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THE CALABI PROBLEM FOR FANO THREEFOLDS

CAROLINA ARAUJO, ANA-MARIA CASTRAVET, IVAN CHELTSOV, KENTO FUJITA,
ANNE-SOPHIE KALOGHIROS, JESUS MARTINEZ-GARCIA, CONSTANTIN SHRAMOV,
HENDRIK SUSS, NIVEDITA VISWANATHAN

ABSTRACT. There are 105 irreducible families of smooth Fano threefolds, which have
been classified by Iskovskikh, Mori and Mukai. For each family, we determine whether its
general member admits a Kahler-Einstein metric or not. We also find all Kahler—Einstein
smooth Fano threefolds that have infinite automorphism groups.
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INTRODUCTION

The Kéhler-FEinstein K-stability correspondence for Fano varieties is one of the most
important contributions achieved in the 21st century [66, 203, 73, 77, 55, 205]. It links
together complex algebraic geometry and analytic geometry:

a smooth Fano variety admits a Kahler-Einstein metric <= it is K-polystable.
However, the notion of K-stability is elusive and often difficult to check (see Section 1).
On the other hand, for two-dimensional Fano varieties, Tian and Yau proved

Theorem ([206, 202]). Let S be a smooth del Pezzo surface. Then S is K-polystable if
and only if it is not a blow up of P? in one or two points.

Smooth Fano threefolds have been classified in [113, 114, 150, 151] into 105 families,
which are labeled as Ne1.1, Ne1.2, Ne1.3, ..., Ne9.1, Ne10.1 (see the Big Table in Section 6).
Threefolds in each of these 105 deformation families can be parametrized by a non-empty
irreducible rational variety [153, 155]. We pose the following problem.

Calabi Problem. Find all K-polystable smooth Fano threefolds in each family.

This problem has already been solved for many families, and partial results are known in
many cases [157, 203, 14, 209, 7, 74, 43, 44, 193, 36, 88, 64, 112, 52, 190, 138, 217, 2, 3, 96].
In particular, it has been proved in [88] that all smooth threefolds in the 26 families

Ne2.23, No2.28, Ne2.30, Ne2.31, Ne2.33, Ne2.35, Ne2.36, N°3.14,
Ne3d. 16, Ne3.18, Ned.21, Ne3.22, Ned.23, Ne3.24, Ne3.26, Ne3.28, Ne3.29,
Ne3.30, Ne3.31, Ned.5, Ne4. 8, Ned.9, Ned.10, Ned. 11, Ne4. 12, Ne5.2
are divisorially unstable (see Definition 1.2.3), so that all of them are not K-polystable.

We show that all smooth Fano threefolds Ne2.26 are not K-polystable, and prove
Main Theorem. Let X be a general Fano threefold in the family NeeA”. Then
(2.23,2.28,2.30,2.31,2.33,)
2.35,2.36,3.14,3.16, 3.18,
X s K-polystable <= N # 2.26 and A ¢ { 3.21,3.22,3.23,3.24, 3.26,
3.28,3.29,3.30,3.31,4.5,
(4.8,4.9,4.10,4.11,4.12,5.2

Corollary. Let X be a general Fano threefold in the family NV # 2.26. Then
X 1s K-polystable <= X 1s divisorially semistable <= X is K-semustable.

Note that K-stability is an open property [162, 75, 18, 139]. Therefore, to prove that
general element of a given deformation family is K-polystable, it is enough to produce
at least one K-stable (possibly singular) threefold in this family. However, such approach
does not always work, because many deformation families contain only Fano threefolds
with infinite automorphism groups [42], so that none of these threefolds are K-stable, but
some of them a priori could be K-polystable.

Before we finished the proof of Main Theorem, its assertion has been already known
for 65 deformation families (see Sections 3 and 4.1 for more details). These families are
Nol.1, Ne1.2,) Ne1.3, Nel.4, Nel.5, Nel.6, Nel.7, Ne1.8, Ne1.10, Nel.11,

No1.12, Ne1.13, Nel.14, Nel.15, Ne1.16, Ne1.17, Ne2.4, Ne2.6, Ne2.23, Ne2.28,
Ne2.29, Ne2.30, Ne2.31, Ne2.32) Ne2.33, Ne2.34, Ne2.35, Ne2.36, Ne3.1, Ne3.11,
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Ne3. 14, Ne3.16, Ne3.18, Ne3.19, Ne3.20, Ne3.21, Ne3.22, Ne3.23, Ne3.24, Ne3.26,
Ne3.27, Ne3.28, Ne3.29, Ne3.30, Ne3.31, Ned.4, Ned.5, Ned.7. Ned.8, Ned.9,
Ned 10, Ne4 11, Ne4. 12, Ne5.2, Ne5.3, Ne6.1, Ne7.1, Ne®.1, Ne9.1, Nel10Q.1.
For some families, we solved the Calabi Problem for all smooth threefolds in the family.
For details, see the proof of Main Theorem and check the Big Table in Section 6.

Example (see Section 4.7). Smooth Fano threefolds Ne2.24 are divisors in P? x P? that
have degree (1,2). For an suitable choice of coordinates ([x : y : 2], [u : v : w]) on P? x P?,
these smooth Fano threefolds can be described as follows.

(1) One parameter family that consists of threefolds given by
(%) zu® + yo® + zw” + p(zvw + yuw + zuv) =0,
where u € C such that p® # —1. All such threefolds are K-polystable.
(2) One non-K-polystable threefold given by (u? + vw)z + (vw + v?)y + w?z = 0,
(3) One non-K-polystable threefold given by (u* + vw)z + v?y + w?z = 0.
If 43 = —1 or u = 0o, then (%) defines a singular K-polystable Fano threefold.

Smooth Fano threefolds with infinite automorphism groups have been described in [42].
We completely solve the Calabi Problem for all of them. To be precise, we proved

Theorem. Let X be a smooth Fano threefold in the family M such that Aut’(X) # 1.
Then X is K-polystable if and only if either

1.15,1.16,1.17,2.20, 2.22, 2.27, 2.32, 2.34,2.29, 3.5, 3.8, 3.9, 3.12, 3.15, 3.17,
< {3.19,3.20, 3.25,3.27,4.2,4.3,4.4,4.6,4.7,4.13,5.1,5.3,6.1,7.1,8.1,9.1, 10.1}

or one of the following cases hold:
o N =1.10 and Aut’(X) =2 PGLy(C) or Aut’(X) = G,,;
o N =221 and Aut’(X) =2 PGLy(C) or Aut’(X) = G,,;
o N =224 and Aut’(X) = G2 ;
o . =3.10 and either Aut’(X) = G2, or Aut’(X) = G,, and X can be obtained

by blowing up the smooth quadric threefold in P* given by
w* +zy + 2t +a(xt +yz) =0

along two conics that are given by w* + 2t =x =y =0 and w?> + a2y =2=1t=0,
where a € C such that a & {0,+1}, and z, y, z, t, w are coordinates on P*;
o N =3.13 and Aut’(X) = PGLy(C) or Aut’(X) = G,,.

At present, the Calabi Problem is not yet completely solved for the following 34 families:
Ne1.9, Nel.10, Ne2.1, Ne2.2, Ne2.3, Ne2.4, Ne2.5, Ne2.6,
Ne2.7, Ne2.8, Ne2.9, Ne2.10, Ne2.11, Ne2.12, Ne2.13, Ne2.14,
Ne2.15, Ne2.16, Ne2.17, Ne2.18, Ne2.19, Nv2.20, Ne2.21, Ne2.22, Ne3.2,
Ne3.3, Ne3.4, Ne3.5, Ne3.6, Ne3.7, Ne3.8, Ne3.11, Ne3.12, Ned.1.
For 27 of these families, we expect the following to be true:

Conjecture. All smooth Fano threefolds in the deformation families
Ne1.9, Ne2.1, Ne2.2, Ne2.3, Ne2.4, Ne2.5, Ne2.6, Ne2.7, Ne2.8,
MNe2.9 Ne2.10, Ne2.11, Ne2.12, Ne2.183, Ne2.14, Ne2.15, Ne2.16, Ne2.17,
Ne2.18, Me2.19, Me3.2, Ne3.3, Ne3.4, Ne3.6, Ne3.7, MeS.11, Nef. 1

are K-stable and, in particular, they are K-polystable.
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All remaining seven families Ne1.10, Ne2.20, Ne2.21, Ne2.22, Ne3.5, Ne3.8, Ne3.12 contain
non-K-polystable smooth Fano threefolds, but their general members are K-polystable.
We present conjectural characterizations of their K-polystable members in Section 7.

In Section 1, we present some K-stability results used in the proof of Main Theorem.
In Section 2, we prove the Tian—Yau theorem and find d-invariants of del Pezzo surfaces.
In Sections 3, 4, 5, we prove Main Theorem. In Section 6, we present the Big Table that
summarizes our results. In Appendix A, we present technical results used in the book.

Notations and conventions. Throughout this book, all varieties are assumed to be
projective and defined over the field C. For a variety X, we denote by Eff(X), NE(X)
and Nef(X) the closure of the cone of effective divisors on X, the Mori cone of X, and
the cone of nef divisors on X, respectively. For a subgroup G C Aut(X), we denote by
C19(X) and Pic“(X) the subgroups in C1(X) and Pic(X) consisting of Weil and Cartier
divisors whose classes are G-invariant, respectively.

A subvariety Y C X is said to be G-irreducible if Y is G-invariant and is not a union of
two proper G-invariant subvarieties. We also denote by Aut(X,Y’) the group consisting
of automorphisms in Aut(X) that maps Y into itself.

We denote by F,, the Hirzebruch surface P(Op1 & Op1(n)). In particular, Fy = P* x P!,
and the surface F; is the blow up of P? at a point.

For a divisor D on P = P™ xP"2 x - .- x P we say that D has degree (ay, as, ..., a) if

k
D~ > pri (Oen ().
i=1
where pr,: P — P™ is the projection to the ith factor. For a curve C' C P, we say that C
has degree (ay,aq, ..., ax) if prf(Opni (1)) - C = a; for every i € {1,...,k}.

We denote by p,, the cyclic group of order n, we denote by Ds, the dihedral group of
order 2n, where n > 2 and Dy = p2. Similarly, we denote by &,, and 2, the symmetric
group and its alternating subgroup, respectively. We denote by G, the one-dimensional
unipotent additive group, and we denote by G,, the one-dimensional algebraic torus.

We denote by G,, X u, the unique non-trivial semi-direct product of G,, and p,, we
denote by G,, x &3 the unique non-trivial semi-direct product of G,, and G5, and we
denote by G, x G,, the semidirect product such that G,, acts on G, as x — tx.

For positive integers n > k; > ... > k,, we denote by PGL,.k, . 1, (C) the parabolic
subgroup in PGL, (C) that consists of images of matrices in GL,(C) preserving a flag of
subspaces of dimensions &y, ..., k,. For n > 5, we denote by PSO,,;(C) the parabolic sub-
group of PSO,,(C) preserving an isotropic linear subspace of dimension k. By PGL22)(C)
we denote the image in PGL4(C) of the group of block-diagonal matrices in GL4(C) with
two 2 x 2 blocks. This group acts on P? preserving two skew lines. By PGL2,2).1(C) we
denote the stabilizer in PGL22)(C) of a point on one of these lines.
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1. K-STABILITY

1.1. What is K-stability? Let X be a Fano variety of dimension n > 2 that has Kawa-
mata log terminal singularities. In most of cases we consider, the variety X will be smooth.
Set L = —Kx. A (normal) test configuration of the (polarized) pair (X; L) consists of

e a normal variety X with a G,, action,

e a flat G,,-equivariant morphism p: X — P!, where G,,, acts naturally on P! by
(t, [x: y]) — [tz y),

e a (G,,-invariant p-ample Q-line bundle £ — X and a G,,-equivariant isomorphism

(2W7(0), £] 1y 100)) = (X % (B\{0}), pri(2)
where pr; is the projection to the first factor, and 0 = [0 : 1].
For such test configuration, we let
n
n—+1
This number is called Donaldson—Futaki invariant of the test configuration (X, L).

Remark 1.1.2. Quite often, we will omit £ in DF(X’; £) and write it as DF(X).

Denote the central fibre p~1(0) by Xp, and denote the fibre at infinity p~*(co) by X,
where oo = [1 : 0]. The test configuration (X, £) is said to be

e trivial if there is a G,,-equivariant isomorphism

(V) = (X (100 o (1),

e product-type if we have an isomorphism X\ X, = X x (P'\oo),
e special if the fiber X is irreducible, reduced, and (X, Xp) has purely log terminal
singularities, so that AXj is a Fano variety with Kawamata log terminal singularities.

(1.1.1) DF(X; L) = %(ﬁ" cKayp + £”“).

Definition 1.1.3. The Fano variety X is said to be K-semistable if for every its test
configuration (X, L) one has DF(X; L) > 0. Similarly, the Fano variety X is said to
be K-stable if for every its non-trivial test configuration (X, L) one has DF(X; L) > 0.
Finally, the Fano variety X is said to be K-polystable if it is K-semistable and

DF(X;L£) =0 < (&, L) is of the product type.
Thus, we have the following implications:
X is K-stable = X is K-polystable = X is K-semistable.

If X is not K-semistable, we say that X is K-unstable. Similarly, if X is K-semistable,
but the Fano variety X is not K-polystable, we say that X is strictly K-semistable.

Theorem 1.1.4 ([6, 147]). If X is K-polystable, then Aut(X) is reductive.
6



Theorem 1.1.5 (|20, Corollary 1.3]). If X is K-stable, then Aut(X) is finite.
Corollary 1.1.6. If Aut(X) is finite, then X is K-stable if and only if it is K-polystable.

By the Chen-Donaldson—Sun theorem, product of smooth K-polystable Fano varieties
is K-polystable. This can be proved purely algebraically:

Theorem 1.1.7 ([215]). Let V and Y be Fano varieties that have Kawamata log terminal
singularities. If both V and'Y are K-polystable, then V XY is K-polystable.

Let G be a reductive subgroup in Aut(X). A given test configuration (X', £) is said to
be G-equivariant if the product G x G, acts on (X, L) such that

e {1} x G, acting on (X, L) is the original G,,-action,
e the G,,-equivariant isomorphism
(W(0), £] g o1y) = (X x (B0}, pri(D)).
is G x G,,-equivariant.

Definition 1.1.8. The Fano variety X is said to be G-equivariantly K-polystable if for
every its G-equivariant test configuration (X, £) one has DF(X; £) > 0, and DF(X; £) =0
if only if (X, £) is of the product type.

Remark 1.1.9. Tt has been proved in [135, 84] that it is enough to consider only special
test configurations in Definitions 1.1.3 and 1.1.8.

If X is K-polystable, then X is G-equivariantly K-polystable. Surprisingly, we have

Theorem 1.1.10 ([63, 134, 140, 216]). Suppose that X is G-equivariantly K-polystable.
Then X s K-polystable.

Remark 1.1.11. One can naturally define K-polystability for Fano varieties defined over
an arbitrary field F of characteristic 0. By [216, Corollary 4.11], if X is defined over F,
and G is a reductive subgroup in Autp(X), then

X is G-equivariantly K-polystable over F <= X is K-polystable over F,
where F is the algebraic closure of the field F.

Let us conclude this section by briefly explaining how K-stability behaves in families.

Theorem 1.1.12 ([162, 75, 18, 19, 139]). Letn: X — Z be projective surjective morphism
such that X is Q-Gorenstein, Z is a normal, and all fibers of n are Fano varieties with
at most Kawamata log terminal singularities. For every closed point P € Z, let Xp be
the fiber of the morphism n over P. Then the set

{P €z ‘ Xp 18 K—stable}
1 a Zariski open subset of the variety Z. Similarly, the set
{P S | Xp is K—semistable}
is a Zariski open subset of the variety Z. Furthermore, the set
{P ez | Xp s K—polystable}

s a constructible subset of the variety Z.



Thus, if X is a K-polystable smooth Fano threefold such that the group Aut(X) is finite,
then X is K-stable by Corollary 1.1.6, so that general Fano threefolds in the deformation
family of X are K-stable. We will use this observation often in the proof of Main Theorem
to prove that a general member of a given family is K-stable. Vice versa, to prove that
a given Fano threefold is not K-polystable, we will use the following result (cf. [30, 162]).

Theorem 1.1.13 ([20, Theorem 1.1]). Let n: X — Z and n': X' — Z be projective
surjective morphisms such that both X and X’ are Q-Gorenstein, Z is a smooth curve, and
all fiber of n and n' are Fano varieties with at most Kawamata log terminal singularities.
Let P be a point in Z, and let Xp and X} be the fibers of the morphism 1 and ' over P,
respectively. Suppose that there is an isomorphism X\ Xp = X'\ X}, that fits the following
commutative diagram:

o

X\ Xp X'\ X5
W‘X\XPL Ln/ XN\Xp

If both Xp and X}, are K-polystable, then they are isomorphic.
Together with Theorem 1.1.12, this result gives

Corollary 1.1.14. Let p: X — P! be a test configuration for the Fano variety X such
that the fiber p~1(0) is a K-polystable Fano variety with at most Kawamata log terminal
singularities that is not isomorphic to X. Then X 1s strictly K-semistable.

In some cases, it is possible to prove that the general element of the deformation
family of a K-polystable Fano threefold X is also K-polystable, even when X has infinite
automorphism group. This is achieved by relating K-polystability and GIT polystability,
an idea first investigated in [25, 197] in the analytic context. Suppose that X is a smooth
K-polystable Fano variety of dimension n, and set d = —K%. Let us briefly recall the setup
of deformation theory, proofs and details can be found in [185, 145].

The infinitesimal deformation functor of the Fano variety X is denoted Def x; recall that
for an Artinian local C-algebra A with residue field C, Defx(A) consists of isomorphism
classes of commutative diagrams:

X¢ Xs

| |

{0}=Spec(C)—— S=Spec(A)

An element {Xs — S} € Defx(A) is a deformation family of X over S. The tangent
space of the deformation functor Defx is Ty = Ext!(Qx,Ox) and T% = Ext*(Qx, Ox)
is an obstruction space for Defy. As X is a smooth Fano, T} = H* (X , TX) and T2 = 0
(deformations of X are unobstructed).

Let A be the noetherian complete local C-algebra with residue field C which is the hull
of the functor of deformations of X, in other words, the formal spectrum of A is the base
of the miniversal deformation of X. By the above, denoting by S = SpecA, Tso — Ty is
an isomorphism and S is smooth (deformations are unobstructed), so we can identify S

with an analytic neighbourhood of the origin in the affine space T .
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Recall that G is a reductive subgroup in Aut(X). For instance, we may let G = Aut(X),
since Aut(X) is reductive by Theorem 1.1.4, because X is assumed to be K-polystable.
The group G acts on A and the Luna étale slice theorem for algebraic stacks [5] gives in
this case a cartesian square

[Spec(4) / G] —= M

| |

Kps
Spec(A)¢ M,

where ./\/lfsdS is the stack that parametrizes n-dimensional K-semistable Fano varieties
with at most Kawamata log terminal singularities that have anticanonical degree d [208],
and MS}; is the algebraic space parametrizing n-dimensional K-polystable Fano varieties
with Kawamata log terminal singularities that have anticanonical degree d. The horizontal
arrows in this diagram are formally étale and map the closed point into the point corre-
sponding to X.

Lemma 1.1.15. Assume that the affine space T contains a Zariski open subset consisting
of GIT-polystable points with respect to the induced G-action. Then a general fibre X; of
the miniwersal deformation X — S of X s K-polystable.

Proof. An analytic formulation of this result is due to [25, 197]. Let A; denote a general
fibre in the miniversal deformation of X. Then &, is K-semistable by Theorem 1.1.12.
However, by the local description of K-moduli we can conclude that &} is K-polystable.
Indeed, the general point in 7% is GIT-polystable with respect to the G-action, so that
it belongs to a closed G-orbit. But S coincides with a neighbourhood of the origin in
the tangent space T. By the Luna étale slice theorem for algebraic stacks, X; gives rise
to a closed point in Mﬁsds, so that A&} is K-polystable. O

Corollary 1.1.16. Assume that Aut’(X) = PGLy(C), then the general fibre X; of
the miniwersal deformation X — S of X s K-polystable.

Proof. Here, T% is a sum of irreducible representations of Aut’(X), which are odd-
dimensional irreducible representations of SLy(C). Thus, an orbit of a general vector
in T4 is closed by [172, Theorem 1] and the result follows from Lemma 1.1.15. U

Corollary 1.1.17. Assume that Aut(X) = G, X G, where G is a finite group G, some
element of which acts on G,, by sending elements to their inverses. A general fibre X; of
the miniversal deformation X — S of X s K-polystable.

Proof. The vector space Tx is a linear representation of Aut(X) = G,, xG; it is entirely de-
termined by the G,,-weights for a chosen basis, and by the G-action on the basis elements.
If all weights are 0, then the G,,,-action is trivial, and the result follows from Lemma 1.1.15.
Now assume there is at least one non-zero weight © # 0. Then, the G-orbit of the cor-
responding basis element contains a basis element of weight —u, and every vector in T
with non-zero coordinates with respect to those two basis elements has a closed G,,-orbit.
Now, the result follows from Lemma 1.1.15. U

Remark 1.1.18. If Aut’(X) = G? for n > 1, but a general fibre X; of the miniversal
deformation X — S of X has finite automorphism group, then X — S contains strictly

K-semistable smooth members. Indeed, every G,,-fixed point in S lies in the closure
9



of a maximal orbit, giving rise to a destabilising test configuration for family members
parametrised by these orbits.

1.2. Valuative criterion. Let X be a Fano variety with Kawamata log terminal sin-
gularities, let G be a reductive subgroup in Aut(X), let f: X — X be a G-equivariant
birational morphism, let E be a G-invariant prime divisor in X, and let n = dim(X).

Definition 1.2.1. We say that F is a G-invariant prime divisor over the Fano variety X.
If Fis f-exceptional, we say that E is an exceptional G-invariant prime divisor over X.
We will denotes the subvariety f(F) by Cx(E). We say that E is dreamy if the algebra

@D A (f( 0% (f(-mKy) —jE))
m,j€Zs0

is a finitely generated C-algebra.

Let
1 T .

where 7 = 7(F) is the pseudo-effective threshold of E with respect to —Kx, i.e. we have
T(E) = sup{ac € Qo ’ ff(—Kx) —aFE is big}.
Let S(F) = Ax(F) — Sx(F), where Ax(F) is the log discrepancy of the divisor E.

Theorem 1.2.2 (90, 133, 20]). The following assertions holds:

o X is K-stable <= [(F) > 0 for every prime divisor F' over X;
o X is K-semistable <= [(F) = 0 for every prime divisor F over X.

This criterion leads to the notion of divisorial stability, which is weaker than K-stability.

Definition 1.2.3 ([88, Definition 1.1]). The Fano variety X is said to be divisorially
stable (respectively, semistable) if B(F) > 0 (respectively, S(F) > 0) for every prime
divisor F'in X. We say that X is divisorially unstable if it is not divisorially semistable.

For toric Fano varieties, divisorial semistability and K-polystability coincide by

Theorem 1.2.4 (209, 88]). Let X be a toric Fano variety, and let P be its associated
polytope in M ®z R, where M be the character lattice of the torus. Then

X is diwvisorially semistable <= X is K-polystable <= the baricenter of P is 0.
To prove K-polystability, we can use the following handy criterion:

Theorem 1.2.5 ([216, Corollary 4.14)). Suppose that 5(F) > 0 for every G-invariant
dreamy prime divisor F' over X. Then X 1is K-polystable.

Proof. Let (X, L) be some G-equivariant special test configuration, so that A} is integral.
By Remark 1.1.9 and Theorem 1.1.10, it is enough to prove that DF(X’; £) > 0.

The fiber X} defines a G-invariant prime divisor over X x A!, since X is clearly birational
to the product X x A'. This gives us a divisorial valuation ordy, : C(X)(¢)* — Z, so that
we can consider the restricted valuation:

*

Vx, = OrdXo|(C(X)* : C(X) — 7.

10



This valuation is non-trivial and G-invariant by construction. Then, by [23, Lemma 4.5],
there exists a G-invariant prime divisor F' over X such that

vy, = c-ordp
for some integer ¢ > 0. Moreover, it follows from [90, Theorem 5.1] that F is dreamy and
DF(X; L) = Ax(F) — Sx(F),
so that Ax(F) — Sx(F) > 0 by our assumption. O

Remark 1.2.6. By [216, Corollary 4.14], Theorem 1.2.5 can be generalized for varieties
defined over arbitrary fields as follows. If X is a Fano variety defined over an arbitrary
field F of characteristic 0, and G is a reductive subgroup in Autg(X) such that 5(F) > 0
for every G-invariant geometrically irreducible divisor F' over X, then X is K-polystable
over the algebraic closure of the field F.

In some cases, it is not easy to compute Sx(E), but one can estimate it using basic
properties of the volumes. To explain this in details, let V' be an arbitrary n-dimensional
normal projective variety, let L be a big and nef Q-divisor on V, let h: V — V be
a birational morphism such that V is also normal projective variety, and let F' be prime

divisor in V. Abusing our previous notations, we let 7 = sup{z € Q- | h*(L)—=zF is big}.
Fix a € (0,7). Then

/T vol(h*(L) — xF)dx < /a vol(h*(L) — xF)dx + (1 — a)vol(h*(L) — aF)

because vol(h*(L) — xF') is a decreasing function on x. This observation is very handy,
since the volume function vol(h*(L) —x F') is often difficult to compute for large x € (0, 7).
Using log concavity of the volumes and the restricted volumes [132, 82|, we can improve
the latter inequality. Namely, arguing as in the proof of [91, Proposition 2.1], we get

n

(1.2.7) /OT vol(h*(L) — zF)dx < /Oa vol(h*(L) — zF)dx + 1 (1 —a)vol(h*(L) — aF).

n

Furthermore, it follows from the proof of [92, Proposition 2] that

for any = € (a,7), and 7 < a + W, where ¢(x) = —%%Vol(h*(L) —xF).

1.3. Complexity one T-varieties. Let X be a Fano variety with Kawamata log terminal
singularities, let T be the maximal torus in Aut(X), and let C(X)" be the subfield in C(X)
consisting of all T-invariant rational functions.

Definition 1.3.1. The complezity of the T-action on X is the number dim(X) — dim(T).

First, we observe that the complexity of the T-action is 0 if and only if X is toric.
If the complexity of the T-action is 1 then C(X) = C(Y’) for some smooth curve Y, and
the inclusion of fields C(Y) = C(X)T C C(X) gives the rational quotient map 7: X --» Y.
Moreover, we have Y = P! since X is rationally connected [214].

Let M be the character lattice of T, and let N be the dual lattice of one-parameter

subgroups of the torus T. We will denote by (-, -) the natural pairing between M and N.
11



Remark 1.3.2. Let w be an element in N. We write A, for the induced G,,-action on X.
We will consider N to be an additive group. But once we pass to \,, we will write
the composition of two such G,,-actions multiplicatively: A\, = Ay for any w’ € N.

Denote by C(X)™ the multiplicative subgroup in C(X)T consisting of non-zero semi-
invariant functions. We now fix a group homomorphism M — C(X)™ given by u — x*,
where x* is semi-invariant function in C(X )SLT) that has weight u. Given two semi-invariant
functions f, and g, of the same weight u, their quotient f,/g, must be T-invariant.
Hence, every semi-invariant function can be expressed as fx* with f € C(X)T.

Let E be a T-invariant prime divisor over X (see Definition 1.2.1).

Definition 1.3.3. The divisor F is said to be wertical if a maximal T-orbit in E has
the same dimension as the torus T. Otherwise, the divisor E' is said to be horizontal.

Remark 1.3.4. If X is toric, then all T-invariant divisors in X are horizontal.

If E is horizontal, then the generic T-orbit in the divisor £ has dimension dim(T) — 1,
so that the generic stabilizer must be a one-dimensional subtorus of the torus T, which
corresponds to rank-one sublattice, which we will denote by Ny C N.

Fix an integer ¢ > 0, so that —¢Kx is an ample Cartier divisor. Let L = Ox(—(Kx).
For every G,,-action A on the threefold X and its the canonical linearization for L, we set

we(N) =Y m - dim (HO (X, L®k)m),

where H°(X, L®*),, is the subspace of the semi-invariant sections of A\-weight m.

Definition 1.3.5. The function

. wi (A
Futx(A) = — im 2 -kli -)e’

is called the Futaki character of the Fano variety X.
The following lemma summarizes properties of the Futaki character that we need:

Lemma 1.3.6. The following assertions hold:
(1) For two commuting G,-actions A\ and X' on the threefold X, we have

Futy (AX') = Futx (A) + Futx (X)

where A\ stands for the composition Ao X
(2) Let (X, L) be a special test configuration for (X, L), and let X be the corresponding
action of the group G,, on the variety X. Then

(1.3.7) DF(X, L) = Futy, ()
for the induced G,,-action \ on the central fiber Xy. Moreover, we have
Futy (X) = Futy, (X)
for a G,,-action N on (X, L) that acts along the fibres of p: X — P!
Proof. The first assertion is obvious. The equality DF(X, £) = Futy,(A) is the original
definition of the Donaldson—Futaki invariant DF (X, £) that is given in Tian’s work [203].

The equality (1.3.7) is proved in [210], see also [135]. The final equality follows from

the flatness of £ over P!, which implies the flatness of its homogeneous components. [
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Now, we are ready to present a generalization of Definition 1.2.3.

Definition 1.3.8. We say that X is divisorially polystable if the following holds:

e G(F) > 0 for every vertical T-invariant prime divisor F' on the variety X,
e G(F) = 0 for every horizontal T-invariant prime divisor F' on the variety X.

By Lemma 1.3.6, if X is K-polystable, then Futx = 0. This is Futaki’s theorem [105].
If X is toric, it follows from Theorem 1.2.4, [187, Proposition 3.2] and [134, Theorem 1.4]
that the Fano variety X is K-polystable <= it is divisorially polystable <= Futyx = 0.
The aim of this section is to prove the following result:

Theorem 1.3.9. Suppose that the complexity of the T-action on X is 1. Then the Fano
variety X is K-polystable <= it is divisorially polystable and Futx = 0.

Let us prove Theorem 1.3.9. Suppose that the complexity of the T-action on X is 1.
For our T-invariant prime divisor E over X, let v = ordg be the associated divisorial
valuation. Consider the graded algebra

R=PRrR.=PH (X, LF).
k k
Recall from [208] that E induces a test configurations via the filtration of R defined by
FPRy, = {s € Rk|l/(s) > p},

where v(s) = v(f) with s = f - e for f € C(X) and e being a local generator of the line
bundle L at the generic point of the divisor E. Let

R,,z@@fff?k~tlp.
p

If the algebra R, is finitely generated, then the Rees construction gives rise to a polarized
family X, — A! = Spec(C|[t]) with central fiber (X,),. In this case, X, = Proj, (R.),
where the Proj is taken with respect to the k-grading. Here, we have R, C R[t,t!] and

X\ (&), =X x C,

so that we can compactify the variety X, by gluing it with X x P!\ [1: 0] along X x C*.
Let X, be the result of this gluing, and let p: X, — P! the corresponding projection.
Then the G,,-action )\, on the variety X, is given by the p-grading.

Since E is T-invariant, the filtration F? R must respect the corresponding M -grading,
so that X', admits a T-action along the fibres of p that commutes with the G,,-action \,.
Then p~1(0) is given by the associated graded ring of the filtration: (X, )q = Proj(gr.F,).
By construction, the variety X, is naturally equipped with a p-ample line bundle £, such
that the pair (X,,L£,) is a test configuration for the pair (X, L), see [208] for details.
Choosing v = 0 leads to the trivial test configuration X, = X x P

Remark 1.3.10. In the presented construction of the test configuration X, we can replace
the valuation v with the valuation av for some a € Z~g. Then we have (X,,)o = (X))o,
because grF,, is the ath Veronese subring of grF,. Then DF(X,,, L,,) = a-DF(X,, L,),
because the induced G,,-actions would be A\%.

The following lemma follows from [171, Proposition 3.14] or [207, Section 16].
13



Lemma 1.3.11. The following assertions hold:

(1) the divisor E is horizontal <= there exists w € N such that v(f,) = (w,u) for
every f, € C(X)™. Moreover, in this case, w € Ng.

(2) If E is vertical, there arew € N and a € Zsq such that v(fx") = (w,u)+aordp(f)
for every non-zero f € C(X)', where P =n(E) € Y = P!

Proof. The restriction v|cx)r defines a discrete valuation on C(X)" = C(Y'), which we
denote by v. Then either 7 = 0 or U(f) = aordp(f) for some P € Y and a € Z-,.
Since 7 corresponds to the field inclusion, it follows that P = 7(FE) in the latter case.
In either case, we get v(fx*) = U(f) + v(x*), where x: M — C(X)™ is a section fixed
earlier. Since v: C(X)* — Z is a homomorphism, the map M — Z given by u — v(x“)
must be linear, i.e. it given by an element w € N = M*. Thus, it remains to show that
the divisor E' is horizontal exactly if 7 is trivial and that w € Ng.

First assume that 7 = 0. Consider the M-graded ideal sheaf Z of E. Then the semi-
invariant sections of Z are those for which v(f,) > 0. Hence, we have

I= D (0x),

(w,u)>0

so that (Ox/Z), # 0 only if (w,u) = 0. So, the Z-grading on Ox/Z induced by w must
be trivial. Therefore, we see that the corresponding G,,-action on the divisor F is trivial,
so that E is horizontal with w € Ng.

Now, we assume that E is horizontal and v(f) # 0 for some T-invariant function f.
We may pick any u € M with both (Ng,u) # 0 and {w,u) # 0. Then v(f*\*) = 0 for
an appropriate choice of integers a and b. Hence, we have (Ox/Z)q, # 0 and therefore
the G,,-action on the divisor E induced by Ng C N is not trivial. This is a contradiction.
Hence, v(fx") = (w,u) and we have seen already that in this case w € Ng. O

Now, we are ready to prove

Proposition 1.3.12. Let Ey and Es be two T-invariant prime divisors over the variety X .
We let v1 = a; - ordg, and vo = ay - ordg,, where a1 and as are some positive integers.
Then the following two conditions are equivalent

(1) There exists w € N such that vi(f,) = va(fu) + (w,u) for every f, € C(X)™.
(2) There is an isomorphism ¢: R, = R,, of (M x Z*)-graded algebras with ¢(t) =t
and inducing the identity on R,,/(t —1) =R,,/(t —1).
Moreover, if the two equivalent conditions hold, then there exists { € 7 such that ¢ sends
homogeneous elements of weight (u, k,p) to elements of weight (u,k,p + (w,u) + k).

Proof. Assume that (1) holds. Consider the homomorphism R,, — R,, given by
(1.3.13) St > g tP TR

where s, is a section in H(X, L*) of weight u € M and ¢ = (w,u; — ug) with u; being
weight of a local generator of L at the centre Cx (F;). Then vy (s,x) = va(Sur)+{w, u)+k-£,
so that R,, — R,, is the required isomorphism.

For the other direction, assume that we have an isomorphism ¢: R,, = R,, as in (2).
The condition that ¢ induces the identity on R,,/(t — 1) = R,,/(t — 1) implies that

¢(Su’ktp) = Suykthrm.
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Since ¢ is a graded isomorphism, we have m = F'(u, k, p) for some linear form F'(u, k,p).
But the equality ¢(t) = t implies that F'(0,0,p) = 0, so that F(u,k,p) = (w,u) + ¢k for
some w € N and ¢ € Z. Then ¢ is given by (1.3.13). Since ¢ is an isomorphism, we get

P MR, = R
for any integers p and k. Then vy (Syx) = vo(sux) + (w,u) + kl. Now, for
fo = 2tk oo (x)®,
Su' k
we have vy (f,) = va(fu) + (w, u) as claimed. O

Corollary 1.3.14. In the notations and assumption of Proposition 1.53.12, suppose that
there is w € N such that vi(f,) = va(fu) + (w,u) for every f, € C(X). Then

DF(X,,) = DF(X,,) + Futx (\y)

Proof. By Proposition 1.3.12, we have Xy := (X,,)o = (X,,)o and \,, = A\, A\y. Then
DF(X,,) = Futx, (\,) = Futx, (A, )
by Lemma 1.3.6. Then, by Lemma 1.3.6, we obtain
DF(X,,) = Futy, (\s,) + Futx, (Aw).

Now, applying Lemma 1.3.6 again, we conclude that Futx,(\,,) = DF(X,,), which implies
that Futy,(\,) = Futx(\,) by Lemma 1.3.6. This gives us the desired result. O

Corollary 1.3.15. The test configuration ?,,_is of product-type <= FE is horizontal.
In this case, the corresponding G,,-action on (X,)o = X is given by A\, with w € Ng.

Proof. By Lemma 1.3.11, the divisor E is horizontal <= v(f,) = (w,u) for w € Ng.
We have X, = X x Al if v = 0. Now, the claim follows from Proposition 1.3.12. U

Corollary 1.3.16. Suppose E is horizontal. Then B(E) = Futx(\,) for some w € Ng.
Proof. Using Corollary 1.3.15, we see that the test configuration X, is of product-type.

By Lemma 1.3.6, we have DF(X,) = Futx(\,) for some w € Ng. On the other hand, it

follows from [90, Theorem 5.1 that DF(&X,) = 5(E). O

Let G be a subgroup in Aut™(X) such that T C G and G = T x W for some group W.
Note that Aut™(X)/T is a finite group by [194, Lemma 2.9], so that W is finite as well.
Then the quotient map 7: X --» Y is G-equivariant, so that W naturally acts on Y = P*.
The following result is a reformulation of the main result of [112].

Proposition 1.3.17. Suppose that the following two conditions hold:
(1) FutX = O,
(2) for every point P € Y that is fized by W, there exists at least one irreducible
component D of the fiber 7=1(P) such that 3(D) > 0.

Then X s K-polystable.

Proof. By Theorem 1.1.10, it is enough to consider G-equivariant special test configura-
tions to check K-polystability. Moreover, given a special G-equivariant test configuration,
it follows from [90, Theorem 5.1] that there is a G-invariant prime divisor F' over X such

that the test configuration is obtained as X .o, for some ¢ € Z~,. If F' is horizontal then

ordp(f . X“) = (wp, u).
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and X ,.opq » is of product-type, so that its Donaldson-Futaki invariant is 0 by Lemma 1.3.6.
If F' is vertical, then it follows from Lemma 1.3.11 that

ordp(f - x") = (w,u) + aordp(f).

with @ > 0 and n(F) = P € P!. Note that P is W-invariant, since F is G-invariant.
By assumption, there is an irreducible component D of the fiber 7' (P) with 3(D) > 0.
Then D is a T-invariant prime divisor on X, so that Lemma 1.3.11 gives

ordp(f - x") = (w',u) + b - ordp(f)

for some w € N and b € Z>,. Hence, we have

(1.3.18) bordp(f,) = aordp(f,) + (bw — aw', u)

for a semi-invariant funcion f, of weight u € M. It follows by Corollary 1.3.14 that

bDF (X c.orar) = DF(Xaoray, ) + Futx (Apw—aw) = by (1.3.18) and Corollary 1.3.14

= DF(Xqora,) +0 =
=a DF(?MdD) = by Remark 1.3.10
=a-B(D)>0 by [90, Theorem 5.1].

This also shows that 3(D’) > 0 for every other component D’ of the fibre 7=1(P). O
Corollary 1.3.19. If Futx =0 and Y has no W-fized points, then X is K-polystable.

Corollary 1.3.20. Suppose that Futyxy = 0, all G-invariant fibers of m are irreducible,
and B(D) > 0 for one fiber D of the map w. Then X is K-polystable.

Proof. This follows from Proposition 1.3.17, since fibers of 7w are rationally equivalent. []

Corollary 1.3.21. Suppose that Futx = 0, not all G-invariant fibers of m are irreducible,
and (D) > 0 for at least one irreducible component D of every reducible G-invariant
fiber of the map w. Then X 1is K-polystable.

Proof. Using Proposition 1.3.17, we see that to prove the required assertion it is enough
to check that B(F") > 0 for an irreducible fiber F' of the map 7. Observe that F' ~ D+ D',
where D is an irreducible component of some reducible fiber of 7 such that (D) > 0,
and D’ is an effective divisor on X. Then S(F) > (D) > 0 as required. O

Therefore, if Futx = 0, then to check the K-polystability of the variety X, it is enough
to check that B(D) > 0 for finitely many T-invariant divisors D in X.

Proof of Theorem 1.3.9. First, we suppose that Futx = 0 and X is divisorially polystable.
Then X is K-polystable by Proposition 1.3.17.

Now, we suppose that X is K-polystable. Then we must have DF(X, £) = 0 for every
test configuration (X, £) of product-type. By Lemma 1.3.6, this is equivalent to Futx = 0.
Moreover, we have

B(D) = DF(Xoya,,) > 0

for every T-invariant prime divisor D on X such that X4, is not of product-type.

By Lemma 1.3.15, the latter condition is equivalent to D being vertical. O
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1.4. Tian’s criterion. Let X be a Fano variety with at most Kawamata log terminal
singularities of dimension n > 2, and let G be a reductive subgroup in Aut(X). Then

€
the log pair <X, —D) is log canonical for any m € Z-q
ag(X)=supqecQ m
and every G-invariant linear system D C | —mK X’

This number, also known as the global log canonical threshold (see [45, Definition 3.1]),
has been defined by Tian in [201] in a very different way (see also [204, Appendix 2]).
However, both the definitions coincide by [43, Theorem A.3].

Lemma 1.4.1. Suppose that G = G, x B for some finite group B. Then

the log pair (X,eD) is log canonical for every
ag(X) =supsecQ . : ) . :
G-invariant effective Q-divisor D ~g —Kx
Proof. Let D be an effective G-invariant Q-divisor on X that satisfies D ~g —Kx. Take
a positive integer r such that rD is a Cartier Z-divisor. Then rD is a G-invariant zero-
_ let(X;rD)

dimensional linear subsystem in | — rKx/|, and lct(X; D) = ===, This gives

the log pair (X, eD) is log canonical for ever
&G(X)gsup{ee(@ ' 8 pair ( ) 5 y}.

G-invariant effective Q-divisor D ~g —Kx
Thus, to complete the proof, we have to prove the opposite inequality.

Let m be large positive integer, let D be a G-invariant linear subsystem in | — mKx/,
and let ¢ = let(X; LD). Then ¢ > ag(X), and we can choose m and D in | — mKy]|
such that ¢ is arbitrary close to ag(X). On the other hand, the linear system D contains
a G -invariant divisor. Denote it by D. Then for every g € B, we have ¢g*(D) € D and
the log pair (X, £¢*(D)) is not Kawamata log terminal (cf. [124, Theorem 4.8]). Let

1 *
geB

Then Z is an effective G-invariant divisor such that 2 ~g —Kx. Moreover, it follows
from the proof of [124, Theorem 4.8] that (X, c¢Z) is not Kawamata log terminal, so that

the log pair (X, eD) is log canonical for every}

X) > . . . .
ac(X) > sup {6 €Q ‘ G-invariant effective Q-divisor D ~g —Kx

because ¢ can be arbitrary close to ag(X). O

If G is a trivial group, we let a(X) = ag(X). By Lemma 1.4.1, we have
a(X) = inf{lct(X, D) ’ D is effective Q-divisor such that D ~q —KX}

All possible values of the a-invariants of smooth del Pezzo surfaces are found in [29, 146],
and we presented them in Section 1.5. Similarly, a-invariants of del Pezzo surfaces with at
most Du Val singularities have been computed in a series of papers [167, 30, 168, 169, 33].
For smooth Fano threefolds, we only know partial results about their a-invariants [43].
Observe that the invariant «(X) has a global nature. It measures the singularities of

effective Q-divisors on X that are QQ-linearly equivalent to the anticanonical divisor —Kx.
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We can also localize a(X) as follows. Let Z be a proper irreducible subvariety in X. Let

az(X) = Sup{/\ ceQ

the log pair (X, AD) is log canonical at general point of Z
for every effective Q-divisor D on X such that D ~g —Kx |

Clearly, we have
a(X) = inf ap(X),
Pex

where the infimum is taken by all (closed) points in X. If the subvariety Z is G-invariant,
we can also define the number a¢ z(X) as follows:

agz(X) = sup {)\ €Q

the pair (X, AD) is log canonical at general point of Z for any
effective G-invariant Q-divisor D on X such that D ~g —Kx ’

Then ag(X) < ag z(X).

Remark 1.4.2 ([95, Lemma 2.5]). Let f: X — X be an arbitrary G-equivariant birational

morphism, let F' be a G-invariant prime divisor in X such that Z C f(F), and let

T(F) = sup{x € Quo| f*(—Kx) —aF is big}.
Then AT’EI(JJ;) > ag,z(X). Indeed, fix any positive rational number z < 7(F), let D be
the image on the variety X of the (non-empty) complete linear system |M (f*(—Kx)—xF)|
for sufficiently large and divisible integer M. Then D is G-invariant. If F'is f-exceptional,
then the log pair (X, 2% (F)D) is not Kawamata log terminal along f(F'). Similarly, if

xM
the divisor F is not f-exceptional, then (X, —-D + f(F)) is not Kawamata log terminal

along f(F), and D + f(F) ~g +(—Kx). Thus, in both cases ag z(X) < AXT(F), which
implies the required inequality, since we can choose x to be as close to 7(F') as we wish.

Corollary 1.4.3. In the notations and assumptions of Remark 1.4.2, we have

= X).
Sx(F) o6z(X)
Proof. By [17, Proposition 3.11], on has %HT(F) < Sx(F) < 25 7(F), so that the result
follows from Remark 1.4.2. U

In some cases, this inequality can be improved a little bit:

Lemma 1.4.4. In the notations and assumptions of Remark 1.4.2, suppose in addition
that X is smooth and dim(Z) > 1. Then

> X).

Sx(F) o6z(X)
Proof. By [89, Proposition 3.2], we have Sx(F) < 257(F), so that the required result
follows from Remark 1.4.2. U

We can also define a-invariants for
e log Fano varieties (see Section 1.5);
e weak Fano varieties (see Lemma 1.4.6, Example 4.1.11 and Section 4.1);
e Fano varieties defined over arbitrary fields (see Theorem 1.4.11 and Appendix A.5).

To save space and to keep the exposition simple, we leave these definitions to the reader.
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Lemma 1.4.5. Suppose that G is finite. Let Y = X/G, let m: X — Y be the quotient
morphism, and let A be the effective Q-divisor on Y such that 7*(Ky + A) = K.

Then the log pair (Y, A) has Kawamata log terminal singularities, —(Ky + A) is ample,
and (Y, A) = ag(X).

Proof. The required assertion is [45, Remark 3.2]. Let Dy be an effective Q-divisor on
the variety Y such that Dy ~g —(Ky + A). Then 7*(Dy) ~g 7 (Ky + A) ~g —Kx,
the divisor 7*(Dy) is G-invariant, and lct(X;7*(Dy)) = let(Y, A; Dy) by [124, Propo-
sition 3.16]. This immediately gives ag(X) > a(Y,A). Vice versa, for every effective
G-invariant divisor D on X such that D ~g —Kx, one has D = 7*(Dy) for some effec-

tive Q-divisor Dy on the variety Y such that Dy satisfies Dy ~g —(Ky + A). As above,
this gives ag(X) < a(Y, A). d

Lemma 1.4.6. Let 7: Y — X be a G-equivariant birational morphism such that Y has
Kawamata log terminal singularities, and —Ky ~q 7*(—Kx). Then ag(Y) = ag(X).
Proof. The proof is similar to the proof of Lemma 1.4.5, so it is left to the reader. U

The a-invariants are important because of the following result:

Theorem 1.4.7 ([63, 140, 216, 201]). The Fano variety X is K-semistable if
n

n+1
then X is K-polystable.

ag(X) =

Moreover, if ag(X) > 5,

Remark 1.4.8. By [216, Corollary 4.15], Theorem 1.4.7 can be generalized for varieties
defined over arbitrary fields of characteristic 0 as follows. If X is a Fano variety defined
over an arbitrary ﬁeld F of characteristic 0, and G is a reductive subgroup in Autp(X)

such that ag(X) > -7, then X is K-polystable over the algebraic closure of the field F.

If G is trivial, we also have the following result:

Theorem 1.4.9 ([89, 163]). If X is smooth and o(X) > then X is K-stable.

T

Recall that we assume that the group G is reductive.

Theorem 1.4.10. If X is smooth and ag(X) > then X is K-polystable.

= +17

n

Proof. Suppose that the Fano variety X is smooth and ag(X) > -2=. We must show

n+1
that X is K-polystable. By Theorem 1.4.7, we may assume ag(X) = T

Let f: X — X be a G-equivariant birational morphism, and let E' be a G-invariant
prime divisor in X. By Theorem 1.2.5, it is enough to show that S(E) > 0 provided that
E is dreamy (see Section 1.1).

Suppose that E is dreamy. By Remark 1.4.2, we have

n
A X)7T(E) =
x(E) 2 ag(X)7(E) = ———
If Ax(E) > Sx(F), then we are done. Thus, we may assume that Ax(F) < Sx(E).
Since Ax(E) > -=7(E), we get X = P" by [90, Theorem 1]. Then X is K-polystable. [

T(E).

o+
To estimate ag(X) in the case when X is a smooth (or mildly singular) Fano threefold,

we will use the following result, which is a refinement of [157, Theorem 0.1] for threefolds.
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Theorem 1.4.11. Let X be a Fano threefold that has canonical Gorenstein singularities,
let G be a reductive subgroup of Aut(X), and let p be a positive number such that p < 1.
Suppose that ag(X) < p. Then one of the following assertions holds:

(1) There exists a G-invariant irreducible normal surface S on X such that
—KX ~0 /\S + A,

where A is effective Q-divisor, and A € Q such that X\ > z%
(2) There exists a G-invariant point P € X. Moreover, the following holds:
(2.1) if there is a del Pezzo fibration m: X — P!, and F is its scheme fiber that
contains the point P, then
a(F) < ar(F) < p,

where I' is the image in Aut(F') of the stabilizer of the fiber F' in the group G,
and we assume that ar(F) = 0 in the case when F is not a del Pezzo surface
with Du Val singularities.

(3) There exists a smooth rational G-invariant curve C C X such that

(—Kx)°

2

Moreover, in this case, the following additional assertions hold:

(3.1) if p <1, then —Kx -C < ﬁ, e.g. if p= %, then —Kx -C < §;

(3.2) if there is a del Pezzo fibration w: X — P!, then F - C € {0,1} and

a(F) < ap(F) < p,

—Kx-C< + 2.

where F' is any fiber of the fibration 7 that intersects (or contains) the curve C,
and ' is the image in Aut(F) of the stabilizer of F' in the group G;
(3.3) if in (3.2) we have F'- C =1, then

a(Fw) < aF<F7r) < W,

where F is the (scheme) generic fiber of the fibration m, which is a del Pezzo
surface with Du Val singularities defined over the function field of the line P!,
and T is the image in Aut(F}) of the stabilizer of the fiber Fy in the group G.

Proof. By definition, there exists a G-invariant linear system D C |—nK x| for somen > 1
such that the log pair (X, £D) is strictly log canonical for some positive rational € < p.
We write <D = Bx + My, where By is a G-invariant effective Q-divisor on X, and
My is a G-invariant mobile boundary (see Appendix A.3). Let Z be the G-orbit of its
minimal log canonical center. Then, using Lemma A.4.6, we may assume that the only
log canonical centers of the log pair (X, £D) are the irreducible components of Z.

The irreducible components of Z cannot intersect by Lemma A.2.5, On the other hand,
it follows from Corollary A.1.7 that the locus Z is connected, so that Z is an irreducible
G-invariant subvariety of the threefold X.

If Z is a surface, then we get (1), since Z must be normal by Theorem A.2.6. Thus, we
assume that Z is not a surface.

Suppose that Z is a point. Then we get (2). To prove (2.1), we suppose that there
is a del Pezzo fibration m: X — P!. Let F be its scheme fiber over 7(Z), and let T be
the image in Aut(F) of the stabilizer of the fiber F' in the group G. Suppose that F is

an irreducible normal surface that has at most Du Val singularities. Write Bx = aF' + A
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where a is a non-negative rational number, and A is an effective Q-divisor, whose support
does not contain the surface F'. Then a < 1, because otherwise F' would be a log canonical
center of the log pair (X, Bx + Mx), which is not the case, since Z is the unique log
canonical center of this log pair. Then the pair (X, F'+A+ M) is not log canonical at Z.
Now using Theorem A.2.1, we see that (F, A|lp + Mx|r) is not log canonical at Z. On
the other hand, A|r + Mx|r ~g €(—Kr) and A|p + Mx|p is T-invariant, so that we
have ar(F') < e. Then a(F) < ar(F) < p, which proves (2.1).

Thus, we may assume that Z is a curve, so that we let C' = Z. Then the curve C' is
smooth and rational by Theorem A.2.6.

Let Zc be the ideal sheaf of the curve C. Then h'(Zg @ Ox(—Kx)) = 0 by Theo-
rem A.1.6. Thus, we have the following exact sequence of G-representations

1 — HO(IC &® O)((—Kx)> — H0<Ox<—Kx)) — HO(OC &® Ox(—KX)) — 1,
which, in particular, gives

(—Kx)®

5 T3= K (Ox(—Kx)) 2 h’(Oc ® Ox(—Kx)) = —Kx - C +1,

which gives —Kx - C < (_I;X)S + 2 as required in (3).

Observe that (3.1) follows from Corollary A.2.7.

To prove (3.2), we suppose (again) that there exists a del Pezzo fibration 7: X — P!
Let F be a fiber of this fibration such that FNC # @. Then either C C F and F-C = 0,
or the intersection F'NC consists of finitely many points. Arguing as in the proof of (2.1),
we see that a(F) < ar(F) < € < pu, where I' is the image in Aut(F') of the stabilizer of
the fiber F' in the group G.

Let us show that F'- C € {0,1}. Suppose that F'- C' # 0. Let us show that F'- C = 1.
Let S be a general fiber of the fibration 7. Then S is a del Pezzo surface with Du Val
singularities, and S N C consists of F'- C' > 1 distinct points. On the other hand, the log
pair (X, Bx|s + Mx]|s) is not Kawamata log terminal at any point of S N C, and is log
canonical away from this set. Since BX}S + MX‘S ~g —€lg and € < 1, it follows from
Corollary A.1.7 that that SN C' is connected, so that F'- C'= 1. This proves (3.2).

Finally, to prove (3.3), let F}. be the generic fiber of the fibration 7, let F be the function
field of the line P!, and let I be a subgroup in G such that 7 is I'-equivariant and I" acts
trivially on its base. Then I' is the stabilizer of the fiber F in the group G, and we
can identify I" with a subgroup of Aut(F;). Then Fy is a del Pezzo surface with Du Val
singularities defined over IF, the curve C defines a ['-invariant F-point in F}., the log pair
(Fr, Bx|r, + Mx|r,) is not Kawamata log terminal at this point, and Bx|g, + Mx|g, is
[-invariant. This gives ar(F;) < €, which proves (3.3). O

Let us present several corollaries of Theorem 1.4.11, which are easier to apply.

Corollary 1.4.12 ([157, Corollary 4.1]). Let X be a Fano threefold that has canonical
Gorenstein singularities, and let G be a finite subgroup in Aut(X) such that X does
not have G-orbits of length 1 or 2, and G does not admit an epimorphisms to any of
the following groups Uy, G4 or &5. Suppose that X does not contain any G-invariant
irreducible surface S such that —Kx ~g AS + A for some positive rational number X > 1
and an effective Q-divisor A. Then ag(X) > 1.

Proof. Apply Theorem 1.4.11 and use classification of finite subgroups in PGLy(C). O
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Corollary 1.4.13. Let X be a smooth Fano threefold, and let G be a finite simple non-
abelian subgroup in Aut(X) such that G % s, G 2 PSLy(F7). Suppose that X does
not contain any G-invariant irreducible surface S such that —Kx ~g AS + A for some
positive rational number A > 1 and an effective Q-divisor A. Then ag(X) > 1.

Proof. Apply Theorem 1.4.11. The condition Theorem 1.4.11(1) is not satisfied by as-
sumption. Since G % A5 and G % PSLy(F7), the group G does not have faithful three-
dimensional representations, so that the threefold X does not have G-invariant points by
Lemma A.4.1. Thus, since G 2 25, we see that X does not contain rational G-invariant
curves. U

Corollary 1.4.14. Let V be a weak Fano threefold that has canonical Gorenstein singu-
larities, let G be a reductive subgroup of Aut(V), let m: V — P! be a G-equivariant weak
del Pezzo fibration. Suppose that the following three conditions are satisfied:

(i) m does not have G-invariant fibers,
(ii) V' does not contain G-invariant (irreducible) sections of 7;
(iii) V' does not contain G-irreducible surface S such that —Ky ~g AS + A for some
rational number A > 1 and effective Q-divisor A.

Then ag(V) > 1.

Proof. If V' is a Fano threefold, then the required assertion follows from Theorem 1.4.11.
In general, it follows from from the proof of this theorem. Indeed, suppose ag(V) < 1.
Then there are rational number p < 1 and G-invariant linear system D C | — nKy/| for
some n > 1 such that (V, £D) is strictly log canonical. Let us seek for a contradiction.

Let C be an center of the log canonical singularities of the log pair (V, D) that has
maximal dimension, and let Z be its G-orbit. Then Z is a G-irreducible subvariety of V,
so that C' is not a surface by (iii). In particular, the locus Nklt(V, 2D) is at most one-
dimensional.

If C is a point, then the locus NkIt(V, £D) is zero-dimensional. Since it is connected by
Corollary A.1.7, we conclude that Z = C' must be a G-invariant point in this case, which
is impossible by (i). Thus, we see that C'is a curve.

Let F be a general fiber of 7. If F'-Z # 0, then the log pair (F, 2D|r) is not Kawamata
log terminal at every intersection point in F'N Z, and Nklt(F, £D|r) is zero-dimensional,
so that F'- Z =1 and Z = C by Corollary A.1.7. The latter is impossible by (ii). Hence,
we see that F'- Z = 0.

Thus, the locus Nklt(V, £D) is one-dimensional, and each its irreducible component is
contained in a fiber of the G-equivariant fibration 7. On the other hand, this locus is
connected by Corollary A.1.7. This shows that Z = C' and C is contained in a fiber of ,
which must be G-invariant. The latter is impossible by (i). O

Corollary 1.4.15. Let V' be a weak Fano threefold that has canonical Gorenstein singu-
larities, let G be a reductive subgroup of Aut(V), let m: V — P! be a G-equivariant weak
del Pezzo fibration, and let F, be the (scheme-theoretic) generic fiber of the fibration T,
which is a weak del Pezzo surface with Du Val singularities that is defined over the function
field of P*. Suppose that = does not have G-invariant fibers. Then ag(V) > a(Fy).

Proof. The assertion follows from the proof of Theorem 1.4.11. Indeed, suppose that

ag(V) < a(Fy). Then there is a G-invariant linear system D C | — nKy/| for some n > 1
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such that (V, £D) is strictly log canonical for some positive rational number p < a(Fy).
Note that a(Fy;) < 1, because | — Kg_| is not empty.

Let Z = Nklt(V, £D). If an irreducible component of the locus Z is not contained in
any fiber of the fibration 7, then the log pair (Fy, £D|p,) is not Kawamata log terminal
and D|g, C |—nKg,|, so that > a(F;), which is a contradiction. Therefore, we conclude
that each irreducible components of the locus Z is contained in a fiber of the fibration
7. But Z is connected by Corollary A.1.7. Hence, the whole locus Z is contained in one
fiber of the fibration 7, so that this fiber must be G-invariant which is impossible, since
7 does not have G-invariant fibers by assumption. U

Corollary 1.4.16. Let V' be a weak Fano threefold with isolated canonical Gorenstein sin-
gularities, let G be a reductive subgroup of Aut(V), and let m: X — P! be a G-equivariant
fibration whose general fiber is a smooth quintic del Pezzo surface. Suppose, in addition,
that tk CI(V') = 2, and 7 does not have G-invariant fibers. Then a(V) > 1.

Proof. Apply Corollary 1.4.15 and Lemma A.5.7. O
Let us conclude this section by presenting one application of Corollary 1.4.12.

Example 1.4.17. Let x,--- , x4 be coordinates on P*, and for each ¢t € C, let

4 4 4 4 2
Xy = {Zw? + (in>4 = t(Zx? + (Zaaf) } c P
i=0 i=0 i=0 =0
Then the threefold X, is singular. If ¢t = }L, then X; has canonical Gorenstein singularities.
Moreover, if t # }1, then X, has isolated ordinary double points by [107, Theorem 4.1].
Observe that the threefold X; admits a natural action of the symmetric group Gg. Then

e the smallest Gg-orbit on X; contains at least six points [49)].
e the subgroup of G¢-invariant divisors in Cl(X) is generated by —Kx, see [34].

By Corollary 1.4.12, ag,(X) > 1, and X is K-stable by Theorem 1.4.7 and Corollary 1.1.6,
because the automorphism group of X, is finite. Explicitly, [34, Lemma 3.4] shows that

1
Aut(Xt) = 1
S if t 3.

1.5. Stability threshold. The paper [97] introduces a new invariant of Fano varieties,
called d-invariant, that serves as a criterion for K-stability. In this section, we will give
slightly simplified definition of the J-invariant together with its equivariant counterpart,
and we will also consider some applications, e.g. Proposition 1.5.9 and Corollary 1.5.21.

Let X be a normal projective variety of dimension n, let A be an effective QQ-divisor
on it such that the log pair (X, A) has at most Kawamata log terminal singularities, and
let L be an ample Q-divisor on X. Let f: Y — X be a projective birational morphism
with normal variety Y, and let E be a (not necessarily f-exceptional) prime divisor in Y.
Then E is a divisor over X (see Definition 1.2.1). Let

AX7A(E) =1+ OI'dE (KY - f*(KX + A)),

and we let | e
SL(E) = —/ vol(L — zE)dx.
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If (X, A) is alog Fano variety and L = —(Kx+A), we set Sx a(E) = SL(E) for simplicity.
Note that this (infinite) integral is actually finite, since vol(L — zE) = 0 for = > 7.(F),
where 77, (E) is the pseudo-effective threshold:

1(FE) = sup{)\ € Roo | vol(L — AE) > 0}.
Following [17], let us define o(X, A; L) and 6(X, A; L) as follows:

oy e Axa(E)
OZ(X,A,L) - ér/l)f(TEw)’

and

(X, A; L) = inf —AXA(E)

where both infima are taken over all prime divisors over X. Then
a(X,A; L) = inf{lct (X, A; D) ’ D is effective Q-divisor such that D ~q L},
which can be shown arguing as in Remark 1.4.2. This equality can be restated as

the log pair (X, A+ )\D) is log canonical}

X,A;L) = A
Oé( y = ) sup { < @ for any effective @—diViSOI D ~Q —KX

If (X,A) is a log Fano variety, we let
(X, A) = 5(X, A;—(Kx + A))
In this case important case, the number 6(X, A) is also known as the stability threshold,
because of the following result (cf. Theorem 1.2.2).
Theorem 1.5.1 (97, 90, 133, 17, 59, 139]). If (X, A) is a log Fano variety, then
e )(X,A)>1 «— (X,A) is K-stable;
¢ (X, A) 21 <= (X,A) is K-semistable.

Actually, we did not defined the K-stability and K-semistability for log Fano varieties.
Both these notions can be defined similar to what we did for Fano varieties in Section 1.1.
For details, we refer the reader to the excellent survey [208].

Theorem 1.5.2 ([215]). Suppose that X = X1 x Xo, A=A KAy, L =L K Ly, where
e X, and Xy are projective varieties,
o Ay is an effective Q-divisor on X1 such that (X1, A1) is Kawamata log terminal,
o A, is an effective Q-divisor on Xy such that (Xa, Ag) is Kawamata log terminal,
e [ and Ly are ample divisors on on X1 and X,, respectively.

Then 5(X, A,L) = min{é(Xl, Ala Ll),5(X2,A2;L2)}.

We can also define local analogues of the numbers o (X, A; L) and (X, A; L) as follows.
For a point P € X, we let

. Axa(E)

X, A L)= inf X&)

Oép( ) ) ) él/lx TL(E) )
PeCx(E)

24



and

. Axa(E)

op(X,A: L) = f —

P( 9 ) ) ]_}jr/l)( SL(E) )
PGCX(E)

where infima are taken over all prime divisors over X whose centers on X contain P. Then
a(X,A; L) = inf ap(X,A; L),
PeX
0(X,A; L) = inf dp(X,A; L).
PeX
By [17, Proposition 3.11], we have —=7,(E) < Si(E) < ;257,(E) for any prime divisor
E over X. Thus, we have 22 ap(X,A; L) < 6p(X,A;L) < (n+ 1)ap(X, A; L), which
implies that 2o (X, A; L) < 6(X,A; L) < (n+ 1)a(X, A; L).
Arguing as in Remark 1.4.2, one can show that
ap(X,A; L) = inf{lctp (X, A; D) ‘ D is effective Q-divisor such that D ~q L},
which is the original definition of ap(X,A; L). Note that it can be restated as

the log pair (X, A+ /\D) is log canonical at P}

X,A;L) = A€
OCP( ) Sup { Q for every effective @-diViSOl" D ~Q _KX

It would be useful to have a similar alternative definition of §p(X, A; L), which uses log
canonical thresholds of some divisors on X. To give this alternative definition, we need

Definition 1.5.3. For effective Q-divisor D such that D ~q L, we say that D is cool if
the inequality ordg(D) < Sp(F) holds for every prime Weil divisor E over X.

The following result can considered as an alternative definition of the d-invariant.

Proposition 1.5.4. Let P be a point in X. Then
op(X,A; L) = inf{lctp(X, A; D) ‘ D is cool effective Q-divisor such that D ~q L}.

We can restate the equality in this proposition as follows:

the log pair (X, A+ )\D) is log canonical at P}

op(X,A; L) = Ac i ivi
p( ) = sup { SR any effective cool Q-divisor D ~q¢ —Kx

Corollary 1.5.5. One has
X, A L) = inf{lct (X, A; D) ‘ D is cool effective Q-divisor such that D ~q L}.
To prove this result, we need the following auxiliary

Lemma 1.5.6. Fiz any € € Q. Then there exists an effective Q-divisor D ~q L such
that ordg (D) < eTr(E) for every divisor E over X.

Proof. Let m: X — X be the log resolution of the pair (X, A), let N be a sufficiently
divisible integer such that N = %, and let Dy, Dy, ..., Dy be general divisors in the linear
system |NL|. By Bertini’s theorem, the divisor 7*(D;) + ... + 7*(Dy) has simple normal
crossing singularities, since we may assume that |NL| is base point free. Let

1 N
=1
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Then D ~g L. Let us show that D is the required divisor.

Let £ be any prime divisor over X, and let C'¢(E) be the center on X of the discrete
valuation defined by E. Then Cg(FE) is contained in the support of at most n divisors
among 7*(D1),...,7*(Dy). If C(E) ¢ Supp(n*(D;)), then we get ordg(D;) = 0. On
the other hand, if C¢(E) C Supp(7*(D;)), then ordg(D;) < N7.(F). Thus, we have

n n
ordg(D) < mNTL(E) = NTL(E) < erp(E)
as required. O

We also need the following useful lemma. For the precise definition of m-basis type
divisors, see [97].

Lemma 1.5.7 ([17, Corollary 3.6]). Fiz ¢ > 0. Then there ezists my(e) € Zso with
the following property: for every integer m = mg(€) such with mL a Cartier divisor and
for every prime divisor E over X, one has ordg(D,,) < (1 + €)SL(E) for any m-basis
type diwvisor D,, ~q L.

Let us now prove Corollary 1.5.5. The proof of Proposition 1.5.4 is almost identical, so
that we omit it.

Proof of Corollary 1.5.5. Let F' be any prime divisor over X. We have to prove that

§(X,A; L) = inf Axa(F) .
F/X sup {ordF(D) | D is cool effective Q-divisor such that D ~q L}

To do this, it is enough to prove that the denominator in this formula is equal to Sp(F).
But this denominator does not exceed S (F'). Thus, we only have to prove that

(1.5.8)  sup {ordF(D) | D is cool effective Q-divisor such that D ~q L} > Sp(F),

Fix a prime divisor F' over X and ¢ > 0. Let mg(¢) be the constant from Lemma 1.5.7.
Take a sufficiently large and divisible integer k > mq(€) such that kL is a Cartier divisor,
and |kL| is not empty. It follows from [17, Corollary 3.6] that for each m € N divisible by £,
there exists a m-basis type divisor D,,, ~qg L such that

lim ordp(D,,) = SL(F).
m—00

But it follows from Lemma 1.5.6 that there is an effective Q-divisor D" ~¢ L such that

1 1
mTL(E) < —SL(E)

for every prime divisor E over X. Moreover, by construction of the divisor D', we may
assume that ordp(D’) = 0. Now for every positive m divisible by &, we let

1—c¢ 2e
Dy,

1+e + 1+e

Then D ~g L. We claim that D is cool. Indeed, since m > k > myg(e), for every prime

divisors E over X, we have

1—c¢ 2¢

1 Sr(E

1+€(+6)L()+1+€
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by Lemma 1.5.7. On the other hand, we have

]_ _
ordr(D) > 7 ‘

OI'dF (Dm) s

+ €
where ordp(D,,) — Sp(F) as m — oo. This gives (1.5.8) as required. O

Let us use d-invariant to prove the following generalization of [64, Theorem 1.1], which
we obtained after a communication with Ziquan Zhuang.

Proposition 1.5.9. Let X be a Fano variety of dimension n > 2 that has Kawamata log
terminal singularities. Suppose that there exists a cyclic cover f: X — Y of degree m
such that 'Y is also a Fano variety that has at most Kawamata log terminal singularities,
and f is branched along an effective reduced divisor B C'Y such that B ~g b(—Ky) for
some positive rational number b < <. Suppose that one of the following holds:
(1) the log pair (Y, B) is log canonical and 6(Y) > m — (m — 1)b,
(2) the log pair (Y, B) is log canonical, 6(Y) = m — (m — 1)b, and for every prime
divisor F over Y such that Ay g(F) =0, one has 225 > m — (m — 1)b.

Sy (F)
Then X is K-stable.

Proof. Let L = —Ky. Let us show that the log pair (Y, mT_lB) is K-stable, which would
imply the required result by [140, Proposition 3.4].

Let (), £) be any non-trivial test configuration of the pair (Y, L) over P! such that its
central fiber ) is reduced and irreducible, and let M; be the non-Archimedean Mabuchi
functional of (), £) defined in [23, Definition 7.13|, where ¢ € [0, 1]. Then

n L' (KY + tB)
n+1 L
where B is the closure of B x (P'\[0:1]) in Y. Moreover, it follows from [135] that to
prove K-stability of (Y, =% B), it is enough to prove that M; > 0 for t = %

Let v := ordy,|c(v)- : C(Y)* — Z be the divisorial valuation given by ). Then there
exists a prime divisor F' over Y such that v = cordp for some ¢ € Z~y. Moreover, it follows
from [90, Theorem 5.1] and [94, Theorem 3.2] that M; = A(y,p)(F)—(1—1tb)Sy (F'). Thus,
in order to prove that M m-1 > 0, it is enough to prove that

1
M, = L (Kypr +tB) — (£,

A (F) > (1 . W#M)SL(F).

(Y, (mfl)B)
Since (Y, B) is log canonical, we have Ay, p)(F) > 0, so that

1

A (F) 2 mAY(F)'

(v,(m-LB)

Av(F)

Moreover, we have 6(Y) = m — (m — 1)b, which gives S 2

m — (m — 1)b. Thus, using
conditions (1) or (2), we see that
1 m —1)b
A(x%)(F) = EAY<F) > <1 - u)SL(F)
or

Ay o (1) > —Ag(F) = (1= D)5, 0)

(v, (m1)B)

respectively. This proves the proposition. O
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Using Proposition 1.5.9 and Theorem 1.5.1, we get

Corollary 1.5.10 ([64]). Suppose that X is a smooth Fano variety of dimension n > 2,
and there is a cyclic cover f: X —'Y of degree m such that'Y is a smooth Fano variety,
and f is branched along an effective reduced divisor B C'Y such that B ~gq b(—Ky) for
a rational number b such that 1 < b < — If Y is K-semistable, then X is K-stable.

Let G be a reductive algebraic subgroup in Aut(X, A) such that the class of the ample
divisor L in the group Pic(X) ® Q is G-invariant. As in Section 1.4, we can define

<X JA A+ iD) is log canonical for any m € Z~ such that
ag(X,A; L) =sup e € Q m
mL is Z-divisor and any G-invariant subsystem D C ‘mL|

Note that we can reformulate the definition of ag(X, A; L) as follows:

ag(X,A; L) = inf {lct<X, A; lD)
m

m is a positive integer such that mL is Z—divisor}

and D is a G-invariant linear subsystem in ’mL‘

Moreover, arguing as in Remark 1.4.2, one can show that

oy e Axa(E)

where the infimum is taken over all G-irreducible (not necessarily prime) divisors over X.
If (X, A) is a log Fano variety, then we let ag(X,A) = ag(X,A; —(Kx + A)).

Remark 1.5.12. In (1.5.11), we cannot take infimum over all G-invariant prime divisors
over X in general. But if (X, A) is a log Fano variety, L = —(Kx+A) and ag(X,A) < 1,
then we can assume that the infimum in (1.5.11) is taken over all G-invariant prime
divisors over X. This follows from Corollary 1.4.12, Lemma A.4.6 and [216, Lemma 4.8].

Inspired by [140, Definition 2.5] and Theorem 1.2.5, we can define

. Axa(E)
oa(X,A; L) = inf ———=
(X AL) B)x Si(E)
where the infimum is taken over all possible G-invariant prime divisors over the variety X.
If (X, A) is a log Fano variety, we also let

(Sg(X, A) = (5@(X,A; —<KX + A))

In this case, the strict inequality dg (X, A) > 1 implies that (X, A) is K-polystable [216].
Similarly, if X is a Fano variety, we let dg(X) = dg(X, 0; —Kx).

In the remaining part of this section, we will show another way to define ¢ (X, A; L),
which resembles the original definition of the J-invariant given in [97].

First, we fix a positive integer m such that m/L is a very ample Cartier divisor, and
the action of G lifts to its linear representation in H°(X, mL). We let N,, = h°(X,mL).
For every linear subspace W C H°(X,mL), we denote by |W| the corresponding linear
subsystem in |mL|. If the subspace W is G-invariant, we say that |W| is G-invariant.

Note that H°(X, mL) splits as a sum of irreducible G-representations [191, Section 4.6.6].
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Definition 1.5.13. Fix positive integers myq, ..., m; such that each divisor m;L is Cartier,

and take positive rational numbers aq, ..., a; such that
t
Z a;m; = 1.
i=1
Let Dy, ..., D; be linear subsystems in |myL|, ..., |m;L|, respectively. Then

t
D= Z a;D
=1

is said to be a Q-system of the ample Q-divisor L. If each linear system D; is G-invariant,

then we say that D is G-invariant. Similarly, if each D; does not have fixed components,

we say that D is mobile [4, 28]. We say that D is m-decomposed if the following holds:
(1) my = --- =my = m, so that each D; is given by a subspace W; C H*(X,mL),
(2) one has

(X, mL) @m,

dlm(Wi)

(3) for each i € {1,...,t}, one has a; = = +*.

Note that %|mL| is G-invariant m-decomposed Q-system of the divisor L. Likewise, if

is a m-basis type Q-divisor of L, then D is a m-decomposed Q-system of the divisor L,
where each linear system D; consists of one divisor D;.
Let V,, = H°(X,mL). Consider a G-invariant filtration F of the space V,, given by

HY(X,mL) = FV,, 2 F'V,, D F*V,, 2 --- D F'V,,, 2 {0},

where each F7V,, is a G-invariant vector subspace of the vector space H®(X,mL).
Since the group G is reductive by assumption, the vector space H°(X, mL) decomposes
as a direct sum of G-subrepresentations W7 & Wy @ - - - @& W, such that

t
Fiv, = @ W
i=j

Note that this decomposition is not necessarily unique. We set

t .
dim(WV,
D = —\W;
Su
Then D7, is a G-invariant m-decomposed Q-system of the divisor L, which can depend on
the decomposition of the vector space H°(X,mL) into the sum of G-subrepresentations.

Now, for a G-invariant prime divisor I’ over X, we consider G-invariant filtration

HY(X,mL) = FViy 2 FiVi 2 FpVi 2 -+ 2 FiVi 2 {0},
29



where F%Vm = H°(X,mL—jF), and s is the largest integer such that h°(X, mL—sF) # 0.
We set DF = DJr. This means that the G-representation H°(X, mL) decomposes as
a direct sum of G-subrepresentations Uy @ Uy @ - - - @ U, such that

H(X,mL - jF) = U

and
dlm

1.5.14 DE = U;
(1.5.14) " 2 0,
Then

KX, mL — jF) — (X, mL — (j+ 1)F) = h°(X,mL —iF)

_ F _ bl 9 _ 9

S (F) = ordp (DE) = JZO — = 21 N

Lemma 1.5.15. One has
Sm(F) = sup{ordp (D) ‘ D is G-invariant m-decomposed Q-system of the divisor L}.

Proof. We only need to prove the >-part of the assertion, because S,,(F) = ordz(DL).
Let D be a G-invariant m-decomposed Q-system of the divisor L. Then

t
D= Z CI,Z'Di,

where D; = |W;| and a; = dlmm— for some G-invariant linear subspace W; C H O(X mL),

and H°(X, mL) decomposes as a direct sum of G-subrepresentations Wy & Wy @& - - - & W.
For every j € {1,...,t}, one has

Wy =@ W;nu),

i=1

where W;NU; is G-invariant for every ¢ and j. Therefore, we have the following G-invariant

decomposition:
O(X,mL) EB@ (W; N U;)

J=1 =1
Therefore, we can set

t

Z; ° dlmWﬂU
J

=1

We observe that D’ is a G-invariant m-decomposed Q-system of the ample Q-divisor L.
On the other hand, we have ordp(|W; NU;|) = i for each ¢ and j. Thus, we conclude that

ordp (D) ZZ@ dim(W; N U;) ——Z@ dim(U;) = S (F).

jlll

But ordp(D) < ordp(D’) by construction, which completes the proof of the lemma. [
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Now, we define
&;,m (X, A; L) = inf{lct (X, A, D) | D is G-invariant m-decomposed Q-system of L}

and
gg(X,A;L): lim sup S\G’m(X,A;L).

mEZ>0
mL is Cartier

As above, if (X, A) is a log Fano variety, we simply let 5a(X, A) = da(X, A; —(Kx+A)).
Likewise, if X is a Fano variety, we let 0¢(X) = d¢(X,0; —Kx).

Note that the number SG(X, A; L) differs from dg(X, A; L), and gg (X, A; L) also differs
from the counter-part of the number 0 (X, A; L) defined in [84].

Proposition 1.5.16 (cf. [17, § 4]). One has
oa (X, A5 L) < 06(X,A;L).

Proof. Let m be a sufficiently large and divisible integer. Then

~ A E
(5Gm(X, A; L) = inf inf L(),
’ D E/X ordg (D)

where the first infimum is taken over all G-invariant m-decomposed Q-system of L, and
the second infimum is taken over all prime divisors over X. Using Lemma 1.5.15, we get

~ .. Axa(E)
e (X A L) < inf 25870
G (XA L) B)x So(E)

where the infimum now is taken over all G-invariant prime divisors over the variety X.
Therefore, we conclude that

= : . Axa(E) . : Axa(E) Axa(E)
0, X, A; L) < limsu inf ———2 < inf limsu e e
G( ) mezmp E/X Sn(E) E/X m€Z>(P S(E) B/x SL(E)

mL is Cartier mL is Cartier

where E runs through all G-invariant prime divisors over X. U
Thus, applying Theorem 1.2.5 and [216, Corollary 4.14], we get

Corollary 1.5.17. Suppose that (X,A) is a log Fano variety such that gg(X, A) > 1.
Then (X, A) is K-polystable.

If (X,A) is a log Fano variety, L = —(Kx + A) and gg(X, A; L) < 1, then
ba(X,A L) = lim dgm(X,AL) = 06(X, A),

’ITLEZ>0
mL is Cartier

which can be shown using Lemma 1.5.7 and the arguments presented right after (1.5.11).
However, in general, one has d¢(X, A; L) # da(X, A; L).

Example 1.5.18. Suppose that X = P!, A =0, L = —Kx and G is the infinite group
that is generated by the transformations [z : y|] — [y : z] and [z : y] — [z : Ay| for A € C*.

Then d¢(X,A: L) = 2. But §¢(X, A; L) = 400, since X does not have G-fixed points.
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As in Definition 1.5.3, we say that a Q-system D of L is cool if ordg(D) < SL(E) for
every prime Weil divisor £ over X. Then, inspired by Proposition 1.5.4, we let

(X, A L) = inf{lct (X, A; D) ‘ D is G-invariant cool Q-system of the divisor L}.
If (X,A) is a log Fano variety, we let 0¢(X,A) = dg(X,A;—(Ky + A)) for simplicity.
Similarly, if X is a Fano variety, we simply let dg(X) = 0¢(X,0; —Kx).

Lemma 1.5.19. Let F' be a G-invariant prime divisor over X. Then

sup{ordF (D) | D is a G-invariant cool Q-system of the divisor L} = SL(F).

Proof. The inequality < is trivial. Lets us prove the inequality >. Take very small € > 0.
By Lemma 1.5.7, there exists a sufficiently divisible integer m > 0 such that mL is Cartier
and ordg(DE) < (1 + €)SL(E), where DE is defined in (1.5.14). Now, we let

1 €
D= DE
1+e m+(1—|—e)

for some sufficiently large positive integer k such that kL is a very ample Cartier divisor.
Then D is a G-invariant cool Q-system of the divisor L. On the other hand, we have

kL
[KL

1 1
dp(D) = dp(D),) = ——5Sn(F
ord(P) = g 0rdr (Do) = 15 Sm(F),
which gives the required inequality since S,,(F) — SL(F) when m — oo. O

Now, arguing as in the proof of Proposition 1.5.16 and using our Proposition 1.5.19,
we can prove that dg(X,A; L) < dg(X, A; L). In fact, we can say more.

Proposition 1.5.20. One has gG(X, A;L) < SG(X,A; L).

Proof. Take any sufficiently small € > 0. By Lemmas 1.5.7 and 1.5.15, there is a positive
integer my such that ordg(D) < (1 + €)SL(E) for every m-decomposed Q-system D of
the divisor L, where m is any integer such that m > mgy and mL a Cartier divisor. As in
the proof of Proposition 1.5.19, we let

1 €
= D kL
T+ 0t arar

for some sufficiently large positive integer k£ such that kL is a very ample Cartier divisor.
Then D' is a cool Q-system of the divisor L, since ordg(D) = (1 + €)ordg(D’). This
inequality also implies that

D/

1

+e€

oa(X, A L).

dem(X, A L) > .

Since € can be chosen arbitrary small, we get gG(X, A;L) < gG(X, A;L). O

By Propositions 1.5.16 and 1.5.20, we have d¢(X, A; L) < 0¢(X, A; L) < 06(X, A; L).
Therefore, applying Theorem 1.2.5 and [216, Corollary 4.14], we get

Corollary 1.5.21. Suppose that (X,A) is a log Fano variety such that gG(X, A) > 1.
Then (X, A) is K-polystable.

Let us show how to apply this corollary.
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Example 1.5.22. Let G = &5. Consider G-action on P?, which is given by the standard
representation of the group G. Then P? contains unique G-invariant quadric surface, and
it contains unique G-invariant cubic surface. Denote them by S; and Sj3, respectively.
Let € = S>N Ss, let m: X — P2 be the blow up of the curve %, and let Q be the proper
transform of the surface Sy on the threefold X. Then % is a G-invariant smooth curve,
which is known as the Bring’s curve, X is a smooth Fano threefold Ne2.22 and there
exists the following G-equivariant commutative diagram:

X
RN
plo_to_ly,

where V3 is a cubic threefold with one singular point, which is an ordinary double point,
the morphism ¢ is a contraction of the surface () to the singular point of the cubic Vs,
and 1 is given by the linear system of cubic surfaces that contain . Let

4
= = max{Sx(E), Sx(Q), Sx(H). £ }
where H is the proper transform on X of a plane from P3. Then € < 1 by Theorem 3.7.1.
We claim that dg(X) > %, which would imply that X is K-polystable by Corollary 1.5.21.

Namely, suppose that gg(X ) < é Then there exists a G-invariant cool QQ-system D of

the divisor —Kx such that the log pair (X, AD) is strictly log canonical for some positive
rational number \ < % Write D = a@ + A, where a is a non-negative rational number,
and A is a Q-system whose support does not contain (). Then a < Sx(Q) < €, because
the Q-system D is cool. On the other hand, we have

so that Alg is a Q-system on @ = P! x P! of degree (1 + a, 1+ a). But @ does not contain
G-invariant curves of degree (1,0), (0,1), (1,1), which implies that Nklt(Q, AA|g) is zero-
dimensional, so that Nklt(Q, AA|g) = @ by Corollary A.1.7, since ) has no G-fixed points.
Then NkIt(X,\D) N Q = @ by Theorem A.2.1. Note that Nklt(X, AD) is at most one-
dimensional. Indeed, if S is an irreducible surface in X, then S ¢ Nklt(X, AD), because
we have ordg(D) < ¢, since one of the divisors S — @, S — E or S — H is pseudoeffective.
Denote by Z the union of all irreducible components of the locus Nklt(X, AD) that have
maximal dimension. Then Z is either a G-invariant curve or a union of G-orbits. Suppose
that Z is a union of G-orbits in X. Since Z is disjoint from (), we see that

¢(Z) C NKlt(Vs,A\p(D)) C ¢(Z) U p(Q),

so that the locus Nklt(V3, Ap(D)) is a finite set that consists of at least |Z| > 1 points.
Now, applying Corollary A.1.9 to the log pair (V3, A¢(D)), we immediately get |Z] < 5.
In particular, we see that Z ¢ FE, since E does not contain GG-orbits of length less than 24,
because € does not contain G-orbits of length less than 24 by [50, Lemma 5.1.5]. Then

m(Z) C Nklt(P?, An(D)) C 7(Z) U¥

and 7(Z) ¢ €. Now, applying Corollary A.1.9 to the log pair (P, Aw(D)), we get |Z| < 4.
But P? has no G-orbits of length less that 5. This shows that Z is a G-invariant curve.

Suppose that Z ¢ E. Let C' be any G-irreducible component of Z such that C' ¢ FE.
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Then 7(C) is a G-irreducible curve in P3. Let d be its degree. Since C'is disjoint from Q,
we have 0 = C' - Q) =2d — E - C, so that d > 12, because

24 |EnN7(C)| < |ENC| K E-C=2d.

On the other hand, the log pair (P3, Am(D)) is not Kawamata log terminal along 7(C).
Thus, applying Corollary A.1.11 to this pair with § = |Ops(1)|, S = P? and Lg = Op2(2),
we immediately get d < 6, which is a contradiction. Therefore, we conclude that Z C E.
Now, let S be a general hyperplane section of the cubic threefold V5. Then ¢(D) ~q 25.
Then, applying Corollary A.1.11 with S = |S| and Lg = Op4(2)|s, we get S - ¢(Z) < 10,
so that 0 # ¢*(S) - Z =S5 - ¢(Z) < 10. Then
7 (Op(1)) - Z = (6°(S) ~ Q) - Z = °(5) - Z < 10,

which implies that ¢*(S) - Z = 6 and Z is a section of the natural projection £ — %
Thus, we see that Z is a smooth curve of genus 4 that is G-equivariantly isomorphic to €.
The locus Nklt(V5, A¢(D)) consists of the curve ¢(Z) and a (possibly empty) finite set.

Observe also that the smooth curve ¢(Z) = Z cannot be a minimal center of log canonical
singularities of the log pair (V3, A\¢(D)), because otherwise Corollary A.2.7 would give

6=0¢"(S) - Z=5¢(2) > 12.
Thus, applying Lemma A.4.6, we obtain a G-invariant Q-system Dy, on V3 together
with a rational number p < 1 such that Dy, ~g —Ky,, the locus NkI(V3, uDy,) is zero-
dimensional, and the intersection Nkl(V3, uDy,)Np(Z) contains a non-empty finite subset.
Applying Corollary A.1.9, we see that |Nkl(V3, uDy,) N ¢(Z)| < 5, which is impossible,
because ¢(Z) = € contains no G-orbits of length less than 24. The obtained contradiction
shows that &(X) > 1 > 1. Thus, the threefold X is K-polystable.

Let us present localized versions of the invariants gG(X, A; L), gG(X, A; L), dq(X, A L).
Fix a proper closed subvariety Z C X. Let

. Axa(E)
0az(X,A;L) = f —
G,Z( ; ) ) El’_}I/lX SL(E) )

ZCCx (E)

where the infimum runs over all G-invariant prime divisors over X such that Z C Cx(FE).

We also define

ggvzvm(X, A, L) = sup {)\ eQ

(X, A; AD) is log canonical at general point of Z
for every G-invariant m-decomposed Q-system D of L

and N N
§G72(X,A;L): lim sup 5G,m(X,A;L).

TTZEZ>0
mL is Cartier

Finally, we let

~ (X, A; A\D) is log canonical at general point of Z for
dez(X,A;L) =sups A €Q

every G-invariant cool Q-system D of the divisor L

Then, arguing as in the proof of Propositions 1.5.16 and 1.5.20, we obtain
(1.5.23) 0e2(X, A L) < dg.z(X, A L) < Sa.2(X, A L).

As above, if (X,A) is a log Fano variety, we let gG,Z(X, A) = gG,Z(X, A;—(Kx + A)).

Finally, if X is a Fano variety, we let qu(X) =0¢,z(X,0; —Kx).
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1.6. Equivariant Stibitz—Zhuang theorem. Let us consider a log Fano variety (X, A).
This simply means that X is a normal variety, A is an effective Q-divisor on X such that
the log pair (X, A) has Kawamata log terminal singularities, and —(Kx + A) is an ample
Q-Cartier divisor. As in Section 1.5, let us fix a reductive algebraic subgroup G C Aut(X)
such that the divisor A is G-invariant. Suppose, in addition, that we have rk C1¢(X) = 1.
This condition means the following: for every every Weil divisor D on the variety X such
that its class in C1(X) is G-invariant, one has D ~g —A(Kx 4+ A) for some X € Q.

Remark 1.6.1. Tt should be noted that the condition rk C19(X) = 1 is rather restrictive.
For instance, if X is a smooth Fano threefold, then the condition rk C1(X) = 1 implies
that either CI(X) = Z, or X is contained in one of the families Ne2.6, Ne2.12, Ne2.21,
Ne2.32) Ne3.1, Ne3.13, Ne3.27, Ned.1. See [176] for details. Note also that every smooth
Fano threefold in these eight deformation families is fibre-like [108], i.e. it can appear as
the fibre of a Mori fibre space.

Let us also assume that dim(X) > 2. In this section, we prove the following result.

Theorem 1.6.2 (cf. [192, Theorem 1.2]). Suppose that ac(X,A) > 3 and
(%) for any G-invariant mobile linear system M on X, the pair (X, A+ AM) has log
canonical singularities for A € Qsg such that AM ~g —(Kx + A).
Then (X,A) is K-semistable. Moreover, (X, A) is K-polystable if ag(X,A) > 5 or
(®) for any G-invariant mobile linear system M on X, the pair (X, A + AM) has
Kawamata log terminal singularities for A € Qsg such that AM ~qg —(Kx + A).

For the definition of ag(X,A), see Section 1.5. If A =0, we let ag(X) = ag(X, A).

Corollary 1.6.3. Suppose that A =0, ag(X) > % and
(V) for any G-invariant mobile linear system M on X, the pair (X, AM) has canonical
singularities for X € Qo such that AM ~g —Kx.
Then X s K-polystable.

The condition (O) is equivalent to X being G-birationally super-rigid [50, § 3.1.1].
Therefore, Corollary 1.6.3 can be restated as follows:

Corollary 1.6.4 (cf. [192, Theorem 1.2]). Let V' be a Fano variety with at most terminal
singularities, let G be a reductive subgroup of the group Aut(V) such that rk C15(V) = 1.
Suppose that X is G-birationally superrigid and ag(V') > % Then V' is K-polystable.

This corollary naturally leads to the following

Conjecture 1.6.5 (cf. [122, Conjecture 1.1.1]). Let V' be a Fano variety with terminal sin-
gularities, and let G be a reductive subgroup of the group Aut(V') such that 1k C1%(V) = 1.
Suppose that X is G-birationally superrigid. Then V is K-polystable.

This conjectures says that we can remove the condition ag(V') > % from Corollary 1.6.4,
which leads to the following

Question 1.6.6 (cf. [192, Question 1.5]). Let V' be a Fano variety with at most terminal
singularities, let G be a reductive subgroup of the group Aut(V) such that tk C1%(V) = 1.

Is it always true that ag(V') > %?
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Let us prove Theorem 1.6.2. First, we observe that to prove that (X, A) is K-semistable
it is enough to show that B(F') > 0 for every G-invariant dreamy prime divisor F' over X.
This follows from [216, Theorem 4.14] and [19, Lemma 3.2]. Similarly, we have

Lemma 1.6.7. To prove that (X,A) is K-polystable it is enough to show that B(F) > 0
for every G-invariant dreamy prime divisor F' over X.

Proof. We may assume that (X, A) is K-semistable. If (X, A) is not K-polystable, then,
arguing as in the proof of [216, Corollary 4.11], we see that there exists a G-equivariant
special test configuration for (X, A) whose central fiber is a K-polystable log Fano pair.
The Donaldson—Futaki invariant of this test configuration vanishes, so that there exists
a G-invariant dreamy prime divisor F' over X with §(F) = 0 by [90, Theorem 5.1]. O

Suppose that ac(X,A) > 1 and (%) holds. Let us fix some G-invariant dreamy prime
divisor F' over X. To prove Theorem 1.6.2, it is enough to prove the following assertions:
(1) B(F) = 0;
(2) if a(X, A) >  or (#) holds, then 5(F) > 0.
Since F' is dreamy, there exists a G-equivariant birational morphism o: Y — X such
that Y is normal, and one of the following two possibilities holds:

e cither o is an identity map, and F' is a G-invariant prime divisor on X;

e or the prime divisor F' is the g-exceptional locus, and —F' is g-ample.
For simplicity, we set n = dim(X), L = —(Kx + A), A = Axa(F) and S = Sxa(F).
Let 7 = sup{t € R | 0*(L) — tF is pseudo-effective}. Then B(F) = A — S and

1 T
S = —/ vol(o*(L) — tF)dt.
L J,
Note that 7 > S. Thus, to prove Theorem 1.6.2, we may assume that 7 > A.
Lemma 1.6.8. Suppose that o is an identity map. Then S(F) > 0.

