say that it is a minimal log
canonical center if Z does not contain a proper irreducible subvariety that is also a center
of log canonical singularities of the log pair (X,BX).

Theorem A.2.6 ([120, Theorem 1]). Suppose that Z is a minimal center of log canonical
singularities of the log pair (X,BX). Then Z is normal and has rational singularities.
Let H be an ample Q-Cartier Q-divisor on X. Then (KX +BX +H)|Z ∼Q KZ +BZ for
an effective Q-divisor BZ on Z such that (Z,BZ) has Kawamata log terminal singularities.

This result is Kawamata’s subadjunction theorem or Kawamata’s subadjunction.

Corollary A.2.7. Suppose that −KX is ample, BX ∼ λ(−KX) for a rational number λ,
and Z is a minimal log canonical center of (X,BX), and Z is a curve. Then Z is smooth.
Moreover, if λ < 1, then −KX ·Z ⩽ 2

1−λ and Z is rational. If λ > 1, then −KX ·Z ⩾ 2g−2
λ−1

,
where g is the genus of the curve Z.

Proof. By Theorem A.2.6, the curve Z is smooth. Let g be its genus. Chose small rational
number ϵ > 0. Set H = ϵ(−KX). Then (λ−1+ϵ)(−KX ·Z) = (KX+BX+H) ·Z ⩾ 2g−2
by Theorem A.2.6. Since ϵ can be arbitrary small, we get (λ − 1)(−KX · Z) ⩾ 2g − 2,
which implies all required assertions. □
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A.3. Mobile log pairs and Corti’s inequality. Let us use assumptions and notations
introduced in Appendix A.1. Recall from Appendix A.1 that thatX is a normal projective
variety with Kawamata log terminal singularities, and BX is an effective Q-divisor on X.
In this book, we occasionally consider log pairs like (X,λM), where M is a non-empty
linear system on X, and λ is a non-negative rational number. For instance, we will use
the following result, known as Corti’s inequality, in the proof of Theorem 5.4.5.

Theorem A.3.1 ([57, Theorem 3.1]). Let Z be an irreducible subvariety in X such that
the variety X is non-singular at its general point, let M be a mobile linear system on X,
and let λ be a positive rational number. If the log pair (X,λM) is not log canonical at
general point of the subvariety Z, then

multZ

(
M ·M ′

)
⩾

4

λ2

for two general divisors M and M ′ in the linear system M.

More generally, we can consider log pairs (X,BX +MX) with MX is defined as

(A.3.2) MX =
s∑
i=1

ciMi,

where each Mi is a non-empty mobile linear system on X, i.e. it has no fixed components,
and each ci is a non-negative rational number. For the log pair (X,BX +MX), we say
that BX is the fixed part of its boundary, and MX is the mobile part of its boundary.
We can work with the log pair (X,BX+MX) in the same way as with a usual log pair.

In fact, replacing each linear systemMi in (A.3.2) with its general member, we can handle
the mobile partMX as a Q-divisor. If BX = 0, then (X,MX) is said to be mobile log pair.
Mobile log pairs naturally appear in many problems, see [4, § 1.8] and [50, § 2.2].

Suppose that the following condition is satisfied: both BX and MX are Q-Cartier.
Then we can replace (A.1.3) by

(A.3.3) KX̂ +
r∑
i=1

aiB̂i +
s∑
i=1

ciM̂i +
m∑
i=1

diEi ∼Q π
∗(KX +BX

)
,

where each M̂i is a proper transform on X̂ of the mobile linear system Mi, and the log

resolution π : X̂ → X is chosen in such way that each linear system M̂i is base point free.
Now, following [124, Definition 4.6], we say that the pair (X,BX +MX) is log canonical
at the point P ∈ X if the following two conditions are satisfied:

• ai ⩽ 1 in (A.3.2) for every B̂i such that P ∈ Bi,
• di ⩽ 1 in (A.3.2) for every Ei such that P ∈ π(Ei).

Similarly, we say that (X,BX +MX) is Kawamata log terminal at P if the following two
conditions are satisfied:

• ai < 1 in (A.3.2) for every B̂i such that P ∈ Bi,
• di < 1 in (A.3.2) for every Ei such that P ∈ π(Ei).

These are the same definitions we gave in Appendix A.1 for (X,BX), since we do not
impose any constraints on the coefficients c1, . . . , cs of the mobile part of the boundary.
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Remark A.3.4. It follows from [124, Theorem 4.8] that the pair (X,BX + MX) has log
canonical (Kawamata log terminal, respectively) singularities if and only if the log pair(

X,BX +
s∑
i=1

N∑
j=1

ci
N
M j

i

)
has log canonical (Kawamata log terminal, respectively) singularities for some N ≫ 0,
where each M j

i is a general divisor in the linear system Mi.

For mobile pairs, we can also define canonical singularities and terminal singularities as
it is done in [124, Definition 3.5]. Namely, we say that the log pair (X,MX) is canonical
(terminal, respectively) at the point P if the following condition is satisfied:

• for every Ei in (A.1.3) such that P ∈ π(Ei), one has di ⩽ 0 (di < 0, respectively).

Of course, these definitions also make sense for non-mobile pairs, but they behave better
for mobile pairs. In this book, we only consider them for mobile log pairs (occasionally).

The following result, known as Noether–Fano inequality, is used in Example 1.6.17, and
also in the proof of Theorem 5.4.5.

Theorem A.3.5. Suppose that X is a Fano variety with at most terminal singularities,
there exists a reductive subgroup G ⊆ Aut(X) such that rkClG(X) = 1, and for every
G-invariant mobile linear system M on the variety X, the log pair (X,λM) has canonical
singularities for λ ∈ Q>0 defined via λM ∼Q −KX . Then X is G-birationally superrigid,
i.e. the following two conditions are satisfied:

(1) there is no G-equivariant dominant rational map X 99K Y such that general fibers
of the map X 99K Y are rationally connected, and 0 < dim(Y ) < dim(X),

(2) there is no G-equivariant birational non-biregular map X 99K X ′ such that X ′ is
a Fano variety with at most terminal singularities, and rkClG(X ′) = 1.

Proof. This is well-known. See, for example, [50, Chapter 3.1.1], where this assertion has
been proved in the case when G is a finite group. □

Arguing as in Appendix A.1, we can define the locus Nklt(X,BX+MX), the multiplier
ideal sheaf I(X,BX+MX) and the log canonical singularities subscheme L(X,BX+MX).
Likewise, we can generalize other notions and results presented in Appendices A.1 and A.2
for log pairs whose boundaries have non-empty mobile parts.

A.4. Equivariant tie breaking and convexity trick. Let X be a projective variety
with Kawamata log terminal singularities, and let G be a reductive subgroup in Aut(X).

Lemma A.4.1 ([86, Lemma 2.7]). Let P be a point in X that is fixed by the group G.
Then the induced linear G-action on the Zariski tangent space TP (X) is faithful.

Corollary A.4.2. If X is a curve, and G fixes a smooth point in X, then G is cyclic.

Let BX be an effective Q-divisor on X that is given by (A.1.2), let MX be a mobile
boundary on X that is given by (A.3.2), let Z be a proper irreducible subvariety in X.
Suppose that both BX and MX are Q-Cartier, and both BX and MX are G-invariant.
The former condition means that for any g ∈ G, any Bi in (A.1.2), and any Mi in (A.3.2),
there are Bj in (A.1.2) and Mk in (A.3.2) such that g(Bi) = Bj and g(Mi) = Mk.

287



Lemma A.4.3. Suppose that dim(Z) = dim(X)−1, the variety X is smooth along Z, and

the subvariety Z is G-invariant. Let η : X̃ → X be the blow up of the subvariety Z, let F be

the η-exceptional divisor, let BX̃ and MX̃ be the proper transforms on X̃ of BX and MX ,
respectively. Suppose that Z ⊆ Nklt(X,BX +MX), but multZ(BX) + multZ(MX) < 2.

Then the G-action lifts to X̃, and F contains a unique G-invariant irreducible proper

subvariety Z̃ such that the induced morphism η|Z̃ : Z̃ → Z is birational, and the log pair

(A.4.4)
(
X̃, BX̃ +MX̃ +

(
multZ(BX) + multZ(MX)− 1

)
F
)

is not Kawamata log terminal along Z̃. Moreover, one has

(A.4.5) multZ
(
BX

)
+multZ

(
MX

)
+multZ̃

(
BX̃

)
+multZ̃

(
MX̃

)
⩾ 2.

Proof. The required assertion follows from [37, Remark 2.5]. Namely, we have

KX̃ +BX̃ +MX̃ +
(
multZ

(
BX

)
+multZ

(
MX

)
− 1
)
F
)
∼Q η

∗(KX +BX +MX

)
,

which implies that the log pair (A.4.4) is the log pull back of the log pair (X,BX +MX).
Thus, since multZ(BX) + multZ(MX) < 2, the divisor F contains a proper G-invariant

G-irreducible subvariety Z̃ such that the induced morphism η|Z̃ : Z̃ → Z is surjective, and

the log pair (A.4.4) is not Kawamata log terminal along Z̃.

Since multZ(BX)+multZ(MX) < 2, the log pair (X̃, BX̃+MX̃+F ) is not log canonical

along Z̃. Now, applying Theorem A.2.1, we see that (F,BX̃ |F+MX̃ |F ) is not log canonical
along the subvariety Z̃ either. Since Z̃ is a divisor in F , we have ordZ̃(BX̃ |F+MX̃ |F ) > 1.
Let ℓ be a sufficiently general fiber of the natural projection F → Z. Then

2 > multZ(BX)+multZ(MX) =
(
BX̃

∣∣
F
+MX̃

∣∣
F

)
·ℓ ⩾ ordZ̃

(
BX̃

∣∣
F
+MX̃

∣∣
F

)
|ℓ∩Z̃| > |ℓ∩Z̃|

by Lemma A.1.4. Then |ℓ∩ Z̃| = 1, and the induced morphism η|Z̃ : Z̃ → Z is birational.
Applying Lemma A.1.4 to the pair (X,BX+MX), we get multZ(BX)+multZ(MX) ⩾ 1.

Now, applying Lemma A.1.4 to (A.4.4), we obtain (A.4.5), cf. [29, Corollary 2.7]. □

Starting from now and until the end of this section, we suppose, in addition, that

(⋆) (X,BX +MX) is log canonical at every point of the subvariety Z.

If Z is a minimal center of log canonical singularities of the log pair (X,BX +MX), then
the subvariety g(Z) is also a minimal center of log canonical singularities of this log pair
for every g ∈ G, so that Lemma A.2.5 gives Z ∩ g(Z) ̸= ∅ ⇐⇒ Z = g(Z). Therefore, if
the subvariety Z is a divisor in X that is a minimal center of log canonical singularities
of the pair (X,BX +MX), then X does not contain other log canonical centers of this
log pair that meet Z. If dim(Z) ⩽ dim(X)− 2, this is not always true, because Z maybe
contained in a center of log canonical singularities of larger dimension. In this case, we
can often modify the boundary BX +MX to obtain a similar assertion.

Lemma A.4.6 ([50, Lemma 2.4.10]). Suppose that Z is a minimal center of log canonical
singularities of (X,BX +MX), one has dim(Z) ⩽ dim(X)− 2, and BX +MX ∼Q H for
an ample Q-divisor H on the variety X. For a sufficiently divisible n≫ 0, let

D =
{
D ∈ |nH| : g(Z) ⊂ Supp(D) for every g ∈ G

}
.

288



Then D is a G-invariant linear subsystem in |nH| that does not have fixed components.
Fix ϵ ∈ Q>0. Then there are rational numbers 1 ≫ ϵ1 ⩾ 0 and 1 ≫ ϵ2 ⩾ 0 such that

(1− ϵ1)
(
BX +MX

)
+ ϵ2D ∼Q (1 + ϵ)H,

the pair (X, (1− ϵ1)(BX +MX)+ ϵ2D) is log canonical at every point of the subvariety Z,
and Z is the only center of log canonical singularities of this log pair that intersects Z.
Moreover, if the original log pair (X,BX +MX) has log canonical singularities, then

Nklt
(
X, (1− ϵ1)

(
BX +MX

)
+ ϵ2D

)
=
⊔
g∈G

{
g
(
Z
)}
,

so that the new log pair (X, (1−ϵ1)(BX+MX)+ϵ2D) also has log canonical singularities,
and Nklt(X, (1− ϵ1)(BX +MX) + ϵ2D) is a G-irreducible subvariety in X.

Proof. See the proofs of [119, Theorem 1.10] and [120, Theorem 1]. □

This lemma is an equivariant version of the so-called Kawamata–Shokurov trick or tie
breaking [119, 120]. Using Lemma A.4.6 and Corollary A.1.7, we obtain

Corollary A.4.7. Suppose that X is a Fano variety, and BX + MX ∼Q −νKX for
some rational number ν < 1, and the subvariety Z is a minimal center of log canonical
singularities of the log pair (X,BX +MX). Then Z is G-invariant.