Proof. One has F' ~g AL for some A € Q. Then the pair (X, A+ %F) is log canonical,
since ag(X) > % In particular, we see that \ > % > n+r1, because n > 2 by assumption.
Now, applying [88, Lemma 9.2], we get A > S, so that §(F)=A—S5 > 0. d

To proceed, we may assume that F' is o-exceptional. Take any = € (A,7) N Q.

Lemma 1.6.9. There exists a G-irreducible effective Weil divisor D in X such that
the inequality ordp(uD) > x holds for p € Qso such that pD ~gq L. Moreover, such
divisor D is unique.

Proof. To prove the existence part, take sufficiently large and divisible integer m > 0.
Now, we consider the G-invariant complete (non-empty) linear system |m(o*(L) — zF)|.
Let My be its mobile part, let Fy be its fixed part, and let M and F be their proper
transforms on X, respectively. Then M # &, M and F are G-invariant, M + F ~g mL.
But there exists e € Qs such that F ~g eL. Then ——M ~g L and € < m, so that
the log pair (X, A + —1—M) is log canonical, which gives
ordp(./\/l) =A— ;<mx — ordF(F)> = A+ OrdF(}-) m:r;’

m—e€ m—e m—e€

which implies that € # 0 and ordp(F) > ze, because = > A.
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If F is G-irreducible, we let D = F and p = % Otherwise, we have

F = XT: CLz‘Di,
=1

where each D; is a G-irreducible effective Weil divisor, and each «a; is a positive integer.
For every i € {1,...,r}, there is p; € Q¢ such that p;D; ~q L, so that ordp(u;D;) > =
for some j € {1,...,7}. Thus, we let D = D; and p = p;. This proves the existence part.

To prove the uniqueness part, suppose that D is not unique. Then there exists another
G-irreducible effective Weil divisor D’ on X with ordg(u/D’) > x, where i/ is a positive
rational number such that ¢'D ~g L. Then aD ~ bD’ for some positive integers a and b,
because 1k C19(X) = 1. Let P be the pencil (aD,bD’). Then P is mobile, because both
divisors D and D’ are G-irreducible, and D # D'. But ordp(4P) > z and P ~q L.
Since x > A, this implies that (X, A 4+ £P) is not log canonical, which contradicts (¥).
This shows that D is unique. U

Let D be the divisor constructed in Lemma 1.6.9, and let p € Q- such that uD ~q L.
By Lemma 1.6.9, the divisor D is unique, so that it does not depend on = € (A,7) N Q.
But ordp(uD) > z for every z € (A,7) N Q by construction. This gives ordp(uD) > 7.
On the other hand, we have ordp(uD) < 7 by the definition of 7, which implies

Corollary 1.6.10. One has ordp(uD) = 7.
Let D be the proper transform of D on Y. Then uD ~g 0*(L)—7F by Corollary 1.6.10.
Lemma 1.6.11. For every t € [A, 1|, one has

T—1

vol(o*(L) — tF) = (T — A>nvol(a*(L) —A-F).

Proof. Since vol(c*(L) — tF) is a continues function, we may assume that t € (A, 7) N Q.

Suppose that ¢*(L) —tF ~g R+ auﬁ for some effective Q-divisor R on the variety Y and
some a € Q. Then the class of the divisor R in CI(Y) ® Q is G-invariant, a < 1 and

R ~g 0" (L) — tF — apD ~g o*(L) — tF — a(c*(L) — 7F) ~q

~g (1 —a)o*(L) — (t —ar)F ~q (1 —a) (0*<L> B tl_—aaTF>'

Thus, arguing as in the proof of Lemma 1.6.9 and using the uniqueness of the divisor D,
we see that Supp(R) contains D provided that =T > A. But = > A < a < =4,
Thus, arguing as in the proof of [95, Proposition 3.2], we obtain

vol(o*(L) — tF) = vol (J*(L) —tF — j_:—i;;ﬁ)

On the other hand, we have
t—A ~ T—1

o"(L) —tF — fAuD QT A(a*(L) —A-F),
so that
vol(0*(L) — tF) = VOl(Z__jl (" (L) — A- F)) - <Z__jl>nvol(a*([/) —A-F)
as required. O



Now, using Lemma 1.6.11 and [95, Proposition 3.1], we conclude that S < %.

On the other hand, it follows from (1.5.11) that A > Z, because ag(X,A) > 1, so that

< (n—1A+7 < (n—1)A+2A _
n+1 n+1

so that B(F) = A— S > 0. Similarly, if we have ag(X,A) > 1, then (1.5.11) gives A > I,

which implies that S < A, so that 5(F) = A — S > 0 as required. Finally, we get

Lemma 1.6.12. Suppose that (&) is satisfied. Then f(F)=A— S > 0.

Proof. We already know that A > S. Suppose that S = A. Let us seek for a contradiction.

. T _ (n=1)A+7
Arguing as above, we conclude that A =7 and S = ~—-5—

Recall that vol(c*(L) — tF) is a differentiable function for t € [0, 7). Set

A,

10
— = Zyol(o*(L) — tF).
£(t) = = 2 vol(o*(L) ~ tF)
Arguing as in the proof of [95, Proposition 3.1] and using Lemma 1.6.11, we get
n—1
A o
r =< A
A)(r — )"~
et
and L" = 7f(A). Thus, we have
tn
; L”<1—2An)if0<t<A,
vol(o*(L) —tF) =L"—n [ f(&)d¢ =
0 n (T B t)n :
L W if A < t<T.

If t is sufficiently small, then o*(L)—tF is ample, so that vol(c*(L)—tF) = (¢*(L)—tF)".
Now, using [89, Claim 3.3], we see that o(F) must be a point and (—F|p)"' = L.
Then o*(L) — tF is nef for ¢t € [0, A] by [137, Lemma 10] (cf. [23, Proposition 1.12]),
so that the divisor 0*(L) — A - F' is semiample, because F' is dreamy.

Take sufficiently divisible m > 0. Then |m(c*(L) — A - F')| is a G-invariant base point
free linear system. Let M be its proper transform on X. Then M is a G-invariant mobile
linear system such that %M ~q L, so that the log pair (X, A+ %M) has Kawamata log

terminal singularities. Then A = ordp(M)/m > Ax A = A, which is absurd. O

Therefore, Theorem 1.6.2 is completely proved. Now, let us present its applications.
We start with the following result, which also follows from Proposition 1.5.9.

Theorem 1.6.13. Let 7: X — P? be a double cover such that 7 is branched over a sextic
surface Sg that has isolated ordinary double points. Then X is K-stable.

Proof. Let G be the subgroup in Aut(X) generated by the Galois involution of the double
cover m. Then C19(X) is generated by —Kx, since the quotient X/G is isomorphic to P2,
This implies that the Fano threefold X is G-birationally superrigid. Indeed, the required
assertion follows from the proof of [35, Theorem A]. The only difference is that one should
use Theorem A.3.5 instead of the standard Noether-Fano inequality.

We claim that a(X) > 3. In fact, this follows from the proof of [36, Proposition 3.2].

Indeed, suppose that ag(X) < 3. Then there exists a G-invariant divisor in | —nKx| such
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that the pair (X, %D) is not log canonical at some point P € X. Using Corollary A.4.11,
we may assume that the divisor D is G-irreducible. Let us seek for a contradiction.

Since D is G-invariant, either n = 3 and D is the preimage of the sextic surface Sg,
or D = 7*(F) for some irreducible surface F' C P? of degree n > 2. In the former case,
the singularities of the log pair (X, %D) are log canonical, because Sg has at most isolated
ordinary double points. Thus, we are in the latter case. Then (IP3, %56 + %F) is not log
canonical at m(P) by [124, Proposition 8.12]. Then 7(P) € Sing(Ss) by Lemma A.1.4, so
that P is a singular point of the threefold X.

Let n: X — X be the blow up of the point P, let E be the n-exceptional surface,
and let D be the proper transform on X of the divisor D. Then D ~ n*(—nKx) — mE
for some integer m > 0. Let S, and S, be proper_transforms of two sufficiently general
surfaces in | — Kx| that passes through P. Then S; ~ Sy ~ 77*( — KX) — E, which gives

0<§1-§2~5: (n*(—KX)—E)2~<77*(—nKX)—mE) =2n — 2m,

so that m < n. But this inequality contradicts [57, Theorem 3.10] or [28, Theorem 1.7.20].
The obtained contradiction completes the proof of the theorem. O

Example 1.6.14 ([11]). Let Sg be the sextic surface in P? that is given by
A(r2a? — ) (PR — 22 (P22 — 1) = (1 + 20w (2 + 2 + 22 — w2)2,

where 7 = 1+2‘/5, and z, v, z and w are coordinates on P3. Then Sg has 65 singular
points, and all these points are ordinary double points. This surface is called the Barth
sextic. Let m: X — P? be a double cover that is ramified over Sg. Then the threefold X

is rational by [41, Proposition 3.6], and X is K-stable by Theorem 1.6.13.

Let us present more applications of Theorem 1.6.2.

Example 1.6.15 ([109, 40, 9]). Let us identify P with the hyperplane in P* given by
the equation zg + 21 + 29 + 3+ x4 = 0, where ¢, =1, 22, T3 and =4 are coordinates on P*.
Let Sy = {x} + 2] + x5 + 25 + 2] = M2 + 22 + 23 + 22 + 23)?} C P3 for some number \.
Let &5 be the symmetric subgroup in Aut(P?) that acts by permutation the coordinates.
Then the surface Sy is Gs-invariant, and S, has at most isolated ordinary double points.
To describe its singularities, let 35, 310, 27,, 215 be the orbits of the points

[—4:1:1:1:1],[0:0:0:—=1:1], [-2:=2:—-2:3:3], [0: —=1:—1:1:1],
respectively. Then 35| = 5, [310] = |2),] = 10 and |X5| = 15. Moreover, one has

(. 13
25 if A= %,

. 1

210 if A= 5,
Ypif A= —
10! 307

Yisif A= =
15 1 - 4’

| & otherwise.

Let 7: X — P3 be the double cover branched over Sy. Then X is a Fano threefold Ne 1.12.

Note that the Gz-action lifts to X, so that we can identify &5 with a subgroup in Aut(X).
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Let G be the subgroup in Aut(X) generated by S5 and the involution of the cover .
Then G = &5 X p,y, and X has no G-fixed points, so that ag(X) > % by Theorem 1.4.11.

If A # 33, then X is G-birationally superrigid [9], so that X is K-polystable.

Example 1.6.16 ([48, 8, 138]). Now, we let X be the Segre cubic hypersurface in P*.
Then X has 10 ordinary double points, it admits a faithful action of the group G = &g,
and X is G-birationally superrigid [48]. Arguing as in Example 1.6.15, we get ag(X) > 1.
Thus, the threefold X is K-polystable by Theorem 1.6.2.

Example 1.6.17. Let X be the smooth Fano threefold Ne3.13 with Aut®(X) = PGLy(C).
Such threefold exists and it is unique [176, 42]. For its explicit description, see Section 5.19.
Let W be a smooth divisor in P? x P? of degree (1,1). Then there is PGLy(C)-equivariant
commutative diagram

PZ
pry proy
w w
\ /
pra X pry
P? f1 P?
pry pro
w

where each morphism f; is a blow up of a smooth curve of degree (2,2). Let G = Aut(X).
One can show that G = PGL,(C) x &3 and Pic(X) = Z[— K], see [176] or Section 5.19.
Let F;, E5 and E3 be the exceptional surfaces of the birational morphisms fi, fo and f3,
respectively. Then E; + Es+ F3 ~ —Kx, and Fy N EyN E3 is an irreducible smooth curve,
so that ag(X) < % If ag(X) < %, then applying Theorem 1.4.11 with yu = %, we see that
there exists a G-invariant irreducible curve C' such that —Kx - C' < 5, which gives

3
5> —Kx-C=> (pr;o fi)*(Op(1)) - C =3(pr, o f1)"(Op2(1)) - C,
i=1

so that pryo f1(C) must be a PGLy(C)-invariant line in the plane P2, which does not exist.
Therefore, we see that ag(X) = % We claim that X is G-birationally super-rigid, because
otherwise X contains a G-invariant mobile linear system M such that (X, AM) does not
have has canonical singularities, where A is a rational number such that AM ~g —Kx.
Then (X, AM) is not canonical along E; N Ey N E3, because Fy N Ey N Ey is the unique
G-invariant curve in X, and X does not contain G-invariant finite subsets. This gives

1 1
" :M%)multc(]\/[) > %

where M is a general surface in M, and ¢ is a general fiber of the restriction fi|g,
The obtained contradiction shows that X is G-birationally super-rigid. Thus, we see that
the Fano threefold X is K-polystable by Corollary 1.6.4. This can also be proved using

the technique described in the next section (see the proof of Lemma 4.2.5).
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1.7. Abban—Zhuang theory. Let X be a normal variety of dimension n that has at
most Kawamata log terminal singularities, let Z7 C X be an irreducible subvariety,
let L be some big line bundle on X, and let M (L) be the set consisting of all positive
integers m such that h%(X, Ox(mL)) # 0. The é-invariant §(X; L) along Z is defined by

: Ax(E)

07(X; L) = f —=

AGD= M S
ZCCx (E)

where the infimum runs over all prime divisors E over the variety X such that Z C Cx(E).
In the case when X is a Fano variety and L = —Kx, we let
(Sz(X) = 5z(X,L)

In this section, we explain how to estimate dz(X; L) using the technique developed in [2].

Let Y be a Cartier prime divisor in X such that Z C Y, and Y is not contained in
the supports of the negative part of the o-decomposition of L, see [158, Definition I11.1.12].
The latter condition always holds if L is nef. Then [2, Theorem 3.3] implies the following

Theorem 1.7.1. Let 0,(Y;W[,) be the number defined in (1.7.4). Then

§z(X,L) > min{%,éZ(Y; W}f,)}.

To define 62 (Y; W,,), let us present notations from [2] that will be used throughout this
section and occasionally in other sections of this paper. Let Ly = L|y and M = —Y|y.
For every m € Z-q, we let V,, = H°(X, mL). Put

VX =PV

m=0

The refinement of V;X by the prime divisor Y is the Z2,-graded linear series

WZ. = @ Wma]
m,j =0
such that
Wy, =t (H°(X,mL = jY) = H*(Y,mLy + jM))

where — is the restriction map. Observe that Wn};j C HY(Y,mLy + jM) for all m and j.
Moreover, the refinement W.Y . satisfies the following two conditions:

(1) there exists 7 € Rxq such that W)} ; = 0 whenever j/m > T,
(2) there is (myg, jo) and a decomposition

mOLy +j0M ~Q A + E,

where A is an ample Q-Cartier divisor on Y, and FE is an effective Q-divisor on Y,
such that H°(Y,mA) C WY for all sufficiently divisible m € Z~,.

mmo,mjo
In the language of [2, Definition 2.11], these means conditions mean that W.Y . has bounded
support, and W,Y . contains an ample linear series. Recall from [2, Definition 2.11] that

vl (VX) = vol(L) = tim Sm0o)
m—oo MM /n!
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and

o dim (WY
VOl(W.Y.) = lim ZBO ( m’J).
’ m—o0 m"/n!
Similarly, one can define volumes of any Z-,-graded linear series and Zio—graded linear
series with bounded support (see [2, Definition 2.11] for details).
Lemma 1.7.2. One has vol(W],) = vol(V;¥).

Proof. For all non-negative integers m and j, we have an isomorphism of vector spaces
WY e Vi N HY (X, mL — jY)
™V, NHY (X, mL — (j+1)Y)’
so that 3. dim(W,, ;) = dim(V;,) and the equality vol(W,7,) = vol(V;¥) follows. O

For every prime divisor F' over Y with Z C Cy(F), we let
1 oo

1.7.3 S(WSF) = ——— W(FpWr,)dt

( ) ( LN B ) VOI(WX.) A Vo ( F o,o) )
where for any ¢t € R>y we define the Zio—graded linear series f};W}/ . onY by

FiWle= D F'wi,
m,7 >0
with
Frwy o = {S e Wy . | ordp(s) > mt}.

Now, following [2, Lemma 2.21] and [2, Corollary 2.22|, we are ready to define

. Ay (F)
1.7.4 Y:WY,) = f —
( 7 ) 5Z( 7W.7.) }17'1}Y, S(W.Y',F)’
ZCCy (F) ’

where the infimum is taken over prime divisors F over the variety Y with Z C Cy (F).

Remark 1.7.5. One can generalize S(W,',; F) and d(Y; W],) for any Z2-graded linear

o)

series with bounded support that contains an ample linear series (see [2] for details).

Remark 1.7.6. Let D be a Q-Cartier divisor on Y, let ¢g: Y — Y be a birational morphism,
let F' be a prime divisor in }A/, and let v be a real number. To make the exposition simpler,
we will abuse notations and write D — uF' for the divisor ¢*(D) — uF' on the variety Y.
In particular, vol(D — uF') would mean the volume vol(g*(D) — uF).

As in Section 1.2, we let
T = sup{v eR.o | L—0vY is pseudo—effective}.
Similarly, for a prime divisor F' over the variety Y with Z C Cy (F)), we let
— sup{v € Roo | Ly + uM — vF is pseudo-effective for some wu € [0, 7']}
We let

Su(WIiF) = — o 3 S dim (FEW).

WY
MNm ™ =0 k>0

where Novs = > 5o dim(W) ). Note that FEW,y ;= 0 for k > m7".
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Lemma 1.7.7 (|2, Lemma 2.21]). One has
S(Wr F) = lim S, (W), F).

o0 o0
m—00

Proof. Let h(t) = vol(FW},). Then

/

S(W) F) = W/{) h(t)dt.

Let

mT

!
B () =~ 3" dim(FM WY ).
7=0

m” “

Then h(t) = limy, 00 A (t) = f(t). On the other hand, we have

mt mt’

. Y 1 . n! . kY
ngréo Sm(W.707F) = Wﬁg&m;};(}dlm(}}wm,j%

where

mt mt’

| mr’
S i (FE,) = S fulfm).
k=0

=0 k=0

Thus, we have
1 mrt’ -
lim =S £ (k/m) = / )t
s 3 St -
which implies the required equality. O

Remark 1.7.8. Lemma 1.7.7 holds for any Z;O—graded linear series with bounded support
that contains an ample linear series, where S,,(WX,; F) and S(W},; F') should be replaced

(X} (XY

by their counterparts. We state this lemma for W,Y . to simplify the exposition.

In this book, we will often use Theorem 1.7.1, which is a corollary of [2, Theorem 3.3].
Occasionally, we will use another (similar but more technical) corollary of this theorem.

To state it, suppose (temporarily) that there is a birational morphism 7: X — X such that
e the m-exceptional locus consists of a single prime divisor E; such that 7(Ey) = Z,
e the divisor —FE is Q-Cartier and is m-ample,
e the log pair ()A( , E7) has purely log terminal singularities [124].

The birational map 7 is known as a plt blowup of the subvariety Z. Write

Kp, + Ap, = (K)? + EZ)|EZ’

where Ap, is an effective Q-divisor on E; known as the different of the log pair ()A( JEZ).
Note that the log pair (Ez, Ag,) has at most Kawamata log terminal singularities, and
the divisor —(Kp, + Ag,) is 7|g,-ample. Similar to the refinement W, we can define

the refinement W,E.Z of the linear series V¥ by the prime divisor £;. Namely, it is enough
to replace W, . in the definition of W, by

W22 = Im <H0 ()?,mw*(L) - jEZ) — H° (Ez,mn*(L)\EZ —jEZ|EZ>>.
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Then, for every prime divisor F' over Ez, we can define S(WEz; F) similar to (1.7.3).

00

The following result is a special (but slightly different) case of [2, Theorem 3.3].

Theorem 1.7.9. Let Z be an irreducible subvariety in Ez, and let

. Ax(E)
2NN = B sy
ZCCy (E)

where the infimum is taken over prime divisors E over X such that ZC C3(E). Then

R . AX(EZ) N W Ez
(1.7.10) 05(X,L) > mln{m,5z (EZ,AEZ,W,,,> ,
where ) ()

R . Ey\ . Ez,Agp, F

o2 (P A VZ) = Wb SWEF)

Z2CCp, (F)

where the infimum is taken over all prime divisors F over Ey such that Z C Cg,(F).
Moreover, if the inequality (1.7.10) is an equality and there exists a prime divisor E over

the variety X such that Z C C3(E) C Ez and 65(X, L) = ’;f((g)), thend5(X, L) = gi‘((gzz)).

Proof. The required assertion follows from the proof of [2, Theorem 3.3]. For the reader’s
convenience, we present its proof here. Let F be a filtration on V;*. For m € M (L), let
()/(\', (1-Ax(Ez))Ez + )nr*(D)) is log canonical
X _ ~
0% m (V& F) =sup{ A eQ at general point of the variety Z for any m-basis type
Q-divisor D ~g L that is compatible with F

See [2, Definition 2.8] for the definition of compatibility. We have

A (E)
A X _inf inf X,(1-Ax(Ez))Ez
5Z,m<V- "7:) m Eu/qX ordg(D)
ZCC4(E)

Y

where the first infimum is taken over all m-basis type divisors of the line bundle L that are
compatible with F, and the second infimum is taken over prime divisors F over X such
that Z C C¢(FE). Swapping these infima and using [2, Proposition 3.2], we get

Az (E) Ax(E)
5. (VX — inf X,(1-Ax (Ez))Ez —inf X
(V) = B D ords(D) M S VEE)
ZCC4(E) D ZCC4(E)

so that 527m(V,X , F) does not depend on the choice of the filtration F. We set
52(‘/,)(, ]—") = lim sup 52’m(V.X, F).

meM (L)
Then 6(V;X, F) < §5(X, L). Moreover, it follows from the proof of [2, Lemma 2.21] that
for every € > 0 there exists a positive integer mg(€e) such that

Sm(VE) < (14 €SV E)
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for every prime divisor £’ over X and for every m € M (L) with m > mg(e). Thus, we get

I Ax(E) : . Ax(E) X

—< U Ax(E) A |
S (e D I N (A I R
e ZeCq(m)

Therefore, we conclude that 6 (V;X, F) = §;(X, L).
Let M (W,E,Z) be the set consisting of all positive integers m such that Wf? # 0, and
let 6 be the right hand side of (1.7.11). For every m € M(L) N M(W[Z7), we set

. AX(EZ) . W Ez
O = mm{m, 0% m <EZ7 Az Wi ) ;

where 05 (Ez, Az; WZ) is defined similar to o5, (VX, F). Then 6,, — 6 as m — oc.

Now, let us show that 5Zm(V,X,}") > 0,,. Since 52m(V,X,]-") does not depend on
the choice of the filtration F, we may assume that F is the filtration induced by Ej.
Arguing as in [2, § 3.1], we see that for every m-basis type divisor D of VX compatible
with F, one has

(D) = S (VS Ez)Ez + T,
where I' is an effective Q-divisor such that E; ¢ Supp(I'), and I'|g, is a m-basis type
divisor of Wf,z . Note that
m(Kx + 0mD) = K¢ + amEyz + 6,1

with a,, =1 — Ax(Ez) + 0,5, (V.X; Ez) < 1. Since (Ez, Ag, + 6,,T|g,) is log canonical
in a neighborhood of the subvariety 7 , we see that ()A( ,Ez+0,,T') is also log canonical in
a neighborhood of the subvariety Z by Theorem A.2.1, so that ()? yamE7 + 0,) is log
canonical in a neighborhood of Z as well. This shows that 0z (V& F) 2 0.

Moreover, since ()/f ,Ez +0,,1") is log canonical in a neighborhood of the subvariety 7 ,
for every prime divisor E over X such that Z C C¢(FE), we have

Ax(E) = 00rdg(D) + (1 — ap)ordg(Ey)
for every m-basis type divisor of V¥ that is compatible with F. This gives
Ax(E) > 6,5, (V5 E) + (AX(EZ) — 05 (VX EZ)>OI"dE(EZ)-
Hence, taking the limit when m — oo, we get
(1.7.11) Ax(E) > 0S(VX E) + (AX(EZ) —0S(V, EZ)>ordE(EZ),

where Ax(Ez) — 0S(V,X; Ez) > 0. This proves (1.7.11).

Finally, if there exists a prime divisor E over the variety X such that Z CCz(F)CEy
and Ax(E) = 0S(VX; E), then Ax(Ez) = 0S(VX; Ez) by (1.7.11), since ordg(Ez) > 0.
This completes the proof of Theorem 1.7.9. U

Theorem 1.7.9 implies the following corollary of [2, Theorem 3.3].
Corollary 1.7.12. One has

. JAx(Ez) . E
07(X, L) > min , inf 05 Bz, Ap, ;WJZE) ¢,
Z( ) {SL(EZ) ECEZ Z( Z E ) )
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where the infimum is taken over all irreducible subvarieties Z C Ey such that 7r(2) =7,
and 65(Ez, Ag,; WEZ) is defined in Theorem 1.7.9.

Now, we give a simple formula for S (W.Y o; F') when X is a Mori Dream Space [121, 165].

This formula is especially simple when X is a Mori Dream Space with Nef(X) = Mov(X).
In this paper, we will mostly apply this formula in the following situation:

e X is a smooth Fano threefold,

o [ = —Kx,

e Y is a smooth (explicitly described) surface in X,

e / is an irreducible curve in Y, which is often also explicitly described.

Our formula is given in Theorem 1.7.19. Before presenting it, we consider one inspirational
example, which is redone in Section 4.4 using Theorem 1.7.19.

Example 1.7.13 (cf. Lemma 4.4.10). Suppose that X is a smooth Fano threefold Ne 2.15.
Then there exists a blow up 7: X — P? of a smooth curve € of degree 6 and genus 4.
Observe that € is contained in a unique quadric surface in P3, which we denote by Ss.
Suppose that the quadric Sy is smooth. Then € is a curve of degree (3, 3) in Sy = P! x PL.
Let E be the m-exceptional divisor, let ) be the proper transform on X of the quadric S,,
let H be a hyperplane in P?, and let C = EN Q. Then Eff(X) = R.[E] + R5,[Q] and

Nef(X) = Mov(X) = Roo[n*(H)] + Rxo[37*(H) — EJ.

We suppose that L = —Kx, Y = Q and Z is an irreducible curve in Q. Then L? = 22.
We claim that Sy (Q) = 3I. Indeed, take u € R>o and observe that

—Kx —u@Q ~g (4 —2u)r"(H) — (1 —u)E,

Let P(u) be the positive (nef) part of the Zariski decomposition of the divisor —Kx —x@,
and let N(u) be its negative part. Then

—KX —UQ if 0 <
Plu) = {(4 — 2u)m*(H) if 1

)

<
u

u<l
<u<?

Y

and
N 0if0<u<l,
(u _{(u—1)Eif1<u<2.

Note that —Kx — u@) is not pseudo-effective for u > 2, so that 7 = 2. Then

/1(—[( —10@)3du+l 2(4—2u)3du—£
o X 22 /, T4

1

Sx(Q) = 29

Let us show that S(WE,; Z) < 3I. Let M be a divisor on @ of degree (1,1). Then

(XY

H(Q, (m+j)M) if0<j<m
W2, = (j—m)C + H(Q, (4m — 2j)M) if m < j < 2m
0 otherwise.

46



This follows from Kawamata—Viehweg vanishing or Theorem A.1.6. Then

Dm0 im(Wi ) . - . <l .
vol(W&,) = Jim ]>0m3/3! 2= Jim (Z(m +i+1)%+ Z (4m — 27 + 1)2> =
=0 j=mt1

- 3!(/01(1 + )2 + /12(4 - 2x)2d:c> = 2.

On the other hand, we have

1 9]

First, let us compute S(W&,; Z) in the case when Z = C. If 0 < j < m, then

.’.7

mt|C + H°((m + j)M — [mt]C if m+ 7 > 3mt,
thwﬁj:{( 1 ((m+ )M — [mt]C)

otherwise.

Similarly, if m < j < 2m, then

(j —m)C + H°((4m — 25)M) if j —m > mt,
fg‘thiJ =4 [mt]C+ H((m+ j)M — [mt]C) if j —m <mt,m+j > 3mt,
0 otherwise.

We now summarize this as follows. If 0 <t < %, we have
[mt]C + H((m+ j)M — [mt]C) i 0<j<m(t+1),
FEWR = ¢ (j —m)C + HO((4m — 25) M) if m(t+1) <j<2m,
0 otherwise.
Similarly, if % <t <1, then
0 if 0<j<m(3t—1),
Fmtp@ [mt]C + H((m + )M — [mt]C) if m(3t—1) <j<m(t+1),
@ mi Y (5 —m)C + HO((4m — 27)M) it m(t+1) <j<2m,

0 otherwise.

Finally, if t > 1, then F@*W,e . = 0 for all j,m € Z2,. Thus, if 0 < ¢ < 1, then

t+1
vol(FEWE,) = 3!(/ (1 — 3t +x)%dr + /
0 t

+1

2
(4 20)%dr) = 2(15¢% + 92 — 27t +11).

Similarly, if 3 <t <1, then

vol(FLIWE,) = 3!(/

3t—1

t+1 2

(1 =3t + x)%dx + / (4 — 2x)2dx) = 24(1 — t)°.

t+1
Hence, we have

S(WE,;0) —i/§2(15t3+9t2—27t+11)dt+i/124(1—t)3dt—i<3—7
22 22 /1 C132 447
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Now, we consider the case when Z # C. We may assume that Z is a curve on () = P! x P!
of degree (b1, bg) with 0 < by < by # 0. If 0 < j < m, then
Frwe. — (mt|Z + H°((m + j)M — [mt]Z) if mt < mb—;“j,
1 0 otherwise.

Similarly, if m < j < 2m, then

Frwe. — (j —m)C + [mt]Z + H((4m — 2j)M — [mt|Z) if mt < 4mb—g2j,
md 0 otherwise.
We summarize this as follows. If 0 <t < é, then
(mt)Z + H°((m + j)M — [mt]Z) if 0 <j <m,
f}"tWﬁj =9 (G —m)C+ [mt]Z+ H((4m — 2§)M — [mt]Z) if m <j<m(2— ibst),
0 otherwise.

Similarly, if é <t < %, then

0 if0<j < mbot —1),
e _ J[mt1Z + H((m + 5)M — [mt]Z) if m(bat — 1) < j < m,
250ma T (5= m)C + [mt] Z + HO((4m — 2§)M — [mt]Z)  ifm < j < m(2 — Lbot),
0 otherwise.

Finally, if ¢ > 2, then FZ'W,2 =0 for all j and m. Thus, if 0 <t < £, then

1 2—1byt
Vol(]-"ng?.) = 3!(/ (1—b1t+m)(1—bgt—|—:p)d:p—|—/ (4—blt—2x)(4—b2t—2x)dx> =
0 1

(44 — 30byt — 30bst + 24bybat* — 3byb5t* + b3t?).

N | —

. . . 1 2
Likewise, if 5 St <y, then

1

27lbgt
1

vol (FLWE,) = 3!( /

bot—1
_ 2(4 — 3byt + bot) (bt — 2)°.
Hence, if Z # C', then

1 2
1 (% 1 (% 23 (3by —by\ _ 69 37
Q 7)=_ 1(FL th—/ 1(F th:—(2 1)<— il
SW.2) = o /0 vol(Fz Wil )di+ o5 | - vol(FpWik)di = o 7 % <1

bo

because ‘%Qb—gbl < 3. Therefore, we see that S(W&,; Z) < %, so that
2 I

Ag(Z) 1 44
= > —
SW&;2)  SW&;z) ~ 37

Thus, it follows from Theorem 1.7.1 that 6,(X) > 2.
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Starting from now and until the end of this section, we assume that X is Q-factorial,
and we assume that X is a Mori Dream Space. Consider the diagram

o ///X\\

X, X, X

/
\
bS]

|
v _ -
- < fil
h T~ Ny
fo =X

where Xo = X and fo = Idx, every X; is a Q-factorial variety, every f; is a small
birational modification, X is some smooth variety, and every o; is a birational morphism.
Let 0 = 9. By [165, Proposition 2.13], we may assume that the following holds:

(%) For any pseudo-effective R-divisor D on X, there is an ¢ € {0, ...,p} such that
[i(D) ~r P(D) + Ni(D),

1

where P;(D) is a semiample divisor on X;, and N;(D) is an effective R-divisor
whose support consists of exceptional divisors of the birational morphism X; — Y;
that corresponds to P;(D). This is a Zariski decomposition of the divisor D in
the sense of [165, Definition 2.11], which also gives a Zariski decomposition

(1.7.15) 0" (D) ~z o7 (P(D)) + N(07(D))

with (0;).(N(c*(D))) = N;(D) and o} (P;(D)) being semiample on X. Moreover,
if mD is a Z-divisor for a positive integer m, then

HO(X,mD) = H'(X;, fi*(mD)) = H*(X;, [mP(D)] ) = H°(X, [mo} (B(D))]).
Remark 1.7.16. The decomposition (1.7.15) is Nakayama’s o-decomposition from [158].
Indeed, for a pseudo-effective R-divisor D on X, Nakayama’s o-decomposition is given by

D ~g N,(D) + P,(D)
for P,(D) = D — N,(D) and

N,(D) => op(D)E,

where the sum runs over all prime divisors F in X, and og(D) is defined as
op(D) = inf {ordE (D’) ’ D' is a pseudo-effective R-divisors on X such that D' ~p D}

in the case when D is big [158, Definition II1.1.1]. If D is not big but pseudo-effective,
the value og(D) is the limit of op(D +€A) as € N\, 0 for some ample divisor A € Pic(X).
Note that N,(zD) = xN,(D) for all z € Ry,. Similarly, we have

N, (Dy 4+ D3) < Ny (Dy) + N, (Ds)

for any pseudo-effective divisors Dy and Dy on the variety X. If the divisor P, (D) is nef,

then the o-decomposition is called Zariski decomposition [158, Definition II1.1.12].
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Let Y be the proper transform of the divisor Y on the variety X. For every u € [0, 7],
consider the Zariski decomposition of ¢*(L — uY') described above:

o*(L —uY) ~p P(u) + N(u),
where P(u) is a semiample R-divisor (the positive part), and N(u) is its negative part.
We also consider the Nakayama—Zariski decomposition
L —uY ~g P(u) + N(u),

where P(u) = P,(L—uY) and N(u) = N,(L—uY) as described earlier in Remark 1.7.16.
Recall that Y is not contained in the support of the divisor N, (L) by assumption, so that

the divisor Y is not contained in Supp(N(u)) by [158, Corollary 1.9].
Let Ly = (o|¢)*(Ly) and let My = (ol3)*(M). Using the identification

HY(X,mL —jY) = H*(X,0*(mL — jY)),
we can identify the image of the restriction map
HY(X,0"(mL — jY)) — H*(Y,mLgy + jM;)
with the vector space W,};J In particular, the linear series W,Y . can be seen as a linear

series on Y associated with Lg and My, Let Vf, be the linear series on Y defined by
Y _ Y
‘/Q,O - @ Vm7j7
m,j
where ~ N N _
Vo = [mNGi/m)]|5 + B (V. [mP(j/m)] ;)
for all (m,j) € Zio such that 0 < % < 7, and Vm?j = 0 otherwise.

Lemma 1.7.17. The linear series Vf, 18 Zio-gmded, it has bounded support and it con-
tains an ample linear series.

Proof. Take (ji,m1) and (ja,ms) in Z2,. Then the canonical map

H(Y,miLy + j1Mg) @ H° (Y, moLg + joMz) — HO(Y, (my +ma) Ly + (ji + j2) M5)
maps VY @VY into VY

mi,J1 ma,j2 mi+ma,j1+j2°

it suffices to check that

Lmlﬁ(jl/ml)J + ngﬁ(jz/mQ)J < {(ml +m2)ﬁ<ﬁ”,

Therefore, in order to show that Vf, is 72 ,-graded,

or equivalently that
~ ~ S ity
The latter follows from N,(D; + Dy) < Ny(D1) + N,(D2) applied to the divisors
D1 = Na<m1L1’; — j1?> = m1N<j1/m1),
Dy = N, (maLy — jﬁ?) = m2ﬁ(j2/m2).

Clearly, the linear series Vf. has bounded support. Moreover, it contains an ample

linear series, because V.Y, contains W},

(X 3]

and WY, contains an ample linear series. U
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Let U, o be the Z;O—graded complete linear series on Y associated to Lg and My, ie.
Uee = EB U

where U, ; = HO(Y, mLg + jMs). Recall that o*(mL — jY) ~qg mN(j/m) + mP(j/m).
Note that HY(X, o*(mL—5Y)) = H(X, [mP(j/m)]). Tt follows that for all (m, ) € Z2,,
we have WY - VY C U, as we can identify

Wiy = [mN(G/m)|[5 + H(X, [mP(j/m)])|5-
Therefore, for all non-negative integers m and j, there are injective maps:

(1.7.18) Vo / Wy = H' (X, [mP(j/m) | = V).

v

Theorem 1.7.19. The following assertions hold:
(1) One has

vol(WY,) = vol(V),) = vol(L) = n / (P(u)"" - Y)du.
0
(2) For every prime divisor F' over'Y, one has

S(WX;F) = S(VX,; F) :VOIL(L)/OTh(u)du,

h(u) — (f)(u)n—l?) .ordF<N(u)‘Y> +/ VOI( ‘~ —UF)
0
To prove Theorem 1.7.19, we need the following auxiliary result.

Lemma 1.7.20. There are rational numbers 0 = 19 < 7 < ... < 17, = T such that for
every i € {1,...,l} and every u € [1;_1,7;], the Nakayama—Zariski decomposition

o*(L —uY) = P(u) + N(u)

satisfies
~ T —Uu =~ U — Ti—
N(u) = —N(1i_1) + — =1

Ty — Ti—1 Ty — Ti—1

N(7).

Proof. This follows from [165, Proposition 2.13]. The half line L — uY given by u > 0
intersects finitely many walls of the Mori chamber decomposition of Eff(X) at finitely
many rational values. If L is in the interior of a chamber, we denote these values by

O<n<..<m=r71

and set 79 = 0. If L is on a wall, set 79 = 0 and denote the next valuesby m, < ... <7 =7.
By [165, Proposition 2.13], the Zariski decomposition is linear within each chamber.

In particular, N (u) is an affine function of u on the interval [7;,_1, 7], i.e. we have
]\7<U) = UDl + DQ

for some pseudo-effective R-divisors D; and Dy on the variety X. Hence, the required

formula follows by setting N(TZ) = 7;D1 + Dy and N(Ti_l) =7,_1D1 + Ds. O
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For every i € {1,...,l}, we set
Ci =Roo(1,7-1) + Roo(1, 1) C R,
We also let C = U._,C;. Then C is the region of R that contains pairs (m, j) such that

the divisor mL — jY is pseudo-effective. Now, we choose ng € Z~q such that

(1) all numbers ng7y, ...,ne7n are positive integers,
(2) the number —— is an integer for every i € {1,...,1},
Ti—Ti—1

(3) for any (m, j) € CNZ2, both nemN (j/m) and ngmP(j/m) are Z-divisors.

Such ng does exist. Indeed, we have % € [1;1, 7] for some ¢ € {1,...,1}, so that
~ Ti — L L Ti—1 =
(3/m) = T Rr) + 2 R )

by Lemma 1.7.20. Hence, we can choose ng to clear denominators appearing in all N (1),
as well as the denominators of 7; — 7;_1 for every i € {1,...,l}.

Proof of Theorem 1.7.19. Let mo = ng, WY

Then W; =WwY V VY and Um] = Umom’moj for every m and j in Z-y.

mom, moj’ mom, moj

For every t € Ry, consider the Z>0 -graded linear series f}U.,. C U., defined by

Filee= P Fi'Um;,

m,j€Z>o

= moW/, V = mon. and U.,. = MU, .

o0’

where

FpU = {s € Up,y | ordp(s) > mt}.

Then F U, o is a filtration on U oo in the sense of [2 Definition 2.17], which also induces
the filtrations JF? W, .« and Fj V. , on W. ., and V. ., respectively. Namely, we have

‘Fg”bthJ - Wmvj ﬂ .F;‘ntUmJ'
and - -

f;’ntV:L7j = V:L,] N F}‘ntﬁmd.
It follows from (1.7.18) that for all ¢ € Rog and (m, j) € CNZ2, there are injective maps
(1.7.21) Frvy JFM, < HY ()? momP (j/m) — ?).
In particular, when ¢ = 0 we recover the usual inclusion (1.7.18). For m € Z-(, we have
Zdlm mi) Zdlm Zdlm Vm]/ij <Zh1<)z,momﬁ(j/m)—37>.
>0 >0 =0 j=0

Let us first prove that vol (WY,) = VOI(V .). For this, it suffices to prove that

(1.7.22) > (55 momP (j/m) — 17) < O(m™™).
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Further dividing the sum, it suffices to prove that for everyr i € {1,...,1}, we have

mTy

(1.7.23) Sow ()?,momﬁ(j/m) - ?) < O(mY).
Jj=mti—1
Assume that 7;,_; < % 7;. By Lemma 1.7.20, we have
~ T —Uu =~ T — Ti—1
N(u) = ——N(7;_ —N(n
S Ty — Ti-1 (7 1)+Tz‘—7'i—1 (=)

for any u € [r;_1,7;]. In particular, we have

T/ - Ti — % % — Ti—1 =~
N(]/m) = —Ti — TiilN(TZ 1) EN(TZ)

Since P(z) = o*(L — zY) — N(x), we obtain

_ i PR
P(j/m) = P IP(Tz 1)+ EP(TJ

Since n2P(7;_;) and n2P(r;) are Z-divisors. Hence, for mg = n, we can write
momﬁ(j/m) =mA+ kB,

for k =no(j — mri_1), A =moP(r;_1) and

ng ~ ~
B=——(P(r) - P(r;1)).
Ty — Ti—1
We also let a = ng(7; — 7,_1). Then a and k are positive mtegers such that 0 < k£ < ma.
Furthermore, both A and B are Z-divisors. But A = moP(7;_1) and A+ aB = moP(7;).
Then A and A4aB are semiample. But the divisor P(7;_;) is big, so that A is nef and big.

Then (1.7.23) follows from Lemma A.7.1 applied to A, B and D =Y.

Observe that VOI(V:.) =my " VOI(V}Z) by the asymptotic Riemann-Roch theorem.
Thus, to finish the proof of part (1), it suffices to prove that

VOl(Vz.) =mi - n/OT (ﬁ(u)”_l : ?)du

By definition, we have

L dim(V
L - By S )

m—00 mn»/n!

The result now follows from asymptotic Riemann—Roch theorem [131, Corollary 1.4.41],
because the divisor P(j/m)|y is nef. Namely, we get

1 (FmnaPfm)) = 2 (P )] 5) "+ O
Then
._ZZ. h? <§7,mm0f>(j/m)‘?) = ._ZZ. %(moﬁ(j/m)‘?>n_l +O(m™,



and hence we have

' mT; N .
lim —— . Z hO(Y,mmoP(j/me,) =
Jj=mt;_1
= lim —- Z my (ﬁ(j/m)n_1 . 17) =nmy~ " - / (]g(u)”’1 ?)du

m—oo M,
J=mTi—1

This equality can be deduced from Lemma A.7.1 similarly to how we proved (1.7.23).
Together with Lemma 1.7.2, this finishes the proof of part (1).

Let us prove part (2). First, we prove that S(V.,; F) = S(W],; F). This follows from

.7.7

S(VY i F) = S(W' . F),

o) (X}

since S(VY :F) = mg - S(VY,;F) and S(WY s F) = moS(WJ),; F) by [2, Lemma 2.24].

.,.7 .,.7 .7.7

To prove the equality S (VY F)y=2S (WY ; F), observe that part (1) gives

.,.7 .7.7

v > w
lim —*%— = VOI(VI,) = VOI(WZ.) = lim N,

m—00 m"/n!’

where NZY =D ix0 dim(VnYm) and NT?Y =D ix0 dim(W:w.). These limits are non zero,
because Wi, contains an ample linear series. By Lemma 1.7.7 and Remark 1.7.8, we have

S(VYwF) = lim S, (VL. F),

o0 o)
m—00

S(Wau F) = lim S, (W, F),

.7.7 .7.7

m—00
where
Sn(Vew F) = —— S-S AV
mNY 520 k>0
and

mT

Su(Weai F) = 1WY PIPIE: L
mN,y =0 k>0

Thus, to prove the equality S (VY =28 (WZ,; F), it is enough to prove that

o0’
Y

lim — (Sn (VYo F) — S, (W0 F)) =0,

m—oo M 1
This limit equals
mT momTt’

lim #Z > (aim(FEV,,) — dim(FT)).

m—00 -
7=0 k=0

which is non-negative. Moreover, by (1.7.21), it is bounded from above by

mT momt’

: 1 > =~/ > : '
Jim s 3 3 (K mamP(j/m)=¥) = Jim T3
Jj=0 k= j=
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The latter limit equals 0 by (1.7.22). Hence, we proved that S(VY F)=SW);F).

e 0’ e.0)

To finish the proof of part (2), by using part (1), it suffices to prove that

VOI(V o) th (V.,,F) nlgréomnﬂzz}—k mj = nmg - /h(u)du.

§=0 k>0 0

The first equality is clear. To prove the second, recall that
=Y ~.
Vi = mmoN(j/m)’ + HO<Y mmgP (j/m) |Y>,
since both mmoN (j/m) and mmqoP(j/m) are Z-divisors. For m > 0, let
Gjm = ordp (N(j/m) h;)
Then mmg; ., is an integer, and we have
' " h0<?,mm0§(j/m)‘1~/) if 0 <k <mmod;m,
dim(FzV,, ;) = N N
h° (Y,mmOP(j/m) ‘Y — (k — mmyd;m)F > if mmo@;m < k.

Therefore, we have

S (V2 F) = 2122
mNY
where .
= me()(bj,m R0 (?,mmoﬁ(j/m) |}~,),
=0
and

mT mmoTt’

Zgzz Z h0<Y mmoP ]/m)‘~—sF>

j=0 s=0

Since ﬁ(] / m) | is nef, using asymptotic Riemann-Roch theorem, we get

n! R h? (?,mmolg(j/m) |}7>
A = jzomo%m I
n-l n ! NG D n—1 v
WllgréOEZmOgbjm (m0P<]/m)‘ ) = my -n/o ordF<N(u)|3~,> (P(u)""-Y)du.

Furthermore, for the second sum 35, we have

n! m7 mmor! h0<Y m(mOP(j/m)| %F))
LRl DD O] -

j=0 s=0

T prmot’ _
:n/ / vol(moP(u)|y — o F)dzdu = my - n/ / Vol v — vF)dvdu.
o Jo

Hence, it follows that

m—oo MM mntl

' T
lim —— (5, + %) =mj -n- / h(u)du,
0
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which completes the proof of Theorem 1.7.19. (|
If Nef(X) = Mov(X), then all varieties Xy, X, ..., X, in (1.7.14) are isomorphic to X,

and we can also take X = X and o = Idx. Therefore, Theorem 1.7.19 implies
Corollary 1.7.24. Suppose that Nef(X) = Mov(X). For every u € [0, 7], write
L —uY ~g P(u) + N(u),

where P(u) is the positive (nef) part of the Zariski decomposition of the divisor L — uY,
and N(u) is its negative part. Then for every prime divisor F' over Y, we have

S(WY,iF) = voﬁ 5 /0 (),

where

h(u) = (P(u)"-Y) - ordp (N(u)ly) + /000 vol(P(u)|, — vF)dv.

If Y is normal, and Z is a prime divisor on Y, then (1.7.4) simplifies as

1
57(YiW)) = o
Z( ) o,o) S(WX.,Z)
Corollary 1.7.25. In the assumption and notations of Corollary 1.7.24, suppose that
the variety Y is normal, and Z is a prime divisor on' Y. Then §z(Y; W}:) = S(WIY ) and
( o0 ) VOI(L) 0 (u> U,

where

h(u) = (P(uw)"™"-Y) - ordy (N(u)ly> + /000 voly(P(u)|Y —vZ)dv.

Examples of varieties that satisfy the condition Nef(X) = Mov(X) are the following:
e two-dimensional Mori Dream Spaces [200],
e smooth Fano threefolds [149].

For smooth Fano threefolds, Corollary 1.7.25 and [2, Theorem 3.3] give the following
very handy corollary that will be often used in the proof of Main Theorem.

Corollary 1.7.26. Let X be a smooth Fano threefold, let Y be an irreducible normal
surface in the threefold X, let Z be an irreducible curve in'Y, and let E be a prime divisor
over the threefold X such that Cx(E) = Z. Then

Ax(E) _ 1 :
(1.7.27) Sx(E) 2 min { Sx(Y) S(WX,; Z) }

o)

and

S(W}j,; Z) = ﬁ /OT (P(u)2.y)~ordz <N(u)ly>du+ﬁ /OT /000 vol(P(u)|Y—vZ)dvdu,

where P(u) is the positive part of the Zariski decomposition of the divisor —Kx — uY,
and N(u) is its negative part. Moreover, if the equality holds in (1.7.27), then

Ax(E) 1
Sx(E)  Sx(Y)
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Remark 1.7.28. Observe that the assertion of Corollary 1.7.26 remains valid in the case
when X is a smooth Fano threefold, Y is a possibly non-normal irreducible surface in X,
and Z is an irreducible curve Y such that Z ¢ Sing(Y’). In this case, we should replace
both P(u)|y and N(u)|y by their pull backs on the normalization of the surface Y.

Let us conclude this section by proving one very useful generalization of Corollary 1.7.26.
To state it, we fix the following assumptions:
e X is a smooth Fano threefold, so that Nef(X) = Mov(X);
e Y is an irreducible normal surface in X that has at most Du Val singularities;
e 7 be an irreducible smooth curve in Y such that the log pair (Y, Z) has purely log
terminal singularities, e.g. Z is contained in the smooth locus of the surface Y.
e Ay is the different of the log pair (Y, Z), i.e. Ay is an effective Q-divisor on
the curve Z such that Supp(Az) = Sing(Y)NZ and Kz + Az = (Ky + Z)|z.
As usual, we denote by 7 the largest u € Qs such that —Ky — uY is pseudo-effective.
For u € [0, 7], let P(u) be the positive part of the Zariski decomposition of this divisor,
and let N(u) be its negative part. Then
(1) Y ¢ Supp(N(u)) for every u € [0, 7];
(2) N(u) is continuous at every point u € [0, 7];
(3) N(u) is a Q-divisor for u € [0, 7] N Q;
(4) N(u) is convez [158] in the following sense: for every u and u’ € [0, 7], one has
N((1=s)u+su') < (1—s)N(u) +sN(u)

for every s € [0,1] ;
(5) the restriction P(u)]y is nef and big for every u € [0, 7).

Therefore, for every u € [0, 7], we can define the effective R-divisor
(1.7.29) N(u)|, = d(u)Z + Ny (u),

where Ny (u) is an effective divisor such that Z ¢ Supp(Ny (u)), and d(u) = ordz (N (u)|y ).
This gives the function d: [0, 7] — Rx¢ given by u — d(u), which is continuous and convex.
Now, for every u € [0, 7], we define the pseudo-effective threshold ¢(u) € R as follows:

t(u) = max {v € R | P(u)ly —vZ is pseudo—effective}.

For v € [0, t(u)], the divisor P(u)|y —vZ is pseudo-effective. Let P(u,v) be the positive
part of the Zariski decomposition of this divisor, and let N(u,v) be its negative part.
Then the following assertions hold:

(1) N(u,0) =0 for every u € [0, 7], because P(u)|y is nef for u € [0, 7];

(2) P(u,v)-Z >0and Z ¢ Supp(N(u,v)) for every u € [0,7) and v € (0,t(u));

(3) P(u,v) and N(u,v) are Q-divisors if both u,v € Q.
Let V.Y, be the Z2-graded linear series on Y defined by

Y Y
v.=Pvi,
m,j

where

<7,

3 |m.

VYo — [mN(j/m)] }Y + H0<Y, |mP(j/m)] |Y> if 0 <

m?] .
0 otherwise.
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Denote by WYZ the refinement of VY by the curve Z in the sense of [2, Example 2.15].

For every pomt P e Z, we also define

Fp(Woi) = Lg/ / (P(u,v) - Z) - ordp (N} (u)| 2 + N(u, v)|7) dvdu.
(=Kx)* Jo Jo
Theorem 1.7.30. Let P be a point in the curve Z. Then

. [1—ordp(Ay) 1 1
(1.7.31) 5P(X)>mm{ SWIA: P) " S(VX:Z) Sx (Y)}’

where
S(WYZ; P) / / - Z)’dvdu+ Fp(WYZ).
@

Moreover, if the inequality (1 7.31) is an equality and there exists a prime diwisor E over

the threefold X such that Cx(E) = P and 0p(X) = 3" , then 6p(X) = sxl(y)'

Proof. By [2, Theorem 3.3] and Theorem 1.7.19, we have

op(X) = min{%m,ép(Y; W,Y.)} =

- . y 1 1 1 —ordp(Ay)
_mm{sx<y> sy, )} mm{sx< Y)' s(ViZ)" S(Wai p) }

Moreover, if we have equality here, then [2, Theorem 3.3] gives dp(X) =

m provided

that there exists a prime divisor E over X such that Cx(E) = P and dp(X) = g;‘—((g)).
Now, we set

AYZ — {(u,v) €RZ, | ue0,7),v € [du), d(u) + t(u)]}.

The subset AY+Z is closed and convex, since d+t: [0, 7] — R is continuous and concave.
Then, as in [2, Corollary 2.26], we set

AR — Supp(WIA) 0 ({1} x RE).
We claim that AS"P = AY-Z_ Indeed, take any (u,v) € RZ;\ A¥Z such that (u,v) € Q2.

If u > 7, then V,}' =0, which gives W7 =0 for all sufficiently divisible m € Z.
Similarly, if 0 < u < 7 and v > d(u) + t(u), then W27 =0 as well for all sufficiently

divisible m € Z-q, because

ordy <m (N (u) }Y)) = md(u)

and m(P(u)|y —(v—d(u))Z) does not have global sections, since it is not pseudo-effective.
This shows that ASwP C AY:Z,
Similarly, to show that AY'Z C ASUPP we take (u,v) € Int(AY?) such that (u,v) € Q2.

If m is a sufficiently divisible integer, then W2 . “is the image of the restriction map

m<N{v(u) + N(u,v - d(U))) +H° (Y, m(P(u,v — d(u)))) esty

= (Ny )’Z + N(u,v— d(“)”z) + i (Z’ m(P(u,v = d(u))) ‘Z>
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The cokernel of this map lives in H(Y, mP(u,v—d(u))— Z), whose dimension is bounded
when m goes to infinity by [101, Corollary 7], since P(u,v — d(u)) is nef and big. Then
dim (W%

VOIW}T’.?. (U, ’U) = lim ( m,mumw) — P(U,U . d(u)) .7 > O,

m—00 m

where the limit is taken over sufficiently divisible m. In particular, we have (u,v) € ASUPP,
which proves that AY? C AS"P_ Thus, we see that AS™P = AY"Z ag claimed.
Let us prove the formula for S(WY7; P). For ¢ € Z, let W7 =Wz

0,00’ (m,mu,mv),c cm,cmu,cmu”

Let A = A(W)7,) be the Okounkov body of W}7, that is associated to the flag {P} C Z.
Then A C R%,. Let p: A — AS"P C R? be the projection to the first two coordinates.
By [132, Theorem 4.21], for any (u,v) € Int(AS*P)NQZ,, the preimage p~'(u,v) C Ry is

the Okounkov body of W(Y’Z that is associated to the same admissible flag {P} C Z.

1,u,v),e
To be fully precise, the preimage p~!(u,v) is % of the Okounkov body of wr?

(m,mu,mv),e’

where m is sufficiently divisible. On the other hand, we have p~'(A) = [a, b], where
{a = ordp((N{/(u) + N(u,v — d(u))) ‘Z,
b= ordp((Ny(u) + N(u,v — d(u)))|,) + P(u,v — d(u)) - Z.
The prime divisor P € Z gives a filtration F = Fp on W}YZ (see [2, Example 2.9)).

X X

For each t € Rz, let W)%" be the induced linear series defined by
Y2t _ iy Vo2
WYL=

m m,j,k?

and let A! = A(W}YZ!) C A be the associated Okounkov body (cf. [22, § 1.2], [2, § 2.6]).

(XN

For all (u,v,z) € A, we let
G(u,v, ) = sup {t € Ry | (u,v,2) € At}.
Observe that vol(A) = Fvol(W)YF) = gvol(V),) = 3(—Kx)? by [2, Remark 2.12].

(XN

Therefore, arguing as in the proof of [2, Lemma 2.21], we get

1 6
SW,Y;Z,;P:—/Gd :—/Gd,
WesstP) = oy ), O = o S, O

where p is the Lebesgue measure on Int(A). Now, we let

PW2A) = { (m.j kordp(s)) [ s € W2\ {0} ] € RY,

000 m,j,k

and let ©(W}Z) be the closure of the cone spanned by I'(WYZ). Then

[ X} (XX}

(XN 000

AWXZ) = A =s(WrA) n (1xRY).

For every (u, v, z) € Int(A)NQ2, we have G((u, v, z)) = z. Indeed, for every sufficiently
divisible m > 0, it follows from [21, Lemma 1.13] that

(m, m(u,v,x)) € F(WY’Z),

(X X

so that there exists s € W, mumo such that ord,(s) > max. This gives G((u,v,z)) > .
Vice versa, if G((u,v,x)) > 2’ > x for some 2/ € Q, then ordp(s) > ma’ for every
sufficiently divisible m > 0 and every s € W2 \ {0}, so that

m,mu,muv

(m, m(u, v, x)) o4 F(W}j’,i),
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which is contradiction. Therefore, we see that G((u,v,x)) = x.

Observe that the function G: A — Ry is concave on the interior Int(A), which implies
that its restriction G|mya): Int(A) — Ry is just the projection to the third factor.
Now, since ASWP = AY:Z C RZ,, we obtain

6 6
S W,Y,Z,,P /Gd / (/ xdx) dudv =
Weset D)= Ty L% = Crop s A

d(u)+t(u)
rdzdudv = / /
/ / KX u=0 Jv=d(u)

KX)3 u=0
ordp Ny (u)+ N (u, v))|Z)-(P(u,v)-Z)+%(P(u,v)-Z)2>dvdu:

I
—Kx 3/u 0/
_ﬁ/;o/j:) (P(u,v) - Z)*dvdu + Fo(WXE),

which is exactly what we want. U

dudv =

In this paper, we will always apply Theorem 1.7.30 to a smooth surface Y, so that
the different Ay will always be zero in all our applications.

Remark 1.7.32. Let ) be a point in Y, let e: Y — Y be the plt blowup of the point @,
and let Z be the e-exceptional curve. Then (Y Z ) has purely log terminal singularities,
so that Kz + Az ~g (K¢ + Z)|Z, where Az is the different of the log pair Y, 2).

The formula in Theorem 1.7.30 remains valid if we replace (Z,A) by (Z, A7) after
appropriate modifications. Let us state this more precisely. For every u € [0, 7], we let

t(u) = max {v € Rog ! g (P(u)|y) —vZ is pseudo—effective}.

For every v € [0,%(u)], let us denote by P(u,v) the positive part of the Zariski decom-
position of the divisor ¢*(P(u)|y) — vZ, and let us denote by N(u,v) its negative part.
Let WYZ be the refinement of VY by the curve Z. Finally, let N;?(u) be the proper

transform on Y of the divisor N(u). Then

_ . 1—ordp(Ay) AY(~) 1
(1.7.33 %) >mm{§5‘é‘; SV P) SV Z) Sx <Y>}’

where for every P € Z we have

() "
SWYZ: P) = / / Z)) dvdu + Fp(WY7,)
KX

and

Fp(WYE) = (—ng)s/o /O;(u) (P(u,v) - Z) % ordp<N}’~,(u)‘Z+N(u,v)‘2)dvdu.

Moreover, if the inequality (1.7.33) is an equality and there exists a prime divisor E over

the threefold X such that Cx(E) = @ and dg(X) = ‘;X(E then we have do(X) =

The proof of this assertion is essentially the same as the proof of Theorem 1.7.30.
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2. WARM UP: SMOOTH DEL PEZZO SURFACES

Let S be a smooth del Pezzo surfaces. Then 1 < Kg < 9, and the surface S can be
described as follows:

o if KZ € {6,7,8,9}, then S is toric and one of the following cases hold:

— K:(=9and S =P?%

— KZ=8and S =P x P

— K% =8 and S is a blow up of P? in one point;

— K% =T and S is a blow up of P? in two points;

— K% =06 and S is a divisor in P! x P! x P! of degree (1,1, 1);
e of K% = 5, then the surface S is a unique up to isomorphism. It can be obtained as
a section of the Grassmannian Gr(2,5) C P? in its Pliicker embedding by a linear
space of dimension 5;
if K2 =4, then S is a complete intersection of two quadrics in P*;
if K2 =3, then S is a cubic surface in P3;
if K2 =2, then S is a quartic hypersurface in P(1,1,1,2);
if K2 =1, then S is a sextic hypersurface in P(1,1,2, 3).
In [206, 202], Tian and Yau proved that S is K-polystable <= it is not a blow up of P2
in one or two points. Let us illustrate methods described in Section 1 by giving a short
proof of this theorem. We will split the proof into ten lemmas, which show several ways
to prove or disprove the K-polystability of the corresponding surfaces.

Lemma 2.1. Suppose that S = P2. Then S is K-polystable.

Proof. Let G be a finite subgroup in Aut(S) such that S does not have G-fixed points,
e.g. G =25 or G = PSLy(FF7). Then, arguing as in the proof of [45, Theorem 3.21], we see
that ag(S) > 2. Indeed, if ag(S) < 2, then S contains a G-invariant effective Q-divisor
D ~g — K such that the log pair (S, AD) is not log canonical for some positive rational
number A < 2. Since S does not contain G-invariant lines, the locus NkIt(S, AD) is zero-
dimensional. Now, using Corollary A.1.7, we see that the locus Nklt(S, AD) consists of
a G-fixed point. Thus, ag(S) > %, so that S is K-polystable by Theorem 1.4.10.
Alternatively, we can use Theorem 1.2.5 to show that the surface S is K-polystable.
Indeed, suppose that S is not K-polystable. By Theorem 1.2.5, there exists a G-invariant
prime divisor F over S such that (F) = Ag(F) —Ss(F) < 0. Let Z = cg(F). Then Z is
a curve, since S does not have G-fixed points by assumption. By Corollary 1.4.3, we have

2 A5(F) _ 2

S 384(F) T3

Since S does not contain G-invariant lines, this immediately implies that Z is a G-invariant
conic, which would lead to a contradiction if G = PSLy(F7). In fact, using Lemma 1.4.4,
we conclude that ag z(X) < 2, which implies that Z is a line, which is a contradiction,
since S does not contain G-invariant lines. Hence, we see that S is K-polystable. g

Lemma 2.2. Suppose that S = P! x P'. Then S is K-polystable.

ag,z(5)

Proof. Let G be a finite subgroup in Aut(S) such that the following conditions hold:
(1) S does not have G-fixed points,

(2) S does not contains G-invariant curves of degree (1,0) or (0, 1),
1,1).

(3) S does not contains G-invariant curves of degree (1, 1)
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For instance, if G = Ay x Ay or G = A5 x 2As, then these three conditions hold (cf. [53]).
Now, arguing as in the proof of Lemma 2.1, we see that S is K-polystable.
Alternatively, let Sy be a quadric in P§ that is given by 22 + y? + 22 + ¢ = 0, where
x,y, z and t are coordinates on 3. Then S, is defined over R, it does not contain real
points, and Picg(S) = Z. This implies that 5(F) > 0 for every geometrically irreducible
divisor F' over the surface Ss, so that S5 is K-polystable over C by Remark 1.2.6, which
implies that S is K-polystable, since S = Sy over complex numbers. U

Lemma 2.3. Suppose that S = Fy. Then S is not K-semistable.

Proof. Observe that Aut(S) = (By xBs) X o, where By is the Borel subgroup of PGLy(C).
Since Aut(S) is not reductive, the surface S is not K-polystable by Theorem 1.1.4.

To show that S is not K-semistable, let E be the unique (—1)-curve in the surface S,
and let L be a fiber of the natural projection S — P!. Then —Kx ~ 3L + 2FE, so that

1 2 1 2 1
5(E>:1——/ <3L+(2—ZB)E)2dx:1——/ (8 — 2z — x%)dx = ——,
8 Jo 8 Jo 6
which implies that S is not K-semistabe by Theorem 1.2.2. 0

Lemma 2.4. Suppose that K% =7. Then S is not K-semistable.

Proof. First, we observe that Aut(S) & G? x PGLy(C). Since this group is not reductive,
we conclude that the surface S is not K-polystable by Theorem 1.1.4.
To show that S is not K-semistable, let E;, Es and F be (—1)-curves in S such that
we have By - Fr, =0, F1 - E=1and Ey- E=1. Then —Kg ~ 3F + 2E; 4+ 2F5.
Let us compute S(E). Take © € Rog. If 2 < 1, then —Kg — 2 F is nef, so that
vol( — Kg — 2E) = (- Kg — 2E)* = 7— 2¢ — a?,
Similarly, if 1 < z < 3, then the Zariski decomposition of the divisor —Kg — xF is

Vv
positive part negative part

Thus, if 1 < 2 < 3, then vol(—Kg—zF) = (3—x)?. Since —Kg—xFE is not pseudo-effective
for x > 3, we have

21’
which implies that S is not K-semistabe by Theorem 1.2.2. O

3
B(E) = 1—;/0 vol( = K — 2B)dr — ——

Lemma 2.5. Suppose that K% = 6. Then S is K-polystable.
Proof. Tt is well known (see [72]) that there exists the following exact sequence of groups:
1 — G2, — Aut(S) — &3 x .

This implies that Aut(S) contains a finite subgroup G such that S has no G-fixed points
and Pic®(S) = Z[—Ks]. Now, the proof of Lemma 2.1 implies the required assertion. [

Lemma 2.6. Suppose that K2 = 5. Then S is K-stable.
Proof. Recall from [72] that Aut(S) = &;5. Let G be a subgroup in Aut(S). Then

Pic%(S) = Z|-Kg] <= @ is one of the following groups: s, Dig, p5 X g, A5, Ss.
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Moreover, if G & ps, then ag(S) = £ by [29, Lemma 5.8]. Thus, if Pic%(9) = Z[- K],
then ag(S) > 2, cf. Lemma A.5.7. Hence, we see that S is K-stable by Theorem 1.4.7.
We can also prove the assertion using Remark 1.4.8. Namely, let f(¢) be an irreducible

quintic polynomial in Q[t], and let &, &2, &3, &4, &5 be its roots in C. Then

Gal(@(fb 527 537 547 55)7 Q) is one of the fOHOWing groups: ps, D107 M5 Ny, Ql57 65'

Let 3 be the reduced subscheme of the plane P that consists of the points [&; : & : 1],
[Co: &2 :1), [&3: &5 1), [€4: &2 : 1], [& : €2 : 1], and let C be the conic {yz = 2*} C P%,
where x, y, z are coordinates on Pé. Then C' contains ¥, and we have the diagram

S
N
S5 P2

where ¢ is a blow up of the subscheme 3., and 7 is a birational contraction of the proper
transform of the conic C'. Then Sj is a smooth del Pezzo surface, which is defined over Q.
Then we have Picg(Ss) = Z[—Ks;] by construction, so that a(Ss) > 2 by Lemma A.5.7.
Then S5 is K-stable over C by Remark 1.4.8 and Corollary 1.1.6, which implies that
the surface S is K-stable, since S = S5 over complex numbers. O

Lemma 2.7. Suppose that K% = 4. Then S is K-stable.
Proof. Tt follows from [178, Proposition 2.1] that S can be given by
S = {af + a7 + 25+ 235 + 27 = 0, \xg + Mai + Aazj + Asz3 =0} C P*

for some on-zero numbers A\, A1, Ao and A3, where xg, 21, 22, T3, 4 are coordinates on P*.
Let G be a subgroup in Aut(S) that is generated by

[To: @y 1 Tg g xy) [mo c(=1)% - (—1)%2 D (—1)%xs (—1)da:4]

for all possible a, b, ¢ and d in {0,1}. Then G = u3, the surface S has no G-fixed points,
and PicY(S) = Z[-Kj]. Hence, all G-invariant prime divisors over S are curves in S. On
the other hand, if C' is a curve in S, then C' ~ m(—Kjy) for some m € N, which implies
that 3(C) =1 — 5=~ > 0, so that S is K-polystable by Theorem 1.2.5. Then S is K-stable
by Corollary 1.1.6, because the group Aut(S) is finite.

Arguing as in the proof of Lemma 2.1, we can also show that ag(S) > 1, cf. [142, 29].
This would imply that S is K-stable by Theorem 1.4.7 and Corollary 1.1.6.

Alternatively, we can prove the K-stability of the surface S using Corollary 1.5.10.
Indeed, the projection P* --» P3 given by [z : @1 : T : @3 : 14] > [0 : 21 @ T3 : 23] induces
a double cover S — S5, where S5 is a smooth quadric in P2. This double cover is branched
over a smooth anticanonical elliptic curve in Sy, so that S is K-stable by Corollary 1.5.10,
because the quadric surface S is K-polystable by Lemma 2.2. U

Lemma 2.8. Suppose that K% = 3. Then S is K-stable.

Proof. We claim that «(S) > 2. Indeed, suppose that (S) < 2. Then there is an effective
Q-divisor D on the surface S such that D ~g —Ky, and the log pair (S, AD) is not log

canonical for some positive rational number A < % Let us seek for a contradiction.
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We claim that the locus Nklt(S, AD) does not contain curves. Indeed, if it does, then
the surface S contains an irreducible curve C' such that D = aC + A for some a > % > %,
where A is an effective Q-divisor such that C' ¢ Supp(A). Then

3:—Ks-D:a(—KS)-C—KS~A2@(—Ks)-C>;(—Ks)'c,

which gives —Kg-C < 2. Then —Kg-C =1, so that C'is a (—1)-curve in the surface S.
Since S is a cubic surface in P?, we see that C' is a line. Let H be a general hyperplane
section of the surface S that contains C. Then H = C' + Z, where Z is an irreducible
conic such that the intersection Z N C' consists of two points. Moreover, the generality in
the choice of the hyperplane H implies that Z ¢ Supp(D). Therefore, we have

2=-Kg-Z=D-Z=0C+A)-Z>aC-Z+AN-Z>aC 7 =2a,

so that a < 1. The obtained contradiction shows that Nklt(S, AD) contains no curves.
Using Corollary A.1.7, we see that the locus Nklt(S, AD) consists of a single point O.
Since O is contained in at most three (—1)-curves, S contains 6 disjoint (—1)-curves that
do not contain O. Let 7: S — P? be the birational contraction of these six (—1)-curves,
and let L be a line in P? that does not contain 7(0O). Then LUO C Nklt(P?, L + Ar(D)),
but Nklt(P?, L + Ar(D)) contains no curves except L. This contradicts Corollary A.1.7.
Then «(S) > %, so that S is K-stable by Theorem 1.4.9. O

Lemma 2.9. Suppose that K% = 2. Then S is K-stable.

Proof. In this case S is a double cover of P? that is branched over a smooth quartic curve,
so that S is K-stable by Corollary 1.5.10. Alternatively, we can prove that S is K-stable
arguing as in the proof of Lemma 2.8. U

Lemma 2.10. Suppose that K% = 1. Then S is K-stable.

Proof. We claim that a(S) > %. Indeed, suppose that a(S) < %. Then there is an effective
Q-divisor D on the surface S such that D ~p —Kx, and (S,AD) is not log canonical
at some point P € S for some A € QN (0,2). Let C be a curve in | — Kg| that
contains P. Then C' is irreducible, and the log pair (S, \C) is log canonical. Thus,
using Lemma A.4.12, we may assume that C' ¢ Supp(D). Then

1
1IK§:—KS'DIC-D>H]UPCP(D>>X>§,

which is absurd. This shows that «(S) > %. Then S is K-stable by Theorem 1.4.7.
Alternatively,one can also show that the surface S is K-stable using Proposition 1.5.9.

Indeed, the surface S is a double cover of P(1,1,2) branched over a smooth sextic curve.

Then S is K-stable by Proposition 1.5.9, since 6(P(1,1,2)) = % by [17, Corollary 7.7]. O

All possible values of the number «(.S) have been found in [29, 146], cf. Appendix A.5.
In particular, we know that a(S) > % <= K2 =4. On the other hand, it is known that

3a(9)
2

which gives certain estimates for §(5). These estimates have been improved in [170, 54].
If K2 > 6 or K2 = 3, all possible values of the number 6(S) have been found in [17, 2].
In the remaining part of this section, we show how to compute §(S) for K% € {1,2,3,4,5}.

These results are summarized in the table below.
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Smooth del Pezzo surface S K2 | a(S)|d6(S)
2 1
P N |
P! x P! 8 : 1
2 - 1 6
a blow up of P in one point 8 3 =
a blow up of P? in two points 7 % g—é
a divisor in P* x P! x P! of degree (1,1, 1) 6 3 1
a section of the Grassmannian Gr(2,5) C P? in 1 15
its Pliicker embedding by a linear space of codimension four | 2 13
a complete intersection of two quadrics in P* 4 % %
a cubic surface in P? with an Eckardt point 3 2 3
a cubic surface in P? without an Eckardt point 3 % f—;
a quartic surface in P(1,1,1,2) such that 5 9
the linear system | — Kg| contains a tacnodal curve 2 4 5
a quartic surface in P(1,1,1,2) such that 5 15
the linear system | — Kg| does not contain tacnodal curves | 2 6 8
a sextic surface in P(1, 1,2, 3) such that 5 15
the linear system | — Kg| contains a cuspidal curve 1 6 7
a sextic surface in P(1,1,2,3) such that 12
the linear system | — Kg| does not contain cuspidal curves | 1 1 5

In particular, we observe that 6(S) > 1 <= K2 < 5. This gives another proof that
the surface S is K-stable <= K32 < 5, which follows from Lemmas 2.6, 2.7, 2.8, 2.9, 2.10.

In the proof of the following five lemmas, we will use notations introduced in Section 1.7,
which include notations used in Theorem 1.7.1 and Corollaries 1.7.12, 1.7.24, 1.7.25.

Lemma 2.11. Suppose that K& =5. Then §(S) = 3.

Proof. The surface S can be obtained by blowing up P? at four points Py, P», P, Py such
that no three of them are contained in one line. Let F, F», F5 and E4 be the exceptional
curves of this blow up that are mapped to the points Py, P>, P3 and Pj, respectively.
For every 1 < i < j < 4, we denote by L;; the proper transform on S of the line in P? that
passes through the points F; and P;. Then Ey, Es, E3, Ey, Lia, L3, L1a, Log, Loy, L3g are
all (—1)-curves in the surface S, so that they generate the Mori cone of the surface S.
Moreover, the group Aut(S) = G5 acts transitively on the set of these ten curves. Thus,
for every irreducible curve C' C S, we have Sg(C) < Sg(Ey).

Let us compute Sg(F7). Take u € Rog. Then —Kg—uFE; ~g (2—u)Ey+ Lis+ L3+ Log,
so that the divisor —Kg — uFE) is pseudo-effective <= wu < 2. Moreover, if u € [0, 1],
then —Kg — uF) is nef. Furthermore, if u € [1, 2], then its Zariski decomposition is

—Ks—ul; ~g (2 —u) (El + Lio + L1z + L23) +(u—1) (le + L1z + L23)J~

(. S (.
v~ D'

positive part negative part
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Thus, in the notations of Corollary 1.7.24 with X =S5, Y =C, L = —Kg, we have

P( (2—u)E1+L12+L13+L231f0<u<1,
u) =
(2—u)(E1+L12+L13+L23) 1f1<u<2,

and

0if0<u<l,
N =
() (w—1)(Lia+ L1+ Los) if 1 <u < 2.

Therefore, we have
5—2u—u?if0<

u <1,
22 —u)?if 1 <u <2

mu—kg—ua)—{

Thus, integrating, we get Sg(FE;) = % In particular, we have

As(E As(E 15
5(S) = inf s(F) < s(B) _ =
E/S SS<E) Ss(El) 13
where the infimum is taken by all prime divisors over S.
Let us show that §(S) > % Suppose that this is not true. Then there exists a prime

divisor E over S such that ’;2((5)) < 1. If Eis a curve in S, then Ss(E) < Ss(E1) = 2,
which is impossible. Thus, we see that Cs(F) is a point. Let P = Cs(E).
Let C' be an irreducible smooth curve in the surface S that passes through the point P.

By Theorem 1.7.1 and Corollary 1.7.25, we have

15 _ As(B) _ . 1 1
137 Ss(B) ~ MM Ss(C) SWE P [

where we use notations of Corollary 1.7.25 with X =S5, Y =C, L = —Kg and Z = P.
On the other hand, we have Ss(C) < Ss(E1) < 2. Therefore, we have S(WS,; P) > 12.
Moreover, it follows from Corollary 1.7.25 that

2 T 2 [T
S(W&:P) = —2/ h(u)du = —/ h(u)du,
’ K5 Jo 5 Jo

where 7 is the largest real number such that —Kg — uC' is pseudo-effective, and

h(u) = (P(u) - C) x ordp (N(u)‘o> + /000 VOIC(P(U)}C —vP)dv =

(P(u) : 0)2
P+T'
Suppose that P € F;. In this case, it is natural to let C' = E;. Then we have 7 = 2,

and both R-divisors P(u) and N(u) have been already computed earlier in the proof.
In particular, if P ¢ Ljy U L3 U Lgy, then P ¢ Supp(N(u)) for every u € [0,2], so that

2
Y o<u<t,

P(u)-C
— (P(u)-C) x (N(w)-C) .+ /0 (P(u)-C—v)dv = (P(u)-C) x (N(u)-C)

(Pw) - B)* (P B [U=
Pt 2 N 2 N 2
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which gives S(Wc P) = % Similarly, if P € Lo U L3 U L3y, then

(P(u) - By)”
9

if0<u<l,
h(u) = 5
Pu)-FE
(u—1)(P(u) - Ey) ( Wg ) i< 2,
so that )
(1 —u)
<u<
h(u) = 5 fOo<u<l,

mu—n@—uan—ufﬁ1 u < 2,
which gives S(WS,; P) = 2. Since know that S(WS,; P) > 12, we conclude that P & F;.

Similarly, we see that P i 1s not contained in any (— 1) curve E)l S.

Let Zy, Zy, Zs, Zs, Z4 be the curves in the pencils |Lis + Las|, |L1s + Es|, |Log + E4l,
|Lis + E1|, | Loy + E5|, respectively, that contains P. Then Zy, 71, Zs, Z3, Z, are smooth
and irreducible, because P is not contained in any (—1)-curve in S. In fact, these five
curves are all (0)-curves in S that pass through the point P, see the proof of Lemma A.5.7.

Let o: S — S be the blow up of the point P, let Ep be the o-exceptional curve, and
let Zo, Zl, ZQ, Z3, Z4 be the proper transforms on S of the curves 2o, L, Lo, L3, Ly,
respectively. Then Ag(Ep) = 2. Let us compute Ss(Ep). To do this, we observe that

5 l,~ ~ ~ ~ =
U*(—KS> —UEP ~R (5 —u)Ep—|— 5(20 +Zl +ZQ +Zg—|—Z4).

Abusing our previous notations, we denote by P(u) and N (u) the positive and the negative
parts of the Zariski decomposition of the divisor a*( - K 5) — uFp, respectively. Then

0" (—Kg) —uEpif 0 <u <2,

P(u) =9 /5 S T N 5
@-@@%+%+a+@+@+apm<u<?
and
0if 0 <u <2,
N(u) = S 5
(u_2)(ZO+Z1+ZZ+Z3+Z4) if2<u< b%
so that
5—u’if 0<u<2,
vol(o*(—=Kg) —uEp) = P(u) - P(u) =
(0" (—Ks) ) (u) - P(u) (5—2u)2if2<u<g.
Integrating, we get Sg(FEp) = 2, so that AS((EP)) 3 > 12, which implies that C3(E) # Ep.
On the other hand, it follows from Corollary 1.7. 12 that
15 Ag(E) . | As(Ep) 5
— > > 0p(S) = , inf 0o (Ep; W7o
37 Go(p) = Or(S) Zming S %‘p 0B Wol) (-
Thus, there is a point O € Ep such that do(Ep; WF) < 13. Recall from (1.7.4) that
1
00 (EpsWIT) = —5—
(Eri Wed) S(WEr: 0)
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so that S(WJr;0) > 2. But S is a smooth (quartic) del Pezzo surface by construction.
Hence, we can apply Corollary 1.7.25 to compute S(WEP O). This gives

.0 )

5
2

s(vE0) = /0 ((P(u) - Ep)ordo (N(u)] ) +/OOO volg, (P(u) —UO)dU) du =
5 P(u)-Ep
2 [ (- e mg e [ 00 5 )
= %/0 ((P(U) - Ep)(N(u) - Ep), + w> du.

Now, using the description of P(u) and N(u) obtained earlier, we see that

S(Wrr;0) = §/2 2(5 —2u)(u — 2)du x ((ZHLZ + Ty + Zs +Z4) .EP>O+

1 2
/—du+ /2(5—2u)d 30((Zo+21+22+23+z4) Ep) +3.

Thus, if O € Zy U Zl U 73U Z3 U Zy, then S(W[Er;0) = £. Otherwise, S(Wr:0) =

.0 ) o0 )

2
3
Then S(WEF;0) < 12, which is a contradiction. d

Lemma 2.12. Suppose that K% =4. Then §(5) = 3.

Proof. There exists a birational morphism 7: S — P? that blows up five (general) points.
Let Fy, Es, Es3, Ey, E5 be the exceptional curves of the morphism 7, let C' be the proper
transform on S of the conic in P? that passes through 7 (E}), n(FEs), 7(E3), 7(E4), 7(Es),
and let L;; be the proper transform on S of the line that passes through 7(E;) and 7 (E}),
where 1 < 1< j < 5. Then the curves El, Eg, Eg, E4, E5, C, ng, L13, L14, L15, L23, L24,
Los, Ly, Lss, Lys are all (—1)-curves in the del Pezzo surface S. Moreover, arguing as in
the proof of Lemma 2.11, we see that Ss(Z) = 3L for any (—1)-curve Z in the surface S.

Let o S — S be the blow up of the point El N C, let E be the o-exceptional curve,
let E; and C be the proper transforms on S of the (—1)-curves E; and C| respectively,
and let L be the proper transform on S of the line in P? that is tangent to 7(C) at m(E}).
Then o*(—Kg) —ul ~gr (3—u)E + By + C + L, where u is a non-negative real number.
Moreover, the curves El, C and L are disjoint, and we have E2 C?=-2and [2 = —1.
Therefore, we conclude that the divisor 0*(—Kg) — uE is pseudo-effective <= u < 3.
Denote by P(u) and N(u) the positive and the negative parts of its Zariski decomposition,
respectively. Then

B-—wE+E +C+Lif0<u<l,

1=~ 1. -
Pluy={B-w)(E+5E+5C) +Lif1<u<2,

1~ 1~ -
(3—u)<E+§E1+§C+L> if2<u<3,
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and

0if0<u<l,
u—1,~ ~ .
“_1@i+5y+m—2ﬁ)ﬁ2<u<3

Now, integrating vol(c*(—Kg) — uEp) = P(u) - P(u) from u = 0 to u = 3, we get

1t 1 [? 13 3
SS(E):—/ (4—u2)du+-/ (5—2u)du—|——/ (u—3)2du = >,
1/, 1/ 1, 2

so that 6(5) < ggT(EE)) = 3. Moreover, if P = EyNC, then Corollary 1.7.12 and (1.7.4) give

4 1
. ey L mind = inf ——————
> 0p(S) = mln{ 5B dnf do (Ep; W )} mm{:g’érele S(WEr O)}

But S is a weak del Pezzo surface, so that Corollary 1.7.25 gives

1

stwzzo) = [0 2o 2y + O o

Lo W~

for every point O € E. Therefore, if P is the intersection point E; N C, then 6p(S) = %.
Likewise, we see that 6p(S) = 3 if P is an intersection point of any two (—1)-curves in 5.
Now, let us show that dp(S) > 3§ for every point P € C. Take u € Rzg. Then

3 1
K —uC g (5 = u)C+ 5 (By+ By + By + Eu + Fy),

so that the divisor — Kg—uC' is pseudo-effective <= u < %, cf. the proof of Lemma 2.11.
Abusing our previous notations, denote by P(u) and N(u) the positive and the negative
parts of the Zariski decomposition of the divisor —Kg — uC', respectively. Then

—Kg—uCif 0 <u<l,

P(u) = 3
(u) (3 — 2u)m* (Op2(1)) if 1 < 5
and
0if0<u<l,
N(u) = : 3
(U—l)(E1+E2+E3+E4+E5) if1<u< >
so that

4—2u—u?ifo<u

<1,
VOI(—KS—UC) B 3
2

(B—2u)?ifl<u<

)

which gives S5(C) = ;Z, as we already mentioned. Now, using Corollary 1.7.25, we get

sweap) =3 [ ((P<u> C)(N(w) - C), + )

2 3

12 (Pw)-C) 1+ 1 [2(6—4u)?, 3
_§A'__T_ﬂw_§l 2 “+§['_77_M_1




for every point P € C'\ (E; U Ey U E3 U Ey U E5). Hence, it follows from Theorem 1.7.1
that dp(C) > % for every point P € C. Similarly, we see that the same inequality holds
for every point of the surface S that is contained in a (—1)-curve.

Let P be a point in S that is not contained in any (—1)-curve. To complete the proof,
it is enough to show that dp(S) > 3. We will do this arguing as in the proof of Lemma 2.11.

Let v: S — S be the blow up of the point P, let Ep be the v-exceptional divisor,
let Lp be the proper transform on S of the line in P2 that passes through 7(P) and 7 (E}),
let Z be the proper transform of the conic that contains 7(P), w(E), 7(Es), 7(Ey), 7(Es),
and let u be a non-negative real number. Then v*(—Kg) — uEp ~g (2—u)Ep+ Z + Lp,
the curves Z and _/L\p are disjoint, and 7?2 = E% = —1. Using this, we conclude that
the divisor v*(—Kg) — uFp is pseudo-effective <= v*(—Kg) —uFEp is nef <= u < 2.

This implies that Sg(Ep) = %, so that gg((g}f)) = % Now, using Corollary 1.7.12, we get

)3 .
op(S) > mm{ﬁ’olel%p 0o (Ep; W.E.P) }
But S is a smooth cubic surface. Hence, using Corollary 1.7.25, we get
1 1 (2 (P(u)- Ep)’ 1 [ 2
E‘ZS(W.E.P;O):—/ —( S P) du:—/ wldu ==
6o (Ep; Wad) 7 2 Jo 2 4 Jo 3

for every point O € Ep. This shows that dp(S) > % > %, which completes the proof. [

The next lemma has been proved in [2]. We present its (slightly simplified) proof.

Lemma 2.13. Suppose that S is a smooth cubic surface in P2. Then

3
2 if S contains an Eckardt point,

27
7 if S does not contain Eckardt points.

Proof. Let P be a point in .S, and let T be the hyperplane section of the surface S such
that the curve T is singular at the point P. Then we have the following cases:

6(5) =

(1) T is a union of 3 lines that pass through P, i.e. P is an Eckardt point;
(2) T is a union of a line and a conic that intersect transversally at P;

(3) T is a union of 3 lines such that not all of them pass through P;

(4) T is a union of a line and a conic that are tangent at P;

(5) T is an irreducible curve that has a cuspidal singularity at P;

(6) T is an irreducible curve that has a nodal singularity at P;

It is well known general smooth cubic surface in P? does not contain Eckardt points.
However, if S does not not contain an Eckardt point, then there exists a hyperplane
section of the surface S that consists of a line and a conic that are tangent at some point.
Thus, to prove the required assertion, it is enough to prove the following assertions:

e 6p(S) = 2 if P is an Eckardt point;

e 0p(S) = f—; if T'is a union of a line and a conic that are tangent at P;
e 0p(S) > 2L in all remaining cases.
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We will do this case by case. But first, let us unify the notations that we will use.

Let 0: S — S be the blow up of the point P, let Ep be the o-exceptional divisor,
let u be a non-negative real number, and let 7 be the largest real number such that
the divisor 0*(—Kg) — uEp is pseudo-effective. For every number u such that 0 < u < 7,
we will denote by P(u) the positive part of the Zariski decomposition of o*(—Kg) — uFEp,
and we will denote its negative part by N (u). For every irreducible curve Z C S, we will
denote by Z its proper transform on S. Observe also that S is a weak del Pezzo surface,
so that it is a Mori Dream Space [200].

Case 1. Suppose that T'= Ly + Ly + L3, where Ly, Ly and L3 are lines containing P.
Then o*(— KS) —uEp ~q (3 —u)Ep + Ly + Lo + Ls, the curves Ly, Lo, Ly are disjoint,
and L2 = [2 = L2 = —2. This implies that 7 = 3 and

(3—U)EP+Z1+Z2+Z3 1f0<u<1,

Plu) = 1~ 1~ 1~y .
(3—@@b+ah+ah+§m>ﬁ1<u<&
and
0if 0 <u<l,
N(u) = -1~ ~ o~
(u) L+ L+ L) if1<u<s,
so that

3—u?if0<u<l,
vol(o*(—=Ks) — uEp) = P(u) - P(u) = (u— 3)?

if1<u<3,
which gives Sg(Ep) = 3. Then §(5) < 0p(S) < % = 3. For every O € Ep, we get
2 [? P(u) - Ep)®
S(WSr;0) 5/0 ( (N(U)'EP)O+% du =
-1 ) 1.2 2 3 02
/ (U )(3 )duxordo(L1+Lg+L3)+ / u_du+_/ (3 U) du
3/, 2 3/, 8

by Corollary 1.7.25, so that
2 (% (u—1)(3 (3 —u)? 5
S(Wkr.0) < = —du du = =.
(W.3:0) 3[ 4 / / s Ty

Recall from (1.7.4) that 6o (Ep; WEF) =

S(W.Ef’;o) Now, using Corollary 1.7.12, we get

> Py S
&%S)/rmn{sbﬁﬁﬂ’o&idouﬁ”wc°) =Wy 55 (=3

This shows that §p(S5) = 2 as required.

Case 2. Suppose T'= C' + L, where C' is a smooth irreducible conic, and L is a line
that intersects C' transversally at P. Let p: S = S be the blow up of the point LN Ep,
let F be the exceptional curve of the blow up p, let L Cand E p be the > proper transforms

on S of the curves L, C and Ep, respectively. Then (o o p)*(—Kg) ~ ~L+C+2Ep+3F.
71




Let ¢: S — S be the contraction of the curve Ep, let L =¢(L), C = ¢(C), pF = v(F).
Then ¢(Ep) = CNF is an isolated ordinary double singular point of the surface S, and
the intersections of the curves L, C' and F' are contained in following table:

L|C|F
L||-3]1]1
cll 14}
Flols [+

Observe that the divisor —Kg is big. Then S is a Mori Dream Space by [200, Theorem 1],
so that S is also a Mori Dream Space. Moreover, we have commutative diagram

S~—" 3§
Ul Lqﬁ
S - S

where v is a weighted blow up of P with weights (1,2), and the v-exceptional curve is F.
Then v*(—Kg) — uF ~g L+ C + (3 — u)F. Using this equivalence, we conclude that
the divisor v*(—Kg) — uF is pseudo-effective <= u € [0,3]. For u € [0, 3], the Zariski
decomposition of this divisor can be described as follows. If 0 < u < 1, then v*(—Kg) —uF
isnef. If 1 <u < %, then

_ 4 —yu— _ — 1
v (= Kg) — uF NRC’+TUL+(3—U)F+ UTL .
A ~~ S——

positive part negative part

Finally, if 15—4 < u < 3, then

V' (=Kg) —uF ~g (3—u)(5C + 2L+ F) + (2u — 5)L + (5u — 14)C'.

Vv -‘r
positive part negative part
Therefore, we have
( 2

3—%if0<u<1,

_ 2 12
Vol(v*(—Kg) — uF) =43 w + (u—1) if 1<u< Ey
2 3 5
14

4(3 —u)?if — <u <3
\ )

Integrating this function, we get Ss(F) = £, so that dp(5) < gjg)) = 2, since Ag(F) = 3.
On the other hand, it follows from Corollary 1.7.12 that

) As(F) — 7

0p(S) = min —=, inf 0o (F, Az W, ,) ¢,
P< ) { Ss(F O€F O( F ’ )

where A is an effective Q-divisor on F' = P! known as the “different”, which is defined

via the subadjunction formula (Kg+F)|z = Kz+Ag. In our case, we have Az = SCNF.
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Let O be a point in the curve F. Recall from [2] that

Apa(O)

SWE:0)’

where A\ (O) = LifO=CnNF, and Afp A, (0) = 1 otherwise. On the other hand,
using Corollary 1.7.25, we get

- 2 Ly 5 (u+2)? 3 (12 — 4u)? 2 3
F. — — J— - — _— = — _
S(W,,,O)—3<eo+/0 8du+/1 = du+ﬁ4 g—du | = Zeo+ .

(SO (F, Af; Wi) =

where

131 _
2 fO=LNF
30010 NnF,

— 1 .
€o —ifO0O=CNF
75 " ’

0 otherwise.
Using this we get that

( —  —
2 0=InF,
a0 _ 12 _gag

S(WE,;0) 139

o0

— otherwise.
\ 3

Combining our inequalities, we get 1.666 ~ 2 > dp(S) > 225 ~ 1.612, so that p(S) > 2L.

In fact, it follows from [2] that §p(S) = 222 + 2.1/6 ~ 1.665.

Case 3. Suppose that T'= L, —|—L2+[£, forlines 51, Loy, Ly such that LyNLy = P ¢ Ls.
Then o*(—Kg) — uEp ~g (2 —u)Ep + Ly + Ly + L3, so that 7 = 2. Moreover, we have

(2—uw)Ep+Li+ Lo+ Ly if 0 <u <1,

Pu) = S o
(2—u)Ep—|—T(L1+L2)+L31f1§u§2,
and
0if 0 <u<l,
N(u) = —1 .~ ~
() =4 (Li+L)if1<u<?,
so that

L,

3—uw?ifo<u<
1<u<2

vol (o (~ Ks) — uFp) = {4 ouit

Integrating this function, we get Ss(Ep) = 4. Hence, we see that dp(S) < gls
On the other hand, it follows from Corollary 1.7.25 that

2 2u—1 L2 21 11
S(Wrr0) < = d —d Cdu) = =
(We:0) 3(/1 5 “+/02“+/12“) 18

for every point O € Ep. Now, using Corollary 1.7.12, we get 6p(5) = 2.
Case 4. Suppose that T" = C' + L, WherAe C' is a smooth conic, and L is a line that
tangents the conic C' at the point P. Let p: S — S be the blow up of the point LNC'NEp,
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let F' be the exceptional curve of the blow up p, and let L C Ep be the proper transforms
on S of the curves L, C, Ep, respectively. Then (o 0p)” ( Kg)~1L L+ C+ 2Ep +4F.

Let ¢: S — S be the contraction of the curve Ep, let L = ¢(L ), C=9(C), F =¢(F).
Then ng(Ep) is an ordinary double point of the surface S. But gb(Ep) ¢ L and qb(Ep) ¢ C
The intersections of the curves L, C' and F are contained in following table:

L|C|F
L|-3]0]1
cllo|—-2]1
Fll1]1]-2

Observe that the divisor —Kg is big. Then S is a Mori Dream Space by [200, Theorem 1],
so that S is also a Mori Dream Space. Moreover, we have commutative diagram

S
|+
S

where v is a contraction of the curve F. Observe that v*(—Kg) —uF ~g L+C+ (4—u)F.
Using this, we conclude that the divisor v*(—Kg) —uF is pseudo-effective <= u € [0, 4].
For u € [0,4], the Zariski decomposition of the divisor v*(—Kg) — uF can be described
as follows. If 0 < u < 1, then v*(—Kg) — uF is nef. If 1 < u < 2, then

=ty

v

_ — 4 —u—= 1—
v (—Ks) —uF ~p O+ ——L+ (4 - u)F + TL .
positafg part negative part

Finally, if 2 < u < 4, then

= 1 11— — —1- —2_
U*(—KS)—UFNR(4—u)<§C+—L+F)+u3 L+1_=C.

3 2
positi:zfe part negati‘\:e part

Therefore, we have

4 uQ

. _ 2 —1 2
Vol(v (—KS)—uF) = 3—%+% if 1 <u<2,
4 — 2
(—u) if 2<u<4.

\

Integrating this volume function, we sce that Sg(F) = 4, so that dp(S) < ‘gig)) =z

Now, using Corollary 1.7.12, we see that

17’ 0er S(WF,; 0)

e.0)

dp(S) > min{2—7 inf A7 (0) }
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where Az = %¢(Ep) Let O be a point in the curve F. Then Corollary 1.7.25 gives
(5 —

S(WEi0) =4 Lit0=TnT,

— otherwise,
\ 54

so that
'gifozfmﬁ
18 . = =
2_7< A a(0) _ 71fO:CﬂF,
17~ S(WE,;0) ?_; T = ¢(EP)
— otherwise.

\

Therefore, we see that 0p(S) = 2 as required.

Case 5. Suppose that 7" has a cusp. Let p: S — S be the blow up of the point TN Ep,
let £ be the exceptional curve of the blow up p, let T and E p be the proper t transforms on
the surface S of the curves T and Ep, respectively. Then (o0 p)*(=Ks) ~ ~T+2Ep+3F.
Let n: S — S be the blow up of the point TN Ep N F,let G be the - exceptional curve,
and let T, Ep, F be the proper transforms on S of the curves T Ep, F, respectively.
Then (aopon) (—=Ks) ~T +2Ep + 3F +6G.

Let ¢: S — .7 be the contraction of the curves Ep and F, let 7 = v(T) and 4 = ¢(G).
Then ¢(F) is an ordinary double point of the surface .#, and ¢(Ep) is its quotient singular
point of type (1 1). Note that these singular points are not contained in the curve 7.
Note also that T?=-3,9=—; and J - ¢ = 1. Observe that

1 2—  1—
Ko~ *(--K) T4 "Ep,
so that — K5 is big. Then S is a Mori Dream Space by [200, Theorem 1], which implies
that . is also a Mori Dream Space. Moreover, we have commutative diagram

P -~ n
S

v

QQ<—% W

<ty

where v is a weighted blow up of P with weights (2, 3), and the v-exceptional curve is ¢.
Since v*(—Kg) —u¥ ~r (6 —u)¥9 + 7, v*(—Kg) — u¥ is pseudo-effective <= u < 6,
and this divisor is nef <= u < 3. If 3 < u < 6, then the positive part of its Zariski
decomposition is (6 — u)¥ + %4 =7, and the negative part is gg’ﬂ . This gives

2
vol(v*(—Kg) — u¥) = (6 — u)?
it 3 <u<6.
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Integrating this function, we get Sg(¥) = 3, so that dp(S) < gls((g)) 2, since Ag(¥) = 5.

Now, to get a lower bound for dp(S), we use Corollary 1.7.12 that glves

where Ay = 2¢(Ep) + $¢(F). On the other hand, if O is a point in ¢, then
(Lito=9n7.
S(WE,:0) =

— otherwise,
\ 6

by Corollary 1.7.25, so that
(3if0O=9NT,
Aga,(0) )3 0= ¢(Ep),
SW&;0) ) 2if 0 = ¢(F),

\ 6 otherwise.

This gives p(S) > 5 > 21
Case 6. Finally, We suppose that 7" is an irreducible cubic curve that has a node at P.
Then 0*(—Ks) —uFEp ~g (2—u)Ep+T and T? = —1, so that 7 = 2. Moreover, we have

~ 3
(2—u)Ep+Tif0<u<§,

P(u): _ 3
(2 —u)(Ep+2T) if 5 Su<,
and 5
0if0<u< 3,
N(u) = s
(2u—3)Tif§<u<2,
so that

3
3—uw?if0<u< S5
vol(o*(—Kg) — uEp)
2—u <u<2.
Z

Hence, we see that dp(S) < ‘35((5;) =1

Now, using Corollary 1.7.25, we conclude that S(WEP 0) < 12 for every point O € Ep.

o0 )

Hence, it follows from Corollary 1.7.12 that dp(S) = 2. This completes the proof. [

Integrating this function, we get Ss(Ep) =

To compute d-invariants of smooth del Pezzo surfaces of degree 2, we have to recall few
basic facts about (—1)-curves in these surfaces. Let us present them in the following

Remark 2.14. Suppose that K2 = 2. Then there exists a ramified double cover : S — P2,
which is branched over a smooth curve of degree four [69]. Let us denote this curve by R.
The double cover 7 induces an involution 7 € Aut(.S) that is known as a Geiser involution.
For any (—1)-curve L in the surface S, the curve 7(L) is a (—1)-curve, L - 7(L) = 2 and
L+7(L)~—Ksg,
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so that (L) = wor(L) is a line in P?, which is a bi-tangent (or four-tangent) of the curve R.
Therefore, we see that (—1)-curves in S always come in pairs. There are 28 of such pairs,
which correspond to 28 bi-tangents of the quartic curve R. This gives 56 (—1)-curves.
For every line ¢ C P2, its preimage on S via 7 is a reduced curve C' C | — K| such that
exactly one of the following possibilities holds:

(1) if ¢ intersects R transversally, then C' is a smooth elliptic curve;

(2) if ¢ tangents R at one point that is not an inflection point, then C'is an irreducible
curve of arithmetic genus 1 that has one node;

(3) if ¢ is tangent to R at an ordinary inflection point (not a hyperinflection point),
then C' is an irreducible curve of arithmetic genus 1 that has one cusp;

(4) if ¢ tangents R at two distinct points, then C'= L+ 7(L) for a (—1)-curve L such
that the intersection L N 7(L) consists of two points, so that C' is nodal;

(5) if ¢ is tangent to R at a hyperinflection point, then ¢ N R consists of one point,
and C'= L+7(L) for a (—1)-curve L such that the curves L and 7(L) are tangent,
so that the anticanonical curve C' has a tacnodal singularity.

The inflection points of the curve R are precisely the intersection points of this curve with
its Hessian sextic curve, which intersects the quartic curve R transversally at ordinary
inflection points and meets R at hyperinflection points (undulations) with multiplicity 2.
In particular, we see that the quartic curve R always has at least one inflection points.
However, if the curve R is sufficiently general, then it does not have hyperinflection points.
Surprisingly, it may happen that R does not have any ordinary inflection points [79, 127].
In fact, there are exactly two such curves: the Fermat quartic curve, and the curve given by

$4+y4+24+3(l’2y2+y222—|—2’2$2) :()7

where z, y, z are coordinates on P?. This phenomenon has been discussed in [38, § 6.1].
If L and L’ are two distinct (—1)-curves in S, then
1=L-(-Ks)=L-(L+7(L))=L"-L+L - 7(L),

so that we have one of the following three mutually excluding possibilities:

(1) !'NnL=w2,L'-L=0and L' -7(L) = 1;

(2) 'nt(L)=9,L'-L=1and L'-7(L) = 0;

(3) L'=7(L)and L' - L = 2.
For any point P € S such that 7(P) € R, there exists a unique curve C' C | — Kg| such
that C' is singular at the point P, and every (—1)-curve in S that contains P must be
an irreducible component of the curve C, since C' - L = 1 for every (—1)-curve L C S.
If P is a point in S such that 7(P) € R, then | — Kg| contains no curves singular at P.
In this case, the point P is contained in at most four (—1)-curves in .S by [182, Lemma 5],
which can easily be derived directly from the intersection graph of all (—1)-curves in S.
This can also be proved as follows: if S has five (—1)-curves Ly, Lo, L3, Ly, L5 that have
a common point, then contracting 7(Ls) we obtain a smooth cubic surface that contains
four lines sharing a common point, which is impossible. Moreover, if P is a point in S
such that 7(P) ¢ R, then it follows from [69, Exercise 6.17] that the point P is contained
in four (—1)-curves <= m(P) =[1:0:0] and R is given by x*+ fo(y, 2)z*+ f4(y, z) = 0
for an appropriate choice of coordinates x, y, z, where fs(y, z) and fy4(y, 2) are quadratic
and quartic forms, respectively. Intersections of four (—1)-curves in the surface S are

called generalized Eckardt points [182].
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Now, we are ready to prove

Lemma 2.15. Suppose that K% = 2. Then

9
— if | — K| contains a tacnodal curve,
5(8) =17

15
5 if | = Kg| does not contain tacnodal curves.

Proof. Let us use notations that introduced earlier in Remark 2.14. Fix some point P € S.
Let 0: S — S be the blow up of the point P, and let Ep be the o-exceptional divisor.
Then S is a weak del Pezzo surface, K% =1, and | -2K3| gives a morphism S — P(1,1,2),
which has the following Stein factorization:

Y S

E

P(1,1,2)

=y

where 9 is a contraction of all (—2)-curves in the surface S (if any), and w is a double cover
branched over the union of a sextic curve in P(1, 1,2) and the singular point of P(1, 1, 2).
Observe that S is a del Pezzo surface of degree 1 with at most Du Val singularities, and
the morphism ¢ is an isomorphism <= —Kjg is ample <= & is smooth. Moreover,
if the divisor —Kj is not ample, then the surface S contains at most four (—2)-curves.
Furthermore, if Z is a (—2)-curve in S, then either 7(P) € R and o(Z) is the curve
in the linear system | — Kg| that is singular at P, or 0(Z) is a (—1)-curves that passes
through P. The double cover & — P(1,1,2) induces an involution ¢ € Aut(S) such that

L(Ep) = Ep <= 7(P) € R or P is a generalized Eckardt point.

The involution ¢ is known as a Bertini involution. It gives the involution coroo™! € Bir(.9),
which is biregular <= «(Fp) = Ep. Let ¢ = 0 ot. Then ¢: S — S contracts ¢(Ep).
Thus, we have the following commutative diagram:

If —K3 is ample, then Ep + «(Ep) ~ —2Kg. Similarly, if 7(P) € R, then
Ep + «(Ep) + (the sum of all (—2)-curves in §) ~ —2K5.

In particular, if —Kg is ample, then Ep - o(Ep) = 3, so that ¢(Ep) is an irreducible curve
in the linear system | — 2Kg| that has a singular point of multiplicity 3 at the point P.

If 7(P) € R, let us denote by Cp the unique curve in | — Kg| that is singular at P.
Then we have the following cases:

(1) the divisor —K7g is ample, so that S is a del Pezzo surface;

(2) m(P) € R, and Cp is an irreducible nodal curve;

(3) m(P) € R, and Cp is an irreducible cuspidal curve;

(4) m(P) € R, and Cp is a union of two (—1)-curves that meet transversally;
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and Cp is a union of two (—1)-curves that are tangent at P;
, and P is contained in exactly one (—1)-curve;
¢ R, and P is contained in exactly two (—1)-curves;
m(P) € R, and P is contained in exactly three (—1)-curves;
(9) the point P is a generalized Eckardt point.

It follows from Remark 2.14 that to prove the required assertion, it is enough to prove
the following three assertions:

e 6p(S) =2 if 7(P) € R, and Cp is a tacnodal curve;

e 6p(S) = 2 if 7(P) € R, and Cp is a cuspidal curve;

e p(S) > £ in all remaining seven cases.
We will do this case by case similar to what we did in the proof of Lemma 2.13.

Take u € Ry. Let 7 be the largest number such that o*(— Kg) —uFEp is pseudo-effective.
For every real number u € [0,7], let us denote by P(u) and N(u) the positive and
the negative parts of the Zariski decomposition of the divisor o*(—Kg)—uEp, respectively.
For every irreducible Z C S, let us denote by Z its proper transform on the surface S.

For instance, if 7(P) € R, then Cp is the proper transform on S of the curve Cp.
Case 1. Suppose that —K7g is ample. Then Ep + «(Ep) ~ 0*(—2Kg) — 2Ep, so that

3 2u (Ep)

E

2 P+ 9

which immediately implies that 7 = % Moreover, we have

o*(~Ks) — uEp ~g

-2 E 4
3 2up, U g B
_ 2 2 3
P(u) =
S () i Cu
L if - <u<z,
2 V7 P73 2
and
. 4
Dif0<u< =,
N(u) = 3 4 5
(3u —4)(Ep) if 3 <u< 2
so that
4
2 —u?if0<u< <,
Vol(a*(—KS) —uEp) = 4 3 5
2(3 —2u)?if - <u< =
(3 —2u)" i g Susy
Integrating, we get Ss(Ep) = 1—;, so that 6p(5) < ’gi((gﬁ)) = i’—?. For every O € Ep, we get

s(vizio) = [ <<P<u> Ep)(Nw) By + 0L ) )d“ -

lwo

: L2 2 (12 — 8u)?
3u—4)(12 — 8u)du x (¢«(Ep) - Ep),. + 3u—du—k Mdu:
0 2
0 4

o

(L(Ep) . EP)
s

Ol
|
|



by Corollary 1.7.25. Now, using Corollary 1.7.12, we get

36 1
>mind = inf ——— L>
5P(S) = mln{ 1770161’1Efp S(W.E.P7O)} = 27
so that 51”6 dp(S) = 15 as required. In fact, we proved that dp(S) = % if |((Ep)NEp| = 2.

Case 2. Suppose that m(P) € R, and Cfi is an irreducible nodal curve. We have 7 = 2,
because 0*(—Kg) — uEp ~g (2 —u)Ep + Cp. Moreover, we have

(2—wEp+Cpif 0 <u<l,
P(u) = ~
(2—u)(Ep+Cp)if 1 <u<2,

and
0if0<u<l,
N(u) = o
(u—1)Cpif 1 <u<2,
so that
1( “(Ks) E) 2—uw?if0<u<l,
vol(o™*(— —u =
° d 2—u)?ifl <u<2
Integrating, we get Sg(Ep) = 1, so that dp(5) < 25((5,5)) = 2. For every O € Ep, we get
2 P(u) - Ep)°
SGK%ZO)::A (U%m-EéﬂNﬁo-E@O%“Lijg—EL)du:
9 B L2 2 (2~ ) (5]3 ) EP)O 1 1
:/1 (u—l)(?—u)dux(C’p-Ep)O—l—/O ?du+/1 Tdu:T—l—g < 5

by Corollary 1.7.25. Now, using Corollary 1.7.12, we get

] As(Ep) . !
N S G
op(S) = mln{ Ss(Ep) 701251;’ S(Wed’ O>} .

so that 6p(S) =2 > 22 as required.
Case 3. Suppose that m(P) € R, and Cp is an irreducible curve that has a cusp at P.
Let p: S — S be the blow up of the point ¢ Cp N Ep, let F Dbe the p-exceptional curve,

let C’p and E p be the proper transforms on S via p of the curves C’p and Ep, respectively.
Then there exists commutative diagram

§—" 51

1

S v

QQ<—Q W

where 7 is the blow up of tAhe point (/5’p NE p, the map ¢ is the contraction of the proper
transforms of the curves Ep and F', and v is the birational contraction of the proper
transform of the n-exceptional curve. It is not hard to see that the divisor —Kyg is big.
Then S is a Mori Dream Space [200], so that .# is a Mori Dream Space as well.

Let ¢ be the v-exceptional curve, and let €p be the proper transform of the curve C'p on
the surface .. Then ¢ contains two singular points 1 and )5 such that (), is an ordinary

double point, and @) is a quotient singular point of type = (1 1). However, these singular
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points are not contained in the curve ¢p. Note also that €2 = —4, 42 = —%, C -9 =1.
Since v*(—Kg) —u¥ ~g (6 —u)¥ +%p, the divisor v*(—Kg) —u¥ is nef <= u < 2, and
the divisor v*(—Kg) — u¥ is pseudo-effective <= u < 6. If 2 < u < 6, then the positive
part of its Zariski decomposition is (6 —u)(4 +1%p), and its negative part is “;2%p. Then

2—%;ﬁ0<u<2
vol(v*(—Kg) — u¥) = (6 — )
f1<u<6
12

Integrating this function, we obtain Sg(¥¢) = %, which implies that 6p(5) < ’;5—(‘% = 15
On the other hand, it follows from Corollary 1.7.12 that

> _ G kA S
op(S) = mln{ 3 ,érelgs( 7.0 [

where Ay = %Ql + %Qg. On the other hand, if O is a point in ¢, then

1
S(W.’., O) = § + §OI‘dO (Cgp|g) = 1 '
— otherwise,
9
by Corollary 1.7.25, so that
3it O =9 N%p,
9.
Ag7Ag (O) . 5 if O = Ql,

SW&L:0) |33t 0 =0,
9 otherwise.

This gives dp(S) = %’ as required.

Case 4. Suppose that 7(P) € R, and Cp = Ly + Lo, where L; and L, are (—1)-curves
that intersect transversally at the point P. Then o*(—Kg) —uEp ~r (2—u)Ep+ L1+ Lo.
This gives 7 = 2. Moreover, we have

(2—wEp+Li+Lyif0<u<1,
P(u) = -~
(2—u)(Ep+ L+ Ly) if 1 <u <2,
and
0if 0 <u<1,
N(u) = ~ =
(u—l)(L1+L2) if 1 <u<?2,
so that
(" (—Ks) — uly) 2—u’if0<u <,
vollo (— — U =
° d 2-u)?ifl <u<2.



Integrating, we get Sg(Ep) = 1, so that dp(5) < ’gi((g}f)) = 2. For every O € Ep, we get

2

swezo) = | 2 ((p<u> Ep)(N(u)- Ep), + M)m _

2 _ . 1,2 2 _ 2 ( L1 + L2 . Ep)

= /1 (u—1)(2—u)dux ((L1+L2)-Ep>o—l— i %du+/1 (2 2u) du = ( 6) 0_|_§
by Corollary 1.7.25, so that S(WFF;O) < . Then 6p(S) =2 > 2 by Corollary 1.7.12.

Case 5. Suppose that 7(P) € R, and Cp = Ly + Lo, where L, and Ly are (— 1) -curves
that are tangent at the point P. Let p: S — S ‘be the blow up of the point LinLyN Lp,
let F' be the p-exceptional curve, and let Ll, L2, Ep be the proper transforms on S of
the curves L1, Lo, Ep, respectively. Then (oo p)*(—Kg) ~ L1 + L1 + 2Ep + 4F.

Let ¢: S — S be the contraction of Ep. Set L; = #(L1), Ly = ¢(Ly) and F = ¢(F).
Then ¢(Ep) is an ordinary double point of the surface S, ¢(Ep) € L1 and ¢(Ep) & Lo.
The intersections of the curves Ly, Ly and F' are contained in following table:

Li| L| F

Liy||=3] 0 | 1
Lyl 0 |=3] 1
Fi1]1]-

N[ =

Observe that —Kg ~q El + Zl + Ep + 2F, which implies that the divisor —Kg is big.

Then S is a Mori Dream Space by [200, Theorem 1], so that S is a Mori Dream Space.
Moreover, we have commutative diagram

where v is a contraction of the curve F. Then v*(— -Ks) — uF ~g Ly + Ly + (4 —u)F
Using this, we conclude that the divisor v*(—Kg) —uF is pseudo-effective <= u € [0
Moreover, if 0 < u < 1, then the divisor v*(—Kg) — uF is nef. Furthermore, if u € [1,
then the Zariski decomposition of this divisor can be described as follows:

V' (~Ks) ~uF g =Ty 4 Ty + 8F) 4 S (T + T).

TV TV
positive part negative part

Therefore, we have
2
2—%ﬁ0<u<L

4_ 2
(4~ if1<u<A.

vol(v*(—Kg) — uF) =




Integrating this function, we get Ss(F') = 2, so that dp(S) <
Now, using Corollary 1.7.12, we see that

Ag(F ' F
#(F)) = §, since Ag(F') = 3.

9 Ap A (0)
5p(S) = mind =, inf —or |
»(S) mm{5 oer S(WE,;0)

XY

where Ap = %gb(ﬁp). Let O be a point in the curve F. Then Corollary 1.7.25 gives

S(Wf,;O) = /0 ((P(u) - F) x ordo (N (u)|5) + M) du =

B R (A AR I S = (B +1) F),

1 8 72 4
so that
(5 . — —
E if O= L1 N F,
S(Wk,;0) = 15—2 if O=TyNF,
1 .
L5 otherwise,
so that

%?ﬁO_EmF,
A8, Q) 240 7,07
SWE:0) |5 -

: 3if O = ¢(Ep),

| 6 otherwise.

This gives dp(S) = 2 as required.
Case 6. Suppose that 7(P) ¢ R, and P is contained in exactly one (—1)-curve L.
Then Ep+u(Ep)+ L ~ —2K3, so that 0*(—Kg) —uEp ~p 224 Ep+ 1(1(Ep)+ L), which

2
gives T = %, because the intersection form of the curves «(Ep) and L is negative definite.
Similarly, we see that

(3 — 2 1 ~
——Ep+5((Ep) + 1) f0<u <,
—2 1 2—u~
P(u) = 32uEP—|—§L(EP)+ uLiflgugg,
3—2u ~ 7 3
ifi<ug s
| (EP+5L<EP)+3L)1f5\U\2,
and
0if0<u<l,
u—1~ 7
i <u< -
N(u): B Llfl\u\5,

(5u — 7)(Ep) 4+ (3u — 4)L if g <u< g
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Note that Ep - t(Ep) = 2. Computing P(u) - P(u) for u € [0, 3], we get
2—uw?if0<u<l,

5—u?—2u . 7

vol(o*(—Kg) — uEp) = — s if1<u< 5
7 3

-2 if —<u<-=.
3(3 — 2u)? P SuSy

Integrating, we get Ss(Ep) = 33, so that dp(5) < ‘;j((g;) = 2. For every O € Ep, we get

3

S(Wrr;0) = /0 ((P(u) - Ep) x (N(u) - Ep),, + M) du =

2
:/02 (P(u)- Ep) x (N(U)-EP)Odqu/Ol “;dw/f (1—;u)2du+/ a8 - taup

— (/1g (u_ll(l—{—u)du—i—/;(?)u—él)(lS—12u)du> X (Z-Ep> +

199
wlw

du =

[S{EN]

o)
+/§(5 7)(18 — 12u)du x (L(Ep) - Ep) +13—
% u u)au L op P)o 30 =
19 uEp)-E 13 19 ~ Ep)-E 13 31
(L EP) + M — < —L-Ep+ uEp) Ep 13 — =
~ 300 100 30 300 100 30 60
by Corollary 1.7.25, Now, using Corollary 1.7.12, we get

@>(5(S)>mm 10 inf 1 >@
19”7 "7V 2 19’ 0cEp S(W,E,P;O) ~ 31
so that 13 > 6p(S) > 8. In particular, we see that 0p(S) > <2 as required.
Case 7. Suppose that 7(P) ¢ R, and P is contained in two (—1)-curves L; and L.
Then Ep + «(Ep) + Ly + Ly ~ 0*(—2Kg) — 2Ep. This gives

3—2u 1 ~ ~
5 Ep + §(L(EP) + Ly +L2)>

so that 7 = 2, because the intersection form of the curves «(Ep), Ll, Eg is semi-negative
definite. Moreover, we have

0" (~Ks) — uEp ~g

3—2 1 ~ ~
> “EP+§(L(EP)+L1+L2) if0<u<l,
P(u) =

3 —2u 1 2—u ,~ ~ . 3

5 Ep + §L<Ep) + —2 (L1 ‘|—L2) ifl<u< 57
and

0if0<u<l,

N(u) = -1 3

) (Lt L)l <uss,
so that

2 —u?if 0<u<l,

VOI(U*(_KS) N UEP) N 3—2uifl <u< §
2
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Integrating, we get Sg(Ep) = 53, so that dp(S) < A (EP) = =2, For every O € Ep, we get

247

<L1+L2

Ep. _
S<Wo e O) - 48
by Corollary 1.7.25. Now, using Corollary 1.7.12, we get 6p(S) = 22 > .

Case 8. Suppose that 7(P) ¢ R, and P is contained in three (—1)-curves Li, Lo, Ls.
Then Ep+ t(Ep) + Ly + Ly + Ly ~ —Kg and Ep - 1(Ep) = 0, so that the (—1)-curves Ep
and ((Ep) are disjoint. Then o o ((Ep) = ¢(Fp) is a (—1)-curve in S that does not pass
through P. We have ¢(Ep) + Ly + Ly + L3 ~ —2Kg, which implies that ¢(Ep) - L; = 1,

¢(Ep)-Ly=1and ¢(Ep)- Ly =1. Let B =7(s(Ep)). Then B is a (—1)-curve such that
B+¢(Ep) ~ —Kg, that gives B-Ly = B+ Ly = B- L3 = 0. Thus, we see that B is disjoint
from Ly, Ly, L3. In particular, it does not contain P. N

Now, we denote by B the proper transform of the (—1)-curve B on the surface S.
Then B is a (—1)-curve that is disjoint from Ep, L1, Ly, Ls. Let Z = «(B) and Z = o(Z).
We have Z—f—éw —2Kg. This gives ZL = ZZQ = ZZ?, = 0 and Z-Ep = 2.
Thus, the curves Z, Ly, Lo, L are disjoint, Z + B ~ —2Kg and multp(Z) = Z-Ep=2.
Summarizing, we get Z+B ~ —2Kg, B+¢(Ep) ~ —Kg and ¢(Ep)+ L1+ Lo+ L3y ~ —2K5g.
Using these rational equivalences, we get Ly + Lo + L+ Z ~ —3Kgs. Then

5 —3u

O'*(—Ks)—uEp ~R 3

Ep+%(Z+El+EQ+Eg).

This gives 7 = g, because the curves Z , Zl, Eg, E3 are disjoint and all of them have
negative self-intersections. Similarly, we see that

(5 — 3u
3
5 —3u

6
5 —3u

Ep+3(Z+L1+L2+L3) if0<u<l,

P(u) =X

-~ o~ 1~
(2Ep + Li+ Lo+ Ly) + 3 Zif L Su <

N T A R
(2Ep+4Z+L1+L2+L3)if§<u<

\

and

N

3

3
=
Z if = uég

2 3

( 1+Eg+fg)+(2u—3)

[\]

Now, computing P(u) - P(u) for u € [0, 2], we obtain

2 —u?if0<u<,

u? —6u+7 3

(5—3u)? .3 5

—if s <u<s.
5 1 5 u 3
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Integrating, we get Ss(Ep) = %, so that dp(5) < ’;E((];E}f)) = % For every O € Ep, we get

) </3 (SRS 3<u—1><5—3u>du) (Bt Ta v L) - B) +

[ M[°)

4 3 4
5 ~
5 3(2u — 3)(5 — 3u) - 3 5/~ ~ = (Z-Ep), 3
dux (Z-E —:——(L I 1;.E> £ 5r)o 3
+é 2 wx(Z:-Bp)otg = qy((LitletLs) Bp) & -—p@ g
by Corollary 1.7.25, which gives
(4 ~ o~ o~
5 FOE€LIUL UL,
sWEr 0y =43, (L Er)o o >
( , ) S + Tid if O e Z,

3 ~ o~~~
Qif0¢LUL UL UZ,

\
so S(WErP;0) < &, since (Z - Ep)o < Z - Ep = 2. Then dp(S) = 22 by Corollary 1.7.12.

00’ R
Case 9. Finally, we suppose that 7(P) ¢ R, and P is contained in four (—1)-curves.
Denote them by Li, Lo, L3 and Ly. Then Ly + Lo + L3+ Ly ~ —2Kg, so that
1~ ~ ~ ~
0" (—Kg) —uEp ~r (2 —u)Ep + §(L1 + Lo+ L3 + L4)-

This gives 7 = 2, because the (—2)-curves Zl, Zg, Zg, Z4 are disjoint. Moreover, we have

1 ~ ~  ~  ~
(2= wEp + 5 (L4 Lo+ Ly + L) f 0 Su <1,

P(u) = 1o e
@—umEp+5@y+M+J§+LQ>ﬁlgugl
and
0if 0 <u<l,
N(u) = -1 ~ ~ ~ ~
(> Y (L1+L2+L3+L4) 1f1<u<2,
so that
(0" (— Ks) — uEp) 2-uw?if 0<u<l,
0) — —Uu =
YORIATERS d (2—u)?ifl <u<2

Integrating, we get Sg(Ep) = 1, so that dp(5) < gg((g}’j)) = 2. For every O € Ep, we get

<(z1 —I—EQ +z3 —|—z4) 'EP>O 1 5
- <

S(Wrr;0) = <=
( oe ) 12 3 12

by Corollary 1.7.25. Now, using Corollary 1.7.12, we get 6p(S) =2 > %5. This completes
the proof of the lemma. O
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Let us conclude this section by proving the following lemma:

Lemma 2.16. Suppose that K% =1. Then

— if | = Kg| contains a cuspidal curve,
5(5) =1 1.

5 if | = Kg| does not contain cuspidal curves.

Proof. Let P be a point in S, and let C' be a curve in the pencil | — K| that contains P.
Then C'is an irreducible curve of arithmetic genus 1, so that either C' is smooth at P, or
the curve C has a node at P, or the curve C has a cusp at P. Note that the pencil | — K|
always contains singular curves. Observe also that Ss(C) = 3. Moreover, if the curve C
is smooth at P, then we have S(W,C,, P) = % by Corollary 1.7.25, so that 6p(C)) > 3 by
Theorem 1.7.1. Thus, to complete the proof, we must prove that

15 .

— if C' has a cusp at P,

op(8) =14 ]

r if C' has a node at P.

Therefore, we may assume that our curve C' is singular at the point P.

Let 0: S — S be the blow up of the point P, let Ep be the o-exceptional divisor,
let C be the proper transform on S of the curve C, and let u be a non-negative number.
Then C is a smooth curve such that C% = —3 and 0*(—Kg) — uEp ~g (2 — u)Ep + C.
Then o*(—Kg) — uEp is pseudo-effective <= u < 2. This divisor is nef <= u < 1.
Furthermore, if 1 < u < 2, then its Zariski decomposition can be described as follows:

2 ~ 2u—1~
o*(—Ks) —ubp ~z (2= w)(Ep + 20) + ==—C,
h positi?f:% part negative part
so that
1
1 —u?if0<u< 2’
oK) —u) = 4
——if - <u<?2,
3 2 =
which gives Ss(Ep) = 2. Thus, we have dp(S5) < ‘25((53 =2

Note that the divisor — K is big. Then S is a Mori Dream Space by [200, Theorem 1].
Therefore, we can apply Corollary 1.7.25 to compute S (WEP O) for every point O € Ep.

.0 )

To be precise, if O is a point in Ep, then Corollary 1.7.25 gives

Ep-C
S(Wrr;,0) = é + %,

which implies that S (W.E.P, 0) < % in the case when C has a nodal singularity at P.

Thus, if C' has a node at P, then §p(S) = % by Corollary 1.7.12. Hence, we may assume

that the curve C' has a cusp at P. Then the intersection cn Ep consists of one point,

and C is tangent to Ep at this point.
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Let p: S — S be the blow up of the point Cn Ep, let F be the p-exceptional curve,

let C' and Ep be the proper transforms on S via p of the curves C and Ep, respectively.
Then there exists commutative diagram

§—r G 3
| |
S Y 5

where 7 is the blow up of CNE p, ¢ is the contraction of the proper transforms of the curves
Ep and F', and v is the contraction of the proper transform of the n-exceptional curve.

Let ¢ be the v-exceptional curve, and let ¢ be the proper transform of the curve C' on
the surface .. Then ¢ contains two singular points ()4 and ()2 such that (), is an ordinary
double point, and () is a quotient singular point of type (1 1). However, these singular
points are not contained in the curve . Note also that ‘52 = -5, 9% = —%, C -9 =1,
and . is Mori Dream Space by [200, Theorem 1], since —Kx is big.

Since v*(—Kg) — u¥ ~g (6 —u)¥ + €, the divisor v*(— KS) —u¥ is pseudo-effective if
and only if u < 6. Moreover, this divisor is nef <= u < 1. Furthermore if 1 <wu<6,
then the positive part of its Zarlskr decomposition is (6 — u)¥ + ° “4%, and the negative
part of its Zariski decomposition is —(5 This gives

2

1- Y ito<u<t,
vol(v*(—Ks) —u¥) = © 6)2
—u
——if 1 <u<6.
30 1 u<6
Integrating this function, we obtain Sg(¥) = %, which implies that dp(S) < gg—g)) = 1—75
On the other hand, it follows from Corollary 1.7.12 that
)15 Ay a,(O)
5p(S) > ,inf —22e 2
P( ) mln{ legS(W.g O)
where Ay = %Ql + %Qg. On the other hand, if O is a point in ¢, then
(1
—ifO=9N%E,
SWii0)=4"?
| T3 otherwise,
by Corollary 1.7.25, so that
(3ifO=9N%E,
AgAg(O) . 91fO:Q17
S(Woguo) 61fO:Q27
18 otherwise.
This gives dp(S) = 175 as required. This completes the proof of the lemma. Il

Let P be a point of the surface S. All possible values of ap(S) have been found in [37].

It would be interesting to find all values of dp(S). For K2 = 3, this is done in [2].
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3. PROOF OF MAIN THEOREM: KNOWN CASES

3.1. Direct products. Let S be a smooth del Pezzo surface. If S is not a blow up
of P? in one or two points, then S is K-polystable (see Section 2), so that P! x S is also
K-polystable by Theorem 1.1.7. Therefore, every smooth Fano threefold in the families
Ne2.34, Ne3.27, Ne5.3, Ne6.1, Ne7.1, Ne®.1, Ne9.1, Ne10.1 is K-polystable. On the other hand,
blow ups of the plane P? in one or two points are K-unstable by Lemmas 2.3 and 2.4, so
that the smooth Fano threefolds N¢3.28 and N°4.10 are K-unstable by Theorem 1.1.7.

3.2. Homogeneous spaces. The following smooth Fano threefolds are homogeneous
spaces: a smooth quadric threefold in P* (family Ne1.16), P? (family Ne1.17), a smooth
divisor in P? x P? of degree (1,1) (family Ne2.32), P! x P? (family Ne2.34), and P* x P! x P!
(family Ne3.27). All of them are K-polystable by Theorem 1.2.5 or Theorem 1.4.7.

3.3. Fano threefolds with torus action. There are exactly 18 smooth toric Fano three-
folds [12, 212], and each such threefold is the unique member of the corresponding defor-
mation family. Theorem 1.2.4 tells us which of these threefolds are K-polystable [14, 209].

Family Short description K-polystable
Nel.17 P3 Yes
Ne2.33 blow up of P? in a line No
Ne2.34 P! x P2 Yes
Ne2.35 V7 =blow up of P in a point No
Ne2.36 P(Op> & Op2(2)) No
Ne3.25 blow up of P? in two disjoint lines Yes
Ne3.26 blow up of P? in a line and a point No
Ne3.27 P! x P! x P! Yes
Ned.28 P! x Iy No
3.9 .blow up 'Of V7 in a line in No
the exceptional divisor of the blow up V; — P3
Ne3.30 blow up of V5 in a fiber of the P'-bundle V; — P2 No
Ne3.31 blow up of the quadric cone in its vertex No
blow up of the smooth Fano threefold N*3.25 in a curve
Neq.9 No

contracted by the birational morphism to P3
Neq 10 P! x S, No

blow up of P! x [F; in a curve that is

Ned Il (—1)-curve of a fiber of the projection P! x F; — P! No
Ned 12 blow up of the smooth Fan‘o threefold N92.?>3 in two curves No
contracted by the birational morphism to P3
blow up of the smooth Fano threefold N¢3.25 in two curves
Ne5.2 contracted by the birational morphism to P3 No
which are both contained in one exceptional surface
Ne5.3 P! x Sq Yes
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Here, Sg and S7 the smooth del Pezzo surfaces of degree 6 and 7, respectively.

Smooth non-toric Fano threefolds admitting a faithful action of the two-dimensional
torus G2, have been classified in [194], see also [42]. These are smooth Fano threefolds
Nel.16, Ne2.29, Ne2.30, Ne2.31, Ne2.32, Ne3.18, Ne3.19, Ne3.20, Ne3.21, Ne3.22, Ne3.23, Ne3.24,
Neq. 4 Ned.5, Ne4. 7, Ne4.8, and two special threefolds in the families Ne2.24 and Ne3.10.
Their Futaki invariants have been found in [194]. This allowed to solve Calabi Problem
for all of them [193, 194, 112]. We summarize these results in the following table.

Fano threefold Short description Futaki invariant | K-polystable
Nel.16 @ =smooth quadric threefold in P* Zero Yes

Ne2.24 (special) divisor in P? x P? of degree (1,2) 7Z€ero Yes
Ne2.29 blow up of () in a conic ZEro Yes
Ne2.30 blow up of () in a point NON-zero No
Ne2.31 blow up of @ in a line Non-zero No
Ne2.32 W =divisor in P? x P? of degree (1,1) Zero Yes

Ne3.10 (special) blow up of @) in two disjoint conics Zero Yes
Ne3.18 blow up of () in a point and a conic Non-zero No
Ne3.19 blow up of @) in two points ZEero Yes
Ne3.20 blow up of @) in two disjoint lines Zero Yes
Ne3.21 blow up of P! x P? in a curve of degree (2, 1) NoN-zero No
Ne3.22 blow up of P! x P? in a curve of degree (0,2) non-zero No

blow up of () in a point
Ne3.23 and the strict transform of a line NON-ZEro No
passing through this point

Ne3.24 blow up of W in a curve of degree (0, 1) 1ON-ZEro No

blow up of @) in two non-collinear points

Ned.4 and the strict transform of a conic 7610 Yes
passing through both of these points

blow up of P! x P? in
Nod 5 a disjoint union of a curve of degree (2,1)

non-zero No
and a curve of degree (1,0)
blow up of W in
Nod 7 a disjoint union of a curve of degree (0, 1) Jer0 Yes
and a curve of degree (1,0)
Neq 8 blow up of (]P’l)3 in a curve of degree (0,1,1) NON-ZEro No

Let us illustrate these results:

Lemma 3.3.1 ([112, Theorem 6.1]). Let X be the unique smooth Fano threefold N 3.19.
Then X s K-polystable.

Proof. Let @Q be the smooth quadric hypersurface in P* given by 22 + z175 — 2324 = 0,

where g, T1, T9, T3, T4 are coordinates on P*. Then @) admits a G2, -action that is generated
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by two commuting G,,-actions \; and Ay defined as follows:
M(t).[mo s @yt wg g s xy| = [0 s txy waft wy t xy,
Ao(8).[wo sy i wo : wg i xy| = X0 w1 ¢ X : ST3 T4/ 8],

where t € G,,, and s € G,,,. Now, welet P, =[0:0:0:0:1]and P, =1[0:0:0:1:0].
Then P, and P, are G2 -fixed. We may assume that X is a blow up of @ at these points.
Denote this blow up by ¢, and denote the exceptional divisors by E; and FEs, respectively.
Let o be the involution in Aut(Q) given by [xg : ©1 : @y : 3 : T4] > [g 1 T2 21 @ x4 ¢ x3).
Then o swaps Py and P, so that both the G2 -action and o lifts to the threefold X.
Therefore, we may consider G2, and (o) as subgroups in Aut(X).

Let us apply results of Section 1.3 to X and T = G?,. We will use notations introduced
in this section. First, we observe that o acts on the G,,-actions \; and Ay by conjugation
and sends A\; to )\1_1 and Ay to /\2_1. Then by Lemma 1.3.6 we must have Futx = 0.

Let m: X --» P! be the quotient map. Then 7 o ¢! is given by

[To 1 @1t Tg 1 g xy) > [T120 ¢ 3T,

because the field of G2 -invariant rational functions on @ is generated by xxo/374.
Moreover, both divisors E; and Es are horizontal, because Ay induces a trivial action on
both of them. Furthermore, the reducible fibres of the map 7 can be described as follows:

7T_1([O . 1]) == D1 U DQ,
7' ([1:0]) = D3 U Dy,
7' ([1:1]) = 2D,
where each D; is the proper transform on X of the hyperplane section of () that are cut
out by x; = 0. Therefore, using Proposition 1.3.17, we see that to complete the proof, it
is sufficient to show that 5(D;) > 0, B(Ds) > 0 and B(Dy) > 0.
Let H = ¢*(Ops(1)|g). Then we have H — FEy — Ey ~ Dy ~ Dy ~ D3— E}, which implies

that (Do) = B(D1) < B(Ds). Hence, it is actually sufficient to check that 3(Dg) > 0.
This is easy. Since —Ky ~ 3H — 2FE; — 2F,, we have

1 [? 3 1 [? 3
Sx (Do) = —/ ((3 ~o)H — (2 —2)Ey — (2 — a:)E1> dr + — ((3 . x)H) dr =
38 Jo 38 Js
1 [? 1 ? 65
= — 23 —2)* =22 —2)*)dr + — [ 2(3 —x)*dr = —
so that 8(Dg) =1 — 2 = 13 > 0. This implies that X is K-polystable. O

3.4. Del Pezzo threefolds. Let V; be a smooth Fano threefold such that — Ky, ~ 2H
for some H € Pic(V;) such that d = H3. Then Vj is a del Pezzo threefold of degree d.
One can show that a general surface in |H| is a smooth del Pezzo surface of degree d.
Moreover, it follows from [98, 99, 100, 102, 103] that we have the following possibilities:

e d =1 and V] is a sextic hypersurface in P(1, 1,1, 2, 3);

e d =2 and V3 is quartic hypersurface in P(1,1,1, 1, 2);

e d =3 and Vj is a cubic hypersurface in P*;

e d =4 and V} is an intersection of two quadrics in P%;

e d =5 and Vj is the quintic del Pezzo threefold (see Example 3.4.1 below);

e d =6 and Vj is a divisor in P? x P? of degree (1,1);
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e d=6and V5 =P! x P! x P,

e d =7 and V7 is a blowup of P? at a point;

e d =28 and Vg =P3.
Hence, V; belongs to the family Nel.11, Nel.12, Nel.13, Nel.14, Nel.15, Ne2.32, Ne3.27,
Ne2.35, respectively. From Sections 3.1, 3.2, 3.3, we know that Vi and Vi are K-polystable,
but V7 is not K-polystable, which will also be discussed later in Sections 3.6 and 3.7.
The family Ne1.15 contains a unique smooth Fano threefold, and it is K-polystable:

Example 3.4.1. Let V5 be a smooth intersection of the Grassmannian Gr(2,5) C PY in its
Pliicker embedding with a linear subspace of dimension 5. Then Vj is the unique smooth
Fano threefold Ne1.15. By [44, Theorem 1.17], one has ag(Vs) = 2 for G = Aut(V3),
where Aut(Vs) = PGLy(C), see, for example, [50, Proposition 7.1.10]. Thus, the smooth
Fano threefold Vj is K-polystable by Theorem 1.4.7.

Let us present K-stable smooth Fano threefolds in each of the remaining deformation
families Ne1.11, Ne1.12, Ne1.13, Nel.14.

Example 3.4.2. Let V] be a smooth sextic hypersurface in P(1, 1,1, 2, 3) that is given by
w? =3 4+ 2% + % + 25,
where z, y, z are coordinates of weight 1, ¢ and w are coordinates of weights 2 and 3,

respectively. Then V; is a smooth Fano threefold Ne1.11, the group Aut(V}) is finite [42],
and ag(Vy) > 1 by [44, Theorem 1.18], so that V; is K-stable by Theorem 1.4.7.

Example 3.4.3. Let V5 be the quartic hypersurface in P(1,1,1,1,2) given by

w? = Py + 6tayz + 123 + 22" + Pz,
where z, y, z and t are coordinates of weight one, and w is a coordinate of weight two.
Then V5 is a smooth Fano threefold Ne1.12; and it follows from [143] that Aut(V%) contains
a finite subgroup G such that G = p, x PSLy(FF7) and G acts on V5 without fixed points.

Using Theorem 1.4.11, we see that ag(V2) > 1. Then V; is K-stable by Theorem 1.4.7,
since Aut(V%) is a finite group [42].

Example 3.4.4. Let V3 be the Klein smooth cubic threefold in P* that is given by
LT3 + 1175 + Tox] + 1375 + T41h = 0,

and let G = Aut(V3). It follows from [1] that G = PSLy(F4;), and the cubic V3 does not
contain G-invariant hyperplane sections. Thus, ag(V3) > 1 by Corollary 1.4.13, so that
the cubic threefold V3 is K-stable by Theorem 1.4.7.

Example 3.4.5 ([157, § 6.2]). Let V; be a smooth complete intersection of two quadrics
in P°. Then Vj is a Fano threefold in the family Ne1.14, and G = Aut(V}) is finite [42].
It follows from [178, Proposition 2.1] that

XQ%{xg—i—:cf—l—x%—l—xg—i—xi—i—xg:/\gatg+)\1x%+)\2:c§+)\3x§+>\4xi—i—)\5:c§:O} c P°

for some (pairwise distinct) numbers A, ..., A5, where xg, ..., x5 are coordinates on P°.
If \; = ' for a primitive sixth root of unity w, then ag(Vy) > 1 by Corollary 1.4.12,
so that V} is K-stable by Theorem 1.4.7.

Thus, using Theorem 1.1.12, we conclude that general smooth Fano threefolds in
the families Ne1.11, Ne1.12, Ne1.13, Ne1.14 are K-stable. In fact, all smooth Fano threefolds

in these families are K-polystable [7, 64, 190, 138, 2].
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3.5. K-stable cyclic covers. Some smooth Fano threefolds are cyclic covers of other
smooth Fano threefolds. Therefore, it is tempting to apply Proposition 1.5.9 to these
threefolds to prove their K-stability. Let us present few examples that show how to apply
Proposition 1.5.9 or its Corollary 1.5.10 to smooth Fano threefolds.

Example 3.5.1 ([7, Theorem 3.2]). Let X be any smooth Fano threefold Nel.1. Then
X is a smooth sextic hypersurface in P(1,1,1,1,3), so that X is a double cover of P?
branched over a smooth sextic surface. Then X is K-stable by Corollary 1.5.10.

Example 3.5.2 ([64, Theorem 1.1]). Let X be a smooth Fano threefold Ne1.2. Then X
can be obtained as a complete intersection in P(1,1,1,1, 1,2) given by

Mo+ 22+ 4+ 22+ P u? =0,
w2 :f(x7y7 Z7t7u)7

for some A € C and a quartic polynomial f, where x, y, z, t, u are coordinates of weight 1,
and w is a coordinate of weight 2. If A # 0, then X is isomorphic to a smooth quartic
threefold in P* that is given by (22 + ¢ + 22 + 2 + u?)? = N2 f(z,y, 2, t,u). If X = 0,
then X is a double cover of the quadric in P* given by 22 + 3% + 22 + t? + u? = 0, which
is branched over the smooth surface cut out on the quadric by f(z,y, z,t,u) = 0, where
we consider z, y, 2, t, u as coordinate on P*. Applying Corollary 1.5.10, we see that
the threefold X is K-stable if A = 0. Now, using Theorem 1.1.12, we deduce that general
quartic threefolds in P* are also K-stable.

Example 3.5.3 ([64, Theorem 1.1]). Let X be the complete intersection
{932 + P+ 22+’ =00 = f(x,y,z,t,u)} c P5,

where f(z,y,2,t,u) is a cubic polynomial, and x, y, 2, t, u, w are coordinates on P°.
Then X is a smooth Fano threefold Ne1.3, which is a triple cover of the quadric threefold
in P* branched over a smooth anticanonical surface. Applying Corollary 1.5.10, we see
that the threefold X is K-stable. Thus, general Fano threefolds Ne1.3 are also K-stable.

Example 3.5.4. Let X be a smooth Fano threefold Nt1.4. Suppose that

5 5
X - {ZQ:? = 072)\fo = 071% = f(x07x17x27x37x47x5)} C PG
=0 =0

for some pairwise different numbers Ay, ..., A5 and some quadratic polynomial f that does
not depend on xg, where xy, ..., x¢ are coordinates on P°. The projection to the first 6
coordinates gives a double cover w: X — Y, where Y is the smooth complete intersection
of two quadrics in P* described in Example 3.4.5. Since Y is K-stable by Example 3.4.5,
and the ramification divisor of w is a smooth surface in | — Ky|, we see that X is K-stable
by Corollary 1.5.10, so that a general Fano threefold Ne1.4 is K-stable.

Example 3.5.5 ([64, Theorem 1.1]). Let X be a smooth Fano threefold Ne1.5. Then X
can be obtained as an intersection of the cone V' C P over the Grassmannian Gr(2,5) in
its Pliicker embedding in P? with a quadric hypersurface and a linear subspace A of codi-
mension 3. If A does not contain the vertex of the cone Y, the threefold X is isomorphic
to an intersection of the Grassmannian Gr(2,5) C PY with a quadric hypersurface and
a linear subspace of codimension 2. If A contains the vertex of the cone, then X admits

a double cover of the unique smooth Fano threefold Ne1.15 that is branched in a smooth
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anticanonical surface. In this (special) case, X is K-stable by Corollary 1.5.10, because
the unique smooth Fano threefold Ne1.15 is K-polystable (see Example 3.4.1). Therefore,
a general Fano threefold in the family Nel1.5 is K-stable by Theorem 1.1.12.

Example 3.5.6 ([2, Corollary 4.9(5)], cf. Example 3.4.2). Let X be any smooth Fano
threefold Ne1.11. Then X is a sextic hypersurface in P(1,1,1,2,3). Let Y = P(1,1,1,2).
There is a double cover w: X — Y such that w is branched over a smooth surface B such
that B ~g 2(—Ky). Then 6(Y) = 2 by [17, Corollary 7.7]. Since B does not contain
the only singular point of the threefold Y, the log pair (Y, B) is purely log terminal. Thus,
the only prime divisor F over Y such that Ay p(F) = 0is B. But Sy(B) = -, which

129
implies that ’gz((g; = % > %. Then X is K-stable by Proposition 1.5.9.

Example 3.5.7 ([64, Example 4.2], cf. Example 3.4.3). Let X be a smooth Fano threefold
in the family Ne1.12. Then X is a double cover of P? branched over a smooth quartic
surface, so that the threefold X is K-stable by Corollary 1.5.10.

Example 3.5.8 ([64, Example 4.4]). Let P? x P? — P® be the Serge embedding, let V be
the projective cone in P over its image, let H be a hyperplane in P?, let Q be a quadric
in P? such that X = V N H N Q is a smooth threefold. Then X is a Fano threefold
in the family Ne2.6, and every smooth Fano threefold in this family can be obtained in
this way. If Sing(V) ¢ H, then X is isomorphic to a divisor in P? x P? of degree (2,2).
If Sing(V) € H, then there is a double cover w: X — W such that W is a smooth
divisor in P? x P? of degree (1, 1), and @ is branched over a surface in | — Ky|. In this
(special) case, X is K-stable by Corollary 1.5.10, since W is K-polystable (see Section 3.2).
By Theorem 1.1.12, general smooth Fano threefolds Ne2.6 are K-stable.

Example 3.5.9 ([64, Example 4.4]). Let X be a smooth threefold in the family Ne3.1.
Then X is a double cover of P! x P! x P! branched over a smooth surface of degree (2,2, 2).
By Corollary 1.5.10, the threefold X is K-stable, because P! x P! x P! is K-polystable.

3.6. Threefolds with infinite automorphism groups. Recall the following result:

Theorem 3.6.1 ([42, Theorem 1.2]). Every smooth Fano threefold that has an infinite
automorphism group is contained in one of the following 63 deformation families:
MNe1.10, Ne1.15, Nel.16, Ne1.17, Ne2.20, Ne2.21, Ne2.22, Ne2.24, Ne2.26, Ne2.27,

Ne 2.28, Ne2.29, Ne2.30, Ne2.31, Ne2.32, Ne2.33, Ne2.34, Ne2.35, Ne2.36, Ne3.5,
M3.8 Ne3.9, Ne3.10, N3.12, Ne3.13, Ne3.14, NeB3.15, Ne3.16, Ne3.17, Ne3.18, Ne3.19,
Ne3.20, Ne3.21, Ne3.22, Ne3.23, Ne3.24, Ne3.25, Ne3.26, Ne3.27, Ne3.28, Ne3.29,
MNe3.30, Ne3.31, Noy.2, Nej.3, Nej.j, Nej.5, Ney.6, Ney. 7, Nef.8, Nef.9, Ney. 10,
Nej.11, Ny 12, Ney. 13, Neb. 1, Neb. 2, Neb. 3, Ne6.1, Ne7.1, NeS.1, Ne9.1, Nel0.1.

FEach smooth threefold in the following 53 families has an infinite automorphism group:
Ne1.15, Ne1.16, Ne1.17, Ne2.26, Ne2.27, Ne 2.28, Ne2.29, Ne2.30, Ne2.31, Ne2.52,
Ne2.33, Ne2.34, Ne2.35, Ne2.36, Ne3.9, Ne3.13, NeB3.14, Ne3.15, Ne3.16, Ne3.17,
Ne3.18, Ne3.19, Ne3.20, Ne3.21, Ne3.22, Ne3.23, Ne3.24, Ne3.25, Ne3.26, Ne3.27,
Ne3.28, Ne3.29, Ne3.30, N3.31, Noj.2, Nej.3, Neg. 4, Nej.5, Nej.6, Ney. 7, Nef.8, Neq. 9,
Nej. 10, Neg. 11, Ney. 12, Ne5.1, Neb. 2, Ne5. 3, Ne6.1, Ne7. 1, NeS. 1, Ne9.1, Nel0.1.

FEach of the following 10 deformation families has at least one smooth member that has
an infinite automorphism group: Ne1.10, Ne2.20, Ne2.21, Ne2.22, Ne2.2j, Ne3.5, Ne3.8,
MN3.10, Ne3.12, Nej.13, while their general members have finite automorphism groups.
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It follows from [42] that every smooth Fano threefold in the following 22 deformation
families has a non-reductive automorphism group: Ne 2.28, Ne2.30, Ne2.31, Ne2.33, Ne2.35,
Ne2.36, Ne3.16, Ne3.18, Ne3.21, Ne3.22, Ned.23, Ne3.24, Ne3.26, Ne3.28, Ne3.29, Ne3.30, Ne3.31,
Neq 8 Neq.9, Ne4 10, Ned4. 11, Ne4.12. Thus, smooth Fano threefolds in these families are
not K-polystable by Theorem 1.1.4. We will see in Section 3.7 that they are K-unstable.
We know from Sections 3.1, 3.2, 3.3 and Example 3.4.1 that smooth Fano threefolds
Ne1.15, Ne1.16, Ne1.17, Ne2.32, Ne2.34, Ne2.29, Ne3.19, Ne3.20, Ne3.25, Ne3.27, Ned.4, Ne4.7,
Neb5.3, Ne6.1, Ne7.1, Ne8.1, Ne9.1, No10.1 are K-polystable. We know from Section 3.3 that
both smooth Fano threefolds Ne4.5 and Ne5.2 are K-unstable. For the remaining smooth
Fano threefolds that have infinite automorphism groups, Calabi Problem is solved in
Sections 3.7, 4.2, 4.4, 4.6, 4.7, 5.8, 5.9, 5.10, 5.14, 5.16, 5.17, 5.19, 5.20, 5.21, 5.22, 5.23.
We present a summary of these results in the table below.

’ Family ‘ Aut’(X) ‘ K-polystable | K-semistable ‘ References ‘
Ga No Yes [52, Example 1.4]
Ne1.10 G, Yes Yes Example 4.1.12
PGL,(C) Yes Yes Example 4.1.12
Ne2.20 G, Yes Yes Section 5.8
G, No Yes Remark 5.9.4
Ne2.21 G Yes Yes Section 5.9
PGL,(C) Yes Yes Lemma 4.2.2
Ne2 22 G,, Yes Yes Section 4.4
Ne2 94 G, No Yes Corollary 4.7.7
G2, Yes Yes Lemma 4.7.6
Ne2.96 G, x G,, No No Lemma 5.10.1
G No Yes Corollary 5.10.3
Ne2.27 | PGLy(C) Yes Yes Lemma 4.2.4
Ne3.b G, Yes Yes Section 5.14
Ne3.8 G, Yes Yes Section 5.16
Ne3.9 G, Yes Yes Section 4.6
Ne3 10 Gm Yes/No Yes Lemma 5.17.4, Corollary 5.17.7
G2, Yes Yes Sections 3.3, Lemma 5.17.3
Ne3.12 G,, Yes Yes Section 5.18
G, No Yes Lemma 5.19.8
Ne3.13 G Yes Yes Section 5.19
PGL,(C) Yes Yes Example 1.6.17, Lemma 4.2.5
Ne3. 14 G, No No Section 3.7
Ne3.15 G, Yes Yes Section 5.20
Ne3.17 | PGLy(C) Yes Yes Lemma 4.2.6
Ned.2 G, Yes Yes Section 4.6
Ned.3 G, Yes Yes Section 5.21
Ned 6 | PGLy(C) Yes Yes Lemma 4.2.1
Ne4. 13 G, Yes Yes Section 5.22
Ne5.1 G, Yes Yes Section 5.23
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3.7. Divisorially unstable threefolds. Let X be an arbitrary smooth Fano threefold.
By [88, Theorem 10.1], the threefold X is divisorially unstable if and only if X is contained
in one of the following 26 deformation families:
No2.23, No2.28, Ne2.30, Ne2.31, Nv2.33, Ne2.35, Ne2.36, Ne3.14,
Ne3.16, Ne3.18, Ne3.21, Ned.22) Ne3.23, Ne3.24, Ne3.26, Ne3.28, Ne3.29,
Ne3.30, Ne3.31, Ned.5, Ne4.8 Ned.9, Ne4.10, No4.11, Ne4. 12, Ne5.2.
Recall from Theorem 1.2.2 that X is K-unstable if it is divisorially unstable.
In the proof of Main Theorem, we will often use the following relevant result:

Theorem 3.7.1 ([88, Theorem 10.1]). Let X be any smooth Fano threefold that is not
contained in the following 41 deformation families:
Nel.17, Ne2.23, Ne2.26, Ne2.28, Ne2.30, Ne2.31, Ne2.33, Ne2.34, Ne2.35, Ne2.36,
Ne3. 9, NeB3. 14, N3.16, Ne3.18, Ne3.19, Ne3.21, Ne3.22, Ne3.23, Ne3.24, Ne3.25,
Ne3.26, N3.28, Ne3.29, M3.30, Ne3.31, Nef.2, Nej.4, Nef.5, Nef. 7, Ney. 8, Ney.9,
Ny 10, Nj.11, Noy. 12, Neb5.2, Ne5.3, Ne6.1, Ne7.1, Ne8.1, Ne9.1, Ne10).1.
Then Sx(E) < 1 for every prime Weil divisor E C X, i.e. X is divisorially stable.

In the remaining part of this section, let us show that all smooth Fano threefolds in
the 26 deformation families listed above are divisorially unstable. To do this, it is enough
to present an irreducible surface S C X such that 3(5) < 0. As in Section 1, we let

7(S) = Sup{u € R | the divisor —Kx — uS is pseudo—effective}.

For every u € [0,7(S5)], we denote by P(—Kx —uS) and N(—Kx — uS) the positive and
the negative parts of the Zariski decomposition of the divisor —Kx — uS, respectively.

Lemma 3.7.2. Suppose that X is contained in one of the following 13 families: Ne2.533,
Ne2. 35 Ne2.36, Ne3.26, Ne3.28, Ne3.29, Ne3.30, Ne3.31, Nej.9, Nej.10, Nej. 11, Nej. 12, Neh. 2.
Then X is divisorially unstable.

Proof. From Section 3.3, we know that the smooth Fano threefold X is toric, so that
the required assertion follows from Theorem 1.2.4. O

Example 3.7.3 (cf. Section 3.1). Let X = P! x Fy, let s be the (—1)-curve in Fy, let f
be a fiber of the projection F; — P!, and let S and F be the preimages of these curves
in X, respectively. Then —Kx ~ 25 + 3F + 2R, where R is a fiber of the projection to
the first factor X — P'. This implies that 7(S) = 2, and the divisor —Ky — uS is nef for
every u € [0,2], which gives

1

ﬁ(S):l_ —K§(

2 1 [? 1
/ (—KX—uS)gzdu:l——/ 6(2—u)(u+4)du=—= <0,
; 48 J, 6
so that X is divisorially unstable (cf. Lemma 2.3).

To deal with the families N°2.23, Ne2.28 and N¢2.30, we need the following lemma.

Lemma 3.7.4 ([88, Lemma 9.9]). Let Y be a smooth Fano threefold such that — Ky ~ rH
for an ample divisor H € Pic(Y) and an integer v > 2, let S1 and Sy be two irreducible
surfaces in'Y such that S1 ~ diH and Dy ~ doH for some positive integers di < do < 7.

Suppose, in addition, that the scheme-theoretic intersection C' = S1NSy is a smooth curve.
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Let m: X — 'Y be the blow up of the curve C, and let 51 be the proper transform on X of
the surface Sy. Suppose that X is a Fano threefold. Then

8(5,) = 2d3dy + 3d3d3 — 8d3dyr + Adyr® — 1
VT Ady (dPdy + dyd2 — 3dydar + 1)

Proof. Let E be the m-exceptional surface. Then —Kx — uS; ~p (7 — u)S, + (7 —DE,
which implies that 7(51) = 7-. We have (—Kx —uSi)[g, ~r (r —ds —u(di — do))7*(H)|3,
and (—Kx —u§1)|E ~p (r—dy+u(dy—dy))m* (H)| g+ (1 —u) S, 5, where S is the proper
transform on X of the surface S;. Note that §2|E ~ §1]E —|—£d2 — dy)m*(H)|g, so that
the divisor S|p is nef. Therefore, we conclude that —Kx — wS; is also nef for u € [0, 1].
If1<u< g, then P(—Kx —uSi) = (r —ud)m*(H) and N(—Kx —uS1) = (u—1)E.
One has (7*(H))?- E =0 and (7*(H)) - E? = —H - C = —d;dyH?. Note also that
Neyy =2 Oc(diH|e) @ Oc(doH|g),

so that E3 = —Cl(NC/y) = —(dl +d2)H C = —dldg(dl +d2)H3. Thus, ifue [0, 1], then
VOI( — KX — U§1) = ((7" — Ud1)3 - 3d1d2(’l" — Ud1>(1 - U)2 + dldg(dl + dg)(l — u)3>H3.

Likewise, if 1 < u < -, then vol(—Kx — uS)) = (r — udy)3H3. Now, integrating, we get
the required formula for 3(S;). O

Lemma 3.7.5. Suppose that X is contained in one of the families Ne2.23, Ne2.28, Ne2.30.
Then X is divisorially unstable.

Proof. A smooth Fano threefold N¢e2.23 is a blow up of a smooth quadric in P? along its
section by a hyperplane and another quadric. Likewise, each smooth Fano threefold Ne2.28
can be obtained by blowing up P? along an intersection of a plane and a cubic surface.
Finally, a smooth Fano threefold Ne2.30 is a blow up of P* along an intersection of a plane
and a quadric surface. Thus, we can apply Lemma 3.7.4 with

e r=23,dy =1, dy=2if X is contained in the family Ne2.23

e r=4 dy =1, dy =3 if X is contained in the family Ne2.28

e r=4dy=1,dy, =2if X is contained in the family Ne2.30.
This gives a surface S C X with 8(S) = —, 8(S) = =2 3(5) = — 2 respectively. [

1 T 160 23
In the remaining part of the section, we will deal with smooth Fano threefolds in
the families Ne2.31, Ne3.14, Ne3.16, Ne3.18, Ne3.21, Ne3.22, Ne3.23, Ne3.24, Ned.5, Neqd 8.

Lemma 3.7.6. Suppose X is a smooth Fano threefold in the deformation family Ne2.31.
Then X is divisorially unstable.

Proof. Let Q be a smooth quadric hypersurface in P4, and let L be a line in the quadric Q.
Then we have the following commutative diagram:

where 7 is the blow up of the line L, the map y is a projection from L, and ¢ is a P!-bundle.
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Let E be the m-exceptional surface, let Hg = 7*(Ops(1)|g), and let Hpz = ¢*(Op2(1)).
Then —Kx ~ 3Hp2 + 2F, so that 7(F) = 2, and —Kx — uFE is nef for u € [0, 2], so that

1 [? 1 [? 2
Ey=1-— | (-Kx —uE)’du=1-— [ (2—u)(23 —v* + 4u)du = —— < 0.
BE) =1~ g5 | (~Kx —uB)du =1 g6 [ (223w dw)du = 55 <
Therefore, X is divisorially unstable. U

Lemma 3.7.7. Suppose X is a smooth Fano threefold in the deformation family Ne3.14.
Then X is divisorially unstable.

Proof. Let € be a smooth plane cubic curve in P?, let IT be the plane in P? that contains €,
let P be a point in P? such that P ¢ II, let ¢: V; — P3 be the blow up of this point, and
let C' be the proper transform on V7 of the cubic curve ¥. Then the threefold X can be
obtained as a blow up 7: X — V7 along the curve C.

Let E¢ be the m-exceptional surface, and let Ep, Ho, F' be the proper transforms on
the threefold X of the ¢-exceptional surface, the plane II, and the cubic cone in P? over
the curve ¥ with vertex P, respectively. We have the following commutative diagram:

P2 P(Op & Op2(2)) P(1,1,1,2)
k |

‘/7 s X o }’}

¢ jw \

Pp3 P? Y

where w is the blow up of the curve %, ¢ is the contraction of the surface Fp, ¢ and
1 are the contractions of the surfaces Ho and F', respectively, ¢ is the contraction of
the surface ¢(He), Y is a Fano threefold that has a singular point of type 3(1,1,1),
the morphism Y — Y is a blow up of a smooth point of the threefold Y, both V; — P?
and P(Opz @ Op2(2)) — P? are P!-bundles, the morphism P(Op2 & Op2(2)) — P(1,1,1,2)
is the contraction of the surface 1(Hc), and Y — P(1,1,1,2) is the contraction of o(F).

Observe that — Ky ~ 2H¢ + 2Hp + E¢, where Hp is the proper transform on X of

a general plane in P? containing P. Then 7(H¢) = 2. For u € [0, 2], we get
(2 —u)Hc+2Hp—|—EC ifué [O, 1],
P(—Kx —uH¢) = :
(2—u)(He + Ec) + 2Hp if u € [1,2],
and
N(— K I 0if u e [0,1],
(= Ky —ulle) = (u—1)Ec ifu e [1,2].

Hence, we obtain

I 1 [?
B(He) = 1—5 ((2—u)H0+2HP+EC)3du—3—2 ((2—u)(HC+EC)+2Hp)3du:
0 1
—1- L 1 (32—3u—6uQ—4u3)czu—i/2 (56 — 48u + 12u” — u?)du = ~ by
32 Jo 32 J; 128 '
Therefore, the threefold X is divisorially unstable. O
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Lemma 3.7.8. Suppose X is a smooth Fano threefold in the deformation family Ne3.16.
Then X is divisorially unstable.

Proof. Let € be a twisted cubic curve in the space P?, let P be a point in the curve €,
let ¢: V; — IP3 be the blow up of this point, and let C be the proper transform of the cubic
curve € on the threefold V7. Then X can be obtained as a blow up 7: X — V5 along
the curve C'. One can see that X fits into the commutative diagram

|
S

where W is a smooth divisor of degree (1,1) in P? x P2, both p; and p, are P!-bundles,
the morphism w is the blow up of P? along ¢, the morphism P? — P? is the P*-bundle
whose fibers are proper transforms of the secant lines in P? of the twisted cubic curve €,
the morphism V57 — P? is the P'-bundle whose fibers are proper transforms of the lines in
the space P? that pass through P, and ¢ is the blow up of the fiber of @ over P.

We denote by E¢ the m-exceptional surface, we denote by Ep the go—exceptional surface,
and we denote by F the 1-exceptional surface. Then Eo =2 P! x P!, Ep &2 F; and F = [F,,
since ¢ o w(F') is the unique quadric cone in P? with vertex P that contains the curve €.
Let us compute 5(Ep). First, we observe that 7(Ep) = 2, since —Kx ~ 2Ep +2F + E¢.

Denote by s the (—1)-curve in Ep, denote by f a fiber of the projection EFp — P!, and
denote by ¢ the proper transform on X of a ruling of the cone ¢pon(F'). Then s = E¢|g,,
and the curves s, f and ¢ generate the Mori cone NE(X). Moreover, one has

(- Kx —uEp)-s=1,
(—KX—uEp)-f:1+u,
(—KX—uEp)~€:1—u,
so that —Kx —uFEp is nef for u € [0,1]. If u € [1,2], then N(—Kx —uFEp) = (u—1)F and
P(— Kx —uEp) ~g (¢om)" (Ops(6 — 2u)) — (4 —u)Ep — (2 — u)Ec.

Therefore, we see that

1 2
ﬁ(D):l—i (—KX—UEP)?)du—i/ (_KX—uEp+(1—u)F)3du:
34 Jo 34/,
1L 1(34—9u—6u2—u3)du—i 2(48—36u—|—6u2)du:—i<0
34 /o 34 J; 136 ’
so that X is divisorially unstable. O
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Lemma 3.7.9. Suppose X is a smooth Fano threefold in the deformation family Ne3.18.
Then X is divisorially unstable.

Proof. The Fano threefold X can be obtained as a blow up 7: X — P? along a disjoint
union of a smooth conic C' and a line L. There is a commutative diagram

Q/i\y
g
et

where ¢ is the blow up of the line L, the morphism ¢ is the blow up of the conic C,
the morphism 0 and ¢ are the blow ups of the proper transforms of the curves L and C,
respectively, @ is a smooth quadric in P4, the morphism 7 is a blow up of a point in Q,
the morphism @) — @ is the blow up of a conic (the proper transform of the line L),
the morphism Y — P! is a P2.-bundle, the morphism é — P! is a fibration into quadric
surfaces, and 1) is the contraction of the proper transform of the plane in P* containing C.

Let E¢ and Ep, be the m-exceptional surfaces that are mapped to C' and L, respectively,
let He be the proper transform on the threefold X of the plane in P? that contains C,
and let H;, be the proper transform on X of a general plane in P? that passes through L.
Then —Kx ~ 3H¢ + 2E¢ + Hp, which implies that 7(H¢) = 3. Let us compute B(H¢).

First, we observe that Ho = [F;. Denote by s the unique (—1)-curve in the surface Hc,
denote by f and /¢ fibers of the natural projections Ho — P! and Ec — C, respectively.
Then the curves s, f and ¢ generate the Mori cone NE(X), and the corresponding extremal
contractions are ¢, 1 and 6, respectively. Note also that Ho |y, ~ —s —f and Heo - ¢ = 1.
Therefore, for v € [0, 3], we have (—Kx —uH¢)-s =1, (—Kx —uH¢)-f =1+ wu and
(-Kx —uH¢g) - ¢ =1 —u, so that —Kx — uH¢ is nef for u € [0,1]. If u € [1,3], then
N(—Kx —uFEp) = (u—1)E¢, so that P(—Kx —uH¢) ~g (4—u)7*(Ops(4)) — E. Then

1 /! I 7
BHe)=1- ¢ i (36—9u—6u2—u3)du—3—6 1 (54 —45u+12u° — u?)du = 5 <0
so that X is divisorially unstable. Il

Lemma 3.7.10. Suppose X is a smooth Fano threefold in the deformation family Ne3.21.
Then X s divisorially unstable.

Proof. Note that there is a blow up m: X — P! x P? of a smooth curve C' of degree (2, 1).
Let S be the proper transform on X of the surface in P! x P? of degree (0, 1) that passes
through the curve C, let ¢; and /5 be the rulings of the surface S = P! x P! such that
the curves m(¢1) and 7(f5) are curves in P! x P? of degree (1,0) and (0, 1), respectively,

let E be the m-exceptional surface, and let /3 be a fiber of the natural projection £ — C.
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Then S|g ~ —{1—{y, the curves £y, {5, {3 generate the Mori cone NE(X), and the extremal
rays R>o[f1] and R-[¢5] give birational contractions X — U; and X — Us, respectively.
It follows from the proof of [43, Lemma 8.22] that there is a commutative diagram

P! x P2

] T

P! P2

where the morphism U; — P! is a quadric bundle, the morphism U, — P? is a P!-bundle,
the map Uy --» Us is a flop, and V' is a Fano threefold Ne1.15 with one isolated ordinary
double singularity. For details, we refer the reader to the case (2.3.2) in [199, Theorem 2.3].

We have 7(5) = 3, since —Kx ~ 35S+ 2FE + (pryom)*(Op1(2)), where pry: P! x P? — P!
is the projection to the first factor. If u € [1,3], then P(—Kx — uS) = (u — 1)E and
P(—Kx —uS) ~g (3—u)(pryom)*(Opz(1)) + (pry o m)*(Op1(2)), where pry: P x P? — P?
is the projection to the second factor. Integrating, we get 5(5) = —% < 0. O

Lemma 3.7.11. Suppose X is a smooth Fano threefold in the deformation family Ne3.22.
Then X s divisorially unstable.

Proof. Let pry: P! x P2 — P! and pry: P! x P2 — P? be the projections to the first and
the second factors, respectively, let H; be a fiber of the map pry, let Hy = pri(Op2(1)),
and let C' be a conic in H, = P?. Then there is a blow up ¢: X — P! x P* along C.

Let Ec be the ¢-exceptional surface, let H; be the proper transform of the surface H; on
the threefold X, let F' be the surface in |Hs| that contains C, and let F' be the proper
transform of this surface on X. We have the following commutative diagram:

P! x P?
pry pro

P! v P2
n X o

/ \
Y ]P)(O]pz @ (9]132 (2))

\ /

P(1,1,1,2)



where 7 and ¢ are the contraction of the surfaces H; = P? and F = P! x P!, respectively,
the morphisms @ and ¢ are the contractions of the surfaces ¢(H;) and m(F), respectively,
the morphism o is a P!-bundles, and 7 is a fibration into del Pezzo surfaces such that all
its fibers except 7(F') are isomorphic to P2, while 7(F) = P(1,1,4). Note that the Mori
cone NE(X) is generated by the extremal rays contracted by 7, ¢ and 1.

Let us compute B(H;). Take u € Rsg. Then

~ ~ 3~ 5§ ~
—Kx —uH; ~g (2 —u)H; + SF+5Ee ~e (2 —w)H; + Ec + ¢*(3Hs,),

so that —Ky — uH, is pseudo-effective <= u < 2. Moreover, if u € [0, 2], we have
~ 2—u)H, 4+ Ec +v¢*(3Hs) if u e [0, 1],
P(= Ky —ufly) = 4" Vi + Bo + 47 (35%) 0.1
(2 —u)(Hi + Ec) +¢*(3H,) if u € [1,2],
and
N(_ K 7 0if u € [0, 1],
(= Ky —u 1>_{(u—1)ECifu€[1,2].

Hence, we see that B(H¢) is equal to

L o 12 _
1—4—O ((2—u)H1+Ec+¢*(3H2))3du_4—0 ((2_“)(Hl+Ec)+w*(3H2))3du:
0 1
:1—i 1(40—3u—6u2—4u3)alu—i 2(54—27u)du:—3<0
40 Jo 40 /4 40 ‘
Therefore, the threefold X is divisorially unstable. N

Lemma 3.7.12. Suppose X is a smooth Fano threefold in the deformation family N3.23.
Then X s divisorially unstable.

Proof. Let € be a smooth conic in the space P2, let P be an arbitrary point in the conic €,
let ¢: V; — IP3 be the blow up of the point P, and let C' be the proper transform on
the threefold V7 of the conic ¥ . Then X can be obtained as a blow up 7: X — V7 along
the curve C'. One can see that X fits into the commutative diagram

where @ is a smooth quadric threefold in P4, the morphism w is the blow up of the conic €,

the morphism P3 — Q is the contraction of the proper transform of the plane in P? that
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contains % to a point, ¢ is a blow up of the fiber of the morphism w over the point P,
the morphism @ — (@ is the blow up of a line on @) that passes through the latter point,
and @ — P? is a P-bundle.

Denote by E¢ the m-exceptional surface, denote by Ep the p-exceptional surface, and
denote by H¢ the proper transform on X of the plane in P? that contains C. Then

—Kx ~7*(Ops(4)) — 2Ep — Ec ~ 4Hc + 2Ep + 3E¢,

since Ho ~ (¢ om)*(Ops(1)) — Ep — E¢. In particular, we have 7(Hg) = 4.

Observe that Ho = F1. Let s be the (—1)-curve in H¢, and let f be a fiber of the natural
projection Ho — P'. Denote by ¢ a fiber of the projection F- — C that is induced by .
Then the curves s, f, ¢ generate the cone NE(X), the contractions of the corresponding
extremal rays are o, ¥, 7, respectively, and the intersections of the curves s, f, ¢ with
the divisors He, Ep, Fc, —Kx are contained in following table:

He Ep Ec —Kx
S 0 —1 1 1
f -1 1 1 1
12 1 0 -1 1

Let u € [0,4]. Since —Kx —uH¢ ~g (4 —u)He + 2Ep + 3E¢, we obtain
(4—w)He +2Ep + 3E¢ if u € [0,1],
P(—Kx —uH¢) ={ (4—u)(He + Ec) +2Ep if u € [1,2)],
(4—u)(He + Ec+ Ep) if u € [2,4],

and
0if u € [0,1],
N(= Ky —uHe) =4 (u=1)Eg if u € [1,2],
(u—1)He + (u—2)Ep if u € [2,4].

Hence, we obtain

1! 1 [? I
B(He) =1- 15 i (42—9u—6u?—ui*’)du—E 1 (56—36zhuf>‘u?)du—E : (4—u)’du,
so that f(H¢) = —% < 0. Therefore, the threefold X is divisorially unstable. U

Lemma 3.7.13. Suppose X is a smooth Fano threefold in the deformation family Ne3.2/.
Then X is divisorially unstable.

Proof. Note that there is a blow up 7: X — P! x P? of a smooth curve C of degree (1,1).
Let E be the m-exceptional surface, and let .S be the proper transform on X of the surface
in P! x P? of degree (0, 1) that contains C. Then, arguing as in the proof of Lemma 3.7.10,
we see that 7(5) = 3. Similarly, we see that

— Kx —uSifu€|0,1],

—Kx—uS—(u—1)Eifuel,3]
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and
0if u € [0, 1],

(u—1Eifue[l,3].
Integrating, we get 5(S) = —1 < 0. Therefore, we see that X is divisorially unstable. [J

N(—KX—uS):{

Lemma 3.7.14. Suppose X is a smooth Fano threefold in the deformation family Nej.5.
Then X is divisorially unstable.

Proof. There is a birational morphism 7: X — P! x P? such that 7 is a blow up along
a disjoint union of a smooth curve C' of degree (2, 1) and a smooth curve L of degree (1,0).
Denote by E¢ and Ej, the m-exceptional surfaces such that 7(E¢) = C and n(E) = L.
We also let H; = (pr;om)*(Op1(1)) and Hy = (pryom)*(Op2(1)), where pry: P x P2 — P!
and pry: P! x P2 — P? are projections to the first and the second factors, respectively.
Then —KX ~ 2H1 + 3H2 - EC — EL.

Let S be the proper transform on X of the surface in P! x P? of degree (0,1) that
contains C, and let Hj, be a general surface in the pencil |Hy — Er|. Then S ~ Hy — E¢,

so that —Kx ~ 2S + Ec + Hyp + 2H,, cf. [88, p. 577]. We have
— Kx —uS ifu€|0,1],
P(—Kx—uS) =
( x — uS) {—KX—US—(u—l)Eifue[l,Q],
and
N(_ K S 0if u e [0,1],
(- X_u)_{(u—l)Eiqu[1,2].

Therefore, we see that

1! 1 [ 5
S)y=1-— 32 — 2u® — 6u® — 6 d——/62— 4 —u)du = —— < 0.
B(S) 3/, ( u u u)du 3, (2—u)(4 —u)du ol
Therefore, we see that X is divisorially unstable. U

Lemma 3.7.15. Suppose X is a smooth Fano threefold in the deformation family N24.8.
Then X s divisorially unstable.

Proof. For i € {1,2,3}, let pr;: P! x P! x P! — P! be the projection to the i-th factor,
and let H; be a fiber of this projection. Let C' be a curve of degree (1,1) in H; & P! x P'.
Then there exists a blow up 7: X — P! x P! x P! along the curve C.

Let E be the exceptional surface of the birational morphism 7, and let H 1 be the proper
transform of the surface H; on the threefold X. Then H; ~ 7 (Hy) — E, so that

—Kx ~ 7 (2H, + 2H, + 2H3) — E ~ 2H, + E + 7*(2H, + 2H3).
Let us find (H;). Take u € Rsg. Then —Kx —uH; ~g (2—u)H,+ E+7*(2Hy+2Hs;),

so that —Kx — uH; is pseudo-effective <= u < 2. Moreover, if u € [0, 2], we have

P~ Ky — ulh) (2 —w)H, + E +7*(2H, + 2H) if u € [0, 1],
S —Uu —
Y @ wnt (Hy) 4 7 (2H, + 2H) if u e [1,2],

and
N(— K = 0if w € [0, 1],
(= Kx —uth) = (u—1)Ec if u € [1,2].
Integrating, we get B(He) = —32 < 0, so that X is divisorially unstable. O
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4. PROOF OF MAIN THEOREM: SPECIAL CASES

4.1. Prime Fano threefolds. A smooth Fano variety is prime if its anticanonical divisor
generates the Picard group. Smooth prime Fano threefolds were classified by Iskovskikh
in [113, 114]. They form ten deformation families, which we denote by: Nel.1, Ne1.2, Ne1.3,
Nel.4, Ne1.5, Ne1.6, Ne1.7, Ne1.8, Ne1.9, Ne1.10. We will present (at least one) K-stable Fano
threefold in each family. Thus, a general smooth prime Fano threefold is K-stable by
Theorem 1.1.12. With the exception of family Ne1.9, this is already known [3].

Example 4.1.1. Let X be a smooth Fano threefold Ne1.1. Then X is a double cover of P3
branched along a smooth surface B ~ Ops(6), so that X is K-stable by Corollary 1.5.10.
Alternatively, one has

543 13 33 7 8 9 11 13 15 17 19 21 29
6°50715"38°879710° 127147167187 20" 22" 30’
by [36, Proposition 3.7], so that X is K-stable by Theorem 1.4.7.

Example 4.1.2. A smooth Fano threefold X in this family is

(1.2%) either a quartic threefold X C P4,
(1.2°) or a double cover of a smooth quadric threefold in P* branched along a smooth
surface of degree 8.

In the latter case, the K-stability of the Fano threefold X follows from by Corollary 1.5.10.
In the former case, a(X) > 2 by [27, Theorem 1.3] and X is K-stable by Theorem 1.4.7.
In the case where X is a Fermat hypersurface, the K-stability of X is proved in [201, 157].

Example 4.1.3 ([157, 6.3]). Let X be the complete intersection

6 6 6
{le = Zx? = fo :O} C PS.
i=0 i=0 i=0

Then X is a smooth Fano threefold Ne1.3, and X admits a faithful action of the symmetric
group &7. By Corollary 1.4.12, ag,(X) > 1, and X is K-stable by Theorem 1.4.7.

Example 4.1.4 ([157, 6.1]). Let ag, -+ ,a¢ and by, - - - , bg be complex numbers such that
every 3 X 3 minor of the matrix

1 1 1 1 1 1 1
ap @1 G2 a3 Qa4 as Gag

bo b1 bg bg b4 b5 b6

is invertible (this holds generically). Let X be the complete intersection

6 6 6
{fo = Z%‘I? = szxf = O} c PS,
i=0 i=0 i=0

and let G = Aut(X). Then X is a smooth Fano threefold Ne1.4, the group G is finite [42],
and ag(X) = 1 by Corollary 1.4.12, so that X is K-stable by Theorem 1.4.7.

Example 4.1.5. Now, we give another argument for the K-stability of a Fano threefold
in the family Ne1.5° from the one outlined in Example 3.5.5. Let V5 be the smooth Fano

threefold Ne1.15. Then Aut(Vs) = PGLy(C). Fix a subgroup 2; C Aut(V;). It follows

from [50, Theorem 8.2.1] that there is a pencil of As-invariant anticanonical surfaces,
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whose general member is smooth. Let m: X — V5 be the double cover of V5 branched
over a general s-invariant anticanonical surface B. Then X is a smooth Fano threefold
that belongs to the deformation family Ne1.5°. Moreover, the threefold X is endowed with
a faithful action of the group G = 5 X py and ag(X) > 1. Indeed, assume this is not
the case, i.e. that ag(X) < 1. Applying Theorem 1.4.11 to X with x4 = 1, we obtain
a contradiction. First, there can be no G-invariant surface as in Theorem 1.4.11(1) because
the Picard group of X is generated by —Kx. Second, there are no G-fixed points on X,
because there are no As-fixed points on V5 by [50, Theorem 7.3.5], and Theorem 1.4.11(2)
doesn’t hold. Last, we show that X does not contain smooth G-invariant rational curves
of anticanonical degree less than 16, so that Theorem 1.4.11(3) fails as well. Let C' be
such a curve. Since G does not act faithfully on P! and Vs does not have 2A5-fixed points,
the action of the subgroup %5 on C'is faithful, and the action of the Galois involution of
the double cover m on C' is trivial, so that C' lies on the ramification divisor. Therefore
7(C) C B is an irreducible 2(s-invariant curve in Vs of degree less than 16. There is no
such curve by [50, Theorem 13.6.1] and [50, Corollary 8.1.9], so that ag(X) > 1, and X
is K-stable by Theorem 1.4.7.

Example 4.1.6. Let X be the smooth Fano threefold constructed in [175, Example 2.11].
Then X belongs to the family Ne1.6 and Aut(X) = SLy(Fs), which is a simple group [60].
Let G = Aut(X). Then ag(X) > 1 by Corollary 1.4.13. Therefore, we conclude that
the threefold X is K-stable by Theorem 1.4.7.

Example 4.1.7. Let X be the smooth Fano threefold constructed in [175, Example 2.9].
Then X belongs to family Ne1.7, and it admits a non-trivial action of G = PSLy(F1).
Since G is simple, ag(X) = 1 by Corollary 1.4.13 (see also the proof of [48, Theorem A.5]).
Thus, the threefold X is K-stable by Theorem 1.4.7.

Example 4.1.8. Let C'\ be the quartic curve
{x4 +yt 4+ 2t + A (2P + P+ ) = 0} C P?

where A € C\{—1,£2}. Then C, is smooth, and Aut(C) contains a subgroup isomorphic
to &4. In fact, by [69, Theorem 6.5.2], Aut(Cy) = &, when A # 0 and A + 3\ + 18 # 0
(and is strictly larger otherwise). The action of Aut(C)) on the curve C is induced by
its linear action on the plane P?. Let G = &3 be a subgroup in Aut(C)) that acts on P?
by permuting the coordinates x, y and z. Set

P=[1l:s:s],Phb=[s:1:5,Ps=[s:s:1],
Pi=:w:w,P=1:w*:w,P=[1:1:1],

where w is a primitive cube root of unity, and s € C such that (A + 2)s* +2Xs* + 1 = 0,
so that s # 0, s # 1 and s # ;. One can check that {P;, P», P3} is a G-orbit of length
3 contained in Cy, {Py, Ps} fis a G-orbit of length 2 contained in Cy, Py ¢ C), and Ps
is the only G-invariant point in P2. Moreover, no three points among P, P>, P, P,
P5 and Py are collinear, and the points P, P», P35, Py, Ps and Ps are not contained in
a conic. Let m: S — IP? be the blow up of the points Py, P, P, Py, Ps, Ps. Then S is
a smooth cubic surface in P3. By construction, G acts on S, and its action is induced by
the linear action on P3. Let I'y be the proper transform of C on S; I'y is a G-invariant

smooth non-hyperelliptic curve of genus 3 and degree 7 in P3. By [114, 6.1] (see also
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the construction in [16]), we have a G-equivariant Sarkisov link:

where ¢ is the blow up of I'y, x is the composition of five Atiyah flops, and ¢ contracts
the proper transform of S to a smooth curve ¢ with—Kx -/ = 1, and X, is a smooth Fano
in the family Ne 1.8. As X, has no G-fixed points, we conjecture that ag(X)) > %, which
would imply that X, is K-stable. Unfortunately, we were unable to show that aq(Xy) >
Nevertheless, we know from [3] that X is K-stable.

Example 4.1.9. Let W = P(Op1 @ Op1 @ Op1(1) ® Opi(1)), and let 7: W — P! be
the natural projection. Denote by H the tautological line bundle and by F' a fiber of .
Write to,t; for the coordinates on P!, so that |F| =< tg,t; > and z,v, z,t be coordinates
on the fibre with z,y sections of H and and w, z sections of H — F. Let V' be the divisor
in [2H + F| defined by

{tle +toy? + taxz + tiyw + (£ — 415) 2% + to(t; — 4t w? = 0}

Denote by C the curve {z = w = 0} C V, and by ¢: V — P! the restriction of 7 to V.
Then V is (2.3.8) in [199]: V is a Picard rank 2 weak Fano threefold with anticanonical
degree (—Ky)? = 16. Further, the anticanonical map of V is small, and C is the only
curve with trivial intersection —Ky - C' = 0. The curve C is a smooth rational curve
that is a bisection of ¢ and N¢jy = Opi(—1) @ Op1(—1). The morphism ¢ is a quadric
fibration, so that V' is a Mori fibre space, since Pic(V) = Z[H|y] @ Z[F'|v]. Moreover, it
follows from [199] that there is a Sarkisov link

(4.1.10) Vo--X__ -V

where the anticanonical map ¢ contracts C to an _ordinary double point of X, x is
an Atiyah flop in C, w is a birational morphism, and ¢ is a del Pezzo fibration of degree 4.
Note that the map ¢ o x is given by |(H — F)|v|, all surfaces in this pencil are singular
along C, and its general surface is smooth away from this curve. Let S be the surface in
the pencil |(H — F)|y| that is cut out by w = Az, where X\ is one of the 16 roots of

75759616\ — 303812608\ — 759031797\% — 303812608\ + 75759616 = 0.
Then S is singular along €', and it is also singular at the point in W with coordinates:
z = 16951220863415104831488,
y = —774931922427914414456832\'° + 2876118937068128419971072\ 1+
+ 8753709667519885555073664\" + 5089346293183564791988224 )%,

z = 1079574528002 + 498001195008 \% — 5599436221125\ — 5780173209600,
t, = 150338377728,

to = —300841435136 A + 1487659560960\ + 1673023786335\ — 262136950912)\2.
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Thus, the pencil |(H — F)|y| contains at least 16 surfaces that are singular away from C'.
This implies that the group Aut(V') is finite. Indeed, Aut(V') = Aut(V) = Aut(X), and
the link (4.1.10) is Aut(V')-equivariant, which gives an exact sequence of groups

1 — T — Aut(V) -5 PGLy(C)

where v is given by the induced Aut(V)-action on P!, and I acts trivially on P! in (4.1.10).
It follows that I' is finite, since it acts faithfully on a general fiber of the fibration 5 Since
im(v) permutes points in P! that corresponds to the surfaces in |[(H — F)|y| that are
singular away from C', we see that im(v) is finite. This shows that Aut(V') is finite, which
can also be proved using [13, 118]. Let G be the subgroup in Aut(V") generated by

Ar: (zyy, z,w by, 1) = (Y, z,w, 2,9, 1),

Ay (zyy, z,w, ty,t1) = (, —y, 2, —w, 11, t1),

As: (zyy, z,w, ty, b)) — (ix,y, —iz,w, —t, ).
Observe that V is G-invariant, and G acts faithfully on V| so that we can identify G with
a subgroup in Aut(V'). Then ¢ is G-equivariant and the following assertions hold:

(i) V contains no G-invariant points,

(i) |F|v| and |(H — F)y| do not contain G-invariant surfaces,

(iii) V' contains no G-invariant irreducible curve C' such that C' - F' < 1,

(iv) V contains no G-invariant irreducible surface S such that —Ky ~g AS + A for
some rational number A > 1 and effective Q-divisor A on the threefold V', because
the cone of effective divisors on V' is generated by F|, and (H — F)|y.

Then ag(V) = 1 by Corollary 1.4.14. But we have ag(X) = ag(V) by Lemma 1.4.6,

where we identify G with a subgroup of Aut(X) using the fact that ¢ is G-equivariant.

Thus, the singular Fano threefold X is K-polystable by Theorem 1.4.7 and hence K-stable

by Corollary 1.1.6. By [160, Theorem 11| and [117, Theorem 1.4], X has a smoothing

to a member of the family N°1.8. Now, using Theorem 1.1.12, we conclude that general
smooth Fano threefold Ne1.8 is K-stable.