This corollary implies the following technical result.

Lemma A.4.8. Suppose that G = Gr
m⋊B for a finite group B, and X is a Fano threefold

such that αG(X) < µ for some positive rational number µ ⩽ 1. Suppose, in addition, that
the following two conditions are satisfied:

(i) X does not contain G-fixed points,
(ii) X does not contain G-invariant surface S such that −KX ∼Q aS+∆, where a > 1

µ

and ∆ is an effective Q-divisor on X.

Then X contains an effective G-invariant Q-divisor D ∼Q −KX and a smooth G-invariant
irreducible rational curve Z such that (X,λD) is strictly log canonical for some positive
rational number λ < µ, and Z is the unique log canonical center of the log pair (X,λD).

Proof. By Lemma 1.4.1, our X contains an effective G-invariant Q-divisor D such that
the log pair (X,λD) is strictly log canonical for some positive rational number λ < µ.
Then Nklt(X,λD) is at most one-dimensional by (ii).

The locus Nklt(X,λD) is connected by Corollary A.1.7. Using Corollary A.4.7 and (i),
we see that this locus is one-dimensional, and there are no points in X that are log
canonical centers of the pair (X,λD).

Now, using Lemma A.2.5, we conclude that Nklt(X,λD) consists of a single curve Z.
By Corollary A.1.17 or by Theorem A.2.6, the curve Z is smooth and rational. □

Let us present another application of Lemma A.4.6 and Theorem A.1.6,

Corollary A.4.9. Suppose that X is a Fano variety that does not contain G-fixed points,
the locus Nklt(X,BX) is one-dimensional, and BX ∼Q −λKX for some λ ∈ Q ∩ (0, 1).
Let C be an irreducible G-invariant curve in X that is contained in the locus Nklt(X,BX).
Choose δ ∈ Q∩ (0, 1] such that (X, δBX) is log canonical and not Kawamata log terminal.
Then C is a minimal log canonical center of the log pair (X, δBX).
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Proof. Let Z be a minimal log canonical center of the pair (X, δBX). By Corollary A.4.7,
the subvariety Z is G-invariant, so that Z is a curve, since X contains no G-fixed points.

If Z = C, we are done. Hence, we assume that Z ̸= C. Let us seek for a contradiction.
We observe that Z ⊂ Nklt(X,BX). But it follows from Corollaries A.1.7 and A.1.17 that

the locus Nklt(X,BX) has the following properties:

(o) it is connected,
(i) each its irreducible component is isomorphic to P1,
(ii) any two intersecting irreducible components intersect transversally by one point,
(iii) no three irreducible components intersects at one point,
(iv) no irreducible components form a cycle.

Thus, irreducible curves in Nklt(X,BX) form a tree, and Z and C are G-fixed vertices
in this tree of curves. But this tree contains a unique path that joins these two vertices,
so that this path must be G-invariant, and all its vertices also must be G-invariant, which
implies that C contains a G-fixed point, which is a contradiction. □

If the log pairs (X, 1
1−αBX) and (X, 1

α
MX) are log canonical at some point P ∈ X for

some α ∈ Q ∩ (0, 1), then (X,BX +MX) is also log canonical at this point. This gives

Corollary A.4.10. Suppose that BX ∼Q λH, MX ∼Q µH, BX +MX ∼Q νH for some
ample Q-Cartier Q-divisor H on the variety X, and rational numbers λ, µ, ν = λ + µ.
If (X,BX +MX) is not log canonical at a point P ∈ X, then (X, ν

λ
BX) or (X, ν

µ
MX) is

not log canonical at this point.

Applying the same idea to the components of the divisor BX , we obtain

Corollary A.4.11. If X is a Fano variety, (X,BX) is not log canonical at a point P ∈ X,
and rkClG(X) = 1, then X contains a G-irreducible effective Weil divisor B such that
the log pair (X, bB) is not log canonical at P for b ∈ Q>0 such that bB ∼Q BX .

Now, let us generalize this corollary for arbitrary varieties.

Lemma A.4.12. Let D be some G-invariant effective Q-divisor on the variety X such
that D ∼Q BX +MX and Supp(D) ⊆ Supp(BX), but D ̸= BX +MX . Then there exists
a non-negative rational number µ such that the Q-divisor (1+µ)BX−µD is effective, but
its support does not contain at least one G-irreducible component of Supp(D). Moreover,
if (X,BX +MX) is not log canonical at some point P ∈ X, and (X,D) is log canonical
at this point, then (X, (1 + µ)(BX +MX)− µD) is also not log canonical at P .

Proof. The proof is essentially the same as the proof of [37, Lemma 2.2]. Namely, we have

(A.4.13) D =
r∑
i=1

biBi ∼Q BX +MX ∼Q

r∑
i=1

aiBi +
s∑
i=1

ciMi,

where each bi is a non-negative number, and each Bi is a prime Weil divisor from (A.1.2).
For every non-negative rational number ϵ, consider the divisor (1 + ϵ)BX − ϵD. Then

(1 + ϵ)BX − ϵD =
r∑
i=1

(
ϵ(ai − bi) + ai

)
Bi,

and (A.4.13) implies that at least one number among a1−b1, a2−b2, . . . , ar−br is negative.
Then we can choose ϵ ⩾ 0 such that ϵ(ai − bi) + ai ⩾ 0 for every i ∈ {1, . . . , r}, but at
least one of these number is zero. Then we can let µ be this ϵ.
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Finally, if both pairs (S,D) and (S, (1 + µ)(BX +MX)− µD) are log canonical at P ,
then the log pair (S,BX +MX) is also canonical at P , because

BX +MX =
µ

1 + µ
D +

1

1 + µ

(
(1 + µ)

(
BX +MX

)
− µD

)
and µ

1+µ
+ 1

1+µ
= 1. □

Example A.4.14 (cf. Examples A.1.8 and A.2.3). Suppose X = P1 × P1. If α(X) < 1
2
,

there exists an effective divisor BX on the surface X such that the pair (X,BX) is not log
canonical at a point P ∈ X, and BX ∼Q −λKX for some positive rational number λ < 1

2
.

Let ℓ1 and ℓ2 are curves in X of degree (1, 0) and (0, 1) that pass through P , respectively.
Then −KX ∼ 2ℓ1+2ℓ2, but (X, ℓ1+ℓ2) is log canonical. Thus, if α(X) < 1

2
, it follows from

Lemma A.4.12 that there is an effective divisor B′
X on X such that B′

X ∼Q −λKX , the log
pair (X,B′

X) is not log canonical at some point P ∈ X, but Supp(B′
X) does not contain

one of the curves ℓ1 or ℓ2. Without loss of generality, we may assume that ℓ1 ̸⊂ Supp(B′
X).

Then it follows from Lemma A.1.4 that 1 > 2λ = B′
X · ℓ1 ⩾ multP (B

′
X) > 1, which is

absurd. This shows that α(X) ⩾ 1
2
.

Let us conclude this section by proving one simple result, which is used in Example 4.5.2.

Lemma A.4.15 (cf. [168, Theorems 1.6]). Let X be a del Pezzo surface such that K2
X = 2,

and X has one ordinary double point. Then

α(X) =


2

3
if | −KX | contains a tacnodal curve singular at Sing(X),

3

4
otherwise.

Proof. Recall that |−KX | gives a double cover ω : X → P2 that is branched over a reduced
quartic curve R. Since X contains one ordinary double point, the curve R also has one
ordinary double point, which implies that R is irreducible. Thus, if C is a singular curve
in the linear system | −KX |, then C = ω∗(L) for a line L ⊂ P2 such that either L passes
through the point Sing(R), or L is tangent to R at a smooth point of the curve R. Let

α1(X) = inf
{
lct
(
X,D

) ∣∣ D is a divisor in | −KX |
}
.

It is not hard to compute α1(X). Namely, we have

α1(X) =


2

3
if | −KX | contains a tacnodal curve singular at Sing(X),

3

4
otherwise.

Note that [168, Theorems 1.4] claims that α1(X) = 2
3
, which is wrong in general.

Now, arguing almost as in the proof of [168, Theorems 1.6], we obtain α(X) = α1(X).
Namely, suppose that α(X) < α1(X). Using Lemma A.4.12, we see that X contains
an effective Q-divisor D such that D ∼Q −KX , the pair (X,λD) is not log canonical at
some point P ∈ X for some positive rational number λ < α1(X), and Supp(D) does not
contain at least one irreducible component of every curve in | −KX |.

Suppose that ω(P ) is a smooth point of the curve R. Then | −KX | contains a unique
curve T that is singular at P — ω(T ) is the line that is tangent to R at the point ω(P ).
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If T is irreducible, then T ̸⊂ Supp(D), so that Lemma A.1.4 gives

2 = K2
X = T ·D ⩾ multP (T )multP (D) ⩾ 2multP (D) > 2.

Therefore, we conclude that T = T1+T2, where T1 and T2 are two irreducible curves such
that −KX · T1 = −KX · T2 = 1 and T1 ̸⊂ Supp(D). Then 1 = T1 ·D ⩾ multP (D), which
contradicts Lemma A.1.4. This shows that either ω(P ) ̸∈ R or P = Sing(X).

Now, let η : X̃ → X be a blow up of the point P , let E be the η-exceptional curve, and

let D̃ be the proper transform on X̃ of the divisor D. Then D̃ ∼Q η
∗(D)−mE for some

rational m ⩾ 0. If P ̸= Sing(X), then m = multP (D), so that m > 1
λ
by Lemma A.1.4.

If X is smooth at P , we let δ = 1. Likewise, if X is singular at P , we let δ = 0. Then

the log pair (X̃, λD̃ + (λm− δ)E) is not log canonical at some point Q ∈ E. Therefore,

applying Lemma A.1.4 to (X̃, λD̃ + (λm− δ)E), we get

(A.4.16) m+multQ(D̃) >
1 + δ

λ
.

Furthermore, if λm− δ ⩽ 1, applying Corollary A.2.2 to (X̃, λD̃ + (λm− δ)E), we get

1

λ
<
(
D̃ · E

)
Q
⩽ D̃ · E =

{
m if P ̸= Sing(X),

2m if P = Sing(X).

In particular, if P = Sing(X), then we have m > 1
2λ

as we mentioned earlier.
Since ω(P ) ̸∈ R or P = Sing(X), the linear system |−KX | contains a curve C such that

the curve C passes through P , and its proper transform on X̃ passes through the point Q.

Denote by C̃ the proper transform of the curve C on the surface X̃. If C is irreducible,
then the curve C is not contained in the support of the divisor D, so that

multQ
(
D̃
)
⩽ D̃ · C̃ =

{
2−m if P ̸= Sing(X),

2− 2m if P = Sing(X).

If P ̸= Sing(X), this contradicts (A.4.16). If P = Sing(X), we get 2 − 2m ⩾ multQ(D̃),

but (A.4.16) gives m+multQ(D̃) > 1
λ
, so that we have 2− 1

λ
> m > 1

2λ
, which gives λ > 4

3
.

Since λ < 4
3
, we see that C is reducible.

Thus, we have C = C1 + C2, where C1 and C2 are smooth irreducible curves such
that −KX · C1 = −KX · C2 = 1. If Sing(X) ̸∈ C, then C2

1 = C2
2 = −1 and C1 · C2 = 2.

Likewise, if Sing(X) ∈ C, then Sing(X) ∈ C1∩C2, so that C2
1 = C2

2 = −1
2
and C1 ·C2 =

3
2
.

Furthermore, we also know that one of the curves C1 or C2 is not contained in Supp(D).
Hence, without loss of generality, we may assume that C2 ̸⊂ Supp(D).

Let C̃1 and C̃2 be proper transforms on X̃ via η of the curves C1 and C2, respectively.

Then both curves C̃1 and C̃2 are smooth. Moreover, we also know that Q ∈ C̃1 or Q ∈ C̃2.

If Q ∈ C̃2, then C̃2 intersects E transversally at Q, so that multQ(D̃) ⩽ D̃ · C̃2 = 1−m,

which contradicts (A.4.16), because λ < α1(X) ⩽ 3
4
. Therefore, we conclude that Q ∈ C̃1.

Observe that the curve C̃1 intersects E transversally at the point Q.
Write D = aC1 +∆, where a is a non-negative rational number, and ∆ is an effective

Q-divisor on the surface X whose support does not contain C1. Then

1 = −KX · C2 =
(
aC1 +∆

)
· C2 = aC1 · C2 +∆ · C2 ⩾ aC1 · C2 =


2a if Sing(X) ̸∈ C,

3a

2
if Sing(X) ∈ C.
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Thus, we see that

(A.4.17) a ⩽


1

2
if Sing(X) ̸∈ C,

2

3
if Sing(X) ∈ C.