Example 4.1.11. Let Y be the smooth complete intersection in P° given by
ToTy — T3 + 24(T1 + 3) + T5(70 + T2) + 27 = 0,
{x1x3 — x5+ w5(22 + 70) + 14(23 + 1) + 75 = 0,
Let G be the subgroup in Aut(IP’5) that is generated by the involutions
[To: @1 i wg i@y 5] > g o Ty X 2 X5 Ty,
[To: @y i wotwg i xy 5| > [wo s —xy Tyt —Xg —Xy T

Then G = p, X p,, the threefold Y is G-invariant, G acts on Y faithfully, and G preserves
the three-dimensional subspace A = {4 = x5 = 0} C P5. Then ANY is given by

Loy — xf = 2123 — x% =0.

It consists of a twisted cubic curve C' and its secant line L that is cut out by x; = x5 = 0.

Both C' and L are G-invariant. Let H = Ops(1)|y, and let H be the pencil in |H | consisting

of surfaces passing through C. Then H is cut out by A\zy + pxs = 0, where [\ : p] € PL.

This pencil has no G-invariant surfaces. Let a: Y — Y be the blow up of the curve C, and

let L be the proper transform on Y of the line L. Then K 3 — 18, the divisor —K 7 is nef,
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and L is the only irreducible curve in V that has trivial intersection with the divisor — K’ 2
Moreover, there is G-equivariant commutative diagram (see [199, (2.13.3)]

where x is a flop of the the curve L, the morphism f is the contraction of the curve L, the
morphism + is a flopping contraction, 7 is a fibration into quintic del Pezzo surfaces, and v
is the map given by H. Then V is a smooth weak Fano threefold, X is a Fano threefold
with one Gorenstein terminal singular point such that —K% = 18 and Pic(X) & Z[—Kx],
and the group Aut(X) is finite, since Aut(Y) is finite [42]. Thus, applying Corollary 1.4.16,
we see that ag(V) > 3. But ag(X) = ag(f/) by Lemma 1.4.6, so that X is K-stable by
Theorem 1.4.7 and Corollary 1.1.6. By [160, Theorem 11] and [117, Theorem 1.4], it has
a smoothing to a Fano threefold Ne1.9. Thus, a general Fano threefold in the damily Ne1.9
is K-stable by Theorem 1.1.12.

Example 4.1.12 ([74, 76, 65, 129, 52, 95]). Fix u € C\ {0, 1}, and let @, be the smooth
quadric in P* given by u(zw — 2%) + (2% — yt) = 0, and let G the subgroup in PGL4(C)
generated by the involution [z :y:z:t:w]— [w:t:z:y: x| and the transformations

[m:y:z:t:w]|—>[:E:)\y:)\3,z:)\5t:)\6w],

where A € C*. Then G = C* x u, and @, is G-invariant, so that GG is naturally identified
with a subgroup in Aut(Q,). Let S = {zw — 2% = 22 —yt = 0} C P, and let T be
the sextic curve in P* that is the locus [s§ : sjs1 : sis? @ sos? ¢ s§], where [sq : s1] € P

Then § and I' are G-invariant, I' C S C @), and there is a G-equivariant diagram

where V,, is a smooth Fano threefold in the family Ne1.10, 7 is the blow up of the curve I,
the morphism ¢ is the blow up of the threefold V,, along a (unique) G-invariant smooth
rational curve Cy with — Ky, - Co = 2, and x is the flop of two smooth rational curves.
Every smooth Fano threefold Ne1.10 that admits an effective G,,-action can be obtained
in this way. We can identify G with a subgroup in Aut(V},). Then

(4

R ifu#%andu;él
ag(V) =4 % ifu=",

2
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Therefore, if u # 2, then V,, is K-polystable by Theorem 1.4.10. Moreover, it has been
proved in [95] that the threefold V5 is also K-polystable. If u # —i, then Aut(V,) = G.
Vice versa, if u = —1, then Aut(V,) = PGLy(C), and V,, is the unique smooth threefold
in the deformation family Ne1.10 with automorphism group PGLy(C), this threefold is
known as the Mukai-Umemura threefold [156].

It has been proved in [130] that there exists unique smooth Fano threefold Ne1.10 whose
automorphism group is G, x p,. By Theorem 1.1.4, this threefold is not K-polystable.
This Fano threefold and the Fano threefolds described in Example 4.1.12 are the only
smooth Fano threefolds in the family Ne1.10 that have infinite automorphism groups.
In particular, the threefold in the following example has finite automorphism group.

Example 4.1.13. There is a unique smooth Fano threefold Ne1.10 such that Aut(X)
contains a subgroup G = PSLy(F7), and X has no G-fixed points [47]. Then ag(X) > 1
by Corollary 1.4.12, so that X is K-stable by Theorem 1.4.7.

Thus, a general Fano threefold in the family Ne1.10 is K-stable by Theorem 1.1.12.
Using Corollaries 1.1.16 or 1.1.17 instead, we can also deduce this from Example 4.1.12.
Similarly, other examples presented in this section shows that the general member of
the families Nel.1, Ne1.2, Nel.3, Nel.4, Nel.5, Nel.6, Nel.7, Nel.8, Ne1.9 are also K-stable.
In fact, a much stronger assertion holds:

Theorem 4.1.14 ([3]). Every smooth Fano threefold in the families N1.1, M1.2, N1.3,
Nl g, Nel.5, Nel.6, Nel.7, Nel.8 is K-stable.

We expect that every smooth Fano threefold Ne1.9 is also K-stable.

4.2. Fano threefolds with PGL,(C)-action. Let X be a smooth Fano threefold such
that Aut’(X) = PGL,(C). By [42], X is one of:

(1) the Mukai-Umemura threefold (Example 4.1.12),

(2) the del Pezzo threefold Vi (Example 3.4.1),

(3) the unique member of the family Ne2.21 with Aut’(X) = PGLy(C),

(4) the unique member of family Ne2.27,

(5) the unique member of family Ne3.13 with Aut’(X) = PGLy(C),

(6) the unique member of family Ne3.17,

(7) the unique member of family Ne4.6,

(8) P! x S, where S is a smooth del Pezzo surface of degree K% < 5.

We know from Section 3.1 and Examples 4.1.12 and 3.4.1 that the threefolds (1), (2),
(8) are K-polystable. We now show that X is K-polystable in the remaining five cases.
By Corollaries 1.1.16 and 1.1.6, this implies that a general member of family Ne2.21 is
K-stable, and that a general member of the family Ne3.13 is K-polystable. We start with
the simplest case:

Lemma 4.2.1. The unique smooth Fano threefold in family Nej.6 is K-polystable.
Proof. Let V be the vector space of 2 x 2-matrices
(2 3)
29 23
and denote by P? = P(V). Consider the GLy(C)-action on V given by left (matrix)

multiplication; this action induces a faithful PGLy(C)-action on P2. The locus of invertible
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matrices in P? is an open PGLy(C)-orbit, and its complement is the PGLy(C)-invariant
quadric

S:gm(%2§:0}cw
Z9 23

For each [a : b] € P!, define a line

a X DA
éwz{LMbJeW‘umqu

and note that £, lies on S and is a PGLy(C)-orbit.
Consider the subgroup of GLy(C) generated by

G:<(_O1 (1))<_11 (1)) >

Then G = G&3. As above, consider the G-action on V given by left matrix multiplication.
The G-action on P? defined in this way is faithful and commutes with the PGLy(C)-action,
no PGLy(C)-invariant line is fixed by G, and G acts freely on {¢ 0,001,011}

Since (up to change of coordinates) X is the blowup of P in ¢4 U fy1 U ¢y, both
the PGLy(C)-action and G-actions lift to X, so that PGLy(C) and G are identified with
subgroups of Aut(X). One can show that Aut(X) = (PGLy(C),G) = PGLy(C) x &s.
The strict transform .# of the quadric S on X is the unique proper Aut(X)-invariant
irreducible subvariety of X. Furthermore, it follows from Theorem 3.7.1 that 3(.%) > 0,
so that X is K-polystable by Theorem 1.2.5. U

Now, we consider the member of family N2.21 with an effective PGLy(C)-action. Its
K-polystability could be proved using Theorem 1.6.2, but we give an alternative proof.

Lemma 4.2.2. Let X be the smooth Fano threefold N2.21 such that Aut®(X) = PGLy(C).
Then X 1is K-polystable.

Proof. The smooth Fano threefold X can be constructed as follows. Let V be the standard
representation of GLy(C), denote by P* = P(Sym*(V)), and let C C P* be the image of
the 4th Veronese embedding of P(V). Then the GLy(C)-action on V induces an action of
the group PGLy(C) on P* and C is PGLy(C)-invariant. The representation of GLy(C) on
Sym*(V) is irreducible, and there is a smooth invariant quadric @ C P* that contains C.
Then X can be obtained as a blow up of ) along C.

Let fi: X — @ be the blowup of the curve C, and let E; be its exceptional divisor.
Then f; is PGLy(C)-equivariant and the PGLy(C)-action lifts to X. The threefold X has
a second PGLy(C)-equivariant contraction fo: X — Q. The fy-exceptional divisor Ey is
the proper transform of the surface E5 C @ that is cut out on Q by the secant variety of
the curve C, which is a singular cubic hypersurface. We thus have a PGLy(C)-equivariant
commutative diagram:

X
f1 f2
K

where f5 is the contraction of the surface Fs to the curve C, and 7 is a birational involution
that is given by the linear subsystem in |Ops(2)|g| consisting of surfaces that contain C.

The birational action of 7 lifts to a biregular action on X that swaps E; and E,, and 7
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commutes with the PGLy(C)-action on X (this is [176, Example 2.4.1]). Thus, we have
Aut(X) = PGLy(C) x py, where the factor p, is generated by 7.

Let G = Aut(X) and denote by C' the smooth irreducible G-invariant curve C' = E1NEs.
By Lemma A.6.1, we have F; & Ey = P! x P!, and C is the diagonal in both £ and E.
Note that C'is the only G-invariant irreducible proper subvariety of X, and that E; and
E5 are tangent along C, so that E; - F, = 2C. Since F; + Fs ~ —Kx and F; + Ej is
G-invariant, this implies ag(X) < 3, because (X, 2(E; + E»)) is strictly log canonical.

We claim that ag(X) = 3. Indeed, suppose a(X) < 3. Then there is a G-invariant
linear system D C |—nK x| such that the singularities of the log pair (X, £D) are not log
canonical. Write 1D = a(E) + E) 4+ bM, where a and b are some non-negative numbers,
and M is the mobile part of the linear system D. Then a < 1, since

CL(El + E2> + bM ~Q —KX ~ El + EQ.

Furthermore, since (X, 3(E) + E»)) is log canonical, we have a < 1.

Using Corollary A.4.10, we may assume that a = 0. Indeed, let y = =~ and let

D = (1+ p)(aBy + s + bM) — u(By + Ez).
Then D ~g —Kx and D = 2~ M. On the other hand, we have

1
mD + m(El + Ey),

so that (X, 2D) is also not log canonical. Therefore, replacing a(E; + E) 4+bM by =M,
we may assume that a = 0, so that D = M.

Since M is mobile, (X, %M) is not log canonical, and X does not have G-invariant
zero-dimensional subschemes, and since C'is the only G-invariant curve in X, C'is a center
of non-log canonical singularities of (X, %M) Let M be a general surface in M, and let ¢
be a general fiber of the projection £ — C. Then ¢ ¢ M and n = M -{ > multgo(M) > 4?”,

which is a absurd. Then ag(X) = 3, so that X is K-polystable by Theorem 1.4.10. O

CL(El + Eg) + b./\/l =

In Section 5.9, we will give another proof of Lemma 4.2.2 that relies on the more general
statement that all smooth Fano threefolds Ne2.21 with infinite reductive automorphism
group are K-polystable. Using Lemma 4.2.2, Corollaries 1.1.6 and 1.1.16, we obtain

Corollary 4.2.3 (cf. Remark 5.22.8). A general member of family N2.21 is K-stable.
Now, we consider the unique smooth Fano threefold in family Ne2.27.
Lemma 4.2.4. The smooth Fano threefold N2.27 is K-polystable.

Proof. Let C3 be a twisted cubic curve in P3?, and let 7: X — P? be its blowup.
Since Aut(C3) =2 PGLy(C), Aut(X) = PGLy(C) as well, and by [196, §2], there exists
a PGLy(C)-equivariant commutative diagram

X
2N
P3—————- > P2
where ¢ is a conic bundle and P --» P? is the map defined by the net of quadrics

containing Cs. The group G = PGLy(C) acts faithfully on P? and P? contains a unique

G-invariant conic C, which is also the smooth conic of jumping lines of the bundle ¢.
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Let E be the exceptional divisor of 7, and let R be the preimage of the conic C5 in X.
The restriction of ¢ is a double cover E — P? branched over C5. Let C be the intersection
RN E taken with reduced structure; then R and E are tangent along C' and R- E = 2C.
Moreover, the surface m(R) is the non-normal quartic surface that has an ordinary cusp
along the curve C3. This surface is spanned by the lines in P? that are tangent to Cs.
Then CU(R\C)U (E\C)U (X \ (RUE)) is the decomposition of X into G-orbits.

Let v: V — X be the blow up of the curve C', and let F' be the v-exceptional surface.
Denote by R and E the proper transforms on V of the surfaces R and F, respectively.
Then F = P! x P! and the intersection F' N RN E is a smooth rational curve C, which is
a divisor of degree (1, 1) on the surface F. Since C' is G-invariant, the G-action lifts to V,
but Aut(V) is larger than G. Indeed, it follows from [166, Section 2] or [70, Example 3.4.4]
that there is a biregular involution 7 € Aut(V') that swaps I’ and R and leaves E invariant.
Thus, we can write the following G-equivariant diagram:

v

where 1) is a conic bundle. The involution v o7ov™! induced by the involution 7 is an el-

ementary birational transformation of the P'-bundle ¢. Note that 7 induces a Cremona
transformation P --» P3| which (in appropriate coordinates) is given by the four partial
derivatives of the defining quartic polynomial of the surface w(R).

We claim that ag(X) = 2. Indeed, observe that both divisors E and R are G-invariant
and —Kx ~ E + R, so that ag(X) < 2, because (X, 3(E + R)) is strictly log canonical.

Suppose that a(X) < 2. Then there is a G-invariant linear system D C | —nKx| such
that the singularities of the pair (X, > D) are not log canonical. Write 2D = aE+bR+cM
where M is the mobile part of the hnear system D, and a, b and ¢ = l are non-negative
rational numbers. Then a<1landb<1,since abl +bR+cM ~g R 1 E. Furthermore,
since the pair (X, 2(E+ R)) is log canonlcal we have a < 1 or b < 1. Moreover, it follows
from Lemma A.4.12 that we may assume that either a =0 or b= 0.

If a =0, then 1 = D - ¢ > multc(D) > 5 by Lemma A.1.4, where £ be a general fiber
of the natural projection £ — C3. Thus, We see that a > 0, so that b = 0.

Let D be the proper transform of D on the threefold V', and let L be a general fiber of
the natural projection R — Cy. Then multe(D) < 2, because 0 < D - L = 2 — multe (D).
Now, using Lemma A.4.3, we see that F' contains an G-invariant section Z of the natural
projection F — C' such that multc(D) 4+ multz(D) > §. On the other hand, it follows

from Lemma A.6.1 that C is the only G-invariant curve in F', so that Z = C , which gives

mult; (D) < D- L= (U*(—KX) - multc(D)F) L=2-— multe (D),

where L is a general fiber of the natural projection R — C,. The obtained contradiction

shows that aq(X) = 2, so that X is K-polystable by Theorem 1.4.10. O
113



Now, we deal with deformation family Ne3.13. The K-polystability of this threefold has
been already shown in Example 1.6.17. Let us prove this using a different approach.

Lemma 4.2.5. Let X be the smooth Fano threefold M3.13 with Aut’(X) =2 PGLy(C).
Then X 1is K-polystable.

Proof. The Fano threefold X can be described as follows. Take any smooth conic C C P2,
and consider the PGLy(C)-action on P? that leaves C invariant. This defines the diagonal
action of the group PGLy(C) on P? x P2 and there exists a smooth PGLy(C)-invariant
divisor W C P? x P? of degree (1,1). Then all PGLy(C)-invariant irreducible closed
subvarieties in the threefold W are the surfaces E, = pr;*(C) and E3 = pry'(C), and
the smooth irreducible rational curve C' = E, N E5. The threefold X can be obtained by
blowing up W along the curve C (cf. [42]).

Let fi: X — W be the blow up of the curve C. Then the PGLy(C)-action lifts to X.
Denote by FE; the fi-exceptional surface, and denote by E5 and E3 the proper transforms
on the threefold X of the surfaces Ey and E3. Then there exists a PGLy(C)-equivariant
commutative diagram:

IP)Q
pry pra
w W
\ /
pra X pry
p? fi P2
pry pTo
w

where fy and f3 are contractions of the surfaces Fy and Ej3 to curves of degree (2,2),
Moreover, it follows from [176] that Aut(X) = PGLy(C) x &3 (see also Section 5.19), and
that the direct factor G3 permutes the surfaces £, Fs and Fj3 transitively.

We let G = Aut(X). Then Fy N Ey N Es = Ey N Ey = Es N Ey = Ey N E3 is a smooth
irreducible G-invariant curve, which we denote by C. Further, C' is the only G-invariant
subvariety in X.

Let ¢: Y — X be the blow up of C, and let I be the y-exceptional surface, and
El, EQ, E5 the proper transforms of 4, Fy, E5. Then El, Eg, E3 are pairwise disjoint, so
that E1| E, E2| g, and E3| g are three pairwise disjoint sections of the projection £ — C.
This is only possible if E = P! x P!

The G-action lifts to Y, and E is G-invariant. Applying Lemma A.6.1, we see that
PGLy(C) acts trivially on one factor of E = P! x P!, so that the sections of E — C are
PGLy(C)-orbits contained in E. On the other hand, the group &3 permutes E1|E, E2|E,
and E’3| p transitively. This immediately implies that no section of £ — (' is G-invariant,
so that E contains no proper closed G-invariant subvarieties. Therefore, the surface F is
the only G-invariant prime divisor over X, and by Theorem 1.2.5, X is K-polystable if

and only if S(E) > 0.
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We claim that 5(F) = 1%. Let t € Ry, then since —Kx ~ Fy + Es + E3, we have
0 (=Kx) —tE ~ E| + Ey+ E3 +3E —tE = By + Ey + B3y + (3 — t)E,

which implies that ¢*(—Kx) — tE is pseudo-effective if and only if ¢ < 3. Moreover,
the divisor ¢p*(—Kx) — tE is nef precisely when ¢ < 1. When 1 < ¢t < 3, the Zariski
decomposition of p*(—Kx) —tFE is

3t ~ o~ - t—1 ~ ~ o~
QO*(—Kx)—tE ~R (E1+E2+E3+2E>+T(E1+E2+E3)
) positi?;e part 7 negat;\lre part 3
Hence, we calculate
1 [t t—1 ~ ~ ~\3
Sx(F) = 30 (¢*(—Kx)— tE) dt+— (—Kx)— tE—T(E1+E2+E3)> dt =
0
I 11
30 — 1812 + 46%)dt + — / dt) =
~ 30 ( +A4tdt + —t) 10’
which gives f(E) = AX( ) — Sx(E) =2— 15 = -5, so that X is K-polystable. O

Therefore, a general member of the family Ne3.13 is K-polystable by Corollary 1.1.16.
In fact, with a single exception, all smooth Fano thrreefolds in this deformation family
are K-polystable, see Section 5.19 for details. Let us conclude this section by proving

Lemma 4.2.6. The unique smooth Fano threefold Xe3.17 is K-polystable.

Proof. Let X be the unique smooth Fano threefold Ne3.17. Then X is a smooth divisor
in P! x P! x P? that has degree (1,1,1). It is well-known that Aut(X) = PGLy(C) x .,
where p, is generated by an involution that swaps two P!-factors in P! x P! x P2

There are birational contractions m;: X — P! x P? and my: X — P! x P? that contracts
smooth irreducible surfaces E; and E; to smooth curves C) and Cy of degrees (1,2).
Moreover, there is PGLy(C)-equivariant commutative diagram

I x P2 I x P2
where pr, is the projection to the second factor, the PGLy(C)-action on P? is faithful,
and pry(CY) = pry(Cy) is the unique PGLy(C)-invariant conic.

Let pry: P! x P? — P! be the projection to the first factor. Using pr; o 7; and pry o 7y,
we obtain a PGLy(C)-equivariant P'-bundle ¢: X — P! x P!, where the PGLy(C)-action
on the surface P! x P! is diagonal. Let C' = E; N FEy. Then ¢(C) is a diagonal curve.
Denote its preimage on X by R. Then C = RN E; N Ey. Moreover, the curve C' and
the surface R are the only proper Aut(X)-invariant irreducible subvarieties in X.

Let G = Aut(X). Then ag(X) < 2, because —Kx ~ Ey + E» + R. Thus, we cannot

apply Theorem 1.4.10 to prove that X is K-polystable.
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Suppose that X is not K-polystable. By Theorem 1.2.5, there is a G-invariant prime
divisor F' over X such that S(F) < 0. Let Z = Cx(F). Then Z # R by Theorem 3.7.1,
so that Z = C. Let us apply Corollary 1.7.26 with Y = F; to show that Z # C.

Let H1 = (prlom)*(OP1(1)), let H2 = (pI‘l O7T2>*(O[pl(1)), let H3 = (pI‘2O7T2)*<O[p2(1>>.
Then E1 ~ 2H3 — EQ, E2 ~ 2H3 —El, R~ H1 +H2, —KX ~ 2H1 +3H3 —El, which gives

3 1
Ky — uE, ~p 2Hy + (5 . u)E1 + 5B,
where u be a non-negative real number Hence, the divisor — Ky —uF; is nef for u < 1, and
it is not pseudo-effective for u > —. Moreover, if 1 < u < 3, its Zariski decomp081t10n is

3
Ky —ub) ~g 2Hy + (— - u> (Ey+ E) + (u— 1) Es,
N 2 \Hf—/

v
positi:/:e part negative part

where ) + Ey ~ 2H3. Thus, in the notations of Corollary 1.7.26, we have

—Kx —ubif0<u<,

P(u) = . 3
2H; + (3 — 2u)Hjy 1f1<u<§,

and
0if 0 <u<l,

N(u) =
() (u—l)Eliflguég.

Using this, one can check that Sx(F;) < 1, which also follows from Theorem 3.7.1.
Therefore, we have S(WJ;C) > 1 by Corollary 1.7.26.

.0

Let us compute S(WE1 C). Recall that F; = P! x P!, Let f be a fiber of the natural

projection E; — O}, and let s be the section of this projection such that s> = 0 on Ej.
Then Ei|g, ~ —s + 3f and C ~ s + f. Therefore, for any v € R, we have

(ut+1l—v)s+(B—-3u—v)fif0<u<l,
P(u —vC ~
()lEl . (2—v)s+(6—4du—v)fifl<

l\DIc.o

Hence, using Corollary 1.7.26, we get

S(W,E,l,(])—( ;X / (P(u)?- Ey) - ordc<N( )\E)du+

Kx //Vol —vC)dvdu:le/g(u—l)(P(u)Q.El)du+

1

/ / vol(P —vC)dvdu = —/ (u—1)(6 — 4u)du+
6—4u 5
/ / 2(u+1—v)(5—3u—v dvdu+—/ / 2(2—v)(6—4u—v)dvdu = g <

which is a contradiction. O
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4.3. Blow ups of del Pezzo threefolds in elliptic curve. Let V; be a smooth threefold
such that — Ky, ~ 2H for an ample Cartier divisor H on the threefold V; such that d = H?,
let H; and H, be two distinct surfaces in |H| such that € = H; N Hy is a smooth curve,
let P be the pencil generated by H; and Hs, let 7: X — V; be the blow up of the curve €.
Then % is an elliptic curve, X is a Fano threefold, and there exists commutative diagram

(4.3.1) X

where v is the map given by P, and ¢ is a fibration into del Pezzo surfaces of degree d.
Let E be m-exceptional surface, let F' be a sufficiently general fiber of the morphism ¢,
and let H1 and H2 be proper transforms on X of the surfaces H; and Hz, respectively.
Then £ =€ x P!, and F ~ H1 ~ H2 on the threefold X.

Recall from Sectlon 3.4 that V; is a smooth del Pezzo threefold of degree d, and we
have the following nine possibilities:

(1) d =1, V; is a Fano threefold Nel1.11, and X is a Fano threefold Ne2.1;
2) d =2, V4 is a Fano threefold Ne1.12, and X is a Fano threefold Ne2.3;

3, V3 is a Fano threefold Nv1.13, and X is a Fano threefold Ne2.5;

4, V, is a Fano threefold Ne1.14, and X is a Fano threefold Ne2.10;

5, V5 is a Fano threefold Ne1.15, and X is a Fano threefold Ne2.14;

6, Vs is a divisor in P? x P? of degree (1,1), and X is a Fano threefold Ne3.7;

6, Vo = P! x P! x P!, and X is a Fano threefold Ne4.1;
= 7, Ve =P(Op2 @ Op?(l)), and X is a Fano threefold Ne3.11;

(9) d =38, Vg =P3 H = Ops(2), and X is a Fano threefold Ne2.25.

Smooth Fano threefolds in the family Ne4.1 have an alternative description — they are
divisors in P! x P! x P! x P! of degree (1,1, 1,1). This family contains one K-polystable
singular member — the toric Gorenstein terminal Fano threefold Ne625 in [26], so that
the general smooth member of the family Ne4.1 is also K-semistable by Theorem 1.1.12.
Let us present one very special smooth Fano threefold Ne4.1 that is K-stable:

Lemma 4.3.2. Let X be the divisor of (P')* defines as

d=
d=
d=
d=
d=
d

T17273T4 + Y1Y2Y3Ya = 2(T172Y3Ys + Y1Y2T3T4 + T1Y2T3Ys + T1Y2Y3T4 + Y1T2T3Ys + Y1T2Y3T4),
where [z; : y;] are coordinates on the i-th factor of (P')*. Then X is smooth and K-stable.

Proof. The smoothness of the threefold X is easy to check. To prove its K-stability,
observe that Aut(X) contains a subgroup G = p2 x &, where 0 € &, acts by
([9’51 tl, (2 gl 23 1 ys), [ y4]) =
= ([To) : Yo)]: [To@) * Yo]: [To@) : Yo [To)  Yow)]),
while the generator 7 of the first factor of u3 acts by
([5171 tyal, (2 gl [T 1 ys)s [a ?/4]) = ([yl cx1)s [y el [ys 1 @), [y $4]),

and the generator ¢ of the second factor of u3 acts by

([951 : yl], [952 : yz], [333 : ys], [$4 : y4]) = ([96’1 : —3/1], [iU2 : —y2], [$3 : —3/3], [334 : —94])-
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We claim that ag(X) > 1, so that X is K-stable by Theorem 1.4.7, since Aut(X) is finite.
Indeed, suppose that ag(X) < 1. Let us seek for a contradiction.

First, we observe that Pic®(X) = Z[-Kx], and X does not contain G-fixed points,
Thus, applying Theorem 1.4.11 with p = 1, we see that X contains a smooth G-invariant
curve C such that C'- S =1 for any fiber S of any of four (natural) projections X — PL.
Hence, the curve C'is a curve of degree (1,1,1,1).

Let I" be the stabilizer in G of the surface S. If S'is given by x4 = y4, then I' = p, X Gg,
where the group &3 acts by simultaneous permutations of coordinates z; and y; for i # 4,
and py = (7). Then P, = ([1: —1],[1: —1],[1: —1],[1 : 1]) is the only [-invariant point
in the surface S, so that P, = S N C. Similarly, letting S to be the surfaces x4 + y4 = 0,
x4 = 0 and y, = 0, we see that C' contains the points

Py=([1:1],[1:1],[1:1],[1:-1]),
Py=([1:0],[1:0],[1:0],[0:1]),
P, =([0:1],[0:1],[0:1],[1:0]).

Let pryy: X — P! x P! be the projection to the first two factors of (P*)%. The pryo(C) is
an irreducible curve of degree (1,1). Observe that the projection pr,, is equivariant with
respect to the subgroup Z = u3 of the group G that generated by 7, ¢ and the involution

([Il s o0 yel, (st ysl, [ 3/4]) = ([902 )y [r1 syl [ws 2yl [ 94])-

Thherefore, the curve pry,(C') is Z-invariant, so that C' is contained in one of the following
four surfaces: 122 + y1y2 = 0, T122 = Y1Y2, T1Y2 + Y122 = 0, 1Yo = y122. Among them,
only the surface x1y2 = y1x9 contains all points Py, P», P3, P;. Hence, this surface must
contain C'. Since C' is G-invariant, we see that C' is contained in the subset given by

{1’1y2 = U172, T1Y3 = Y173, T1Ys = Y124, L2Y3 = Y223, L2Ys = Y2T4, T3Ys = Z/3$4} - (]P’l)4-

This system of equations defines the diagonal, which is not contained in X. The obtained
contradiction completes the proof. O

Therefore, we see that general Fano threefolds Ne4.1 are K-stable by Theorem 1.1.12.
In the remaining part of this section, we will present examples of K-stable smooth Fano
threefolds in the following families: Ne2.1, Ne2.3) Ne2.5 Noe2.10, Ne2.14, Ne2.25 Ne3.7, Ne3.11.
This implies that general threefolds in these families are also K-stable. In fact, we will
also prove that all smooth Fano threefolds in the family Nv2.25 are K-stable.

Setup for the rest of the section. Let G' be some finite subgroup in Aut(V,) such that
the curve ¥ is G-invariant. Since (4.3.1) is G-equivariant, we can identify G with a sub-
group in Aut(X). Since ¢ is G-equivariant, it gives a homomorphism v: G — Aut(P'),
so that we have the following exact sequence of groups:

(4.3.3) 1—0 —G—T1 —1,

where I' = im(v) is a finite subgroup in Aut(P!), and © = ker(v) is the largest subgroup in
the group G such that every surface in the pencil P is O-invariant.

Example 4.3.4. Suppose that d = 7, and let ¥: V; — P3 be the blowup of a point P.
Without loss of generality, we may assume that P =[0:0:1:0]. Let )1 be the smooth
quadric surface {z?+y*+2t = 0} C P3, and let Q3 be the quadric {yz+t*> = 0} C P?, where
x, vy, z, t are coordinates on P2. Set C' = Q1N Q5. Then C is smooth and P € C. Now, we

let H; and Hs to be the proper transforms on X of the surfaces ); and )5, respectively,
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let € be the proper transform on V; of the curve C, and let G = Aut(V7;€). Then G = p.
Indeed, the group Aut(P3;C') contains the involution [z :y: 2 :¢] — [~z :y : 2 : t] and
also the automorphism of order three [z : y : z : t] — [z : y : wz : wt|, where w is
a primitive cube root of unity. Since they fix P, their actions lift to V7, and they generate
a subgroup in G isomorphic to pg. But G cannot be larger than pg, since this group
acts faithfully on the curve % and it preserves a point in this elliptic curve. In this case,
the subgroup © is trivial and T" & pg, where © and T" are defined in (4.3.3). Arguing as
in the proof of [43, Lemma 8.12], we see that ag(X) = 1. But X is K-stable [96].

For all remaining families, we will present an example consisting of a threefold Vj,
a smooth elliptic curve ¢, and a finite subgroup G C Aut(Vy;€) such that ag(X) > 3,
so that X is K-stable by Theorem 1.4.7 and Corollary 1.1.6, because Aut(X) is finite [42].
To proceed, we need one very easy auxiliary result.

Lemma 4.3.5. Suppose that Pic® (V) = Z[H], and P contains no G-invariant surfaces.
Then X does not have G-fized points. Moreover, let S be a G-irreducible surface in X such
that —Kx ~g AS + A for some X\ € Q and effective Q-divisor A on X. Then A < 1.

Proof. Since P contains no G-invariant surfaces, P! does not have I'-invariant points,
which implies that X does not have G-invariant points.

Now, let us show that A < 1. If S = E, then A|p ~q (1 — A\)E|r, which gives A < 1.
Thus, we may assume that S # E. Then S ~ 7*(nH) — mFE for some integers n and m
such that n > 1 and m > 0. If A > 1, then n = 1. Further, restricting S to the surface F,
we see that m < 1 in this case.

The case n = 1 and m = 1 is impossible, since P does not contain G-invariant surfaces.
If n=1and m =0, then A|p ~g (1 — X\)H|p, which gives A < 1. O

Now we are ready to present explicit examples of K-stable smooth Fano threefolds in
the families Ne2.1, Ne2.3, Ne2.5, Ne2.10, Ne2.14 and Ne3.7,

Example 4.3.6. Suppose that d = 1, and V; is the smooth hypersurface in P(1,1, 1,2, 3)
that is given by x§ + 2§ + 25 + 23 + 23 = 0, where zg, 71, T2, x3, 74 are coordinates of
weights 1, 1, 1, 2, 3, respectively. Suppose that H; and Hy are cut out by xo =0, 1 = 0,
respectively. Observe that the curve % is smooth, so that X is a smooth Fano threefold in
the family Ne2.1. Let G be the subgroup in Aut(V}) that is generated by two involutions:

(ko : @y g wg:xy| > [To 0 —x1 1 To : Tyt Xy

and
(Lo @1t X9 1wy Ty] > [T 1 X0 o T3t Xy

Then G = p?, the curve € is G-invariant, P does not contain G-invariant surfaces, and it
follows from Lemma A.5.4 that the a-invariant of a general fiber of ¢ does not exceed g.
Therefore, applying Lemma 4.3.5 and Corollary 1.4.15, we conclude that ag(X) > %.

Example 4.3.7. Suppose that d = 2. Let V5 be the hypersurface in P(1,1,1,1,2) given
by the equation xj+ ] + x4+ 23+ 23 = 0, where g, 1, T2, T3 are coordinates of weight 1,
and x4 is a coordinate of weight 2. Suppose that H; = {zo = 0} and Hy = {z; = 0}.
Then the curve % is smooth, so that X is a smooth Fano threefold in the family Ne2.3.

Now, let G be the subgroup of the group Aut(V3) such that G = py x (u3 x ), where
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the generator of the i-th factor of p? acts by multiplying the coordinate x; by /-1,
the generator of the non-normal subgroup p, C p3 % p, acts by

[1‘011’121’211'311‘4]|—>[l‘121’01$21I‘32$4],

and the generator of the factor p, acts as [xg : x1 : @g 1 X3 1 Tg| > 1o Ty 1 2 x5 1 —x4).
Then % is G-invariant, I' & Dg, © & u, x p3, and P! does not contain I'-fixed points.
Further, X does not contain G-invariant rational curves. Indeed, let C' be such a curve.
Since V4 does not contain G-invariant points, m(C') is a rational curve. Since the largest
quotients of pj that admit a faithful action on P! are p, and p3, the curve 7(C') must have
a trivial action of some non-cyclic subgroup in g3 C G, which is impossible, since the fixed
points in V5 of every non-cyclic subgroup of u3 are isolated. The obtained contradiction
shows that the smooth Fano threefold X does not contain G-invariant rational curves.
Now, applying Corollary 1.4.14 and Lemma 4.3.5, we see that ag(X) > 1.

Example 4.3.8. Now, suppose that d = 3. Let V3 = {23 + 23 + 23 + 23 + 23 = 0} C P4,
where xg, T1, T2, 3 and z,4 are coordinates on P*. Let H; = {zq = 0} and H, = {x; = 0}.
Then % is smooth, so that X is a smooth Fano threefold Ne2.5. Let G be the subgroup
such that G = pj % p,, the generator of the i-th factor of pj acts by multiplying x; by
a primitive cube root of unity, while u, acts by

(o : @1 gty i xy) > [w1 1 g To w3t Xy
Then % is G-invariant, and P does not contains G-invariant surfaces. Then ag(X) > 1.
Indeed, if ag(X) < 1, then Theorem 1.4.11 and Lemma 4.3.5 implies that X contains

a G-invariant curve C such that H; - C' = 1, so that H; N (C) is a point that is fixed by
the subgroup pj C G, which is impossible, since this subgroup has no fixed points in V3.

Example 4.3.9. Suppose that d = 4, and V} is the complete intersection of two smooth
quadric hypersurfaces in P° that is given by

xp+ 1+ a5+ a5+ a5 + a2 =0,
xh — 2% + 205 — 223 + 325 — 322 = 0,

where zg, 71, T2, T3, ¥4 and x5 are coordinates on P°. Suppose that H; and H, are cut
out by the equations xy = 0 and x; = 0, respectively. Then % is a smooth elliptic curve,
and X is a smooth Fano threefolds Ne2.10. Let G be a subgroup such that G = 3 x .,
where the generator of the i-th factor of p3 acts by changing the sign of the coordinate x;,
while the generator of the non-normal subgroup p, acts by

[To: @y i@y g xy 5] = X1 T w3 X9 Ty 1wyl

Then % is G-invariant, P has no G-invariant surfaces, and the subgroup u5 C G does not
have fixed points in V. Thus, arguing as in Example 4.3.8, we see that ag(X) > 1.

Example 4.3.10. Suppose that d = 5 and V5 is the unique smooth Fano threefold Ne 1.15.
Then Aut(V;) = PGLy(C), see [50, Proposition 7.1.10]. Fix a subgroup s C Aut(Vj),
and let GG be its subgroup such that G = Dyy. Then the actions of these groups lift to their
linear action on H°(Oy. (H)). By [50, Lemma 7.1.6], we have H°(Oy,(H)) = W5 & Wy,
where W3 and W, are irreducible 2A5-representations of dimensions 3 and 4, respectively.
As G-representation, the representations W3 and W, split as follows:

e V3 is a sum of one-dimensional and irreducible two-dimensional representations;
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e W, is a sum of two (different) irreducible two-dimensional representations.

Let us denote by M the two-dimensional linear subsystem in |H| that corresponds to Ws.
By [50, Lemma 7.5.8], its base locus is a 2s-orbit of length 5, which we denote by Xs.
By [50, Lemma 7.3.4], this orbit is the unique 2s-orbit in V5 consisting of at most 5 points.
Without loss of generality, we may assume that H is the unique G-invariant surface in M.
Let P be the pencil in M that is given by the two-dimensional G-subrepresentation in W3,
let H; and Hy be two distinct surfaces in P, and let € = Hy N Hy. Then HNE = X5,
so that € is reduced. We claim that it is smooth. Indeed, suppose that € is not smooth.
Then it is reducible, since otherwise it would have one singular point, but V5 does not
have G-fixed points. Since G acts transitively on X5, we conclude that € is G-irreducible.
Then % is a union of 5 lines, which are disjoint away from Y5 by [50, Corollary 9.1.10],
so that % is not connected, which is absurd, since it is an intersection of two ample divisors.
Therefore, we conclude that % is smooth, so that X is a smooth Fano threefold Ne2.14.
Using Corollary 1.4.16 and Lemma 4.3.5, we get a(X) > 1.

Example 4.3.11. Suppose that d = 6, and Vs = {xoyo + 11y1 + 22y2 = 0} C P? x P2,
where [z @ 21 @ @3] and [yo : y1 : yo] are homogeneous coordinates on the first and
the second factors of P2 x P2, respectively. Suppose also that H; and H, are given by

Toy1 + Wr1Ya + W raye = 0,
ToYz + wr1Yo + Wiaay; = 0,

respectively, where w is a non-trivial cube root of unity. One can check that € is smooth.
Then X is smooth Fano threefold Ne3.7. Let G be a subgroup such that G = u2 x p.,
the generator of the first factor pug acts by

([370 Py @) [Yo iy 3/2]) = ([%’2 txo )y [Y2 1 Yo y1])7

the generator of the second factor pug acts by
([wo cxy ), (Yo vy yg]) — ([xo Cwry Wiy, [yo : wiyr wyg]),

and the generator of ., acts by ([zo : @1 : 2], [yo : y1 : ¥2]) = ([yo : v1 : Y2l [T0 : 21 : 2]).
Then Vi and € are G-invariant. We claim that

(1) P? x P? does not have p3-invariant points

(2) P? x P? does not contain p3 X py-invariant rational curves.

Indeed, let m1: Vg — P? and m: Vi — P2 be the projections to the fist and the second
factors of P? x P2, respectively. Then m; and my are p3-equivariant. Observe that

(1) the action of u2 on P? has no fixed points,
(2) no rational curve in P? is p-invariant, since P* admits no faithful p2-action.

Thus, if a point P € Vj is fixed by p3, then 7;(P) is fixed by p3, which is impossible.
Likewise, if C' is a p3-invariant rational curve in Vg, then 71 (C) or mo(C') is a p3-invariant
rational curve, which is impossible. Then a(X) > 1 by Lemma 4.3.5 and Theorem 1.4.11.

Now, let us show that all smooth Fano threefolds in the family Ne 2.25 are K-stable.
From now on and till the end of this section, we assume that d = 8. Recall that Vg = IP3,
and 7: X — Vs the blow up of the smooth elliptic curve curve %', which is an intersection
of two quadric surfaces H; and H,. Note that Lemma 4.3.5 is not applicable in this case.

Because of this, we need the following similar but more specific result.
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Lemma 4.3.12. Suppose that G is a finite group of order 2" such thatr > 2 and T = u3.
Then the following assertions hold:

(i) X does not contain G-invariant points,

ii) the pencil P does not contain G-invariant surfaces,

(iii) P® contains neither G-invariant points nor G-invariant planes,

(iv) X does not contain G-invariant irreducible curve C such that C - F < 1.

v) X contains no G-invariant irreducible normal surface S such that —Kx ~g AS+A
for some rational number X > 1 and effective Q-divisor A on the threefold X .

Proof. Observe that I' has no fixed points in P!, so that PP contains no G-invariant surfaces,
and X does not have G-invariant points. This proves (i) and (ii).
Since G is not cyclic, the curve € does not have G-invariant points, so that P does not
have G-invariant points by (i). Then P? contains no G-invariant planes. This proves (iii).
To prove (iv), suppose that F' - C' < 1 for some G-invariant irreducible curve C' C X.
Then F' - C' = 1, because P! contains no G-invariant points. Then C' = P! and

1=F.C=(x*(H)—E)-C=n"(H)-C—E-C,

so that E-C' is odd, because H = Ops(2). But C does not contain G-orbits of odd length,
because |G| = 2". Then C' C E, so that 7(C) = €, since P? has no G-invariant points.
But 7(C') # €, because € is not rational. The obtained contradiction proves (iv).

Finally, to prove (v), we suppose that the threefold X contains a G-invariant irreducible
normal surface S such that 2F + F' ~ —Kx ~g AS + A for some rational number A > 1
and effective Q-divisor A on the threefold X. Then

2 1 1

ANERET
for some non-negative rational numbers a and b, since I’ and E generates the cone Eff (X).
Since A > 1, we have a < 2 and b < 1. On the other hand, we have 2a € Z and b —a € Z,
since Pic(X) is generated by 7*(Ops(1)) and E. This gives (a,b) € {(1,0),(2,1),(3,1)}.
If (a,b) = (1,0), then 7(S) is a G-invariant plane in Vg = P3, which is impossible by (iii).
Similarly, if (a,b) = (2,1), then 7(S) is a G-invariant surface in P, which contradicts (ii).
Thus, we see that 7(S) is a G-invariant cubic surface in P? that contains the curve .

Let S3 = 7(S). Then S;3 has isolated singularities, because S is normal by assumption,
and S3 cannot be singular along the quartic curve ¥. Note that G acts faithfully on Sj,
and this action lifts the linear action of the group G on H°(Og,(—Ks,)) = H°(Ops(1)).
Then G is not abelian, since P? has no G-fixed points. Thus, we have r > 3.

Suppose that S5 is smooth. Then, looking on the list of automorphism groups of smooth
cubic surfaces [72, Table 4], we see that |G| = 8. Now, looking on the list of automorphism
groups of smooth cubic surfaces again, we conclude that G must have a fixed point in P3,
which is a contradiction. Thus, we conclude that S5 is singular.

Singular cubic surfaces have been classified in [24]. Note that |Sing(S3)| < 4. Further,
if S3 has 4 singular points, then we have Aut(S3) = &4, and S3 can be given by

ANQSNQ&F‘}‘I)E

ToT1T2 + XoT1X3 + ToxXoTs + x1Tox3 = 0.

In this case, P? has a G-fixed point, which contradicts (iii). Similarly, we see that Sj
cannot have three singular points, because P3 does not have G-invariant points, and P3

does not have G-orbits of length 3. Thus, we conclude that S5 has two singular points.
122



Let L be the line in P? such that L contains both singular points of the surface Ss.
Then L C Ss, and there is a unique plane II C P that is tangent to S3 along the line L.
Since L is G-invariant, I is G-invariant, which contradicts (iii). This proves (v). 0

Applying Theorem 1.4.11 and Lemma 4.3.12, we get
Corollary 4.3.13. Suppose that © = u3 and T' = p3. Then ag(X) > 1.
To apply this corollary, take A € C* such that A\* # 1. Suppose that H; is given by
x5+ 27 + M3 + 23) =0,
and suppose that H, is given by
Mg —2]) + a3 — 235 =0,

Then % is a smooth quartic elliptic curve, so that X is smooth Fano threefold Ne2.25.
Moreover, every smooth Fano threefold Ne2.25 can be obtained in this way [78].

Recall that every surface in the pencil P is O-invariant. Using this, one can show that
the group © is contained in the subgroup in Aut(P?) that is generated by

(4.3.14) (2o 21t @9 s ws] > (2o 1 (1) @y ¢ (—1)Pxg ¢ (—1)xs]

for all a, b, ¢ in {0, 1}. Note that these automorphisms generate a group isomorphic to 3.

Lemma 4.3.15. There exists a subgroup G C Aut(P3; %) such that © = u3 and I' = pl.

Proof. Let X be the subset in % consisting of the 16 points of the intersection of this curve
with the tetrahedron zgrixezs = 0. Fix a point O € X, and equip € with the group law
such that O is the identity element. By [81], the embedding " < P3 is given by the linear
system 40|, and ¥\ O consists of all points of order 4.

Let G be the subgroup in Aut(%) generated by the translation by points in ¥ and
the involution P — —P. Then |G| = 32, and the embedding ¢ < P? is G-equivariant,
so that we can identify G with a subgroup in Aut(P?;%).

We claim that G is the required group. Indeed, since © contains no elements of order 4,
the group T is one the following groups: ps, p3, 4. Using this, we see that T' & py X o,
and © is generated by translations by elements of order 2 and the involution P — —P.
Then © 2 u3 as required. O

Corollary 4.3.16. All smooth Fano threefolds N2.25 are K-stable

One can describe the group constructed in the proof of Lemma 4.3.15 in coordinates.
Namely, let ¢ be the involution in Aut(P?) given by

(4.3.17) [To : @y @ @y @ 3] = [w1 1 g © T3 1 T,
and let 7 be the automorphism of order 4 in Aut(P3) that is given by
(4.3.18) (g 1 1t xo @3] = X9 1 dxg  x Xy,

where ¢ = y/—1. Then % is (-invariant and 7-invariant. Then the group constructed in

the proof of Lemma 4.3.15 is the group generated by ¢, 7 and all automorphisms (4.3.14).
123



4.4. Blow up of P? in curve lying on quadric surface. Let Sy be a smooth quadric
surface in P2, let 4 be a smooth curve in Sy = P! x P! of degree (a,b) with a < b, and
let 7: X — P2 be the blow up of the curve 4. Then % has degree a + b and genus
(a—1)(b—1), and X is a Fano threefold if and only if b < 3 by [16, Proposition 3.1].
This gives us the following possibilities:

e (a,b) = (3,3), and X is a smooth Fano threefold Ne2.15,

e (a,b) =(2,3), and X is a smooth Fano threefold Ne2.19,
e (a,b) = (1,3), and X is a smooth Fano threefold Ne2.22/
e (a,b) =(2,2), and X is a smooth Fano threefold Ne2.25,
e (a,b) = (1,2), and X is a smooth Fano threefold Ne2.27,
e (a,b) = (1,1), and X is a smooth Fano threefold Ne2.30,
e (a,b) =(0,1), and X is a smooth Fano threefold Ne2.33.

Both smooth Fano threefolds Ne2.30 and Ne2.33 are K-unstable (see Sections 3.3, 3.6, 3.7).
In Section 4.2, we proved that the unique smooth Fano threefold Ne2.27 is K-polystable.
In Section 4.3, we proved that all smooth Fano threefolds in the family Ne2.25 are K-stable.
The goal of this section is to prove the following result:

Proposition 4.4.1. A general Fano threefold in the families Ne2.15, M2.19 and Ne2.22
15 K-stable.

Thus, we assume that one of the following three cases holds:

Ne2.15| € is a curve of degree (3,3), and its genus is 4,

Ne2.19| € is a curve of degree (2, 3), it is hyperelliptic, and its genus is 2
Ne2.22| € is a curve of degree (1,3), and it is a smooth rational quartic curve.

In the first two cases, the group Aut(X) is finite [42]. In the third case, the automorphism
group Aut(X) is also finite with a single exception, which is described in

Example 4.4.2. Let S5 be the smooth quadric surface in P? that is given by zoxs = x125.
Fix the isomorphism Sy = P! x P! that is given by

<[So : 81}, [to : td) — [Sot() 1 8oty : st : Sltl] .

Let ¢ be the curve of degree (1,3) in Sy given by sity = s3t;. Then its image in P? is
the rational quartic curve given by [so : s1] — [sos} : s§ : s] : s155], and X is a smooth
Fano threefold in the family Ne2.22. Let G be the subgroup in Aut(P?) that is generated

by the involution [zg : @1 : 9 : x3] — [x3: 22 : 21 : x¢], and automorphisms
[x'(] DY /8 T 11, W xg] — [)\3.1'0 X )\41’2 : )\.1’3},

where A € G,,,. Then G = G,,, X pu,, and the curve € is G-invariant. Thus, the action of
the group G lifts to the threefold X. Then X is the unique smooth Fano threefold Ne2.22
that has an infinite automorphism group [42].

Denote by @ the proper transform on X of the quadric Sy. As shown in [16], there
exists the following commutative diagram:

(4.4.3) X



where ¢ is a contraction of the surface ), v is a rational map given by the system of all
cubic surfaces that contain ¢, and Vj, is a del Pezzo threefold in P"! of degree n such
that we have the following three possibilities:

n = 3, V3 is a singular cubic threefold in P* that has one ordinary double point,
and ¢ is a blow up of this point,

n = 4, V, is a smooth complete intersection of two quadric hypersurfaces in P?,
and ¢ is the blow up of a line,

n =5, V5 is described in Example 3.4.1, and ¢ is a blow up of a smooth conic.

Let G be a subgroup in Aut(P3?,%¢). Then the diagram (4.4.3) is G-equivariant, so that
we can also identify G with a subgroup of Aut(X). Let E be the m-exceptional surface.
Then —Kx ~ 2Q + E, and both @ and E are G-invariant, so that ag(X) < %

Let us prove that each of the three families Ne2.15, Ne2.19 and N2.22 contains a special
threefold that is K-stable, so that Proposition 4.4.1 would follow from Theorem 1.1.12.
To describe these special Fano threefolds, we have to specify the curve % and the group G.
Let us do this in the next three example.

Example 4.4.4. Let G be the symmetric group &5, consider the G-action on P* that
permutes the coordinates zo, . . ., 24, and identify P® with the G-invariant hyperplane in P4,
Then P? = P(V), where V is the irreducible 4-dimensional representation of the group G,
so that P? does not contain G-fixed points, G-invariant lines and also G-invariant planes.
Note that the same assertion holds for the alternating subgroup 2A; of the group G.
Let Sy be the smooth quadric surface in P that is given by its intersection with

x5+ 2% + a5+ a5 +a; =0,
let S5 be the cubic surface in P? given by its intersection with 23 +z3+23+23+23 = 0, and
let € = SN S3. Then % is a smooth curve of genus 4 and degree 6, which is canonically
embedded in P3. Clearly, both S, and S3 are G-invariant, so that € is also G-invariant.
The curve % is known as the Bring’s curve. It is the unique smooth curve of genus 4

that admits a faithful action of the group &5. Therefore, the threefold X is the unique
smooth Fano threefold in the family Ne2.15 that admits a faithful action of the group G&s.

Example 4.4.5. Recall the isomorphism Sy = P! x P! from Example 4.4.2. Let € C S
be the curve of degree (2,3) that is given by (sZ + s3)(t3 + t3) + (s — s3)(t3 — t3) = 0,
where ¢ is a general number. Then % is smooth. In particular, it is smooth for ¢ = 5.
Let 7: Sy — Sy be the involution that is given by ([so : s1], [to : t1]) — ([s0 : —s1], [to : t1]),
let ¢: Sy — Sy be the involution that is given by ([so : s1], [to : t1]) — ([s1 : Sol, [t1 : to]),
and let v: Sy — 95 be the automorphism of order 3 that is given by

([so 281, [to tl]) — ([30 2 81, [to :wtl]),

where w is a primitive cube root of unity. Let G = (7,¢,7) C Aut(Sy). Then G = Dy,
and the curve € is G-invariant. Observe that the G-action extends to P? as follows:

T([wo 21 1w ws]) = [—wo : —21 1 @2 ¢ W3],
L([wo s @y s @o t g]) = [w: @o t 3y 1 o),
Y([zo : @1t 3ot 13]) = w0 : way ¢ o ¢ W)

Then P? = P(V), where V is a four-dimensional representation of the group G which

splits as a direct sum of two non-isomorphic irreducible two-dimensional representations.
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In particular, we conclude that P? does not contain G-fixed points and G-invariant planes.
Moreover, Sy contains no G-invariant curves of degree (1,0), (0,1), (1,1), (1,2) and (2, 1).
The threefold X is a smooth Fano threefold in the family Ne2.19.

Example 4.4.6. As in Example 4.4.2, identify the quadric Sy with P! x P!, Let G = 2,,.
Fix a faithful G-action on P!, and consider the corresponding diagonal G-action on S,.
This action extends to P? such that P? = P(V), where V is the reducible four-dimensional
permutation representation of the group G. Then P? does not contain G-invariant lines,
P3 contains one G-fixed point and one G-invariant plane, the G-fixed point in P? is not
contained in Sy, and the G-invariant plane in P? intersects Sy by the diagonal curve A.
Let ¢ a smooth G-invariant curve in Sy of degree (1,3), which exists by Lemma A.6.11.
Then X is a smooth Fano threefold Ne2.22 on which the group G = 214 acts faithfully.
Moreover, arguing as in the proof of [42, Lemma 6.13], we see that Aut(X) = Aut(S,, €).
On the other hand, the group Aut(Ss, %) is finite by Lemma A.6.11.

In the remaining part of this section, we will assume that % is one of the curves
described in Examples 4.4.2, 4.4.4, 4.4.5, 4.4.6, so that X is a smooth Fano threefold
in the families N02.22, Ne2.15, Ne2.19, Ne2.22, and G is one of the groups G,, X u,, Gs,
Di2, 4, respectively. We will refer to these cases as (2.22.Dy,), (2.15.65), (2.19.D12),
(2.22.2L,), respectively. In the remaining part of this section, we will prove that X is
K-polystable in each case, so that X is K-stable in the cases (2.15.85), (2.19.Dy5) and
(2.22.2(,) by Corollary 1.1.6. This would imply Proposition 4.4.1 by Theorem 1.1.12.

Lemma 4.4.7. The following assertion holds:

(1) If we are in the case (2.15.65), then P? does not contain G-fized points, P> does
not contain G-invariant planes, S, is the only G-invariant quadric in P3, and P3
does not contain G-invariant irreducible rational curves.

(2) If we are in the case (2.19.D13), then P? does not contain G-fized points, P* does
not contain G-invariant planes, P? does not contain G-invariant conics and cubics,
the only G-invariant lines in P? are the lines vo = 3 = 0 and x; = x5 = 0, which
are not contained in Sy and do not intersects € .

(3) If we are in the case (2.22.20,), then P® contains unique G-fized point, which is
not contained in Sy, P? contain unique G-invariant plane, which intersects So by
the diagonal A, and P? does not contain G-invariant lines.

(4) If we are in the case (2.22.Dy,), then P* does not contain G-fized points, P* does
not contain G-invariant planes, and the only G-invariant lines in P? are the lines
{zg = 23 = 0} and {xy = 22 = 0}. Moreover, one has

{rg=23=0}NSy={2g=23=0}NE=1[0:1:0:0U[0:0:1:0],
but {x1 =29 =0} NSy =[1:0:0:00U[0:0:0:1] and {z1 =22,=0}N%E =2.

Proof. The assertions (1.1), (1.2) and (1.3) immediately follows from Example 4.4.4. To
prove the assertion (1.4) observe that &5 cannot faithfully act on a rational curve, because
PGLy(P!') does not contain a subgroup isomorphic to G5. On the other hand, the group
G acts faithfully on any irreducible G-invariant curve in P? in the case (2.15.65), because
none of such curve can be contained in a hyperplane, because P> = P(V) for the standard
irreducible four-dimensional representation of the group G. Thus, we see that P? does

not contain G-invariant irreducible rational curves.
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Assertions (3) and (4) easily follows from Examples 4.4.6 and 4.4.2, respectively. So we
leave their proofs to the reader. Let us only prove assertion (2).

Suppose that we are in the case (2.19.D12). Then, as we already mentioned in Exam-
ple 4.4.5, the G-action on P3 lifts to its linear action on H°(P3, Ops(1)), which splits as
a sum of two irreducible two-dimensional representation of the group G. In particular,
the projective space P? does not contain G-fixed points and G-invariant planes, so that it
does not contain G-invariant conics and G-invariant plane cubic curves.

Observe that H°(P3 Ops(1)) splits as a direct sum of two non-isomorphic two-
dimensional irreducible G-representations. Thus IP? contains exactly two G-invariant lines.
One can check that the lines g = 23 = 0 and 27, = x5, = 0 are indeed G-invariant, so
that these are the only G-invariant lines in P2. They are not contained in S,, because its
defining equation is zors = z17. In fact, the line 7y = 23 = 0 intersects Sy = P! x P!
transversally by the points ([0 : 1],[1 : 0]) and ([1 : 0],]0 : 1]), and the line z; = 25 = 0
intersects Sy = P! x P! transversally by the points ([0 : 1],[0 : 1]) and ([1 : 0],[1 : 0]).
Using the equation of the curve % given in Example 4.4.5, we see that none of these four
points is contained in the curve ¥ provided that € # +1.

Finally, let us show that P3 does not contain G-invariant twisted cubic curves. Sup-
pose that P3 contains a G-invariant twisted cubic curve Cs. Then the G-action on Cs is
faithful and C3 = P!. Let G’ be the subgroup in G generated by ¢ and . Then G’ = G,
so that P! must contain G’-orbit or length 3, which is not contain in one line, since Cj
is an intersection of quadrics. Thus, P? contains a G’-invariant plane, which is impossi-
ble, since H°(P?, Ops(1)) splits as a sum of two isomorphic two-dimensional irreducible
representations of G’. This shows that P? contains no G-invariant twisted cubics. U

Corollary 4.4.8. If X contains a G-fized point, then we are in the case (2.22.2ly), such
point is unique, and it is not contained in the surface Q).

Corollary 4.4.9. Suppose that we are in the case (2.19.D15). Then Vj contains neither
G-fized points nor G-invariant hyperplane sections.

Proof. The threefold V; does not have G-fixed points away from ¢(Q), because X does
not have G-fixed points. Moreover, the conic ¢(Q) does not contain G-fixed points either,
since curves contracted by ¢|g: @ — ¢(Q) are mapped to lines in S;. By Lemma 4.4.7,
none of such lines are G-invariant, so that V,; does not contain G-fixed points.

To prove the final assertion, recall that 1 in (4.4.3) is given by the linear system of cubic
surfaces that pass through %. Thus, if there exist a G-invariant hyperplane section of
the threefold V, then there exists a G-invariant surface S; in P2 that contains the curve €.
If S5 = S, + H for some hyperplane H in P3, then H is G-invariant, which contradicts
Lemma 4.4.7. Hence, Sy ¢ S3 and Ss|g, is a curve of degree (3,3) that contains ¢, which
implies that S3|s, = € + ¢ for a G-invariant line . This contradicts Lemma 4.4.7. 4

Now, we are ready to give a proof of the K-polystability of the threefold X that works in
all cases (2.15.65), (2.19.D12), (2.22.2(4), (2.22.D,). Suppose that X is not K-polystable.
By Theorem 1.2.5, there exists a G-invariant prime divisor F' over X such that S(F) < 0.
Let us seek for a contradiction.

Let Z = Cx(F). By Theorem 3.7.1, we know that Z is not a surface, so that Z is either
a G-invariant irreducible curve or a G-fixed point. Moreover, if Z is a G-fixed point, then
it follows from Corollary 4.4.8 that we are in the case (2.22.2(,), and Z is the unique

G-fixed point in X, which is not contained in the surface Q).
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Lemma 4.4.10. One has Z ¢ Q.

Proof. Let us compute Sx(Q). Let H be a hyperplane in P2, and let u be a non-negative
real number. Observe that — Kx —u@ ~g (4—2u)7*(H)+(u—1)E ~g (1—u)Q+27*(H).
Thus, the divisor —Kx — u@ is nef for u € [0, 1], and it is not pseudo-effective for u > 2.
Moreover, in the notations of Section 1.7, we have

—Kx—uQif0<u
P(_KX_UQ)_{(4—QU)7T*(H) if1<u<2,
and N(—Kx —u@) = (u— 1)E for u € [1,2]. Note that Sx(Q) < 1 by Theorem 3.7.1.

Now, we suppose that Z C ). Then Z is a curve. Using Corollary 1.7.26, we conclude
that S(WQ Z) > 1. Let us show that S(W&,;Z) < 1.

.0’ e.0)

Let P(u) = P(—Kx—uQ) and N(u) = N(—Kx—uQ). Note that Q = S, = P! xP!. Set
3 if we are in the case (2.15.65),
n = { 4 if we are in the case (2.19.D15),
5 if we are in the cases (2.22.2(4) or (2.22.D,).
Then (—K%) = 10+ 4n, Elg ~ Og(3,6 — n) and
Og(u+1,4u+n(l —u)—2)if0<u<l,
(Wl ~ {OQ(4—2u,4—2u) if1<u<2
Therefore, if Z = E|g, then Corollary 1.7.26 gives

< L
'LL
)

( RAPARE 10+4n// vol (’)Q(u—l—l—Bv du+n(l—u)—2—(6—n)v ))dvdu—i—

10+4n/ (4=2u)(u— 1)d“+10+4n// vol(Og(4-~2u~3v,4-2u~(6-n)o) ) dvdu —

/ /“ 2(u+1—-3v)(du+n(l —u) — 2 — (6 — n)v)dvdu+

10+ 4n
2 N 7(3 4 4n)
104+4n 10+ 4n 36(5 4+ 2n)
Hence, we may assume that Z # E|q. It follow from Lemma 4.4.7 that |Z — A| # @,
where A is the diagonal curve in ). Thus, using Corollary 1.7.26, we see that

S(WEZ) < S(WE;A) =

e.0)

+

2(4—2u—3v)(4—2u—(6—n) Ydvdu =

10+4n// vol (’)Q(u—l—l—v 4u—|—n(1—u)—2—v)>dvdu+

+10+4n/1/0 Vol OQ(4—2u—v,4—2u—v))dvdu:

/o /Ou+1 2(u+1—v)(4u+n(l —u) - 2 - v)dvdu+

" 10+ 4n

3 2 a2 13+ 11n
2(4 — 2u — v)?dvdu = ——— < 1
+1O+4n/1/0 (4= 2u—vfdvdu = 306

The obtained contradiction completes the proof of the lemma. O
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To deal with the case (2.22.24), we also needs the following result:

Lemma 4.4.11. Suppose that we are in the case (2.22.2). Let H be the G-invariant
hyperplane in P3. Then 7(Z) ¢ H.

Proof. Suppose that w(Z) C H. Then, using Lemma 4.4.7, we see that Z is not a point,
so that Z is a G-invariant irreducible curve in H. Let us seek for a contradiction.

Observe that H intersects the curve € transversally by 4 distinct points, since H-% = 4,
and the curve ¢ does not contain G-orbits of length less than 4 (recall that ¢ = P').
Note also that the action of the group GG on the surface H is faithful.

Let S be the proper transform on X of the surface H, let w: S — H be birational
morphism induced by 7 and let C' = @ NS. Then S is a smooth del Pezzo surface of
degree 5, the morphism ¢ is a G-equivariant blow up of the four intersection points HN%,
the curve C' is a G-invariant irreducible smooth curve such that

CN2£—€1—62—63—€4,

where /¢ is the proper transform on S of a general line in H, and ey, ey, e3 and ey are
p-exceptional curves. Moreover, the group PicG(S) is generated by the divisor classes
{ and e; + e + e3 + e4. Furthermore, the cone of effective G-invariant divisors on S' is
generates by C' and e; + ey + e3 + ey, since C? = 0. Thus, since Z is irreducible, we have

ZNag—b(€1+€2+€3+€4)

for some integers a and b < §. Since H does not have G-invariant lines by Lemma 4.4.7,
the linear system |¢| does not have G-invariant curves. Hence, we see that a > 2, so that
the linear system |Z — C| is not empty. Observe also that |C] is a base point free pencil
that contains two G-invariant smooth curves [50, Lemma 6.2.2]. One of these curves is C.
Denote the other curve by C".

As in the proof of Lemma 4.4.10, let us compute Sx(S). Take u € R5y. Then

~Kx—uS ~p (4—u)7*(H)—E ~g Q4+ (2—u)r"(H) ~g (u—1)Q+ (2—u)(7*(3H) — E),
and the restriction (—Kx — uS)|q is a divisor on @ = P! x P! of degree (3 —u,1 — u).
Let P(u) = P(—Kx —uS) and N(u) = N(—Kx — uS). Then
. e g —Kx —uSif0<u<l,
(= Ky —us) = (2 —u) (7" (3H) — E) if 1 <u < 2,
and we have )
N % s 0if 0 <u<l,
(= Ky —uS) = (u—1)Sif1 <u<2.

Here, we used notations of Section 1.7. Note that Sx(S) < 1 by Theorem 3.7.1.

Since Sx(S) < 1, S(WZ2,; Z) > 1 by Corollary 1.7.26. Let us show that S(W2,; Z) < 1.

It is enough to do this in the cases Z = C and Z = (. Indeed, the case Z = C is
special, because we have N(u)|s = (u—1)C for every u € [1,2]. Moreover, if Z # C, then

SWS,;Z) < S(WE,; C"), because |Z — C'| # &. Observe also that Corollary 1.7.26 gives

.7.7 .,.7

1 1 00 1 9
S . _ _ _ _ —_ )2
S(Wo,;C) = 10/0 /0 vol<( Kx —uS)| vC)dvdu+ 10/1 5(u—1)(2 — u)’du+

1 2 o] 5 . .
- — * _ _ — ! > . / )
+ 10/1 /0 Vol<(2 u) (7r (3H) E)‘S vC’)dvdu —120+S(W.7.,C) > S(W2,;C")
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because (7*(3H)—E)?-S =5 and C' ~ C’. Thus, it is enough to show that S(W7,; C) < 1.
For any u € [0, 1], observe that
4—u

’S—’UCNR 2_2UC+2;U(61+€2+€3+64).

(—KX—US)

Therefore, if 0 < v < 1, then this divisor is nef, and its volume is equal to (u—2)(u+4v—6).
Similarly, if 1 < v < 4_7“, then its Zariski decomposition is

(—KX—uS)

¢ — V0 ~g (4 —u—20)l+ (v— 1)(e1 4+ ex +e3+eq),
positi:/re part negat;\;e part

so that its volume is (4 — u — 2v)?. For v > 4_7“, this divisor is not pseudo-effective, so
that its volume is zero. Thus, we have

1 ) 1 AlfTu
/ / vol((—KX—uS)|S—vC)dvdu:/ / vol((— Kx — )|y~ vC ) dvdu =
0 0 0 0

1 opl 1 pism 143
= / / (u—2)(u+4v—6)dvdu—|—/ / (4 —u — 2v)*dvdu = —.
o Jo o J1 24

Similarly, if u € [1, 2], then, using (7*(3H) — E)|s ~ 30 — e; — e3 — e3 — e4, we get

6 —3u—2v 2 -
o0 S22 2
Hence, if 0 < v < 2 — u, then this divisor is nef, and its volume is (u — 2)(5u + 4v — 10).

Likewise, if 2 —u < v < 6_23“, then its Zariski decomposition is

(2 —u)(z*(3H) — E) Zer + ez + €3+ ea).

(—KX—USHS—UC’NR (6—3u—2®)€+(v—2+u)(61+62+63+e4),

A N J/

TV
positive part negative part

and its volume is (6 — 3u — 2v)?. For v > %, this divisor is not pseudo-effective. Then
2 e
/ / Vol<(2—u)(7r*(3H) —E)}S—UC>dvdu:
1 Jo N
9

2 r2-u 2 =
: 1
= / / (u—2)(bu + 4v — 10)dvdu + / / (6 — 3u — 2v)*dvdu = —.
1 Jo 1 J2—u 24

Therefore, we see that S(WS,:C) = 135 + %(% + %) = 22 < 1. The obtained contra-

diction completes the proof of the lemma. O

Using Lemma 1.4.4, we see that ag,z(X) < 2. Now, using Lemma 1.4.1, we see that
there are a G-invariant effective Q-divisor D on the threefold X and a positive rational
number A < 2 such that D ~g —Ky and Z is contained in the locus Nklt(X, AD).

Lemma 4.4.12. Suppose that the locus NkIt(X,AD) contains a G-irreducible surface.
Then either S = Q or w(S) is a G-invariant hyperplane in P3.

Proof. By assumption, we have D = vS+A, where 7 is a rational number such that v > %,
and A is an effective Q-divisor on X whose support does not contain S. If S = E, then

20+ E ~7"(4H) — E ~g vE + A,
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which implies that 2Q) — (v + 1)E is pseudo-effective. The latter is not the case, because
the cone Eff(X) is generated by @ and E. Then S # E, so that S ~ 7*(Ops(a)) — bE for
some positive integer a and some non-negative integer b < §. Moreover, we have ya < 4,
because Ops (4) ~g ym(S) + m(A). Thus, either a =1 or a = 2, since v > 3.
If a =2 and b = 0, then we immediately obtain a contradiction as in the case S = E.
If a =2 and b =1, then S = @, because Sy is the only quadric surface in P? that
contains the curve %. Thus, we conclude that S is a G-invariant plane. U

Therefore, if we are not in the case (2.22.2(4), then @ is the only surface (a priori)
that can be contained in the locus Nklt(X, AD), because P* does not contain G-invariant
hyperplanes in the cases (2.15.65), (2.19.D;5) and (2.22.D) by Lemma 4.4.7.

Lemma 4.4.13. The subvariety Z is not point.

Proof. Suppose that Z is a point. Then, by Lemma 4.4.7, we are in the case (2.22.2l,),
and Z is the unique G-invariant point in the threefold X. For transparency, let P = Z.
Let H be the unique G-invariant plane in P3. Then P & H, so that Nklt(X, AD) does not
contain surfaces that pass through P by Lemma 4.4.12.

Now, we observe that the action of the group G on the plane H is given by the standard
irreducible three-dimensional representation of the group G = 204. The second symmetric
power of this representations is a sum of all irreducible representations of the group G.
This can be verified using the following GAP script:

G:=SmallGroup(12,3);
T:=CharacterTable(G);
Ir:=Irr(T);

V:=Ir[4];
S:=SymmetricParts(T, [V],2);
MatScalarProducts(Ir,S);

Geometrically, this means that H contains exactly three G-invariant irreducible conics.
Let us denote by S5, S5 and S%’ the quadric cones in IP3 over these conics with vertex P,
and let us also denote by Sé, S” and S’” their proper transforms on X, respectively.
We will use these surfaces a bit later
Second we observe that multp(D) < 4. This follows from the fact that m(D) ~q 4H.
Let f: X — X be the blow up of the point P. Denote by F' the f- exceptional surface.
Let D be the proper transform on X of the divisor D, let S S” and S”’ be the proper

transforms on X of the surfaces Sé, S” and ”’ , respectively. Then

K¢ +AD + (Amultp(D) — 2) F ~g f*(Kx + AD),

so that (X, A\D 4+ (Amultp(D) — 2)F) is not Kawamata log terminal at some point in F.
Since Amultp(D) — 2 < 4\ — 2 < 1, we conclude that the log pair (X, AD + F) is also not
log canonical at some point in F'. Then, using Theorem A.2.1, we conclude that the log
pair (F, )\ZA)]F) is not log canonical.

Now, we identify F = P2. Since Amultp(D) < 3, the divisor —(Kp+ AD|r) is ample, so
that Nklt(F), )xlA?| r) is connected by Corollary A.1.7. But the G-action on F' is given by its
irreducible three-dimensional representation, so that F' does not contain G-fixed points

and G-invariant lines. This implies that NkIt(F, AD|f) is a G-invariant irreducible conic.
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But F contains exactly three G-invariant conics — the conics F NS}, F NSy, FNSY.
Thus, without loss of generality, we may assume that Nklt(F,A\D|p) = F'N.S,.
Let C = F NS, We proved that C = Nklt(F, AD|r). In fact, our proof implies that
e Amultp(D) > 2, so that the divisor AD + (Amultp(D) — 2)F is effective.
o NKIt(X,\D + (Amultp(D) — 2)F) N F C C.
Applying [126, Corollary 5.49] to (X,AD + (Amultp(D) — 2)F) and the morphism f,
we see that Nklt(X AD + (Amultp(D) — 2)F)) N F = C. since F has no G-fixed points.
Write D = aS’ + A, where A is an effective Q-divisor whose support does not contain

the surface §§, and a is a non-negative rational number. Then Aa < 1 by Lemma 4.4.12.
Let A be the proper transform of the divisor A on the threefold X. Then

C C Nklt ()? NS, + AA + (22a + Amultp(A) — 2)F>.

Hence, using Theorem A.2.1 again, we get C C NkIt(S), )\£|§é + (2 a+ Amultp(A) —2)C).

o = bC + €2, where b is a non-negative rational number such
2

that A\b+ 2Xa + Amultp(A) —2 > 1, and € is an effective Q-divisor on §§ whose support
does not contain the curve C. Thus, we see that b > %—a+multP(A) > 4—a+multp(A).

Now, we let 7 be the proper transform on X of a general ruling of the cone S;. Then
(-A=T. ((w o f)*(— Kps — aSh) — f*(E) — multp(A)F> = 4 — 2q — multp(A).

Then 4 — 2a — multp(A) = C-A=b+0-Q>b>4—a+ multp(A), which is absurd.
This completes the proof of the lemma. U

Therefore, we see that Z is a G-invariant irreducible curve.

Lemma 4.4.14. The curve Z is rational.

Proof. Let D = ¢(D) and Z = ¢(Z), where ¢ is the contraction of Q in (4.4.3). Since
Z ¢ @, we see that Z is a G-invariant irreducible curve, the induced map ¢|z: Z — Z
is birational, and Z C Nklt(Vy, AD). If Nklt(V;, AD) does not have two-dimensional
components, then Z is a smooth rational curve by Corollary A.1.17.

To complete the proof, we may assume that Nklt(Vy, AD) contains a G-irreducible
surface S. Let S be its proper transform on X. Then S C Nklt(X,AD) and S # @, so
that 7(S) is a hyperplane in P* by Lemma 4.4.12. Then we must be in the case (2.22.244),
so that d = 5, and the surface S is a hyperplane section of the threefold Vi C P°.

By Lemma 4.4.11, the curve 7(Z) is not contained in 7(S), so that Z¢8.

Write D = 7S + A where v is a rational number such that v > /\, and A is an effective
Q-divisor such that S ¢ Supp(A). Then Z C Nklt(V5, AA). But A ~g —(1 — 1)Ky,
so that Z is rational by Corollary A.1.17, since Nklt(Vs, AA) does not contain surfaces. [

Corollary 4.4.15. If we are in one of the cases (2.15.65) or (2.19.D1s), then Z ¢ E.

Proof. By Lemma 4.4.14, the curve Z is rational. But m(Z) is not a point, since € does
not contain G-fixed points by Lemma 4.4.7. Therefore, if Z C E, then 7n(Z) = €', which

implies that € is also rational. But % is irrational in the cases (2.15.65) or (2.19.Dy5), O
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By Lemma 4.4.15, we see that 7(Z) is a G-invariant rational curve in the case (2.15.65),
which contradicts Lemma 4.4.7. Thus, we see that the case (2.15.63) is impossible, which
we already know from Example 1.5.22. In the remaining part of the section, we will show
that the cases (2.19.D19), (2.22.2(4) and (2.22.D,,) are also impossible.

Lemma 4.4.16. One has Z ¢ E.

Proof. Suppose that Z C E. Let us seek for a contradiction. Using Corollary 4.4.15, we
see that we are in one of the cases (2.22.2(,) or (2.22.D). Then % is a smooth rational
quartic curve, so that E = T, for some n € Zsq. Let us show that £ = Fy or £ = P! x PL.

Let s be a section of the projection £ — ¢ such that s> = —n, and let 1 be its fiber.
Then —E’!E ~ s + kl for some integer k. Then —n + 2k = E?* = —c¢;(Ng/ps) = —14, so
that k = ”_TM. Then

2
n -+ l,
2

Ql, ~ (7" (0ps(2)) —E)| . ~s+ (k+8)=s+

which implies that Q|g % s. Moreover, we know that Q‘ 1 18 a smooth irreducible curve,
since the quadric surface Sy is smooth. Thus, since Q‘ » 7 S, we have

n—+ 2 n—|—2_2—n

2 2

so that n = 0 or n = 2. Note that n = 0 in the case (2.22.D,) by [62, Theorem 3.2].
Now, we can obtain a contradiction arguing exactly as in the proof of Lemma 4.4.10.
But there is a simpler way to do this. Write D = aE+ A, where A is an effective Q-divisor
whose support does not contain the surface F, and a is a non-negative rational number.
Then Aa < 1 by Lemma 4.4.12.
Note that 2Q+F ~ —Kx, and Z ¢ Nklt(X, \2Q +\F), since Z ¢ () by Lemma 4.4.10.
Thus, using Lemma A.4.12, we can replace D by an effective Q-divisor D’ ~q D such that

o Z C NKIt(X, \D'),
e the support of the divisor D’ does not contain either () or E (or both of them).

0<Q|E-s:(s—|— l>~s:—n+

Therefore, we may assume that Supp(D) does not contain () or E. In particular, if a > 0,
then A|g is an effective Q-divisor on the surface Q@ = P* x P! of degree (3 —a,1 — 3a).
This shows that we always has the inequality a < %

Using Theorem A.2.1, we get Z C Nklt(E,)\A]E). This means that A|E = b7 + Q,
where b is a rational number such that b > % > %, and € is an effective Q-divisor whose
support does not contain the curve Z. On the other hand, if £ = P! x P!, then

bZ + Q= Al, ~g —Kx|, —aB|, ~gs+9+a(s = T1) = (1+a)s + (9 - Ta)l,
because —E|g ~ s — 7l in this case. Similarly, if £ = Fy, then
bZ +Q=A|, ~g —Kx|, —aBE|, ~qgs+ 101+ a(s —61) = (1+ a)s + (10 — 6a)L

because —FE|g ~ s —61 in this case. In both cases, we immediately obtain a contradiction:

4 1 4
§<X<b<bZ-l<bZ-l+Q-l:(bZ+Q)-l:1+a<§,
because Z -1+ 0, since w(Z) is not a point by Lemma 4.4.7. O
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Thus, we see that 7w(Z) is a G-invariant rational curve in P? such that 7(Z) ¢ S,.
Moreover, if we are in the case (2.22.2l4), then 7(Z) is not contained in the G-invariant
hyperplane in P? by Lemma 4.4.11.

Lemma 4.4.17. The curve ©(Z) is a G-invariant line in P3.

Proof. Let D = 7(D) and 7 = 7(Z). Then ZcC Nklt(P3, )\lA)), and Z is not contained in
any surface contained in Nklt(P3, AD) by Lemma 4.4.12. Now, apply Corollary A.1.13. O

Thus, using Lemma 4.4.7, we conclude that we are in the case (2.19.2l4) or (2.22.D).
Then P3 contains two G-invariant lines by Lemma 4.4.7. These G-invariant lines are
the lines g = 3 = 0 and ; = x9 = 0. For simplicity, let us call them L., and Ly,
respectively. We know that either 7(Z) = Lo, or Z = 7(Ly).

Let H be a a general hyperplane in P? that contains 7(Z), and let S be its proper
transform on X. Then S is smooth. Moreover, one of the following possibilities holds:

e if we are in the case (2.19.2(4), then S is a smooth del Pezzo surface of degree 4,

e if we are in the case (2.22.D,,), then S is a smooth del Pezzo surface of degree 5.
Let u be a non-negative real number. Observe that —Kx — uS ~g (2 — u)n*(H) + Q.
This implies that —Kx — uS is nef for every u € [0, 1], it is not pseudo-effective for u > 2.
Moreover, in the notations of Section 1.7, we have

4—u)r*(H)—Eif0<u<l,

P(—Kx —uS) = {(2—u)(3ﬂ*(H) —E) if 1 <u<?2,

and we have
0if 0 <u<l,

so that Z ¢ N(—Kx — uS). Moreover, we have Sx(S) < 1 by Theorem 3.7.1.
Then S(W,; Z) > 1 by Corollary 1.7.26. Let us compute S(W2,; Z).

Let w: S — H be the birational morphism induced by 7. Then ¢ contracts d disjoint
smooth curves, where d is the degree of the curve . Denote them by eq, e, ..., eq4.
Then Els =e;+ex+---+eq. Let C = Qlg, and let £ be the proper transform of a general
line in H on the surface S. Then ¢(C) is the conic H N S, and

so that C2 =4 —d < 0.
Lemma 4.4.18. Suppose that 7(Z) € = @. Then S(W2,; Z) < 1.

Proof. By Lemma 4.4.17, we have Z ~ (. Thus, if u € [0,1] and v € R, then
9—d
P(—Kx —uS)|s —vZ ~g (4—u—v)€—Zei ~r (2—u—v)l+C.
i=1
which implies the following assertions:
e the divisor P(—Kx — uS)|S —vZ is not pseudo-effective for v > 2 — u,
o if d =4, then P(—Kx —uS)!S —vZisnef < v <2 —u,

o if d =5, then P(—Kx —uS)|, —vZ is nef <= v < 32,
134



o ifd =5 and 3_22“ < v < 2—u, the Zariski decomposition of P(—KX—uS)‘S—vZ is
(2 —u—v) (5l — 261 — 2e5 — 2e3 — 2e4 — 2e5) + (2u + 20 — 3)C.

N

positive part negative part

Thus, ifu € [0,1], 0 < v < 2—uw and d = 4, then vol(P(—Kx—uS)|s—vZ) = (4—u—v)*—4.
Likewise, if u € [0,1], 0 < v < 2 —w and d =5, then
3 —2u
5
—2u
5
Similarly, if u € [1,2] and v € Ry, then P(—Kx —uS)|s—vZ ~r (2—u—v)l+(2—u)C,
which implies the following assertions:

(4—u—v)>—5ifv<
vol(P(—Ky —uS)‘S —vZ) = 3

52—u—wv)?ifv>

e the divisor P(—Kx — uS)|S — vZ is not pseudo-effective for v > 2 — u,

o if d =4, then P(—Kx —uS)|, —vZ isnef <= 0<v<2—u,

o if d =5, thenP( Kx —uS) ’S—insnef — 0<v< 3

e if d =5 and 245* < v < 2—u, the Zariski decomposition of P( KX—uS)|S—UZ is

P(—Kx —uS) {S—UZNR (2—u—v)(5€—261—262—263—264—265)+(2u+v—3)c.

N v
positive part negative part

Therefore, if u € [1,2], 0 < v < 2 —wu and d = 4, then
VOI(P(—K)(—US)’S—UZ) (6 —3u—v)*—4(2 —u)*
Likewise, if u € [1,2], 0 < v < 2 —w and d = 5, then
2—u
5

(6—3u—v)?—52—u)?ifv <
2—u

2
Now we are ready to compute S(W2,; Z). If d = 4, then Corollary 1.7.26 gives

2—u
SW2 Z 26/ / (4—u—v) dudv+—// 6 3u—v)2—4(2—u)2>dudv,

so that S(W2,; Z) = & 9 < 1. Similarly, if d = 5, then

S(W, ..7 10/ / (4—u—v)*>—5) dudv—l——/ / (2 — u — v)*dudv+
1 = , 119
+ 5 /1 /0 <(6 3u—v)*—5(2—u) dudv~|— / / —u—v)?dudv 50 <

This completes the proof of the lemma. O

vol(P(=Kx —uS)|g —vZ) =
52 —u—v)?ifv>

By Lemma 4.4.7, the lines Ly and L, are disjoint from the curve % in the case (2.19.2).
Therefore, we are in the case (2.22.D,), so that X is the threefold from Example 4.4.2,
and 7(Z) is a line such that 7(Z) N € # @.

Using Lemma 4.4.7, we see that 7(Z) = Lo, and LooNE =1[0:1:0:0]U[0:0:1:0].
We may assume that w(e;) =[0:1:0:0]and w(ey) =[0:0:1:0]. Then Z ~ {—e;—ey,
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so that Z is a (—1)-curve on the surface S that is disjoint from the (—1)-curves e3 and ey.
Let Lg4 be the proper transform on S of the line in H that contains w(e3) and w(ey).
Ifu € [0,1] and v € Ry, then P(—Kx—uS)|s—vZ ~g (3—u—v)L+(2—u)(e1+e2)+ Lag,

which implies the following assertions:

e the divisor P(—Ky — uS)|S — vZ is not pseudo-effective for v > 3 — u,

e if 0 <v <1, then P(—Kx — uS)}S —vZ is nef,

o if 1 < v < 2—u, then the Zariski decomposition of P(—Kx — uS)|S —vZ is

P(—Kx —uS)|,—vZ NR\(S —u—v)(L+e +e) +L34£+\(v —1)(e1 +e2).

TV TV
positive part negative part

o if 2—u < v <3—u, then the Zariski decomposition of P(—Ky — uS)‘S —vZ is
P(—Kx—uS)|—vZ ~r (3—u—v)(L+ €1+ ez + Lag) + (v — 1)(e1 + e2) + (v +u — 2) Ly, .

Vv TV
positive part negative part

Therefore, if v € [0,1] and 0 < v < 3 — u, then
(4—u—v)?—20w-172-2ifv <1
VOI(P(—KX—uS)|S—vZ): (4—u—v)?—-2if 1 <v <2 —u,
2B —u—v)?if2—u<v<3—u

Ifu e [1,2] and v € Ry, then P(—Kx —uS)|s—vZ ~g (4—2u—v)L+(2—u)(e;+e2+L3q),
which implies the following assertions:

e the divisor P(—Kx — uS)|S — vZ is not pseudo-effective for v > 4 — 2u,
o if 0 <v<2—u,then P(—Kx —uS)‘S —vZ is nef,
o if 2—u < v < 4—2u, then the Zariski decomposition of P(—Kx — uS)|S —vZ is

P(—KX—US)|S—UZNR (4—2u—1})(L+€1+€2+L34)—|—(U+U—2)(€1—|—62+L34).

positi:z,e part negati‘\:e part
Hence, if v € [0,2] and 0 < v < 4 — 2u, then
6—3u—v)?—-2u+v—-22-22-u?ifl <v<2—u,
24 —2u—v)?if 2 —u<v<4—2u.
; Z) as follows:

VOI(P(—KX—uS)|S—UZ) = {

Now, using Corollary 1.7.26, we can compute S(W,

..7

S(W2,; 10// 4—u—v)*—2v—1)—2)dudv+

—0/0/1 ((4—u—v)—2dudv+—//3u (3 — u — v)?dudv+

% /1 /0 h ((6—3u—v)>—2(u+v—2)>—2(2 — u)?)dvdu+

1 2 fi-2u
—/ / 2(4 — 2u — v)*dvdu = 1.
0 1 2—u

Thus, using Corollary 1.7.26 again, we conclude that Sx(F) = 1 as well, which is not

the case by Theorem 3.7.1. The obtained contradiction proves that X is K-polystable.
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4.5. Threefolds fibred into del Pezzo surfaces. Many smooth Fano threefolds admit
a surjective morphism to P! whose general fiber is a smooth del Pezzo surface. However, if
we want this del Pezzo fibration to be a Mori fibred space, the threefold belongs to one of
the families Ne2.1, Ne2.2 Ne2 3. Ne2 .4, Ne2.5, Ne2.7, Ne2.10, Ne2.14, Ne2.18, Ne2.25, Ne2.33,
Ne2.34. In Section 4.3, we already proved that general Fano threefolds in the families
Ne2.1, Ne2.3, Ne2.5, Ne2.10, Ne2.14 are K-stable, and we also proved that every smooth
Fano threefold in the family Ne2.25 is K-stable. On the other hand, the unique smooth
Fano threefold N°2.33 is K-unstable by Theorem 3.7.1. The family N*2.34 contains unique
smooth threefold: P! x P2, and it is K-polystable. The goal of this section is to show that
general members of the families Noe2.2, Ne2.4, Ne2.7. Ne2.18 are K-stable.

First, we show that general members of the family Ne2.2 are K-stable. Every smooth
member of this family is a double cover of P! x P? branched over a surface of degree (2, 4),
so that the projection to P! gives a fibration into del Pezzo surfaces of degree 2.

Lemma 4.5.1. Let X be a smooth Fano threefolds Ne2.2 that satisfies the following gen-
erality condition: for every fiber S of the natural projection X — P!, the surface S has at
most Du Val singularities and a(S) > 2. Then a(X) > 3.

Proof. The assertion follows from Theorem 1.4.11, since Theorem 1.4.11(1) cannot hold,
since —Kx ~ S+ Hj, where Hj, is a pull back of a line via the conic bundle X — P2, O

If applicable, this lemma implies that a general member of the family Ne2.2 is K-stable
by Theorem 1.4.9, because all smooth Fano threefolds Ne2.2 have finite automorphism
groups [42]. Thus, we have to show that smooth Fano threefolds Ne2.2 that satisfy the gen-
erality condition of Lemma 4.5.1 do exist. This is done in the following example:

Example 4.5.2. Let X be a double cover of P! x P? that is branched over a divisor of
degree (2,4) that is given by

u? (z3x + ya® — y3z) + 0% (@ —ay® — 2*) = 0.

where ([u : v], [z : y : z]) are coordinates on P! x P2. Then the Fano threefold X is smooth.
Moreover, let S be a fiber of the natural projection X — P! over a point P € P*. Then S
has at most Du Val singularities and a(Sp) > 2. Indeed, if the surface S is smooth,
then «(S) > % by Lemma A.5.4. Therefore, we may assume that S is singular. In

particular, P # [0 : 1] and P # [1 : 0]. Let t = Z—z Then S is a double cover of P2,
which is branched over the quartic curve Cy = {z3x + ya® — y32 + t(232 — zy® — 2*) = 0}.
Note that Cy must be singular since S is singular. On the other hand, one can show that
the curve () is singular if and only if ¢ is a root of the following polynomial:
143489077 4 43046721¢%° + 47298249¢%* + 73279809¢% + 88219206¢*2+
+ 160219620¢%' + 136305504%° + 141235569t + 230867372t'8 + 180568521117+
+ 91887093t + 200311947t + 129699756t + 50748768t — 1845789612+
+ 103837464t — 60378876t — 55596213t° — 32802534¢% — 62785537 —
— 53247369t% — 13308057t° — 1577457t — 12252303t> — 1058841t> — 823543 = 0.

This polynomial is irreducible over Q. The singular locus of Cj consists of one ordinary

double point, so that we can apply Lemma A.4.15 to find a(S). Let O be the singular
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point of the curve C,. Then there are two lines L and L’ in P? such that (L-Cy)o > 3
and (L' - Cy)o = 3. Then Lemma A.4.15 gives

; if (L : 04)0 =4 or (L/ : 04)0 = 47
a(S) = 3
T (L-Cio = (I~ Ci)o = 3.

Note that L + L' is defined over Q(t). Taking an appropriate change of coordinates, we
can assume that O = [0:0: 1], and Cj is given by

2w, y) + 2q3(x,y) + qu(w,y) = 0
where ¢a(x,y), ¢g3(x,y) and q4(x,y) are polynomials of degrees 2, 3 and 4, respectively.
The quadratic form ¢o(x, y) is not degenerate (this is how we check that S has an ordinary
double point at O), and ¢o(x,y) = 0 define L + L'. Then (L - Cy)o = (L' - Cy)o = 3 if
and only if the forms ¢»2(x,y) and ¢3(z,y) are coprime. One can check that this is indeed
the case, so that a(S) = 2 by Lemma A.4.15.

Thus, using Lemma 4.5.1 and Theorem 1.4.9, we conclude that a general member of
the family Ne2.2 is K-stable. By Theorem 1.1.12; this also follows from Theorem 1.4.7
and the following

Example 4.5.3. Let w be a primitive cubic root of unity, and let 7: X — P! x P? be
a double cover branched over a smooth surface of degree (2,4) that is given by

w(at +yt +2Y) + 0 (2! +wyt +w?t) =0,
where ([u: v], [z : y : 2]) are coordinates on P! x P2, Then X is a smooth Fano threefold
in the family Ne2.2. Tt admits a faithful action of the group G = p3 x (u3 x p3), where
the generator of one of the copies of u, is the Galois involution of the cover 7, the generator
of another copy of p, acts by changing the sign of u and preserves all other coordinates,

generators of the two copies of p, multiply yo (respectively, y;) by v/—1 and preserve all
other coordinates, and a generator of p4 acts by

U U, VW, T2, Y= T, 2.

The natural projection X — P? is G-equivariant, so that it gives a homomorphism of
groups G — Aut(P?). Denote its image by I'. Then I' = p? x py. Observe that P? does
not contain I'-invariant lines, which implies that it does not contain I'-invariant rational
curves, because Aut(P') does not have a subgroup isomorphic to I'. Then X contains
neither G-invariant points nor G-invariant rational curves. Therefore, applying Theo-
rem 1.4.11 with 4 = 1, we see that ag(X) > 1, because condition Theorem 1.4.11(1)
cannot hold (see the proof of Lemma 4.5.1).

Every smooth Fano threefold in the family Ne2.4 is a blow up of P? in a smooth curve
that is the complete intersection of two cubic surfaces, so that admits a fibration into
cubic surfaces. Using this observation, one can prove the following

Lemma 4.5.4 ([43, Lemma 7.2]). Let X be a general enough smooth Fano threefold Ne2.}.

Then a(X) > 3.