In particular, we see that λa < 1.

Let ∆̃ be the proper transform on X̃ of ∆. Then ∆̃ ∼Q η
∗(∆)− nE for some rational

number n ⩾ 0. If P ̸= Sing(X), then m = n+ a. If P = Sing(X), then m = n+ a
2
. Note

that (X̃, λaC̃1+λ∆̃+(λm− δ)E) is not log canonical at the point Q = C̃2∩E. Applying
Corollary A.2.2, we obtain (λm−δ)+λ∆̃ · C̃1 > 1, so that m+∆̃ · C̃1 >

1+δ
λ
. On the other

hand, we have ∆̃ · C̃1 = (η∗(∆)− nE) · C̃1 = ∆ ·C1 − n = 1− aC2
1 − n. Since C2

1 < 0, we
get

(A.4.18) a >


1+δ
λ

− 1

1− C2
1

if P ̸= Sing(X),

1+δ
λ

− 1
1
2
− C2

1

if P = Sing(X).

If P ̸= Sing(X) and Sing(X) ̸∈ C, then δ = 1 and C2
1 = −1, so that a > 1

λ
− 1

2
> 5

6
.

If P ̸= Sing(X) and Sing(X) ∈ C, then δ = 1 and C2
1 = −1

2
, so that a > 4

2λ
− 2

3
> 10

9
.

In both cases, we get a contradiction with (A.4.17). Thus, we have P = Sing(X).
Now, we have δ = 0 and C2

1 = −1
2
, so that (A.4.18) gives a > 1

λ
− 1 > 1

3
, which does

not contradicts (A.4.17), but this inequality can still be used to obtain a contradiction.
Namely, since P = Sing(X), the point P is contained in both curves C1 and C2, so that

0 ⩽ ∆̃ · C̃2 =
(
η∗(∆)− nE

)
· C̃2 = ∆ · C2 − n = 1− 3a

2
− n,

which gives n + 3a
2
⩽ 1. Thus, since n + a

2
= m > 1

2λ
> 2

3
, we get 2

3
+ a < n + 3a

2
⩽ 1,

which contradicts a > 1
3
and completes the proof. □

A.5. α-invariants of del Pezzo surfaces over non-closed fields. Let F be any field
that has characteristic zero, e.g. F = Q or F = C(x). If C is a smooth conic in P2 defined
over the field F, then

α(C) =


1 if C contains an F-point,
1

2
if S does not contain F-points.

In this section, we will generalize this result for smooth del Pezzo surfaces, i.e. smooth
geometrically irreducible surfaces with ample anticanonical divisor.

Namely, let S be a smooth del Pezzo surface defined over F, and let F be the algebraic
closure of the field F. Recall from Section 1.4 that

α(S) = inf
{
lct(S,D)

∣∣D is an effective Q-divisor on S defined over F such that D ∼Q −KS

}
.

If F = F, all possible values of the number α(S) have been computed in [29, 146], see big
table in Section 2. To summarize these results, let

αn(S) = inf
{
lct
(
S,

1

n
D
) ∣∣ D is a divisor in | − nKS|

}
293



for every n ∈ N. Clearly, we have α(S) ⩽ αn(S) for every n ∈ N and

α(S) = inf
n∈N

αn(S).

Note also that the number α1(S) is not very hard to compute — to do this, one has to
compute log canonical thresholds of all singular curves in | −KS|. Moreover, we have

Theorem A.5.1 ([167, 29, 146]). If F is algebraically closed, then α(S) = α1(S).

In general, we may have α(S) ̸= α1(S) if the field F is not algebraically closed.

Example A.5.2. Let f(t) be an arbitrary irreducible polynomial in F[t] that has degree 5,
let ξ1, ξ2, ξ3, ξ4, ξ5 be its roots in F, let π : S → P2 be the blow up of the reduced subscheme
consisting of the points

[ξ1 : ξ
2
1 : 1], [ξ2 : ξ

2
2 : 1], [ξ3 : ξ

2
3 : 1], [ξ4 : ξ

2
4 : 1], [ξ5 : ξ

2
5 : 1],

let C2 be the conic in P2 that is given by yz = x2, and let C be its proper transform on S,
where x, y, z are coordinates on P2. Then S is a quartic del Pezzo surface defined over
the field F, and C is a line in S. We will see in Lemma A.5.5 that α(S) = 2

3
. On the other

hand, one can show that α1(S) ⩾ 3
4
.

In the remaining part of this section, we will find all values of the number α(S) without
assuming that the field F is algebraically closed. Unless it is explicitly stated otherwise,
we will assume that everything we deal with is defined over the field F. We will use basic
facts about del Pezzo surfaces over non-closed fields, which can be found in [136, 189]. To
avoid confusion, let us present the glossary we will use:

• a point is a F-point;
• a curve is a (possibly geometrically reducible) curve defined over F;
• a conic is a (geometrically irreducible) curve isomorphic to a smooth conic in P2;
• a singular conic is a curve isomorphic to a reduced singular conic in P2;
• a line in S is a geometrically irreducible curve C ⊂ S such that C2 = −1;
• a conic in S is a geometrically irreducible curve C ⊂ S such that C2 = 0;
• a singular conic in S is a singular curve C ⊂ S such that −KS ·C = 2 and C2 = 0;
• if K2

S = 3, an Eckardt point in S is a point P ∈ S such that there exists a curve
in the linear system | −KS| that has multiplicity 3 at the point P ;

• a divisor on S is a Weil divisor on S defined over F;
• Pic(S) is a group of divisors on S modulo rational equivalence;
• a Q-divisor on S is a Q-divisor on S defined over F;
• F is the algebraic closure of the field F.

Note that lines in S are isomorphic to P1. Thus, if S contains a line, it also contains a point.
Similarly, conics in S are isomorphic to smooth conics in P2, and singular conics in S are
isomorphic to reduced singular conics in P2. In particular, if S contains a singular conic,
then it contains a point. Recall that | − KS| gives an embedding S ↪→ Pn for K2

S ⩾ 3,
where n = K2

S. In this case, lines, conics and singular conics in S are just usual embedded
lines, conics and singular conics in Pn, respectively.

First, let us present a table that contains all possible values of the number α(S).
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K2
S Conditions imposed on the surface S α(S)

9 S contains a point 1
3

9 S does not contain points 1

8 S is a blow up of P2 in one point 1
3

8 S ∼= P1 × C for a conic C 1
2

8 S is a quadric in P3 1
2

8
S ∼= C × C ′ for two non-isomorphic conics C and C ′

such that both C and C ′ do not contain points 1

8 Pic(S) = Z[−KS] 1

7 S is a blow up of P2 in two points 1
3

6 S contains a line or a conic 1
2

6 S does not contain lines and conics, but S contains a point 2
3

6 S does not contain lines, conics and points 1

5 S contains a line 1
2

5 Pic(S) ̸= Z[−KS], but S does not contain lines 2
3

5 Pic(S) = Z[−KS]
4
5

4 S contains a line or a singular conic 2
3

4
S does not contain lines and singular conics,

but | −KS| contains a tacnodal curve
3
4

4
S does not contain lines and singular conics,

| −KS| contains no tacnodal curves, | −KS| contains a cuspidal curves
5
6

4
S does not contain lines and singular conics,

and | −KS| contains no tacnodal and cuspidal curves 1

3 S contains an Eckardt point 2
3

3 S contains no Eckardt points, but | −KS| contains a tacnodal curve 3
4

3
S contains no Eckardt point, | −KS| contains no tacnodal curves,

but | −KS| contains a cuspidal curve
5
6

3
S does not contain Eckardt point,

| −KS| does not contain tacnodal and cuspidal curves 1

2 | −KS| contains a tacnodal curve 3
4

2 | −KS| contains no tacnodal curves, but | −KS| contains a cuspidal curve 5
6

2 | −KS| does not contain tacnodal and cuspidal curves 1

1 | −KS| contains a cuspidal curve 5
6

1 | −KS| does not contain cuspidal curves 1
295



Now, let us explain in details how to compute the numbers in this table. To start with,
let us compute α-invariants of two-dimensional Severi–Brauer varieties.

Lemma A.5.3. Suppose that K2
S = 9. Then

α(S) = α1(S) =


1 if S contains a point,

1

3
if S does not contain points.

Proof. If the surface S contains a point, then S ∼= P2, so that α(S) = 1
3
, see Example A.1.5.

Thus, we may assume that S contains no points. Then Pic(S) = Z[−KX ] and α(S) ⩽ 1.
We claim that α(S) = 1. Indeed, suppose that α(S) < 1. Then S contains an effective

Q-divisorD such thatD ∼Q −KS, and (S, λD) is not log canonical for some λ ∈ Q∩(0, 1).
Since Pic(S) = Z[−KX ], we deduce that the locus Nklt(S, λD) must be zero-dimensional.
Then Nklt(S, λD) must be a point by Corollary A.1.7. Since Nklt(S, λD) is defined over F,
we see that S contains a point, which is a contradiction. □

Now, let us consider del Pezzo surfaces of small degree.

Lemma A.5.4. Suppose that K2
S ⩽ 3. Then α(S) = α1(S).

Proof. The assertion follows from [37, Theorem 1.12]. Indeed, suppose that α(S) < α1(S).
Then there exists an effective Q-divisor D on the surface S such that D ∼Q −KS, and
the log pair (S, λD) is not log canonical for some positive rational number λ < α1(S).
Applying Lemma A.4.12, we may assume that Supp(D) does not contain at least one
irreducible component of every curve in |−KS|. Applying [37, Theorem 1.12], we see that
the log pair (S, λD) has log canonical singularities, which is a contradiction. □

Using Lemma A.5.4, it is not hard to find all possible values of the number α1(S) in
the case when K2

S ∈ {1, 2, 3}, which are presented in the table above. See [167] for details.
Now, we deal with quartic del Pezzo surfaces.

Lemma A.5.5. Suppose that K2
S = 4. If the surface S contains a line or a singular

conic, then α(S) = α2(S) =
2
3
. Otherwise, we have α(S) = α1(S).

Proof. Recall that the del Pezzo surface S is a complete intersection of two quadrics in P4.
Note that α(S) ⩾ 2

3
by [29, Theorem 1.7]. On the other hand, if S contains a line L, then

projection from this line P4 99K P2 gives a birational morphism π : S → P2 that contracts
a geometrically reducible curve C , which splits over F as a union of five (−1)-curves,
so that 3L + C ∼ −2KS, which gives α(S) ⩽ α2(S) ⩽ 2

3
, so that α(S) = α2(S) = 2

3
.

Therefore, to proceed, we may assume that the surface S does not contain lines.
Similarly, if S contains a singular conic C, then |−KS−C| is a base point free pencil, so

that it contains a unique curve C ′ that passes through Sing(C), so that lct(S,C+C ′) ⩽ 2
3
,

which gives α(S) ⩽ α2(S) ⩽ α1(S) ⩽ 2
3
, which implies that α(S) = α2(S) = α1(S) =

2
3
.

Hence, to proceed, we may assume that S does not contain singular conics as well.
To complete the proof, we must show that α(S) = α1(S). Suppose that α(S) < α1(S).

By Lemma A.4.12, the surface S contains an effective Q-divisor D such that D ∼Q −KS,
the log pair (S, λD) is not log canonical for some positive rational number λ < α1(S), and
the support of the divisor D does not contain at least one irreducible component of every
curve in |−KS|. Arguing as in the proof of [29, Lemma 3.4], we see that Nklt(S, λD) does
not contain curves, because S does not contain lines. Thus, it follows from Corollary A.1.7
that the locus Nklt(S, λD) is a point. For simplicity, we let P = Nklt(S, λD).
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Let η : S̃ → S be a blow up of the point P , and let E be the η-exceptional curve.

Then S̃ is a smooth cubic surface. Let D̃ be the proper transform on S̃ of the divisor D.

Then D̃ + (multP (D) − 1)E ∼Q −KS̃. Thus, arguing as in the proof of Lemma 2.8 we
see that multP (D) ⩽ 2. Now, arguing as in Lemma A.4.3, we see that the curve E

contains a point Q such that the log pair (S̃, λD̃+
(
λmultP (D)− 1

)
E) is not Kawamata

log terminal at Q, so that (S̃, D̃ + (multP (D)− 1)E) is not log canonical at Q.

Observe that | −KS̃ −E| is a base point free pencil. Let Z̃ be the curve in this pencil

that passes through Q. Since the pair (S̃, D̃+(multP (D)−1)E) is not log canonical at Q,

it follows from [37, Theorem 1.12] that Z̃ ∩E = Q, and Supp(D̃) contains all irreducible

components of the curve Z̃. Let Z = π(Z̃). Then either Z is a geometrically reducible
curve that has a tacnodal singularity at P , or Z is a geometrically irreducible curve that
has a cuspidal singularity at P . Therefore, we see that Z ∈ | −KS|, and the support of
the divisor D contains all irreducible components of the curve Z, which contradicts our
initial assumption. □

If K2
S = 4, then using Lemma A.5.5 and going through all singular curves in | −KS|,

we can find all possibilities of the number α(S) in this case. Note also that the proof of
Lemma A.5.5 implies

Corollary A.5.6. If K2
S = 4 and S does not contain points, then α(S) = 1.

We deal with quintic del Pezzo surfaces in several lemmas. First, we prove

Lemma A.5.7. Suppose that K2
S = 5 and Pic(S) = Z[−KS]. Then α(S) = α2(S) =

4
5
.

Proof. The proof is similar to the proof of [29, Lemma 5.8]. Let us prove that α(S) ⩾ 4
5
.

Suppose that α(S) < 4
5
. Then S contains an effective Q-divisor D ∼Q −KS, and

the log pair (S, λD) is not Kawamata log terminal for a positive rational number λ < 4
5
.

Since Pic(S) = Z[−KS], the locus Nklt(S, λD) is zero-dimensional. By Corollary A.1.7,
the locus Nklt(S, λD) consists of a single point O, which is defined over F.
Over the field F, the surface S contains ten (−1)-curves. But none of these ten curves

contains O, because Pic(S) = Z[−KS]. Moreover, over F, the surface S contains five
smooth curves Z1, Z2, Z3, Z4, Z5 such that −KS ·Zi = 1 and O = Z1 ∩Z2 ∩Z3 ∩Z4 ∩Z5.
These are conics in X defined over F which contain O. Let C = Z1 + Z2 + Z3 + Z4 + Z5.
Then C is defined over the field F, the curve C is irreducible, C ∼Q −2KS, and

(A.5.8) lct
(
S,

1

2
C
)
=

4

5
.

Using Lemma A.4.12, we may assume that C ̸⊂ Supp(D). Then 10 = C ·D ⩾ 5multO(D).

Let π : S̃ → S be the blow up of the point O, let E be the π-exceptional curve, and

let D̃ be the proper transform of the divisor D on the surface S̃. Using Lemma A.4.3,

we see that E contains a point Q such that (S̃, λD̃+(λmultO(D)−1)E) is not Kawamata

log terminal at the point Q, which is defined over F. Then multQ(D̃)+multO(D) ⩾ 2
λ
> 5

2

by Lemma A.4.3. Observe also that S̃ is a smooth del Pezzo surface of degree 4.

Let Z̃1, Z̃2, Z̃3, Z̃4, Z̃5 be the proper transform on S̃ of the curves Z1, Z2, Z3, Z4, Z5,

respectively. Note that Z̃1, Z̃2, Z̃3, Z̃4, Z̃5 are disjoint (−1)-curves, which (a priori) are

defined over F. Moreover, since Pic(S) = Z[−KS], we have Q ̸∈ Z̃1 ∪ Z̃2 ∪ Z̃3 ∪ Z̃4 ∪ Z̃5.
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Furthermore, we have the following Sarkisov link:

S̃
π

��

ϕ

��
S P2

where ϕ is a contraction of the curves Z̃1, Z̃2, Z̃3, Z̃4 and Z̃5. The curve ϕ(E) is the unique

conic in P2 that passes through the points ϕ(Z̃1), ϕ(Z̃2), ϕ(Z̃3), ϕ(Z̃4) and ϕ(Z̃5).
Over the algebraic closure F, the plane P2 contains five lines L1, L2, L3, L4, L5 such

that Li is the line that goes through ϕ(Q) and ϕ(Z̃i). Let L̃1, L̃2, L̃3, L̃4, L̃5 be the proper

transforms on S̃ of the lines L1, L2, L3, L4, L5, respectively. Then

π
(
L̃1

)
+ π
(
L̃2

)
+ π
(
L̃3

)
+ π
(
L̃4

)
+ π
(
L̃5

)
∼Q −3KS,

and π(L̃1)+π(L̃2)+π(L̃2)+π(L̃4)+π(L̃5) is an irreducible curve defined over the field F.
Moreover, the log pair (S, 4

15
(π(L̃1) + π(L̃2) + π(L̃2) + π(L̃4) + π(L̃5))) has Kawamata log

terminal singularities. Hence, using Lemma A.4.12, we may assume that Supp(D) does

not contain π(L̃1), π(L̃2), π(L̃3), π(L̃4), π(L̃5). Then 3−multO(D) = D̃ · L̃1 ⩾ multQ(D̃),

which implies that multO(D) + multQ(D̃) ⩽ 3.

Let ξ : Ŝ → S̃ be the blow up of the point Q, and let F be the ξ-exceptional divisor.

Denote by Ê and D̂ the proper transforms on Ŝ of the divisors E and D̃, respectively.
Using Lemma A.4.3 again, we see that F contains a unique point P such that the log pair(

Ŝ, λD̂ +
(
λmultO

(
D
)
− 1
)
Ê +

(
λmultO

(
D
)
+ λmultQ

(
D̃
)
− 2
)
F
)

is not Kawamata log terminal at P , and

(A.5.9) λmultP
(
D̂
)
+
(
λmultO

(
D
)
− 1
)
multP

(
Ê
)
+ λmultO

(
D
)
+ λmultQ

(
D̃
)
> 3

Let T̂ be the proper transform on Ŝ of the line in P2 that is tangent to ϕ(E) at ϕ(Q).

Then π ◦ ξ(T̂ ) is a cuspidal curve in | −KS|. Thus, using Lemma A.4.12, we may assume

that Supp(D̂) does not contain T̂ . Hence, if P ∈ Ê, then P ∈ T̂ , so that

5− 2multO
(
D
)
−multQ

(
D̃
)
= T̂ · D̂ ⩾ multP

(
D̂
)
> 5− 2multO

(
D
)
−multQ

(
D̃
)

by (A.5.9). Then P ̸∈ Ê, so that (A.5.9) gives multO(D) + multQ(D̃) + multP (D̂) > 15
4
.

Observe that P2 contains a unique line L that passes through ϕ(Q) such that its proper

transform on Ŝ contains the point P . Since the line L is defined over F, it does not contain
any of the F-points ϕ(Z̃1), ϕ(Z̃2), ϕ(Z̃3), ϕ(Z̃4), ϕ(Z̃5). Now, we denote by L̂ the proper

transform of the line L on the surface Ŝ. Then π◦ξ(L̂) is a nodal curve in |−KS|, so that,

using Lemma A.4.12, we may assume that Supp(D̂) does not contain L̂. Then

5− 2multO
(
D
)
−multQ

(
D̃
)
= L̂ · D̂ >

15

4
−multO

(
D
)
−multQ

(
D̃
)
,

which gives multO(D) < 5
4
. Then (S, λD) is Kawamata log terminal at O by Lemma A.1.4,

which contradicts our assumption.
We see that α(S) ⩾ 4

5
. To show that α(S) = α2(S) =

4
5
, recall that S always contains

a point [195, 186]. Thus, arguing as above, we can find a curve C ∈ | − 2KS| such that
the equality (A.5.8) holds. This gives α(S) ⩽ α2(S) ⩽ 4

5
. □
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Now, we are ready to prove the following result:

Lemma A.5.10. Suppose that K2
S = 5 and Pic(S) ̸= Z[−KS]. Then

α(S) =


α1(S) =

1

2
if S contains a line,

α2(S) =
2

3
if S does not contain lines.

Proof. If the surface S contains a line L, then the linear system |−KS−L| gives a birational
map π : S → Q such that Q is a smooth quadric surface in P3, and π(L) is a hyperplane
section of the quadric Q. Moreover, the morphism π contracts a curve E , which splits over
the algebraic closure F as a disjoint union of three (−1)-curves that intersect the line L.
Then 2L+ E ∼ −KS, so that α(S) ⩽ α1(S) ⩽ 1

2
, and α(S) = 1

2
by [29, Theorem 1.7].

To complete the proof of the lemma, we may assume that the surface S contains no lines.
Since Pic(S) ̸= Z[−KS] and S contains a point, this implies that Pic(S) ∼= Z2 and there
exists the following Sarkisov link:

S
π

��

ϕ

��
P2 P1

where π is a birational morphism, and ϕ is a conic bundle. Moreover, the morphism π that
contracts an irreducible curve E that splits over F as a union of four disjoint (−1)-curves.
Let C be a fiber of the conic bundle ϕ over a point in P1. Then 3

2
C + 1

2
E ∼Q −KS,

so that α(S) ⩽ α2(S) ⩽ 2
3
. We claim that α(S) = 2

3
. Indeed, suppose that α(S) < 2

3
.

Then S contains an effective Q-divisor D ∼Q −KS, and the pair (S, λD) is strictly log
canonical for a positive rational number λ < 2

3
.

We claim that Nklt(S, λD) is zero-dimensional. Indeed, suppose that Nklt(S, λD) con-
tains an irreducible curve C. Then 3

2
C + 1

2
E ∼Q D = 1

λ
C + ∆, where ∆ is an effective

Q-divisor whose support does not contain C. In particular, we see that C ̸= E , because
C and E generate the Mori cone of the surface S. Then C ∼ π∗(OP2(d)) −mE for some
positive integer d and some non-negative integer m. We have

3

2
C +

1

2
E ∼Q

d

2λ
C +

( d
2λ

− m

λ

)
E +∆,

so that m ⩽ d
2
, d

2λ
⩽ 3

2
and d

2λ
− m

λ
⩽ 1

2
, which leads to a contradiction, since λ < 2

3
.

Using Corollary A.1.7, we see that the locus Nklt(S, λD) consists of a single point O.
Note that O ̸∈ E , so that the log pair (P2, λπ(D)) is not Kawamata log terminal at π(O).
Let L be a line in P2 that does not contain π(O). Then

L ∪O ⊆ Nklt
(
P2, L+ λπ(D)

)
,

but Nklt(P2, L + λπ(D)) contains no curves except L. This contradicts Corollary A.1.7.
The obtained contradiction shows that α(S) = α2(S) =

2
3
. □

We compute α-invariants of sextic del Pezzo surfaces in the following lemma:
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Lemma A.5.11. Suppose that K2
S = 6. Then

α(S) =


1 if S does not contain lines, conics and points,

2

3
if S does not contain lines and conics, but S contains a point,

1

2
if S contains a line or a conic.

Proof. Let us describe geometry of the del Pezzo surface S over the algebraic closure F.
Over the field F, we have a birational morphism ϖ : S → P2 that blows up three distinct
non-collinear points P1, P2, P2. Let E1, E2, E3 be ϖ-exceptional curves that are mapped
to the points P1, P2, P2, respectively. For every i and j in {1, 2, 3}, let Lij be the proper
transform on S of the line in P2 that passes through the points Pi and Pj, Then the set

(A.5.12)
{
E1, E2, E3, L12, L13, L23

}
contains all (−1)-curves in S. Moreover, there exists the diagram

S
ϖ

��

φ

��
P2 P2

where φ is the contraction of the (−1)-curves L12, L13, L23. In general, this diagram as
well as the morphisms ϖ and φ are not defined over F.
The Galois group Gal(F/F) naturally acts on the set (A.5.12), and its possible splitting

into the Gal(F/F)-orbits can be described as follows:

(D12) {E1, E2, E3, L12, L13, L23},
(S3) {E1, E2, E3} and {L12, L13, L23},

(µ2
2.a) {E1, L23} and {E2, E3, L12, L13},

(µ2
2.b) {E2, L13} and {E1, E3, L12, L23},

(µ2
2.c) {E3, L12} and {E1, E2, L13, L23},
(µ2) {E1, L23}, {E2, L13} and {E3, L12},

(µ2.a) {E1, L23}, {E2, L12} and {E3, L13},
(µ2.b) {E2, L13}, {E1, L12} and {E3, L23},
(µ2.c) {E3, L12}, {E1, L13} and {E2, L23},
(µ2.a

′) {E1}, {L23}, {E2, E3} and {L12, L13},
(µ2.b

′) {E2}, {L13}, {E1, E3} and {L12, L23},
(µ2.c

′) {E3}, {L12}, {E1, E2} and {L13, L23},
(1) {E1}, {L23}, {E2}, {L13}, {E3}, {L12}.
Suppose that S contains a line L. Then L is a Gal(F/F)-invariant curve in (A.5.12). We

may assume that L = L12. Then 2L12 +
3
2
(E1 +E2) +

1
2
(L13 + L23) ∼Q −KS, where both

curves E1 + E2 and L13 + L23 are defined over F. Hence, in this case, we have α(S) ⩽ 1
2
,

so that α(S) = 1
2
by [29, Theorem 1.7].