Since smooth Fano threefolds Ne2.4 have finite automorphism groups [42], Lemma 4.5.4

and Theorem 1.4.9 imply that general smooth Fano threefolds Ne2.4 must be K-stable.

By Theorem 1.1.12, this also follows from Theorem 1.4.7 and the following
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Example 4.5.5. Let € be the curve in P? that is given by
xy + 25 + Mas + 23) =0,
{)\(a:?) —a}) + a3 — x5 =0,
where A € C\ {0,£1,+:}. Then % is a smooth curve. Let X — P3 be a blow up of this
curve. Then X is a smooth Fano threefold Ne2.4. Observe that Aut(X) = Aut(P?,%),

so that we can identify these two groups. Let G = Aut(P3,%). Let us describe this group.
Note that G contains transformations

To:T1:Tg T3] — [Tg: WZL'l OJbZL'Q OJl’g
[ J |

for all a, b, ¢ in {0, 1,2}, where w is a primitive cube root of unity. These automorphisms
generate a subgroup in G isomorphic to u3. Note also that the group G contains two
involutions

[QT()IZElI[L’QZQTg]l—)[QTlIZEQIl'gZQTQ]
and
[To: @1 gt 3] > (101 —w3 1 g 1 —11],

which generate a subgroup isomorphic to the Klein four group p3. Thus, we constructed
a subgroup in G that is isomorphic to pj x p3. On the other hand, the group G' must
permute the points [1:0:0:0],[0:1:0:0],[0:0:1:0],[0:0:0: 1], because these
are the vertices of all cubic cones that are contained in the pencil generated by the cubic
surfaces z3 + 3 + Az + 23) = 0 and A\(z} — 23) + 23 — 3 = 0. Using this, one can show
that G = p3 x p3 when \ is general enough. In fact, one can show that

pi XAy if AT =207 207 £ 20+ 1 =0,
G =< pui x Dgif A* +6)%+1=0,
p3 % p3 otherwise.

In each case, we use Theorem 1.4.11 to prove ag(X) > 1 as in the proof of Lemma 4.3.12.
Thus, the threefold X is K-stable by Theorem 1.4.7 and Corollary 1.1.6.

Now, let us show that general smooth Fano threefolds Ne2.7 are K-stable. To do this,
let Q, Q1 and @, be quadrics hypersurfaces in P* that are given by the equations

xf+ 2% + a5+ 25 + x5 =0,
:L’O + 55371 + €5$2 55353 5 $4 =0,
5550 + &xl + Exs + Sag + ] =0,

respectively, where &5 is a primitive fifth root of unity. Let C = Q@ N Q1 N Q2. Then C is
a smooth curve of genus 5. Let o be the automorphism of P4 of order 5 that acts by

[l’oiIl To 1 T3 : I4}|—)[$1 To 1 T3 Ty : Io}
let 7 be the involution of P* that acts as
(2o : @1 1@t w3 @] > [mamg i @o 2 @),

let I' € Aut(PP*) be the subgroup such that I' 2 u3, and the generator of its i-th factor acts

by multiplying the coordinate x; by —1. Set G = (o, 7,T") C Aut(P*). Then G = uj x Dy,

and C is G-invariant, so that there exists a monomorphism G < Aut(C). One can show
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that it is an isomorphism [128]. Observe that () is also G-invariant, so that we may
identify G’ with a subgroup in Aut(Q).

Lemma 4.5.6. Let m: X — @ be the blow up along C. Then X is a Fano threefold N 2.7,
and we may identify G with a subgroup in Aut(X), because there ezists G-equivariant
commutative diagram

(4.5.7) X

where ¢ is a fibration into del Pezzo surfaces of degree 4, and 1 is the map given by
the pencil generated by the surfaces Q1| and Qz|g. Moreover, we have ag(X) > 1.

Proof. All required assertions are clear except for ag(X) > 1. To show that ag(X) > 1,
let us apply Theorem 1.4.11 with p = 1. First, we observe that the diagram (4.5.7) gives
a homomorphism of groups v: G — Aut(P') such that ker(v) = T' and im(v) = Dyy.
Observe that P! has no v(G)-fixed points, so that X has no G-fixed points.

Let F' be the proper transform on X of the surface Q1]g, and let C' be a G-invariant
irreducible curve in X. We claim that F'-C ¢ {0,1}. Indeed, if F'-C = 0, then ¢(C') must
be a v(G)-fixed point in P!, which is impossible. Similarly, if F - C = 1, then F N C is
a I'-fixed point, so that Q1o contains a I'-fixed point, which is not the case. This shows
that F- C ¢ {0,1}.

Applying Theorem 1.4.11 with p = 1, we see that ag(X) > 1 provided that X does
not contain a G-irreducible surface S such that —Ky ~g AS + A for some A > 1 and
some effective Q-divisor A. Suppose that such surface S exists. Then

(4.5.8) gF + %E ~ —Kx ~g AS + A.
Let us seek for a contradiction. If S = E, then (4.5.8) gives Alp ~g (1 — 2)\)(—Kp),
which is a contradiction, since A is effective. Thus, we have S ~ 7*(dH) — mE for some
integers d > 1 and m > 0, where H is a hyperplane section of the quadric Q). Then (4.5.8)
gives
M7 (dH) — mE) + A ~g *(3H) — E,

so that either d = 1 or d = 2. Moreover, we have S ~q gF + (g — m)E, which implies
that S| ~g (¢ — m)E|p. This shows that m < 4.

If d = 1, then w(5) is a G-invariant hyperplane section of the quadric ), which is
impossible, since P* does not have G-invariant hyperplanes. Then d = 2 and m € {0, 1}.

If m =1, then S ~ F, so that ¢(S) is a v(G)-fixed point in P!, which is impossible.
Then d = 2 and m = 0, so that S ~g F' + E. Now, (4.5.8) gives A ~q (1 —2X)(—KF),
which is absurd. This shows that ag(X) > 1. g

Since all smooth Fano threefolds Ne2.7 have finite automorphism groups [42], we see
that the Fano threefold in Lemma 4.5.6 is K-stable by Theorem 1.4.7 and Corollary 1.1.6.
Hence, a general smooth Fano threefold in the family Ne2.7 is K-stable by Theorem 1.1.12.

Now, let us present one K-stable smooth Fano threefold Ne 2.18. Namely, let B be
the surface of degree (2,2) in P! x P? that is given by

w5 (yo +wyi + whyz) + 21 (yp + W'y +wyz) =0,
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where w is a primitive cubic root of unity, zy and z; are homogeneous coordinates on P!,
and 1o, y1, ¥2 are coordinates on P2. Then B is smooth. Let 7: X — P! x P? be a double
cover branched over the surface B. Then X is a smooth Fano threefold Ne2.18, and we
have the following commutative diagram:

(4.5.9) X
/ﬂ_l \
P! x P2
™ ™2

P! P?

where 7 and 7y are natural projections, 7, is a fibration into quadric surfaces, and s is
a (standard) conic bundle. Let ¢; be the involution in Aut(P! x P?) that is given by

([wo xl ) (on $1 [yo STy yz]),

let t5 be the involution that is given by ([xo = 1], [yo - v1 : y2]) = ([0 = 21, [yo = 11+ —u2)),
let o be the involution that is given by ([xo : z1], [yo : y1 : y2]) = ([xo : —21], [0 : v1 : y2]),
let ¢ be the involution that is given by ([xg : 1], [yo : v1 : y2]) — ([z1 : @0l [vo : y2 : 11]),
and let 6 be the automorphism of order 3 that is given by

([l’o ][yo Y1 - y2])'—>([9€0 le] [?Jz Yo - 3/1])

These automorphisms leaves the surface B invariant, and their actions on P! x P? lift to
the double cover X, so that we can consider them as automorphisms of the threefold X.
Let 7 be the the Galois involution of the double cover «, and let G = <L1, L9,0,6,0, ’7'>.
Then G is a finite group, because the whole automorphism group Aut(X) is finite [42].
Observe also that the commutative diagram (4.5.9) is G-equivariant.

Lemma 4.5.10. One has ag(X) > 1.

Proof. Let us apply Theorem 1.4.11 with x4 = 1. Since P? does not have G-fixed points,
the threefold X has no G-fixed points, so the assertion Theorem 1.4.11(2) does not hold.

Let F be the fiber of 71 over (0 : 1), and let G be its stabilizer in G. Then F = P! x P!
and G = (11, 12,0,0, 7). Therefore, if X contains an irreducible G-invariant curve C' such
that 0 < F'-C < 1, then either v;(C') is a point or FNC' consists of one point. The former
case is impossible, since P' does not have G-fixed points. The later case is also impossible,
because F does not have G-fixed points. So, the assertion Theorem 1.4.11(3) is not true.

Finally, suppose that X contains a G-irreducible surface S such that —Kx ~g AS+ A,
where A is effective Q-divisor, and A € Q such that A > 1. Then S € |v5(Op2(1))], since

AS + A ~g —Kx ~ 77 (Opi(1)) + 95 (Op(2)).

This is impossible, because P? does not contain G-invariant lines. Therefore, we see that
the assertion Theorem 1.4.11(1) does not hold, so that ag(X) > 1. d

Thus, the smooth Fano threefold X is K-stable by Theorem 1.4.7 and Corollary 1.1.6,
so that general Fano threefold in the family N¢2.18 is also K-stable by Theorem 1.1.12.

In the remaining part of this section, we will use our construction of the threefold X to
present one smooth K-stable Fano threefold in the family Ne3.4, which would imply that
a general Fano threefold in this family is also K-stable.

Let O be the point [1 : 0 : 0] € P2, Then the fiber of the conic bundle v, over O is

smooth. Let a: V' — X be the blow up of this fiber. Then V is a smooth Fano threefold
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in the family Ne3.4, and (4.5.9) can be extended to the commutative diagram

(4.5.11) P! x P!
Pro
~
pry Vv ®
m “ \k\
I, = P!

X
/W \ l,@
P2

P! x P2

Pl

T

where [ is a blow up of the point O, v is the natural projections, n; is a fibration into
del Pezzo surfaces of degree 6, 15 and v are conic bundles, ¢ is a fibration into del Pezzo
surfaces of degree 4, and pr; and pr, are projections to the first and the second factors,
respectively. Let I' = <L1, Lo, O, §,7'>. Then the fiber of 45 over O is ['-invariant, so that
the I'-action lifts to V. Therefore, we can identify I" with a subgroup in Aut(V').

Lemma 4.5.12 (cf. the proof of Lemma 4.5.10). One has ar(V) > 1.

Proof. Let us apply Theorem 1.4.11 with p = 1. Since both P! in (4.5.11) has no I-fixed
points, V' does not have I'-fixed points, so that Theorem 1.4.11(2) does not hold.

Let F' a fiber of ny, let S be a fibers of ¢, and let E be the exceptional divisor of «.
Then F, S and E generates the cone Eff (V') (see [148]), and —Kx ~ F' 425 + E, so that
Theorem 1.4.11(1) cannot be true, since |S| does not have I'-invariant surfaces.

Finally, suppose that V' contains a ['-irreducible curve C such that 0 < F'- C' < 1 and
0 < S-C < 1. Since both P! in (4.5.11) do not have I'-fixed points, we get F'-C' = S-C = 1.
Then (C) is a curve in P! x P! of degree (1, 1), which is impossible, since P! x P! does
not have I'-invariant curves of degree (1,1). Hence, we see that Theorem 1.4.11(3) does
not holds either, so that ar(V) > 1. O

Thus, the threefold V' is K-stable by Theorem 1.4.7 and Corollary 1.1.6, because its
automorphism group is finite [42], so that general Fano threefolds Nt3.4 are also K-stable.

4.6. Blow ups of Veronese and quadric cones. In this section, we will prove that all
smooth Fano threefolds in the families Ne3.9 and Ne4.2 are K-polystable.

Let .7 be one of the following surfaces: P? or P! x P'. Then we fix a smooth irreducible
curve % in the surface . such that

e if ./ = P2, then € is a smooth quartic curve of genus 3,
e if P! x P!, then ¥ is a smooth elliptic curve of degree (2,2).

Let pr; and pry, be projections of P! x .% to the first and the second factors, respectively.
Put B = pri(%), put £ = pri([1:0]) and put & = pri([0: 1]). Then B < P! x ¢, and

Aut(P' x P3E+ &+ B) = Aut (S5 €) x (G, X py).
Here, the subgroup p, is generated by the involution ¢ that acts on P! x . as
([u:v], P) = ([v:ul], P),

so that ¢ swaps € and £'. Let n: W — P! x.¥ be a double cover branched over £+ &'+ B.

Denote by E, F and B the preimages on W of the surfaces £, £ and B, respectively.
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Then W is singular along the curves ENB and E/HE, the composition pr,on is a fibration
into del Pezzo surfaces of degree 2 (when . = P?) or 4 (when . = P! x P!'). One has

Aut(W) = Aut (S5 €) x (G X py).

Then 7 gives an epimorphism Aut(W) — Aut(P! xP? E+E'+B), whose kernel is generated
by the Galois involution 7 of the double cover 7, which is contained in the torus G,,.

Let a: X — W be the blow up of the curves £ N B and En B, and let S and S be
the exceptlonal surfaces of this blow up that are mapped to ENB and E N B, respectively,
let E E’ and B be the proper transforms on X of the surfaces E, E' and B, , respectively.
Then X is smooth. Note that B = P! X E, ENB= a, E’ﬂB a, and E 2 '~ 7.
If . = P2, then the normal bundles of the surfaces E and E' are isomorphic to Op2(—2).
If.7 — P! P!, then their normal bundles are line bundles of degree (—1,—1).

There is a birational morphism ) : X=X contracting B to a curve isomorphic to €.
Let E, E’, S and S’ be proper transforms on X of the surfaces E E’ S and S’ respectively.
Then X, E, E’, S and S’ are smooth, v is a blow up of the curve S ns’, and there exists
the following commutative diagram

(4.6.1) X d X
y X y \i
Y w Vv Vv’
9 0 P! x . o 5
Lprl
P! P! P!

where (3 is a birational morphism contracting E and E' toisolated terminal singular points,
both 6 and ¥ are fibrations into del Pezzo surfaces, ¢ and ¢’ are birational morphisms
that contract S and S’ to smooth curves, respectively, and both m and 7" are P-bundles.
Note that Aut(X) = Aut(X) = Aut(Y) = Aut(IV). Moreover, we have V' = V" and these
threefolds can be described as follows:

o if 7 =P then V & V' = P(Op ® Op(2)).
o if /=P x P!, then V = V' is a blow up of the quadric cone in P* in its vertex.

All birational morphisms in (4.6.1) are Aut(X)-equivariant except for m, 7/, ¢ and ¢'.
The involution ¢ swaps S and S’, so that it does not acts on V' and V' biregularly.

Let Ey and EY, be the proper transforms on V' of the surfaces E and E’, respectively, let
Ey: and EY,, be the proper transforms on V' of the surfaces £ and E’, respectively. Then
FEy and Ej, are disjoint sections of the P'-bundle 7, while Ey- and EY,, are disjoint sections
of the P'-bundle 7/, so that Fy = Ej, & Fy, & E(/, >~ &. Moreover, if . = P?, then
Ev|p, = Evlp, = Op(2) and Ey|p, = Evig,, = Op(=2). Slmllarly, if ./ = ]P’l x P
then both Ev g, and Ey,|g , are line bundles of degree (1, 1), but Ey[g;, and Ev/|g,, are

line bundles of degree (—1,—1).
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Let S{, and Sy+ be the transforms on V' and V’ of the surfaces S" and S, respectively.
Put C = S, N E}, and C' = Sy» N Eys. Then S|, = 7%(%¢), Sy = (7')*(¥), C = ' = F.
Note that ¢ and ¢’ are blow ups of the curves C' and C’, respectively.

If ¥ = P2, then X is a Fano threefold Ne3.9, and all smooth Fano threefolds Ne 3.9 can be
obtained in this way. Similarly, if . = P! x P!, then X is a smooth Fano threefold Ne4.2,
and all smooth Fano threefolds Ne4.2 can be obtained in this way.

Let G = Aut(X) and C = SN S = (B). Then C consists of all G-fixed points in X,
and every G-invariant irreducible curve in X is either C or a smooth fiber of 7o ¢. Thus,

using Theorem 1.4.11, we obtain

Corollary 4.6.2. If .¥ = P? and . does not contain Aut(.7;€)-invariant lines and
conics, then ag(X) > 1. If &/ =P x P* and ¥ does not contain Aut(; %) -invariant
curves of degree (1,0), (0,1), (1,1), then ag(X) > 1.

Example 4.6.3. Suppose that . = P? and ¢ = {zy®+yz>+ z2% = 0}, where z, y, 2 are
coordinates on P2. Then Aut(.; %) = PSLy(F7), so that ag(X) = 1 by Corollary 4.6.2.
Then X is K-polystable smooth Fano threefold Ne3.9 by Theorem 1.4.7.

Example 4.6.4. Suppose that . = P! x P! and ¢ = {x3y2 — 23y} — 22y2 — 23y? = 0},
where [zo : 1] and [yo : y1] are coordinates on the first and the second factors of .7,
respectively. Then € is a smooth curve, and Aut(.%; €) contains the transformations

([zo = 1], [yo = 1)) = ([yo = w1, [0 = 1))

and ([zo : x1], [yo : 11]) = ([1, Zo], [Yo : iv1]). Then ag(X) = 1 by Corollary 4.6.2, so that
the theefold X is K-polystable by Theorem 1.4.7.

Let us use Corollary 1.7.26 and Theorem 1.7.30, to prove that X is always K-polystable.
Suppose that X is not K-polystable. By Theorem 1.2.5, there exists G-invariant prime
divisor F' over X such that (F) < 0. Let Z = Cx(F).

Remark 4.6.5. Note that B(E) = S(E’) = 0. Moreover, it follows from [88, Section 10]
that £ and E’ are the only irreducible surfaces in X that has non-positive S-invariant.
However, the surfaces £ and E’ are not G-invariant.

Therefore, either Z = C, or Z is a smooth fiber of 7o ¢, or Z is a point in C.
Lemma 4.6.6. One has Z # C.

Proof. Suppose that Z = C. Then Z C S. Let us apply results of Section 1.7 to S and Z.
As usual, we will use notations introduced in this section. Take x € R.. Let

4if 7 =P?,
) 2if .7 = P! x PL.

let P(x) = P(—Kx—xS) and let N(x) = N(—Kx —xS). Since —Kx — xS is R-rationally
equivalent to “T“S + %S’ + 2FE, —Kx — xS is not pseudoeffective for x > “%;1 Then

(At le Yo iomirocact
a a
d+1 1 2 1
Pla) =5+ -5+ (24— 2)Bif - <o <1,

d a a a

d+1 1 2 1
LS+(_+1—JJ>S’+(2+——2x>Eif1<x<CH— .
\ d a a a
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and

Y

@Iv—

01f0<x\
2

1
N(x) = (2—}—5— >E1fa\3:<1,

<2+2—2x>E—|—( NSl << L
3 a a

Let e = Elg, let ' = S’|g, and let ¢ be any fiber of the natural projection S — %.
Then Z =8’ ~ 2al + e and —Kx|s ~ (2a + 4){ + e. Moreover, on the surface S, we have
e’ = —2a, (§)?=2a,e-8=0,e-{=¢8-¢ =1, =0. Note that Z is contained in
Supp(N(z)|s) only when 1 < z < 2. Thus, if S = P?, then

S( oo 26// )‘S(I—l)dl’-i-

+ 35 / / vol((12 — 8z — 8y)l + (1 + z — y)e)dyda+
o Jo
1 o0 . o
43 / Vol<(12 —8a — 8y)l + me> dyda—+
26 )1 Jo >
5
4 —4x — 2
—|— LA / Vol (20 — 162 — 8y)l + w& dydx =

3 i
:%// 32(5 — 4x)? a:—ldx—l——// 8(2—3z —y)(1+ 2z —y)dydz+
1 Jo
3 1 %—x 7—2513
= 2(3 — 22 — 2y) = Az — 2 =
+26A/0 r — 2y)? dyd:v+ // 2(5 — 4x — 2y)*dydz 832<

by Corollary 1.7.26. Similarly, if S = P! x P!, then
3 (7[>
S(Wau: Z) = %/1 /0 P(2)|, - P(2)| (& — 1)+
1
3 [2 [™
+ 28 / / vol((8 — 4z — 4y)l + (1 + z — y)e)dyda—+
o Jo

1 00
+ % / vol((8 — 4z — 4y)l + (2 — z — y)e)dyda—+
0

Njw =

+— /vol (12 — 8z — 8y)l + (3 — 2z — y)e)dyd =

3
5
+% 24(3—2x) (x—ldx—i——/ / 41+ 2z —y)(3 — 3z — y)dydz+

2—x 32:1: 13
// 4(2 — 2 — y)dydr + — // 3—2z—y )dyd——8<1

Therefore, using Remark 4.6.5 and Corollary 1.7.26, we get S(F) > 0, which contradicts
our assumption. O
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Therefore, we see that either Z is a smooth fiber of 7 o ¢, or Z is a point in C.
Lemma 4.6.7. Suppose that . =P?. Then Z is a point in C.

Proof. Suppose Z is a smooth fiber of the morphism 7o ¢. Let us seek for a contradiction.

Let H be a general surface in |(mo¢)*(Op2(1))| such that H contains Z. Then H is smooth.

Let us apply results of Section 1.7 to H and Z (using notations introduced in this section).
Take z € Ryp. If 0 <& < 1, then — Ky —xH is nef. If 1 < < 3, then

P(—Kx —zH) = 71

(E+E)

and N(—Kx —zH) =21 (E + E'). If # > 3, then —Kx — zH is not pseudoeffective.
Lete=FE|y, € = F'|g and £ = H|y. Then Z ~ {, —Kx|g ~ 3(+ e+ ¢€ and

e’ = -2, (e’)2:—2,e-e’:0,e-€:e’-£: 1,02 =0.
Thus, since Z ¢ Supp(N(—Kx — xH)|g), it follows from Corollary 1.7.26 that

1 o]
SWh;z) = 23_6/ / vol((3 —z — y)l + e+ €' )dydz+
o Jo

3 3 (o) 3
+—/ / vol (3—x—y)€—|—
1-x 3—x 1-z R )
/ / (8—z— y)€+e—|—e) dyd:n—l— / (2€+e+e) dydz+
1
(e+e’)) dydx = 10 <1.

//31 3—x— )€+ 13

Therefore, since S(V4; H) < 1 by Remark 4.6.5, Corollary 1.7.26 also gives B(F) > 0,
which contradicts our assumption. U

m(e+e’)>dydx =

Similarly, we prove the following
Lemma 4.6.8. Suppose that .¥ = P! x P1. Then Z is a point in C.

Proof. Let ¢, and {5 be different rulings of .7, let Hy = (mo¢)*(¢1) and Hy = (7m0 ¢)*({2).
Then SNH1+H2_E+E,7 SINH1+H2+E—E/ and —KX N2H1—|—2H2+E+El
Moreover, it follows from [88, Section 10] that Pic(X) = Z[H,| ® Z[H,| ® Z[E] © Z[FE],

Nef(X) = R}O[Hl] D R;O[HQ] D R}O[Hl + H2 + E]@
D R;O[Hl + Hs + El] @R;O[Hl + Hy+ FE + EIL
and L
Eff(X) = Roo[H:1] @ Ruo[Ha] © Roo[E] © Roo[E'] @ Ro[S] © Rxo[S].
Let [; and [y be general fibres of the projections S — % and S’ — €, respectively, let I3
and [4 be the rulings of £ mapped by 7 o ¢ to the rulings ¢; and /s, respectively, let [5
and lg be the rulings of £/ mapped by 7 o ¢ to the rulings ¢; and /5, respectively. Then
NE(X) = Rxo[l1] + Ro[lo] + Rao[ls] 4 Rao[la] + Rao[ls] + Reo[le).

See [148] and [88, Section 10].
Suppose that Z is a smooth fiber of the morphism mo¢. Let us seek for a contradiction.

Let Y be the unique surface in |H;| that contains Z. Then Y is irreducible and normal.
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Note that Y is smooth along the curve Z. Let us apply results of Section 1.7 to Y and Z.
As usual, we will use notations introduced in this section.

Let e = Ely, € = E'ly, { =Y|y. Then —Kx|y ~2(+e+¢€ and Z ~ (. Moreover, on
the surface Y, we have > = —1, (¢/)2 = —1,e-e' =0,e- L =¢ - =1, /> = 0. Note that
the surface Y is smooth in the case when the ruling 7 o ¢(Y") intersects € transversally.
If the ruling mo@(Y') is tangent to €, then it follows from [159, §2] that Y has one isolated
ordinary double point that is mapped to the point o ¢(Y)N% by the conic bundle 7o ¢.
In both cases, Y is a del Pezzo surface of degree 6 that is smooth along Z, e and €'.

Fix x € Ryg. Then —Kx —zY is pseudoeffective <= x € [0, 2]. Moreover, if z € [0, 1],
then this divisor is nef. If x € [1,2], then P(—Kx —2Y) = —-Kx —a2Y —(z —1)(E+ FE')
and N(—Kx—2Y)=(z—1)(E+E'). If0 <z <1, then P(—Kx —2Y)|y ~r 20 +e+¢€.
Similarly, if 1 < x < 2, then we have P(—Kx — zY)|y ~gr 20+ (2 — z)(e + €') and
N(-Kx —zY)ly = (x — 1)(e + €'). Thus, by Corollary 1.7.26, S(W/,; Z) is equal to

e.0)

// vol((2— y£+e+e)dyda:+—// vol((2—y)l + (2 —x)(e+€'))dydz =

—%//((Q—y)f—kevLe dydm+—// (2—vy €+e+e)dydx+
0o Jo

3 2 T
+2—8//((2—y)€+(2—x)(e—0—e dyd:v+—// (2—1y) @—i—e—O—e)dydm-
1 Jo

1 1
—3/ /(6—4y)dydx—|——/ / 2(2 — y)*dydx+

45
// (2 —x)( 2+x—2ydydx+—// (2—vy dydx—%<1

Therefore, as in the proof of Lemma 4.6.7, we get S(F) > 0 by Corollary 1.7.26, which
contradicts our assumption. U

Hence, we see that Z is a point in C. Let us exclude the case ./ = P2,
Lemma 4.6.9. One has .¥ = P! x P,

Proof. Suppose that . = P?. Let H be a general surface in |(7o®)*(Opz2(1))| containing Z.
Then H is smooth. Let e = F|y and € = E’|y. Then e and €’ are disjoint (—2)-curves.
Moreover, we have S|y = f; + f5 + f3 + £, where £, f, f5 and f; are disjoint (—1)-curves
that intersect transversally the curve e, and do not intersect the curve €. Similarly, we
have S|y = £ + £} + £} + £}, where f], £}, f; and f] are disjoint (—1)-curves such that

1ifi=j,
0if 7 # 7.
The curves f, f5, f}, £} intersect transversally €', and they do not intersect the curve e.
Then Z is one of the four points f; N}, £ N £}, f5N £, £, N£]. Without loss of generality,
we may assume that Z = f; Nf{. Now, we will apply results of Section 1.7 to H, f; and Z.
We will use notations introduced in this section.
Let x be some real number, let P(z) = P(—Kx — xH), let N(z) = N(—Kx — zH),
and let ¢ be a general fiber of the conic bundle mo ¢|y: H — €. Then ¢ ~ f; +f] on H.

As in the proof of Lemma 4.6.7, we see that —Ky — xH is not pseudo-effective for x > 3.
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Similarly, if 0 < z < 3, we have

B—a)+e+eif0< <1,

(e+e’) if1<x<3,

and
0if0<x <1,

N(@)|, =S z—1
2

Recall from Remark 4.6.5 that Sx(H) < 1.
Let us compute S(WEH; f;). Take a non-negative real number y. If 0 < 2 < 1, then

(XY

(e—{—e’) if 1 <x<3.

P(x)|H —yfi~p B—a)l+e+e —yfi ~p B—x—y)fi + (3 —2)f] +e+¢€.
Therefore, if 0 < z < 1, then the divisor P(z)|y — yf; is pseudo-effective <— y < 3 —x.
fO0<z<1and 0 <y <3—uz, its Zariski decomposition can be described as follows:

e if 0 <y <1—uz, then P(z)|g — yfi is nef,
o if 1 — x <y < 1, then the Zariski decomposition is

3z ty—1
B-z—yh+B-2)f + e+ + " —e
posith part negat?\;: part
e if 1 <y < 2— x, then the Zariski decomposition is
3—1x— r+y—1
(3—x—y)f1+(4—x—y)f{+Tye+e’++e+(y— 1)f],
positite part negat;\jez part

o if 2— 2 <y <3 — x, then the Zariski decomposition is

3—x— ty—1
#(Qfl—l—élf{—|—e+2e’)—l—%ejL(:c—i—Zy—B)f{+(:U+y—2)e’1.

TV TV
positive part negative part

Similarly, if 1 < z < 3, then P(z)|g — yfi ~r (3 — 2 — y)fi + (3 — 2)f] + 25%(e + €).
Therefore, if 1 < x < 3, then the divisor P(z)|y — vf; is pseudo-effective <— y < 3 —x.
fl<r<3and 0<y<3—x, its Zariski decomposition can be described as follows:

e if 0 <y < 3_796, then the positive part of the Zariski decomposition is

3—z—y 3—z ,
e+ e,
2 2
and the negative part of the Zariski decomposition is fe,
o if 3’75” <y < 3 — z, then the Zariski decomposition is

(B—x—y)fi + (3 —a)f] +

3—x— 2y —3
#(25 +4f] + e +2€') + %e + HTye’ + (z + 2y — 3)f],
positi:zfe part negat;\:e part

Integrating the volume of the divisor P(z)|g — yfi, we get S(WE; f;) = 33
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Now, we compute S(W[LH:; Z). Let P(x,y) be the positive part of the Zariski decom-

o0 )

position of the divisor P(x)|g — yfi, and let N(z,y) be its negative part. Recall that

(W 2) = P (WER) + o / / ), ) dydz
by Theorem 1.7.30, where
Fy(WHR) = 26/ / ), ord (NH ), + N(x,y)yﬁ)dyd:c.
Recall that Nj,(x) is the part of the divisor N(x)|y whose support does not contain fj, so
that Ny (x) = N(x)|g in our case, which implies that ordz (N (x)|¢,) = 0 for z € [0, 3].
Thus, we have
Fy (W) —26/ / i Sy = - )y - Ddydat
+—// ;—l—y—(m—|—2y—3)>(x+2y—3)dydx+
26 Jo Jo—s 2
6 [° [*"/3—az—y 67
il Y (r+2y — ) % — 3)dydx —
+26/1/32z< 5 +y—(x+2y—3))(x+2y—3)dyde = 208

by Theorem 1.7.30, which also gives

S(WhHh, Z) = / / (14 y)dyd

( el 208 + o0z +y)*dyda+
3 - — - T — 2
= dyda: + = Yy (y— 1)) dyda+
3 —x—vy 3-—xz—y 2

+— (—-i—y—(:v—f—?y 3 dydx—l—— y) dydx+

26 Jo Jos 2

3—r—vy 49
// +y—(:t+2y—3)> dydx:5—2.

Since Sx (H) < 1 and S(W/i;f1) < 1, we have 3(F) > 0 by Theorem 1.7.30. O

Let ¢; and /5 be distinct rulings of the surface . that pass through the point 7o ¢(Z2).
Then at least one of these rulings intersects the curve . transversally. Thus, without
loss of generality, we may assume that ¢; intersects the curve .% transversally.

Let Y = (w0 ¢)*(¢1). Then Y is smooth. Let e = El|y, let € = E'|y, let f and f’ be
the irreducible components of the fiber (m o ¢)~1(Z) such that f intersects the curve e,
and f’ intersects the curve €. Then Z = fN{f and e, €, f and {f’ are (—1)-curves on Y,
which is the smooth sextic del Pezzo surface. Let us apply Theorem 1.7.30 to Y, f, Z.
As usual, we will use notations introduced in Section 1.7.

Let x be a non-negative real number, P(z) = P(—Kx—=zY)and N(z) = N(—Kx—zY).
It follows from the proof of Lemma 4.6.8 that — K x —zY" is not pseudo-effective for = > 2.
Moreover, if 0 < x < 2, then

2(0+f) +e+eif0<a <1,
|Y R

204+1)+(2—2)(e+€)if 1 <z <2,
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and

N 0if 0 1,
@), = {(a:— De+e)ifl<z<2

Thus, it follows from Corollary 1.7.26 that

SW,Y,,f 28// Vol —yf)dydx:

/ / vol((2—y)f+2f'+e+e )dydx+— / / vol((2—y)f+2f'+(2—z)(e+€'))dydz =
= — /0 /0 (2—y)f+2f+e+e)’ dyda+o2 / / (2—y)f+(B3—y)f'+(2—y)e+e') *dyda+
+ % /12 /O“ (2 = ) + 2 + (2 — ) (e + €)) dyda+
+ 238/12 /2_ (2=y)f+@d—z—p)f +(2—2)(e+¢€)) dyde+t
+3/2/2 ((2—y)f+(4—w—y)f’—|—(2—y)e+(2—x)e’)2dydx:
3

/ (6 — 2y — yH)dydr + — // (2 —y)(4 —y)dydx+
0 Jo

— / / (2zy — 22% — 3 — 4y + 8)dydx+
0

// (2 —x)( 6+:c—4ydydm—|——// (2 —y)(6 — 2z — y)dyde = 1.
2—x

Here, we used the Zariski decomposition of P(x)|y — yf that can be described as follows:

e if 0 <ax<1and0<y<1, then P(z)|y — yf is nef,
e if 0<xr<1land1<y<2, then

Py —yfor =9)f + B-y)f' + 2—ylet+e' +(y—1)e+ (y— f,

positR/,e; part negat?\/re: part
eifl <z <2and0<y<2—uz, then P(z)|y — yf is nef,
oif1<x<2and2—x<y x, then

Pa)ly —yf~p 2—y)f+d—z—y)f' +2—2)(e+€)+(x+y—2)f,
positi?;e part negat;\:e part

o ifl <zx<2and xz <y <2, then

Pa)ly—yf ~p 2—yf+(d—z—y)f' + (2 —yle+ (2 —2)e'+(y —2)e+ (z+y —2)f.
positiv‘,e part negat;\:e part
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Let P(x,y) be the positive part of the Zariski decomposition of the divisor P(z)|y — yf,
and let N(x,y) be its negative part. Arguing as in the proof of Lemma 4.6.9, we get

S(WYE 2) = F,(WYE) + 28// )>2dyda::

2—x
= F; (WS hH+ 28// (y+1) dyd:z:+ // (3—y) dydx+—// (2—z+y)*dyda+
// 4 — 2x) dydx+—// —r—y dydx—FZ(W}/,f)+%
2—x

Recall from Theorem 1.7.30 that

FaO02) = g [ (Pl otz (0 4 N

where Ny, () is the part of the divisor N (z)|y whose support does not contain the curve f.
In our case, we have Ny (x) = N(z)|y, so that Z is not contained in its support. Then

Fy W.Yf —28// ordZ(N(x,y)’f>dydac:
// (3—y)(y — Ddydr + — // 4 —2z)(x+y — 2)dydx+
2—x
; //(4— — ) +y — 2dyde =
%) | z—y)(r+y yde = =,

which implies that S(W),;f) = 1. Since we also have Sx(Y) < 1 by Remark 4.6.5,

we conclude that S(F) > 0 by Theorem 1.7.30, which is a contradiction. Therefore, we
proved that all smooth Fano threefolds N¢3.9 and 4.2 are K-polystable.

4.7. Ruled Fano threefolds. There exactly 21 families of smooth Fano threefolds such
that their members are P'-bundles over surfaces. To be precise, we have

Theorem 4.7.1 ([196]). Let X be a smooth Fano threefold such that X =P(E) for some
vector bundle £ of rank two on a surface S. Then X can be described as follows:

(1) S =2 and one of the following holds:

) X is a smooth Fano threefold Ne2.24, and E is a stable bundle;

(b) X is the unique smooth Fano threefold M2.27, and £ is a stable bundle;

) X is the unique smooth Fano threefold Ne2.31, and & is a semistable bundle;

(d) X is the unique smooth Fano threefold N2.32, and & = Tp;

) X =P xP? and € = Opz @ Opz;

) X is the unique smooth Fano threefold N2.35, and € = Op2 & Op2(1);

(g) X is the unique smooth Fano threefold N2.36, and & = Opz & Op2(2).
P

(

(

a) X is the unique smooth Fano threefold N3.17, and £ is a stable bundle;
b) X is the unique smooth Fano threefold N3.25, and € = Og(l1) & Os(ls);
(c) X =P x P! x P!, and £ = O5 @ Og;
(d) X =P'xFy, and € = O ® Og(ly) or £ = O5 B Og(l);
(e) X is the unique smooth Fano threefold N3.31, and € = Og & Og(l1 + ls);
where {1 and Uy are different rulings of the surface S.
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(3) S =T, and one of the following holds:
(a) X is the unique smooth Fano threefold No3.24, and & = 7 (Tp2);

(b) X =P!' xF; and € = O ® Og;
(c) X is the unique smooth Fano threefold X3.30, and € = 1*(Opz ® Op2(1));

where m: S — P? is a blow up of a point.

(4) S is a smooth del Pezzo surface such that K3 <7, X =P'x S, and € = O5® Os.

From Sections 3.1, 3.3, 3.6, 3.7, 4.2, we know the solution of the Calabi Problem for all
smooth Fano threefolds in Theorem 4.7.1 except for exactly one family: the family Ne2.24.
This is summarized in the table below, where S, is a smooth del Pezzo surface of degree d.

’ S ‘ X =P(¢) ‘ K-polystable E Aut(X) ‘ Sections
P2 Fano threefold Ne2.27 Yes stable reductive 4.2
P2 Fano threefold N2.31 No semistable | non-reductive 3.6, 3.7
P2 Fano threefold Ne2.32 Yes stable reductive 3.2
P? P! x P? Yes semistable | reductive | 3.2, 3.1, 3.3
P? Fano threefold Ne2.35 No unstable | non-reductive 3.6, 3.7
P2 Fano threefold Ne2.36 No unstable | non-reductive 3.6, 3.7
P! x P! | Fano threefold Ne3.17 Yes stable reductive 4.2
Iy Fano threefold N3.24 No stable non-reductive 3.6, 3.7
P! x P! | Fano threefold Ne3.25 Yes semistable | reductive 3.3
P! x P! P! x P! x P! Yes semistable reductive 3.2,3.1, 3.3
P! x P! P! x F, No unstable | non-reductive | 3.3, 3.6, 3.7
F, P! x Fy No semistable | non-reductive | 3.3, 3.6, 3.7
Iy Fano threefold N3.30 No unstable | non-reductive 3.6, 3.7
P! x P! | Fano threefold Ne3.31 No unstable | non-reductive | 3.6, 3.7
S P! x S, No semistable | non-reductive | 3.3, 3.6, 3.7
Sy P! x S, ford <5 Yes semistable reductive 3.1

The goal of this section is to solve the Calabi Problem for the remaining family Ne2.24.
Let X be a smooth Fano threefold Ne2.24. Then X is a divisor in P? x P? of degree (1, 2),
let pry: X — P? and pry: X — P? be the projections to the first and the second factors,
respectively. The morphism pr; is a conic bundle, and pr, is a P!-bundle, which is given by
the projectivization of a rank two stable vector bundle on P? explicitly described in [10].
Let € be the discriminant curve of the conic bundle pr;. Then % is a reduced cubic curve.
Moreover, since X is smooth, the curve % is either smooth or nodal.
By Lemma A.7.10, we can can choose coordinates ([z : y : z],[u : v : w]) on P? x P?

such that one of the following three cases holds:
e The threefold X is given by

(4.7.2)

(,tww + u2)a: + (p,uw + vg)y + (mw + w2)z =0

for some p € C such that pu® # —1. In this case, the curve € is given by

2 (ac5 + 4+ Zd) = (u3 + 4)xyz.

It is singular <= pu € {0,2, -1+ /3i} <= % is a union of thee lines.
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e The threefold X is given by
(4.7.3) (vw + u?)z + (uw + v*)y + w’z = 0.

In this case, the curve ¢ is given by 23 + y3 — 4xyz = 0. It is singular.
e The threefold X is given by

(4.7.4) (vw + u?)z + v’y + w’z = 0.

In this case, the curve ¢ is given by z(x? — 4yz) = 0. It is reducible.

In the remaining part of this section, we will show that X is K-polystable in the first case,
and X is strictly K-semistable in the other two cases.

Lemma 4.7.5. The group Aut(X) is finite except the following cases:
(1) X is given by (4.7.2) with p € {0,2, —1 4 /3i},
(2) X is given by (4.7.4).
In the first case, one has Aut’(X) = G2,. In the second case, one has Aut’(X) = G,,.

Proof. The assertion follows from the proof of [42, Lemma 10.2]. O

The four threefolds given by (4.7.2) with p € {0,2,—1 4 1/3i} are all isomorphic to
each other. There are known to be K-polystable [193]. The three singular Fano threefolds
given by (pvw + u?)x + (puw + v?)y + (uuv + w?)z = 0 with g® = —1 are isomorphic to
the threefold given by xvw + yuw + zuv = 0, see [211]. This threefold has three isolated
ordinary double points, and it is not Q-factorial.

Lemma 4.7.6. Let Y be a divisor in P? x P? that is contained in the pencil
)\(a:u2 + yv2 + zw2) + ,u(wi + yuw + zuv) =0,
where [\ : p] € Pt. Then'Y is a K-polystable Fano threefold.

Proof. Let G be the subgroup in Aut(P? x P?) generated by a, 8 and v defined as follows:
a: (pry: 2 urviw) = (o2, v:u:w),
B: ([ y: 2z fu:v:w]) e (]
i@y fuzvw]) = (fex: ey 2], [eu: €v:w)),
where € is a primitive cube root of unity. Then G = p, x Gs, it preserves Y, and it acts on
the threefold Y faithfully, so that we can identify the group G with a subgroup in Aut(Y).
Let m: Y — P? and my: Y — IP? be the projections to the first and the second factors,
respectively. Then both m; and my are G-equivariant, and the induced G-actions on both
factors of P? x P? are faithful (cf. [72, Theorem 4.7]).
We claim that ag(Y) > 1. To prove this claim, let us apply Theorem 1.4.11 with p = 1.
First, we observe that Y has not G-fixed points, because P? has no G-fixed points.
Suppose that Y contains a G-invariant irreducible rational curve C'. Then 7(C') is not
a point and is not a line, since P? does not have G-fixed points and G-invariant lines.
Then 7 (C) is an irreducible G-invariant rational curve of degree at least 2, so that G acts
faithfully on its normalization, which is isomorphic to P*. But Aut(P') does not contain
a subgroup that is isomorphic to ps X S3. This shows that Y does not contain G-invariant
irreducible rational curves, so that ag(Y) > 1 as required.
To prove that ag(Y) > 1 it is enough to show that Theorem 1.4.11(1) does not hold.

Suppose it does. Then Y contains a G-irreducible surface S such that —Ky ~g aS + A,
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where a € Q such that a > 1, and A is an effective Q-divisor on Y. If Y is smooth, then
there are non-negative integers r and s such that

1 1 1 1 1

Eﬂi‘ (Op2(2)) + aﬂ'; (Op2(1)) — EA ~Q a(— Ky) — EA ~g S~ 71 (Opz2(r)) + 5 (Op2(s)),
which gives r = 1 and s = 0, since a > 1. But |7](Op2(1))| does not contain G-invariant
divisors. Thus, we may assume that Y is given by xvw + yuw + zuwv.

Let Sy, Svy, Sw,. be the surfaces {u = x = 0}, {v =y = 0}, {w = z = 0}, respectively,
let S}, ., Sy, Su.. be the surfaces {z = yw + zv = 0}, {y = 2w + zu}, {z = vv+yu = 0},
respectively. Then Sy, = Sy, = S, =P' x P!, S =5, =5, =T, and these six
surfaces are contained in Y. But S is not one of them, since they are not G-invariant.

Let ¢ be a general ruling of the surface S, , = P! x P! that is contracted by 7; to a point.
Then (NSing(Y) =@ and 1 = =Ky £ = aS-{+A-{ > S-{, so that S-¢ = 0, which implies
that ¢ and S are disjoint. Similarly, let ¢ be a general ruling of the surface S, , = F;.
Then ¢ and S must also be disjoint. Thus, if C is a general fiber of the conic bundle 7y,
then S-C=S5-({+ ) =0, so that S is contracted by ;.

Since m; does not contract surfaces to points, we see that m;(S) is an irreducible curve.
Then 7 (S) # €, since € is reducible in this case. This implies that S ~ 77(Op2(t)) for
some t € Z~g. Arguing as above, we conclude that ¢ = 1, which is impossible, because
the linear system |75 (Opz(1))| does not contain G-invariant surfaces.

Thus, we conclude that ag(Y') > 1, so that Y is K-polystable by Theorem 1.4.7. U
Corollary 4.7.7. If X is given by (4.7.3) or (4.7.4), then X is strictly K-semistable.
Proof. Suppose that X is given by (4.7.3). Let X, be the divisor in P? x P? given by

(svw + u2)x + (suw + vz)y +w?z = 0.

where s € C. Then X is smooth for all s. Moreover, scaling coordinates x, vy, z, u, v, w,
we see that X, = X for every s # 0. This gives us a test configuration for X, whose special
fiber is the threefold X, which is a K-polystable smooth Fano threefold by Lemma 4.7.6.
Then X is strictly K-semistable by Corollary 1.1.14.

Similarly, we see that the threefold given by (4.7.4) is also strictly K-semistable. [

A general threefold in the family N2.24 has finite automorphisms group by Lemma 4.7.5,
so that it is K-stable by Theorem 1.1.12.

5. PROOF OF MAIN THEOREM: REMAINING CASES

5.1. Family Ne2.8. Let X be a smooth Fano threefold Nv2.8. Then there exists a quartic
surface Sy C P? such that its singular locus consists of one (isolated) ordinary double
point O, and there following commutative diagram exists:

¢

N7

X Vz
0




where ¢ is a double cover branched over Sy, ¥ is a blow up of the point O, € is the blow
up of the preimage of the point O, ¢ is a double cover branched over the proper transform
of the surface Sy, v is a P-bundle, 7 is a (standard) conic bundle, and dashed arrow is
a linear projection from the point O.

Without loss of generality, we may assume that O =[0:0:0: 1]. Then Sy is given by

oz, y, 2) +tfs(z,y, 2) + fa(z,y,2) =0,

where fo, f3, f1 are homogeneous polynomials of degree 2, 3, 4, respectively, and x, vy,
2 and t are coordinates on P3. Let A be the discriminant curve of the standard conic
bundle 1. Then A is given by f2(x,y,2) — 4fao(z,y, 2) fa(z,y,2) = 0.

Denote by S, the proper transform on V; of the surface S;, and denote by Sy its
preimage on X. Then §4 and S, are isomorphic smooth K3 surfaces, and ¢ induces
minimal resolutions S, — Si. Slmllarly, we have the surfaces 9(54) and Sy are isomorphic,
and 6 induces minimal resolutions Sy — 0(S;).

Let E and Ep be the exceptional divisors of the birational maps ¢ and ¢, respectively.
Then E =2 P! x P!, Ep = P2, and ¢ induces a double cover E — Eo, which is branched
over the conic Eo NS, in Eo. Let C = ENS,. Then C is a curve of degree (1,1) on E,
which is the preimage of the branching curve Ep N S..

Let Q be the cone in P? given by fo(z,y,2) = 0, let Cy be the conic in P? given by
the same equation, where we consider x, y, z also as coordinates on P2, let () be the proper
transform on V7 of the surface (), and let @ be its preimage on X. Then @ NE=C,
and @ is the preimage of C5 via the conic bundle 1. Moreover, this conic bundle induces
a double cover E — P2, which is branched over the conic Cy. This shows that @] g =2C,
so that either @ is tangent to F along C, or @ is singular along the curve C'; which
happens only if fy divides f3.

Let H be a plane in P3. Then —Kx ~ §4 ~ @+ E. Note that @ and F are G-invariant
for every (finite) subgroup G C Aut(X), so that ac(X) < 2, since let(X, Q+E)< g

Lemma 5.1.1. Let S, be the quartic surface in P that is given by
£ <x2+y2+22—|—(:c—|—y+z)2> + it (x3+y3+z3— (:c+y+z)3) +at+yt 2+ (z4y+2)t =0,

where p 1s a general complex number, e.q. p=>5. Then Sy is smooth away from O, which
is an (isolated) ordinary double point of the surface Sy. Moreover, the surface S, admits
a natural action of the symmetric group &S4. This action lifts to the threefold X, so that
we identify Sy with a subgroup in Aut(X). Let G be the subgroup in Aut( ) generated
by &4 and the Galois involution T of the double cover n. Then ag(X) = Z'
Proof. Let us say few words about the generality of 4 € C. We ask for two natural
conditions. First, we want S; to be smooth away from O, since otherwise X would be
singular. Second, we want the following octic curve Cy C Sy to be irreducible and reduced:

Py + 2wty +2)? =0,
ut<w3+y3+z3—(1‘—|—y+z)3)+:c4+y4+z4+(9c—|—y+z)4:().

We will assume that both conditions are satisfied. For instance, this is true for p = 5.
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Let C’g be the irreducible curve in 54 that is a proper transform of the octic curve Cy via
the birational morphism Sy — S, induces by ¥ o ¢. Then Cg is smooth rational curve,
which is (—2)-curve on the K3 surface 54 One has 54 N Q C’g UC and —Kx - C’g = 10.

We already know that aq(X) < 3. Let us apply Lemma A.4.8 to prove that ag(X) = 2.
We know that X does not have G-fixed points, because 7 is G-equivariant (we already
used this implicitly), and the group &4 does not have fixed points in P?. Thus, we see
that the condition Lemma A.4.8(i) is satisfied.

We claim that the condition Lemma A.4.8(ii) is also satisfied for u = %. Indeed,

suppose that X contains a G-invariant surface S such that —Kx ~qg aS + A, where
4

a is a positive rational number such that a > 3, and A is a G-invariant Q-divisor on
the threefold X whose support does not contain S. Now, intersecting aS + A with
a general fiber of the conic bundle 1, we see that S # E, so that 6(S) is also a surface.
Since af(S) +0(A) ~q ¢*(2H), we get 0(S) ~ ¢*(H), so that p00(S) is the plane t = 0,
because this plane is the only &,-invariant plane in P3. Thus, we have S ~ (J o ¢)*(H).
Let ¢ be a general fiber of 1. As above, we have 2 = —Kx-¢ = aS-{+A-{ > aS-{ = 2a > %,
which is absurd. Thus, the condition Lemma A.4.8(ii) is satisfied for y = 3

Suppose that ag(X) < %. Applying Lemma A.4.8, we see that there is a G-invariant
effective Q-divisor D on the threefold X such that D ~g —Kx, the pair (X, AD) is strictly
log canonical for some A\ < %, and the only log canonical center of this log pair is a smooth
irreducible rational G-invariant curve Z. Let us seek for a contradiction. _

By Corollary A.2.7, we have —Kx - C' < 8. Then Z # Cy, since —Kx - Cs = 10.

Now, we observe that n(7) is not a point, because P? does not have G,-invariant points.
Similarly, we see that n(Z) is not a line. Then 7(Z) must be a conic by Corollary A.1.16.
In particular, the subgroup &4 acts faithfully on the curve Z, because it must act faithfully
on the curve n(Z). Therefore, the Galois involution 7 must act trivially on the curve Z,
because Z = P! does not admit a faithful G-action. This shows that Z C S,.

We claim that Z = C'. Indeed, suppose that this is not the case. Then C' ¢ E, because
otherwise we would have Z = EN Sy = C. Since n(Z) is a conic, we see that n(Z) = Cy,
since Cy is the only &4-invariant conic in P2, Therefore, we have Z C @, so that Z = C,
because we know that Z # Cs. N N

Recall that C' = S;NE and C = QN E. Observe that (X, A\Q + AE) is log canonical at
general point of the curve C'. Thus, using Lemma A.4.12, we may we may assume that
either () or £ is not contained in the support of the divisor D. Similarly, we may assume
that the surface Sy is not contained in the support of the divisor D.

If E ¢ Supp(D), we have 1 = D - L > multe (D) > 4 3, Where L is a general ruling of

the surface £ = P! x P!. Therefore, we see that £ C Supp( ), so that Q ¢ Supp(D).
Let ¢ be a general fiber of 1 that is contained in Q). Then multe(D) < D -0 =2.

Let f: X — X be the blow up of the curve C, and let F' be the f-exceptional surface.
Then the action of the group G lifts to X. Since C 2 P! is a complete intersection of

the surfaces Sy and E, its normal bundle in X splits as Opi (—2) & Op1(2), so that F = F,.
Let sp be the (—4)-curve in F', and let [ be a fiber of the P!-bundle ' — C. Then,

since F? = 0, we have F|p = —sp — 2lp. Let E Q S4 be proper transforms on X of
the surfaces E Q, S4, respectively. Then E|F ~ Sp, Q|F ~ sp+6lp and S4|p ~ sp+4lp.

Thus, we see that ENF =s r and 54 N F' are disjoint G-invariant smooth irreducible
curves, which are both sections of the P!-bundle FF — C. On the other hand, we see that
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the intersection @ﬂF consists of the curve sg and 6 fibers of the P!-bundle F' — C', which
are mapped to a G -orbit in C' of length 6. This shows that the surface @ is singular at
the points of this orbit, which can also be checked exphc1t1y

Let D be the proper transform of the divisor D on X. Since Amulteo(D) < 2, it
follows from Lemma A.4.3 that F' contains a G-invariant irreducible curve C such that
C is a section of the projection F' — C', the curve C is a log canonical center of the log
pair (X,AD + (Amulte(D) — 1)F), and multe(D) 4 multc(D) > 2 > & Moreover,
using Theorem A.2.1, we see that the log pair (F, )\ﬁ| r) is not log canonical along C.
Then lA)}F = 0C + Y, where ¢ is a rational number such that § > 1 > %, and T is

)
an effective Q-divisor whose support does not contain the curve C. But

D|, ~q multe(D)sp + (2multe(D) + 2)1p.

Since multo(D) < 2 and § > %, this equivalence implies that C ~ sp + nLp for n < 4.
Now, using Lemma A.6.10, we conclude that either C = ENForC=35,NF.

Let ¢ be the proper transforrn on X of the general fiber of the conic bundle 7 that is
contained in Q. If C = ENF, then ¢ mtersects C, so that multc(D) < D-f = 2—mult¢ (D),
which contradicts multC(D) + multc(D) > £. This shows that C = SiNF.

Observe that S4 . S4, and Yogpo f mduces the minimal resolution h: 5'4 — 5S4, whose
exceptional curve is C. Let Hg, be a hyperplane section of the quartic S, and let 58 be
the proper transform on §4 of the curve Cs. Then 68 ~ h*(2Hg,) — 3C, so that 68 is
a smooth (—2)-curve on the surface Sy. In particular, we have Cs - C = 6. On the other
hand, we know that S; ¢ Supp(D). Write lA)|S = bC + cCs + Z, where b and ¢ are
non-negative numbers and Z is an effective Q- d1V1sor whose support does not contain
the curves C and Cs. Note that b > multc(D) and D ~g h*(2Hg,) — (1 + mult(D))C.
This gives

= ~Q h*(2HS4> - (1 + multc(D) + b)C ~Q (1 — b)és + (2 - Hlultc(D) — b)C,

where 2 — multe(D) — b < 2 — multe(D) — multe(D) < 0. Thus, since = is an effective
divisor, we have b < 1, so that

0<E-Cs = (1-b)C2+ (2 —multe(D) — b)C-Cs = —2(1 — b) + 6(2 — multe (D) — b) < 0,
which is absurd. The obtained contradiction completes the proof of Lemma 5.1.1. U

Now, using Theorems 1.1.12 and 1.4.10, we see that general smooth Fano threefold in
the family Ne2.8 are K-stable, because their automorphisms groups are finite [42].

5.2. Family Ne2.9. In this section, we present one K-stable smooth Fano threefold N¢2.9.
By Theorem 1.1.12, this would imply that general Fano threefolds N°2.9 are K-stable.
To start with, let G = ps and consider the action of G on P3 that is given by

[w:y:z:t}r—)[w:v:aﬂy:w?’z:wzlt},

where w is a primitive fifth root of unity. Let us denote by H a general hyperplane in P3.

Let us also introduce the following notations: let P, =[1:0:0:0], P, =[0:1:0: 0],

P,=[0:0:1:0], ,=[0:0:0:1],let L, ={z =y =0}, let L, = {z =2z =0}, let

Ly={r=t=0}1let L, ={y=2=0},let Ly ={y=1t=0},let L,, = {2z =t =0},

and let H,, H,, H,, H; be the planes {x = 0}, {y = 0}, {z = 0}, {t = 0}, respectively.
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These points, lines and planes are G-invariant. Moreover, these are all G-invariant
points, lines and planes in P3. Now, we introduce the following three cubic polynomials:

(1) h(z,y,2,t) = 2%z + vz + 2%t + t2y,
(2) W(z,y,z,t) =2z + tyz — 2%y + 23,
(3) W'(x,y, z,t) = tay + x2% + y?z — 13

Let S5 = {h =0}, S}, = {h' =0} and S{ = {h” = 0}. Then S; is a smooth cubic surface,
which is isomorphic to the Clebsch cubic surface. On the other hand, the surfaces S% and
Sy are singular: S% has one node (ordinary double point) at the point P,, and S5 has one
node at the point P,. The surfaces S3, S and S5 are G-invariant.

Remark 5.2.1. The intersections of G-invariant lines with S3 can be described as follows:
L,,NS3 = P, UPF,, and L,, is tangent to S3 at the point P, L,, N S3 = P, U F;, and
L,, is tangent to S3 at the point P, L, is contained in S3, L,. is contained in Ss,
L,NSs=FP,UP,, and L, is tangent to S3 at the point P,, L., NS3 = P, UP,, and L,
is tangent to S3 at the point P,. The intersections of G-invariant lines with S} can be
described as follows: L,,NS; = P, L,, is contained in S, L,;NSy = P, L,,NS, = P,UPL,,
and L,. is tangent to S5 at the point P,, L, NS5 = P,, L., NSy = P, U P, and L,
intersects 54 transversally at the point P,. The intersections of G-invariant lines with S%
can be described as follows: L,, NSY = P,, L,.NS{ = P,, L,,NS{ = P,UP,, and Ly, is
tangent to Sy at the point P,, L,, NSy = P,, L, NSy = P, UP,, and L, intersects S¥
transversally at the point P,, L,; is contained in S5.

Let C = {h(z,y,z,t) = 0,1 (z,y,z,t) = 0,h"(x,y,z,t) = 0} C P3. Then C is a smooth
irreducible curve of genus 5 and degree 7. Note that C' is G-invariant. We used the fol-
lowing Magma script to check the smoothness and the genus of this curve:

Q:=RationalField();

P<x,y,z,t>:=ProjectiveSpace(Q,3);

X:=Scheme (P, [Xx"2%z+y 2%x+z 2%t +t " 2%y,
TT2%X+EkY*kZ-X " 2%y +2Z7 3, LXKy +R*KZ"2+y " 2%2-1 73] ) ;

Degree (X) ;

IsNonsingular (X) ;

IsIrreducible(X);

Dimension(X) ;

IsCurve (X);

C:=Curve(X);

Genus (C) ;

We have C' = S35 N .S%. On the surface S5, we have C' ~ 2H|53 + L,;. This implies
that C has no 4-secants. Moreover, this rational equivalence can also be used to compute
the genus of the curve C'. Observe that C' contains P, and F,, but it does not contain P,
and P,. Note also that the quotient C'/G is an elliptic curve.

Remark 5.2.2. The intersections of G-invariant planes with C' can be described as follows:

H,|c = 2P,+ the G-obit of the point [0: —1:1: 1],

H,|c = 2P,+ the G-obit of the point [-1:0:1: —1],

H.|c = 4P, + 3P,

Hi|c = P, + P,+ the G-obit of the point [-1:1:1:0].
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The intersections of G-invariant lines with C' can be described as follows: L,, N C = &,
L,.,NC = P, and L,, is tangent to C' (ordinary tangency), L, N C = P,, and Ly
intersects C' transversally at P,, L,.NC = P,, and L, is tangent to C' (ordinary tangency),
L,NC = P,, and L,; intersects C' transversally at P,, L.,,NC' = P,UP,, and L., intersects
the curve C transversally at P, and P,.

Let us introduce three G-invariant conics in P2, which will be used later. Observe that
the intersection S3 NS4 consists of the curve C' and the conic CY) = {z = 0, yt + 2? = 0}.
The intersection S5 NS4 consists of the curve C' and the conic C} = {t = 0,2z +y* = 0}.
Therefore, on the surface S5, we have C' + C) ~ C + CJ ~ 3H]|g,. Observe also that
the intersection S4 N S5 consists of the curve C' and the conic CY' = {z = 0,2y — t* = 0}.

Remark 5.2.3. The following assertions hold: P, € C4 > P, P, ¢ C" # P,, P, € C{ 5 P,,
P, & C}y# P, P, ecC) >PF, P &Cy F P, CnC, consists of the point P, and
the G-orbit of the point [0: —1:1: 1], C' N CY consists of the point P, and the G-orbit
of the point [-1:1:1:0],CNCY =P, UP, H,NS3 = L,y UCY, and L, is tangent
to C4 at the point P,, H, N S3 = th U Y, and L, is tangent to C¥ at the point P,,
H,NSy=L,,UC) and L,,NCy,=P,UP, H.NS;=L,,UCY, and L,, is tangent to
CYy' at the point P, H, NSy =L, UCY, and L,,NCY =P, UP,, H,N S} = L, U
and L, is tangent to C4 at the point P,.

Let m: X — P3 be the blow up of the curve C. Then it follows from [46, Theorem A.1]
that X is a smooth Fano threefold N°2.9. Since the action of the group G lifts to X,
we identify G with a subgroup in Aut(X). Then there exists the following G-equivariant
commutative diagram:

where ¢ is a conic bundle, and v is a rational map given by [x :y : z : t] — [h: B : h"].
The G-action on P? has exactly three G-fixed points: [1:0:0],[0:1:0] and [0:0: 1].
By construction, we have (C%) =[0:0: 1], (C§) =1[0:1:0] and ¢(Cy") =[1:0: 0].

The discriminant curve of the conic bundle ¢ is a quintic curve (we do not need this).
Proposition 5.2.4. The Fano threefold X is K-stable.

We will prove this proposition in several steps in the remaining part of this section.

To start with, let us consider some G-invariant surfaces and curves in the threefold X.
Let E be the m-exceptional surface. Denote by H Hx, H Hz, Ht, 53, S” the proper
transforms on the threefold X of the surfaces H, Hm, H HZ, Ht, Ss, 53, respectlvely
Similarly, we denote by ny, Los, Ly, Lyz, Lyt, L., Cé’ and Cé” the proper transforms
on the threefold X of the curves Ly, L,., Ly, Ly, Lyt, L., C}, CY and CY', respectively.
Let ¢, and ¢, be the fibers of the natural projection £ — C over P, and P,, respectively.
Then ¢, and /, are G-invariant curves, and the group G acts faithfully on each of them,
because 7(¢,) and 7(£,) are lines in P?, and the G-action on P? fixes exactly three points.

Remark 5.2.5. The surfaces Sg, S and S are smooth. Moreover, the blow up induces

an isomorphism S5 2 S5, and it induces birational morphisms S’ — S} and S” Sy that

contract the curves ¢, and /,, respectively.
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Let us introduce three smooth G-invariant curves in F that are sections of the natural
projection E — C. First, we let C' = 53|E Second, we observe that S’|E =C' + ¢, for

a smooth G-invariant curve C’ that is a section that of the natural projection £ — C.

Similarly, we have S” ‘ n = = C" + {, for a smooth G-invariant curve C” that is a section

that of the projection E — C. Note that C, C’, C" are distinct curves (isomorphic to C)
The incidence relation between the curves Ll,y, sz, th, Lyz, Lyt, th, Uy, Ly, C’é, 5,
’” C’ C” C" and the surfaces 53, ch, H HZ, Ht is given in the following table:

S || Lay | Loz | Lt | Ly. Lyt Lt b, | ColCylCyClC|C”

Ssll X | x| ¢ | @ | X | X [X|X| e | | x || x| X

H,|| x| @ | x| o | X | o |0 | 0| X | X | | X]|X| X

Hi|l x| x| | x| | o | 0|0 X | ® | X |X|X]| X

where e means that the curve is contained in the corresponding surface, and x means
that the curve is not contained in the corresponding surface.
Let Px, P Pz, Pt be the points in 53 that are mapped to P, P,, P., P, respectively.

Then P, and Py are contained in C the curve ¢, contain Px, the curve £, contains f’y.
Each ¢, and ¢, has an additional G—ﬁxed point. Denote them by O, and O,, respectively.

Corollary 5.2.6. The only G-fixed pints in X are lgx, ﬁy, ﬁz, ﬁt, O, and O,.

The points O, and O, are not Contained in §3, so that they are not contained in C.
Observe also that S’ contains Oy, Ox, Pt, the surface S’ does not contain P, and PZ7
the surface S” contains O,, Oy, P, PZ7 and S” does not contain P and P,

Lemma 5.2.7. The incidence relation between Lwy, Lm, th, Lyz, Lyt, th, ly, Ly, éé,
Cé’, C’g”, C C’ C" and the points O, O,, Px, P,, P., P, is given in the following table:

Loy | Loz | Lot | Lyz | Ly | Lo | 6o | £, | Cy | CY | CY | C L C | C”

m

O

= X X X X [ X ° X X X ° X ° )

Oyl X | @ | X | X | X | o |[x|e|X|X| o |X| o] e

P,
Pl x | x| | X | X | X |[X|e| e|XxX| X |olXx|X
P,

° X ° X ° X X | X X (] X X | X X

P|| ¢ | @ | X | @ | X | X |X|[X|®] X | X |X]|X|X

where o means that the point is contained in the corresponding curve, and X means that

the point is not contained in the corresponding curve.
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Proof. Since C' does not contain P, and F;, the content of the last two rows of the table
follows from a corresponding statement about relevant curves in P3. By the same reason,
the content of the second column is obvious, since ny NnC =a.

Since L, and L, are contained in Ss, the curves L, and Lyz do not contain O, or O,,
which implies the content of the fourth and the fifth columns. Similarly, we see that both
curves C’ and C” do not contain O, or O,, so that the content of the corresponding
columns follows from Remark 5.2.3.

Recall that L,, and C are contained in S%. This surface is smooth at the point P,
so that S’ does not contain P Moreover, by construction, the curve C" is the proper
transform of the curve C' on the surface S via the birational map S — ' induced by 7.
This implies that C' contains O,, this curve does not contain Px, and C' N b, = Lm N4y,
because the line L, is tangent to the curve C' at the point P,. On the other hand we know
from Remark 5.2.2 that the line L,, is tangent to the cubic surface S3 at the point P,.
Moreover, we have (L, - 53)p =2 and 7*(S3) = §3 + E. Now, using projection formula
we get §3 = 1, since Lm is tangent to E at LIZ N {,. Then §3 N Zm = ﬁt, which
implies that Lm does not contain P so that it contains O,. This implies the content of
the the third and the fourteenth Columns

The line Lyt intersects both C' and S5 transversally at P,, which implies that Lyt does
not contain Pz, so that O, € Lyt The remaining content of the sixth column is obvious.

Recall that L., is contained in S5. This surface is smooth at P,, so that Py ¢ Sg )
Then O, € Zzt. We also know that L., is tangent to S3 at the point P,, and it intersects
the curve C' transversally at this point, which implies that Zzt contains .ﬁm, so that it does
not contain O,. This gives the content of the seventh column.

The contents of the eight and the ninth columns follow from the definition of ¢, and /,,.

Recall from Remark 5.2.3 that both curves L,, and C%’ are contained in the surface Sj,
and L,, is tangent to C4" at the point P,. This gives 55” Nne, = Ly, N ¢, = O,. Similarly,
both curves L., and CY’ are contained in S}, and L,; intersects transversally the conic
CY" at the point P,. Since the induced birational morphism S” S% is the blow up of
the point Px, we conclude that C’” N, # th N, = Px, which implies that C’” Nt =0,
and P, g C”’ This facts can also be shown as follows. The point P, is a smooth point of
the surface S3, the point O, is contained in S4, and the curve C}' is contained in S5, so
that we have P, ¢ C’g” , which gives O, € C’”

To complete the proof, it s enough to show that O, € C” 3 O, and P, ¢ o ] P
Recall that C” is contained SY, which does not contain P,, so that P, & C" and O, € C".
Moreover, Sé’ contains L., and C’2 + L+l ~m (H)|ng because H; NS5 = L., UCY and
P, = L,;NCY by Remark 5.2.3. Furthermore, we have

37T*(H)|§// — C £ ~ 53|S// == ”

which implies that C" ~ C” +3L.; +2¢,. This gives C"- L Nzt =1, so that c"N th = O,.
In particular, the curve C" does not contain ch, because P € th Then O, € o, O

Ty L:EZ? tha Ly27 Lyt7 th7 g:m
l,, C’é, Y, ”’ intersects in at most one point, and it they intersect, then they intersect
transversally. The picture below describes their intersection graph.
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Since Aut(X) is finite [42], to prove the K-stability of the threefold X, it is enough to
show that X is K-polystable. Suppose that it is not. Then it follows from Theorem 1.2.5
that there is a G-invariant prime divisor F' over X such that (F) < 0. Let Z = Cx(F).
By Theorem 3.7.1, we conclude that either Z is a G-invariant irreducible curve, or A
is one of the points Px, P PZ, Pt, Oz, O,. In both cases, we have ag z(X) < by
Lemma 1.4.4. Thus, by Lemma 1.4.1, there ex1sts a G—invariant effective Q-divisor D on
the threefold X such that D ~q —K x and Z C Nklt(X, AD) for some positive rational
number A < 2. Observe that Nklt(X, AD) contains no surfaces, since Eff(X) is generated
by E and §3 Moreover, if Z is a curve, then Z = P! by Corollary A.1.17, so that, in
particular, it contains a G-fixed point, because the group G is cyclic. Therefore, we see
that dp(X) < 1 for some point P € {Px, ” P, P, 0,0 y}. Let us show that this is false.

Lemma 5.2.8. Let P be one of the points O, PI, Pz or O,. Then 6p(X) > 1.

Proof. Let S = §” Then S is smooth, it contains the points O, O,, P, PZ, and it

contains the curves /,, th, C’é’ , C”” and C”. The intersections of these curves can be
described using Remark 5.2.3 and Lemma 5.2.7. Namely, we have

leNLy=10,NCY=LyNCY =P, (,nCY =L,NC" =0,
L.NCr=1.,nC"=0, CinC"=2,C"nC" =0,U0,,

and 6’5(15” is the preimage of the G-orbit of the point [—1:1: 1 : 0]. Note that P e 55’
Let Hg = 7*(H)|g. Then C¥ ~ CY, C% + L.y + €y ~ Hg, C" ~ 2C% + 3L, + 20, on S.
We explained these equivalences in the proof of Lemma 5.2.7. Recall that F)| 5 = C" 4 0,.
The cubic surface SY contains 6 lines that passes through P,, whose union is cut out

by the equation yt + 22 = 0. One of these lines is L,;. The remaining lines pass through
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a point in the G-orbit of the point [0 : —1 : 1 : 1]. The proper transforms of these five
lines on S are disjoint (—1)-curves that intersect ¢, transversally. Let £ be their union.
Note that £ is a G-invariant curve in S, which is a disjoint union of five (—1)-curves.
On the surface S, we have £ + Zzt + 3¢, ~ 2Hg. Observe that there is a birational
morphism S — P? that contracts the curves £ and Zzt, and maps the curve £, to a conic
in P? that contains the images of these curves.

The intersections of Hg, €y, L., Cg , Cé” ,C". L on S are given in table below.

o |Hy| ¢, | L |Cy|Cr|C"|
Hs| 3]0 1]2]|2|7]|5
6| 0| =2 11115
L,| 1| 1|=1]11]1]0
c/l2l1l1]lolol|5]o0
crli2l1l1lolo]|5]0
|7l 1|15 5]15]10
L5500 o0]|10]=5

Now, we are ready to prove that dp(X) > 1. We will prove this by applying the results
of Section 1.7 to S and a G-invariant curve that contains the point P. As usual, we will

use notations introduced in this section.
Take u € Ryy. Let P(u) = P(—Kx —uS) and N(u) = N(—Kx — uS). Then

“Kx —uS ~g (4 — 3u)m* (H) + (u — V)E ~g 7 (H) + (1 — )5,

so that —Ky —uS is nef <= w € [0,1], and —Kx — uS is pseudo-effective <= u <
Moreover, we have

g.

—Kxy —uSif0<u<l,

P(u) = . 1
(4—-3u)r*(H)if 1l <u< 3
and N(u) = (u—1)E if 1 <u < 3. Hence, if 0 < u < %, we obtain
(2— u)C’” + L+ if0<u<l,
4
(4— &LCW+@H%)K1§UQ?
and N(u)|g = (u—1) C’” +0,)if 1 < . Observe that Sx(S) < 1 by Theorem 3.7.1.
Let us compute S( R ,, (). Take a non- negatlve real number v. If 0 < wu < 1, then
~y 4—u—2 2— ~
P(u)] = vly ~g (2= 0)CY + Lo+ (1 — 0)ly ~ “2 Y, + > Ly ngt.
Therefore, if 0 < u < 1, then the divisor P(u)|s — vl, is pseudo-effective <= v < 4%“.
If0o<u<1and O < v < —“, its Zariski decomposition can be described as follows. If
0 <wv <1, then P(u)|g — vl, is nef. If 1 < v < 2 — u, then the Zariski decomposition is
4 —

2 ~
U(£$+£)+3Ld+ (v—1)L .
2 ——

g
positiV‘re part negative part
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Finally, if 2 —u < v < 47 then the Zariski decomposition is
4—u—
2

(€$+E+Zzt)+(v—1)£+(u+v—2)zzt.

positiv‘,e part negative part

Thus, if 0 < u < 1, then

2uv — 202 —du — 20+ T7if 0 < v < 1,
vol(P(u)‘S—UE,J): (v—2)Bv+2u—6)ifl <v<2—u,
4 —

(u+2v—4)2*if2—u<v< 5

Similarly, if 1 < u < %, then

= 12 — 9u — 2 4-3 ~
P(u)| g—vly ~r (4=3u)(C3' 4+ Lay) + (4=3u—v)l, ~r 2“ Ly 5 u(£+th).

Therefore, if 1 < u < 3, then the divisor P(u)|g — vl, is pseudo-effective <= v < 22,

Ifl<u< % and 0 < v < 1259“, its Zariski decomposition can be described as follows.

If 0 <v<4-—3u, then P(u)|s — vl is nef. If 4 —3u < v < 12;9“, then the Zariski
decomposition is
12 —9u — 2 ~ ~
#(zm + L+ L)+ @Butv—4)(L+ L) .

posit;g part negative part

Thus, if 1 <u < %, then

27u? — 202 — T2u 4+ 48 if 0 < v < 4 — 3u,

vol(P(u)|, — vl,) = 12 -
( ()‘S ) (12_9u_21)) if 4 — 3u < v < 9u

2
Now, using Corollary 1.7.26, we get
3 (3
SWoiit,) = 1_6/ (P(u)-P(u)-S)ordy, (N (u)s du+16/ / vol(P —vl,)dvdu =
0
= % 3(4—3u)27r*(H)-7T*(H)-(BW*(H)—E)(u—l)du+ﬁ/3/ Vol(P(u)‘S—v&C)dvdu:
1

(é
:13—6/33(4—311) (u—ldu+—/ / vol (P — vl,)dvdu =
1

/ / Vol —U&;)dvdu:
192

2—u
_@+_// 21“) 202 — 4y — 21}—1—7 dvdu+—// (v—2)(3v+2u— 6))dvdu—i—

2 4—3u
16 / / (u+ 2v — 4)*dvdu + — /3 / (27u® — 20* — T2u + 48)dvdu+
0 2—u

12— 9u

/ / (12 — 9u — 2v)? dvdu—83 1.
4—3u 96



Now, we compute S(W2/+;0,). Let P(u,v) be the positive part of the Zariski decom-
position of the divisor P(u)|4 — vly, and let N(u,v) be its negative part. Recall that

Fo, (W5) = — /3/ (P(u,v) - £;) jordo, (Ng(u)|£ + N(u,v |€ )dvdu.
- 0

Here, N{(u) is the part of the divisor N(u | ¢ Whose support does not contain (.. Thus,
if 0 < u <1, then Ng(u) = 0. Similarly, if 1 < u < 3, then Ng(u) = (u — 1)C". Note

that C" le, = O,. On the other hand, the curves £ and Ezt do not contain O,. Hence, we
see that ordp, (N (u,v)|s,) = 0 in every possible case. Then

4 3“ 12 —2 4 — ~
Fo, (W) 16/ / 9“ Y, + 3“(£+th)) -Ex)(u—l)dvdu+

2
12
(€ + L+ th) . €z> (u—1)dvdu =
4—3u
43U 12— 9u

/ / v(u—1)dvdu + — / / (u—1)(24 — 18u — 4v)dvdu =

_ 0 g( —1)(3u — 4)*du + 0 il( —1)(3u — 4)*du =

~ 16/, b “T16 ) 2\ Y Y= o2

Thus, it follows from Theorem 1.7.30 that

1 % o0 2
S(W,sz,O) +%/ / ((P(u,v) -EI)S> dvdu =
T3 —K3/ / )>dvdu—1—92—|——// 1—u—i—21) dvdu—l—
_// (6—u—31})2dvdu—|—i/ / 2 (8—2u—4v)2dvdu+

12— 9u

/ / dvdu+—/ / 24—18u—4v) dvdu:§<1.
4—3u 96

Since Sx(S) <1 and S(W,:{;) < 1, we see that dp,(X) > 1 by Theorem 1.7.30.
Similarly, we see that d5 m( ) > 1 by Theorem 1.7.30, because

S(Wffsz)—g—ijLF (W) // (u+v—2 <(P( )EI)S)dvdujL

12—9u

//Hu 3“*”‘4)<(P(u,v)-éx)s)dvdu:
// + v —2)(8 — 2u — 4v)dvdu+

12— Qu

1
/ / 3u+v—4)(24—18u—4v)dvdu-£7<1
4—3u 192




since £ and C” do not pass through ﬁx, and Zzt| 0, = P,. B
Now, we will show that 65 (X) > 1. Let us compute S(WJ .CY) and S(W.S,’.Cé/; P.).

Take some v € Rsg. If 0 < u < 1, then P(u)|s — vC) ~g (2 — u — v)CY + Loy 4 Ly, s0
that P(u)|s — vCY is pseudo-effective <= v <2—u. f0<u<land 0 < v <2 —u,
its Zariski decomposition can be described as follows:

o if 0 <v<1—u,then P(u)|s — vCY is nef,

eifl —u<<v< 5_33“, then the Zariski decomposition is

3—u—v ut+v—1

~. ~
(2—u—0)Cl 4 L+ 22 T2,
2 2
7 - g
Vv VvV
positive part negative part

o if % < v < 2 — u, then the Zariski decomposition is

(2 —u—v)(Cy + 3L +26,) + (3u+3v — 5) Loy + (2u + 20 — 3), .

positive part negative part

Thus, if 0 < u < 1, then

T—4u—4vif0<v<1l—u,

. b . u? v2,f1 o3
vol(P(u)|g —vC5) = § 5 ~oM TV AT USUS
5-3
52 —u —v)? if u<v<2—u.

Similarly, if 1 < u < %, then
P(u)| g — vC§ ~g (4 — 3u—v)CY + (4 — 3u) (Lot + £,).

Therefore, if 1 < u < %, then the divisor P(u)| g—vég is pseudo-effective <—= v < 4—3u.
Ifi1<u< % and 0 < v < 4 — 3u, its Zariski decomposition can be described as follows:

o if 0 <v< 8’36“, then the positive part of the Zariski decomposition is

(4—3u—v)CY + (4 —3u)L., + (4 —3u — g)ﬁx,

and the negative part is g/,
o if % < v <4 — 3u, then the Zariski decomposition is

J/

(4= 3u—0)C" + (12— 9u — 30) L.y + (8 — 6u — 20)ly + (6u + 3v — 8) L,y + (3u+ 20 — 4)(,, .
positi:lre part negat?\;s part

Thus, if 1 <u < %, then

2 86
N 48 — T2u — 160 + 12uv + 27u® + = if 0 < v < 4
Vol(P(u)’S —vCY) = 2 3

86
54— 3u—v)?if 0 < v <4— 3u

)

Using Corollary 1.7.26 and integrating, we get S(Wf.; 5’5’) = % <1
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Now, we compute S(WSC P.). Let P(u,v) be the positive part of the Zariski decom-

position of the divisor P(u ‘ P UC&’ , and let N(u,v) be its negative part. Then
S(WELH P = Fp (WEKH) + + 15 / / v) - CY) ) dvdu =

% o) . 1—u

= %/ / ((P(u, v) - Cé’) d’udu = —/ / 4dvdu+
o Jo
5—3u

1 = _ 2—u
+ i / Gl Z o)’ dvdu + —/ / (10 — 5u — 5v)*dvdu+
1-u

4—3u
8 6u—— dvdu+—// 20—15u—5v)dvdU—%<1

y ['heorem ere, we used the equality = t follows from the fact
by Th 1.7.30. H d th lity Fy, (WeC¥) = 0. Tt follows from the £

that ¢,, C" and the support of the divisor N (u,v) do not contain P., because

Fy (W.S.C" K / / C’") gordp (Ng(u) |5§’ + N(u,v)

where

&y ) dvdu,

0if0<u<l,
No(u) = N(u)|, = ~ 4
s(u) = Nl (u—1)l+ (u—1)C"if 1 <u<=.
Since S(WJ2,; CY) <1 and S(W.S,’.ég; P.) < 1, we see that 5. (X) > 1 by Theorem 1.7.30.
Likewise, we can show that dp, (X) > 1. Indeed, recall that O, € CY and CJ' ~ CU.
Then S(W,S.,C"”) SWE,; CY) < 1, because CJ" is not contained in Supp(N(u)|s).

e.0)

Moreover, one can compute S (W.,. 2 O,) similar to S (W.S Z P.). Namely, we have

Gt 515
S<W'S;7’CQ 709) 576 + FO (WSC )’
but now we have Fp, ( ) # 0. On the other hand, we have

2—u "
Fo, (W. .S.C =16 / / (3u+ 3v —5) <(P(u, v) - C’g”)s) dvdu+

0) - Cf)g ) (u—1)(C" - CF') , dvdu+

4— 3u ~ ~
/mu/ CW))(@L—1)«7ﬂcgqoy+6u4—&)—8)dmﬁL:
2—u & 6“ ~ o~
/ / (3u~+3v—5)(10—5v—>5v) dvdu—|— / / 8 6U——>(u—l)(oh-cé//)OydUdeL
// /// 65 (5” ‘ fCV(é”)Oy
/ / )(C"-Cy y+6u+3v—8>(20—15u—5v)dvdu: o
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because L., intersect C?' transversally at the point O,. But (. 55”) <C".CV =5

(C“~6”/)o

504" __ 515 3oy - 515 5 _ 1655
Therefore, we have S(W.,. ,Oy) = 576 + m + 19z < 576 192 = 1798 < 1 Wthh

implies that dp,(X) > 1 by Theorem 1.7.30. This completes the proof of the lemma. U
Finally, we conclude the proof of Proposition 5.2.4 by the following
Lemma 5.2.9. One has 65 (X) > 1 and 05 (X) > 1.

Proof. Let S = gé Then the surface S is smooth, it contains the points O, O,, ﬁy, ﬁt,
and it contains ¢, L,,, C, Cy', C'. It follows from Remark 5.2.3 and Lemma 5.2.7 that

Kyﬁzxzzfyﬂéé”zéyﬁé’:zmmég’:meé’:Oy,

fyﬂéé = ﬁy, L,.NC,=P, CinCY =2, C'nC’ = 0,U0,, and C,NC’ consists of five
points that form the preimage of the G-orbit of the point [0: —1:1: 1].

The cubic surface S5 contains 6 lines that passes through P,. One of then is the line L,,.
The remaining five lines pass through a point in the G-orbit of the point [—1:0: 1 : 1].
The proper transforms of these five lines on S are disjoint (—1)-curves that intersects
the curve /, transversally. Let £ be their union. Then L is disjoint from LIZ, C’ and C””

On the surface S, the intersection form of the curves ¢,, L., Cé, Cé” , C" and £ is given
in the following table:

e | 0, | L. |CylCy | C| L
b, l=2] 1 1] 1]1]5
L.l 1 ]=1/1]1]1]o0
cl1l1]o]o|5]o0
cril1t]1]o]ol|5]0
'l 1] 1|55 |15]10
L5 0/]0]o010]=5

To prove that § B, (X) > 1, we will apply Theorem 1.7.30 to S and the curve £,,. Similarly,

to prove that 63 (X) > 1, we will apply Theorem 1.7.30 to S and 5. As usual, we will
use notations introduced in Section 1.7.

Take a non-negative number u. Let P(u) = P(—Kx —uS) and N(u) = N(—Kx —uS).
As in the proof of Lemma 5.2.8, we see that — Ky — uS' is not pseudo-effective for u > %.
Moreover, if 0 < u < %, then

(2—u)Ch+ Ly + 4, if 0 <u <1,
P(u)|, = -~
s (4 =3u)(Cy+ Ly + £,) if 1 < u <

L W~

and
0if 0 <u<l,
Nu)|, = ~
wls (u—1)(C"+4£,) if 1 <u<

Observe that Sx(S) < 1 by Theorem 3.7.1.
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Let us compute S (W ;£,). Take a non-negative real number v. If 0 < u < 1, then

4 —u— 2w 2—u U~
S—Ugy ~R 9 Ey—i‘ 5 £+§sz
Therefore, if 0 < u < 1, then the divisor P(u)|s — vl is pseudo-effective <= v < 4%,
fFo<u<land0<ov < 4_7“, its Zariski decomposition can be described as follows:
e if 0 < v <1, then P(u)|s — vl is nef,
e if 1 < v < 2—u, then the Zariski decomposition is

4 —u

P(u)l

2000, 4 L) + LTt (0 1)L
2 ———

7
posit;g part negative part

N

o if2—u<<v< 4’Tu, then the Zariski decomposition is

4y -2 - -

~
posit;z; part negative part

Thus, if 0 < u < 1, then

N

2uv — 20% —4u — 20+ Tif 0 < v < 1,
VOl(P(U)‘S—My) _)J(w=2)Bv+2u—-6)if 1 <v<2—u,
(u+2v—4)*if2—u<v<

W
|
I

Similarly, if 1 < u < %, then

U)‘S—UnyR 12—9211—2U€y+4—23u(£+zm)'

Therefore, if 1 < u < %, then the divisor P(u)|s — v/, is pseudo-effective <= v < 1259“.

Ifl1<u< ‘—L and 0 < v < 12;9“ its Zariski decomposition can be described as follows:

o 1f0<v 4 — 3u, then P(u)|g — vl is nef,

o if 4 —3u < 1229“, then the Zariski decomposition is

W(muzm)+<3u+v—4><£+5m>7

(. J ~~

positi:/:e part negative part

Thus, if 1 <u < %, then

27u* — 20?7 — T2u+ 48 if 0 < v < 4 — 3u,

vol(P(u)|., — vt,) = _
(P)fs = vty) (12—9u—2v)21f4—3u<v<1229“.

Thus, using Corollary 1.7.26, we get

wln

S(W,S,,E) %/0 (P(u)-P(u)-S)ordy, (N (u)|s du—i—16/ / vol(P —vfy)dvdu:

3 [3 83
6/, 3(4 — 3u)*(u — 1)du + / / vol( vly)dvdu = 56 <



Now, we compute S (W.S .Zy, ]Sy) Let P(u,v) be the positive part of the Zariski decom-

position of the divisor P(u ‘ g — vly, and let N (u,v) be its negative part. Recall that

2
S(WE B,) = Fp (WS + _KS/ / ) 4y)g) dvdu,

where

Fp (WSZ T / / )sordﬁy (Ng(u)}g + N(u,v)|, >dvdu.
Here, N§(u) is the part of the divisor N (u ‘ ¢ Whose support does not contain £,. Then

0if 0 <u<l,

N (u) = -
s (u—1)C"if1<u<

Q| W~

Therefore, since C , L and L,. do not contain the point Py, we have I (WSZ ) = 0.
Then S(Wai"; P,) = 3 <1, so that dp,(X) > 1 by Theorem 1.7.30.

Now, let us show that §5 (X) > 1. First, we compute S(W2,; C}). Take some v € Rsg.
If 0 <u <1, then Pu)|g — vCl ~r (2 —u—v)C) + Ly, + l,, so that P(u)|s — vC} is
pseudo-effective <—= v < 2—u. f0 < u < 1and 0 < v < 2—u, its Zariski decomposition
can be described as follows:

e if 0 < v <1—u, then P(u)|g — vC} is nef,
eif 1 <v <K 5_33“, then the Zariski decomposition is

3—u—v ut+v—1

~, ~

(2—u—v)Cy+ Ly, + 5 0, + 5 l,,

NS ~~ ~~ >
positive part negative part

o if % < v < 2 — u, then the Zariski decomposition is

(2 —u—v)(Cy 4 3L, +26,) + (3u+ 30 — 5) Ly, + (2u + 20 — 3)0,,.
positi:z,e part negat?\;z part

Thus, if 0 < u < 1, then

\

T—4du—4vif0<ov <1 —u,

- 15 s u?  0? £1 <5—3u
vol(P(u)] g —vC3) = (5 ~Pu—ovtuwt ool musvs =,
5—3
52 —u—v)? if Y<vg2-u

Similarly, if 1 < u < 3, then P(u)|s —vC ~g (4—3u—v)C + (4= 3u)(L. +£,), so that
P(u)|s — vC} is pseudo-effective <= v <4 —3u. If 1 <u <3 and 0 < v <4—3u, its
Zariski decomposition can be described as follows:

e if 0<v < 8’36“, then the positive part of the Zariski decomposition is
(4 —3u—v)C) + (4 — 3u)L,. + <4 —3u — g)ﬁy,

and the negative part is £/,
170



o if % < v < 4 — 3u, then the Zariski decomposition is

@—3u—vﬁ%+(M—QU—SMZM+{8—&r—%ﬂq+@u+3v—&zu+CM+QU—®%.

J/

TV Vv
positive part negative part

Thus, if 1 <u < %, then

2 8—6
N 48—mu—uw+1mv+wﬁ+f%ﬁ0<v< 3“
vol(P(u)| 4 —vCy) = 8 — 6u
5(4 — 3u —v)? if <v <4 3u.

)

Using Corollary 1.7.26 and integrating, we get S(I/V,S,7 C”) g’;g < 1.

Now, we compute S (W.S .Cé P,). Let P(u,v) be the positive part of the Zariski decom-

position of the divisor P(u)| ¢ — vC5, and let N(u,v) be its negative part. Then

Cr o~ / / 515
S(W.S’.%;Pt) :FP .S.C / / P(u,v C”) ) dvdu = ordp (F(WSC ))—1——
’ ¢ 16 ¢ D76
by Theorem 1.7.30. To compute Fp (W.S ’.Cé), recall that from Theorem 1.7.30 that
Fp (W, .S.C' e / / ) gordp (Ng(u )C,, + N(u,v !C,)dvdu,
where, since () is not contained in the support of the divisor N (u)|g, we have
0if0<u<l,
Ng(u) = N(u)|, = ~ 4
s(u) = Nl (u—1)l,+u—-1)C"if1<u< =
On the other hand, the curves ¢, and C" do not contain the point ﬁt. Thus, we have
SC’ 2—u .
Fp (W 16(/‘L/‘ 3u—%3v——5)((FK v) - cg)s>dvdu+
3 4—3u .
—/ / (6u+3v—8)<(P(u,v) -C§)5>dvdu:
0.1 Jegp
6 1 2—u
= —6/ / (3u + 3v — 5)(10 — 5u — 5v)dvdu+
6 [ 4_uﬁ 3 8)(20 — 15 Sv)dvd —65
+1_6/1 /836u (6u + 3v — 8)(20 — 15u — 5v)dv U= Toog
Then S(W.S,’.éé; P) = 82 < 1. Since we already know that S(W2,; C4) < land Sx(S) < 1,
we get 05 (X) > 1 by Theorem 1.7.30. This completes the proof of the lemma. O

Thus, Proposition 5.2.4 is proved, and general members of the family Ne 2.9 are K-stable.
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5.3. Family Ne2.11. Let V be the cubic threefold in P* that is given by
ru? + 2yuv + zv* + 22%u + 2% + ay® + bryz = 0.

where u, v, 7, y, 2 are homogeneous coordinates on P*, and a and b are general numbers
such that V' is smooth, e.g. @ =5 and b = 7. This threefold has been studied in [106].
Let G=Djg={a,t|a®=1,12=1,a-1t=1-a). Then G acts on P* via
affu:viz:y:z]) =wu:w:ws:y:w's]
and ((ju v :z:y:z])=[v:u:z:y: ], where w is a primitive fifth root of unity.
Moreover, the cubic V is G-invariant, and the only G-invariant linear subspaces in P* are
the hyperplane {y = 0}, the plane Il = {x = 2z = 0}, the plane II' = {u = v = 0}, the line
L={x=y=2=0}, theline L' = {v =v =y =0}, and the point P=1[0:0:0:1:0].
Observe that the point P does not lie on V. Let S3 be the cubic surface in V' that is cut
out by the hyperplane y = 0. Then S5 is smooth, it contains the lines L and L/, and it is
isomorphic to the Clebsch cubic surface [72].
Let m: X — V be the blow-up of the line L. Then X is a Fano threefold Ne2.11, and
the action of the group G lifts to X, so that we identify G with a subgroup in Aut(X).

Moreover, there exists G-equivariant commutative diagram

where ¢ is a conic bundle, and 1 is a rational map given by [u:v:z:y:z]— [z:y: z].
Observe that the G-action on P? has exactly one G-fixed point: [0: 1 : 0].

Remark 5.3.1. The threefold X is given in P* x P? by the equations

(sy = tx
sz =rx,
ry = tz,

urx + 20 + 2uvy + ay® + v¥z + bryz + 2uz? =0,
\uzs + 2urs + 2uvt + ay’t + v’r + bryr + 2uzr = 0.

where s, t, r are coordinates on P2. The surface £ is cut out on X by x =y = 2 = 0,
so that it is isomorphic to a surface in P! x P? given by u?s 4 2uvt + v?r = 0, where we
consider u and v as coordinates on P*. The group G acts on P! x P? by

affu:v],[s:t:r]) = ([u:wo], [ws:t:whr))

and ¢([u : v],[s : t :r]) = ([v:wul,[r:t:s]). There are no G-fixed points on E, and
there are no G-invariant fibers of the projection £ — L, because V' does not have G-fixed
points. Observe that F = P! x P!

Let H be a general hypeprlane section of the threefold V', let E be the m-exceptional
divisor, and let S be the proper transform of the cubic surface S; on the threefold X.
Then —Kx ~ 2S5+ E, S ~ n*(H) — E, the conic bundle ¢ is given by |7*(H) — E|, S is
the only G-invariant surface in the linear system |7*(H ) — E|, the cone of effective divisors
on X is generated by £ and S, and the cone of nef divisors is generated by 7*(H) and S.
Note that 7*(H)? =3, n*(H) - E* = -1, 7*(H)? - E =0, F? =0, —K% = 18,
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Proposition 5.3.2. The Fano threefold X is K-stable.

Thus, since Aut(X) is finite [42], Theorem 1.1.12 implies that general smooth Fano
threefolds in the family Ne2.11 are K-stable.

Let us prove Proposition 5.3.2. By Corollary 1.1.6, it is enough to show that the three-
fold X is K-polystable. Suppose that X is not K-polystable. Then, by Theorem 1.2.5,
there are a G-equivariant birational morphism f: X — X and a G-invariant dreamy
prime divisor F' C X such that 8(F) = Ax(F) — Sx(F) < 0. Let Z = f(F). Then Z is
not a surface by Theorem 3.7.1, so that Z is a G-invariant irreducible curve, because X
does not have G-fixed points. Let us seek for a contradiction.

Lemma 5.3.3 (cf. [87, § 4]). One has n(Z) C S3UITUTL.

Proof. Observe that 7(Z) is a curve. Suppose that this curve is not contained in S5UITUIT'.
By Lemma 1.4.4, we have ag z(X) < %. Thus, there are a G-invariant effective Q-divisor
D on the threefold X and a positive rational number A < % such that Z C Nklt(X, AD).

Recall that the cone Eff(X) is generated by £ and S, and S is the only G-invariant
surface in the linear system |7*(H) — E|. Thus, since —Ky ~ 25 + E, we conclude that
the locus Nklt(X, AD) does not contain surfaces except maybe S. Write D = aS + A,
where a € Qs¢, and A is an effective Q-divisor on X whose support does not contain
the surface S. Let A = m(A). Then Z C Nklt(X, A), so that 7(Z) C Nklt(V, \A).
But A ~g (2 — a)H. Thus, using Corollary A.1.7, we see that the locus Nklt(V, AA) is
connected union of finitely many curves. Since V' does not have G-fixed points, 7(Z) is
one of these curves.

Choose a positive rational number p < A, such that (V, pA) is strictly log canonical.
Then 7(Z) is a minimal log canonical center of the log pair (V, uA) by Corollary A.4.9.
Therefore, the degree of the curve 7(Z) is at most three by Corollary A.2.7. On the other
hand, the curve 7(Z) is not a line, since L and L’ are contained in S. Moreover, since
m(Z) ¢ Il and w(Z) ¢ II', we see that w(Z) is not contained in a plane, since II and IT are
the only G-invariant planes in P4, Thus, we conclude that 7(Z) is a twisted cubic curve.
Then it is contained in the unique G-invariant hyperplane in P4, which is given by y = 0.
But 7(Z) is not contained in S3, which is a contradiction. O

Our next step is

Lemma 5.3.4. One has Z ¢ E.

Proof. Suppose that Z C E. Let us apply results of Section 1.7 to derive a contradiction.
Fix u € Ryg. Then —Kx — uFE ~g 27*(H) — (1 + u)E, so that —Kx — uFE is nef if and
only if it is is pseudo-effective <= w € [0,1]. Using this, we see that Sx(E) = 2 < 1.
Thus, applying Corollary 1.7.26, we see that S(W,E,, Z)=>1.

Recall from Remark 5.3.1 that £ = P! x P!. We may assume that a fiber of the natural
projection £ — L is a divisor of degree (1,0). Then 7*(H)|g is a divisor of degree (1,0),
the divisor —E|g has degree (0, 1), and Z has degree (b1, by) for some b; > 0 and by > 0.
Then (by,bs) # (1,0), since L has no G-fixed points. Therefore, we conclude that by > 0.

Thus, for a curve Zy C E of degree (0, 1), one has

S(W,E,,Z)gg( ..7Zo :18// 1—u+v)dvdu:g<1

by Corollary 1.7.26. The obtained contradiction completes the proof of the lemma. [J
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Observe that IINV = LUC, where C is an irreducible conic. Similarly, II'NV = L' U’
for an irreducible conic C’. The conics C and C’ are G-invariant. Moreover, these are
the only G-invariant conics contained in V.

Lemma 5.3.5. One has w(Z) is not the conic C.

Proof. Let Ty be a hyperplane section of V' that is cut out by the equation Az + puz = 0,
where A and p are complex numbers such that T3 is smooth. Such numbers always exists,
e.g. the cubic surface 73 is smooth for a =5, =7, A =1 and p = —1.

Note that the line L and the conic C are both contained in the surface T3 by construction.
But the surface T3 is not G-invariant. Let T" be its proper transform on X. Then T = T5.

Suppose that 7(Z) = C. Then Z C T'. Let us apply results of Section 1.7 to 7" and Z
to derive a contradiction. We will use the notations introduced in this section.

Fix u € Ryg. Then —Kyxy —ul ~g (2 —u)n*(H) 4+ (v — 1)E, so that —Kx — uT is
pseudo-effective if and only if u < 2. Moreover, this divisor is nef if and only if u € [0, 1].
Let P(u) = P(—Kx —uT) and N(u) = N(—Kx — uT'). Then

—Kx —ul' if0<u<],
Pu) = " .
{(2—u)7r (H) ifl<u<2,

and N(u) = (u— 1)E for u € [1,2]. Using this, we see that Sx(T) = 35 < 1. Now, using
Corollary 1.7.26, we conclude that S(WZ,;C) > 1.

o0

Let us compute S(W/],;C). Take u € [0,2] and v € Rxo. If u € [0,1], then
P(u)‘T —vC~g (2—u—v)C+ L,
which easily implies that the divisor P(u)|r—vC is pseudo-effective if and only if v < 2—uw.

fOo<u<land0<v < % — u, this divisor is nef and vol(P(u)|r — UC) =7 —4u — 4v.
IfO<u<1and % —u < v < 2 —u, the Zariski decomposition of P(u)|7 — vC is

(2—u—v)(C+2L)+ (2v+2u—3)L,

positive part negative part
so that vol(P(u)|r — vC) = 4(v +u — 2)?. If uw € [1,2], then
P(u)|, —vC ~r (2—u—0)C+ (2 —u)L,
so that P(u)|p — vC is pseudo-effective <= v <2—wu. If 1 <u<2and 0 < v < &Y,

this divisor is nef and its volume is (2—u)(6 —3u—4v). If 1 < u < 2 and 2_7“ <v<2—u,
the Zariski decomposition of the divisor P(u)|r — vC is

(2—u—v)(C+2L)+ (2v+u—2)L,

positi\\;e part negative part
so that vol(P(u)|y — vC) = 4(v + u — 2)?. Now, using Corollary 1.7.26 and integrating,
we get S (Wf,; C)= % < 1. The obtained contradiction completes the proof. U

Lemma 5.3.6. One has 7(Z) #C'.

Proof. Let T5 be a hyperplane section of V' that is cut out by the equation Au + pv = 0,
where A and i are complex numbers such that 73 is smooth. Such numbers always exists,
e.g. the cubic surface 73 is smooth for a =5, =7, A=1 and p = —1.

Observe that the line L’ and the conic C" are contained in the surface T3 by construction.

But the surface T3 is not G-invariant. Let T be its proper transform on the threefold X,
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let w: T' — T3 be the morphism that is induced by 7, let O = T3NL, let Ep = ENT', let R
be the hyperplane section of T3 that is singular at O, and let R be its proper transform
on the surface T. Then w is a blow up of the point O, and Fp is its exceptional curve.
Observe that R is irreducible for general a and b, e.g. for A = —p = 1 and 2b # =+a.
Thus, no line in T3 passes through O, so that 7" is a smooth del Pezzo surface of degree 2,
and R is a (—1)-curve in T such that R+ Eop ~ —Kr.

Let L' and C' be the proper transforms on T of the curves L' and C’, respectively.
Note that O ¢ L’ UC’. Thus, on the surface T', we have

([)? = B = B = —1,(0')> = CBo = ["Eo = 0.8"L' = RC' = REo — 2, R = 1.

Suppose that 7(Z) = C’. Then Z = C'. Let us apply results of Section 1.7 to T" and C
to derive a contradiction. Fix u € Ryg. Then —Kx — uT ~g (2 —u)7*(H) — E. Thus,
the divisor —Kx — uT is nef <= —Kx — T is pseudo-effective <= u € [0, 1]. Using
this, we get Sx(T) = 2 < 1, so that S(W],; Z) > 1 by Corollary 1.7.26.

Let us compute S(W[,; Z). Take u € [0,1] and v € Rx. If u € [0, 1], then
(~Kx—uT)|,—vZ ~g (2—u—v)Z+(2—u)L' —Ep ~g (2—u—v)R+vL'+(3—2u—2v)Eo.

This implies that the divisor (—K x —uT")|r —vZ is pseudo-effective if and only if v < 3224,
fo<u<land0<<ov < 277“, this divisor is nef and

vol((—Kx —uT)|, —vZ) = 4v(u—2) + 3(u—2)* — 1.
If0<u<1and 277“ <v < %, the Zariski decomposition of (—Kx — uT)|r —vZ is

2—u—v)(R+ L)+ (3—2u—2v)Eo+ (u+2v—2)L,
positi:/re part negat;\; part

so that vol((—=Kx — uT)|r — vZ) = (4 — 2u — 2v)?* — 1. Now, using Corollary 1.7.26 and
integrating, we get S(W[,;C’) = {5 < 1. O
Thus, using Lemmas 5.3.3 and 5.3.4, we conclude that Z is contained in the surface S.
Observe that S =2 S3, so that we can identify S with the cubic surface S3 in computations.
We also abuse notations and denote by L the curve F|g, and we denote by L’ the proper
transform on the threefold X of the line L’. Observe that L and L’ are G-invariant.

Lemma 5.3.7. Fither Z — L or Z — L' is pseudo-effective.

Proof. Let p: S --+ P! x P! be the map that is given by [u: v : 2z :y: 2] — ([u:v], [z 2]).
Then p is a G-equivariant morphism. Moreover, this morphism blows up the points

Py = ([—1 1], [1: —1]),P1 = ([—w3 1], [1: —w]),P2 = ([—w 21,1 —w2]),
P; = ([—w4 (1)1 —wg]),P4 = ([—wz (1], (1 —w4]),

which form one G-orbit in the surface P! x P'. We let A; = p~}(P;) for i € {0,1,2,3,4}.
Then each A; is the line {z +w'z = u+w*v =0} C S, p(L)Np(L') = { Ry, P1, Py, P, Py},
and the curves p(L) and p(L’) are divisors in P! x P! of degree (1,2) and (2, 1), respectively.

Observe also that P! x P! does not contain G-invariant curves of degree (1,0), (0,1), (1,1).
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Let ¢, and /5 be the fibers of the projections P! x P! — P! to the first and the second
factors, respectively. Then p(Z) ~ by, +byly for some positive integers by and by. One has

LNp*(gl—{—Qgg) _AO_AI —AQ—Ag—A4,
L, Np*(2fl +1€2) _AO —Al —Ag —Ag—A47
7 ~ p*(blgl +b2£2) — m(Ao +A1 —|—A2 —|—A3 —|—A4)

for some integer m > 0. If m = 0, then we are done. Thus, we assume that m > 0.

Intersecting the curve Z with the curve in |[¢1| that passes through Fy, we obtain by > m.
Similarly, intersecting Z with the curve in |f3| that passes through F,, we obtain b; > m.
Intersecting Z with the curve in |¢; + {5| that contains Py, P, P, we get by + by > 3m.
On the other hand, we have

7 —mL ~ p*((bl —m)ly + (by — 2m)€2),
Z —mL' ~ p*((b1 — 2m)ly + (by — m)Ls).
Thus, to complete the proof, we may assume that b; < 2m and by < 2m. Then
Z — L~ (2m—0b; — 1)L+ (by — m)L' + p*((by + by — 3m)Ls),
which implies that Z — L is pseudo-effective. U

Now, we apply the results of Section 1.7 to S and our curve Z to derive a contradiction.
Let us use the notations introduced in this section. Fix a non-negative real number w.

Let P(u) = P(—Kx — uS) and N(u) = N(—Kx —uS). We have
—Kx—uS~g 2—u)r"(H)+ (u—1)E ~g 7 (H) + (1 —u)S.

Then —Kx —uS is nef <= wu € [0,1], and —Kx — uS is pseudo-effective <= u < 2.

Thus, we have
—KX—uS 1f0<u<1,

Plu) = {(2 —w)r(H) ifl1<u<2,
and N(u) = (u — 1)F for u € [1,2]. This gives
6u” —21u + 18 if 0 < u < 1,
vol(—KX—uS): 5.
3(u—2)"if 1 <u <2,

Pl S T—4u if0<u
(WS = 592 if1<

Integrating, we get Sx(S) = % < 1. Thus, we have S(W;?,; Z) = 1 by Corollary 1.7.26.
Recall from this corollary that

and

2
SOV 2) =5 [ hluydu,
: 18 J,

where .
h(u) = (P(u)?- S)ordy (N (u)|s) +/ vol(P(u)| — vZ)dv.
0
Observe that ordz(N(u)|s) = 0 unless Z = L. Moreover, if Z = L, then

0 if0<u<l,

ordz (N(u)ls) = {(u DL ifl<u<2
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We us show that S(W2,;

e 0’

Lemma 5.3.8. One has S(WS,; L) = 3.

Z) < 1, which would give us a contradiction. We start with

Proof. Take v € Rxo. If 0 < u < 1, then P(u)|s —vL ~p (2 —u)( — Kg) + (u—1—)L.
This divisor is nef <= v < 1, and it is not pseudo-effective if v > 1. So, if u € [0, 1], then

1
h(u) = / (—v®+20(2u — 3) + (7 — 4u))dv = 5 —2u
0
Similarly, if 1 < u < 2, then
h(u) = 3(u —2)*(u — 1) +/ Vol(P(u)|S —vL)dv.
0

In this case, we have P(u)|s — vL ~g (2 — u)( — Kg) + vL. Observe that this divisor is
nef <= v < 2 —u, and it is not pseudo-effective if v > 2 — u. Thus, if u € [1,2], then

/000 VOI(P(U)‘S —vL)dv = /0 B (—v* =202 —u)+3(2—u)?)dv = 2(2 — )3

so that h(u) = & (4u® — 15u® + 12u+4) u € [1,2]. Integrating, we get S(W2,;L) = 2. O

Thus, we see that Z # L. Then Z € N(u). Thus, if Z — L is pseudo-effective, then
the proof of Lemma 5.3.8 gives

..)

S(WeZ / / vol(P(u)|, — vL)dvdu < S(W2,; L) = g
Similarly, if Z — L’ is pseudo-effective, then
179
S(W, (P — vl dvdu = S(W2,; L) = —
ey <g [ [ vl - o)t = s 1) = 1

by the following lemma:

Lemma 5.3.9. One has S(WS,; L') = 12

.0 288

Proof. Take u € [0,1] and v € Rxg. Then P(u)|s—vL ~p (2—u)(— KS) (1—w)L—vl'
This divisor is pseudo-effective <= v < 3;“, and it is nef <= v < 1. So, if v < 1 then

Vol(P u)| g —vL') = —v® +2(u — 2)v + (7 — 4u).

Similarly, if 1 < v < 2%, then the Zariski decomposition of P(u | g~ vl is
p*((S —Uu— 2U)€1 + (2 — 'U)ez) (U — 1)(A0 + Al + A2 + Ag + A4),
positng part negat?\; part

which implies in this case that vol(P(u)|s —vL') =2(2 —v)(3 — u — 2v).
Now, we take u € [1,2] and v € Ryy. Then P(u)|s — vL' NR (2—u)(— Ks) —vL, so
that this divisor is pseudo-effective <= it is nef <= v < 2 — u. Hence, we have
vol(P(u ‘S— ) =—v"—=2(u—2)v+3(2—u).
Using Corollary 1.7.26 and integrating, we get S(W2,; L) = 122 as required. O

.0 288
Since Z — L or Z — L is pseudo-effective by Lemma 5.3.7, we see that S(W,S., Z) < 1.
But we already proved earlier that S (W,S., Z) = 1. The obtained contradiction completes
the proof of Proposition 5.3.2.
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5.4. Family Ne2.12. Let ( be a primitive seventh root of unity, and let G be the subgroup
in SL4(C) that is generated by the following matrices:

100 0 1L v2 V22

0¢ 0 0| V=T|v2 G+ P4t ¢+

0.0 ¢t 0|7 V7 | V2 ¢H¢t (+( ¢+

000 ¢ V2 (G Gt
It follows from [80] that G = SLy(F;), and G gives a subgroup PSLy(F;) C PGL,(C) that
has no fixed points in P3. Such subgroup in PGL4(C) is unique up to conjugation [80, 143].
Moreover, it follows from [80, 47] that P? contains unique PSLy(F7)-invariant smooth
curve of degree 6 and genus 3. Denote this curve by 4. We have the following result:

Proposition 5.4.1. Let M be a mobile PSLy(F7)-invariant linear subsystem in |Ops(n)],
where n € Zq. Suppose that multy (M) < . Then (IP?, %M) has canonical singularities.

Proof. This follows from the proof of [47, Theorem 1.9]. O

Let 7: X — P? be a blow up of the curve 4. Then X is a Fano threefold N¢2.12, and
there exists PSLy(F7)-equivariant commutative diagram

X u X

P3 - - — — - - P3

where 7 is a birational involution given by the linear system of cubic surfaces containing ¢,
and o is a biregular involution.

Remark 5.4.2. The involution o € Aut(X) can be explicitly constructed as follows. Let
Yo = 2\/53:1:52373 — :Cg,
Y1 = x%xl + \/51’035% + 23:237%,
Yy = ToT9 + \/§x0x§ + 22213,
Y3 = 1573 + ﬁxoxf + 2z, 73,

By [80], the ideal sheaf of the curve € is generated by the cubic polynomials yo, y1, ¥2, ¥s,
where zg, 71, T2, 3 are homogeneous coordinates on P3. Let y: P3 - P3 be the rational
map given by [zg : @1 : X2 : 23] = [yo : 1 : ¥2 : y3]. Then there is a commutative diagram

where w is a morphism. Thus, we can consider X as the closure in P? x P? of the graph
of the rational map ¥, cf. [56, § 29]. To be precise, the threefold X is given in P3 x P? by

(5.4.3)  woyr + 1Yo — \/555'23/2 = ToYo2 + ToYo — \/595393 = ZToYs + T3Yo — \/53713/1 =0,

where we consider 4o, y1, ¥2, ¥3 as coordinates on P3. Indeed, the threefold X is contained
in the subset (5.4.3), so that it should be X, because (5.4.3) defines a smooth irreducible

three-dimensional subvariety in P3 x P3, which can be checked using Magma:
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Q:=RationalField();

R<x>:=PolynomialRing(Q) ;

K<t>:=NumberField (x"2-2);
PxP<x0,x1,x2,x3,y0,y1,y2,y3>:=ProductProjectiveSpace (K, [3,3]);

X:=Scheme (PxP, [x0*y1l+x1*y0-t*x2*xy2, x0*y2+x2*xy0-t*x3*y3, x0*y3+x3*y0-t*x1x*yl]);
IsNonsingular(X) ;

IsIrreducible(X);

Dimension(X);

Now, we can define o € Aut(P? x P?) as follows:

([wo 1 s @3], [yo tyr 12 ws)) — ([yo v1 : 2t y), [0 : 21 2 @a : 23)).

Then X is o-invariant, so that we may identify o with an element in Aut(X).
Let H be a hyperplane in P?, and let E be the m-exceptional surface. Then
o*(E) ~8r*(H) — 3E,
{U* (7*(H)) ~ 37*(H) — E.
Using this and Proposition 5.4.1, one obtain

Theorem 5.4.4 ([47, Theorem 1.9]). The threefold P* is PSLy(F7)-birationally rigid, and
the subgroup of PSLy(F7)-birational selfmaps of P3 is generated by PSLy(F7) and 7.

The involution ¢ commutes with the PSLy(F7)-action on X. Together, they generate
a finite subgroup G' C Aut(X) that is isomorphic to PSLy(F7) X p,, see [47, Lemma 3.8].
Then Pic®(X) = Z[—Kx], so that X is a G-Mori fiber space.

Theorem 5.4.5. The threefold X is G-birationally super-rigid.

Proof. Suppose that X is not G-birationally super-rigid. It is well-known [50] that there
exists a G-invariant mobile linear system M on the Fano threefold X such that the log
pair (X, AM) does not have canonical singularities, where \ is a positive rational number
that is defined via AM ~g —Kx. Let us seek for a contradiction.

Applying Proposition 5.4.1 to the log pairs (P?, Am(M)) and (P3, Aw o 0(M)), one can
easily show that (X, AM) is canonical away from the curve FNo(E). However, we would
prefer to avoid using Proposition 5.4.1, because its proof is difficult.

First, we suppose that (X, AM) is not canonical along some G-irreducible curve C' C X
Let M, and M, be sufficiently general surfaces in M. Then multe(M;) = multe(Ms) > %
Thus, intersecting — K x with the effective one-cycle M, - M,, we get

A2 A2
so that —Kx - C' < —K% = 20. On the other hand, since o(C') = C, we have

=—Kx M M > (— Kx - C)multe (M )multe (Ms) >

4" (H)-C —E-C = (4n*(H) — E)-C = —Kx - C =
- (w*(H) +a*(ﬁ*(H))) .C=7"(H) - C+o" (x"(H)) - C = 27" (H) - C,

so that £-C = 27*(H) - C = —Kx - C < 20. This shows that C' C F and n(C) = ¥,

because the surface E does not contain G-orbits of length less than 24, since € does not
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contain PSLy(F7)-orbits of length less than 24 by [47, Lemma 2.16]. Then

% =M - 14 = Hlultc(Ml) > %7
where ¢ is a general fiber of the natural projection £ — %. The obtained contradiction
shows that the log pair (X, AM) has canonical singularities outside of finitely many points.
Let P be a point in X such that the log pair (X, AM) is not canonical at this point.
By [47, Lemma 3.2], one of the following two cases holds:
(1) the PSLy(F7)-orbit of the point 7(P) is the unique PSLy(F;)-orbit of length 8;
(2) the length of the PSLy(F7)-orbit of the point 7(P) is at least 24.
In the first case, the log pair (P*, Ar(M)) must be canonical at 7(P) by [47, Lemma 5.4],
so that the log pair (X, AM) must be canonical at P, because m(P) ¢ % in this case.
Thus, we conclude that the length of the PSLy(F7)-orbit of the point 7(P) is at least 24.
In particular, the G-orbit of the point P consists of at least 24 points.
There is a prime divisor F over X with Cx(F) = P and ordp(AM) > Ax(F)—1> 2.
Thus, we have

OI‘dF ()\M)
2

so that the log pair (X, %M) is not log canonical at P.
We claim that (X, %M) is Kawamata log terminal away from finitely many points.

Ax(F) -1 _

>AX(F)—1—|— 5 /AX(F),

ordp <;)\M) = ordF()\./\/l) +

Indeed, if the log pair (X, %M} is not Kawamata log terminal along some G-irreducible
curve C' C X, then (M; - My)c > % by Theorem A.3.1, where M; and M, are general
surfaces in M. Using this, we see that
— K3 16(—Kyx - C)
A2 9\?

which gives 27*(H)-C = —Kx-C < 11, so we conclude that 7(C') is a PSLy(F7)-invariant
curve of degree at most 5. But P? does not contain PSLy(F7)-invariant curves of degree
less that 6 by [47, Lemma 3.7]. This shows that NkIt(X, 22 M) consists of finitely many
points. Now, applying Corollary A.1.9, we get [NkIt(X, 2 M)| < h°(X,Ox(—Kx)) = 13,
which is impossible, because P € Nklt(X, %M), and G-orbit of P consists of at least 24
points. This completes the proof of the theorem. O

Recall that Pic®(X) = Z[-Kx]. Note also that G does not have fixed points on X,
because PSLy(F7) has no fixed points in P?; since the action of this group is given by
an irreducible four-dimensional representation of its central extension. This gives

Lemma 5.4.6. One has a(X) > 3.

= KMy My > (= K C) (M) >

Proof. If ag(X) < %, then applying Theorem 1.4.11 with = £, we see that there exists
a G-invariant irreducible rational curve C' such that —Kx - C' < 3, so that

3> Ky -C= (ﬂ*(H) +o* (w*(H))) C=7"(H)-C+o"(x"(H)) - C = 2*(H) - C,
which implies that 7*(H) - C' = 1, so that 7(C) must be a PSLy(F;)-invariant line in P,
which does not exists. U

Thus, applying Corollary 1.6.4, Theorem 5.4.5 and Lemma 5.4.6, we conclude that

the threefold X is K-polystable, which also follows from
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Lemma 5.4.7. One has ag(X) > 1.

Proof. Suppose that ag(X) < 1. Then, applying Theorem 1.4.11 with = 1, we see that
the Fano threefold X must contain a G-invariant irreducible smooth rational curve C.
But the action of the simple subgroup PSLy(F7) on the curve C' must be trivial, so that
the group G/PSLy(F7) = p, has a fixed point in C. Then X contains a G-fixed point,
which is not the case. U

Since Aut(X) is finite [42], our X is K-stable by Theorem 1.4.7 and Corollary 1.1.6.
Hence, general Fano threefold Ne2.12 is K-stable by Theorem 1.1.12.

5.5. Family Ne2.13. Consider the group G = 2.6, = GLy(F3). There exists a smooth
curve C' of genus 2 with a faithful action of G, see e.g. [183, §3.2]. The hyperelliptic
double cover v: C' — P! is G-equivariant, where G acts on P! via its quotient &,. Recall
that the group &, has no orbits of length less than 6 on P!, and it has a unique orbit
of length 6. In particular, the hyperelliptic double cover is branched in ¥. So the curve C'
does not contain G-invariant subsets of cardinality less than 6, and the only G-invariant
subset of cardinality 6 is the preimage of ¥ on C, which we will also denote by X.

By the Riemann-Roch theorem, we know that the linear system |3K| has dimension 4.
Hence, there exists a faithful action of G on P4, and a G-equivariant embedding C' — P4,
Observe that that ¥ € [3K¢/|, and |3K¢| contains a three-dimensional G-invariant linear
subsystem v*|Op1(3)|. So, we can identify P* = [3K¢|Y = P(I& W), where I is the trivial
representation of the group G, and W is its unique irreducible four-dimensional represen-
tation. Hence, we conclude that P* contains a unique G-invariant hyperplane Hy = P(W),
the group G acts on Hj via its quotient &,. Similarly, P* has a unique G-fixed point P,
which is not contained in H,.

Lemma 5.5.1. There is a unique G-invariant quadric Q C P*, and this quadric is smooth.

Proof. Let p: P* ——» Hy be the projection from Py. Put C' = p(C). Then C is a twisted
cubic, p is G-equivariant, and p induces a double cover C' — C, which is the hyperelliptic
double cover v. We denote by Y the cone in P* over the curve C with vertex P,.

Let Q be the linear system of quadrics in P* that pass through C, and let Q be its
subsystem that consists of all quadrics that pass through Y. Then Q is three-dimensional
by the Riemann—Roch theorem, and Q is two-dimensional. Note that Q is G-invariant.
Thus, by the complete reducibility of the corresponding representation of the group G,
there exists a G-invariant quadric Q € Q such that Q ¢ Q.

One can show that the linear system Q is the projectivization of an irreducible three-
dimensional representation of the group G, which implies that @) is the unique G-invariant
quadric in the linear system Q.

Observe that C' = Y N Q. This implies that @) is smooth. Indeed, if () were singular,
then its vertex would be P, which would imply that C' is singular. U

Remark 5.5.2. We can also prove the existence of the G-invariant quadric ) as follows.
We have the following exact sequence of G-representations:

0 — H'(P*,Op(2) ® Ic) —>— H'(P*, Op(2)) — H'(C, 0pi(2)],) — 0,

where Z¢ is the ideal sheaf of the curve C'. On the other hand, since C' does not contain
G-orbits of length 12, we see that 23 is the unique G-invariant divisor in |Ops(2)|¢|, so

that H°(C, Ops(2)|c) has unique one-dimensional subrepresentation. One the other hand,
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the G-representation H°(P* Op:(2)) = Sym* (1@ W) contains two trivial one-dimensional
subrepresentation of the group G. This can be checked using the following GAP script:

G:=SmallGroup(48,29);
T:=CharacterTable(G);
Ir:=Irr(T);

V:=Ir[1]+Ir[8];
S:=SymmetricParts(T, [V],2);
MatScalarProducts(Ir,S);

Therefore, we conclude that H°(P4, Ops(2) ® Z¢) contains a unique one-dimensional sub-
representation of the group G, so that there exists a unique G-invariant quadric Q C P*.

Let m: X — @ be the blow up of the G-invariant quadric ) along the curve C.
Since C' is an intersection of quadrics [85, Theorem (4.a.l)], the divisor —Ky is ample
by Lemma A.7.2, so that X is a smooth Fano threefold from the family Ne 2.13. Since
the action of the group G lifts to X, we identify G with a subgroup in Aut(X).

Let H denote the pull-back of a hyperplane section of @), and let E denote the excep-
tional divisor of . Then the linear system |[2H — E| is base point free, and it defines
a G-equivariant conic bundle 1: X — P2, so that we have a G-equivariant diagram:

X
7N
Q---X-- - P2

where Y is the map given by the linear system Q described in the proof of Lemma 5.5.1.
Since Q is the projectivization of an irreducible three-dimensional G-representation, we see
that P? contains neither G-invariant lines nor G-fixed points, so that X does not contain
G-fixed points either.

Lemma 5.5.3. One has ag(X) > 3.

Proof. First, we claim that there does not exist a G-invariant effective divisor B such that

—Kx ~q bB + A, where b > % and A is an effective Q-divisor on X. Indeed, suppose

that B is such a divisor, and write A ~g 3H — E — bB. If B = E, then

3 3
A~g3H—=-E—(b+1—=)|F
which is impossible, because the cone Eff(X) is generated by E and 2H — E. Thus, we

see that B ~ mH + kE for some 1 < m <2 and k > —%. Moreover, one cannot have

B ~ 2H — E, since otherwise B is the preimage of a line in P? under 1, while P? contains
no G-invariant lines; in other words, we have k > —%. This gives

A gy (3 — bm)H — (14 bk)E ~g > _2bm <2H - E) + <3 _Qbm — bk — 1) E,

which is a contradiction, since % —bk—1= % —b (k + %) < % - g < 0.

Now assume that ag(X) < 2. By Lemma A.4.8, the threefold X contains an effective
G-invariant Q-divisor D ~g —Kx and a smooth rational curve Z such that (X, D) is
strictly log canonical for some rational number \ < %, and the curve Z is the unique log

canonical center of the log pair (X, AD).
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Note that 7(Z) is not a point, since C' does not contain G-invariant points. This implies
that Z is not contained in F, because Z = P!, but C' = 7(F) is a curve of genus 2.

Using Corollary A.1.16, we see that (2H — E) - Z < 2, so that (2H — E) - Z = 2,
because P? does not contain G-fixed points and G-invariant lines. Therefore, if E-Z = 0,
then we have H-Z = 1, so that 7(Z) must be a G-invariant line in @), which is impossible,
since P* does not contain G-invariant lines. Then 7(Z) N C # &, so that

E-Z>|ENZ| >|Cnx(C)| =6,

because the curve C' does not contain G-invariant subsets of cardinality less than six.
ThisgivesH-ZzquE—éZ}él.

The pair (Q, Ar(D)) is not Kawamata log terminal at a general point of the curve (7).
Let i be a positive rational number such that the pair (@, um(D)) is strictly log canonical.
Then, since @) does not have G-fixed points, the curve 7(Z) is a minimal log canonical
center of the log pair (Q, um (D)) by Corollary A.4.9, so that 3H - Z = —Kq -n(Z) < 7,
because p < %. Thus, we see that H - Z < 2, which is impossible, since H - Z > 4. U

We see that X is K-stable by Theorem 1.4.10 and Corollary 1.1.6, since Aut(X) is finite.
Then general Fano threefold Ne2.13 is K-stable by Theorem 1.1.12.

5.6. Family Ne2.16. Let @; be the smooth quadric {zors + 2174 + 2275 = 0} C P°, and
let Q5 be the quadric {3 +wri+w?ri+ 12+ wri+w?r2+rorstwriry+w’sexs = 0} C P,
where w is a primitive cubic root of unity, and g, 1, T2, 73, T4, x5 are coordinates on P°.
Let V3 = Q1N Qo. Then V} is smooth. Let G = p2 x py be the subgroup in Aut(P?) such
that the generator of ps acts by [xg : @1 @ @yt X3 : T @s] = (X1 1 29 o 24 ¢ T5 ¢ 23],
the generator of the first factor of u3 acts by

[$021’11£L’21$32$41!L’5] — [—$01$11—1'21—l’321’41—l'5},
and the generator of the second factor of u3 acts by
[[E02{E11$21[E32{L‘41$5] — |:—£L‘01—[L'12{L‘21—ZE32—I41175}.

Then G = 2, and P° = P(Uz & U;), where Us is the unique (unimodular) irreducible
three-dimensional representation of the group GG. Note that @); and (); are G-invariant,
so that V} is also G-invariant. Thus, we may identify G’ with a subgroup in Aut(V}).
Note that P5 contains neither G-fixed points nor G-invariant lines, and every G-invariant
plane in P? is the plane {\xg+ purs = vy + pry = Axo + pxs = 0} for some (A, ) # (0,0).
Using this, we see that V contains four G-invariant conics: C; = VyN{zg = 1 = x5 = 0},
Co =Vin{zs = x4 = x5 = 0}, C3 = VN N{xy = was, 1 = wry,rs = wrs}, and
Cy = Vin{zs = wrg, 14 = wry, x5 = wra}. The conics C, Cy, Cs, Cy are pairwise disjoint.
Let m: X — V} be the blow up of the conic ', and let F be the m-exceptional surface.
Then X is a smooth Fano threefold Ne2.16, and the G-action lifts to X, so that we also
consider G as a subgroup in Aut(X). Then there exists a G-equivariant diagram



Here, 9 is the linear projection from the plane {zy = x; = x2 = 0}, and 7 is a conic bundle
that is given by the net |7*(H) — E|, where H is a hyperplane section of the threefold V.
Note also that P? = P(Us), and the discriminant curve of 7 is a smooth quartic curve.

Lemma 5.6.1. One has E = P! x P!,

Proof. We have E = F,, for some non-negative integer n, and —FE|g ~ s + af for some
integer a, where s is a section of the projection E — C with s> = —n, and f is a fiber
of this projection. Then —2 = E® = (s + af)? = —n + 2a. Thus, we see that a = 252,
But (7*(H)—E)|g ~ s+22 f. Thus, since |7*(H)—E| is base point free, we get n € {0, 2}.
If n = 2, then s is contracted by 7 to a point, which is impossible, since G does not have
fixed points in P2. Hence, we see that n = 0, so that £ = P! x P! O

Lemma 5.6.2. Let C' be any G-invariant irreducible smooth rational curve in X such

that C ¢ E and —Kx - C < 8. Then w(C) is one of the conics Cy, C3, Cy.
Proof. Let C' = m(C). Suppose that C' is not one of the conics Cy, Cs, Cy. Then
™H)-C=H-C>3
since V} contains no G-invariant lines, and Cy, Cy, C3, Cy are all G-invariant conics in V.
Note also that n(C) is a curve, because G' does not have fixed points in P2. Similarly, we
see that n(C) is not a line. Hence, we conclude that (7*(H) — E) - C' > 2. One the other
hand, the number E - C'is even since C' has no G-orbits of odd length. Moreover, we have
7> -Kx-C=7"(H)-C+ (r"(H)—F)-C =5,

so that —Ky - C' =6, 7*(H) - C = 3 and (7"(H) — E) - C = 3, which gives £- C' = 0.
Hence, we conclude that C' is a smooth rational cubic curve. Then 7n(C) is a singular
cubic curve. This is impossible, since G does not have fixed points in P2. Il

Now, we are ready to use results described in Section 1.7 to prove that X is K-polystable.
Since Aut(X) is a finite group [42], this would imply that X is K-stable, so that general
member of the family Ne2.16 is K-stable. We will use notations introduces in Section 1.7.

Lemma 5.6.3. Let C' be a G-invariant irreducible curve in E. Then S(WF,;C) < 1.

Proof. Let u be any non-negative real number. Then
—Kxy —ulE ~gm*(2H) — (1 +u)E,

so that —Kx — uF is pseudo-effective <— —Kx — uF is nef <— u < 1.

It follows from Lemma 5.6.1 that £ = P! x P!. Now, using notations introduced in
the proof of this lemma, we see that (—Kx —uFE)|g ~r (1+u)s+ (3 —u)f.

Observe that |C' — s| # &, since C' ¢ f as the conic C} does not have G-fixed points.
Thus, using Corollary 1.7.26, we get

1 e’}
SOVEC) =55 | [ vol((=Kx = uB)li = vC)dvau <
0

1 oo
%/ / vol((—Kx—uE)|g—vs dvdu-—// vol((14-u—v)s+(3—u) f)dvdu =
o Jo

3 67
2/0 /0 (1+u—2)(3—u)dvdu 3 <

as required. O
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Let 52, 53, C5 be the proper transforms on X of the conics Cy, C3, Cy, respectively.

Lemma 5.6.4. Let C' be one of the curves 52, 6’3, 6’3, let S be a general hyperplane
section of the threefold Vy that contains w(C'), and let S be ils proper transform on X.
Then S(W2,;C) < 1.

. 0)

Proof. Note that the surface S is smooth, and it intersects C; transversally in two points,
so that the surface S is also smooth. Observe also that —Kg ~ (7*(H)—F)|s and K% = 2,
so that S is a weak del Pezzo surfaces. Then n|g: S — P? is the anticanonical map.

Note that |H|g — 7(C)| is a base point free pencil. Let C’ be the proper transform on
the surface S of a general conic in this pencil. On S, we have (C")*> =0 and C' - C" = 2.
Moreover, we have 7*(H)|s ~ C 4+ C".

Let u be a non-negative real number. Then —Ky — uS ~g (2 — u)7*(H) — E, which
implies that —Ky — uS is pseudo-effective <— —Ky —uS is nef <— u < 1.

Suppose that u € [0,1]. Let v be a non-negative real number. Then

(—Kx —uS)|s —vC ~g —Kg+ (1 —u—v)C + (1 —u)C,
which implies that (—Kx —uS)|s —vC is nef for v < 1 —u. One the other hand, we have
((—KX—US)ls—UO> O = <—KS+(1—U—U)C'+(1—U)C'> -C'=4—2u— 2,
so that (—Kx — uS)|s — vC' is not pseudo-effective for v > 2 — u. Moreover, we have
vol((—Kx — uS) ’S (1-w)C) = ((—Kx — uS) ’S (1 —u)C)? =6 — 4u,
Thus, using Corollary 1.7.26 and (1.2.7), we get

S( oo C 22/ / Vol X—uS)‘ —vC)dvdué
1—u 3 1 2
/ / —Kx —uS)| - vC) dodu + = 53 3(6 — 4u)dvdu =
4 37
(14 — 16u — 4 4 —=—x<1
// 6u — 8v + 4u® + uv)dvdu—l—n 11 <
Alternatively, we could use (1.2.8) here to get S(W7,; C) < 75(29 + log(16)) < 1. O

Now, we are ready to show that X is K-polystable. Suppose that it is not K-polystable.
By Theorem 1.2.5, there exists a G-invariant prime divisor F' over X such that 3(F') < 0.
Let Z = Cx(F). Then Z is not a surface by Theorem 3.7.1, so that Z is a G-invariant
irreducible curve, because X does not contain G-fixed points.

Using Lemma 1.4.4, we conclude that ag z(X) < %. Therefore, by Lemma 1.4.1, there
exists a G-invariant effective Q-divisor D on the threefold X such that D ~g —Kx and
the curve Z is contained in Nklt(X, AD) for some positive rational number A < %.

Since |7*(H)| does not contain G-invariant surfaces, we see that Nklt(X, AD) does not
contain surfaces. Now, using Corollaries A.4.9 and A.2.7, we conclude that Z is a smooth
rational curve such that — Ky - Z < 8.

By Corollary 1.7.26 and Lemma 5.20.4, Z ¢ F, since Sx(E) < 1 by Theorem 3.7.1.
Then Z is one of the curves 52, 5’3, Cy by Lemma 5.6.2. Let S be a general surface in
the linear system |7*(H)| that contains the curve C'. Then Sx(S) < 1 by Theorem 3.7.1,

so that S(WJ,;C) > 1 by Corollary 1.7.26. This contradicts Lemma 5.6.4.
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5.7. Family Ne2.17. Let C' be the harmonic elliptic curve, i.e. the curve C/Z[i]. Then
Aut(C) has an automorphism 6 of order 4 that fixes the zero element O € C, which is
induced by the multiplication of C by 7. Let V be the subgroup in Aut(C') that consists of
the translations by 5-torsion points in C. Then V = p? and 6 acts on V by conjugation.
If we identify V with the vector space FZ, then this action is given by the linear operator

(3)~ (%)

This (1,2)" is an eigenvector in F? of this linear operator with the eigenvalue 2. Let I' be
the eigenspace with eigenvalue 2. Then I' is a subgroup in V that is #-invariant, so that
[' = ps. Let G be the subgroup in Aut(C') that is generated by I and the automorphism 6.
Then G = py ¥ py, and I' is a normal subgroup in G.

Remark 5.7.1. The group G is known as Frobenius group F;5. In GAP, it can be ac-
cessed via SmallGroup(20,3) All irreducible linear representations of the group G can
be described as follows: unique four-dimensional representation, and 4 different one-
dimensional representations. One also has H*(G, G,,) = 0.

Let D be the sum of all 5-torsion points in C' that corresponds to the subgroup I'.
Then D is a G-invariant divisor by construction. Moreover, since H*(G,G,,) is trivial, we
see that the line bundle O¢ (D) is G-linearizable [67, Proposition 2.2], so that the action
of G on the curve G gives its linear action on H°(C,O¢(D)), which is faithful, because
the divisor D is very ample. By the Riemann-Roch theorem, we have h?(C, O¢(D)) = 5,
so that |D| gives a G-equivariant embedding C' < P*. By construction, the projective
space P? contains a G-fixed points, because | D| contains G-invariant divisor: the divisor D.
Therefore, H°(C, O¢(D)) is a sum of the four-dimensional irreducible representation and
one-dimensional representation. In particular, our P* contains unique G-fixed point.

Let ¢: C' --» P3 be the composition of the embedding C' < P* and linear projection
from the unique G-fixed point. Then ¢ is a morphism, since the G-fixed point is not
contained in C, because stabilizers in GG of every point in C' are cyclic, since their actions
on the Zariski tangent spaces are faithful [50, Theorem 4.4.1]. Moreover, the morphism ¢
is G-equivariant and ¢(C) is G-invariant, where the G-action on P? is given by the unique
irreducible four-dimensional representation of the group G. This implies that ¢(C') is not
contained in a plane in P, so that the induced morphism C' — ¢(C') is birational, and
¢(C) is a curve of degree 5. Observe also that ¢(C') cannot have more than 2 singular
points, because otherwise the curve ¢(C) would be contained in the plane that passes
through any 3 its singular points, which is impossible. Likewise, the curve ¢(C') cannot
have 1 or 2 singular points, because P? does not have G-orbits of length 1 or 2. Therefore,
we conclude that ¢: C' — P? is an embedding. Let us identify C' with its image in P3.

Let m: X — P be the blow up of the curve C. Then X is a smooth Fano threefold in
the deformation family Ne2.17 by [16, Theorem 1.1], because P? does not have 4-secant
lines to C, since otherwise the projection from the 4-secant line would give a birational
map C' --+ PL. Moreover, the action of the group G lifts to the threefold X, and we have
the following G-equivariant commutative diagram:



where @ is a smooth quadric surface in P4, the morphism ¢ is a blow up of a smooth
elliptic curve of degree 5, and x is a rational map that is given by the linear system of
cubic surfaces in P? that contains the curve C.

Lemma 5.7.2. One has ag(X) = 2.

Proof. Arguing as above, one can show that P? contains a G-invariant cubic surface S3 that
passes through C'. Let H be a hyperplane in P3, let E be the ﬂ—exceptlonal surface, and
let Sg is the proper transform of S3 on X. Then —Kx ~q 553 + = E so that ag(X) < i

To prove that ag(X) = 2, let us apply Theorem 1.4.11 Wlth b= %. We see that
Theorem 1.4.11(1) does not hold, because the cone of effective divisors on X is generated
by E and 7*(5H) —2FE, and P? does not contain G-invariant planes. Similarly, we see that
Theorem 1.4.11(2) does not hold either, since X does not have G-fixed points, because
P? does not have G-fixed points. Therefore, we have ag(X) = % provided that X does
not contain G-invariant smooth rational curves.

Suppose that X contains a G-invariant smooth rational curve ¥. Then the natural
homomorphism G — Aut(%) cannot be a monomorphism, because Aut(P') does not
contain a subgroup that is isomorphic to ps % p,. Hence, its kernel is nontrivial, so that
it contains the group I', because X does not have G-fixed points and every non-trivial
normal subgroup of G contains I'. These means that I' fixes the curve ¢ point-wise.
Then 7(%) is an irreducible G-invariant curve in P? that is pointwise fixed by I', which
is impossible, because I' fixes exactly four points in P3. Hence, we see that X does not

3

contain G-invariant smooth rational curves, so that ag(X) = 3. O

Thus, we conclude that X is K-stable by Theorem 1.4.10 and Corollary 1.1.6, because
the group Aut(X) is finite [42]. Hence, general Fano threefold Ne2.17 is also K-stable.

Remark 5.7.3. In the proof of Lemma 5.7.2, we mentioned that there is a G-invariant
cubic surface S5 C P? that passes through the curve C. It is not hard to see that this
surface is smooth. Going through the automorphism groups of smooth cubic surfaces [72],
we conclude that S3 is the Clebsch cubic surface. Therefore, we see that Aut(S3) = Gs.
Moreover, there is a G-equivariant diagram:

/\

P! x P!

where Ss is a smooth del Pezzo of degree 5, the morphism « is a blow up of a G-orbit of
length 2, and f3 is a blow up of a G-orbit of length 5. On S3, we have C' ~ —Kg, + {1 + (s,
where ¢; and /5 are disjoint lines in S3 contracted by a. Then CN¥éy = @, C Nl =

and a(C) is a G-invartiant smooth anticanonical curve in Ss. Therefore, we can construct
the curve C' C P using the quintic del Pezzo surface and its G-equivariant geometry [213].

5.8. Family N¢2.20. Every smooth Fano threefolds N¢e2.20 can be obtained by blowing up
the unique smooth Fano threefold Ne1.15 along a twisted cubic curve. To be more precise,
let V5 be the smooth Fano threefold described in Example 3.4.1. Then Vj is a smooth
intersection of the Grassmannian Gr(2,5) C P? in its Plicker embedding with a linear
subspace of codimension 3. Let C' be a smooth twisted cubic in Vj, and let X be a blow
up of the threefold V5 along the curve C'. Then X is a smooth Fano threefold Ne2.20, and

every smooth threefold in this family can be obtained in this way.
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One has Aut(X) = Aut(Vs, C), where Aut(Vs) = PGLy(C). By [42, Lemma 6.10], there
is unique smooth Fano threefold N¢2.20 that has an infinite automorphism group. In this
case, we have Aut(X) = G,, X p,. We will prove later in this section that this special
smooth Fano threefold Ne2.20 is K-polystable, which would imply that general smooth
Fano threefold Ne2.20 is K-stable by Corollary 1.1.16.

For a subgroup 24 C PGLy(C), there is a unique 2 -invariant singular twisted cubic
curve in V5 consisting of three distinct lines that meet in one point [104]. Blowing up this
curve, we obtain a singular Fano threefold N¢2.20. This threefold is K-unstable:

Lemma 5.8.1. Let O be a point in Vs, let Ly, Lo, Lg be three lines in V5 that meet in O,
and let m: X — V5 be the blow up of the curve Ly + Lo + L3. Then X is K-unstable.

Proof. Let a: I//\}) — Vs be the blow up of the point O, let Ep be the a-exceptional
surface, let Ll, L2, L3 be the proper transforms on V}) of the lines Ly, Lo, L3, respectively,
let (: W — V5 be the blow up of the curve L1+L2+L3, let Fy, Es, E5 be the (-exceptional
surfaces mapped to Ll, Lg, L3, respectively. Then there exists commutative diagram

(5.8.2)

where f is a flopping contraction of the curve El + Zg + _/[/\3, the threefold V; isa sAingular
complete intersections of two quadrics in P?, the map g is a flop of the curve Ly + Ly + L,
the morphism @ is a birational contraction of the surfaces F;, F,, E5, the morphism = is
the flopping contraction of the curves 0(E}), 0(Es), (E3), the morphism ¢ is a P-bundle,
the rational map p is a linear projection from the linear span of the curve Ly 4+ Lo + Ls,
the morphism 7 is a conic bundle, and v is a small birational map described below.
Note also that p contracts conics in V5 that pass through O.

Let S be the proper transform of Ep via (, and let e; = Ej|g, es = Fs|s, €3 = Eslg.
Then S is the del Pezzo surface of degree 6, and ey, e, e3 are disjoint (—1)-curves on it.
Let ¢y, {5, ¢35 be the remaining (—1)-curves in the surface S. Then v is the flopping
contraction of the curves ¢, 5, {3. We can flop these curves o: W --» W’ and obtain
the following equivariant commutative diagram:

W/
AN
AN
v W
wl /
Vs Y




where £ is the contraction of the surface o(S) = P? to a singular point of the threefold ‘75,
which is a quotient singularity of type %(1, 1,1), and w is the 2A4-extremal contraction.
Note that w is the symbolic blow up of the curve Ly + Ly + L3 (see [177, Example 5.2.3]),
which also appears in the proof of [51, Proposition 5.1].

Let us compute (S). Let H = (o ()*(Hy;), where Hy; is a hyperplane section of Vj,

and let u be a non-negative real number. Then
_KW —uS ~R (7] o U)*(OP2(2)> + (2 — U)S + El + E2 + Eg.

Intersecting — Ky, — uS and general fibers of 1o v, we see that — Ky, — w.S is not pseudo-
effective for u > 2. Moreover, this divisor is nef for v € [0, 1]. Similarly, if u € [1,2], then
the Zariski decomposition of the divisor — Ky — uS is

N J/ N J/
-~ -~

positive part negative part

Hence, in the notations of Section 1.7, we have

2H — (2+u)S — (Ey + Ey + Es) if u € [0, 1],
2H — (2+u)S —u(Ey + By + Ej) if u € [1,2],
and N(—Kw —uS) = (u— 1)(E) + Ey + E3) for u € [1,2]. Therefore, we have

P(—KW—uS):{

Sx(S) = S (S) = — /02 (P(—KW - uS))3du -

T2
1! 1 [? 119
— — [ (ou+34—( 3)d — (33 40 — (2 3)d — U,
2 J, <“+ @+ )dut5g | (3w +40 =2+ ) )du =157
so that 8(S) = —72%. Thus, X is not K-semistable by Theorem 1.2.2. O

Now, let us prove that the smooth Fano threefold Ne2.20 with an infinite automorphism
group is K-polystable. To do this, we present an explicit construction of this threefold.
For an alternative construction, see Section 7.2.

Let @ be the smooth quadric in P* given by xt = yz + w?, and let C3 be the twisted
cubic in @ parametrized as [r® : r%s? : r2s? : s 1 0], where [r : s] € PL. Then Cj is
contained in the hyperplane w = 0. On @), this hyperplane cuts out a smooth surface S,.
Let G be the subgroup in Aut(P*) that is generated by the involution 7 that acts as
[x:y:z:t:w|—[t:2z:y:2:w], and the automorphisms A, that act as

[x:y:z:t:w]»—>[x:sz:s4z:56t:s3w},

where s € G,,,. Then G = G,,, ¥ p,, both (Q and C5 are G-invariant, and G acts faithfully
on the quadric @, so that we identify G with a subgroup in Aut(Q).
Let x: Q --» P% be the rational map that is given by

[m:y:z:t:w} —> [wx:wy:wz:wt:wz:xz—yQ:yt—zﬂ.

Then Y is G-equivariant for the following G-action on P%: the involution 7 acts as
[molezmgzxgzmzxg,:xd — [mgzmglezmozmzxﬁzmg,],

and the automorphisms A\, act as

[l’o X X X3 Ty Ty - l’ﬁ] — [Sdl'g . 85(E1 : 871'2 . 891'3 : 86334 : 841'5 . 58]76}.
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The rational map y is undefined exactly at the cubic curve (s, and it contracts the quadric
surface Sy to the G-invariant line L = {zq = vy = 7o = 3 = 14 = 0} C P°.

It is well known that the closure of the image of the map x is isomorphic to the smooth
Fano threefold V5. In fact, we can find its explicit equations. Namely, observe that
the closure of the image of x is contained in

¢ 2
T4ls — ToTy + Ty = 0,
2
Tyxe — 123 + 15 = 0,
2
Ty — XT3 + 1122 = 0,

T1T4 — ToTe — Tax5 = 0,

( T2y — X375 — 2126 = 0.

These equations defines a smooth irreducible three-dimensional subscheme of degree 5,
which is the closure of the image of x. Indeed, since Vj is an intersection of quadrics in P°,
we have

h (P°, Ops(2) © Iy ) = h°(P°, Ope(2)) = h°(V5, Ops(2),,) = 28 — 23 = 5,

where Zy, is the ideal sheaf of the threefold V5. Thus, the above five linearly independent
quadratic equations scheme-theoretically define V5. Alternatively, we can check this using
the following Magma code:

Q:=RationalField();
P<x0,x1,x2,x3,x4,x5,x6>:=ProjectiveSpace(Q,6) ;
X:=Scheme (P, [x4*x5-x0*x2+x1"2,x4*x6-x1*x3+x2"2,
x4~ 2-x0*x3+x1*x2 ,x1*x4-x0*x6-%x2%x5 , x2*x4-x3*x5-x1%x%6] ) ;
Degree(X);
IsReduced (X);
IsNonsingular(X);
IsIrreducible(X);
Dimension(X) ;

In the following, we identify V5 with the closure of the image of the map .
Lemma 5.8.3. The threefold Vs does not contain G-fixed points.
Proof. The only G-fixed point in P is [0:0:0:0:1:0:0] & V5. O

One has Pic(Vs) = Z[Hy;|, where Hy; is a hyperplane section of V5. Moreover, we have
H 35 =5 and —Ky, ~ 2Hy,. By construction, the line L is contained in the threefold Vs,
and it is also contained in the unique G-invariant hyperplane section of the threefold Vs,
which is given by x4, = 0. Let us denote this hyperplane section by H. Then H is singular
along L and multy(H) = 2. Moreover, we have the following G-equivariant commutative
diagram:

(5.8.4) Y



where « is the blow up of the twisted cubic curve Cs, and f is the blow up of the line L,
the a-exceptional surface is the proper transform of the surface H, and the -exceptional
surface is the proper transform of the quadric surface S,.

Let us describe G-invariant irreducible curves in V5. Observe that each such curve
must contain a p,-fixed point. Using the defining equation of the threefold Vs, we can
find all such points and describe their G-orbits explicitly. In particular, this approach
implies that all G-invariant irreducible curves in H can be described as follows: the line

L, the twisted cubic ¢ given parametrically as [r? : r?s : rs? :0:0:0] for [r:s] € P,
and the smooth rational sextic curve C, that is given by the parametrlc equation
[P0 —rts? i r?st s =550 yrfs 0 —rs?],

where v € C* and [r : s] € P'. One has LN¢ = @ = L NC,, and the curves € and C,
intersect transversally at [1:0:0:0:0:0:0/and [0:0:0:1:0:0:0].

Remark 5.8.5. Let E¢, be the a-exceptional surface. By [50, Lemma 7.7.3], Eq, = Fy.
Let s be the unique (—1)-curve in E¢,, let £, and f; be the irreducible curves in E¢, that are
mapped by the blow up « to the points [1:0:0:0:0] and [0:0:0: 1: 0], respectively.
Then s is G-invariant, so that here is a G-equivariant birational morphism Eg, — P? that
contracts the curve s. This easily implies the following assertions:

e |s + f,| contains unique irreducible G-invariant curve C,
e |2s + 2f,| contains a pencil P generated by the curves 2C' and s + £, + f; such that
every other curve in P is G-invariant, irreducible and smooth.

These are all G-invariant irreducible curves in E¢,. Let I be the S-exceptional curve.
It follows from the proof of [50, Lemma 13.2.1] that FL|E03 = s and ﬂ*(HV5)|E03 ~ s+3f,.
This implies that 3(s) = L, and 5(C) is the twisted cubic curve €. Similarly, we see that
every smooth curve in P is mapped by 3 to the sextic curves C, for some v € C*.

Similarly, we can describe all G-invariant irreducible curves in V5. But it is easier to
describe G-invariant irreducible curves in the quadric (), and then use birational map y.
Namely, let P be a p,-fixed point in the quadric @), and let C' be the closure of its G-orbit.
Then either P =[a:b:b: a: ¢ for some numbers a, b and ¢ such that a®> = b* 4+ 2, or
P=Jla:b:—b:—a:0] for some numbers a and b such that a?* = b*. In both cases, if

2 = 12, then either C' = Cs, or C is another twisted cubic curve in S, that is given by
the following parametrization:

(5.8.6) (1% =r?s: —rs® 181 0],

Since we already describe G-invariant irreducible curves in H, we may assume that a? # b?.
Then the curve C' is given by the parametrization: [ar® : bris® : br2s? : asb : ¢r3s3], and
its image x(C) is give by the parametrization:

(5.8.7) lacr® : ber's? » ber?s® - acs® : PrPs® i b(a — b)r’s : b(a — b)rs®].

If a = 0, then C is the conic z =t = yz+w? = 0, and x(C) is the smooth quartic curve Cy
that given by the parametrization [0 : ir3s : irs 0 : - 252 —rt . —sY, where i = v/—1.
Similarly, if b = 0, then C' is the conic y = z = 2t — w? = 0, and X(C’) is the conic Cy
given by the parametrization [r? : 0:0:s?:7s:0:0]. If a # 0 and b # 0, then x(C) is
a smooth rational sextic curve in V5. Since y induces an isomorphism @ \ Sz = V5 \ H,
this gives us description of all G-invariant irreducible curves in V5. These are the curves

L, Cy, €, Cy, sextics C,, and sextics given by (5.8.7) with ab # 0.
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Corollary 5.8.8. Let C' be a G-invariant irreducible curve in Vs such that deg(C) < 6.
Then C' is one of the curves L, Cy, €, Cy.

Remark 5.8.9. Observe that Cy = {x; = 23 = x5 = 16 = Tox3 — 23 = 0} C P°. Note also
that the curve % is cut out on Vi by the equations x4 = x5 = x4 = 0, the curve Cy + € is
cut out by x5 = xg = 0, and the curve L + C} is cut out by xo = 3 = 0. As we already
mentioned, L N % = @. Similarly, we have Co N L = @ and C, N Cy = &. But

LNCy=[0:0:0:0:0:1:0U[0:0:0:0:0:0:1],
and the curves L and C} intersect transversally at these points. Similarly, we have
CoU€=1[1:0:0:0:0:0:00U[0:0:0:1:0:0:0],
and these curves intersect transversally. Finally, observe that the equations x1 = x5 = 0
cuts out on Vj the curve Co + L + £ + ', where ¢ = {zqg = 1 = 29 = x4 = 25 = 0} and
6/:{1’1:1’2:1’3:1’4:1’6:0}.
Let m: X — V5 be the blow up of the curve %, and let Ey be the m-exceptional surface.

Then the action of the group G lifts to threefold X, so that we can identify G with
a subgroup of the group Aut(X).

Lemma 5.8.10. One has Aut(X) = G.

Proof. Observe that
G X py = G C Aut(X) = Aut(V;;%€) C Aut(Vs) = PGLy(C).
Now, using the classification of algebraic subgroups in PGLy(C), see [161], we conclude

that either Aut(Vs;€) = G or Aut(Vs; €) = Aut(Vs). But Aut(Vs; €) # Aut(Vs), since
the curve € is not Aut(Vs)-invariant. O

By [42, Lemma 6.10], the threefold X is the unique smooth Fano threefold Ne2.20 that
has an infinite automorphism group. Observe that |7*(Hy, ) — Fy| is free from base points
and defines a conic bundle n: X — P2, so that we have the following G-equivariant
commutative diagram

where p is the rational map that is given by [zg : @1 : X9 : 231 4 5 : 26] = |24 : 5 : 6]
Therefore, the composition map poy isgiven by [z :y: 2 :t: w] — [w? : zz2—y*: yt —22].

Let H be the proper transform on X of the surface 7. We have H € |7*(Hy,) — Eg|,
so that n(#) is the unique G-invariant line in P2. Observe that this line is an irreducible
component of the discriminant curve of the conic bundle 1. The other irreducible com-
ponent is a G-invariant irreducible conic that intersects 77(?:2) transversally.

Lemma 5.8.11. One has By = P! x P!,

Proof. We have € = P! and Ny v, = Op1(a) @ Op: (b) for some integers a and b such that
a+b=4and a <b. Then Fy = F, for n = b — a. We have to show that n = 0.
Let s be a section of the projection Ey — € such that s> = —n, and let f be a fiber of

this projection. Then —Ey|p, ~ s + kf for some integer k. Then —n + 2k = E? = —4,
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so that k = . Then 7—[|E% ~ s+ (k+3)f = s+ “2f which implies that ’H!ECg % s.

Moreover, we know that 7—[| B, 15 a smooth irreducible curve, since the surface H is smooth
along the curve ¥. Thus, we have

n-+ 2 n—i—2_2—n

f) STt T T

so that n = 0 or n = 2. This can also be deduced from the fact that € is disjointed from L,
so that Mg/v5 = Nc/y, where C' 2 P! is the curve in Eg, described in Remark 5.8.5.
Now, using the exact sequence of sheaves

Oéﬁ‘E%-s:<s+

0 —>NC/EC3 — Nc/y —>NEC3/Y{C — 07

we get n € {0,2}, because No/p.,, = Opi(1) and N, jvlc = Op(3).
If n =0, then we are done. If n = 2, then (7*(Hy,) — E¢)|p, -s = (s +2f) -s =0, so
that s is contracted by n, which is impossible, since —Kx - s = 3 in this case. O

The main result of this section is the following proposition, which also implies that
general Fano threefolds in the family Ne2.20 are K-stable by Corollary 1.1.17.

Proposition 5.8.12. The threefold X is K-polystable.

Let us prove Proposition 5.8.12. Suppose that the Fano threefold X is not K-polystable.
By Theorem 1.2.5, there is a G-equivariant prime divisor F' over X such that 5(F) < 0.
Let Z = Cx(F). Then, using Theorem 3.7.1 and Lemma 5.8.3, we see that Z is a curve.
Let us use results of Section 1.7. We will use notation introduced in this section.

Lemma 5.8.13. One has Z ¢ Ey.

Proof. Suppose that Z C Ey. Recall that Fy = P! x P! by Lemma 5.8.11. Let us use
notations introduced in the proof of this lemma. Observe that the pencil |f| does not
contain G-invariant curves, because X does not contain G-fixed points by Lemma 5.8.3.
Similarly, the pencil [s| also does not contain G-invariant curves — otherwise the inter-
section of such curve with H would consists of a single point, since we have 7:Z| Ee ~ S+1.
Hence, we conclude that Z ~ as + bl for some positive integers a and b.

Using Theorem 3.7.1, we see that Sy(Ey) < 1. Using Corollary 1.7.26, we conclude
that S(WFg; Z) > 1. Let us compute S(WFg; Z).

Let u be a non-negative real number. Then —Ky — uby ~g 27" (Hy,) — (1 4+ u)Ey, so
that —Kx — uFy is nef <= —Ky — uFEy is pseudo-effective < u € [0, 1].

Let v be a non-negative real number. Then Corollary 1.7.26 gives

S(WFF, A =% / / Vol Kx — UEcg)‘ — vZ) dvdu =
= —/ / vol (1—|—u—av)s+(4—2u—bv)f>dvdu<
3 1 00
%/o /o Vol((l+u—v)s+(4—2u—v)f>dvdu:

3 1
:—6/0/0 2(1+u—v)(4—2u—v)dvdu:%<1.

The obtained contradiction completes the proof of the lemma. O
193



Thus, we see that w(Z) is a G-invariant irreducible curve in V5 that is different from %
Since we already know the classification of such curves, we can exclude them one by one
as in the proof of Lemma 5.8.13. We start with

Lemma 5.8.14. One has n(Z) # L.

Proof. Suppose that 7(Z) = L. Let o: X — X be the blow up along the smooth curve 7,
and let S be the o- exceptional divisor. To start with, let us compute 5(S ) Take u € Ryy.
Let By and H be the proper transforms on X _of the surfaces Ey and 7—[ respectively.
Then o*(—Kx) — uS ~g 2H + Ey + (4 — u)S, so that the divisor o*(—Kx) — uS is
pseudo-effective <= u < 4. In fact, this divisor is nef if u < 1. Moreover, for u € [1,4],
its Zariski decomposition can be described as follows. If u € [1, 3], then

-~ S5—uU~ =~ -1~
U*(—Kx)—USNR H+E<g+(4 )S+ TH
positi?;s part negative part

If w € [3,4], then

J/

TV - TV
positive part negative part

Therefore, we see that

26 — 6u? if 0 <u<l,
VOl(J*(—KX) —u§> = %7—15u+2u if 1 <u<3,

2(4 —u)’if 3<u <4

Integrating, we get SX(§) =22, so that 5(S ) AX(S) SX(S) =2— % =1>0.

The action of the group G lifts to the threefold X , and the surface S is G—invariant.
Moreover, since L N4 = &, the G-equivariant diagram (5.8.4) gives a G-equivariant
isomorphism S 2 S,. In particular, we see that S = P! x P!, and S contains exactly
two irreducible G-invariant curves, because we proved earlier that S; contains exactly two
irreducible G-invariant curves: the curve C3, and the twisted cubic given by (5.8.6).

Let ¢, and £ be two distinct rulings of the surface S = P! x P! such that o(f;) = Z,
and /5 is a fiber of the projection S — Z. Then 7:[\]§ ~ 201 + 5, and ﬁ‘s is a G-invariant
irreducible curve in S which is the image of the curve C'5. Similarly, the second irreducible
G-invariant curve in S is also contained in |2¢; + £5|. In particular, we see that S does not

contain irreducible G-invariant curves that are sections of the natural projection S Z.

Recall that I is a G-invariant prime divisor over X such that 8(X) > 0 and Z = Cx(F).
Thus, using (1.5.23), we see that dg.z(X) < 1, where g z(X) is the number defined in
Section 1.5. Let us show that dg z(X) > 1.

We claim that gq 72(X) > % Indeed, suppose that SG, 7(X) < M Then there exists
a G-invariant cool Q-system D of the d1v1sor —Kx such that Z C Nklt(X AD) for some

rational number A < 104 . Let D be the proper transform on X of the Q-system D. Then

Kg + D + (Mmultz (D) — 1) ~g 0" (Kx + AD).
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On the other hand, we know that multz(D) < SX(S) 8, since the Q-system D is cool.

Thus, using Lemma A.4.3, we see that S contains a smooth irreducible G-invariant curve
that is a section of the projection S 7. But, as we explained earlier, such curve does
not exist. The obtained contradiction completes the proof of the lemma.

Alternatively, we can obtain a contradiction using Corollaries 1.7.12 and 1.7.25. Namely,
it follows from Corollary 1.7.12 that

Ax(F) - Ax(S) I
S (F) > 67(X) > mm{ SX(S) ch5 (S, W,y,)},

where the infimum is taken over all irreducible curves Z C S that are not contained in

the fibers of the projection S — Z. Therefore, since Ax(F) < Sx(F) and ’;X—((S‘E)) = 1
X

we conclude that S contains an irreducible (horizontal) curve 7 such that & 2(3\ ; W,§.) <1
Using (1.7.4), we get S(W,S., Z) 1. But we can find S(W.., Z) using Corollary 1.7.25.

Namely, we have 7:[\|§ ~ 201 + 0o, EyNS =2 and S|§ —/(1, so that using the Zariski
decomposition of the divisor o*(—Kx) — uS for u € [0,4] found earlier, we get

S( e Z 26// (u— 2v)(2 — v)dvdu+

—1)(5 —
—|—— (w=DE-u // (1 —-2v)(5—u—2v)dvdu+

26 2

—i—i 42(u—2)( du—i——// —u—21})(4—u—v)dvdu—E
26 104

in the case when Z = ”;Q|§ Similarly, if Z + 7-[|§, then Corollary 1.7.25 gives

S(W,S,, ) S( ,,,61 _26// (u —v)dvdu+

_//(1_0) —udvdu+—// —u—v)(4—u)dvdu:%.

Thus, we see that S (W,S., 7) < 1, which is a contradiction. O
The next step is
Lemma 5.8.15. One has n(Z) # Cj.

Proof. Suppose that 7(Z) = Cy. Let H be a general hyperplane section of V5 that contains
both curves C5 and 4. By Remark 5.8.9, the curve C5+% is cut out on Vi by x5 = x4 = 0,
so that H is cut out on V5 by Axs + pxe for general numbers A and p. Then H is smooth.
For instance, it is smooth for A = u = 1. Note that 7 *(C5) is the fiber of the conic
bundle 1: X — P2 over the point [1 : 0 : 0], this fiber is smooth, and H is the preimage
via the rational map no 7! of a general line in P? that passes through [1 : 0 : 0], which
also implies that H is smooth. Then H is a smooth quintic del Pezzo surface.

Let S be the proper transform of the surface H on the threefold X, and let C' = Ey|s.
Then S = H and Z + C ~ —Kg ~ 7 (Hy,) ¢ Observe that [C] is base point free and

gives a birational morphism w: S — P? that contracts four disjoint (—1) curves. Denote
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these curves by ¢y, {5, (3, {4. Then 2C' ~ Z + €1 + {5 + (3 + {4, because w(Z) is a conic
that passes through the points w(¢;), w(ls2), w(ls), w(ly).
By Corollary 1.7.26, we have S(W2,;Z) > 1, because Sx(S) < 1 by Theorem 3.7.1.

. 0)

Let us compute S (WS Z). Let u be a non-negative real number. Then

—Kx —uS ~g (2= u)n"(Hy) = (1 = w)Eg ~z (2 — u)H + Eq.
Then —Ky —uS is nef <= w € [0, 1], and —Kx —uS is pseudo-effective <= u € [0, 2].
If ue[l,2], then P(—Kx — uS) = (2 —u)m*(Hy) and N(—Kx —uS) = (u — 1)Ey.
First, we suppose that 0 < u < 1. Let v be a non-negative real number. Then

(—Kx—uS) —UZNR<2—U—U)Z+CNR(g—u—’u)Z—i‘ (£1+€2+£3+£4)

s

Then (— Ky —uS)|s —vZ is pseudo-effective <= v < 2 —u. Moreover, if v < 2—u, then

2
the divisor (—Ky —uS)|s —vZ is nef. For 2 —u < v < 2 —u, its Zariski decomposition is

2

(g—u—v)(Z+€1+€2+€3+€4)+(U+u—2)(€1+€2+€3+€4).

~
negative part

~
positive part

Thus,ifOSuélandOévgg—u,then

9—4du—4vif0<v<2—u,

VOI((_KX_US>|S_UZ): 4(§—u—v>2if2—u<v<§—u
2 T2

Now, we suppose that 1 < u < 2. Let v be a non-negative real number. Then

6 —3u—2 2 —
—vZ ~g (2—u—0)Z+2—u)C ~g z Yz+ 5 u(€1+£2+£3+€4).
Then P(—Kx —uS)|s—vZ is pseudo-effective <= v < 3(2—wu). Moreover, if v < 2—u,
then the divisor P(—Kx —uS)|s —vZ is nef. Furthermore if 2—u<v<3(2—u), then
the Zariski decomposition of this divisor is

6—3u—2
#(2—1—51—1—62—1—634—&1)+(v+u—2)(€1+€2+€3+€4).

(& J/ g

posit;/g part negative part

Thus,if1<u<2and0<v<%(Q—U),then
(2 —u)(10 —bu —4v) if 0 < v < 2 — u,

P(—KX—uS)

s

I(P(—Kx —uS)|s —vZ) =
vol(P(=Kx — uS)|s — vZ) (6—3u—2v)2if2—u<1}<;(2_u>'

Now, using Corollary 1.7.26, we get S(W2,; Z) = 15, which is a contradiction. O

Our next step is the following lemma:
Lemma 5.8.16. The curve Z is not contained in ﬁ

Proof. Suppose that Z C H. Then 7(Z) is a smooth sextic curve C, for some v € C*,

since m(Z) # ¢ and w(Z) # L. In particular, the curve w(Z) is disjoint from the line L.
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By Corollary 1.7.26, we have S(Wﬁ'Z) > 1, because Sx(S) < 1 by Theorem 3.7.1.

(XY

Let us compute S (Wﬁ ; Z). Let u be a non-negative real number. Then

—Kyx —uH ~g (2= u)7* (Hy,) — (1 — ) By ~g (2 — u)H + Ey.

Then —K x —uH is nef <= u € [0,1], and —K x —uH is pseudo-effective <= u € [0, 2].
If u e [1,2], then P(—Kyx — uH) = (2 — u)n*(Hy,) and N(—Kyx — uH) = (u — 1) Esy.

Recall that H = H , and this surface is non-normal — it is singular along the proper
transform of the line L. However, as we already mentioned, the curve Z is contained in
its smooth locus. Let v: S — H be the normalization, and let Z = v~1(Z). Then

- 2 00 _ "
S(W.?,{.Q 7) = %/ / VOl(V* (P(—Kx —uH)|z) — UZ)dUdU.
o Jo

by Corollary 1.7.26 and Remark 1.7.28. Observe also that the surface S is isomorphic to
the surface E¢, described in Remark 5.8.5. Let us use notations introduced in this remark.
Recall that E¢, = F;. As we mentioned in Remark 5.8.5, we have v*(7*(Hy, )|5) ~ s+ 3f

and v*(Ey|z) ~ s+ f. We also observed in Remark 5.8.5 that Z ~ 2(s +f).

Take v € Ryp. If 0 < w < 1, then V*(P(—Kx—uﬁ)]ﬁ)—vz ~r (1—-2v)s+(5—2u—2v)f.
This divisor is pseudo-effective if and only if it is nef, and it is nef if and only if v < %
Likewise, if 1 < u < 2, then v*(P(—Kx —uH)|z) —vZ ~g (2—u—20)s + (6 — 3u — 20)f.
This divisor is pseudo-effective <= it is nef < v < 2_7“ Thus, we have

_ B (1—21})(9—4u—2v)ifu€[0,1]andOSvS%,
vol (v (P(~ Kx—uH) ) —vZ ) = .

2

(2—u—2v)(10 —bu —2v) ifu € [1,2] and 0 < v <

Now, integrating, we get S(Wﬁ.; Z) = % < 1, which is a contradiction. U

By Lemma 1.4.4, we have ag z(X) < 3. Thus, by Lemma 1.4.1, there is a G-invariant
effective Q-divisor D on the threefold X such that D ~g —Kx and Z C Nklt(X, AD) for
some positive rational number A\ < %.

Lemma 5.8.17. If Nklt(X, AD) contains an irreducible surface S, then S = H.

Proof. This follows from the fact that Eff(X) is generated by H and Eq. O

Write D = aH + A, where a is a non-negative rational number, and A is an effective
Q-divisor whose support does not contain H. Then Z C Nklt(X, AA) by Lemma 5.8.16.
Let Z = n(Z) and A = 7(A). Then Z C Nklt(V5, AA) and A ~q (2 — a)Hys, so that
the locus Nklt(V5, AA) must be connected and one-dimensional by Corollary A.1.7.

Choose a positive rational number 1 < A, such that (Vs, pA) is strictly log canonical.
Then Z is a minimal log canonical center of the log pair (Vs, uA) by Corollary A.4.9,
because V5 does not have G-fixed points. Then Corollary A.2.7 gives deg(Z) = Hy,-Z < 4.
Thus, it follows from Corollary 5.8.8 that Z is one of the irreducible curves L, Cy or €.
But Z # ¢, Z # L and Z # C, by Lemmas 5.8.13, 5.8.14 and 5.8.15, respectively.

The obtained contradiction completes the proof of Proposition 5.8.12.
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5.9. Family N22.21. Smooth Fano threefolds Nv2.21 are blow ups of the smooth quadric
threefold in a twisted quartic curve. It follows from [42] that their automorphism groups
are finite with the following exceptions:

(1) one-dimensional family consisting of threefolds admitting an effective G,,-action,

(2) a threefold X such that Aut’(X?) = G, it is not K-polystable by Theorem 1.1.4,

(3) the K-polystable smooth Fano threefold described in the proof of Lemma 4.2.2,
which admits an effective PGLy(C)-action.

We already know from Corollary 4.2.3 that general threefolds in this family are K-stable.
In this section, we prove that every smooth Fano threefold Ne2.21 that admits an effective
action of the group G,, is K-polystable, which would also imply Lemma 4.2.2.

To describe all smooth Fano threefolds Ne2.21 that admit an effective G,,-action, we fix
the quartic curve ¢ C P* given by [u : v] = [u? : wdv : w0 1 wv? : v, where [u : v] € PL.
Let Q = {yt — s?zw + (s> — 1)22 = 0} C P, where z, y, 2, t, w are coordinates on P*,
and s € C\ {0,%1}. Then @Q is smooth, and ¢ C Q. Fix the G,,-action on P* given by
(5.9.1) [y z:t:w] = o Ay Az A3 A,
where A\ € G,,. Then ) and % are G,,,-invariant, so that we identify G,, with a subgroup
in Aut(Q, %), which also contains the involution ¢: [z 1y :z:t:w]— [w:t:z:y: x|
Let I be the subgroup in Aut(Q, ¢) that is generated by ¢ and G,,. Then I' = G, x u,.

Let m: X — @ be the blow up of the curve ¥. Then the Aut(Q; % )-action lifts to X,
so that we can identify it with a subgroup in Aut(X). We see that X admits a G,,-action.

Lemma 5.9.2. Fvery smooth Fano threefold in the family Ne2.21 that admits an effective
action of the group G, is isomorphic to X for an appropriate s € C\ {0, +1}.

Proof. Let X' be a smooth Fano threefold Ne2.21 that admits an effective G,,-action.
Then X’ can be obtained by a G,,-equivariant blow up of a smooth quadric Q' C P*
along a smooth rational quartic curve ¢”. Now, choosing appropriate coordinates on P4,
we may assume that ¢’ = €.

The induces G,,-action on the quadric @) is effective. Moreover, this action lifts to
an effective action on P*. Furthermore, keeping in mind that the curve ¢’ is G,,-invariant,
we see that G,, acts on P4 as in (5.9.1). Therefore, since Q' is smooth and G,,,-invariant,
it is given by yt — pzw + Az? = 0 for some non-zero numbers A and p. Since ¢’ C Q’, we
see that A\ = 1 — 1. Now, letting u = s%, we obtain the required assertion. O

Note that Aut’(X) = Aut®(Q; %€). Moreover, we have the following result:
Lemma 5.9.3. If s # +1, then Aut(Q;6) =T. If s = £, then Aut(Q; %) = PGL,(C).
Proof. Observe that there exists a natural embedding of groups Aut(Q; %) — Aut(P*; %),
where the group Aut(P*; €) is isomorphic to PGLy(C) and consists of all projective trans-
formations ¢: P* — P* given by
[z:y:2:t:w]— [a*z + 4a’by + 6a*b*2 + 4ab®t + b*w :
:a’cx + (a’d + 3abe)y + (3a”bd + 3ab®c)z + (3ab®d + b*e)t + b dw
a*cPr + (2a%cd + 2abc?)y + (a*d? + dabed + b2c?)z + (2abd* + 2b%cd)t + b*d*w :
s ac’r + (3ac®d + bc’)y + (3acd® + 3bc*d)z + (ad® + 3bed?)t + bd*w
ctz +4ctdy + 62 d* 2 + ded’t + drw),
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where a, b, ¢ and d are some numbers such that ad—bc = 1. Hence, to describe Aut(Q; %),
we have to find all such a, b, ¢, d that Q = ¢(Q). But ¢~1(Q) is given by
(1—4s%)a*Prz+ (1 — 4s*)acat + (abed — s*(a*d® + 2abed + b*?) ) zw + (4s° — 1)a* Py’ +
+ (@®d® + b*¢® — 8abeds® )yt + (45 — Dacyz + (1 — 4s*)bd(ad + be)yw + (4s* — 1)bdzt+
+ ((s* = 1)(d*a® + b*c?) + (10s® — 1)abed) 2* — (4s* — 1)d*b*zw + (4s* — 1)b°d*t* = 0.
Keeping in mind that our quadric @ is given by the equation yt — s?zw + (s* — 1)z = 0,
we conclude that @@ = ¢(Q) if and only if there exists non-zero A such that
ad —be =1, (1 — 4s*)a*c® = 0, (1 — 45%)ac = 0, abed — s*(a*d* + 2abed + b*c?) = =\,
(45> —1)a*c* = 0, a’d*+b*c* —8abeds® = )\, (4s*—1)ac = 0, (1—45*)bd = 0, (45 —1)bd = 0,
(s* — 1)(d?a* + b*c?) + (10s* — 1)abed = \(s* — 1), (4s* — 1)d*b* = 0, (45> — 1)b*d* = 0.
Solving this system of equations, we see that one of the following two cases hold:

° s#:l:% and eithera=d=0o0orb=c=0,
° 3::|:% and a, b, ¢, d are any numbers with ad — bc = 1.

Thus, if s # j:%, then Aut(Q; %) =T. If s = :I:%, then Aut(Q; %) = Aut(P* %). O
Remark 5.9.4. Let ¢ € C, and let Q. be the quadric threefold in P* that is given by
e(t* — zw) + 32% — 4yt + 2w = 0.

Then @, is smooth, and Q. contains €. If € # 0, we have Aut®(Q., %) = G,, so that
blowing up Q. along %, we get a threefold X, in the family Ne2.21 with Aut’(X.) = G,.
It is easy to see that all threefolds X, for ¢ # 0 are isomorphic to each other (this is
the threefold X* mentioned above). If € = 0, then Q. = Q) is our quadric @) with s = j:%,
so that blowing up @)y along %, we get the unique smooth Fano threefold Ne2.21 that
admits an action of the group PGLy(C). We know from Lemma 4.2.2 that the latter
threefold is K-polystable, so that X, is K-semistable for € # 0 by Theorem 1.1.12.

The group Aut(X) contains an additional involution o ¢ Aut(Q;%) such that there
exists the following Aut(Q; € )-equivariant commutative diagram:

X z X

and 7 is a birational involution that is given by
[wiy:zitiwl e (w2 —y? o s(wt —y2) P (aw — 2°) :s(yw — 2t) 2w — 7).
Then Aut(X) is generated by Aut(Q; %) and o, and
o*(E) ~ 31*(H) — 2E,
(5.9.5) el . .
o*(7*(H)) ~27*(H) — E,

where F is the m-exceptional surface, and H is a hyperplane section of the quadric Q).
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Remark 5.9.6. To see that 7 is indeed a birational involution, one can argue as follows.
First, substituting 7([z : y : z : t : w]) into the defining equation of the quadric @), we get
s (yt + (s° — Dwa — §°2%) (yt — s"zw + (s* — 1)2°) =0,
so that 7([z : y : z : t : w]) is contained in @ provided that [z :y:z:t:w] € Q\F.
This shows that 7 is a rational selfmap of the quadric (), which implies that 7 is birational.
Moreover, let R be the surface in () that is cut out on ) by A = 0, where

h = zt? — 2yzt — 2w + y*w + 2°.

Then Sg is singular along the curve %, which implies that 7 contracts Sg to a twisted
quartic curve in ). Now, we observe that Sg contains [2 — 4s? : 25 : 4s% : 25 : 2 — 45?].
If s # i%, this point is not contained in %, and it is mapped by 7to [1: 1:1:1:1] € ¥,
which implies that 7(Ss) = €. If s = j:%, then Sg contains [972 : —189 : 18 : 9 : —§],
which is mapped by 7 to [2025 : —675 : 225 : =75 : 25] € €, so that 7(Sg) = € as well.
Moreover, 7o T is given by [z :y : z: t:w|] > [hg : hy : ho : hg : hy|, where

ho = —s’hx,

hy = —s*hy + §* <yt — 82w + (s? — 1)22> (2t — yz),

hy = —s°hz + s° (yt — szw + (s* — 1)z2> (yt + szw — (s* +1)2?),
hy = —s°ht — s <yt — s*zw + (s* — 1)z2> (zt — yw),

hy = —s*hw.

Since yt — s?zw + (s*> — 1)2? = 0 is the defining equation of the quadric threefold @, this
shows that 7o 7: Q) --» @) is an identity map, so that 7 is a birational involution.

Let G = (0,') C Aut(X). Then G =T X py = (G,,, X py) X py, because o commutes
with the subgroup I'. In the remaining part of the section, we will show that ag(X) > %,
so that X is K-polystable by Theorem 1.4.10. We start with

Lemma 5.9.7. The quadric () does not contain G-invariant lines and G-invariant twisted
cubics. Moreover, the only G-invariant conics in () are the conic

(5.9.8) {y=0,t=0,(s*—1)z" — s*zw =0}
and the conic
(5.9.9) {z=0,0=0yt+(s*—1)2>=0}.

Proof. All assertions are easy to prove. For instance, if C' is a G-invariant twisted cubic,
then it must be contained in the hyperplane z = 0. On the other hand, the smooth
quadric surface that is cut out on () by the equation z = 0 does not contain G-invariant
twisted cubics. We leave the proofs of the remaining assertions to the reader. U

Let us denote by Cy and Cj the irreducible conics (5.9.8) and (5.9.9), respectively.
Observe that C5N% = @, but CoNE =[0:0:0:0:1JU[1:0:0:0: 0], and Cy intersects
the curve € transversally at these two points. Observe also that the equations

{ot—yz=0yw—2t=0}NQ=FUCU{z=y=2=0}U{z=t=w=0}.

Note also that the lines xt =y =2 =0 and z =t = w = 0 are tangent to the curve ¢ at
the points [0:0:0:0:1] and [1:0:0:0 : 0], respectively.
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Let C and C’ be the proper transforms on X of the conics Cy and Cj, respectively. Then
the curve C is o-invariant, while C" is not o-invariant. Note that Lemma 5.9.7 implies

Corollary 5.9.10. Let C be a G-invariant irreducible curve in X such that —Kx-C < 7.
Then C' is the conic C, which is given by (5.9.8).

Proof. We have 7*(H) - C' < 3, because
8> Ky -C= (w*(H) to* (w*(H))) C=7"(H) C+ 0" (x"(H)) - C = 27" (H) - C,

so that 7*(H) - C' < 3. Thus, we see that either 7(C') = Cy or 7(C') = Cj, by Lemma 5.9.7.
On the other hand, we have 8 > —Kx -C = (E+0*(E))-C=FE-C+o0*(F)-C =2E-C,
so that £/ - C' > 0. Therefore, since C; N E = &, we have C' = C, which also follows from
the fact that the curve C’ is not o-invariant. 0

Observe that X contains no G-fixed points, since () does not contain I'-fixed points.
Note that Pic”(X) = Z[—Kx], which follows from (5.9.5). Now, we are ready to prove

Proposition 5.9.11. One has ag(X) > 3.

Proof. Suppose that ag(X) < %. Then, arguing as in the proof of Theorem 1.4.11 and
3

using Lemma 1.4.1, we see that there exist a rational number A < %, an irreducible
(proper) G-invariant subvariety Z C X, and a G-invariant effective Q-divisor D on X
such that D ~g —Kx, the log pair (X, D) is strictly log canonical, and Z is its unique
log canonical center. Then Z is not a point, since X has no G-fixed points. Therefore,
since Pic%(X) = Z[—- K], we conclude that Z is a curve.

By Theorem A.2.6, the curve Z is smooth and rational. Moreover, using Corol-
lary A.2.7, we see that —Kx - Z < 7, so that Z = C by Corollary 5.9.10.

We claim that multe(D) < 2. To prove this, let S = QN {a(zt —yz)+ S(yw —tz) = 0},
where o and 8 are general numbers. Then S is a smooth del Pezzo surface of degree 4,
so that | — Kg — Cy| is a base point free pencil of conics. Let C be a general conic in
this pencil, and let C be its proper transform on X. Then C' N Cy consists of two distinct
points, so that C'NC also consists of two distinct points. But C' ¢ Supp(D), so that we
obtain 4 = D - C' > 2multe (D), which gives multe(D) < 2 as claimed.

Let n: X — X be the blow up of the curve C, and let F" be the n-exceptional surface.
Then the action of the group G lifts to X, and it follows from Lemma A.4.3 that F' has
a G-invariant section of the projection F© — C. Let us show that GG acts on F' in such
a way that F' does not contain any G-invariant sections of the projection F' — C.

Let Sy, S, S and &’ be the surfaces in () that are cut out by y =0, t =0, 2t —yz =0
and yw — zt = 0, respectively. Then the following assertions holds:

(i) the surfaces S, S;, S, S’ are irreducible;

(ii) the surfaces Sy, S;, S, §" are G,,-invariant;

(iii) the involution ¢ swaps the surfaces S, and Si;

(iv) the involution ¢ swaps the surfaces S and S’

(v) one has Co =S, NS, NSNS,

(vi) the surfaces S, S, S, S’ are smooth at general point of the conic Cy;

(vii) any two surfaces among S, S;, S, &’ intersect each other transversally at general

point of the conic C,.
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Let Sy, St, S S’ be the proper transforms on X of the surfaces Sy, S, S, &', respectively.
Then we have C = S N St NSN S’ the surfaces Sy, St, S S’ are smooth at general point

of the curve C, and any two surfaces among S St, S S’ meet each other transversally at
general point of the curve C. Moreover, we have the following additional two assertions:

viii) the involution o swaps the surfaces S, and S: ;
p y
(ix) the involution o swaps the surfaces S; and S'.

Let §y, §t, §, S’ be the proper transforms on X of the surfaces §y, S, S, S, respectively.
Then each intersection §y NE, §t NE, SNF , S'NF contain unique irreducible component
that is a section of the projection F' — C. This gives us 4 sections of the projection F' — C,
which we denote by Z,, Z;, Z, Z', respectively. Then Z,, Z,, Z, Z' are distinct curves,
because any two surfaces among S, S;, S, S’ intersect each other transversally at general
point of the curve C. Moreover, we have «(Z,) = Z;, u(2Z) = Z', 0(Z,) = Z, 0(Z;) = 2/,
and each curve among Z,, Z;, Z, 2" is G,,-invariant.

Now, using Corollary A.6.5, we conclude that I =2 P! x P!. Then, using Lemma A.6.2,
we conclude that the G-action on F' is given by (A.6.4) for some integers a > 0 and b.
This implies that F' does not contain G-invariant sections, which is a contradiction.

We can prove that F' does not contain G-invariant sections without using the explicit
description of the G-action on the surface F. Indeed, let o: F' --+ P! be the quotient map
that is given by the G,,-action on F'. Then

e o is G-equivariant,

o 0(Zy,), 0(Z), 0(Z), 0(Z') are four distinct points,

e the group G/G,, = u3 permutes o(Z,), 0(Z;), o(Z), o(Z') transitively.
Thus, the G/G,,-action on P! is effective, which implies that P! has no G /G,,-fixed points.
Therefore, we conclude that F does not have G-invariant fibers of the rational map o,
so that F' does not contain G-invariant sections of the projection F' — C. U

Now, using Theorem 1.4.10, we see that the Fano threefold X is K-polystable, so that
that general smooth Fano threefold Ne 2.21 is also K-polystable by by Corollary 1.1.17.

5.10. Family N22.26. Up to isomorphism, there are exactly two smooth Fano threefolds
in this family. To describe them, let us recall from [180] the SLy(C)-action on the unique
smooth Fano threefold Ne1.15, which is described in Example 3.4.1.

Fix the standard SLy(C)-action on W = C?) let V = Sym*(W) = C®, and consider
the Pliicker embedding Gr(2,V) < P? = P(A\* V). As SLy(C)-representations, we have

2
/\ V* 2 Sym?*(W) @ Sym®(W).

We set A = Sym?(W) C /\2 V* in this decomposition, and note that every nonzero form
in A has rank 4. Let V5 = Gr(2, V)NP(A'). Then Vs is the unique smooth Fano threefold
in the family Ne1.15. By construction, this threefold is SLy(C)-invariant, so that it carries
a SLy(C)-action. In fact, this action is effective, and Aut(Vs) = PGLy(C).

Now, let us describe the Hilbert scheme of lines in Vs, see [180, Proposition 2.20] and
[181, Proposition 3.23]. This scheme can be naturally identified with P? = P(A) equipped
with the induced SLy(C)-action. Concretely, given a nonzero element a € A, the kernel of
a is 1-dimensional, generated by a vector v, € V. The vector v, induces a global section

of the quotient bundle V/% , where % is the restriction to Vs of the tautological vector
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bundle of the Grassmannian Gr(2,V’). The schematic zero locus of this global section
is precisely the line L, in Vj associated to a. Using this identification, we can describe
the SLy(C)-orbits in P(A) as follows:
e the open GIT-polystable orbit,
e the unique invariant conic in P(A) that is given by the GIT-unstable orbit in A.
Now, let L be some line in V5. Then we have two choices for a normal bundle N7, Vs
Namely, if L is contained the open SLy(C)-orbit in P(A), then N7 v, = Op1 & Opr and we
say that L is a good line. If L is contained in the invariant conic in P(A), then we have
Ny = Opi(—1) @ Opi(1) and we say that L is a bad line. Up to the SLy(C)-action,
the threefold V5 contains exactly one good line and exactly one bad line.
Let 0: X — V5 be the blow up of the line L. Then X is one of two smooth Fano
threefolds N¢2.26. In both cases, there exists the following commutative diagram:

Q Vs

where ) is a smooth quadric in P*, and 7 is a blow up of a twisted cubic curve Cs.
Let H be the hyperplane section of @ that contains C3. Then H is smooth if and only
if L is a good line. Let H be the proper transform on X of the surface H, and let F'
be the m-exceptional divisor. Then H is the o-exceptional surface and 20(F) ~ —Ky;.
Moreover, the surface o(F') is singular along the line L. Furthermore, if L is a bad line,
then Aut’(X) = G,, xG, by [42, Lemma 6.5], and X is not K-polystable by Theorem 1.1.4.
In fact, we can say more:

Lemma 5.10.1. Suppose that L is a bad line. Then X s K-unstable.