Similarly, if S contains a conic C, then the linear system | −KS − C| gives a birational
map π : S → Q such that Q is a smooth quadric surface in P3, and π(C) is its hyperplane
section. In this case, the morphism π contracts a curve E that splits over F as a disjoint
union of two (−1)-curves that intersect C, which gives 2C + E ∼ −KS, so that α(S) ⩽ 1

2
,

which implies that α(S) = 1
2
by [29, Theorem 1.7].
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Thus, to complete the proof, we may assume that S does not contain lines and conics.
This assumption also implies that S does not contain singular conics. Indeed, if S contains
a singular conic C, then the linear system |C| gives a conic bundle S → P1, so that S also
contains a (smooth) conic. Thus, our assumptions impose strong restrictions on the way
the group Gal(F/F) acts on the set (A.5.12). Namely, we only can have splittings of this
set into the orbits described in (D12), (S3), (µ

2
2.a), (µ

2
2.b), (µ

2
2.c), (µ2).

If S has no points, let µ = 1. If S has a point, we let µ = 2
3
. We claim that α(S) ⩽ µ.

Indeed, if S does not contain points, the claim is obvious. If S contains a point P , then
the surface S contains a curve Z that splits over F as Z = Z1+Z2+Z3, where Z1, Z2, Z3

are smooth rational curves such that −KS · Z1 = −KS · Z2 = −KS · Z3 = 2. Indeed, we
can let Zi be the proper transform via ϖ of the line in P2 that passes through the points
ϖ(P ) and ϖ(Ei). Thus, in this case, we have Z1 + Z2 + Z3 ∼ −KS and

lct
(
S, Z1 + Z2 + Z3

)
= lctP

(
S,Z1 + Z2 + Z3

)
= µ =

2

3
,

so that α(S) ⩽ µ. Note that the curve Z is defined over F.
We claim that α(S) = µ. Indeed, suppose that α(S) < µ. Then S contains an effective

Q-divisor D such that D ∼Q −KS, and the log pair (S, λD) is strictly log canonical for
a positive rational number λ < mu. Let us seek for a contradiction.
If Nklt(S, λD) is zero-dimensional, then it consists of a single point by Corollary A.1.7,

which must be defined over F, so that λ < µ = 2
3
, and we can obtain a contradiction

arguing exactly as in the end of the proof of Lemma A.5.10. Therefore, we conclude that
the locus Nklt(S, λD) contains an irreducible curve C. Then D = 1

λ
C + ∆, where ∆ is

an effective Q-divisor whose support does not contain C. We have

2 =
(
L12 + E2

)
·D =

1

λ

(
L12 + E2

)
· C +

(
L12 + E2

)
·∆ ⩾

1

λ

(
L12 + E2

)
· C,

2 =
(
L23 + E3

)
·D =

1

λ

(
L23 + E3

)
· C +

(
L23 + E3

)
·∆ ⩾

1

λ

(
L23 + E3

)
· C,

2 =
(
L13 + E1

)
·D =

1

λ

(
L13 + E1

)
· C +

(
L13 + E1

)
·∆ ⩾

1

λ

(
L13 + E1

)
· C,

because divisors L12 + E2, L23 + E3, L13 + E1 are nef. Thus, we see that

(A.5.13)


(L12 + E2) · C ⩽ 1,

(L23 + E3) · C ⩽ 1,

(L13 + E1) · C ⩽ 1.

In particular, this gives −KS · C = (L12 + E2) · C + (L23 + E3) · C + (L13 + E1) · C ⩽ 3.
Therefore, keeping in mind that S does not contain lines, conic and singular conics,
the curve C is irreducible, and the del Pezzo surface S is an intersection of quadrics in its
anticanonical embedding in P6, we obtain the following cases:

(1) C = E1 + L23,
(2) C = E2 + L13,
(3) C = E3 + L12,
(4) C = E1 + E1 + E3,
(5) C = L12 + L13 + L23,
(6) C ∼ L12 + E1 + E2,
(7) C ∼ L12 + L13 + E1.
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The first three cases are contradict (A.5.13). If C = E1 + E1 + E3, then

3 =
(
L12+L13+E1

)
·D =

1

λ

(
L12+L13+E1

)
·C+

(
L12+L13+E1

)
·∆ ⩾

1

λ

(
L12+L13+E1

)
·C =

3

λ
,

which is impossible, since λ < 1. Similarly, if C = L12 + L13 + L23, then

3 =
(
L12+E1+E2

)
·D =

1

λ

(
L12+E1+E2

)
·C+

(
L12+E1+E2

)
·∆ ⩾

1

λ

(
L12+E1+E2

)
·C =

3

λ
,

which is a contradiction. Thus, we see that either C ∼ L12+E1+E2 or C ∼ L12+L13+E1.
If C ∼ L12+E1+E2, then |C| gives the birational map ϖ : S → P2, so that it is defined

over F, which implies in particular that S contains a point, so that µ = 2
3
and

3 =
(
L12 + L13 + E1

)
·D =⩾

1

λ

(
L12 + L13 + E1

)
· C =

2

λ
>

2

µ
= 3,

because L12 + L13 + E1 is nef. Similarly, if C ∼ L12 + L13 + E1, then µ = 2
3
and

3 =
1

λ

(
L12 + E1 + E2

)
· C +

(
L12 + E1 + E2

)
·∆ ⩾

1

λ

(
L12 + E1 + E2

)
· C =

2

λ
>

2

µ
= 3,

because L12 + E1 + E2 is nef. The obtained contradiction completes the proof. □

IfK2
S = 7, then S is a blow up of P2 in two points, so that α(S) = 1

3
by [29, Theorem 1.7].

Similarly, if S is a blow up of P2 in one point, we get α(S) = 1
3
. Finally, we prove

Lemma A.5.14. Suppose that K2
S = 8, and S is not a blow up of P2 in one point. Then

α(S) =


1

2
if S is a smooth quadric surface in P3 or S ∼= P1 × C for a conic C,

1 otherwise.

Proof. Note that α(S) ⩽ 1, since |−KS| is not empty. Moreover, if S is a smooth quadric
surface in P3, then α(S) ⩽ lct(S, 2H) = 1

2
for any hyperplane section H of the surface S,

so that α(S) = 1
2
by [29, Theorem 1.7]. Similarly, we see that α(S) = 1

2
if S ∼= P1 ×C for

an arbitrary conic C defined over F. Furthermore, if Pic(S) = Z[−KS], then S does not
have points. In this case, arguing as in the proof of Lemma A.5.3, we see that α(S) = 1.
Now, we may assume that Pic(S) ̸= Z[−KS] and S is not a quadric in P3. This implies

that rkPic(S) = 2, andX ̸∼= C×C for any conic C. Thus, it follows from [189, Lemma 3.4]
that S = C1×C2, where C1 and C2 are two non-isomorphic conics such that neither of them
contains points. We claim α(S) = 1. Indeed, suppose that α(S) < 1. Then S contains an
effective Q-divisor D ∼Q −KS, and (S, λD) is not log canonical for some positive rational
number λ < 1. If Nklt(S, λD) is zero-dimensional, then Nklt(S, λD) must be a point by
Corollary A.1.7, which contradicts our assumption. Thus, we conclude that Nklt(S, λD)
contains an irreducible curve C. Then D = aC +∆ for some rational number a ⩾ 1

λ
> 1,

where ∆ is an effective Q-divisor on S. Then C ∼ pr∗1(−n1KC1) + pr∗2(−n2KC2) for some
non-negative integers n1 and n2, where pr1 : S → C1 and pr2 : S → C2 are projections to
the first and the second factors, respectively. Then

pr∗1

(
−KC1

)
+ pr∗2

(
−KC2

)
∼ −KS ∼Q D ∼Q pr∗1

(
− an1KC1

)
+ pr∗2

(
− an2KC2

)
+∆,

which immediately leads to a contradiction, since a > 1. □
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A.6. Groups acting on Hirzebruch surfaces. In this section, we describe properties
of some groups acting faithfully on Hirzebruch surfaces. Let X = Fn, and let G be
a reductive subgroup in Aut(X). If n > 0, we denote by π : X → P1 the natural G-
equivariant projection. In this case, we denote by s the section of π such that s2 = −n,
and we denote by f a fiber of this projection. Observe that the curve s is G-invariant,
and |s+ nf | also contains smooth G-invariant curve, which is disjoint from s.
If n = 0, we denote by π1 : X → P1 and π2 : X → P1 the projections to the first and

the second factors, respectively. Then π1 and π2 are G-equivariant ⇐⇒ rkPicG(X) = 2.
We start with the case G ∼= PGL2(C).

Lemma A.6.1 ([141, Theorem 5.1]). Suppose that G ∼= PGL2(C). If X = P1 × P1, then

(1) either G acts trivially on one of the factors of the surface X;
(2) or G acts diagonally on X, and the only proper closed G-invariant subvariety in

the surface X is its diagonal.

Similarly, if n ⩾ 1, then X contains exactly two proper closed irreducible G-invariant
subvarieties: the section s and a unique G-invariant curve in |s+ nf | disjoint from s.

Now, we consider the case when G ∼= (Gm ⋊ µ2)× µ2.

Lemma A.6.2. Suppose that X = P1 × P1, G ∼= (Gm ⋊ µ2) × µ2 and rkPicG(X) = 2.
Then G contains two involutions σ and τ such that G = ⟨Gm, σ, τ⟩, ⟨Gm, σ⟩ ∼= Gm ⋊ µ2,
and up to conjugation in Aut(X) the G-action on X can be described as follows: either

(A.6.3)

λ : ([x0 : x1], [y0 : y1]) 7→ ([λx0 : x1], [y0 : y1]),

σ : ([x0 : x1], [y0 : y1]) 7→ ([x1 : x0], [y0 : y1]),

τ : ([x0 : x1], [y0 : y1]) 7→ ([x0 : x1], [−y0 : y1]),

or there are a ∈ Z>0 and b ∈ Z such that gcd(a, b) = 1 and

(A.6.4)

λ : ([x0 : x1], [y0 : y1]) 7→ ((λax0 : x1], [λ
by0 : y1]),

σ : ([x0 : x1], [y0 : y1]) 7→ ([x1 : x0], [y1 : y0]),

τ : ([x0 : x1], [y0 : y1]) 7→ ([x0 : x1], [−y0 : y1]),

where λ ∈ Gm, and ([x0 : x1], [y0 : y1]) are coordinates on X = P1 × P1.

Proof. Since π1 and π1 are G-equivariant, they induce homomorphisms ρ1 : G→ Aut(P1)
and ρ2 : G→ Aut(P1), respectively. Up to a change of coordinates, for λ ∈ Gm we have

ρ1(λ)
(
[x0 : x1]

)
= [λax0 : x1],

ρ2(λ)
(
[y0 : y1]

)
= [λby0 : y1],

where a ∈ Z>0 and b ∈ Z such that gcd(a, b) = 1.
Recall that G ∼= (Gm ⋊ µ2)× µ2. Let σ be the generator of the factor µ2 in Gm ⋊ µ2,

and let τ be the generator of the direct factor µ2. Observe that ρ1(σ) is an involution
that normalizes ρ1(Gm) but does not commute with it. Then ρ1(σ)([x0 : x1]) = [αx1 : x0]
for some α ∈ Gm. Rescaling the coordinate x0 if necessary, we may assume that α = 1.
Moreover, since ρ1(τ) commutes with ρ1(Gm), we get ρ1(τ)([x0 : x1]) = [±x0 : x1].
Replacing τ by a

√
−1τ if necessary, we may assume that ρ1(τ) is trivial.
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Suppose that b ̸= 0. As above, up to a change of coordinates we obtain

ρ2(σ)
(
[y0 : y1]

)
= [y1 : y0],

ρ2(τ)
(
[y0 : y1]

)
= [±y0 : y1].

However, since ρ1(τ) is trivial, ρ2(τ) cannot be trivial, so that ρ2(τ)([y0 : y1]) = [−y0 : y1].
This gives the action (A.6.4).

Now, we suppose that b = 0. Then ρ2(τ) is a non-trivial involution, so that, up to
a change of coordinates, we have ρ2(τ)([y0 : y1]) = [−y0 : y1]. Since ρ2(σ) commutes
with τ , either it is trivial, or ρ2(σ)([y0 : y1]) = [y1 : y0]. In the former case, we get
the action (A.6.3). In the latter case, we get the action (A.6.4) with a = 1 and b = 0. □

Corollary A.6.5. Suppose X = Fn with n > 0, and G ∼= (Gm⋊µ2)×µ2. Then n is even,
and there exists the following G-equivariant commutative diagram:

X
ψ //

π
��

P1 × P1

π1
��

P1 ϕ // P1

where ψ is a birational map, ϕ is an isomorphism, π1 is the projection to the first factor,
and the G-action on P1 × P1 is as in (A.6.3).

Proof. As we already mentioned, there exists a smooth G-invariant curve C ∈ |s + nf |.
Since C is G-invariant and C ∼= P1, we conclude that C contains a G-orbit of length 2.
Blowing up this G-orbit and contracting the proper transforms of two curves in |f | that
meet this orbit, we obtain the following G-equivariant commutative diagram:

X
θ //

π
��

Fm

��
P1 P1

where θ is the constructed birational map, and m = n− 2.
Applying this construction ⌊n−1

2
⌋ times, we get a G-equivariant commutative diagram

X
ψ //

π
��

Fr
ϖ
��

P1 P1

such that ψ is a birational map, ϖ is a natural projection, ψ(s) and ψ(C) are two disjoint
G-invariant sections of the projection ϖ, and

r =

{
0 if n is even,

1 if n is odd.

A similar idea has been used in the proof of of [32, Lemma B.15].
If r = 1, then there exists a G-equivariant birational contraction F1 → P2, which implies

that P2 contains G-fixed point, which gives an embedding G ↪→ GL2(C) by Lemma A.4.1.
However, the group GL2(C) does not contain subgroups isomorphic to G, so that r = 0.
Now, applying Lemmas A.6.2, we obtain the required assertion. □
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Now, we consider the case when G ∼= (Gm × µ3)⋊ µ2
∼= Gm ⋊S3.

Lemma A.6.6. Suppose that X = P1 × P1, G ∼= (Gm × µ3) ⋊ µ2 and rkPicG(X) = 2.
Then there are an involution σ ∈ G and an element of order three τ ∈ G that together with
the subgroup Gm generate the group G, and up to conjugation in Aut(X) the G-action on
the surface X can be described as follows: either

(A.6.7)

λ : ([x0 : x1], [y0 : y1]) 7→ ([λx0 : x1], [y0 : y1]),

σ : ([x0 : x1], [y0 : y1]) 7→ ([x1 : x0], [y0 : y1]),

τ : ([x0 : x1], [y0 : y1]) 7→ ([x0 : x1], [ωy0 : y1]),

or there are a ∈ Z>0 and b ∈ Z such that gcd(a, b) = 1 and

(A.6.8)

λ : ([x0 : x1], [y0 : y1]) 7→ ([λax0 : x1], [λ
by0 : y1]),

σ : ([x0 : x1], [y0 : y1]) 7→ ([x1 : x0], [y1 : y0]),

τ : ([x0 : x1], [y0 : y1]) 7→ ([x0 : x1], [ωy0 : y1]),

where ω is a primitive cube root, λ ∈ Gm, and ([x0 : x1], [y0 : y1]) are coordinates on X.

Proof. Arguing as in the proof of Lemma A.6.2, we see that there are two natural group
homomorphisms ρ1 : G→ Aut(P1) and ρ2 : G→ Aut(P1). Up to a change of coordinates,
for λ ∈ Gm we have ρ1(λ)([x0 : x1]) = [λax0 : x1] and ρ2(λ)([y0 : y1]) = [λby0 : y1] for some
integers a > 0 and b such that gcd(a, b) = 1.

Fix an isomorphism G ∼= (Gm × µ3) ⋊ µ2. Let τ be a generator of the factor µ3, and
let σ be the generator of the semi-direct factor µ2. Then ρ1(σ)([x0 : x1]) = [x1 : x0].
Since the centralizer of the torus ρ1(Gm) in Aut(P1) coincides with ρ1(Gm), we conclude
that ρ1(τ)([x0 : x1]) = [γx0 : x1], where γ is a (possibly trivial) cube root of unity.

Therefore, replacing τ by a
√
γ2τ , we may assume that τ ∈ ker(ρ1).

Suppose that b ̸= 0. Up to a change of coordinates, we have ρ2(σ)([y0 : y1]) = [y1 : y0]
and ρ2(τ)([y0 : y1]) = [ωy0 : y1], where ω is a cube root of unity. Since τ ∈ ker(ρ1), we
have τ ̸∈ ker(ρ2), so that ω is a primitive cube root of unity. This gives the action (A.6.8).

Suppose b = 0. Up to a change of coordinates, we have ρ2(τ)([y0 : y1]) = [ωy0 : y1] for
a primitive cube root of unity ω. For the element ρ2(σ) we have two options: it is either
trivial, or ρ2(σ)([y0 : y1]) = [y1 : y0]. Thus, in the former case, we get the action (A.6.7).
Likewise, in the latter case, we get the action (A.6.8) with a = 1 and b = 0. □

Corollary A.6.9. Suppose X = Fn with n > 0, and G ∼= (Gm×µ3)⋊µ2. Then n is even,
and there exists the following G-equivariant commutative diagram:

X
ψ //

π
��

P1 × P1

π1
��

P1 ϕ // P1

where ψ is a birational map, ϕ is an isomorphism, π1 is the projection to the first factor,
and the G-action on P1 × P1 is as in (A.6.7).

Proof. The proof is the same as the proof of Corollary A.6.5. The only difference is that
now we should use Lemma A.6.6 instead of Lemma A.6.2. □

Now, we present very one very result, which is used in the proof of Lemma 5.1.1.
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Lemma A.6.10. Suppose that X = F4 and G = S4. Then |s + kf | does not contain
G-irreducible curves for k ∈ {5, 6, 7, 8, 9}, and |s+4f | contains unique G-invariant curve.

Proof. If C is a G-irreducible curve in |s + kf | for k ⩾ 5, then |C ∩ s| ⩽ C · s = k − 4,
which gives k ⩾ 10, since P1 does not have S4-orbits of length less than 6.

As we already mentioned, the linear system |s+4f | contains an irreducible G-invariant
curve C. If C is another G-invariant curve in |s+ 4f |, then |C ∩ C| ⩽ C · C = 4, which is
impossible as well. This shows that C is the only G-invariant curve in |s+ 4f |. □

The following lemma is used in Example 4.4.6

Lemma A.6.11. Suppose that X = P1×P1, G = A4, and the G-action on X is diagonal.
Then X contains two G-invariant curves of degree (1, 3), and both of them are smooth.
Moreover, if C is one of these curves, then the group Aut(X,C ) is finite.

Proof. To start with, we describe the G-action on the surface X. Let Ĝ = 2.A4
∼= SL2(F3),

and let U2 be a two-dimensional irreducible representation of the group Ĝ. This gives us
a faithful G-action on P1 = P(U2), which gives the diagonal G-action on X.
Let ∆ be the G-invariant diagonal curve in X, let H be a divisor on X of degree (1, 3).

Then H|∆ is a divisor on ∆ ∼= P1 of degree 4, and the restriction map gives the following

epimorphism of Ĝ-representations:

U2 ⊗ Sym3
(
U2

) ∼= H0
(
OX(H)

)
↠ H0

(
O∆

(
H|∆

)) ∼= Sym4
(
U2

)
.

But H0(O∆(H|∆)) contains two non-isomorphic one-dimensional Ĝ-subrepresentations,
because the curve ∆ contains exactly two G-orbits of length 4. Therefore, we conclude

thatH0(OX(H)) also contains two non-isomorphic one-dimensional Ĝ-subrepresentations.
Thus, we see that |H| has at least two G-invariant curves. These curves are irreducible

and smooth, because X does not contain G-invariant curves of degree (1, 0) and (0, 1),
since otherwise intersecting them with ∆ we would get G-fixed points, which do not exist.
This also implies that |H| contains exactly two G-invariant curves.

Let C be a G-invariant curve in X of degree (1, 3). We claim that Aut(X,C ) is finite.
Indeed, if it is not finite, then arguing as in the proof of [42, Corollary 2.7], we see that
the projection the first factor X → P1 induces a G-equivariant Galois triple cover C → P1

branched in two points, which must form a G-invariant subset. The latter is impossible,
since the length of the smallest G-orbit in P1 is 4. This shows that Aut(X,C ) is finite. □

Similarly, we obtain the following result, which is used in Section 5.14.

Lemma A.6.12. Suppose that X = P1×P1, G = S4, and the G-action on X is diagonal.
Then X contains a unique G-invariant curve of degree (1, 5), and this curve is smooth.
Moreover, if C is this curve, then Aut(X,C ) ∼= G.

Proof. Let ∆ be the diagonal curve in S, and let H be a divisor on X of degree (1, 5).
Since ∆ is G-invariant, the restriction H0(OX(H)) ↠ H0(O∆(H|∆)) is a epimorphism of
two representations of the group 2.S4. On the other hand, the curve ∆ contains a unique
G-orbit of length 6, so that |H|∆| contains unique G-invariant divisor. Therefore, we see
that H0(O∆(H|∆)) contains unique one-dimensional subreprepresentation of 2.S4, which
implies that H0(OX(H)) contains one-dimensional subreprepresentation of this group.
Hence, we conclude that |H| contains a G-invariant divisor C .
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We claim that C is reduced and irreducible. Indeed, otherwise we have C = ℓ+D for
some effective G-invariant divisor D on X, and a G-invariant ruling ℓ of the surface X.
Then ℓ ∩ ∆ is a G-invariant point in ∆, which does not exist. Hence, we see that C is
reduced and irreducible. This also implies that C is the unique G-invariant divisor in |H|.
Keeping in mind that C is a divisor of degree (5, 1), we see that C is a smooth curve.
Arguing as in the very end of proof of Lemma A.6.11, we see that Aut(X,C ) is finite,

which implies that Aut(X,C ) = G, because the group G ∼= S4 is not contained in any
finite subgroup in Aut(C ) ∼= PGL2(C) except itself. □

A.7. Auxiliary results. In this section, we present few sporadic lemmas.

Lemma A.7.1. Let X be an arbitrary normal projective algebraic variety of dimension n,
let A and B be Cartier divisors on X such that A is big and nef, and A + aB is nef for
some a ∈ Z>0. Then

ma∑
k=0

h0(X,mA+ kB) =
mn+1

n!

∫ a

0

(A+ uB)ndu+O(mn).

Moreover, for any Cartier divisor D on X and any i > 0, we have
ma∑
k=0

hi(X,mA+ kB +D) = O(mn−i).

Proof. Let V = P(O⊕B), let π : V → X be the P1-bundle, let H be the tautological line
bundle on V , and let L = aH + π∗(A). Then L is nef by [158, Lemma IV.2.6(2)].
Consider the section σ : X → V that corresponds to the embedding O ↪→ O ⊕ B.

Then σ∗(H) = OX , and the normal bundle of σ(X) in V is π∗(−B). Then σ∗(L) = A
and σ(X) ∼ H − π∗(B). Let L ∼ aσ(X) + π∗(A+ aB). Then

Ln+1−i · π∗(A+ aB)i = aAn−i · (A+ aB) + Ln−i · π∗(A+ aB)i+1

for every i ∈ {0, . . . , n}. This gives

Ln+1 =
n∑
j=0

aAn−j · (A+ aB)j =
n∑
i=0

ai+1

n∑
j=i

(
j

i

)
An−i ·Bi =

n∑
i=0

ai+1

(
n+ 1

i+ 1

)
An−i ·Bi.

As
(
n+1
i+1

)
= (n+ 1)

(
n
i

)
· 1
i+1

, we have

Ln+1 = (n+ 1) ·
n∑
i=0

(
n

i

)
(An−i ·Bi)

ai+1

i+ 1
= (n+ 1) ·

∫ a

0

(A+ uB)ndu.

Thus, to prove the first required equality, it remains to notice that

H0
(
V,mL

)
= H0

(
X,Sma

(
O ⊕B

)
⊗OX

(
mA

)) ∼=
ma⊕
j=0

H0
(
X,mA+ jB

)
.

Since L is nef, we have by asymptotic Riemann–Roch that

h0
(
V,mL

)
=

mn+1

(n+ 1)!
Ln+1 +O(mn),

which implies the first required equality.
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Now, let us prove the second required equality. Using Leray’s spectral sequence, we get

Hp
(
V,mL ⊗ π∗(D)

) ∼= Hp
(
X, π∗(mL ⊗ π∗D)

) ∼= Hp
( ma⊕
j=0

O(mA+ jB +D)
)
,

since Rqπ∗(mL ⊗ π∗(D)) = 0 for all q > 0. Now, using [101, Corollary 7], we get

hi
(
V,mL+ π∗(D)

)
⩽ O(mn−i),

which implies the second required equality. □

Lemma A.7.2 (cf. [152, Example 1.5]). Let Q be a smooth quadric hypersurface in P4,
let C be a smooth curve in Q such that C is a scheme-intersection of surfaces in |OP4(2)|Q|,
and let π : X → Q be a blow up of the curve C. Then X is a Fano threefold.

Proof. Lt E be the π-exceptional surface. Then |π∗(OP4(2)|Q) − E| is base point free,
which implies that the divisor KX ∼ π∗(OP4(3)|Q)− E is ample. □

Lemma A.7.3. Let W be the standard two-dimensional SL2(C)-representation equipped
with some basis, let W ∗ be the dual representation, and let u, v be the dual basis in W ∗.
Consider the representation Sym4(W ∗) with the basis

(e0, e1, e2, e3, e4) = (u4, u3v, u2v2, uv3, v4).