Proof. Let Z be the fiber of F — C3 over the point Sing(H), let f: X — X be the blow
up of the curve Z, and let E be the f-exceptional divisor. Let us show that 3(F) < 0.

Let s and [ B be the negative section and a ruhng of the surface E' = Fq, respectively.
We denote by H and F the proper transforms on X of the surfaces H and F| respectively.
Then —E|g ~ sg + lg and H~ sp+ 2p.

Now, we observe that H Fy and F* = Fs. Let sz, sp, 5, [r be the negative sections
and rulings of these surfaces, respectively. Then F|z = sz + 53, where Cj is the proper
transform via the induced birational map H — H. Moreover, we have 53 ~ sz + 3lg,
—F’F ~ sp—2p, H‘F ~ sp+lp, _H‘fl ~ Sfl—l-lﬁ, _KX‘]} ~ Sﬁ—i-?)lﬁ, _KX|F ~ Sp+Tlp.
Observe that Z = s, so that we have Z ~ [p on the surface F.

Take € Rsg. Then f*(—Kx) — 2E ~g 3H + 2F + (5 — 2)E, which implies that
the divisor f*(—Kx) — zE is psuedoeffective if and only if x < 5. Moreover, if = € [0, 1],
then this divisor is nef, so that

vol(f*(—Kx) —zE) = —K% —32*( - Kx - Z) — x3< — deg(/\/Z/X)> =34 — 32 — 2°.
If x € [1, 3], then the Zariski decomposition of the divisor f*(—Kx) — xF is
1 ~ 1 ~
F(—Kx) — 2E ~g (f*(—KX) — B+ 5(1- x)H) + 5= DA,

Vv vV
positive part negative part
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Thus, if z € [1, 3], then vol(f*(—Ky)—zE) = 1(2*—92? —212+149). Finally, ifx € [3,5],
then vol(f*(—Kx) — zE) = (5 — x)®. Now, integrating, we see that 5(F) = —2&, which
implies that X is K-unstable by Theorem 1.2.2. U

Now, we suppose that L is a good line. Then it follows from [42] that Aut®(X) & G,,,.
Moreover, one can show that Aut(X) = G,, X p,. In the remaining part of the section,
we will show that X is K-semistable and not K-polystable, i.e. X is strictly semistable.
To do this, we may assume that Q = {zgz3 — 172 +2% =0} CP* H = {2, = 0} NQ, and

2 2
Cs = {xoscg — 2129 = 0, 2979 — 27 = 0, 27203 — 25 = 0, :I;4}.
where g, 1, T, T3, 74 are coordinates in P4. Let Q be the family of quadrics given by
Tolsz — X1L3 + T - xi =0,

where ¢t € A, Let (:2\ be its special member — the singular quadric zors — x129 = 0.
Now, blowing up Q along C3 x A!, we obtain a special test configuration X — A;.
Its general fiber is X. Let Y be its special fibre. Then Y is a Fano variety, it has one
isolated ordinary double point, since Y is the blow-up of the quadric @ in the curve Cj,
which does not pass through Sing(Q).

Lemma 5.10.2. The Fano variety Y is K-polystable.

Proof. Let f:Y — Q be the blow up of the curve C3, and let E be its exceptional
surface. Observe that Q is a T-variety of complexity one. Namely, the quadric Q admits
an effective action of the group G = G2, x p,, where the G2 -action is given by

(tl,tg).[l‘oll'1 To . T3 . 1’4] [I'Oitll'l tll'Q tll'g t21'4]

and p, acts via the biregular involution o: [zg : @1 : T : 3 1 T4] = [X3 1 29 1 21 1 Tg & T4
Since the curve Cj is invariant under the G-action, the G-action lifts to the variety Y.
Let us use technique of Section 1.3 and Theorem 1.3.9 to show that Y is K-polystable.
In the following, we will use notations introduced in this section.

Consider the two one-parameter subgroups

wr: G, — G2 t— (1)
wy: Gy, = G2t — (1,1).

Those forrr/l\a basis of N and o acts orLN via wy — —w; and wy — wy. Let T be the prime
divisor in @) given by x4 = 0, and let T" be its strict transform on Y. Then ws acts trivially
on it, so that 71" is a horizontal divisor with wr = ws.

Let m: Y --» P! be the quotient map by G2,. Then 7o f~! is given by

(o 1 @1t To @y xy) > [Toxo :1:%]

Note, that on the quadric Q we have [zozs : 22] = [22 : ;23] whenever both are defined.
Let I be the fibre of the quotient map over [1 : 1]. Then F = {zore—2? = 1125 —23 = 0}.
Then C3 = FNT. Since the domain of 7o f~! intersects C3, we have w(E) = [1: 1].
The involution o acts on P! by sending [yo : 1] to [y1 : yo]. There are only two o-fixed
points: [1 : 1] and [—1 : 1]. Moreover, the fibre of 7 over the point [—1 : 1] is integral,
and the fibre over [1 : 1] consists of the surfaces E and F. Hence, by Proposition 1.3.17,

it is sufficient to show that Futy = 0 and S(F) > 0.
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Let us compute S(FE). Take x € Ryy. Then —Ky — a2F ~p (2 — 2)E + 3T, which
implies that — Ky — xF is pseudo-effective <= x < 2. Similarly, it is nef <= z < %
Moreover, if 2 > « ;, then the ample model of the divisor —Ky — zFE is given by
the contraction of the surface T = P! x P! to a curve. Using this, we compute

1
T3 — 62 +Thr +34if0 <z < =,
vol(—Ky—mE) = 1 2
5(2—x)3if§<$<2-

Integrating, we get Sx(F) = g?Tiv so that f(E) =1— Sx(E) = EZZ > 0.

Similarly, we see that B(T) = 0. Indeed, if 0 < 2 < 1, then —Ky — 27T is nef, so that
~ ~ 3
vol( — Ky —aT) = (= Ky —aT)" = (f*((3 - 2)T) + (:c —1)E) =
=23 -2 +3B8 —2)(x — D2f(T)- E* + (z — 1)°E® =
=23-2)-9B8—2)(x —1)* = 7(x — 1)* = 34 — 62° — 12x.

Likewise, if 1 < x < 3, then the ample model of this divisor is the quadric Q, which implies
that vol(—Ky — 2T) = 2(3 — z)2, since f,(—Ky — xT) ~g (3 — )T. Now, integrating,
we get Sx(T) = 1, so that ﬁ(f) =

The Futaki character of Y is trivial. Indeed, since Futy is o-invariant, Futy (\,,) = 0
by Lemma 1.3.6. Hence, it remains to show that Futy (A,,) = 0. Since T is a horizontal
divisor with wz = ws,, we have Futy (\,,) = 8 (T) = 0 by Corollary 1.3.16. This shows
that Y is K-polystable. O

Now, using Corollary 1.1.14 and the existence of the test configuration for our smooth
Fano threefold X with special K-polystable fibre Y, we obtain

Corollary 5.10.3. The Fano threefold X is strictly K-semistable.
Therefore, the family Ne2.26 does not contain K-polystable threefolds.

5.11. Family Ne3.2. Now we construct one special K-stable smooth Fano threefold Ne3.2.
By Theorem 1.1.12, this would imply that general threefolds in this family are K-stable,
since all smooth threefolds in these family have finite automorphism groups [42].

Let S =P! x P!, let H be the divisor of degree (1,1) on S, let

P= ]P(OS D Os(—H) D OS(—H)),
let [sg @ s13to : t1;up @ uy : ug] be homogeneous coordinates on the fourfold P such that
wt(so) = (1,0,0), wt(sy) = (1,0,0), wt(to) = (0,1,0), wt(¢;) = (0,1,0), wt(ug) = (0,0, 1),
wt(uy) = (1,1,1) and wt(ug) = (1,1,1), and let 7: P — S be the natural projection.
Then the projection 7 is given by [sq : s1;to @ t1;ug @ Uy : ug] — [So : s1;t0 : t1], where
we consider [sq : s1;tp : t1] as coordinates on S. Let G be the subgroup in Aut(PP) that is
generated by the following two transformations:

Ay : [ i s13to st ug Uyt ug] = [$1 0 So;ty : tosug : ug U,
Ag i [sg:s1to ttiiug tuy ug] = [so 0 —isisto t —tiyug Uyt tug),

where i = y/—1. Observe that GG acts naturally and faithfully on S, and 7 is G-equivariant.

Note also that
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(1) S does not contain G-fixed points,
(2) S does not contain G-invariant curves of degree (1,0), (0,1) or (1,1).

In particular, the fourfold P does not contain G-fixed points either.
Let L be the tautological line bundle on P over S, i.e. the line bundle of degree (2, 3, 2),
and let X be the divisor in the linear system |L®? @ Og(2, 3)| that is given by

toud + t1us + uo(solgur + s1tius + Sotjur + sitgus) + ug(sgty + sit; + sgtot; + sitgts) = 0.
Then X is a smooth Fano threefold Ne3.2, it is G-invariant, and G acts faithfully on it, so
that we can identify G with a subgroup in Aut(X).

Let . be the surface in X that is cut out by ug = 0, let w: X — S be the morphism
induced by =, let pr,: S — P! and pr,: S — P! be projections to the first and the second

factors, respectively. Then . = P! x P!, @ is conic bundle, and there exists the following
G-equivariant commutative diagram:

X
Ak/ . \\
(5.11.1) v Ly vy
x TQ/
3 X ¢
P! S P!
pry pra

where Y is a non-Q-factorial Fano threefold with one isolated ordinary double point such
that —K3 = 16 and Pic(V) = Z[—Ky/|, « is a contraction of the surface . to the singular
point of V| 5 and B are birational morphisms that contract . to smooth rational curves,
1 and zﬂ are small resolutions of the threefold V', x is the Atiyah flop in the curve 3(.%),
¢ is a fibration into quadric surfaces, 1& is a fibration into del Pezzo surfaces of degree 4,
~ and 4 are fibrations into del Pezzo surfaces of degree 3 and 6, respectively.

The diagram (5.11.1) first appeared in [116, Proposition 3.8]. Note that (5.11.1) extends
the diagram (4.1.10) in Section 4.1 for another singular Fano threefold in the family Ne1.8.

Lemma 5.11.2. One has ag(X) > 1.

Proof. Let us apply Theorem 1.4.11 with y = 1. Let F' and F be general fibers of the del
Pezzo fibrations v and 74, respectively. Then —Kx ~ % + F + 2F , and it follows from
88, 148] that the cone Eff(X) is generated by the surfaces ., F, F. Thus, the condition
Theorem 1.4.11(1) cannot be satisfied, because the pencil \]/7\ | does not contain G-invariant
surfaces, since S does not contain G-invariant curves of degree (1,0). Similarly, we see
tAhat X does not contain a G-invariant irreducible curve C such that F'- C < 1 and
F-C <1, because S does not contain G-fixed points, and S does not contain G-invariant
curves of degree (1,0), (0,1) and (1,1). Finally, recall that X does not contain G-fixed
points. Thus, we have ag(X) > 1 by Theorem 1.4.11. O

Thus, the threefold X is K-stable by Theorem 1.4.7 and Corollary 1.1.6. Hence, general
Fano threefold Ne3.2 is also K-stable by Theorem 1.1.12. In fact, Lemma 5.11.2 also implies

that general Fano threefolds Ne1.8 are K-stable, which we already know from Section 4.1.
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Indeed, since G acts faithfully on Y, V and ‘A/, we can identify G with the subgroups
in the automorphisms groups of these threefolds. Then ag(Y) = ag(V) = ag(V) by
Lemma 1.4.6. On the other hand, Lemma 5.11.2 gives

Corollary 5.11.3. One has ag(V) > 1.

Proof. Suppose that ag(V) < 1. Then there is an effective G-invariant Q-divisor D on
the threefold V' such that D ~g —Ky, and the log pair (V,AD) is not KLT for some
positive rational number A\ < 1. Let us seek for a contradiction.

Observe that —Ky ~ B(F) + 2ﬁ(A) the cone Eff(X) is generated by the surfaces
B(F) and B(F), and the pencil |#(F)| does not contain G-invariant surfaces. This shows
that Nklt(V, AD) does not contain surfaces. Moreover, the pencil |3(F)| does not have
G-invariant surfaces, so that, in particular, the threefold V' does not have G-fixed points.
Thus, applying Corollary A.1.15, we see that the locus Nklt(V; AD) consists of a smooth
rational curve C such that B(F) - C = 1.

Suppose that C' # (¥ ) Let C' and D be the > proper transforms of the curve C' and
divisor D on the threefold V respectively. Then C is contained in the locus Nklt(V )\D)
which does not contain surfaces, since x is a flop. Applying Corollary A.1.15 again, we
see that B(BF)-C = 1. Thus, ¢ o f71(C) is a G-invariant curve in S = P! x P! of degree
(1,1), which is impossible, since S does not contain G-invariant curves of degree (1, 1).

Thus, we see that C' = B(%). Let D be the proper transform of the divisor D on X.
Then D+ (multg(D) —1).% ~g —Kx, and the log pair (X, D + (mult(D) — 1).%) is not
log canonical. Since multe(D) > 1 by Lemma A.1.4, this contradicts Lemma 5.11.2. O

Thus, we have ag(Y) > 1, so that it follows from Theorem 1.4.7 and Corollary 1.1.6
that Y is K-stable, because its automorphism group Aut(Y) = Aut(X) is finite. On
the other hand, it follows from [160, Theorem 11] and [117, Theorem 1.4] that Y has
a smoothing to a smooth Fano threefold Ne1.8. Thus, general Fano threefolds Ne1.8 are
K-stable by Theorem 1.1.12, which we already know from Example 4.1.9

5.12. Family Ne3.3. Let X be the threefold
{xlxz—i—ylyQ + 2125 Fwiws = 0,22 +yF + 27+ wi = 0,70+ Yo+ 20 +wy = O} C P? x P?,

where x1, y1, 21, w; are coordinated on the first factor of P? x P3, and s, ¥a, 20, wo are
coordinated on the second factor of P? x P3. Then X is smooth Fano threefold Ne3.3.
Indeed, the threefold X is a divisor in P! x P! x P? of degree (1,1,2), where we identify

e P! x P! with the quadric 23 + y? + 2} + w? = 0 in the first factor of P? x P3,
e P? with the hyperplane xy + 5 + 2o +wy = 0 in the second factor of P3 x P2,

Observe that we have the following commutative diagram:

P! x P!
by “T b
1 "1 V2 1
- T / l(p\ ]m
P! x P2 — P2 — P! x P2
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where p; and ps are blow ups of smooth curves of genus 3, ¢ is a (non-standard) conic
bundle whose discriminant curve is a smooth plane quartic curve, w is a (standard) conic
bundled whose discriminant curve is a smooth curve of bi-degree (3,3), v; and v are
fibrations into del Pezzo surfaces of degree 5, m; and s are natural projections, and pr,
and pr, are projections to the first the the second factor, respectively.

Let G = 6&,4. Then X admits a natural faithful action of the group G that is given
by the (simultaneous) permutations of coordinates on both factors of P? x P2, Observe
that X does not contain G-fixed points, the conic bundles w and ¢ are G-equivariant.
the G-action on the quadric P! x P! permutes its rulings. Thus, we have Pic%(X) = Z2.
We identify G with a subgroup in Aut(X).

Lemma 5.12.1. One has ag(X) > 1.

Proof. Let S be any G-invariant surface S C X such that —Kg ~g aS+A, where a € Q¢
and A is an effective Q-divisor on X. Then a < 1, because

aS + A g —Kx ~ v(Op (1)) + 15 (O (1)) + 6" (O (1)),

and S ~ v} (Op1(m)) 4+ v5(Op1(m)) + ¢*(Opz(n)) for some non-negative integers m and n.

Now, we suppose that ag(X) < 1. Since X does not contain G-fixed points, it follows
from Lemma A.4.8 that X contains an effective G-invariant Q-divisor D ~qg —Kx and
a smooth G-invariant irreducible rational curve Z such that the log pair (X, AD) is strictly
log canonical for some positive rational number A < 1, and Z is the unique log canonical
center of the log pair (X, AD). Applying Corollary A.1.15 to the del Pezzo fibrations 14
and vy, we get Z - 15 (Op1(1)) < 1 and Z - v5(Op1(1)) < 1. But P! x P! has no G-fixed
points, and Pic%(P' x P') 2 Z, so that w(Z) is a curve of degree (1,1). Since w(Z) is
G-invariant, it is given by x; + y1 + 21 + w; = 0. Likewise, applying Corollary A.1.16 to
the conic bundle ¢, we see that ¢(Z) is a conic, because P? does not have G-invariant
lines and G-fixed points. Moreover, since P? contains unique G-invariant conic, we see
that ¢(Z) is given by z3 + y5 + 25 + w3 = 0. Then Z is contained in the support of
the subscheme

T3 + Y15 + 2125 + wjws = 0,
PP 2wl =002y 22wl =0,p CPPx P
To+Yo+20+we=0,29+1y; +21 +w; =0.

Denote the later subscheme by C'. Using the following Magma code

Q:=RationalField();

PxP<x1,y1,z1,x2,y2,z2>:=ProductProjectiveSpace(Q, [2,2]);

C:=Scheme (PxP, [x1%x272+y1*y27~2+z1%z2"2- (x1+y1+z1) * (x2+y2+22) "2,
x172+y172+z17 2+ (x1+yl+z1) "2,x272+y27 2+227 2+ (x2+y2+22) "2] ) ;

IsNonsingular(C);

IsIrreducible(C);

Dimension(C);

we conclude that the subscheme C' is reduced, irreducible, one-dimensional, and smooth.
Then Z = C, and C is a smooth (hyperelliptic) curve of genus 3, which is absurd, since
the curve Z is rational. The obtained contradiction shows that ag(X) > 1. 4

Therefore, the threefold X is K-stable by Theorem 1.4.7 and Corollary 1.1.6, because

the group Aut(X) is finite [42]. Then general Fano threefold Ne3.3 is also K-stable.
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5.13. Family Ne3.4. In Section 4.5, we presented one K-stable Fano threefold Ne3.4, so
that general threefolds in this family are K-stable by Theorem 1.1.12. In this section, we
prove the K-stability of another smooth Fano threefold Ne3.4. The proof is more involved
in this case, but we believe that it can be be used to prove K-stability that all smooth
Fano threefolds in the family Ne3.4 are K-stable.

Using notations of [179, Section 2.2], consider the scroll F; = (0, 1) with coordinates t,
and ¢, of weight (1,0), and coordinates uy and u; of weights (—1, 1) and (0, 1), respectively.
The blow up morphism 3: F; — P? is given by [to : t1;ug : uy] = [ug : toug : t1ug], so that
it contracts the curve uy = 0 to the point [1: 0 : 0], the projection v: F; — P! is given by
[to : t1;up @ ug] — [to : 1], and the curve u; = 0 is the preimage of a line in P? that does
not contain the point [1: 0 : 0]. We fix coordinates [sq : s1] on the first factor of P! x F.
Let P! xF; — P! x P! be the morphism ([so : s1], [to : t1;uo : u1]) — ([0 : s1], [to : t1]), and
we consider ([sq : s1], [to : t1]) also as coordinates on P! x P!. Let y; be the transformation
in Aut(P! x Fy) given by ([so : s1], [to @ ti;uo = u1]) = ([so : s1], [t1 ¢ to;uo @ —uq)), let
2 be the transformation ([sg : s1], [to : t1;u0 @ wi1]) — ([so : —s1], [to & t1;uo @ wi]), and
let G’ be the subgroup in Aut(P* x Fy) that is generated by u; and pp. Then G’ = pl
and the morphism P! x F; — P! x P! is G'-equivariant. Moreover, one can check that
the induced action of the group G’ on P! x P! has the following properties: P! x P! does
not have G’-fixed points, P! x P! does not contain G’-invariant curves of degree (1,0),
the only G’-invariant curves of degree (0,1) in P* x P! are {tq+¢; = 0} and {t, —t; = 0},
and P! x P! does not contain G’-invariant curves of degree (1,1).

Let B be the surface in P! x F; that is given by

(s5+s7) (5 + 1) ug + 9(sg + s1)ui + (s§ — s1) (o — 7)) ug+
+ 4(83 + S%) (to — tl)uoul + 8(8(2) - S%) (to + tl)U()Ul = O,

Then B is smooth and G’-invariant. Let w: V — P! xF; be the double cover ramified in B.
Then V is a smooth Fano threefold Ne3.4, so that we can use notations used in (4.5.11).
Note that the G'-action lifts to V', and we can expand it to a larger subgroup G C Aut(V),
which is generated by the subgroup G’ and the Galois involution of the double cover 7.
Then (4.5.11) is G-equivariant. In the following, we will use notations used in this diagram.

Let H; and H; be general fibers of the del Pezzo fibrations n; and ¢, respectively, and
let E be the a-exceptional surface. Then —Ky ~ H,+2H; + E, and ﬁ(X ) is generated
by Hs, H;, E. Note that |H;| contains two G-invariant surfaces. They are the preimages
via 7 of the two G'-invariant curves in P' x P! of degree (0,1). Let H, and H_ be
the preimages via 7 of the curves given by ty + t; = 0, respectively. Let us apply results
of Section 1.7 to irreducible G-invariant curves in these two surfaces.

Lemma 5.13.1. Let Z be an irreducible G-invariant curve in H, . Then S(WJ5: Z) < 5,

Proof. The double cover @ gives a double cover H, — w(H, ), where w(H,) = P! x P!,
and we can identify ([sq : s1], [uo : u1]) with coordinates on w(H, ). Note that this double
cover is branched along the curve {2(s2 + s?)u2 + 9(s2 + s?)u? + 16(s2 — s?)ugu; = 0}.
This curve is smooth, so that H, is a smooth del Pezzo of degree 4.

Fix u € Ryo. Let us consider the Zariski decomposition of the divisor —Kx — uH,.
For w > 2, this divisor is not pseudo-effective. For u € [0, 2], we have

- {Hs+(2—u)H++EifO<u<1,

Hi+2—-u)(Hy +E)if1 <u<2,
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and
0if0<u<l,

NW%:&u—DEﬁlgugl
where P(u) = P(—Kx —uH,) and N(u) = N(—Kx —uH,).
Let /5 and ¢, be the pull back on H of the curves in w(H ) that are given by sq = 0 and
ug = 0, respectively. Then P(u)|n, ~r €s+£, for u € [0,1]. Likewise, if u € [1, 2], then we
have P(u)|pg, ~r {5+ (2 —u)l, and N(u)|g, = (u—1)¢,. If Z = E|y,, then Z = {,, and

SWhr2) = 18/ / vol (€ + (1 — v){,)dvdu+

+3 Q(U_l)(g + (2 —u)l, du+—// vol 2—u—v))dvdu:

// 1vdvdu+6/4(u12udu+// 2uvdvdu-3<1.

If Z # E|u,, then Z ~ al, + bl, for some non-negative integers a and b, since G contains
the Galois involution of the double cover w. Moreover, we have b > 1, because |(,| does

not contain G-invariant curves. This gives S(WJ5; Z) < S(WJla0,) = 2 asrequired. [

Lemma 5.13.2. Let Z be an irreducible G-invariant curve in H_. Then S(Wls; Z) < 8

Proof. The double cover w gives a double cover H_ — w(H_), where w(H_) = P! x P!,
and we can identify ([sq : s1], [uo : u1]) with coordinates on w(H ). Note that this double
cover is branched along the curve given by

(so — isl) (30 + isl) (2uo + (4 — \/§Z)u1) (2uo + (4 + \/§z)u1) = 0.
Therefore, we see that H_ is the toric del Pezzo of degree 4 that has 4 nodes.

Let /s and £, be irreducible curves in H_; that are preimages of the curves in w(H_)
given by sop — is; = 0 and 2ug + (4 — \/iz)ul = 0, respectively. Then Z ~q al, + bl,, for
some integers a > 0 and b > 1, because G contains the involution of the double cover w,
and H_ does not contain irreducible G-invariant curve that are QQ-rationally equivalent
to nl, for n € Zy.

Arguing as in the proof of Lemma 5.13.1, we see that P(—Kx —uH_)|g_ ~gr 205+ 20,
and N(—Kx—uH_) =0foru € [0,1]. Ifu € [1,2], then N(—Kx—uH_)|g_ ~r (2u—2)¢,
and P(—Kx —uH o ~r 205+ (4 — 2u)l,. Thus, if Z = FE|g_, then we compute
S( .H.+, Z) = 2 as in the proof of Lemma 5.13.1. Similarly, if Z # E|y_, then

S(W,H, ,Z) S(W,H. ,E 18/ / vol 20, —I—(2—€t))dvdu+
3 2 00
—8/ / vol(26, + (4 — 2u — v){;)dvdu =
1 Jo

+1
1 1 2 1 2 4—2u 8
:—//(4—21))dvdu+—// (8 — 4u — 2v)dvdu = =
6 Jo Jo 6.J1 Jo 9

as required. O
Now, we are ready to prove

Proposition 5.13.3. The threefold V is K-stable.
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Proof. Suppose that V' is not K-stable. Then V' is not K-polystable by Corollary 1.1.6,
because Aut(V') is finite [42]. Then, by Theorem 1.2.5, there are a G-invariant prime
divisor F over V such that B(F) = Ay (F) — Sy (F) < 0. Let Z = Cy(F). Then Z is not
a surface by Theorem 3.7.1, so that Z is a G-invariant irreducible curve, because V' does
not have G-invariant points.

Applying Corollary 1.7.26 and Lemma 5.13.1, we see that Z ¢ H, because Sy (Hy) < 1
by Theorem 3.7.1. Similarly, using Lemma 5.13.2, we see that Z ¢ H_.

Using Lemma 1.4.4, we get ag z(V) < %. Now, using Lemma 1.4.1, we see that there
exists a G-invariant effective Q-divisor D on the threefold V' such that D ~g —Ky and
Nklt(V, AD) contains Z for some positive rational number A < 3.

Since —Ky ~ Hy+2H; + E and Eff(V) is generated by H, H; and E, the only possible
two-dimensional component of Nklt(X, AD) can be one of the surfaces H, and H_. Since
Z ¢ H,UH_, we conclude that Z is an irreducible component of the locus Nklt(V, AD).
Now, applying Corollary A.1.15 to the del Pezzo fibrations 7; and ¢, we conclude that
H,-7Z <1and Hy-Z < 1. One the other hand, we know that P' x P! does not contain
G-invariant points, it does not contain G-invariant curves of degree (1,0), and it does not
contain G-invariant curves of degree (1,1). Hence, we conclude that (Z) is a G-invariant
curve of degree (0, 1), which is impossible, since we already proved that Z ¢ H,UH_. O

5.14. Family Ne3.5. Let S = P! x P!, let C be a prime divisor in S of degree (1,5), and
let G = Aut(S,C). We can choose coordinates ([u : v], [z : y]) on the surface S such that
the curve C' is given by

(5.14.1) u(z® + a1zty + a®y® + az2®y®) + v(y° + bizy® + bax®y® + bya’y?) = 0,

where each a; € C and each b; € C. If all numbers a; and b; vanish, then G = G,,, X p,.
In all other cases, the group G is finite by [42, Corollary 2.7].
Consider the G-equivariant embedding S < P! x P? given by

([u: o], [z y]) = ([u:o], 2% 2y 2 y?)).

Identify S and C' with their images in P* x P2, identify G' with a subgroup in Aut(P! x P?).
Let pr,: P! xP? — P! and pr,: P! xP? — P? be the projections to the first and the second
factors, respectively. Then C' is a G-invariant curve of degree (5,2) in P! x P?, both
projections pr; and pr, are G-equivariant, pry(S) is a G-invariant conic in P2

Let m: X — P! x IP? be the blow up of the curve C. Then X is a Fano threefold Ne 3.5,
and the G-action lifts to X. Therefore, we can identify G with a subgroup in Aut(X).
In fact, it follows from the proof of [42, Lemma 8.7] that Aut(X) = G. In this section,
we will prove that X is K-stable for a special choice of the curve C, which would imply
that general Fano threefolds Ne3.5 are K-stable by Theorem 1.1.12.

Let S be the proper transform on X of the surface S, let £/ be the m-exceptional surface,
let Hy = (pry o m)*(Op:(1)) and let Hy = (pry o m)*(Op2(1)). Then S ~ 2Hy — E, which
implies that

3~ 1
—KX ~0Q 2H1+§S+§E,

so that aq(X) < 2.

Note that S = P! x P! and S|z is a line bundle of degree (—1,—1). Therefore, there

exists a birational morphism w: X — Y that contracts S to an ordinary double point of
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the singular Fano threefold Y such that —K3 = 22 and Pic(Y) = Z[—Ky]. Using this,
we obtain the following G-equivariant commutative diagram:

P! x P?
pry pro
Pl - P2
x /
g01/ 1 \ cpz
V w U
x /

where ¢; is a fibration into quartic del Pezzo surfaces, ¢» is a conic bundle, V' and U are
smooth weak Fano threefolds, o; and o9 are birational contractions of the surface S to
smooth rational curves, 1; and 15 are small resolutions of the threefold Y, ¢, is a fibration
into quintic del Pezzo surfaces, and ¢, is a P-bundle.

Corollary 5.14.2. Suppose that |H;| contains no G-invariant surfaces. Then ag(Y) >

Proof. By Lemma 1.4.6 and Corollary 1.4.16, we have ac(Y) = ag(V) > 1.

4
5
O

Fix an effective G -action on P!, and consider the corresponding diagonal action on
the surface S = P! x P!. By Lemma A.6.12, the surface S contains unique & -invariant

curve of degree (5,1), and this curve is irreducible and smooth.
Proposition 5.14.3. Suppose that C is Sy4-invariant. Then X and 'Y are K-stable.

Proof. Recall that G = Aut(S,C). Then G = &, by Lemma A.6.12, and

(1) P! does not contain G-invariant points,
(2) P? does not contain G-invariant points,
(3) P? does not contain G-invariant lines,
(4) pry(S) is the unique G-invariant conic in P2.
Indeed, the first assertion is obvious. The remaining assertions follows from the fact that
the G-action on P? is given by an irreducible representation of the group G.

We have ag(Y) > 2 by Corollary 5.14.2, so that Y is K-polystable by Theorem 1.4.7.
Since Aut(Y) = Aut(X) = G, we also conclude that Y is K-stable by Corollary 1.1.6.

Let us show that X is K-stable. Suppose it is not. By Corollary 1.1.6 and Theorem 1.2.5,
there are a G-equivariant birational morphism f: X — X and a G-invariant dreamy prime
divisor F' C X such that S(F) = Ax(F) — Sx(F) < 0. Let Z = f(F). Then Z is not
a surface by Theorem 3.7.1, so that Z is a G-invariant irreducible curve, because X has
no G-fixed points, since P? has no G-fixed points.

Using Lemma 1.4.4, we get ag z(X) < 2. Now, using Lemma 1.4.1, we see that there
are a G-invariant effective Q-divisor D on the threefold X and A\ € Q- such that \ < %,
D ~g —Kx and Nklt(X, AD) contains Z.

We claim that S is the only surface that can be contained in the locus Nklt(X, AD).

Indeed, if Nklt(X, AD) contains a G-invariant surface S, then —Kyx — S is big, so that
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cither S € |2Hy — E|, or S € |Hy|, or S € |H, + 2Hy — E|. But S is the only divisor
in [2H, — E|, and |H;| does not contain G-invariant divisors. Moreover, the surface S is
the fixed locus of the linear system |H; +2H, — E|, and the pencil |H;| is its mobile part,
so that |H; + 2H, — E| contains no G-invariant divisors. Thus, if Nklt(X, AD) contains
a G-invariant surface S, then § = S.

Suppose that Z C S. Let us apply results of Section 1.7 to S and Z. As in Section 1. 7,
we denote by V, the anticanonical ring of the threefold X with its natural filtration, and

we denote by WS its refinement by the surface S. Using Corollary 1.7.26, we see that
cither Sy (S) > 1 or S(W,S., Z) =1 (or both). Let us compute Sx(S). Take a positive
real number u. If 0 < u < 1, then —Kx — uS is nef. On the other hand, if 1 < u < %,
then P(—Kx —uS) = 2H1 +(3—2u)Hy and N(—Kx —uS) = (u—1)E. Finally, if u > 2,
then —Kx — uS is not pseudoeffective. This gives

. 1 [l ~ 1 3
SX(S):%/ (—KX—uS)sdquQ—O/ (2H, + (3 — 2u) Hy) du =
0 1
1 s 1 (2 , 31
=2 /. (20 — 2u° — 6u )du+2—0 6(2u—3)du-E,

so that Sx (S) < 1, which also follows from Theorem 3.7.1. Thus, we have S(W.S,, Z) > 1.

Let us compute S(W,S,, 7). Let ¢1 and {5 be the rulings of the surface S =~ P! x P! that
are contracted by pr; o m and pry o 7, respectively. Then —Kx|g ~ €1 + o, Hi|g ~ {4,
Hylg ~ Uy, E|g ~ 1450y, S|g ~ —f—ly. Thus, we have (—Kx —uS)|g ~gr (14u)(l1+£y).
If1<u< 2, then N(—Kx—uS)|g = (u—1)E|g and P(~Kx —uS)|g ~g 20, + (6 —4u)ls.
Thus, if Z E|z, then Corollary 1.7.26 gives

1 o]
S(W.S.,Z) = 23—0/ / VOl((1+U—v)€1+(1—|—u—5v)€2)dvdu+
o Jo

+% 2 (20, + (6 — 4u)ls)*(u —1)du—|——/ / vol((2 —v)ly + (6 — 4u—5v)ly) dvdu =

1+u
/ / 1+u—v)(1+u—5v)dvdu+2—0/24(6—4u)(u—1)du—i—
1

3 6—4u
3 (5ot 193
d 2(6 — du — 50)(2 — v)dvdu = —— |
+20/1/0 (6 = du = 50)(2 = v)dvdu = 7555

Similarly, if Z # E|z, then

1 00
S(W.SNZ) < 2%/ / vol((1+u—v)ly + (1 +u — v)ls)dvdu+
0 Jo

M9

+ 3 / vol((2 — vty + (6 — du — v)ls)dvdu = — / / 2(1 4+ u — v)*dvdu+
0

20 J,
3
3 5 6—4u 21
— 2(6 —4u —v)(2 — v)dvdu = —
—1—20/1/0 ( u—v)(2 —v)dvdu 0’
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because |Z — {1 — l5| is not empty, since |¢;| and |f3| do not contain G-invariant curves.
Hence, we see that S (WS Z) < 1. The obtained contradiction shows that Z ¢ S.

e .0)

Since Z ¢ S, the curve Z must be an irreducible component of the locus Nklt(X, AD).
Now, applying Corollary A.1.15 to the del Pezzo fibration pr; o 7, we get Hy - Z < 1,
so that Hy - Z = 1, because |H;| does not have G-invariant surfaces. This gives Z ¢ E.
Now, applying Corollary A.1.16 to the conic bundle pr, o 7, we see that Hy - Z < 2.
Then pr, o w(Z) is either a point, a line, or a conic. Since pry, o 7(Z) is also G-invariant,
we have pry o m(Z) = pry(S), so that Z C S, which is a contradiction. O

Thus, we see that general smooth Fano threefold Ne3.5 is K-stable by Theorem 1.1.12.

Remark 5.14.4. Using [160, Theorem 11] and [117, Theorem 1.4], we see that Y has
a smoothing to a Fano threefold Ne1.10. Using Proposition 5.14.3 and Theorem 1.1.12,
we conclude (again) that general smooth Fano threefold Ne1.10 is K-stable.

Recall from [42] that there is unique smooth Fano threefold Ne3.5 whose automorphism
group is infinite. If a3 = ag = ag = by = by = b3 = 0 in (5.14.1), then X is this threefold.
Let us prove that X is K-polystable in this case. To do this, we need two lemmas:

Lemma 5.14.5. Let P be a point in S. Then 6p(X) > 8.

Proof. Recall that S = P! x P!. Denote by ¢; and /5 the rulings of this surface that are
contracted by pr, o and pr, o7, respectively. Let Z be the curve in |f3| such that P € Z.
Let us apply Theorem 1.7.30 to with Y = S using notations introduced in this theorem.

Recall from the proof of Proposition 5.14.3 that S X(g )= %. Moreover, it follows from
the proof of Proposition 5.14.3 that

( + U)£1 + (1 + U)gg if O 1,

—~
~
w
I
L\DI w 2

and
0if0<u<l,

Nwls = (w—1)Cif 1 <u<

DO | W

where C' = EN S. Recall that C' ~ ¢ + 5¢5. We have

6—4u 61
S( oo L 20// 2(1+u)(14+u— v)dvdu—i——/ / 4(6 —4u— v)dvdu_go

and

1+u 2 r6—du 69
S<W.S.Z.7P Fp—l-—/ / (1 + u)*dvdu + O/ / ddvdu = Fp + —,
1 Jo

80
3 r6-4u
2 1
= E/ / 2(u — 1)dvdu = —
0/, J, 20

Hence, it follows from Theorem 1.7.30 that dp(X) > m > 22 as required. O

where Fp =0if P & C and
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Lemma 5.14.6. Let T be a smooth surface in |Hy|, and let P be a point in the surface T
Then dp(X) > 1.

Proof. Using Lemma 5.14.5, we may assume that P & S. First, let us compute Sx (7).
Let u be a non-negative real number. If 0 < u < 1, then the divisor —Kx — uT' is nef.
If 1 < u < 2, the positive part of the Zariski decomposmon of the divisor —Kx — uT is

P(u) = —Kx —uT + (1 — u)S ~g (Q—U)H1+<g—u>5+§E,

and its negative part is N(u) = (u — 1)S. This gives

1 2 _
sX<T):i/ (_KX_UT)3du+i/ (= Kx —uT + (1 - w)8)du =
20 Jo 20 /,
=— IQO—HmMu+l— iu—muﬂ+mk-umu—§9
20/, 20 - 80’

because the divisor —Kx —uT is not pseudoeffective for u > 2. Thus, we have Sx(T') < 1,
which also follows from Theorem 3.7.1.

Since Sx(T') < 1, it follows from Theorem 1.7.1 that dp(X) > 1 if 6p(T;W],) > 1
Recall that from (1.7.4)

WT

e.0)

5p(T;W],) = inf{S(AL ‘ R is a prime divisor over 7" such that P € C’T(R)}

where W[, and S(WT R) are defined in Section 1.7. Let us show that dp(T; W/],) > 1

e.0)

Let C = TN S. Our computations of Sy (7T") give

—KTlf0<U<17
p _ ~
(U)‘T _KT+(1_u)Cif1<u<2,

0if0<u<l,
N = ~
(w)]; (u—1)Cif1 <u<?2.

and

Let R be any prime divisor over T'. Since P ¢ C, it follows from Corollary 1.7.24 that

S(Wl:R) = 20/ / vol(— K7 — vR)dvdu + — / / vol(— K7 4 (1 — u)C)dvdu.

But 7" is a smooth del Pezzo surface of degree 4, so that 6(T') = § by Lemma 2.12. Then

1

! / vol(— Ky — vR)dv < > An(R).
0

4

Therefore, we have

20 20
which implies that 0p(T; W],) > & > 1. O
Both Lemmas 5.14.5 and 5.14.6 hold for any smooth Fano threefold Ne3.5. They give

Corollary 5.14.7. If |H,| does not have G-invariant surfaces, then X is K-polystable.
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Proof. Let T be a general surface in |H;|, let F' be a G-invariant prime divisor over X,
and let Z = Cx(F'). If the pencil |H;| does not contain any G-invariant surfaces, then
the restriction of ¢1|z: Z — P! is surjective, so that the intersection 7'N Z is not empty.
In this case, for every point P € T'N Z, we have ’éX(g)) > 0p(X) > 1 by Lemma 5.14.6, so
that X is K-polystable by Theorem 1.2.5. U

This corollary implies Proposition 5.14.3 and the following result:
Corollary 5.14.8. Suppose that Aut(X) is infinite. Then X is K-polystable.
Proof. We may assume that C is given by uz® + uy® = 0. Then Aut(S,C) is generated

by transformations
([u 2], [z y]) — ([)\5u o), [z /\yD
for A € C* and the involution

([w: o], [z :y]) = ([v:a], [y : ).
Then G = Aut(S,C) = G, X py, and the pencil |H;| does not have G-invariant surfaces,
so that X is X is K-polystable by Corollary 5.14.7. U

5.15. Family Ne3.6. Now, we will construct a K-stable smooth Fano threefold in N3.6.
To do this, let us use assumptions and notations from Section 4.3 assuming that d = 8.
Then Vg = P3. Let ¢ and 7 be automorphisms in Aut(P?) given by (4.3.17) and (4.3.18),
respectively. Let G = (1, 7). Then G = Dg, © = 1y and [' & p2.

Remark 5.15.1. Let n: GL4(C) — PGL4(C) = Aut(P?) be the natural projection, let

0100 0010
1000 000 i
A=1log oo 1| ™B=[] ¢ 0 0
0010 0 i 00

Then A = 7(¢) and B = n(7). Note that (A, B) = 4.Dg, and H°(Ops(1)) splits as a sum
of two different two-dimensional representations of the group (A4, B).

Let L={xg -2y =21 —a3 =0} CP? and let L' = {xg + 23 = 71 + 23 = 0} C P.
Then L and L’ are G-invariant. They are the only G-invariant lines in 3.

Recall from Section 4.3 that X is a blow up of P* along the elliptic curve ¢ = H, N H,,
where Hy = {x§ + o] + Ma3 + 23) = 0} and Hy = {\(af — #{) + 23 — 23 = 0}, and \ is
a non-zero complex number such that A £ 1. Let L be the proper transform on X of
the line L, and let p: X — X be its blow up. Then X is a smooth Fano threefold Ne3.6.
Since the action of the group G lifts to X , we identify G with a subgroup in Aut(X ).

Lemma 5.15.2. One has ag(X) > 1.

Proof. Suppose that Otg()? ) < 1. Since X does not have G-fixed points by Lemma 4.3.12,
we see that X does not have G-fixed points. Thus, applying Theorem 1.4.11 with p =1,
we see that either Theorem 1.4.11(1) does not hold or Theorem 1.4.11(3) does not hold.

Let F be the proper transform on the threefold X of the surface F , where F'is a general
fiber of the del Pezzo fibration ¢: X — P!, If the condition Theorem 1.4.11(3) does not

hold, then X contains a G-invariant curve C' such that F.C < 1. Since X has no G-fixed
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points, we see that p(C) is a G-invariant curve, so that 1 > F-C = p*(F)-C = F - p(C),
which is impossible by Lemma 4.3.12. We see that Theorem 1.4.11(1) holds.

Let R be the p-exceptional surface, and let E be the proper transform on X of the excep-
tional surface E of the morphism 7: X — P3. Then X contains a G-invariant irreducible
normal surface S such that —K ¢ ~g AS+ A for some rational number A > 1 and effective

Q-divisor A on the threefold X. On the other hand, it follows from [88] that
Eﬁ()?) = R>0 [./E\'} + R>0 [R] + R>0 [(71' o p)*(OPS(z)) - E} + R>0 [(ﬂ' o p)*(OPS(l)) - R] .

This implies that S # R. Then p(S) is a surface. Let S = p(S) and A = p(A). Then
—Kx ~q AS + A. Thus, the surface S cannot be normal by Lemma 4.3.12. Since S is
normal, we conclude that S is singular along L. This implies that (S ) is a G-invariant
cubic surface that contains % and is singular along L. Then S ~ (m0p)*(Ops(3))—E—2R,
which contradicts the description of the cone Eff ()/(\' ) given above. U

Then X is K-stable by Theorem 1.4.7 and Corollary 1.1.6, since Aut(X) is finite [42].
Therefore, general Fano threefolds N¢3.6 are K-stable by Theorem 1.1.12.

5.16. Family N23.8. Let X be a smooth threefold in the family Ne3.8. Then X C F; x P2
In fact, the threefold X is a divisor in the linear system |(s o pry)*(Op2(1)) ® pri(Op2(2))|,
where pr, : F; x P2 — F; and pr,: F; x P2 — P? are projections to the first and the second
factors, respectively, and ¢: F; — P? is the blow up of a point. Combining ¢opr; and pr,,
we obtain a morphism o: X — Y such that Y is a smooth divisor P? x P? of degree (1, 2).

Let m: Y — P? and my: Y — P? be projections to the first and the second factors,
respectively. Then o is a blow up of a smooth curve C that is a fiber of the morphism 7.
Let O = m1(C). Then ¢ is a blow up of the point O, and there exists commutative diagram

pra

; X z Y s
)

P! F, ° P2

P2

where ¢ is a natural projection, 6 is a fibration into del Pezzo surfaces of degree 5.

The threefold Y is a smooth Fano threefold Ne2.24. By Lemma A.7.10, we can choose
coordinates ([x : y: 2], [u: v : w]) on P? x P? such that Y is given by one of the following
three equations:

(5.16.1) (vw+u2)x+v2y+w2z =0,
(5.16.2) (vw + )z + (uw +v*)y + w2z =0
(5.16.3) (pow + u?)z + (puw + 0*)y + (puv + w?)z = 0

for some 1 € C such that p? # —1. Recall also that the morphism m; is a conic bundle,
whose discriminant curve is a cubic curve, whose equation is given in Lemma A.7.10. This
cubic curve does not contain O, since C is smooth. For instance, if Y is given by (5.16.3)
and O = [1:1:1], then pu # 2.

217



Proposition 5.16.4. Suppose that one of the following two cases hold:
e O=[1:0:0] and Y is given by (5.16.1),
e O=[1:1:1] and Y is given by (5.16.3) with u # 2 and p® # —1.
Then the Fano threefold X is K-polystable.

Remark 5.16.5. If O =[1:0:0] and Y is given by (5.16.1), then
Aut(X) 2 Aut(Y) = Aut(Y,C) 2 G,,, X o,
so that X is the unique smooth Fano threefold Ne3.8 with an infinite automorphism group.
Vice versa, if O = [1:1: 1] and Y is given by (5.16.3) with u # 2 and p® # —1, then
Aut(X) = Aut(Y,C) = G3,
so that the smooth Fano threefold X is K-stable by Proposition 5.16.4 and Corollary 1.1.6.
Thus, using Theorem 1.1.12, we conclude that general Fano threefolds Ne3.8 are K-stable.

Let E be the exceptional surface of the blow up ¢, and let £’ be the surface pry ' (m2(C)).
Then £ = P! xP! and E' = P! xP!, and E'| is a section of the natural projection £ — C.
Moreover, there exists G-equivariant commutative diagram

X
/ lw <

P! x P2

b1 P2

P! P?

where 7 is a birational contraction of E’ to a curve of degree (4,2), and p; and ps are
projections to the first and the second factors, respectively. Let H; = (o o m1)*(Opz2(1)),
Hg = (0’071'2)*(0@2(1)) and H3 = 9*(Op1(1)) Then —KX ~ H1 + HQ +H3, E~ H1 — H3
and E' ~ 2H2 - H1 + H3.

Lemma 5.16.6. Let P be a point in E. Then 6p(X) > 13

Proof. Let {1 and {5 be the rulings of E = P! x P! contracted by € and pr,, respectively.
OH E, we have H1|E ~ O, H2|E ~ 2€2, H3|E ~ El, E/|E ~ 61 —|—4€2, _KX’E ~ £1 + 262,
E|g ~ —{;. Let C be the curve in |{5] that contains P. By Theorem 1.7.30, we have

1 1 1
0p(X) > min , , ,
P(X) {Sx(E) S(WE,; C) S(Wf:,.;P)}

where S(WE,; C) and S(WE,S; P) are defined in Section 1.7. These two numbers can be
computed using Corollary 1.7.26 and Theorem 1.7.30, respectively.

By Theorem 3.7.1, we know that Sx(E) < 1. Let us compute Sx(F). Take u € R,.
Then —Kx — uF is pseudo-effective <= u < % For u < %, let P(u) be the positive

part of the Zariski decomposition of this divisor, and let N(u) be its negative part. Then
(1—w)Hi+ Hy+ (14+u)Hs if 0 <u <1,

3
and
0if 0 <u<l,

N(u) =
(u) (u—1FEif1<u<
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Therefore, we have Sy (F) = 5; fol 24 — 12u — 6u?) du + 5 f1% 6(3 — 2u)’du = L.
Now, let us compute S(WE,: C). Ifu < 1, then N(u)|g = 0 and P(u)|g ~ (14+u)l;+205.

e

Similarly, if 1 < u < 2, then N(u)|p = (u— 1)E|]E and P(u)|g ~ 20,4 (6 —4u)ly. Observe
that C' # F'|g. Thus 1t follows from Corollary 1.7.26 that

S(Wh;C ):ZT%EEAgAMWMP@ﬂE—mﬁm@u:
:%/01 /Ooovol((1+u)€1+( —v)fz)dvdu—i——/ / vol (201 + (6 — 4u—v)ly) dvdu =

3 1 2 6—4u 11
—2—4/0/02(1—1—u 2—vdvdu—|——// 4(6 — 4u—v)dvdu—12

Finally, let us compute S(WES; P). Using Theorem 1.7.30, we see that

...7

6—4u
S(W.E.C.Vjp Fp—l-—// +u2dvdu+—// 4dvdu—Fp—|—§

6’
where
0if P ¢ E
ﬁ/ / 2(u—1)dvdu:2—ifP§ZE’.
Thus, we have S(WES; P) < I, so that 6p(X) > min {22, 12 81 = 12 a5 required. O

Lemma 5.16.7. Let P be a point in X, and let S be a surface in the pencil |Hs| that
passes through P. Suppose that S is smooth, and P ¢ E. Then 0p(X) > %.

Proof. From Theorem 3.7.1, we know that Sx(F) < 1. Let us compute Sx(E) explicitly.
Let v be a non-negative real number. Then —Kx — uS is pseudo-effective <— u < 2.
For every u < 2, let P(u) be the positive part of the Zariski decomposition of this divisor,
and let N(u) be its negative part. Then

=@ wH, + Hyif1 <u<2

and
0if0<u<l,

NW%Z&u—UEHléuéZ

Therefore, we have Sx(S) = 5 fol (24 — 15u) du + 5= [23(2 — u) (5 — 2u)du = 2

Let ¥ = ENS, and let @w: S — P? be the birational morphism that is induced by pr;.
Then % is a smooth irreducible curve, S is a smooth del Pezzo surface of degree 5,
the morphism ¢ is a blow up of four distinct points in @(%), and w (%) is a conic, so
that € ~ 20 — ey — e — e3 — ey4, where e, ey, e3, e4 are p-exceptional curves, and ¢ is
the proper transform on S of a general line in P2, For every ¢ < j in {1,2, 3,4}, let [;; be
the proper transform on S of the line in the plane P? that passes through the points w/(e;)
and w(e;). Then ey, ey, €3, €4, li2, li3, l14, los, l24, 34 are all (—1)-curves in the surface S.
Observe that |%’| is a base point free pencil, which contains exactly three singular curves:

the curves 112 + 134, l13 + l24, 114 + 123.
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IfPe 112 U 113 U l14 U l23 U 124 U 134, let C be a curve among llg, l13, 114, 123, 124, l34 that
contains the point P. Vice versa, if P & l15 U 13U l14 Uloz3 Ulgy Ulsy, let C' be the unique
smooth curve in the pencil || that passes through P. In both cases, we have C' # %.

Moreover, it follows from Theorem 1.7.30 that dp(X) > min{g, S(WEO;C), S(Wfl’.c,.;P)}’

where S(W2,; C) and S(WJZS,; P) are defined in Section 1.7. Let us compute them.

. 0) e.00)

We have —KSNCK+€ and
C+0if0<u<l,
w)ls R{@—m%+£ﬂ1<u<z

Let v be a non-negative real number, and let 7(u) be the largest real number such that
the divisor P(u)|s — vC' is pseudo-effective. For v € [0, 7(u)], let P(u,v) be the positive
part of the Zariski decomposition of the divisor P(u)|s—vC, and let N(u,v) be its negative
part. Let us describe P(u,v) and N(u,v).

Suppose that P ¢ 112 U l13 U l14 U l23 U 124 U l34. Then C ~%¢. lf u € [0, 1], then

3 1
P(u)‘S—UCY ~r (1 —0)C + 1 ~q <§—’U>O+§(€1+62+€3+64),
so that 7(u) = 2. Moreover, if u € [0,1] and v < 2, then
(1-v)C+if0<v <1,
P(u,v) =
(u.0) (3—2v)0if 1 < g

and
0if0<v <1,

N(u,v) = 3
(v—1)(e1 +ea+es+eq)if 1 <v< <3
If u € [1,2], then P(u)|s —vC ~p 2—u—0v)C+L ~g (2 —u—v)C+3(e1 +ex+es+eq).
so that 7(u) = 2 — u. Furthermore, if u € [1,2] and v < 2 — u, then

2
2—u—0v)C+Lif0<v<2—u,

P(u,v) =
(u,0) b—2u—v)lif2—u<v<

wlcn
;

and
0if0<v<2—u,
N(u,v): . )
(v—24u)(e; + e+ €3+ ey) 1f2—u<v<§—u.

Hence, since C' # €, it follows from Corollary 1.7.26 that

S(We,;C 24// (u,v) uvdvdu—l——// P(u,v)dvdu =
3
// (5— 4vdvdu+—/ /2 (2v — 3)*dvdu+
2 e 4u_4vdvdu+_/ [
24 )1 Jo 2

2u
(5 — 2u — 20v)? dvdu- 9



Similarly, it follows from Theorem 1.7.30 that

S(W.S.Cup Fp+—//4dvdu—|——// (6 — 4v) 2dvdu+
11
(10—4u—4v)2dvdu:Fp+

2—u
il ddvdu + = =
24/1/0 ”“+24 - 12

where Fp =0 if P & e; Uey Ueg U ey, andifP661U62U63Ue4, then

Thus, we have

(10 — 4u — 4v) (v — 2 4+ u)dvdu =

11
2 if PZe UeyUegUey,
21 if PeegUeyUesUey.
Therefore, we see that 0p(X) > min g, %, % = 3; as required. This completes the proof

in the case when P ¢ [15 U l13 U 4 U log U loy U l3y4.
Suppose that P & l15Ul13Ul14Ula3 Ul Ul34. Without loss of generality, we may assume
that P € l15 and C' = lj5. If u € [0, 1], then P(u)|s — vC ~g (2 —v)C + l34 + €1 + €2, sO
that 7(u) = 2. If uw € [0,1] and v < 2, then
{(2—U)C+l34+61+62 if 0 <
P(u,v) = .
(2 — U)(C+lg4 + e +€2) if 1

)

<
v

v<1
<wv <2,

and
Dif0<ov <1,

N =
(w.2) {(U_1)<l34+€1+62)1f 1<v<2.
+

Similarly, if u € [1,2], then P(u)|g — vC ~g (3 —u —v)C + (2 — u)l3s + €1 + €3, so that
7(u) = 3 — u. Hence, if u € [1,2] and v < 3 — u, then

B—u—v)C+(2—u)lzgs+er+eif 0 <v<2—u,
Plu,v) = B-u—v)(C+e +e)+2—u)lyuif2—-—u<v<l,
(S—U—U)(C+l34+61+62) 1f1<v<3—u,

and
0if0<v<2—u,

N(u,v) = ¢ (v—=2+u)(er +e2) if 2 —u <v <1,
(v—=1Dlsyg+(v—24u)(e; +e2) if 1l <v<3—w.
Therefore, using Corollary 1.7.26, we get

S(We,;C 24// (5 —2v — v} dvdu + — // 2(v — 2)*dvdu+

+—// (9—4u—2@—v2)dvdu—|——// (2u? +4uv +v* — 12u — 10v + 17)dvdu+
4 J1 Jo 24 )1 Jou

3 (7 [ 19

— 2(3 —u — v)*dvdu = —.

4/1/1 (3 —u—v)°dvdu 51
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Similarly, it follows from Theorem 1.7.30 that

S(W.S.Cup Fp—l-—// (1+0) dvdu—i——// 4 — 20) 2dvdu+

2—u 3
— 2 el _ IPRY
—|—24/1 /0 (1+wv) clvdu—l—24/1 /2_u(5 2u — v)*dvdu+

+3/2/3_u(6 2u — 2v)*dvdu = F +11
2 ), J, T

where Fp is calculated as follows. If P & e; U ey U3y, then Fp = 0. If P = C N34, then

6 [ 2 6 [2 [3u 5
S 4— 20)(v — Vdvdu + — —2u— 20)(v — 1)dvdu =
24/0/1( v)(v )vu+24/1/1 (6 —2u — 2v)(v — 1)dvdu R

Finally, if P =CNe; or P = C Ney, then

1 2
—E//(4—2U v—ldvdu—i——// 5—2u—v)(v—1)dvdu+
24 Jo i

3—u
2 —2u—20)(v— 1 _ 2
4/1/1 (6 — 2u — 2v)(v — 1)dvdu R

Thus, we have S(W2,; P) < 2I. Then 0p(X) > min {$, 23 21 = 2 > 20 45 required.
This completes the proof of the lemma. O

Using Lemmas 5.16.6 and 5.16.7, we obtain

Corollary 5.16.8. Let G be a reductive subgroup in Aut(X) such that the pencil |Hs|
does not have G-invariant surfaces. Then X is K-polystable.

Proof. Suppose that X is not K-polystable. Then it follows from Theorem 1.2.5 that
there exists a G-invariant prime divisor F' over X such that 5(F) = Ax(F)— Sx(F) < 0.
Let Z = Cx(F). Then the restriction of 6|z: Z — P! is surjective, because otherwise
the pencil |H3| would contain a G-invariant surface.

Let S be a general surface in |H3|. Then S is a smooth, and SN Z # &. Therefore, for

any point P € SN Z, we have g‘X—(FF) > dp(X) > 1 by Lemmas 5.16.6 and 5.16.7, which

is a contradiction, since Ax(F) < Sx(F). O

Now, we can prove our Proposition 5.16.4. If O =[1:0: 0] and Y is given by (5.16.1),
let G be the subgroup in Aut(Y') that is generated by the involution

(z:y:2lutv:w]) = (v:z:y) fu:w:u)
and the self-maps ([z : y : 2],[u: v : w]) = (N2 :y: Xz],[Au: A2 @ w]) for A € C*.

Likewise, if O = [1: 1: 1] and Y is given by (5.16.3) with u # 2 and p? # —1, we let G
be the subgroup in Aut(Y’) generated by the involution

(zry:2utviw]) = (y:z: 2], [v:u:w)
and the self-map ([z:y: zl,[u:v:w]) = ([y:z:z],[v:w:u]). Then G = G,, x p, in
the former case, and G = G3 in the later case. In both cases, the curve C is G-invariant,
so that the G-action lifts to the threefold X. Moreover, it is not hard to check that
the pencil |Hs| does not contain G-invariant surfaces, so that X is K-polystable in both

cases by Corollary 5.16.8.
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5.17. Family Ne3.10. Now, we solve Calabi Problem for all smooth Fano threefolds in
the family Ne3.10 similar to what we did in Section 4.7 for the family Ne2.24.

Let Q be a smooth quadric threefold in P4, let C; and Cy be two disjoint smooth
irreducible conics in @), and let X be the blow up of the quadric () in these two conics.
Then X is a smooth Fano threefold Ne3.10, and every smooth threefold in this family can
be obtained in this way. Moreover, we may assume that C; = {w? + 2t = x = y = 0}
and Cy = {w? + 2y = z = t = 0}, where z, y, 2, t, w are coordinates on P*. Then, using
an appropriate coordinate change, we may assume that the quadric @) is given by one of
the following three equations:

(3) w?+azy+zt+a(xt+yz)+b(rz+yt) = 0, where a € C > b such that ab+1 # 0;
(3) w? + 2y + 2t + a(xt + y2) + xz = 0, where a € C such that a # +1;
() w?+ a2y + 2t +at + 22 = 0.

The goal of this section is to prove the following result:
Proposition 5.17.1. The threefold X is K-polystable <= @ is given by (3).

In all three cases, we have the following commutative diagram:

(5'17.2) / \

where §; is a rational map given by [z :y : z : t : w] — [z : y], the map Js is a rational
map given by [z :y:z:t: w]— [z:t], the map w is a rational map

[y zitiw = ([z:yl [z:4]),

the maps m; and 79 are blow ups of the quadric () at the conics C and C5, respectively,
the maps o and as are blow ups of the proper transforms of the these conics, respectively,
both §; and fy are fibrations into quadric surfaces, both 7; and 7, are fibrations into
sextic del Pezzo surfaces, n is a conic bundle, and pr; and pr, are natural projections.
Occasionally, we will consider [z : y] and [z : t] as coordinated on P! x P!

Let % be the discriminant curve in P! x P! of the conic bundle 7. Then ¢ has at most
nodal singularities, and its degree is (2,2). If @ is given by (3), then € is given by

a? (2 +y*2%) + 2ab(zy2® + wyt® + zta® + 2ty?) + 0* (72" + %) +2(a® + 0% — 2) yzat = 0.

If ab # 0, the curve % is irreducible and smooth, which also implies that Aut(X) is finite.

If a = 0or b= 0 (but not both), the curve % is reducible: it splits as a union of two smooth

curves of degree (1,1), which meet at two points. In this case, we have Aut’(X) = G,,.

Similarly, if @ = 0 and b = 0, then Aut’(X) = G2, and the curve % is given by zyzt = 0,

so that X is the unique smooth Fano threefold Ne3.10 that admits an effective G2 -action.
In the quadric @ is given by (J), then % is given by the following equation:

a’t?2® + (2a* — 4)zyzt + 2atza® + a*y?2* + 2ay2’x + 22 = 0.

If a # 0, this curve is irreducible and has one node, which implies that Aut(X) is finite.

On the other hand, if @ = 0, then the defining equation simplifies as zz(zz — 4yt) = 0,
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so that the curve % splits as a union of 3 smooth curves of degree (0, 1), (1,0) and (1,1),
which meet transversally at 3 distinct points. In this subcase, we have Aut’(X) = G,,.
Finally, if @ is given by (), then the curve € is given by 2x(t?x+2txz —4tyz+x2?) = 0,
so that % is a union of a curve of degree (1,0) and a smooth curve of degree (1,2), which
implies that Aut(X) is also finite in this case.
Let H be the pull back on X of a general hyperplane section of the quadric threefold @),
let E4 be the aq-exceptional surface, and let Ey be the as-exceptional surface. Then
Eff(X) =Rso[E1] + Roo[Er] + Rao[H — Ei] + Rog[H — Es] + Rso[2H — By — Es,

the del Pezzo fibration v, is given by |H — Ej|, the fibration 7, is given by |H — Es|, and
the conic bundle 7 is given by the linear system [2H — E; — Es|.
Let us show that X is K-polystable in the case when @ is given by (3).

Lemma 5.17.3 ([193, Theorem 1.1]). Suppose that Q is given by (3) and a = b = 0.
Then X s K-polystable.

Proof. Let G be the subgroup in Aut(P*) generated by the following transformations:

[x:y:
Dy
Sy
Sy
cyrzitiw| e [sriy/s ozt w],

trwl e zitix iy wl,

8

trw

8
IS SRS SRS SR\

tiw

8

— o

8

where 7 € C* and s € C*. Then G = G2, x (u3 X p,), the quadric Q is G-invariant, and
the locus C7 UC} is G-invariant, so that the action of the group G lifts to the threefold X.
Therefore, we may identify G with a subgroup in Aut(X). Now, applying Theorem 1.4.11,
we obtain ag(X) > 1, so that X is K-polystable by Theorem 1.4.7. O

Lemma 5.17.4. Suppose that Q is given by (3) and ab = 0. Then X is K-polystable.

Proof. By Lemma 5.17.3, we may assume that a # 0 or b # 0. Without loss of generality,
we may assume that a # 0. Then b = 0. Let G be the subgroup in Aut(P*) generated by

[ry:z:tiw—=ly:x:it:z:w),
[Try:z:t:w—=z:t:x:y:w,
[xiy:z:it:w = [x/s:ys:z/s:ts:w],

where s is any non-zero complex number. Then @ is G-invariant, and G = (G,,, X 5) X fo.
Moreover, the locus Cy U C5 is G-invariant, so that the G-action lifts to the threefold X.
Therefore, we may identify G with a subgroup in Aut(X). Note that ag(X) < 2.

Observe that X does not have G-fixed points, because () does not have G-fixed points.
The conic bundle 7 in (5.17.2) is G-equivariant, and G acts on P* x P! such that P! x P!
does not contain G-fixed points, P! x P! does not contain G-invariant curves of degree
(1,0) or (0,1), and the only G-invariant curves in P! x P! of degree (1, 1) are the curves
given by xt + yz = 0 and xt — yz = 0.

Suppose X is not K-polystable. By Theorem 1.2.5, there exists a G-equivariant bira-
tional morphism f: X — X such that S(F) = Ax(F) — Sx(F) < 0 for some G-invariant
dreamy prime divisor F' C X. Let Z = f(F). Then Z is not a surface by Theorem 3.7.1.

Thus, since X does not contain G-fixed points, Z is a G-invariant irreducible curve.
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Using Lemma 1.4.4, we conclude that ag z(X) < Z%. Thus, by Lemma 1.4.1, there is
a G-invariant effective Q-divisor D on the threefold X such that D ~g —Kx and Z is
contained in NklIt(X,AD) for some positive rational number A < 2. By Theorem A.1.7,
the locus Nklt(X, AD) is connected. Moreover, since D ~q 3H — E; — E», either the locus
Nklt(X, AD) is one-dimensional, or it contains one G-invariant surface, which is contained
in |2H — E; — Es|. In the former case, the G-invariant surface in Nklt(X, AD) is mapped
by the conic bundle 7 to a G-invariant curve in P! x P! of degree (1,1).

If Z is not contained in a two-dimensional component of the locus Nklt(X, AD), then
applying Corollary A.1.15 to (X,AD), we get (H — Ey)-Z < 1 and (H — Ey) - Z < 1,
so that either n(Z) is a point, or n(Z) is a G-invariant irreducible curve of degree (1, 1).
If Z is contained in a two-dimensional G-irreducible component of the locus Nklt(X, AD),
then this component is mapped by 1 to a G-invariant curve of degree (1,1) in P! x P
Hence, either n(Z) is a G-invariant point, or n(Z) is a G-invariant curve of degree (1, 1).
Since P! x P! contains no G-fixed points, we see that n(Z) is a curve given by xt +yz = 0.

Let S be the unique surface in |2H — E), — Fs| that contains Z, let S be its image in Q.
Then S = {w? + xy + 2t + a(xt +yz) = 2t £ yz = 0}, so that S is a singular quartic del
Pezzo surface, whose singular locus consist of 4 points. If n(Z) is given by zt + yz = 0,
these points are [1 : 0: =1:0:0},[1:0:1:0:0],[0:1:0:—=1:0],[0:1:0:1:0].
Similarly, if 7(Z2) is given by at — yz = 0, then the surface S is singular at the following
points: [-a++va?>—=1:0:1:0:0]and [0: —a£++va?>—1:0:0:1]. In both cases,
the surface S contains O and Cy, and Sing(.S) is disjoint from these conics, so that S = S.

Let H = H|g, C1 = Ei|s, Co = Eslg. Then |Cy| and |H — C;| are base point free pencils,
and the surface S contains two curves ¢ and ¢’ such that C; ~ Cy ~ 20 and H — C; ~ 20'.
Then (2 = (f’)2 =0and (-0 = % One has H ~ 2(+2¢'. Moreover, there are non-negative
integers n and m such that Z ~g nl +mt'. If n =0, then (2H — Ey; — Ey) - Z =0, so
that n(Z) is a point, which is impossible. Then n > 1, so that Z — ¢ is pseudo- effectlve

Let us apply results of Section 1.7 to S and Z using notations introduced in this
section. First, we note that Sx(S) < 1 by Theorem 3.7.1. Hence, using Corollary 1.7.26,
we conclude that S(W2,; Z) > 1. Let us show that this is not the case.

Let u € Ry, let v € Ry, let P(u) = P(—Kx —uS) and let N(u) = N(—Kx — uS).
Then — K x —u.S is not pseudoeffective for u > %, since — Ky —uS ~p (%—u)S+%(E1+E2).
Moreover, if 0 < u < 1, then P(u)|s —vZ ~g (2—nv)l+ (6 —4u—mv)l on the surface S,
because N(u) = 0 and P(u) = —Kx — S in this case. Similarly, if 1 < u < 3, then we
have P(u)|s —vZ ~g (6 —4u —nv)l + (6 — 4u —mv)l’, because N(u) = (u— 1)(E; + E»)
and P(u) = (3 — 2u)H in this case. Thus, if Z = C; or Z = C, then

S(WsZ) = 236 /3(6 4u)?(u — 1)du + —/ / Vol —20)0+ (6 — 4u)€’> dvdu+

—/2/ Vol (6—4u—2v)€+(6—4u)€'>dvdu:

1
(2 —2v) 4 — du—2 4 =
104 / / v)(6 — 4u)dvdu + / / (6 —4u — 2v)(6 — 4u)dvdu = 3

Likewise, if Z # C; and Z # C, then S(W,S,, S(W2,;€) = 2. Thus, in every case we
have S (W,S., Z) < 1, which is a contradiction, since we proved earher that S(W2,;: Z) > 1.
The obtained contradiction shows that X is K-polystable. O
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Lemma 5.17.5. Suppose that Q is given by (3) and a =b. Then X is K-polystable.

Proof. By Lemma 5.17.3, we may assume that a = b # 0. Then the curve % is smooth,
and the group Aut(X) is finite. Let G be the finite subgroup in Aut(P*) generated by

[Try:z:t:w=ly:x:z:t:w),
[y z:it:w—[ry:t:z:w,
[Try:z:t:w—=z:t:x:y:w,
[T:ry:z:t:w—[r:y:z:t:—wl.

Then G = p, X (43 X p,), the quadric @ is G-invariant, and C; U Cy is G-invariant.
The action of the group G lifts to X, and we may identify G with a subgroup in Aut(X).
Then X contains no G-fixed points, 1 is G-equivariant, and G acts on P! x P! such that
the only G-fixed points in P! x P! are ([1:1],[1:1]) and ([1 : —1],[1 : —1]), P! x P! does
not contain G-invariant curves of degree (1,0) or (0,1), and the only G-invariant curves
of degree (1,1) in P! x P! are reducible curves (z —y)(z —t) = 0 and (z +y)(z +¢) = 0.

Suppose X is not K-polystable. By Theorem 1.2.5, there is a G-invariant prime divisor
F over X such that 5(F) = Ax(F)—Sx(F) < 0. Let Z = Cx(F). Then Z is not a surface
by Theorem 3.7.1, so that Z is a G-invariant curve, since X has no G-fixed points.

Arguing as in the proof of Lemma 5.17.4, we see that either n(Z7) is a G-invariant point,
or n(Z) is an irreducible G-invariant curve of degree (1,1). But P! x P! does not contain
irreducible G-invariant curves of degree (1,1). Thus, we conclude that n(Z) is a point.
Then either n(Z) = ([1: 1],[1:1]) or n(Z) = ([1 : =1],[1 : —1]), so that n(Z) & €, which
implies that Z is a smooth fiber of the conic bundle 7.

Let S be the unique surface in the linear system |H — E;| that contains the curve Z,
and let S be its image in . Then S is a smooth quadric surface, C; C S, and S intersects
the conic Cy transversally in two points, so that S is a smooth sextic del Pezzo surface,
and 7 0 0y = Ty 0 ay induces a birational morphism ¢: S — S that is a blow up of
the intersection points S N Cy. We have Ey|g = e, + ey, where e; and e, are (—1)-curves
in S contracted by ¢. We also have Ei|g ~ H‘S ~ U1 4+ l5 + e + ey, where /1 and /5
are (—1)-curves in S such that ¢(¢;) and ¢(f2) are intersecting lines that pass through
the points ¢(e;) and p(ey), respectively. Then Z ~ €1 + ls.

As in the proof of Lemma 5.17.4, we are going to apply results of Section 1.7 to S and Z.
By Theorem 3.7.1, we have Sx(S) < 1, so that S(W>,; Z) > 1 by Corollary 1.7.26.

Let P(u) = P(—Kx —uS) and N(u) = N(—Kx — uS), where u is a non-negative real
number. Observe that —Kx —uS ~g (2—u)S+(H —Es)+Ey ~g (3—u)H—(1—u)E, — E».
Then —Kx —uS isnef <= u € [0, 1], and —Kx —uS is pseudo-effective <= u € [0, 2].
Moreover, we have

(u _{(3—2u)Hif1<u<2,

and N(u) = (u—1)F; if 1 < u < 2. Let v be a non-negative real number. If u € [0, 1],
then P(u)|s —vZ ~g (2—v)(¢1+¥{2) + €1 + ez, so that P(u)|s —vZ is not pseudo-effective
for every v > 2. In this case, if v € [0, 1], then the divisor P(u)|s—vZ is nef. Furthermore,
if v € [1,2], then its Zariski decomposition is

P(U)ls — v/ ~R (2 —’U)(gl +€2 + e +82) —|—(U — 1)(61 —|—62>.

> .
v~ v

positive part negative part
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Similarly, if u € [1,2], then P(u)|s —vZ ~g (3—u—v)(l1 +3)+ (2—u)(e; +€2), so that
the divisor P(u)|s — vZ is not pseudo-effective for v > 3 — u. Moreover, if v € [0, 1], then
this divisor is nef. Finally, if 1 < v < 3 — u, then its Zariski decomposition is

u)‘S—UZNR (3—u—v)(€1+€2—|—e1+e2)+(v—1)(e1—|—e2).

TV .\r
positive part negative part

Thus, we have
S(W.S.,Z i/‘ / 2—1})(€1+€2) +€1+62> dvdu—+
3 / / 2—@)(€1+€2+e1+e2)> dvdu+
0
/ / ( —Uu—" (£1+€2>+<2—u)(81+62)> dvdu—+
3—u 2
—/ / (3—%—@)(£1+£2+61+82)> dvdu =

// (6 — 4vdvdu—|——// (2 — v)*dvdu+
+i//2(2—u) —u—20dvdu+—/ /3u 3—u—v)idvdu = 5
26/, Jo a4

The obtained contradiction completes the proof of the lemma. Il
Now, combining the proofs of Lemma 5.17.4 and 5.17.5 together, we obtain
Lemma 5.17.6. Suppose that Q is given by (3). Then X is K-polystable.

Proof. By Lemma 5.17.3, we may assume that a # 0 and b # 0. Then % is smooth, and
the group Aut(X) is finite. Let G be the finite subgroup in Aut(P*) generated by

[Try:z:t:w =y z:t:z:w),
[Try:z:t:w—=[z:t:x:y:w,
[Try:z:itiwl—riy:z:t:—wl.

Then G = p3, the quadric Q is G-invariant, and the locus C; U Cy is G-invariant, which
implies that the G-action lifts to X, so that we may identify G with a subgroup in Aut(X).
Observe that X does not have G-fixed points, because ) does not have G-fixed points.

Recall that the conic bundle 7 in (5.17.2) is G-equivariant, and G acts on P! x P! such
that ([1: 1],[1 : 1]) and ([1 : —1],[1 : —1]) are the only G-fixed points in P! x P!  and
P! x P! contains no G-invariant curves of degree (1,0) or (0, 1). Moreover, the G-invariant
curves of degree (1, 1) in P! x P! can be described as follows: {zt = yz}, {zt = yz}, and all
curves in the pencil P that is given by r(zt+yz) = s(zz+uyt), where [r : s] € P!. Note that
the pencil P contains two reducible curves: {(x —y)(z —t) = 0} and {(z +y)(z+1t) = 0},
which correspond to [r:s] =[1:1] and [r: s] = [1 : —1], respectively.

Suppose X is not K-polystable. By Theorem 1.2.5, there exists a G-invariant prime
divisor F' over X with B(F) < 0. Let Z = Cx(F). Then dim(Z) < 1 by Theorem 3.7.1,

so that Z is a G-invariant irreducible curve, because X does not have G-fixed points.
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Arguing as in the proof of Lemma 5.17.4, we see that either n(Z) is a G-invariant
point, or n(Z) is an irreducible G-invariant curve of degree (1,1). Furthermore, if n(2)
is a point, then n(Z) € €, so that Z is a smooth fiber of the conic bundle 7. In this
case, for all admissible a and b, the unique surface in |H — E;| that contains the curve Z
is a smooth sextic del Pezzo surface, so that we are exactly in the situation of the proof
of Lemma 5.17.5 and, therefore, we can obtain a contradiction arguing exactly as in this
proof. This shows that n(Z) is a curve of degree (1,1).

Let S be the surface in |2H — E; — E,| that contains Z, and let S be its image in Q.
Then S is a quartic del Pezzo surface that contains C; and C,. Since a # 0 and b # 0,
either the surface S is smooth, or S has exactly two isolated ordinary double points.
Furthermore, if S is singular, its singular locus is disjoint from the conics C; and C,.
We will provide explicit computations in the end of the proof. In particular, one has S = S.
Now, we can proceed as we did in the proof of Lemma 5.17.4.

Namely, let us apply results of Section 1.7 to S and Z using notations introduced in
this section. By Theorem 3.7.1, we have S(V4;S) < 1. Hence, using Corollary 1.7.26, we
conclude that S(WJ,; Z) > 1. Let us show that this is not the case.

Let H = H|g, C; = E1|s and Cs|s. Then C; ~ Cs, both |C;| and |H — C;| are base point
free pencils. Let C’' be a general curve in |[H —C|. Then C? =0, (C')?=0and C, -C' = 2.

Suppose that Z ~g 5C; + FC’ for some non-negative integers n and m. Then n > 1,
since otherwise 7(Z) would be a point, which is not the case. Thus, if Z # C; and Z # Cs,
then to estimate S (W,S,, Z) from above we may assume that n = 1 and m = 0. In this
case, arguing as in the proof of Lemma 5.17.4, we see that

S(WS Z) :i/l/oovol (1—1v>cl+(3_2u)cl dvdu—l—
e.0) 26 0 0 2
3 [2 [ 1 /
_6/1 /0 v01<<3—2u—§v>Cl+(3—2u)C>dvdu—
3 ! 2 1 6—4u 51
_6/0 /0 4(1—51) 3 2u) dvdu—i——/ / 3 2u——v>(3 4u)dvdu_52

Similarly, if Z = C; or Z C,, then arguing as in the end of the proof of Lemma 5.17.4,
we obtain S(W,S,, Z) = 5. Thus, we see that S(W,S,, Z) < 1, so that X is K-polystable.

To complete the proof of the lemma it is enough to show that every G-invariant curve
on the surface S is Q-rationally equivalent to 3(nC;+mC’) for some n € Zzq and m € Zx,.
Since S 22 S, we identify S = S, so that now S is a quartic del Pezzo surface in P*.

Suppose that n(Z) is given by xt = yz. Then S = QN{xt = yz}. Therefore, the projec-
tion [z:y:z:t:w]— [z:y:2:t] induces a G-equivariant double cover ¢: S — Y such
that Y is the smooth quadric surface in P? that is given by zt = yz, and the ramification
divisor of the double cover ¢ is the curve Y N{zy+ 2zt +a(xt+yz) +b(zz+yt) = 0}, where
we consider x, y, 2, t as coordinates on P3. Explicit computations shows that R is smooth,
sinceatb#1,axb# —1and b # 0. Then S is also smooth. Since the involution of
the double cover ¢ is contained in G, every G-invariant curve in .S is rationally equivalent
to ¢*(D) for some D € Pic(Y'), which implies the required assertion.

Similarly, we see that the required assertion holds when 7(Z) is given by xt = yz.

Therefore, we can proceed to the case when 7(Z) is an irreducible curve in the pencil P.
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In this case, we have S = QN {r(zt+yz) = s(xrz+yt)}, where r and s are some numbers
such that (r,s) # (0,0), [r:s] # [1:1], [r:s] # [1:—1]. As in the previous case, there
exists a G-equivariant double cover ¢: S — Y such that Y is the quadric in P? given by
r(zt +yz) = s(xz + yt),
and the ramification divisor of ¢ is the curve R = Y N{zy+zt+a(xt+yz)+b(xz+yt) = 0}.
Since [r:s] # [1: 1] and [r : s] # [1 : —1], one can check that the quadric Y is smooth.
Thus, if the curve R is smooth, we obtain the required assertion as in the previous case.
Therefore, we may assume that the curve R is singular.

Since R is singular, explicit computations show that br+(a+1)s = 0 or (b£1)r+as = 0.
In the former case, we have R =Y N{(x £ 2)(t £y) = 0}. Similarly, if (b+1)r+as =0,
then R =Y N{(y =+ 2)(t £ ) = 0}. In each case, the curve R splits as a union of two
smooth conics R; and R, that intersect transversally at two points, so that S has two
isolated ordinary double points, which are disjoint from C7 U 5. As in the previous case,
we see that every G-invariant Cartier divisor on S is rationally equivalent to ¢*(D) for
some D € Pic(Y'). Since any Weil divisor on S becomes Cartier once it is multiplied by 2,
the assertion follows. This completes the proof of the lemma. Il

Corollary 5.17.7. If Q) is given by (3) or (7), then X is strictly K-semistable.

Proof. We only consider the case when @ is given by (1), because the other case is similar.
Suppose that @ is given by (J). Let Q, = {w? + zy + 2t + a(xt + yz) + szz = 0} C P4,
where s € C. Then the quadric ), is smooth, and () contains both conics C; and Cs.
Let Xy — Q4 be the blow up of the conics € and C5. Scaling coordinates z, y, 2, t, w,
we see that X, = X for every s # 0. This gives us a test configuration for X, whose
special fiber is X, which is a K-polystable smooth Fano threefold Ne3.10 by Lemma 5.17.6.
Then X is strictly K-semistable by Corollary 1.1.14. U

Thus, Proposition 5.17.1 is completely proved.

5.18. Family Ne3.12. Let C be a twisted cubic in P3, and L be a line in P? that is
disjoint from the curve C, let m: X — IP3 be the blow up of the curves L and C. Then X
is a Fano threefold Ne3.12. Moreover, every Fano threefolds Ne3.12 can be obtained this
way. Observe that we have the following commutative diagram:

(5.18.1) P! x P2
b1y pro
¢
n X o
//ﬂ \\
Py ¢ v—° - P?
R U

where ¢ is the blow up of the line L, # is the blow up of the curve C, ( is the contraction
of the proper transforms of the (quartic) surface in P? that is spanned by the secants of
the curve C' that intersect the line L, £ is a P'-bundle, v is a P?-bundle, ¢ is a (non-
standard) conic bundle, 7 is a fibration into del Pezzo surfaces of degree 6, the left dashed

arrow is the linear projection from the line L, the right dashed arrow is given by the linear
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system of quadrics that contain C, and pr; and pr, are projections to the first and
the second factors, respectively.

Let H be a plane in P3, let E; be the exceptional surface of 7 that is mapped to L, let
E¢ be the exceptional surface of 7 that is mapped to C, and let R be the (-exceptional
surface. Then R ~ n*(4H) — 2E¢ — Ey,. This gives —Kx ~g 1R+2(7"(H)— EL) + 2Ey,
Thus, for every subgroup G C Aut(X), one has ag(X) < %, because R, E;, and the linear
system |7*(H) — Ep| are all G-invariant.

In this section, we prove that one special Fano threefold Ne3.12 is K-polystable. Namely,
starting from now, we assume that L is the line xy = x3 = 0, and the twisted cubic C' is
given by [s® : s%t : st : t3], where [s : t] € PL. Let G be the subgroup in Aut(P?) that is
generated by the involution [zg : xq : 9 : 23] — [x3: 22 1 21 : 2], and automorphisms

To:X1:Ty: T3] — xoztxl:t2x22t3x3,
[ =1

where t € C*, and x¢, 71, o3, x3 are coordinates in P3. Then G = G,, X p,, and
the curve C' is G-invariant. Thus, the action of the group G lifts to the threefold X, and
the diagram (5.18.1) is G-equivariant. By [42, Lemma 4.6], the threefold X is the unique
smooth Fano threefold Ne3.12 that has an infinite automorphism group.

Proposition 5.18.2. The Fano threefold X is K-polystable.

Thus, by Corollary 1.1.17, general smooth Fano threefolds Ne3.12 are K-stable.

The proof of Proposition 5.18.2 is very similar to the proof of Proposition 4.4.1 in
the case (2.22.D). As in the proof of Proposition 4.4.1, we first need to collect some
information about G-invariant subvarieties in P3. To do this, we denote by S, the quadric
surface in P? that is given by zgx3 = 2129, and we denote by L’ the line in P? that is given
by z1 = 23 = 0. For every ¢ € C*, we let C, be the twisted cubic [s* : gs*t : gst® : 7],
where [s : t] € P'. Then S;, L’ and C, are G-invariant, L N L' = & and C' = C}. Finally,

we let Sy be the non-normal quartic surface in P? that is given by z323 = zo3.

Lemma 5.18.3. The following assertion holds:

(i) P? contains neither G-fized points nor G-invariant planes,

(ii) Sy is the only G-invariant quadric surface in P that contains C,

(iii) L and L' are the only G-invariant lines in P3,

(iv) L, L' and C, are the only G-invariant irreducible curves in P3,

(v) Sy contains all G-invariant irreducible curves in P?,

(vi) LNQ@=1[0:1:0:0/U[0:0:1:0}, /NC=L'"NnQ=[1:0:0:0]U[0:0:0:1].

Proof. Left to the reader. U
Corollary 5.18.4. The threefold X does not contain G-fized points.

Let us prove Proposition 5.18.2. Suppose X is not K-polystable. By Theorem 1.2.5,
there exists a G-invariant prime divisor F over X such that f(F) = Ax(F)— Sx(F) < 0.
Let us seek for a contradiction. Let Z = Cx(F'). Then Z is not a point by Corollary 5.18.4,
and Z is not a surface by Theorem 3.7.1, so that Z is a G-invariant irreducible curve.

Lemma 5.18.5. One has Z ¢ Ep.

Proof. Suppose that Z C Ep. Observe that E;, = P! x P!. Let s be the section of

the natural projection E; — L such that s> = 0, and 1 be the fiber of this projection.

Then Ep|lp, ~ —s+ 1, 7*(H)|g, ~ £, R|g, ~ s+ 3l, and Ec and E}, are disjoint. Note
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that Fj contains exactly two G-invariant irreducible curves. One of them is R|g,, and
the other one is cut out on E by the proper transform on X of the surface S;. Thus, we
conclude that Z ~ s + 31

Let us use notation introduced in Section 1.7. By Theorem 3.7.1, we have Sx(EL) < 1.
Thus, we conclude that S(WJE; Z) > 1 by Corollary 1.7.26. Let us compute S(W[/F; Z).
Take u € Rxg. Observe that —Ky—uEy, ~g $R+2(m*(H)—EL)+(2 —u)Eyr, which implies
that —Ky — uE is pseudo-effective if and only if u < 3. Let P(u) = P(—Kx — uFEy)
and N(u) = N(—Kx —uFEyp). Then

—KX—uELlf()guél,

P(u) = .
(8—4du)m*(H) — (3—2u)Ec —2EL if 1 <u <

DO | o

and
0if0<u<l,

N(u) =
() (u—1Rif1<u<

[\CR V]

Take any v € Roo. If u € [0,1], we have P(u)|g, —vZ ~g (1 +u—v)s+ (3 —u — 3v)L
Similarly, if u € [1,3] and v € Ry, then P(u)|g, —vZ ~g (2 — v)s + (6 — 4u — 3v)L.
Hence, if Z = R|f, , then Corollary 1.7.26 gives

5 /12 (u—1)EL - ((8 —du)m*(H) — (3 — 2u)Ec — 2EL)2du+

28

:%/24(u—1)(6 4udu+—// 2(1 —u—v)(3 — u— 3v)dvdu+
1

SWrk2) =

.0 )

9
2(2 —v)(6 —4u — 3v)dvdu = — < 1.
v) u — 3v)dvdu 5%

Similarly, if Z # R|g,, then S (WEL Z) = 55 < 1. The obtained contradiction completes

o0 )

the proof of the lemma. O

Let @ be the proper transform of the quadric surface Sy on the threefold X.

Lemma 5.18.6. One has Z ¢ Q.

Proof. Suppose that Z C ). Let us seek for a contradiction. Recall that 7(Q) = S5 is
a smooth quadric surface in P? that is given by xgxs = x125. It contains the twisted cubic
curve C, and it does not contain the lines L and L’. Let us identify Sy = P! x P! such that
C is a curve in Sy of degree (1,2). Then 7 induces a birational morphism w: @ — P! x P!
that is a blow up of two intersection points S, N L, which are not contained in the curve C'.
Moreover, the surface () is a smooth del Pezzo surface of degree 6, because the points of
the intersection Sy N L are not contained in one line in Sy by Lemma 5.18.3.

Let us use notation introduced in Section 1.7. By Theorem 3.7.1, we have Sx(Q) < 1.
Then S(WE,; Z) > 1 by Corollary 1.7.26. Let us show that S(W&,; Z) < 1, which would

[ ] .’
give us the desired contradiction.
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Take u € Ryg. Then —Kx —uQ ~g 27" (H)— EL+ (1 —u)(27*(H) — E¢), which implies
that —Kx — u@ is nef for every u € [0, 1]. On the other hand, we have

—Kxy —uQ ~g (4 —2u)(7*(H) — EL) + (3 = 2u)E + (u — 1) Ec,
so that the divisor —Kx — uS is pseudo-effective <= u € [0, g] Moreover, we have

— Ky —uQif 0 <u<l,

PO B =uQ) =0 (4 oye (i) — By if 1 < <

)

l\DIOJ

and N(—Ky—uQ) = (u—1)E¢ if 1 < u < 2. For simplicity, we let P(u) =
and N(u) = N(—Kx —uQ).

Let us introduce some notation on (). First, we denote by ¢; and ¢, the proper trans-
forms on @ of general curves in P! x P! of degrees (1,0) and (0, 1), respectively. Second,
we denote by e; and e; the exceptional curves of . Third, we let Fi1, Fia, Fo1, Fb be
the (—1)-curves on @ such that Fyy ~ 0y — ey, Flg ~ {1 — eg, [y ~ Uy — ey, Fog ~ ly — €.
Then W*(H)‘S ~ 4 U, EL‘S =e; + ey and E0’5 ~ 0+ 20,

It follows from Lemma 5.18.3 that either Z = E¢|g or n(Z) = C_;. In both cases, we
have Z ~ (1 4 2(5. Moreover, if Z # E¢|g, then Corollary 1.7.26 gives

S(WaiZ) = o / / Vol —v(€1+2€2 dvdu / / vol —Ml)dvdu.

Similarly, if Z = E¢|g, then

SWe:7z) = % /O (P(u)-P(u)Q)ords (N(u), du+% /‘3’ /Oovol (P(w)| =07 ) dvdu =

:238 12(u—1)((4—2u)7r*(H) EL) (2" (H)—Ec du—|—28/ / Vol —UZ)dvdu:

—i 3(u—l)(2(4 2u)? — 2) du+—/ / Vol —vZ)dvdu:

224 = / / vol —v(el+2£2)>dvdu\@+% / / vol —vfl)dvdu.

Thus, to show that S(WE,;Z) < 1, it is enough to show that the integral in the right

.0’

hand side of the last formula is less that ;;Z

Suppose that u € [0,1]. Take v € Rg. Then

~—

P(—KX—UQ)

P(—KX — U,Q)|Q — UZ ~R (3 — U,)El + 262 — €1 — €9 VR (3 — U)gl + Fgl + ng,

so that P(—Kx — uQ)! o — vZ is not pseudo-effective for v > 3 — u. Taking intersections

with Fy and Fyy, we see that the divisor P(—Ky — uQ)’Q —vZ is nef for v < 2 — w.
Similarly, if 2 — u < v < 3 — u, then its Zariski decomposition is

(3 —Uu— ’U)(gl + F21 + F22) + (U +u— 2)<F21 + F22 .

(.

Vv Vv
positive part negative part
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Therefore, if v € [0,1] and 0 < v < 3 — u, then
483—u—v)—2ifv <2 —u,
VOI(P(_KX _UQ)}Q _UZ) B {2(3—u—v)2 f2—u<v<3—u.
Now we suppose that u € [1,2]. For v € R., we have
P(—Kx —uQ)|lg —vZ ~gr (4 —2u —v)l; + (4 — 2u)ly — e — es.

Intersecting this divisor with (—1)-curves in @, we see that it is nef for v < 3 — 2u.
Similarly, if 3 — 2u < v < 6 — 4u, its Zariski decomposition is
(4 —2u —v)ly + (10 — 6u — 20)ly — (4 — 2u —v)(e; +e1) + (2u+ v — 3)(Foy + Faa) .

Vv Vv
positive part negative part

Moreover, if v > 6 — 4u, then the divisor P(—Kx — uQ)‘ o — V4 is not pseudo-effective.
Hence, if u € [1, 5] and 0 < v < 6 — 4u, then
204 —2u—v)(4—2u) —2if 0 < v <
vol(P(=Kx —uQ)| ~vZ) = {2(4 —2u—v)(6 — du—v) if 2—u < v < 6— du

Now we can compute the required integral as follows:

35 1( P dd 2u 2 )dvd

2_8/0/0 vo( (u) o~ Uf1 vu——// —u—v)—)vv—i—
3 1 3—u 32u

—l——/ / 2(3—u—v) dvdu+—/ / 2(4 — 2u—v)(4—2u)—2)dvdu+
28 0 2—u

6—4u 109
/ / 2(4 —2u —v)(6 — 4u — v)dvduy = —,
s 112

109 _ 223
so that S(W&;Z) < 527 + 155 = 223 < 1. This completes the proof of the lemma. g

By Lemma 1.4.4, one has ag z(X) < Z' Thus, by Lemma 1.4.1, there is a G-invariant
effective Q-divisor D on the threefold X such that D ~g —Kx and Z C Nklt(X, AD) for
some positive rational number A < %.