Then non-GIT-stable SL2(C)-orbits in Sym4(W ∗) can be described as follows:

(1.1) closed 2-dimensional orbit SL2(C).αe2 with stabilizer Gm, where α ∈ C∗,

(1.2) non-closed 2-dimensional orbit SL2(C).e0 with stabilizer Ga and 0 ∈ SL2(C).e0,
(1.3.a) non-closed 3-dimensional orbit SL2(C).(e0 + αe2) with

SL2(C).αe2 ⊂ SL2(C).(e0 + αe2) ̸∋ 0,

where α ∈ C∗,
(1.3.b) non-closed 3-dimensional orbit SL2(C).e1 with SL2(C).e0 ⊂ SL2(C).e1 ∋ 0.

Let P4 = P(Sym4(W ∗)) that is equipped with the induced PGL2(C)-action and coordinates.
Then non-GIT-stable PGL2(C)-orbits in P4 can be described as follows:

(2.1) polystable 2-dimensional orbit PGL2(C).[0 : 0 : 1 : 0 : 0] with stabilizer Gm,
(2.2) unstable 1-dimensional orbit PGL2(C).[1 : 0 : 0 : 0 : 0] with stabilizer Ga ⋊Gm,

(2.3.a) strictly semistable 3-dimensional orbit PGL2(C).[1 : 0 : 1 : 0 : 0],
(2.3.b) unstable 2-dimensional orbit PGL2(C).[0 : 1 : 0 : 0 : 0] with stabilizer Gm.

The closure of every non-GIT-stable orbit contains the orbit (2.2).

Proof. The description of non-GIT stable SL2(C)-orbits in Sym4(W ∗) is well-known and
can be found in [172, 68]. The remaining assertions follows this description. □

Corollary A.7.4 ([42, Lemma 9.1]). In the assumptions and notations of Lemma A.7.3,
we let P5 = P(Sym4(W ∗) ⊕ I), where I is the trivial representation of the group SL2(C).
For the induced PGL2(C)-action on P5, non-GIT-stable orbits can be described as follows:

(3.0) polystable fixed point [0 : 0 : 0 : 0 : 0 : 1] with stabilizer PGL2(C),
(3.1) polystable orbit PGL2(C).[0 : 0 : 1 : 0 : 0 : λ] with stabilizer Gm, where λ ∈ C,
(3.2) unstable orbit PGL2(C).[1 : 0 : 0 : 0 : 0 : 0] with stabilizer Ga ⋊Gm,
(3.2′) strictly semistable orbit PGL2(C).[1 : 0 : 0 : 0 : 0 : 1] with stabilizer Ga,

(3.3.a) strictly semistable orbit PGL2(C).[1 : 0 : 3 : 0 : 0 : λ], where λ ∈ C,
(3.3.b) unstable orbit PGL2(C).[0 : 1 : 0 : 0 : 0 : 0],
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(3.3.b′) strictly semistable orbit PGL2(C).[0 : 1 : 0 : 0 : 0 : 1].

Proof. Observe that set-theoretically we have the following decomposition

P
(
Sym4(W ∗)⊕ I

)
= P

(
Sym4

(
W
))

⊔ Sym4
(
W ∗),

so that the required description follows from Lemma A.7.3. □

Recall that two-dimensional linear systems are called nets.

Lemma A.7.5. Let M be a net in |OP1(4)| that is base point free. Then P1 contains two
distinct points P and Q such that one of the following (excluding) possibilities holds:

(1) the net M contains 2P + 2Q;
(2) the net M contains 4P , 4Q and 3P +Q.

In the second case, the net M is uniquely determined up to the action of PGL2(C).

Proof. Identify H0(OP1(4)) with vector space of quartic polynomials in variables x and y.
Let V be the three-dimensional vector subspace in H0(OP1(4)) that corresponds to M,
and let f(x, y), g(x, y), h(x, y) be its basis. Then the system of equations

(A.7.6)


f(x, y) = 0

g(x, y) = 0

h(x, y) = 0

has no solution in P1. We want to show that there are numbers a, b, c, α, β, γ such that

(A.7.7) αf + βg + γh =
(
ax2 + bxy + cy2

)2
and b2 ̸= 4ac

with one possible exceptions: when, after an appropriate linear change of variables x and y,
the vector space V is generated by x4, y4 and x3y. Moreover, if V = span(x4, y4, x3y),
then the condition (A.7.7) is equivalent to the following system of equations:

bc = 0,

b2 = 2ac,

α = a2,

β = c2,

γ = ab,

b2 ̸= 4ac,

which does not have solutions, so that this case is really an exception.
Let Π be the two-dimensional subspace in P4 = P(H0(OP1(4))) that corresponds to M.

Since our P4 is equipped with the natural action of the group PGL2(C), we are in position
to use notations of Lemma A.7.3. Let S be the closure of the PGL2(C)-orbit (2.1), and
let C be the closure of the orbit (2.2). Then C is a curve, and S is a surface containing C .
We refer the reader to Section 7.2 for an explicit description of this curve and surface.
Observe that the condition (A.7.7) holds ⇐⇒ Π∩

(
S \C

)
̸= ∅. Since Π∩S ̸= ∅, we see

that (A.7.7) is satisfied if we do not assume that b2 ̸= 4ac. The inequality b2 ̸= 4ac simply
means that the corresponding point in Π∩S is not in C . In particular, if Π∩C = ∅, then
we are done. Hence, we may assume that Π ∩ C ̸= ∅. Therefore, applying appropriate
linear change of x and y, we may assume that f = x4.
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First, we suppose that Π∩C contains at least two points. Applying appropriate linear
change of variable, we may assume that h = y4. Now, we can choose g ∈ V such that

g = a3x
3y + a2x

2y2 + a1xy
3

for some numbers a3, a2 and a1. If |Π ∩ C | ⩾ 3, then g = λ(4x3 + 6x2y2 + 4xy3) for
λ ∈ C∗, so that V contains x4, y4, (x+ y)4, (x2 + yx+ y2)2, and we are done. Therefore,
we may assume that Π ∩ C consists of two points, which correspond to x4 and y4.
If a3 = 0 and a2 ̸= 0, we can scale both g and x to get either g = x2y2 or g = x2y2+ y4.

In the first case, we are done. In the second case, we have (x−y)2(x+y)2 = f−2g+3h ∈ V ,
which is exactly what we want. If a3 = 0 and a2 = 0, then we have V = span(x4, y4, xy3),
which is our exception up to a swap of x and y. Therefore, we may assume that a3 ̸= 0,
so that we can replace g by g/a3 and assume that a3 = 1.

If a2 = a1 = 0, then we get our exceptional case. If a2 = 0 and a1 ̸= 0, then scaling x,
we may assume that a1 = 1. In this case, we have(

x2 +
√
−2xy + y2

)2
= x4 + y4 + 2

√
−2
(
x3y + xy3

)
= f + 2

√
−2g + h ∈ V.

Thus, we may assume that a2 ̸= 0. Then, scaling x, we may assume that a2 = 1. Then
f(x, y) = x4,

g(x, y) = x3y + x2y2 + a1xy
3,

h(x, y) = y4.

In order to verify (A.7.7), it is enough to find some numbers α, β, γ, a, b and c such that

αx4 + βy4 + γ
(
x3y + x2y2 + a1xy

3
)
=
(
ax2 + bxy + cy2

)2
,

where (a, b) ̸= (0, 0) and (b, c) ̸= (0, 0), which guarantees that b2 ̸= 4ac, since we assume
that the intersection Π ∩ C consists of exactly two points. This gives

α = a2,

β = c2,

γa1 = 2bc,

γ = 2ab,

γ = 2ac+ b2.

Eliminating α = a2, β = c2 and γ = 2ab, we obtain aba1 = bc and 2ab − 2ac − b2 = 0.
Therefore, we can put a = 1, c = a1 and then choose a non-zero b using b2− 2b+2a1 = 0.
This gives us the required solution to (A.7.7), since b ̸= 0.

To complete the proof, we may assume that the intersection Π∩C consists of one point,
which corresponds to the monomial x4 ∈ V . Thus, in order to verify (A.7.7), it is enough
to find some numbers α, β, γ, a, b and c such that

(A.7.8) αf + βg + γh =
(
ax2 + bxy + cy2

)2
and (b, c) ̸= (0, 0).

As before, we have f = x4. But now we can choose g and h such that
f = x4

g = a3x
3y + a2x

2y2 + a1xy
3 + a0y

4

h = b2x
2y2 + b1xy

3 + b0y
4
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for some numbers a3, a2, a1, a0, b2, b1, b0.
First, let us consider the subcase b2 = 0. Then b1 ̸= 0, since |Π∩C | = 1 by assumption.

Therefore, dividing h by b1, we may assume that b1 = 1. Then, replacing g by g − a1h,
we may assume that a1 = 0. If b0 = 0, then a0 ̸= 0, since (A.7.6) has no solutions in P1,
so that scaling x, we may assume a0 = 1, which gives

f = x4,

g = a3x
3y + a2x

2y2 + y4,

h = xy3,

where (a3, a2) ̸= (0, 0), since |Π∩C | = 1, so that we can find b ̸= 0 using b3−a2b+a3 = 0,

and let a = a2−b2
2

, c = 1, α = (a2−b2)2
4

, β = 1, γ = 2b, which gives us a solution to (A.7.8).
Hence, to complete the proof, we may assume that b0 ̸= 0. Now, appropriately scaling y,
we may also assume that b0 = 1. Then f = x4, g = a3x

3y + a2x
2y2 + a0y

4, h = xy3 + y4.
If a3 = 0, then a2 ̸= 0, so that we can assume that a2 = 1 by scaling x, which implies that
f = x4, g = x2y2 + a0y

4, h = xy3 + y4, so that we can find b ̸= 0 using a0b
2 + 2b− 1 = 0,

and let a = α = 0, c = 1, β = b2, γ = 2b, which is a required solution to (A.7.8). Hence,
we may assume that a3 = 1. Then f = x4, g = x3y + a2x

2y2 + a0y
4, h = xy3 + y4.

If a0 ̸= 0, then one solution to (A.7.8) is given by a = ξ(ξ−2)
2a0

, b = 1, c = ξ, α = ξ2(ξ−2)2

4a20
,

β = ξ(ξ−2)
a0

, γ = 2ξ, where ξ is a root of x3 − (a2 + 2)x2 + 2a2x+ a0. If a0 = 0 and a2 = 0,
then (

x2 − 4xy − 8y2
)2

= x4 − 8x3y + 64(xy3 + y4) = f − 8g + 64h ∈ V.

If a0 = 0 and a2 ̸= 0, then (a, b, c, α, β, γ) = (1, 2a2, 0, 1, 4a2, 0) gives a solution to (A.7.8).
This proves the required assertion in the subcase when b2 = 0.

We may assume that b2 ̸= 0, so that replacing h by h/b2, we may assume that b2 = 1.
Then, swapping g with g−a2h, we may assume that a2 = 0. If b1 = b0 = 0, then x2y2 ∈ V .
Similarly, if b1 = 0 and b0 ̸= 0, then (x2+2b0y

2)2 = x4+4b0(x
2y2+ b0y

4) = f +4b0h ∈ V .
Thus, if b1 = 0, then we are done. Hence, we may assume that b1 ̸= 0. Then, scaling
x, we may assume that b1 = 1, so that we have f = x4, g = a3x

3y + a1xy
3 + a0y

4,
h = x2y2 + xy3 + b0y

4. If b0 = 1
4
, then 4h = (2x + y)2y2 and we are done. So, we may

assume that b0 ̸= 1
4
. Moreover, if a3 = 0, then a1 ̸= 0, since otherwise V would contain

x4 and y4, which is excluded by our assumption that |Π ∩ C | = 1. Hence, if a3 = 0, then(
a1x

2 + 2(a1b0 − a0)y
2
)2

= a21f − 4(a1b0 − a0)g + 4a1(a1b0 − a0)h ∈ V,

so that we are done if a1b0 ̸= a0. If a3 = 0 and a1b0 = a0, then a1x
2y2 = a1h − g ∈ V ,

so that we are also done. Therefore, to complete the proof, we may assume that a3 ̸= 0.
Then, dividing g by a3, we may also assume that a3 = 1. Thus, we have f = x4,
g = x3y + a1xy

3 + a0y
4 and h = x2y2 + xy3 + b0y

4.
Now, let us try to find a solution to (A.7.8) with a = 1, α = 1, β = 2b and γ = b2 +2c.

Then to complete this to a solution to (A.7.8), we must also have (b, c) ̸= (0, 0) and{
b2b0 + 2cb0 + 2a0b− c2 = 0,

2a1b+ b2 − 2bc+ 2c = 0.

If b ̸∈ {0, 1}, the second equation gives c = (2a1+b)b
2(b−1)

, so that the first equation simplifies as

(A.7.9) (4b0 − 1)b3 + (8a0 − 4a1 − 4b0)b
2 + (8a1b0 − 4a21 − 16a0)b+ (8a0 − 8a1b0) = 0.
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This polynomial equation in b always has a solution, because we assumed that b0 ̸= 1
4
.

Moreover, if b is a solution to (A.7.9) and b ̸∈ {0, 1}, than we can let a = 1, c = (2a1+b)b
2(b−1)

,

α = 1, β = 2b, γ = b2 + (2a1+b)b
(b−1)

to get a solution to (A.7.8). Hence, if (A.7.9) has

a solution b ̸∈ {0, 1}, then we are done. Observe also that b = 0 is a solution to (A.7.9)
if and only if a0 = a1b0. Similarly, b = 1 is a solution to (A.7.9) if and only if a1 = −1

2
.

Moreover, if a1 = −1
2
, then (A.7.9) simplifies as (b−1)2((4b0−1)b+8a0+4b0) = 0. Thus,

if a1 = −1
2
, a0 ̸= 1−8b0

8
, b0 ̸= −2a0, then b =

8a0+4b0
1−4b0

satisfies (A.7.9) and b ̸∈ {0, 1}, so that

we are done. On the other hand, if a1 = −1
2
and a0 =

1−8b0
8

, then(
2x2+2xy+y2

)2
= 4x4+

(
8x3y−4xy3+(1−8b0)y

4
)
+8
(
x2y2+xy3+b0y

4
)
= 4f+8g+8h ∈ V,

which is exactly what we need. Similarly, if a1 = −1
2
and b0 = −2a0, then(

x2+xy−4a0y
2
)2

= x4+2
(
x3−xy3

2
+a0

)
+2
(
x2y2+xy3−2a0y

4
)
= f+2g+(1−8a0)h ∈ V,

which gives a solution to (A.7.8). Hence, if a1 = −1
2
, then the required assertion is proved.

Therefore, we may assume that a1 ̸= −1
2
. Then b = 1 is not a solution of (A.7.9).

If a0 = a1b0, then (A.7.9) simplifies as b(b + 2a1)((1 − 4b0)b + 2a1 + 4b0) = 0, so that
b = −2a1 gives us a solution to (A.7.9) such that b ̸∈ {0, 1} provided that a1 ̸= 0 Hence,
if a0 = a1b0 and a1 ̸= 0, then we are done. Similarly, if a0 = a1 = 0, then b = 4b0

4b0−1
gives

a solution to the equation (A.7.9) such that b ̸∈ {0, 1}, since b0 ̸= 0 in this case, since
(A.7.6) does not have solutions in P1. Therefore, we proved that (A.7.8) has a solution,
which completes the proof of the lemma. □

Let us conclude the appendix by the following result (cf. [211] and [42, § 10]).

Lemma A.7.10 ([15, 83]). Let X be a smooth divisor in P2 × P2 that has degree (1, 2).
Then one can choose coordinates ([x : y : z], [u : v : w]) on P2 × P2 such that X is given
by one of the following three equations:

(1) (µvw+ u2)x+ (µuw+ v2)y+ (µuv+w2)z = 0 for some µ ∈ C such that µ3 ̸= −1,
(2) (vw + u2)x+ (uw + v2)y + w2z = 0.
(3) (vw + u2)x+ v2y + w2z = 0.

Proof. To prove the required assertion, it is enough to show that X can be given by

(A.7.11)
(
a1vw + a2u

2
)
x+

(
b1uw + b2v

2
)
y +

(
c1uv + c2w

2
)
z = 0

for some numbers a1, a2, b1, b2, c1 and c2. Indeed, suppose that X is given by (A.7.11).
Then a2b2c2 ̸= 0, because X is smooth. Thus, scaling u, v and w appropriately, we may
assume that a2 = b2 = c2 = 1. Choose a, b and c such that a3 = a1, b

3 = b1 and c3 = c1.
If abc ̸= 0, we scale our coordinates as x 7→ x, y 7→ yt2, z 7→ zs2, u 7→ u, v 7→ v

s
, w 7→ w

t

for s = a
c
and t = a

b
. Then we are in case (1) with µ = abc, and X is singular if and only

if µ3 = −1, so that the remaining assertions follows from [71]. Similarly, if abc = 0, then
we can scale and permute the coordinates accordingly to get either case (2) or case (1).

Now, let us prove that we can choose u, v, w, x, y, z such that X is given by (A.7.11).
Let pr1 : X → P2 be the projections to the first factor. Then pr1 is a conic bundle,

whose discriminant curve C is a cubic curve. Since X is smooth, C is either smooth or
nodal. If C is reducible, the required assertion is well-known (see [211] or [42, § 10]).
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Thus, we may assume that C is irreducible. Then it follows from [71] that we can choose
coordinates x, y and z such that C is given by

(A.7.12) αx3 + βy3 + γz3 + δxyz = 0

for some α, β, γ and δ such that α ̸= 0 and β ̸= 0. To prove the required assertion, it is
enough to choose the coordinates u, v, w such that X is given by the equation (A.7.11).
In the following, we will not change the coordinates x, y and z except for scaling (once).

Let Cx, Cy, Cz be the fibers of the conic bundle pr1 over [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1],
respectively. Since C contains neither [1 : 0 : 0] nor [0 : 1 : 0], both Cx and Cy are smooth.
In particular, we can choose u, v and w such that Cx is given by vw + u2 = y = z = 0.
Then X is given by (

vw + u2
)
x+ f2(u, v, w)y + f3(u, v, w)z = 0,

where f2(u, v, w) and f3(u, v, w) are some quadratic polynomials such that Cy is given by
the equation f2(u, v, w) = x = z = 0, and the curve Cz is given by f3(u, v, w) = x = y = 0.
Abusing notations, we consider all three curves Cx, Cy and Cz as conics in one plane P2,
which are given by the equations vw+u2 = 0, f2(u, v, w) = 0, f3(u, v, w) = 0, respectively.
If C is singular, then [0 : 0 : 1] = Sing(C ), so that Cz is a double line.

Observe that Cx∩Cy ∩Cz = ∅, since X is smooth. But Cx∩Cy ̸= ∅ and Cx∩Cz ̸= ∅.
Therefore, since Aut(P2;Cx) ∼= PGL2(C) and this groups acts faithfully on Cx ∼= P1,
we can choose u, v and w such that [0 : 0 : 1] ∈ Cy and [0 : 1 : 0] ∈ Cz. Then

f2(u, v, w) = a1v
2 + a2u

2 + a3vu+ a4vw + a5uw,

f3(u, v, w) = b1w
2 + b2u

2 + b3vu+ b4vw + b5uw,

where a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 are some numbers. Note that we still have some
freedom in changing the coordinates u, v and w. Namely, the subgroup in Aut(P2;Cx) that
preserves the subset {[0 : 0 : 1], [0 : 1 : 0]} is Gm⋊µ2, where the Gm-action is just the scal-
ing u 7→ u, v 7→ sv, w 7→ w

s
for s ∈ C∗. Using this scaling, we could get the following new

equation for our threefold:(
u2+vw

)
x+
(
s2a1v

2+a2u
2+a3svu+a4vw+

a5
s
uw
)
y+
(b1
s2
w2+b2u

2+sb3vu+b4vw+
b5
s
uw
)
z = 0,

where a1b1 ̸= 0, since Cx ∩ Cy ∩ Cz = ∅. Thus, if a5 ̸= 0, we can scale v, w, x and z
such that a1 = a5 = b1 = 1. Similarly, if a5 ̸= 0, we can scale y and z to get a1 = b1 = 1.
Therefore, we can assume that a1 = b1 = 1, and either a5 = 0 or a5 = 1. Note also that

(A.7.13) 2a3a4a5 − 2a25 − 2a2a
2
4 ̸= 0,

because the conic Cy is smooth.
Now, we compute the equation of the curve C using the equation of the threefold X.

Namely, the curve C is given by

x3 −
(
a3a4a5 − a2a

2
4 − a25

)
y3 −

(
b3b4b5 − b2b

2
4 − b23

)
z3−

−
(
4− 2a2b4 + a3b5 − 2a4b2 − 2a4b4 + a5b3

)
xyz+

+
(
a2 + 2a4

)
x2y −

(
b2 + 2b4

)
x2z −

(
a3a5 − 2a2a4 − a24

)
xy2 −

(
b3b5 − 2b2b4 − b24

)
xz2−

−
(
4a2 − 2a2a4b4 + a3a4b5 + a3a5b4 − a24b2 + a4a5b3 − a23 − 2a5b5

)
y2z−

−
(
4b2 − a2b

2
4 + a3b4b5 − 2a4b2b4 + a4b3b5 + a5b3b4 − 2a3b3 − b25

)
yz2 = 0.
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Thus, since C is given by (A.7.12), we obtain the following equations:

a2 + 2a4 = 0, b2 + 2b4 = 0, a3a5 − 2a2a4 − a24 = 0, b3b5 − 2b2b4 − b24 = 0,

4a2 − 2a2a4b4 + a3a4b5 + a3a5b4 − a24b2 + a4a5b3 − a23 − 2a5b5 = 0,

4b2 − a2b
2
4 + a3b4b5 − 2a4b2b4 + a4b3b5 + a5b3b4 − 2a3b3 − b25 = 0.

Substituting a2 = −2a4 and b2 = −2b4 into the third equation, we get 2a3a5 + 6a24 = 0.
Hence, if a5 = 0, then a4 = 0, which contradicts (A.7.13). Therefore, we see that a5 = 1.
Then equations simplify as

a2 = −2a4, b2 = −2b4, 3a
2
4 + a3 = 0, b3b5 + 3b24 = 0,

a3a4b5 + 6a24b4 − a23 + a3b4 + a4b3 − 8a4 − 2b5 = 0,

a3b4b5 + a4b3b5 + 6a4b
2
4 − 2a3b3 + b3b4 − b25 − 8b4 = 0,

so that a3 = −3a24. In particular, the threefold X is given my(
u2+vw

)
x+
(
v2+uw−3a24uv−2a4u

2+a4vw
)
y+
(
b3uv−2b4u

2+b4vw+b5uw+w2
)
z = 0.

Now, we change our u, v and w as follows: u 7→ w − a4v, v 7→ v, w 7→ 2a4w − a24v − u.
Then, in new coordinates, the threefold X is given by the equation:(

u2 + vw
)
x+

(
uw + av2

)
y +

(
u2 + c1w

2 + c2v
2 + c3vu+ c4vw + c5uw

)
z = 0,

where a = a34+1, c1 = 4a24+2a4b5−2b4, c2 = a44+a
3
4b5−3a24b4−a4b3, c3 = −2a24−a4b5+b4,

c4 = −4a34 − 3a24b5 + 6a4b4 + b3, c5 = 4a4 + b5. Now, recomputing again the equation of
the cubic curve C in terms of a, c1, c2, c3, c4, c5, we see that C is given by

x3 + ay3 +
(
c1c

2
3 + c2c

2
5 − c3c4c5 − 4c1c2 + c24

)
z3 −

(
4ac1 + c3

)
xyz +

(
2c4 + 1

)
x2z+

+
(
2ac5 + c2

)
y2z −

(
4c1c2 + c3c5 − c24 − 2c4

)
xz2 +

(
ac25 − 4ac1 + 2c2c5 − c3c4

)
yz2 = 0.

As above, this gives 2c4 + 1 = 0, 2ac5 + c2 = 0, 4c1c2 + c3c5 − c24 − 2c4 = 0, ac25 − 4ac1 +
2c2c5 − c3c4 = 0, so that c4 = −1

2
and c2 = −2ac5. This gives c4 = −1

2
, c2 = −2ac5,

−8ac1c5 + c3c5 +
3
4
= 0, 3ac25 + 4ac1 − c3

2
= 0. Then c3 = 6ac25 + 8ac1. Substituting this

into −8ac1c5 + c3c5 +
3
4
= 0, we get 6ac35 +

3
4
= 0. In particular, we see that c5 ̸= 0.

Summarizing, we see that c5 ̸= 0, c4 = −1
2
, c2 = −2ac5, c3 = 6ac25 + 8ac1, a = − 1

8c35
.

Therefore, our threefold X is given by(
u2 + vw

)
x+

(
uw − v2

8c35

)
y +

(
c1w

2 +
v2

4c25
− 3uv

4c5
− uvc1

c35
− vw

2
+ c5uw + u2

)
z = 0.

Now, if we change u, v and w as u 7→ c5(u+v+2w), v 7→ 4c52u+c25v−4c25w, w 7→ 2u−v+w,
then X would be given by(

u2c25 + c25vw
)
x+

(
c5uw − v2c5

8

)
y +

((
2c25 + c1

)
w2 +

(c25 − 4c1)vu

4

)
z,

which is a special case of (A.7.11). This completes the proof of the lemma. □
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