Lemma 5.18.7. Let S be an irreducible surface in X. Suppose that S C Nklt(X, AD).
Then either S =Q or S = Ep.

Proof. The cone of effective divisors Eff(X) is generated by E, Ec, 7*(H) — Er, Q, R
On the other hand, we have D ~q 47*(H) — Ec — E;, and A < 2. Thus, arguing as in
the proof of Lemma 4.4.12, we see that S = E, S ~ @Q or m(S) is a plane, so that either
S =FEporS=( by Lemma 5.18.3. U

Corollary 5.18.8. One has Z ¢ E¢.

Proof. Suppose that Z C E¢. Observe that m(Z) is not a point, since P? does not have
G-fixed points by Lemma 5.18.3. Hence, we see that 7(Z) is the twisted cubic C.
Let S be a general fiber of n. Then S - Z = 3, which contradicts Corollary A.1.15. [J

We see that 7(Z) is a G-invariant curve in P* such that 7(Z) ¢ Sy and 7(Z) # L.

Lemma 5.18.9. The curve w(Z) is the line L.
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Proof. The proof is essentially the same as the proof of Lemma 4.4.17. But now we have
to use Lemma 5.18.7. Il

Let S be a general surface in the linear system |27*(H) — E¢| that contains the curve Z.
Then 7(S) is a smooth quadric surface in P? that contains C' and the line L' = 7(72).
Note that 7(S) is not G-invariant. Let us use notation introduced in Section 1.7.

Lemma 5.18.10. One has S(W2,; 7Z) = 19

XY 12"
Proof. Identify m(S) = P! x P! such that C is a curve of degree (1,2). Then L' is curve of
degree (1,0). Moreover, the morphism 7 induces a birational morphism w: S — P! x P!
that is a blow up of two intersection points 7(S) N L. Observe that these points are not
contained in the curves L’ and C. Moreover, these two points are not contained in any

line line in 7(S), because L is not contained in 7(.5). Hence, we see that S is a smooth del

Pezzo surface of degree 6. Thus, the proof of Lemma 5.18.6 gives S (Wf,; Z) = %. U

We have Sx(S) < 1 by Theorem 3.7.1. Then S(W7,; Z) > 1 by Corollary 1.7.26, which
contradicts Lemma 5.18.10. This completes the proof of Proposition 5.18.2.

5.19. Family Ne3.13. Let X be a smooth Fano threefold in the family Ne3.13. As it was
observed in [56, § 66|, the threefold X is a complete intersection in P? x P? x P? of 3
divisors of degrees (1,1,0), (0,1,1), (1,0, 1), respectively. Thus, the threefold X can be
given by the following system of equations:

f (o, 21, 225 Y0, Y1, ¥2) = 0,

g(y07 Y1, Y2; 20, 21, Z2) = 07

h($07 L1, T2;5 20, 215 22) = 07

where f, g, h are bilinear forms, and [zq : 1 : 23], [yo : Y1 : Y2, [20 : 21 : 22] are coordinates
on the first, the second and the third factor of P2 x P2 x P2, respectively. Observe that

Yo 20 20
f=lmo o1 o | Moy | v |,g=]w0 1 2 |My.| 2 | h=[20 21 22 |M,. | 2
Y2 ) )

for some 3 x 3 matrices M, ,, M, ., M, ..
Lemma 5.19.1. One has det(M,,) # 0, det(M, .) # 0 and det(M, .) # 0.
Proof. If det(M,,,) = 0, there are [ag : a; : as] and [bg : by : bo] in P? such that

bo
[ ap ap ao } Ma:,y = M%y b1 = 0,
)
and we can find [c; @ ¢y : c3] € P? such that
Co Co
[ Do b1 bo | My. | e | =[a ar ay | M. | o | =0,
Co Co

which implies that X is singular at the point ([ag : a1 : as],[bo : b1 : ba],[co : ¢1 @ o).
This shows that det(M,,) # 0. Similarly, we see that det(M, ) # 0 # det(M,.). O
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Let W, W, ., W, be the threefolds in P? x P? that are given by f =0, g =0, h =0,
respectively. Then W, ,, W, ., W, . are smooth by Lemma 5.19.1. Moreover, we have
the following commutative diagram:

(5.19.2) P>

Y,z
pry’

ke

=

<R
\
g /

Way n

Y,z
prz

z

T,z T,z
pTrz prz

Wa.-

s
Do
&
3
=
no

where all morphisms are given by natural projections, e.g. the morphism 7, , is given by

([0 1) Ty sl 2020 20) ) = ([0 v s 0], o 2 ],

the morphism 7, is given by ([zo : @1 : @2],[Yo : y1 : ¥2], [20 : 21 ¢ 22]) = [20 : 21 : 22], and
the projection pr}* is given by ([yo : y1 : ¥2], [20 : 21 22]) = [yo : y1 : Y2

Note that the morphisms m, ,, 7, ., 7, . are birational — they blow up smooth rational
curves of degree (2,2). Let E,,, E,., E,. be their exceptional surfaces, respectively.
Then —Kyx ~ E,, + E, . + E, .. Observe also that n,, 1, and 7, are (non-standard)
conics bundles and —Kx ~ 1;(Op2(1)) + 15 (Op2(1)) + 13 (Op2(1)).

Let A,, Ay, A, be the discriminant curves of the conic bundles 7,, n,, 7., respectively.
Then the defining equations of the curves A,, A,, A, are

) Yo <0
[20 @1 22 | Dy | @1 | =0,[w0 1 2 ]Dy| n | =0,[2 2 2]D.| 2z | =0
i) Y2 <2

for some 3 x 3 matrices D,, D, and D.,.

Lemma 5.19.3. One has

Dy = My (M, ;) My,
Dy = My,z (Mx,z')ile,ya
D. =ML, (M,,) ' M,.

Proof. Let P = [ag : a; : as] € P?, and let Cp be the fiber of the conic bundle 7, over P.
Then there exists a natural embedding Cp < P! x P! as a curve of degree (1, 1), where
the first factor of P! x P! is identified with the line in P? given by

Yo
(5194) [CLO ai GZ]Mz,y n = 07

Y2
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and the second factor of P! x P! is identified with the line in P? given by

20
(5195) [CLO aq CLQ]M%Z 21 = 0.
Z2

Moreover, the curve Cp is defined in this P! x P! by the equation

20

o y1 YolM,. | 21 | =0.
22

So, the curve Cp is singular <= there is a point [¢g : ¢1 : ¢o] in the line (5.19.5) such that

Co

[yO U1 y2]My,z C1 =0
Ca

for every point [yo : 41 : y2] € P? that satisfies the condition (5.19.4). Thus, we conclude
that Cp is singular <= there is a point [¢y : ¢; : ¢o] in the line (5.19.5) such that

Co Qo
C1 = M;;ng aq
€2 az
Now, plugging [z : 21 : 22] = [co : ¢1 : ¢o] into (5.19.5), we see that
aop
the curve Cp is singular <= [ag a1 a2]M, . (M;;)ng a; | =0.
p)

But P € A,, <= Cp is singular, so that we can let D, = M“(My’zl)MxTy as required.
Similarly, we can prove the remaining formulas for D, and D,. U

In particular, we see that the conics A,, A,, A, are smooth.

Remark 5.19.6. Let Cy,, C,., Cy . be the curves in W, ,, W, ., W, . that are blown up
by the morphisms 7, ,, 7, ., T, ., respectively. Then C,,, C, ., C, . are given by

Zo Yo
(20 1 @z | Dyl o | =[w v %2 |Dy | | =f=0,
T2 Yo
Yo 20
lvo 1 w2 ]|Dy| i |=[2 2 2|D.| 2z |=9g=0,
Yo )
Xo 20
[a:o 1 :EQ}DJ; T :[zo 21 ZQ]DZ z1 | =h=0,
T2 )

respectively.

Linearly changing the coordinates ([xo : 21 : @2, [yo : 1 : ¥2],[20 : 21 : 22]), we can
simplify the shapes of the polynomials f, g and h. To be precise, we have the following:
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Lemma 5.19.7 (cf. [144, 198]). One can choose coordinates on P? x P? x P? such that
one of the following two cases holds:

(¥ ) the threefold X is given by
ToYo + T1Y1 + Taye = 0,
Yozo + Y121 + Y222 = 0,
(14 s)xoz1 + (1 — s)z120 — 2w929 = 0,

where s € C such that s # £1.
(®) the threefold X is given by

ToYo + T1y1 + 22y = 0,
Yozo + Y121 + Y222 = 0,
T2l + X120 + T122 — X2, — 21‘22’2 = 0.
Proof. Linearly changing o, x1, 2 and yo, y1, ¥2, we may assume that M, , = M, ., = I3,

so that f and g are simplified as xoyo+x1y1 +22y2 and yozo +y121 + Y222 = 0, respectively.
Then the equations of the curves A,, A,, A, simplify as

To Yo <0
[ Top X1 T2 } M,. | 1 | =0, [ Yo Y1 Y2 } (M;Zl> yi | =0, [ 20 21 X2 } M,. | =
T Y2 <2

respectively. We can rewrite these equations as

M, + M7\ | 20
[!L’O I %2} — =z T :0,

2
X2
ML+ (M) | Yo
[wo v w2 ] = 5 = | =0,

Y2

sz MT 20
[Z(] Z1 9 } (—7 _;_ I7Z> 21 :Oa
22
My, +MT

respectively. In particular, we see that the matrix == is not degenerate.
To simplify the bilinear form h, let us consider the coordinate change that corresponds
to the automorphism ¢4 € Aut(P? x P? x P?) which is given by the linear transformations

Zo Zo Yo T Yo 20 20
r | Al o |, g | = (A7) |, | —=Al 2|,
Ta ) Y2 Y2 22 )

where A is some non-degenerate 3 x 3 matrix. Then A is changed to

20
T
[ To T1 To ]A M, A| = |,
22
s M +Mg . Mg .—M] .
and the bilinear forms f and g are preserved. We let K = ———"* and L = ———"=.

Since det(K) # 0, we can choose A such that ATK A is any symmetric non-degenerate
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matrix. In particular, swapping our matrix M, , with AT M, ,A, we may assume that

01 0
K= 1 0 O ,
0 0 -2
Then we write
0 U v
L= —-u 0 w |,
—v —w 0
so that
0 1+u v
M,, = 1—u 0 w
—v —w =2

If u=0,v=0and w =0, then X is given by (%) with s = 0. Thus, we may assume
that at least one number among u, v and w is not zero.

Now, we choose the matrix A such that AT KA = AK for some non-zero A € C, so that
our change of coordinates preserve the shape of the matrix M, , we already achieved.
Namely, we take

a’? b 2ab
A= 2 d? 2cd
ac bd ad+ be

where a, b, ¢ and d are some complex numbers (to be chosen later) such that ad — be # 0.
Then det(A) = (ad —bc)> # 0. If v =0 and u # 0, we let a, b= 22, ¢ =0 and d = 1,
which gives

0 1+u O
ATM, A= 1—u 0 0o |,
0 0 -2

so that h becomes (1 + u)xgz; + (1 — u)xr129 — 22929 and X is given by (%) with s = w.
Similarly, if v = u = 0, then w # 0, so that we let a = Jw,b=1,¢c=0 and d = \/Lmv
which gives

0 1 0
ATM,,A=|1 0 1 |,
0 —1 —2

so that h becomes xgz1 + 120 + 2129 — Ta21 — 20929, which implies that X is given by (¢).
Thus, we may assume that v # 0.
2 2
Let v = v4vw + 4u?, so that w = 7274“. If v # 0, welet a = _21;_;17 b= 2wty

2v 7
v

c=2 and d = 1, which gives
0 1-3 0
ATM, A= 142 0 0 |,
0 0 =2



so that h becomes (1+ 2)zo21 + (1 — 3)7120 — 27222 and X is given by (¥ ) with s = —3.
Similarly, if v = 0, then 4vw + 4u? = 0, so that w = —“—UQ and

0 1+u w
My.=|1-u 0 -2
—v 1;—2 -2
In this case, we let a = —7, b= 177“, c=1and d =1, so that
1 0 1 0

ATM,, A== |1 0 1
C\0 -1 =2

so that our bilinear form h becomes zgz; + 2120 + 122 — To21 — 27229 after scaling by v?,
which implies that X is given by (#). This completes the proof of the lemma. O
If X is given by (%) with s = 0, then X is isomorphic to the threefold given by
ToYo + T1y1 + Tay2 = 0,
Yozo + Y121 + Y222 = 0,
Tozo + X121 + To20 = 0,
which is the unique smooth Fano threefold Ne3.13 that admits an effective PGLy(C)-action.

In this case, the Fano threefold X is K-polystable by Example 1.6.17 and Lemma 4.2.5.
On the other hand, if X is given by (#), then X is not K-polystable by

Lemma 5.19.8. Suppose that X is given by the equation (#). Then Aut(X) = G, x ;.
Moreover, the threefold X is strictly K-semistable.

Proof. Suppose that the threefold X is given by (#). For every a € C, let us consider
the automorphism ¢, € Aut(P? x P? x P?) given by the following linear transformations:

o o Yo T Yo 20 20
T | = Al T |, | n '—>(A71) n|,| s | —=A|l 2|,
T2 i) Yo Y2 22 22
where
1 a® 2a
A=10 1 0
0 a 1

Each such transformation ¢, leaves X invariant, so that we can assume that ¢, € Aut(X).
One can check that these transformations form a subgroup in Aut(X) isomorphic to G,.
Moreover, the group Aut(X) also contains involutions 7, ., 7, 7. defined as

Tz,z: ([%0 T 513'2], [yo T yg], [ZO AT Zg]) —

= ([ZO tz1 =20, (Yot yn s —Yal, [To a1 —962]>,

Tzy: ([Q?O M A ZL'Q], [yo Y @/2], [20 VAN Zz]) —

= ([yo +2y1 + Y2 1 2y0 Yo + Y|, [T1 1 w0 — 2 1 2x9 — 1], [20 : 21 : —22]>,
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Ty ([mo cxy o), Yoty oyl (20t 2 22]> —
= ([-750 twy =@ 2 20+ 22t 21 4 220) [Yo + 201 — Y2 200 1 Y2 — yo])-

One can check that the involution 7, ,, 7, 7,,. together with transformations ¢, generate
the group Aut(X). Using this, we conclude that Aut(X) = G,.&3. This extension of
groups splits. To see this, let 0 = 7, . 0 7, 0 ¢, for a = % Then

0: <[m0 cxy o), (Yot y1 el (20t 2 ZQ]) >
— <[9zo—|—21+6z2 1921 1 9294321], [91 : 910—221—3x5), [Byo+3y2+18y; : 18yp : —3y0—9y2]>.

Then 6° = Idy and 7, ,0f07, , = 6%, so that (7, ., 0) = S3. This gives Aut(X) = G, x Ss3.
By Theorem 1.1.4, the threefold X is not K-polystable. To show that X is K-semistable,
observe that X is isomorphic to the threefold given by

ToYo + T1y1 + x2y2 = 0,
Yoo + Y121 + Y222 = 0,

X021 + T120 — 20220 + €(T129 — x021) = 0,

where € is any non-zero number. As we already mentioned, if € = 0, then these equations
define the K-polystable smooth Fano threefold that admits an effective PGLy(C)-action.
Now, arguing as in the proof of Corollaries 4.7.7 and 5.17.7, we can construct a test
configuration for the threefold X, whose special fiber is a K-polystable Fano threefold,
so that X is strictly K-semistable by Corollary 1.1.14. O

In the remaining part of this section, we will prove the following result:
Proposition 5.19.9. If X is given by (%), then X is K-polystable.

To prove this result, we suppose that X is given by (% ). Then A, is given by zox; = 3,
the curve A, is given by zpz1; = 23, and A, is given by yoy; = 1_452 y3. Now, let us describe
some automorphisms of the threefold X. For every A € C*, the group Aut(X) contains

the automorphism ¢, : X — X that is given by

([xolezxg],[yozyl cyal, (20 0 21 22]> — <[/\x0 : %Zl’g}, [% DAY :yQ}, [)\zo : %@})

These automorphisms form a proper subgroup I' C Aut(X), which is isomorphic to G,,.
The full automorphism group Aut(X) also contains the involution 7, , that is given by

(P ([mo cxy o), Yoty yels (20t 2 22]> — ([21 cz0 2, [y vo syl (11t o x2]>,

the group Aut(X) also contains the involution 7, , given by

Toy: ([a:o cxy o), (Yot yn yel, (20t 2 z2]> —

Y Yy A
> ([yozl_—lsz : —52}, [:Boz(l_S?)xl : —2x2], [(s—i—l)zl : s+01 :22]>,
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and it contains the involution 7,, which is given by

Tyt ([930 cxy o)y (Yot yn w2l [20 2 22]> —

'_>([xl:xo:_m}[(1_5)20:(3—%1)21:222},[ S . 4N %])

1—s s+1

Let G be the subgroup in Aut(X) generated by I' = G,,, and the involutions 7, ,, Ty, Ty.2-
Then T" is a normal subgroup in G. Note that G/I" = &3, so that we have G = G,,.Gs.
Actually, this extension of groups splits. To see this, we let ¥ = 7, . 0 7,,,,. Then

9 ([1:0 Xy az'g], [yo Y in], [Zo PR Z2]> =

— (Lj—)l : (5—1-1)21222], [(1—52)x1:x0 : —2x2], [%:ya : —%])

Then 9 o ) = @) o). Now, we let ), =¥ o ). Then

(92)° =Tdy <= A =(1—s*)(1+5).

Moreover, if A3 = (1 — s?)(1 + s), then 7, 0¥y o 7., = 93, which gives (7, , 0 9,) = &3.
Therefore, choosing A € Gy, to be one of the three cube roots {/(1 — s2)(1 + s), we obtain
the subgroup (7, ., 7)) = &3 that gives us a section of the quotient map G — G/I' = G,
which defines a splitting G = G,, x S;.

Remark 5.19.10. If s = 0, then we have Aut(X) = PGLy(C) x &3. Moreover, if s # 0,
then one can show that Aut(X) = G. But we do not need this.

To prove the K-polystability of the threefold X, we need to prove one technical lemma.
To state it, we find it useful to replace the parameter s € C\ {1,—1} as s = £

r:;} for
a non-zero number r such that 73 # —1. Then (1 — s?)(1 + s) = %, so that

P41 41

VA=) +5) = {

2r2  2wr? 2w?r? }

where w is a primitive cube root of unity.

Lemma 5.19.11. The following assertions holds:

(i) one has Pic®(X) = Z[-Kx];

(ii) the threefold X does not have G-fized points;

(iii) the threefold X contains exactly three distinct G-invariant irreducible curves, which

can be parametrically described as follows:
(5.19.12) ([u2 cr(r =+ 1)v”ruw],
[r(r* —r+ 1)v” :ru? s —(r° + Duw],
[ru® (P =+ 1)0* TUU]),
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(5.19.13) ([mﬁ W (r 4+ 1)(r + w?)v” : ruv],
[w(r + 1)(r + w?)v* rwr*u® : —(r® + o],
[wW?rPu® : (r 4+ 1)(r + w?)v? r2uv]>,

(5.19.14) <[ru2 tw(r + 1) (r 4+ w)v? : ru],
[wW?(r + 1) (r + w)v* : w*r?u? : = (% + u],
[wrPu? : (r+ 1) (r + w)v? : r uv]),
where [u : v] € PL. All these three curves are smooth and rational.

Proof. Assertion (i) immediately follows from the description of the action of the group G.
If X contains a G-fixed point O, then 7,(0) is a fixed by the induced (I, 7, ,)-action,
which gives 1,(O) = [0 : 0 : 1]. Similarly, we get 7,(O) =[0:0: 1] and n,(O) =1[0:0: 1],
sothat O =([0:0:1],[0:0:1],[0:0:1]) € X, which is a contradiction. This proves (ii).

Observe that the curves (5.19.12), (5.19.13) and (5.19.14) are distinct and G-invariant.
Thus, to prove assertion (iii), it is enough to show that X contains no other G-invariant
irreducible curves. To do this, let C' be a G-invariant irreducible curve in the threefold X.
Let us show that C' is one of the curves (5.19.12), (5.19.13) and (5.19.14).

To start with, observe that

—Kx-C= (7]; (Q}ﬂ(l)) + 1, (Q}ﬂ(l)) +n; (OP2<1)))> O =

= 3175 (Op2(1)) - C = 3 (Op2(1)) - C = 303 (Op2(1)) - C > 3,
so that 7,(C), n,(C) and 7,(C) are irreducible curves, which are invariant with respect
to the induced actions on P? of the subgroups (T, 7,.), (T, 7...) and (I, 7., ), respectively.

Thus, if the curves 7, (C), n,(C), n.(C) are lines, these are the lines 25 = 0, yo = 0, 22 = 0.
In this case, the curve C' must be contained in the subset in P? x P? x P? given by

(1'2 = O,
3/2:(),
22207

ToYo + T1y1 + T2y2 = 0,
Yozo + Y121 + Y222 = 0,
(1 + s)mo21 + (1 — 8)x120 — 27920 = 0.

But this subset does not contain any curve that is surjectively mapped by 7., 7, 7. to
the lines x5 = 0, yo = 0, 29 = 0, respectively. Hence, n,(C), n,(C), n,(C) are not lines.
We see that there are non-zero numbers ¢,, gy, ¢, such that 7,(C), n,(C), n,(C) are
the conics zoz1 = @23, Yoy1 = Y3, 2021 = (.23, respectively. Therefore, we see that
each subgroup (I', 7, .), (I', 75..), (L', 7,,) acts faithfully on the curve C, because they act
faithfully on the curves n,(C), n,(C), n.(C), respectively. In particular, C' is rational.
The action of the group G on the curve C induces a homomorphism v: G — Aut(C).
On the other hand, we have (I',¥) = G,,, X w3, and the group Aut(C) does not contain
subgroups isomorphic to G,, X ps, since C' is rational [161]. Therefore, since T acts on

the curve C faithfully, we get v(9) € v(I'), so that ker(v) contains ¥, for some A\ € G,,.
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Let P = ([xo : @1 : @2],[Yo : Y1 : Ya),[20 : 21 1 22]) be a sufficiently general point in C.
Then n,(P), n,(P), n.(P) is not contained in the lines z5 = 0, y» = 0, 25 = 0, respectively.
Thus, we may assume that xo = yo = 2o = 1 and (zo, 21, Yo, Y1, 20, 21) # (0,0,0,0,0,0).
On the other hand, we have

([wo a1 : 1, [yo s yr : 1], [20 1 21 : 1]) = P =0)\(P) =

_ ([:\jol : (s +)\1)Z1 : 1]7 [(82 ;}\1)561 : _)\;0 : 1}’ [822)\311 : _% : 1])

This gives the following system of linear equations:
0 =5 20 0 0 0

, (D)2 Zo
-3 0 0 0 A 0 Iy
43
0 O O 2)\ (7‘3+1)2 03 yo = O
0 -0 0 0 3= h
A 0o 0 2 0 0 =0
0 0o 2 0 0 A A1
The determinant of the matrix here is —4(A— r%fl)z(/\ 5511)2(/\ 27,‘§ +T1 )2 Tt must Vanlsh
since (xo, T1, Yo, Y1, 20, 21) 7 (0,0,0,0,0,0). Then A € { 3+21, fgﬁj, 2:5:1 boIEA= 3+1, then
solving the system above, we get
1 2 341
P = [a: rt b: 1} [b T—a:l],[ra:—r+ b:l}
r r3+1 r?
for some (a,b) € C\ (0,0), so that f(P) = g(P) = h(P) =0 gives b = r+1) and

2 _ 1 1 2 — 1
P = [a:u:l],[— :_ar :1],[7“@:&:1} ,
ra (r+1la rm+1 ar?

which implies that P is contained in the curve (5.19.12), so that C'is the curve (5.19.12).

In this case, we have ¢, = = g, = ween and ¢ = ’"2’:*1. Similarly, if A = f;fl,
then C' is the curve (5.19.13) and ¢, = M, qQy = %, q- = W%“’

1 i W wr?—r4w w2 (rw?41)r?
Finally, if A = 27~3+1 , then C'is the curve (5.19.14) and ¢, = —+, qy = %

q. = . This completes the proof and also shows that each morphism among 7.,
Ny, Nz maps the curves (5.19.12), (5.19.13), (5.19.14) to three different conics in P%. [0

wr —r+w

Now, we are ready to prove

Lemma 5.19.15. If s # 0, then ag(X) =1. If s =0, then ag(X) = 2.

Proof. First, let us recall that s = ;zﬁ, where r is a non-zero number such that r3 # —1.
If s =0, we assume that r = 1 to avoid repeating computations.
Since —Kx ~ E,,+ E, . + E, ., we can conclude that ag(X) < 1. Moreover, if s = 0,

then B, ,, E,. and E, . meet along the curve (5.19.12), which gives aq(X) < 2. Set

Y9
1if s #0,
=42
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We see that ag(X) < p. Suppose that ag(X) < p. Let us seek for a contradiction.

Recall that Pic®(X) = Z[-Kx] and X has no G-fixed points by Lemma 5.19.11.
Arguing as in the proof of Theorem 1.4.11 and using Lemma 1.4.1, we see that there
exist an irreducible G-invariant curve C' C X and a G-invariant effective Q-divisor D on
the threefold X such that D ~g —Kx, the log pair (X, AD) is strictly log canonical for
some rational number A < p, and C' is its unique log canonical center. Then C' is one of
the curves (5.19.12), (5.19.13), (5.19.14) by Lemma 5.19.11.

Since A < 1 and C' C Nklt(X, AD), we see that multc(D) > + > %L > 1.

Now, let us use assumptions and notations introduced in the proof of Lemma 5.19.11.
Let S, S,, S. be the surfaces in X that are cut out by zor; = @23, yor1 = qu¥3,
2021 = .23, respectively. Then C' C S, NS, N S,, the divisor S, + S, + S, is G-invariant
and —Kx ~g 3(S; + S, + S.). Moreover, if s = 0 and C' is the curve (5.19.12), then we
have C = E, ,NE, .NE, ., and we have S, = E, ,+F, ., Sy = F, y+E, ., S, = E,.+E, ..
In all other cases, the surfaces S, S,, S, are smooth at general point of the curve C, and
they meet each other pairwise transversally at general point of the curve C.

Indeed, to prove this claim, it is enough to check both assertions for S, and S,, because
the group G acts two-transitively on {S,, Sy, S.}. Let us show that S, and S, are smooth
at general point of the curve C', and they meet transversally at general point of the curve C'.
This can be explicitly checked at the point P € C' that corresponds to [u : v] = [1: 1] in
the parametrizations (5.19.12), (5.19.13) and (5.19.14). Thus, we can do this in the affine
chart x9 = yo = 25 = 1. In this chart, the threefold X is given by

Toyo + 1y1 +1 =10,
Yozo + 121 +1=0,
(1 + S)ZL’QZl + (1 — S)ZlleO —2= O,

the surface S, is given by zox; = ¢,, and the surface S, is given by yoy1 = q,, where we
consider now o, 1, Yo, Y1, 20, 21 as coordinates on AS. If C is the curve (5.19.12), then

1 2 _ 1
P:(—,r2—r—|—1,— ! ! ,1,T rt >,
r

r+1 341 r

so that the Zariski tangent space to the intersection S, N S, at the point P is given by

1
T r 1 2 To — o
T _ £ _ 1 T
1 s or 7 r2—:4: OT OT x—r?+r—1
0 0 1 — s S yo+ -
r?(r? —r+1) 1 0 0 rP—r+1 72 y1+rr
r2—r+1 L 0 0 0 0 o1
0 0 _T3Crl _T+L1 0 O 2 — 7,,2_—7n_’_1

T

The determinant of the matrix formed by the first 5 columns of this matrix is W,
so that it vanishes if and only if s = 0. Thus, if s # 0 and C' is the curve (5.19.12), then
the Zariski tangent space to the intersection S, NS, at the point P is one-dimensional, so
that both surfaces S, and S, are smooth at P, and intersect transversally at this point.

This proves our claim in the case when C' is the curve (5.19.12).
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Similarly, if C' is the curve (5.19.13), then

p_ <17w2(r—|—1)(r+w2)’ w wr? (r—i—l)(r—l—wz))’

— — wAr
r r+w 3417 r2

and the dimension of the Zariski tangent space to the intersection S, NS, at this point
equals the nullity of the following 5 x 6 matrix:

o rjr)w B ru;fl wQ(T+12(T+w2) 0 0

0 0 w2 (T+1)7E72"+w2) — —
r(r+1)(r+w?) wr 0 0 et (T+13(r+w2) rs
2(r+12(r+ w?) 1 0 0 0 0
0 0 - rgfl o ri}w 0 0

w(r+1)(r—w)? (r+w?)
r4+w )
that it never vanishes, because r* # —1 and r # w (if s = 0, then r = 1 by assumption).

Therefore, the Zariski tangent space to S, NS, at the point P is always one-dimensional,
so that both our surfaces S, and S, are smooth at P, and intersect transversally at P.
This proves our claim in the case when C'is the curve (5.19.13). Now, swapping w with w?,
we also obtain the proof of our claim in the case when C is the curve (5.19.14).

Thus, unless s = 0 and C is the curve (5.19.12), the surfaces S, S,, S, are smooth at
general point of the curve C, and they meet each other pairwise transversally at general
point of the curve C. In particular, we see that C' € Nklt(X, £(S, + S, +5.)). Thus,
using Lemma A.4.12, we may assume that S,, S, S, are not contained in Supp(D).

If s =0 and C is the curve (5.19.12), then 1 = D - £ > mult(D), where ¢ is a general
fiber of the projection E, , — 7,4 (E;,). But multc(D) > 1. Therefore, we see that s # 0
or C' is not the curve (5.19.12). Then 7,(C) # A,, n,(C) # A, and 1,(C) # A,.

Let ¢ be a general fiber of the morphism 7,|s, : Sz — 7.(C). Then ¢ is not contained in
the support of the divisor D, since S, is not contained in its support. On the other hand,
the curve ¢ meets the curve C, so that 2 = D - ¢ > multo (D), which gives multe (D) < 2.

Let n: X — X be the blow up of the curve C, and let I’ be the n-exceptional surface.
Then the G-action lifts to X, and it follows from Lemma A.4.3 that F' contains a smooth
irreducible G-invariant curve % such that € is a section of the natural projection F' — C.
Let us show that such curve does not exist.

Let Sm, Sy, S’ be the proper transforms on X of the surfaces Sz, Sy, S, respectively.

The determinant of its submatrix formed by the first 5 columns is SO

Then each intersection among Sx NF, Sy NFE, SZ N F' contains a unique component that is
a section of the projection /' — C'. Denote these sections by C,, Cy, C., respectively. Then

e C,, Cy, C, are distinct curves,
e C,, Cy, C, are I'-invariant, and I' acts faithfully on each of these curves,
e the whole group G permutes the curves C,, Cy, C, two-transitively.

Thus, using Corollary A.6.9, we conclude that F' = P! x P'. Then, using Lemma A.6.6,
we conclude that the G-action on F' is given by (A.6.8) for some integers a > 0 and b,
which implies that F' does not contain G-invariant sections of the projection F' — C,
which contradicts the existence of the curve €. U

Now, Proposition 5.19.9 follows from Theorem 1.4.10 and Lemma 4.2.5.
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5.20. Family Ne3.15. Let @ be the quadric {23 + 2z129 + 27174 + 27973 = 0} C P4,
where x, 21, T2, T3, T4 are homogeneous coordinates on P4, Then the quadric @ is smooth.
Let L be the line {z¢g = x; = x5 = 0}, let II be the plane {z3 = x4, = 0}, and let C' = QNII.
Then L C Q, LNII = @, and C'is a smooth conic. Let 7: X — @ be the blow up along
the union LUC. Then X is a smooth Fano threefold from the deformation family Ne 3.15.
By [42, Lemma 5.10], the threefold X is the unique smooth member of this family.

Proposition 5.20.1. The threefold X is K-polystable.

Let G the subgroup in Aut(Q) generated by the involution ¢ given by
[Zﬂoil‘lil’gixgil'd — [$05I22I11$45$3}

and the transformations [zg : @1 : Ty : x5 : @4] = [Mwo 1 N2xy 29 0 Va3 @ 2y for X € C*.
Then G = C* x pu,. Since L and C' are G-invariant, the action of the group G lifts to X.
To prove Proposition 5.20.1, we will apply Theorem 1.2.5 to X equipped with G-action.
But first, let us describe G-equivariant geometry of the threefold X.

Let R be the surface {zyx3 + z124 = 0} N Q, and let R be its proper transform on X.
Then the surface R is irreducible, it is singular along L, and it contains both L and C,
but R is smooth, and there is a G-equivariant birational morphism n: X — P! x P? that
contracts R to a curve. Thus, we have the following G-equivariant commutative diagram:

P! x P?
pT1 pro

P! U P2
v X v

/ \
Y w %4

\ /

Q

where 1 is the blow up of the line L, ¢ is the blow up of the conic C, v is a fibration into
quadric surfaces, v is a P!-bundle, pr; and pr, are projections to the first and the second
factors, respectively, € and ¢ are blow ups of the preimages of L and C| respectively.
Let E;, and E¢ be the exceptional surfaces of the morphisms 6 and ¢, respectively.

let Hy = 1*(Opa(1)|q), let Hy = (pr;0n)*(Op1(1)) and let Hy = (pryon)*(Op2(1)). Then

Pic(X) = Z[Hg] @ Z[E;] ® ZIEc)

Nef(X) = Rxo[Hg| + Rxo[H1] + Rao[H2],

Eff(X) = Rog[EL] + Rso[Ec] + Rso[R] + Rog[Hy).
Note that HQ ~ HQ - EL, H1 ~ HQ - Ec, R~ 2HQ - 2EL - EC, and

3

1
(5.20.2) —Kx ~3Hg— E, — Ec ~ Hg+ Hy + Hy ~q 2E, + gEe+ §R,

so that ag(X) = 1 by [43, Lemma 8.15]. One can show that Aut(X) = G.
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Let L' be the line {z¢ = x; + 223 = 29+ 224 = 0} C Q. Then the line L’ is G-invariant.
Similarly, for every non-zero t € C, let Cy = {(1 —t)z1 —2txg = (1 —t)xe — 2tz = 0} NQ.
Then C} is an irreducible G-invariant conic for every non-zero t € C. Note that C' = (.
Note also that LN L' =@, LNCy; = & and L' N C; = & for every t # 0. Finally, observe
that the conics C}, and Ct2 are also disjoint for t; # ts.

Lemma 5.20.3. Let Z be an irreducible G-invariant curve in the quadric hypersurface Q).
Then either Z = L, or Z = L', or Z = C; for some non-zero t € C.

Proof. Observe that the curve Z is rational, so that it contains a ¢-fixed point P such
that the curve Z is the closure of the G,,-orbit of this point. Thus, looking at the (-fixed
points in @), we conclude that either P=1[0:0:0:1:—1],or P=[0:2:—-2:—1:1], or

P =[4s:4s%:4s%: =25 —1: —25% — 1]
for some non-zero s € C. Then either Z = L, or Z = L', or Z = C, for t = —252. O

In what follows, we will apply results from Section 1.7 to prove Proposition 5.20.1.
We will use notations of this section. Let Z be an irreducible G-invariant curve in X.

Lemma 5.20.4. Suppose that Z C Ec. Then S(W[ES; Z) <

.0 )

Proof. One has Ec = P! x P, Let s a section of the projection E¢ — C such that s? = 0,
and let f a fiber of this projection. Take u € R-y. Then

1 3
—Kx —uBo ~p 2H + 3R+ (5 _ u>EC,

so that —Kx — uF¢ is pseudo-effective if and only if u <

— Ky —ubqsif 0 <u <1,

. Moreover, if u < 3, then

l\’)ICAD

P(— Ky —uEo) = 3
(= Kx —ukc) 2H, + (3 - 2u)Hy i 1 S u < 3,

and we have
0if 0 <u<l,

N(—Kx —uE¢) =
(= Fx —ukc) (u—1DRif1<u<

NN NGV

If u < 1, then we have P(—Kx —uEc)|g, ~ (1+u)s+ (4 —2u)f. Similarly, if 1 <u < 2,
then P( Kx —uFE¢)|g. ~ 2s+ (6 —4u) f. Note that R|g, is a smooth curve in |s +2f].
Thus, if Z = R|g,, then Corollary 1.7.26 gives

S(Whe;z) = 32// vol((1+u —v)s + (4 — 2u — 2v) f)dvdu+

—i—i 4(u—1)(6 4udu+—/ / vol((2 —v)f + (6 — 4u — 2v)s)dvdu =
/ / 2(4—2u—2v)(1+u— U)dvdu—l——/ /2u (4—2u—2v)(14+u—v)dvdu+

3—2u
+§ 4(u—1)(6 4udu—|——// 2(6 — 4u—2v)(2—v)dvdu——<—



If Z # R|g,, then we have S(WJ¢; Z) < S(W[¢;s), because |Z —s| # @, since Z o f as

.0 ) .0 )

the conic C' does not have G-fixed points. Therefore, it Z # R|g,., then
1 o0
SWhe;z) < S(Wre:s) :52/‘/,vd“l+u—@s+@—2@fﬂwm+

3 00 1+u
+3%/2/ vol((2 —v)f + (6 — 4u)s dvdu——/ / 4 —2u)(1 + u — v)dvdu+
1 Jo

3
= 26 — 4u)(2 — -2
+ 39 /1 /0 (6 — 4u)(2 — v)dvdu 64

by Corollary 1.7.26. U
Lemma 5.20.5. Suppose that Z C Ep. Then S(WFE; Z) <

.0 )

Proof. First, we observe that £, = Fy. Let f be a fiber of the natural projection F;, — L,
and let s the (—1)-curve in Er. Then R|g, is a smooth curve in [2s 4 2f].

Take u € Rxg. Using (5.20.2), we see that —Kx — uFE, is pseudo-effective <= u < 2.
Moreover, if u < 2, then
—Kx—U,EL 1f0<u<1,

P(— Ky —uEy) =
(= Kx —uby) {@—uﬁh+@—uﬂ5ﬁ1<u<z

and we have

0if0<u<1,

(u—1Rif1<u<2.

If w < 1, then we have P(—Kx — uFEL)|g, ~ (1 +u)s+ 3f. Similarly, if 1 < u < 2, then
we have P(—Kx —uFEL)|g, ~ (3 —u)s+ (5 —2u)f. Thus, if Z = R|g,, then

N(—K&—w&h):{

S(WEr 2) = 32/ / vol((14u —2v)s + (3 — 2v) f)dvdu+

2

—|—3—2 (u—1)(3—u)(7— 3u)du+—// vol((3 —u—2v)s+ (5 —2u—20v) f)dvdu =

1+u
// (u+1—2v)(5—u— QU)dvdu+E8+3—2// (3—u—2v)(7—3u+2v)dvdu

by Corollary 1.7.26, so that S(WFE; Z) = 2 < 2.

.0 )

If Z # Rlg,, then S(Wr;Z) < S(WEL 5) because |Z — s| # @, since Z & f as

.0 ) e.0 )

the line L does not have G-fixed points. Hence, if Z # R|g, , then Corollary 1.7.26 gives
1 e}
S(W.E.Laz) S(W.E.L,S = 3%/ / Vol((l +u— v)s+3f)dvdu+
0o Jo

—1—3—32/12/Ooovol((B—u—U)8+(5—2u)f)dvdu——/ /Hu I4+u—v)(5—u+v)dvdu+

2 3—u 2
+3%/1/0 (3—u—v)(7—3u+v)dvdu:3—g

as required. O
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Let S be the surface QN {z124 = xo2z3}. Then S is a del Pezzo surface of degree 4 that
has four ordinary nodes. It is well-known that S is toric, and it contains four lines [61, 39].
Two of them are the lines L and L’ described above, and the remaining two lines in S are
the disjoint lines ¢ = {zg = 21 = 3 = 0} and ¢' = {xy = 29 = x4 = 0}. Then

LN{=[0:0:0:0:1],
L'nt=[0:0:2:0:—1]
LN¢=[0:0:0:1:0],
L'n¢=0:2:0:-1:0].

These are the singular points of S. By [39, Lemma 2.9], the lines L, L', ¢, ¢’ generate CI(S),
which has rank 2. On the surface S, we have 2L ~ 2L/, 2/ ~ 2{' and

—Kg~L+L4+0+0 ~2(L+0).

The surface S also contains all conics C; for t € C* including the conic C' = C}, each
conic C; is contained in the smooth locus of the surface S_, and Cy ~ 2L for every t € C*.
Let us denote by S the proper transforms of the surface S on the threefold X.

Lemma 5.20.6. Suppose that 7(Z) = Cy fort € C\ {0,1}. Then S(WJ,; Z) = 5.
Proof. Take u € R>y. Observe that

3 1 1
—KX —US ~R (5 —U>S+§EL+§EL,

which implies that —Kx — uS' is pseudo-effective <= u < 2. Moreover, if u < 3, then

KX—uSlfOéu 1,
P(— Kx —uS) =
(= Kx —us) (3—2u)HQif1<u<g,

and
0if0<u<l,
N(—Kx —uS) =
(= Kx—us) (u—l)(EL+EC)if1<u<g.

In particular, we see that Z is not contained in the supports of the divisor N(—Kx —uS)|s.
Therefore, using Corollary 1.7.26, we obtain

1 00
SWoz) = 3%/ / vol((—Kx — uS)|s — vZ)dudv+
0o Jo

3 %)
+ i/ / vol((3 — 2u)Hg|s — vZ)dudv.

To compute these integrals, let us say few words about geometry of the surface S.

The morphism 7 induces a birational morphism w: S — S, which is the minimal
resolution of the two singular points [0:0:0:1:0] and [0:0:0:0: 1] of the surface S.
In particular, the surface S has exactly two singular points, and they are ordinary nodes.
Denote the proper transforms on S of the curves L, L', £, ¢’ and C; by the same symbols,
and denote by e and € the two w-exceptional curves such that e N¢ # @ and € N # @.

Note that the Mori cone NE(S) is generated by the curves L, ¢, /', e, €.
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On the surface S, we have C; ~ 2L/, 2L +e + € ~ 2L and 20 + e ~ 20 + €/, and
the intersections of the curves L, L', ¢, /', e and €' are given in the following table:

L|L| ¢ |0V |e|é€
Li-1/0[0]0]1]|1
rjfojofijttolo
cfo|ii-2jo0oj1/0
o3 0|=210]1
el 10| 1]0]|-2]0
el 1]0]0]1]0]=2

Let v be a non-negative real number. If v < 1, then
3—u

P(—Kx —uS)|s —vZ ~p ( > u(e+e')=

2
so that the divisor P(—Kx — uS)|s — vZ is pseudo-effective if and only if v < 5%
Moreover, if u < 1 and v < 3_7“, its Zariski decomposition can be described as follows:

e if 0 < v <1, then P(—Kx —uS)|s — vZ is nef,

o if ] <v< 3_7“, then the positive part of the Zariski decomposition is

—v)Z—i— (3—=2u)(l+ ")+

_u(e+el)7

(3_u—U)Z+(5—2u—2v)(€+€')+ 5

2
and the negative part is 2(v — 1)(£ + ().
Similarly, if 1 < u < %, then

P(—Kx —uS)|s —vZ ~g 3—2u—v)Z + (3—2u)({ + 1)+ (g —u) (e +¢€).

so that this divisor is pseudo-effective <= it is nef <= v < 3 — 2u. Hence, we obtain

1 1
S(W,S., Z) = 3%/ / (3u2 + 8uv — 16u — 12v + 17)dudv+
0

3 [ 3-2u 70
+3_2/0/1 (3—u—2v)(7—3u—2v) dudv+—/ / 4(3—2u—v)(3—2u)dudv = — 193"

as claimed. O

Now, let H be the hyperplane section of the quadric threefold @ given by z¢ = 0, and
let H be its proper transform on the threefold X. Then H is a smooth quadric surface
that contains the lines L and L', and H is a smooth del Pezzo surface of degree six.

Lemma 5.20.7. Suppose that 7(Z) = L'. Then S(W/;

e.0)

49
Z) =5

Proof. Take u € R5y. Note that —Kx — uH ~g (2 —u)H + Hy + Ep, which implies that
the divisor —Kx — uH is pseudo-effective <= u < 2. Moreover, if u < 2, then
— Ky —uHif0<u<1,

Hi+(2—-u)Hgif 1 <u<2,
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and N(—Kx —uS) = (u—1)Ey foru € [1,2]. Then Z ¢ Supp(N(—Kx —uH)|g), so that
1 00
S (W.H.§Z) = 3%/ / vol((—Kx — uH)|y — vZ)dudv+
o Jo

% / / vol (Hy + (2 — w) Ho) | — vZ)dudv
1 0

by Corollary 1.7.26.

The conic C intersects H transversallyat P, =[0:1:0:0:0/and P, =[0:0:1:0:0],
which are not contained in the lines L and L’. Thus, the morphism 7 induces a birational
morphism w: H — H that blows up P, and P,. Let e; and e, be the w-exceptional curves
that are contracted to P, and P, respectively, let s; and f; be the proper transform on
the surface H of the two rulings of the surface H = P! x P! that pass through the point P},
and let s and f; be the proper transform on H of the two rulings that pass through Ps.
We may assume that Z ~ sy +e; ~ sy + ey, so that f; +e; ~ f5 + e, and f; +s5 ~ f5 + 5.
Observe that eq, e, s1, so, fi, f are all (—1)-curves in H.

Note that EL|H ~ 81 + ey, HQ|H ~ fl + S +2€1, HI‘H ~ f1 + So and H|H ~ f1 + e;.

Let v be a non-negative real number. If v < 1, then

P(—Kx—uH)‘H—’l}Z ~R (2—u)f1+f2+(2—v)sl+(3—u—v)el

so that this divisor is pseudo-effective if and only if v < 2. Moreover, it is nef for v € [0, 1],
and its Zariski decomposition for v € [1,2] is

B-u—v)(fi+e)+(2-v)(s1+5)+(v—1)f +5),
positiv‘,e part negat;\/,e part

Similarly, if 1 < u < 2, then
P(—Kx —uH)|lg—vZ ~g 2—u)fi +H+ (3 —u—v)s; + (4 —2u—v)eq

so that this divisor is pseudo-effective if and only if v < 4 — 2u — v. Moreover, it is nef
for v < 2 — u, and its Zariski decomposition for v > 2 — u is

(4—2%—’0)(f1+€1) +(3—U—U)(S1+f2)+(U—2+U)(f1+f2).
positiV‘,e part negat;\;e part

Hence, using Corollary 1.7.26, we obtain

S(W, .,, 32// 2uv—4u—6v+10dvdu+—// 2—v)(3—u—v)dvdut+

2—u 4—2u
49
/ / (2u*+-2uv—12u—6v-+16) dvdu—i— / / 2(3—u—v)(4—2u—v)dvdu = 6l
2
as required. O

Now, we are ready to prove that X is K-polystable. Suppose that X is not K-polystable.
Then, by Theorem 1.2.5, there is a G-invariant prime divisor ' over X such that S(F") < 0.
Let Z = Cx(F). Then Z is not a surface by Theorem 3.7.1, so that Z and m(Z) are curves,
since () has no G-fixed points. Now, applying Lemmas 5.20.3, 5.20.4, 5.20.5, 5.20.6, 5.20.7,
we get a contradiction with Corollary 1.7.26, since Sx(F¢) < 1, Sx(EL) <1, Sx(5) < 1

and Sx(H) < 1 by Theorem 3.7.1. Therefore, the threefold Ne 3.15 is K-polystable.
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5.21. Family Ne4.3. Let C be the curve in P! x P! x P! of degree (1,1,2) given by
{ﬂfoyl — 1Yo =0,

Toz7 + 2125 = 0,

where [xq : 1], [yo : y1] and [zg : 21] are coordinates on the first, the second and the third
factors of P! x P! x P!, respectively. Observe that the curve C' is smooth and irreducible.
Let 7: X — P! xP! xP! be the blow up of C. Then X is the smooth Fano threefold Ne 4.3.

Let G be the subgroup of Aut(P! x P! x P!) generated by the following transformations:

o ([xo :x1], [Yo 1), [20 zl]) > ([a:l s o), [y1 : vol,s [21 zo]),
B ([370 2], [yo 1 ], [20 2’1]) = ([3/0 L), [wo 1 2], [0 21]):
vo s vl [0 1 2

Ia: ([l"o cx)s [yo syl | ]) = ([900 : 62%]7 [Yo 6291]> [20 : 621])7

where € € C*. Then G = (G,, X p9) X py, and C' is G-invariant, so that the G-action lifts
to the threefold X. Let R¢ be the G-invariant surface {zoy; — 210 = 0} C P! x P! x P!,
let R be its proper transform via 7 on the threefold X, let E be the m-exceptional surface,
and let H; = (pr;om)*(Op1 (1)), where pr,: P! x P! x P! — P! is the ith-projection. Then

—Kx ~2H, +2H, +2H3 — E¢,
and R ~ H; + Hy — E, because C' C F. Moreover, we have the following

Lemma 5.21.1. The following assertions holds:

(1) both P! x P! x P! and X do not contain G-fized points,

(2) if Z is a G-invariant curve in X, then H; - Z > 2 for every i € {1, 2,3},

(3) the linear system |Hy + Hy + Hs| contains no G-invariant surfaces,

(4) if D is a non-zero effective G-invariant Z-divisor on X such that —Kx — D 1is big,
then D = F.

Proof. The first three assertions follow from the study of the G-action on P! x P! x P!,
The remaining assertion immediately follows from the description of the cone of effective
divisors of X, which is given in [88]. O

In the remaining part of the section, we will prove that X is K-polystable using results
from Section 1.7. As usual, we will use notations introduced in this section. We start with

Lemma 5.21.2. Let Z be a G-invariant irreducible curve in R. Then S(WE;Z) < 1.

0

Proof. Let us use the descriptions of the cones Nef(X) and Eff(X) that is given in [88] to
determine the (divisorial) Zariski decomposition of the divisor — Ky — xR, where = € R-.
First, if 0 < o < 1, then —Kx — xR is nef. Second, we have

—KX —zR ~R (2 — .T)Hl + (2 - LL’)HQ + 2H3 + (l’ - 1)E,
so that —Kx — xR is not pseudoeffective for x > 2. Finally, if 1 < z < 2, then

and N(—Kx —2R) = (r — 1)E, where we use notations introduced in Section 1.7.
Let ¢, and /5 be the rulings of the surface R = P! xP! such that ¢, is contracted by prsor,
and ¢, is contracted by both pr; om and pryonm. Then (—Kx — xR)|g ~gr 201 + (v + 1){s.
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Let C = RNE. Then C ~ 2€1+€1 If1 < X < 2, then P(—KX—$R)|R ~R (4—21‘)€1+2£2
and N(—Kx —zR)|g = (x — 1)C. Thus, if Z = C, then Corollary 1.7.26 gives

1 1 00
S(WE; 2) = 1—0/ / vol (26, + (z + 1)y — yZ)dyda+
o Jo

2
- L ((4 — 22)ly + 203)*(z — 1)dx + —/ / vol((4 — 22)ly + 20, — yZ)dydx =

10
1 1 1
:—/ / 2(2—2y)($—|—1—y)dydx+—/ 44— 22)(z — 1)dat
0Jo Jo 10./3

— 204 — 2x — 29V (2 — y)dydx = — 1.
0// (4= 20— 29)(2 — y)dyde = 20 <

Therefore, to complete the proof, we may assume that Z = C. Then
1 1 00
SO 2) = / / vol(261 + (z + 1)y — yZ) dyda+
o Jo
1 2 [e's) 1 1 00
+—0/ / vol((4—2x) 01420~y Z) dydz < 1—0/ / vol (201 +(z41)ly—y(014L) ) dydz+
1 Jo o Jo

1 2 00
—/ / vol((4 — 2x)l; + 20y — y(by + (o)) dydx =

4—2x 1
/ / 22—y)(z+1— )dydx+/ / 24—2x—y)(2— y)dydm—£<1
by Corollary 1.7.26. O

Now, we are ready to prove that X is K-polystable. Suppose that X is not K-polystable.
Then, by Theorem 1.2.5, there are a G-equivariant birational morphism f: X — X and
a G-invariant prime divisor /' C X such that S(F) = Ax(F)—Sx(F) < 0. Let Z = f(F).
Then Z is not a surface by Theorem 3.7.1, so that Z is a G-invariant irreducible curve,
because X does not have G-invariant points by Lemma 5.21.1. Now, using Corollary 1.7.26
and Lemma 5.21.2, we see that Z C R, because Sx(R) < 1 by Theorem 3.7.1.

Using Lemma 1.4.4, we get ag,z(X) < 2. By Lemma 1.4.1, there exists a G-invariant
effective Q-divisor D on the threefold X such that D ~p —Kx and Z C Nklt(X,AD)
for a positive rational number A < %. By Lemma 5.21.1, the only possible two-dimensional
component of Nklt(X,AD) is R. Since Z ¢ R, we conclude that Z is an irreducible
component of the locus Nklt(X,A\D). Applying Corollary A.1.15 to pr, o w, pry o T,
prgom, weget Hy-Z <1, Hy-Z <1, Hy-Z < 1. But this is impossible by Lemma 5.21.1.
The obtained contradiction shows that X is K-polystable.

5.22. Family N¢4.13. Let X be a smooth Fano threefold Ne4.13. Then there is a bira-
tional morphism 7: X — P! x P! x P! that is a blow up of a smooth curve C' of degree
(1,1,3). Moreover, one can choose coordinates ([zg : x1], [yo : ¥1], [20 : 21]) on P! x P! x P!
such that the curve C' is given by one of the following two equations:

(5.22.1) ToY1 — T1Yo = x%zo + 232 + )\(ZL'(),I%ZQ + a:(z)xlzl) =0
for some A € C\ {%1,£3}, or
(5.22.2) Toyh — T1Yo = x%zo + 232 + 20222 = 0.
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We will prove that X is K-polystable if C' is given by (5.22.1). This would imply
Corollary 5.22.3. Suppose that C is given by (5.22.2). Then X is strictly K-semistable.

Proof. Arguing as in the proof of Corollary 4.7.7, we construct a test configuration for X,
whose special fiber is the threefold X, which is the Fano threefold Ne4.13 that is a blow
up of P! x P! x P! at the smooth curve given by (5.22.1) with A = 0. Assuming that X
is K-polystable, we see that X is strictly K-semistable by Corollary 1.1.14. U

From now on, we suppose that the curve C is given by (5.22.1). Note that R = P! x P,
the equation zoy; — 1Yo = 0 defines this surface in P! x P! x P!, and C'is a curve of degree
(3,1) on the surface R. Moreover, the projection pry induces a triple cover C' — PL. If
A = 0, this triple cover is ramified at exactly 2 points, which implies that Aut’(X) = G,,
by [42, Corollary 2.7], so that X is the unique smooth Fano threefold in the famly Ne4.13
that has an infinite automorphism group [42]. On the other hand, if A # 0, then the triple
cover is ramified at 4 distinct points. Now, arguing as in the proof of [42, Corollary 8.12],
we see that Aut(X) is a finite group provided that A # 0.

Observe that the group Aut(X) is actually not trivial for every A € C\ {£1,+3}.
Namely, let A;, Ay and As be the automorphisms of P! x P! x P! defined as follows:

Ay ([xo 21, [Yo : 1), [20 zl]) — ([xo s —x1), [yo : =), [20 : —zl]),
Ay ([xo 21, [Yo = 1), [20 zl]) — ([ml 2o, [y1 : vol,s [21 zo]),
As: ([xo 21, [Yo : 1), [20 21]) > ([yo sy, (o s a1, [20 21]).

Let G be the subgroup of Aut(P! x P! x P!) generated by A;, Ay and As. Then |G| = 8,
and the curve C' is G-invariant, so that the action of the group G lifts to the threefold X.
Thus, we can identify G with a subgroup of the group Aut(X).

Let us show that X is K-polystable, so that X is K-stable for A # 0 by Corollary 1.1.6.

Lemma 5.22.4. The following assertions holds:

(1) P! x P! x P! does not contain G-fized points.

(2) P! x P! x P! does not contain G-invariant irreducible curves of degree (dy, ds, d3)
such that one of the non-negative integers dy, ds or ds is zero.

(3) P! x P! x P! contains sizteen G-invariant irreducible curves of degree (1,1,1).
Four of them lie on R, and the remaining curves intersect R in 2 points.

(4) Let T be an irreducible curve of degree (1,1,1) in P! x P! x P! such that T ¢ R.

Then eitherT'NC =0 orT'NC =T NR.
Proof. Assertions (1) and (2) are obvious. To prove (3) and (4), let z = L, y =21 » =2

Yo’ 20
be the non-homogeneous coordinates on each factor of P! x P! x P!, There are precisely
four irreducible curves of degree (1,1) on PL x P, which are invariant under the induced
action of the group (A;, As). These are the curves given by y = £2*!. Similarly, there
are also 4 irreducible curves of degree (1,1) on PL x P, invariant under the induced action
of the group (A;, Az). These are the curves that are given by z = £z*!. This gives
us 16 possibilities for a G-invariant curve in P! x P! x P! of degree (1,1,1). These are
the curves I, +1 4,+1 that are given by (y,2) = (£a*!, £2*), respectively. Four of these
curves are contained in the surface R, which is given by ¥ = x. On the other hand,
each of the remaining twelve curves meets R in precisely 2 points. The assertion on
the intersection with C' is immediate to check. O
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Now, let us recall from [88] the descriptions of the Mori cone NE(X), the nef cone
and the cone of effective divisors of the Fano threefold X. Let li, [, I3 be the proper
transforms of curves of degree (1,0,0), (0,1,0) and (0,0,1) in P! x P! x P! that meet C.
Denote by l4 the proper transform of a curve of degree (1, 1,0) that is contained in R, and
denote by [5 a curve that contracted by 7 to a point. Then the cone NE(X) is generated
by the curves Iy, Iy, I3, l4 and [5. Let Hy, Hy and Hs be general fibers of the del Pezzo
fibrations pr, o m, pry o ™ and prs o 7, where pr; and pr, are projections to the first and
the second factors of P! x P! x P!, respectively. Denote by E;, F, and Ej3 the exceptional
divisors of the contractions of the extremal rays generated by [, lo and l3, respectively.
ThenE1~3H2—|—H3—E, E2N3H1—|—H3—E, R:E3NH1+H2—E,

Nef(X) = R}()[Hﬂ + R}O[HQ] + R}O[Hg]‘i‘
+ Roo[2H, + Hy + Hy — E] + Roo[Hy + 2Hy + H3 — E]

and

Eff(X) = Roo[H1] + Roo[Ha] + Ryo[Hs] + Roo[Hy + Hy — E]+
+Ro[3H, + H3 — E] + Rx0[3Hs + Hz — E] + R [E].

Lemma 5.22.5. Let D # 0 be an effective G-invariant Z-divisor on the threefold X .
Suppose that —Kx — D is big. Then D = R.

Proof. Since —Kx ~ 2R + E + 2Hj3, the divisor D must be linearly equivalent to one of
the fOHOWng divisors: Hl, HQ, H3, H1 + ]{37 HQ + H3, H1 + H2 —For H1 + H2 + H3 — k.
But the linear systems |H,|, |Hs|, |Hs|, |H1 + Hs|, |Hs + Hs|, |Hy + Hy + H; — E| do not
contains G-invariant divisors. Thus, we see that D ~ Hy + Hy — E, so that D = R. [

In the following result and its proof, we use the notations introduced in Section 1.7.

Lemma 5.22.6. Let Z be a G-invariant irreducible curve in R. Then S(W[: Z) < 2.

Proof. Fix x € Ryg. Then the divisor —Ky — 2R is pseudo-effective if and only if x < 2.
Let P(x) = P(—Kx —xR) and N(z) = N(—Kx — xzR). Then

P —Kx—zRif0< 2 <1,
(x)_{(Q—ZE)(H1+H2)+2H3 if1<x<2,

and N(z) = (z—1)EFif 1 <z <2

Recall that R = P! x PL. Let ¢; and /, be the rulings of the surface R such that po
contracts ¢1, and pry o 7 contracts 5. Then —Kx|gp ~ —R|g ~ {1 +{s. Let C = RN E.
Then C ~ 301 + 5. If 0 < x < 1, then P(x)|gr ~ (1 4+ x)(¢1 + ¢3). Likewise, if 1 < x < 2,
then P(x)|gr ~ (4 — 2x)ly + 2¢3 and N(z)|g = (z — 1)C. Thus, if Z = C, then

3 1 0o
S(W.],%.;Z) = %/ / Vol((1+x—3y)€1+(1+x—y)€2)dydx+
o Jo

2

i S 4421

by Corollary 1.7.26. Thus, to complete the proof, we may assume that Z # C.
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Since linear systems |¢1| and |f3| do not contain G-invariant curves by Lemma 5.22.4,
we have Z ~ b1l 4 byl for some positive integers b; and by. By Corollary 1.7.26, we get

3 1 o)
S(W.R., Z) = %/ / Vol((l +x—biyl+(1+z— bw)@)dydx#—
0o Jo
3 2 00
36 / / Vol((4 —2x —biy)l; + (2 — bgy)ﬁg)dydx <
1 Jo

<%/ /Oovol«l—i-x y)(€1+€2))dyd:c+—// vol (4—2x—y)l1+(2— y)fg)dydq:_

421: 27
// 2l4+2—vy dydm+—// 4 -2z —y)(2—y)dydr = %5

which is exactly what we want. U
Now we are ready to prove

Theorem 5.22.7. The threefold X is K-polystable.

Proof. Suppose that X is not K-polystable. By Theorem 1.2.5, there is G-invariant prime
divisor F" over X such that S(F) < 0. Let Z = Cx(F). Then Z is not a surface by
Theorem 3.7.1. Thus, since X does not have G-fixed points by Lemma 5.22.4. we see
that Z is a G-invariant irreducible curve. Now, using Lemma 1.4.4, we get ag z(X) < %.
By Lemma 1.4.1, there are a G-invariant effective Q-divisor D on the threefold X and
a positive rational number A < 2 such that D ~g —Kx, Z C Nklt(X,AD), and (X, AD)
is strictly log canonical at general point of the curve Z. Then Nklt(X, AD) contains no
surfaces except possible for the surface R by Lemma 5.22.5.

Using Corollary 1.7.26, Lemma 5.22.6 and Theorem 3.7.1, we see that Z ¢ R. Hence,
using Lemma 5.22.4 and applying Corollary A.1.15 to (X, AD) and the morphisms pr, o7,
pry o and pry o m, we see that 7(Z) is a curve of degree (1,1,1). Then 7(Z) is one of
the twelve G-invariant curves described in Lemma 5.22.4.

Let ¢: X — X' be a birational morphism that contracts R to an ordinary double point,
let D’ be the proper transform of the divisor D on the threefold X', and let Z' = ¢(Z).
Then X' is a Fano threefold with terminal Gorenstein singularities, and D’ ~g —Kx-.
Moreover, the log pair (X', AD') is strictly log canonical at general point of the curve Z’,
and the locus Nklt(X’, A\D’) is one-dimensional. Then Z’ is smooth by Corollary A.1.17.
Thus, using Lemma 5.22.4, we deduce that w(Z) N C consists of two points.

Let Y be the unique surface in | H; + Hs| that contains Z, let Y be its proper transform
on P! x P! x P!, and let ¢: Y — Y be the birational morphism that is induced by 7.
Then ¢ is the blow up of the intersection C'NY’, which consists of two points that are not
contained in one ruling of the surface Y = P! x P'. Then Y is a sextic del Pezzo surface.
Let us apply results proved in Section 1.7 to Y and Z to derive a contradiction.

Fix a non-negative number z. Let P(x) = P(—Kx —zY) and N(z) = N(—Kx — zY).
Then —Kx —zY is nef <— 1z < %, and —Ky — zY is pseudo-effective <— 1z < 2.
Using the description of the effective and nef cones above, we have

1

(2—]7)(H1+H2)+2H3—E1f0 s

P(z) = 12
(3—I>(H1+H2)+2H3+(237—2)E lf§ x<1,
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and N(z) = (2¢ —1)R if 5 <z < 1. Using Corollary 1.7.26, we get S(W},; Z) > 1, since
we have Sx(Y) < 1 by Theorem 3.7.1. Let us compute S(W),; Z).

Let e; and e, are exceptional curves of the morphism ¢, let f; and fs be the proper
transform on Y of the rulings of the surface Y that are contracted by p and pass through
the points ¢(e1) and ¢(es), respectively. Then, on the surface Y, we have E|y = e; + es,
Rly = fi+ fa, Hily ~ Haly ~ fi+e1 ~ fa+es. Let hy and hy be the proper transform on
Y of the rulings of the surface Y that are contracted by the projection pr, and pass through
(e1) and @(eq), respectively. Then Hsly ~ hy+ey ~ hyo+eyand Z ~ f1+ hy ~ fo+ hy.
Therefore, if 0 < z < 3, then we have P(z)|y ~r (2—22)fi +2f2+ (3 —2z)e1 + ea + 2hy.
Similarly, if % < T < 1, then P(LC)‘Y ~R (3 - 4£L')f1 + (3 - 2:13')f2 + (3 - 233')61 + é2 + 2h1
and N(z)|ly = (2¢ — 1)(f1 + f2). Take y € R5y. Then Corollary 1.7.26 gives

SW),;B) = 2%/2 / vol((2 = 22) f1 + 2fo + (3 — 22)ey + ex + 2hy — yZ)dydaz+
o Jo

3 1 o0
+ %6 / / vol((3 —4z) f1 + (3 — 2z) fo + (3 — 2z)er + €5 + 2y — yZ)dydz,
1 Jo
where ey, e, f1, fa, h1, ho are (—1)-curves on the surface Y, and Z ~ f; + hy ~ fo + hy.
If z < % and y < 1, then (2 — 2x)f1 + 2f2 + (3 — 2z)e; + ex + 2hy — yZ is nef, so that
vol((2 —2z)f1 +2fo + (3 — 2x)e; + eg + 2hy — yZ) =4ry — 8r — 8y + 14.
If x < % and 1 <y < 2, then the Zariski decompositions of this divisor is

\(4—2x—y)(f1 +€1) + (2 _y)(hl +€1)1+\(y— 1)(61 +€2)j

TV TV
positive part negative part

so that its volume is 2(4 — 2z — y)(2 — y). For y > 2, this divisor is not pseudoeffective.
Similarly, if % <zr<land 0 <y <2— 2z, then

vol((3 —4a)fi + (3 — 2z) fo + (3 — 2z)e1 + €2 + 2hy) = 4wy — 82® — 8z — 8y + 16.

If 2 — 22 < y < min{2,6 — 6z}, then the volume of this divisor is 2(6 — 6z — y)(2 — y).
For y > min{2,6 — 6z}, this divisor is not pseudoeffective. Now, using Corollary 1.7.26

and integrating, we get S(W),; Z) = £7 < 1. This shows that X is K-polystable. O

Therefore, if A # 0, then X is K-stable by Corollary 1.1.6.

Remark 5.22.8. Let X’ be the singular Fano threefold that has been constructed in
the proof of Theorem 5.22.7. One can show that Aut(X’) = Aut(X). Moreover, arguing
as in the proof of Theorem 5.22.7, one can prove that the threefold X’ is K-polystable.
Furthermore, the threefold X’ has a smoothing to a Fano threefold in the family Ne2.21,
so that Theorem 1.1.12 gives another proof of Corollary 4.2.3.

5.23. Family Ne5.1. This family contains unique smooth threefold. It is K-polystable.
To prove this, we have to describe this threefold explicitly and compute its automorphism
group. To start with, let Q be a smooth quadric {z1zs + 923 + 2371 + Y2z = 0} C P4,
where 1, x5, o3, ¥ and z are homogeneous coordinates on P*. Let C be the smooth
conic in the quadric @ that is cut out by y = 2 = 0, and let P, = [1:0:0: 0 : 0],
P,=10:1:0:0:0], =[0:0:1:0:0]. Then C contains the points P;, P,, Ps.
Let 0: Y — @ be the blow up of the points P;, P, P, let C be the strict transform on Y
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of the conic C'; and let n: X — Y be the blow up of the curve C. Then X is the unique
smooth Fano threefold Ne5.1.
Now, let us describe Aut(X). Let G be a subsgroup in Aut(Q) that is described as

G ={g e Aut(Q) | g(C) = C and g({P1, Py, Ps}) = {P1, Py, P3} }.

Observe that the action of the group G lifts faithfully on the Fano threefold X, so that
we can identify G with a subgroup of the automorphism group Aut(X). Moreover, using
the description of the Mori cone NE(X) given in [88], we conclude that Aut(X) = G.
Furthermore, we have G = &3 X (G,, ¥ p,) and G acts on @ as follows:

o if 0 € &g, then o acts by [z1 : 22 @31y 1 2] = [To(1) : To(2)  Tog) 1 Y : 2],

o if A € G,,, then X acts by [zy : @y : x5 :y: 2] = [Ary 1 Awg : Awg : N2y @ 2],

o if L € p,, then ¢t acts by [z : o 231y 2] =[x 120t x5 21y
Then ) does not contain G-invariant points. Let Z be the smooth conic in () that is cut
out by 1 —x3 =22 —23=0. Then CNZ = @.

Lemma 5.23.1. The curves C' and Z are the only irreducible G-invariant curves in Q).

Proof. Let € be a G-invariant irreducible curve in ) that is different from C'. Let us show
that ¢ = Z. Since € # C, it contains a point P = [z : x5 : x3 : y : 1] with y # 0, which
implies that € = G,,.P. In particular, for every o € &3, there is A € C* such that

1
[370(1) [ Tg2)  To3) Y 1} = [:cl STo X3 AY ﬂ = P\:cl S ATy Axs )\23/ : 1],

so that A> = 1. Now, using o = (1,2) and o = (2,3), we see that 7; = 2o = x3 # 0, s0
that € = Z. U

Let ¢c: Yo — @ and ¢z: Y, — @ be the blow up of the conics C' and Z, respectively.
Denote by Fr and F the exceptional surfaces of the blow ups ¢c and ¢, respectively.
Observe that the action of the group G on the quadric @ lifts to its actions on Y and Y,
and the surfaces Fo and F are exceptional G-invariant prime divisors over Q).

Lemma 5.23.2. The only exceptional G-invariant prime divisors over () are Fo and F.

Proof. Recall that the center on ) of a G-invariant prime divisor over () is a G-invariant
irreducible subvariety in (). Therefore, by Lemma 5.23.1, it is enough to show that
the surfaces F and F; do not contain proper G-invariant irreducible subvarieties.

We start with Fi. Let ¢¢: Uz — P* be the blow up of the linear span of the conic C,
i.e. the blow up of the plane y = z = 0. We have the following G-equivariant diagram:

Yo———Uc

| |

Q———P
Let us describe the G-action on Ugs. The fourfold Us can be covered by two charts.
The first one is given in P* x A}, by y = ¢z, and the second is given P* x AL, by z = 2'y.
Using these charts, the action of the group G can be described as follows:
o if 0 € G, then o acts by ([x1 : 2o 23y 2],Y) = ([To) : Tog) : To) 1 Y 2 2],Y);
e if A\ € G,,,, then \ acts by
([azl CTg T3 Y z],y’) > ([:1:1 S Tg T3 Y ;],Vy’);
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e if L € p,, then ¢ acts by
, 1
([$13x23$32y32:|,y>*—)([1’12.%22333:2:y:|,?>.

Let Ec be the 1c-exceptional divisor. Then Eo can be identified with P? x PL

T1,72,T3 y,z?
and Fo can be identified with its subvariety that is given by zixo + 2923 + 2327 = 0.

Moreover, the action of the group G on the threefold Ex can be described as follows:
e if 0 € G3, then o acts by

<[9c1 Xy 333], [y : Z}) — ([.Ig(l) T Tg(2) - 230(3)], [y : Z});
e if A € GG,,,, then X acts by

([a:lzxg::vg], [y:z]) — ([wl :952::63], [)\y: ;D,

e if L € p,, then ¢ acts by

([21: 02 25), [y :2]) o ([0 222 ], [2:]).
This easily implies that the surface Fz does not contain irreducible G-invariant curves,
because C' does not have Gs-invariant points. Since Fr does not contain G-invariant

points, we see that Fo does not contain proper G-invariant irreducible subvarieties.
Similarly, we see that I, does not contain proper G-invariant subvarieties. O

Now we are ready to prove

Theorem 5.23.3. The threefold X is K-polystable.

Proof. Let F' be a G-invariant prime divisor over X. By Theorem 1.2.5, it is enough to
prove that G(F) > 0. If F' is a prime divisor on X, then 5(F) > 0 by Theorem 3.7.1.
Therefore, we may assume that F is exceptional over X. Let Z be the proper transform
on X of the curve Z, and let 0: X — X be the blow-up of the curve Z. Then F' is
the o-exceptional surface by Lemma 5.23.2.

We claim that o*(—Kx) — 2F is not big. To prove this fact, observe that there exits
the following commutative diagram:

X id X ! Y
S
e S oc

Yo Yo Q

where 1 is the blow up of the fibers of the projection Fo — C' over the points Py, P, P;,
i.e. the blow up of the preimages of these points via ¢¢, ¢ is the blow up of the proper
transform of the curve Z, and ¥ is the blow up of the preimages of P, P, P; via ¢¢ 0.
Thus, if 0*(—Kx) — 2F is big, then ¢*(—Ky,) — 2F is big, where F is the ¢-exceptional
surface. But the pseudoeffective cone of the threefold Yo is described in [88, Section 10].
Note that 370 is a smooth Fano threefold Ne3.10. Now, using [88, Section 10], we conclude
that ¢*(—Ky,) — 2F is not big, so that o*(—Kx) — 2F is not big either.

We see that the pseudo-effective threshold 7(F) < 2 (see Section 1.2). Thus, it follows
from (91, Lemma 2.1] that Sx(F) < 37(F) < 2 <2 = Ax(F), so that 3(F) > 0. Hence,

the threefold X is K-polystable. O
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6. THE Bi1G TABLE

In this section, we summarize our answers to Calabi Problem for Fano threefolds.
We settle the problem of determining whether the general member of each of the 105
deformation families of Fano threefolds is K-polystable/K-semistable. In some cases,
the general member of the family is K-polystable, while there is at least one member that
is not K-polystable. A finer problem is to classify, within each family, which smooth Fano
threefolds are K-polystable/K-semistable. This is accomplished for 71 of the 105 families.
A conjectural picture for each of the remaining cases is then discussed in the final section.

Table 1 below contains the list of smooth Fano threefolds. We follow the notation and
the numeration of the families in [115]. We also assume the following conventions.

e S, denotes a smooth del Pezzo surface such that K3 =n and Sg 2% P! x P',
e () denotes a smooth quadric hypersurface in P*.

e W denotes a divisor in P? x P? of degree (1,1).

e V, denotes a smooth Fano threefold such that V,, 22 W and

—Ky, ~2H
where H is a Cartier divisor on V,, such that H*> =n € {1,2,3,4,5,6,7,8}. Note
that Vs = P? and V5 is a blow up of P? at a point.

In the first column of Table 1, we give the identifier N¢ for a smooth Fano threefold X.
The second and the third columns contain the degree —K3% and

3 (X) = %h?’ (X,z)

of the corresponding Fano threefold X, respectively.

In the fifth column, we present the possibilities for the group Aut”(X) within a given
deformation class, so that 1 simply means that the group Aut(X) is finite.

In the sixth column, we put known results about the existence of a Kahler—Einstein
metric on smooth Fano threefolds, using following conventions:

means that all smooth Fano threefolds in this family are K-polystable;
means that general Fano threefolds in this family are K-polystable;

means that no smooth Fano threefolds in this family are K-polystable;
means that at least one smooth Fano threefold in this family is not K-polystable;

For instance, the combination of | Yes | and |3 No| for Fano threefolds Ne1.10 means that
general threefolds in this family are K-polystable but some are not. A priori, we could
have a deformation family such that its general member is not K-polystable, but some
members are K-polystable. But that such situation is not possible by Main Theorem.

In the seventh column, we put results about K-semistability of smooth Fano threefolds.
Recall that the K-semistability is an open property. We use the following conventions:

@ means that all smooth threefolds in this family are K-semistable;

Yes x| means that general threefold in this family is known to be K-semistable;
means that every smooth Fano threefold in this family is K-unstable;

means that at least one smoooth Fano threefold in this family is K-unstable.

Finally, in the last column of Table 1 we put references to the sections of this paper
where the corresponding smooth Fano threefolds are discussed in more details.
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19¢

Table 1: Smooth Fano threefolds

Ne | —K% | h1? Brief description Aut’(X) K-ps | K-ss | Sections
1.1 2 52 sextic hypersurface in P(1,1,1, 1, 3) 1 Yes | Yes 3.5, 4.1
1.2¢ 4 30 quartic threefold in P* 1 Yes | Yes 3.5,4.1
1.2° 4 30 double cover of smooth quadric threefold 1 Yes | Yes 3.5
1.3 6 20 intersection of quadric and cubic in P° 1 Yes | Yes 3.5, 4.1
1.4 8 14 complete intersection of three quadrics P° 1 Yes | Yes 3.5, 4.1
section of Gr(2,5) C P by quadric
1.5¢ ] 10 | 10 and linear subspace of dimension 7 1 Yes | Yes 3.5, 4.1
1.5 10 10 double cover of the threefold Vj 1 Yes | Yes 3.5, 4.1
section of Hermitian symmetric space
_ 15
16| 12 | 7 M = G/P C P of type DIII 1 Yes | Yes A1
by linear subspace of dimension 8
section of Gr(2,6) C P by
L7 | 14 5 linear subspace of codimension 5 1 Yes | Yes 4.1
section of Hermitian symmetric space
_ 19
18| 16 | 3 M =G/P C PP of type Cl 1 Yes | Yes | 4.1,5.11
by linear subspace of dimension 10
section of 5-dimensional rational
19| 18 9 homogeneous contact manifold Go/P C P'3 1 Ves x | Yos « 41
' by linear subspace of dimension 11 '
zero locus of three sections of rank 3 1
vector bundle A* Q where Q is Ga 3 No
1.10] 22 | 0 G.. Voo 4 | Yos x| 3641, 5.14

universal quotient bundle on Gr(7,3)




¢9¢

1.11 8 21 V1 = sextic hypersurface in P(1,1,1,2,3) 1 Yes | Yes 3.5, 3.4
1.12] 16 10 Vy = quartic hypersurface in P(1,1,1,1,2) 1 Yes | Yes 3.5, 3.4
1.13 ] 24 ) V3 = cubic hypersurface in P* 1 Yes | Yes 3.4
1.14 | 32 2 V, = intersection of two quadrics in P? 1 Yes | Yes 3.4
1.15 | 40 0 V5 = linear section of Gr(2,5) in P? 1 Yes | Yes 3.4
1.16 | 54 0 @ = quadric hypersurface in P* PSO5(C) Yes | Yes 3.2, 3.3
1.17| 64 0 Vg =DP3 PGL4(C) Yes | Yes |3.2,3.3,34
2.1 4 22 blow up of V; in elliptic curve 1 Yes x | Yes 4.3
double cover of P! x P2
2.2 6 20 ramified in surface of degree (2,4) 1 Yes x| Yes x 4.5
2.3 8 11 blow up of V5 in elliptic curve 1 Yes x | Yes 4.3
2.4 10 10 blow up of P? along intersection of two cubics 1 Yes x | Yes % 4.5
2.5 12 6 blow up of V3 in elliptic curve 1 Yes x | Yes % 4.3
2.6° | 12 9 divisor on P? x P? of degree (2,2) 1 Yes % | Yes % 3.5
26| 12 | 9 o teanonical sarface. 1 Yes | Yes | 15
blow up of quadric Q@ C P* along
27 1 14 5 intersection of two surfaces in |Ops(2)]¢ 1 Yes x| Yes * 4.5
double cover of V7 branched in

28 | 14 9 anticanonical surface 1 Yes x| Yes * 5.1
9.9 16 5 blow up of P? along curve of degree 7 1 Yos x | Yes 59

and genus 5 that is intersection of cubics




€9¢

2.10| 16 blow up of V} in elliptic curve 1 Yes x | Yes 4.3
211 18 blow up of V3 along line 1 Yes x | Yes 5.3
blow up of P? along curve of degree 6
2.12| 20 and genus 3 that is intersection of cubics 1 Yes x| Yes x 9.4
blow up of Q C P*
2.13] 20 along curve of degree 6 and genus 2 1 Yes x| Yes x 5.5
214 20 blow up of Vs in elliptic curve 1 Yes x | Yes 4.3
blow up of P at curve of degree 6 and genus 4
2.15) 22 that is intersection of quadric and cubic surfaces 1 Yes x| Yes x 44
2.16 | 22 blow up of V; C P° along conic 1 Yes x | Yes 5.6
blow up of quadric Q C P*
2171 24 along elliptic curve of degree 5 1 Yes % | Yes * 5.7
double cover of P! x P?

2.18 | 24 branched in surface of degree (2,2) 1 Yes x| Yes x 4.5

2.19| 26 blow up of V; C P% along line 1 Yes % | Yes % 4.4
] ) 1 3 No

2901 26 blow up of V5 C PY along twisted cubic G Yos x | Yes * 5.8

1
G, 3 No
221 28 blow up of @ C P* along twisted quartic G, Yes « | 4.2,5.22
PGL,(C) Yes
) 1 3 No
2221 30 blow up of Vs C P¢ along conic G Yes « | Yes * 1.5, 4.4
blow up of quadric Q C P*
223 30 1 No No 3.7

along elliptic curve of degree 4




¥9¢

1

2941 30 | 0 divisor on P? x P? of degree (1,2) g;n 361;]1 Yes « 47
2.25| 32 1 blow up of P? in elliptic curve 1 Yes | Yes 4.3
29| 34 0 blow up of V5 C PY along line G (C?me No 3;}3( 5.10
227 38 0 blow up of P along twisted cubic PGL,(C) Yes | Yes 4.2
2.28 | 40 1 blow up of P? along plane cubic (G,)? x G, No No 3.6, 3.7
2.29 | 40 0 blow up of Q C P* along conic G x PGLy(C) Yes | Yes 3.3
230 | 46 0 blow up of P? along conic PSO;.4(C) No No | 3.3, 3.6, 3.7
2.31| 46 0 blow up of @ C P* along line PSO;.4(C) No No | 3.3, 3.6,3.7
232 48 0 W = divisor in P? x P? of degree (1, 1) PGL;(C) Yes | Yes |3.2, 33, 34
233 54 0 blow up of P along line PGL,42(C) No No | 3.3, 3.6, 3.7
2341 54 | 0 P! x P2 PGL,(C) x PGL3(C) Yes | Yes |3.1,3.2, 3.3
2.35| 56 0 V7 = blow up of P? in one point PGL4,(C) No No | 3.3, 3.6, 3.7
2.36 | 62 0 P(Op2 @ Op2(2)) Aut(P(1,1,1,2)) No No | 3.3,3.6, 3.7
double cover of P! x P! x P!
3.1 12 8 branched in surface of degree (2,2, 2) 1 Yes | Yes 3.5
divisor in P%-bundle
P(Op1xpt © Opiyxpr (=1, —1) @ Op1ypr (=1, —1))
32| 14 3 such that X € |L®? @ Opiyp1(2, 3)] 1 Yes x | Yes % 5.11

where L is tautological line bundle
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3.3 | 18 divisor in P! x P! x P? of degree (1,1, 2) 1 Yes * | Yes % 5.12
blow up of smooth Fano threefold Y
3.4 18 that is contained in family Ne2.18 along 1 Yes | Yes » | 4.9,5.13
smooth fiber of conic bundle Y — P?
blow up of P! x P? N
1 0
a5 | 20 along curwle C 02f degrQee' (5,2) suc.h that C Ves « 514
C — P* x P* — P? is embedding m Yes x
blow up of P? along disjoint union of
3.6 22 line and elliptic curve of degree 4 1 Yes x| Yes x 515
3.7 24 blow up of W in elliptic curve 1 Yes x | Yes 4.3
blow-up of P! x P? along
lote i . ¢ f 1 4 No
3.8 24 complete intersection of two surtaces G Yes « 516
that have degree (0,2) and (1,2) m Yes x
blow up of cone W, C P over
3.9 2 Veronese surface R C P° at its vertex G, Yes | Yes 46
and smooth quartic curve in R, = P?
blow up of Q C P* along Gl 3 No
3.10 26 disjoint union of two conics ng Yes + | Yes 5.17
3.11 ] 28 blow up of V7 in elliptic curve 1 Yes x | Yes % 4.3
blow up of P? along 1 3 No
3121 28 disjoint union of line and twisted cubic G Yes x| Yes 0.18
intersection of three divisors G, N
313] 30 in P2 x P? x P? that have degree Gm © Yes 49
(1,1,0), (0,1,1) and (1,0, 1) PGL»(C) Yes :
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blow up of P along plane cubic curve

3.14 | 32 and point that are not coplanar G No No 3.7
blow up of Q C P* along
3.15 1 32 disjoint union of line and conic G Yes | Yes 5.20
blow up of V7 along proper transform
316 34 via blow up V7 — P3 of twisted cubic G, ¥ G,, No No 3.6, 3.7
passing through blown up point
3.17| 36 divisor on P! x P! x P? of degree (1,1,1) PGL,(C) Yes | Yes 4.2
blow up of P3 along
3.18 | 36 disjoint union of line and conic (Ga % Gin) X G No No | 3.3,3.6,3.7
blow up of Q C P* at
3.19 | 38 two non-collinear points G x PGL(C) Yes | Yes 3.3
blow up of Q C P* along
320 38 disjoint union of two lines Gm x PGLy(C) Yes | Yes 3.3
3.21| 38 blow up of P! x P? along curve of degree (2,1) (G,)? % (G,,)? No No | 3.3, 3.6, 3.7
blow up of P! x P? along conic G %G PGL.(C
3.22.1 40 in fiber of projection P* x P? — P! (Ga % Gm) x 2(C) No No |3.3,36,3.7
blow up of V7 along proper transform
393 | 49 via blow up V7 — P3 of irreducible conic (Go)? % (G, x G,,) x Gyp,) No No | 3.3,3.6,3.7
passing through blown up point
blow up of W along
3.24 | 42 one fiber of P!-bundle W — P? PGL, (C) No No |3:3,3.6,3.7
3.25 | 44 blow up of P? two skew lines PGL22)(C) Yes | Yes 3.3
blow up of P alon
3.26| 46 ' : (Ga)?  (CLa(C) X G) No | No | 33,3637

disjoint union of point and line
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3.27| 48 P! x P! x P! (PGL,(C))? Yes | Yes |3.1,3.2 3.3
3.28 | 48 P! x Sg = P! x I, PGL,(C) x PGL,(C) No | No |3.3,3.6, 3.7
blow up of V7 along line in exceptional
3.29 | 50 surface E = P? of blow up Vy — P3 PGLy;3,(C) No No |33,3.6,3.7
blow up of V7 along
3.30 | 50 fiber of P-bundle V; — P? PGLi21(C) No | No |33,36,37
blow up of quadric cone in P*
3.31 1 52 with one singular point at vertex PS06:1(C) No No |3.3,3.6,3.7
41 | 24 divisor in (P')* of degree (1,1,1,1) 1 Yes + | Yes % 4.3
blow up of quadric cone in P*
49 28 with one singular point at disjoint union G, Yes | Yes 16
of vertex and elliptic curve of degree 4
4.3 | 30 blow up of (P')? at curve of degree (1,1,2) Gm Yes | Yes 5.21
blow up of smooth Fano threefold Y
contained in family Ne3.19 along proper )
4.4 | 32 transform of conic on quadric Q C P* G, Yes | Yes 3.3
that contains both centers of blow up ¥ — @
blow up of P! x P? along disjoint union Q2
4.5 | 32 of curves of degree (2,1) and (1,0) m No | No 3.3, 3.7
4.6 | 34 blow up of P? along three skew lines PGL,(C) Yes | Yes 4.2
blow up of W C P? x P? along disjoint CLa(C
4.7 1 36 union of curves of degree (0,1) and (1,0) 2(C) Yes | Yes 3.3
4.8 | 38 blow up of P! x P! x P! along curve of degree (0,1,1) (G, x G,,) x PGLy(C) No | No | 3.3,3.6,3.7
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blow up of smooth Fano threefold Y
contained in family Ne3.25 along curve C' = P!

49| 40 | 0 PGL(2:2)1(C) No | No |33,36,37
that is contracted by blow up Y — P3
4.10 | 42 0 P! x S; PGL,(C) x (G, x G,,,) x (G, xG,,) | No | No |3.3,3.6,3.7
blow up of P! x F; along curve C' = P!
A11 | a4 0 contained in fiber F' = F; of the projection (Gy % G,p) x PGL34(C) No No | 3.3,3.6,3.7
P! x F; — P! such that C? = —1 on F
blow up of smooth Fano threefold Y
412 | 46 0 contained in family Ne2.33 along (G,)* x (GLy(C) x Gyy,) No No | 3.3,3.6,3.7
two curves contracted by blow up Y — P3
113 2 0 blow up of P! x P! x P! along 1 3 No v = 99
' curve of degree (1,1, 3) G, Yes x | 1% '
blow up of smooth Fano threefold Y
5.1 928 0 contained in family 2.29 along G, Yes | Yes 593
three curves contracted by blow up Y — @)
blow up of smooth Fano threefold Y
contained in family Ne3.25 along two curves
5.2 | 36 0 C} # C, contracted by blow up ¢: Y — P3 GLy(C) x Gy, No No 3.3, 3.7
that are contained in one ¢-exceptional surface
53] 36 | 0 P! x Sg PGLy(C) x G2, Yes | Yes 3.1, 3.3
6.1 | 30 0 P! x S5 PGL,(C) Yes | Yes 3.1
710 24 | 0 P! x S, PGL,(C) Yes | Yes 3.1
81| 18 | 0 P! x Sy PGL,(C) Yes | Yes 3.1
9.1 | 12 0 P! x Sy PGL,(C) Yes | Yes 3.1
10.1| 6 0 P! x S PGLy(C) Yes | Yes 3.1




7. CONCLUSION

As presented in Table 1, we know which smooth Fano threefolds are K-polystable and
which are not for 71 of the 105 deformation families. For the remaining 34 families,
Ne1.9, Ne1.10, Ne2.1, Ne2.2 Ne2 3, Ne2.4  Ne2.5 Ne2.6, Ne2.7,
Ne2 8, Ne2.9, Ne2.10, Ne2.11, Ne2.12, Ne2.13, Ne2.14, Ne2.15, Ne2.16,
Ne2.17, Ne2.18, Ne2.19, Ne2.20, Ne2.21, Ne2.22) Ne3.2, Ne3.3, Ne3.4,
Ne3.5, Ne3.6, Ne3.7, Ne3.8, Ne3.11, Ne3.12, Ne4. 1,
Main Theorem tells us that the general member is K-polystable. In most cases we expect
that all smooth members are K-polystable. More precisely, all smooth Fano threefolds in
the 27 deformation families
Ne1.9, Ne2.1, Ne2.2, Ne2.3, Ne2.4, Ne2.5, Ne2.6, Ne2.7, Ne2.§,
Ne2.9, Ne2.10, Ne2.11, Ne2.12, Ne2.13, Ne2.14, Ne2.15, Ne2.16, Ne2.17,
No2.18, Ne2.19, Ne3.2, Ne3.3, Ne3.4, Ne3.6, Ne3.7, Ne3.11, Ned.1
have finite automorphism group, and we expect that they are all K-stable. On the other
hand, the 7 remaining families

Ne1.10, Ne2.20, Ne2.21, Ne2.22, Ne3.5, Ne3.8, Ne3.12

contain both K-polystable and non-K-polystable smooth Fano threefolds. In each of these
cases, we have a conjectural characterization of K-polystability.

7.1. Family N21.10. Members of the 6-dimensional Family Ne1.10 are often refered to
as Fano threefolds Vas or prime Fano threefolds of genus 12. They can be described as
follows. Set V = C7, and N = C?. For every smooth prime Fano threefold X of genus 12,
there is a net n: A>V — N such that

X ~Gr(3,V,n) = {FE € Gr(3,V)| A* E C kern}.

The general member of this family has finite automorphism group. In Example 4.1.13,
we exhibited a K-stable Fano threefold in this family, and thus concluded that the general
member of the family Ne1.10 is K-stable, which also follows from [203].

Family Ne1.10 contains a unique smooth Fano threefold X, that has non-reductive
automorphism group, namely G, x p, [130]. This special member is not K-polystable by
Theorem 1.1.4, but it is K-semistable by [52, Example 1.4].

There is a 1-parameter subfamily in the family Ne1.10 consisting of smooth Fano three-
folds admitting an effective G,,-action. As explained in Example 4.1.12, all the threefolds
in this subfamily are K-polystable. Together with X¢,, these are all the smooth Fano
threefolds Ne1.10 with infinite automorphism group [173]. Among those, there is one with
automorphism group PGLy ((C), the Mukai-Umemura threefold X2V, see Example 4.1.12.
It can be constructed as Gr(3,V,n) by taking V to be the irreducible 7-dimensional repre-
sentation s of SLy(C) and N to be the 3-dimensional subspace of A V* that is the image
of the Lie algebra under the action; it naturally supports an induced SLy(C)-action.

We know that the general member of the family Nel.10 is K-stable, and there are
members of this family that are not K-polystable. The general picture is predicted by
the following conjecture by Donaldson, see [74, Section 5.3] for a GIT interpretation of
this conjecture.

Conjecture 7.1.1 (Donaldson). Let X be a smooth Fano threefold in the family M 1.10.

Then X is K-polystable if and only if one of the following two conditions is satisfied:
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(1) either X admits an effective G,,-action,
(2) or no element of | — Kx| has singularities of the form y*> = z* + t*z or worse.

We discuss this conjecture from yet another perspective. In [155, 154], Mukai gives
several descriptions of prime Fano threefolds of genus 12, and shows that the moduli
space Mg of prime Fano threefolds of genus 12 is birational to the moduli space of plane
quartic curves, see also [184]. Namely, for a smooth prime Fano 3-fold X of genus 12,
the Hilbert scheme of lines of X is a (possibly singular) quartic curve

Cx = {f(x,y,z) = 0} c P?,

and the Fano threefold X can be recovered from the quartic curve C'x as the closure of
the variety of its polar hexagons:

X =VSP(Cy,6) = {(L1,~~- , Lg) € Hilb"(P2) \ flz,y,2) =1 +~~-+1g}.

Here we write [z : y : 2] for coordinates on P2, f(z,y, z) for the homogeneous quartic poly-
nomial defining the curve Cy, and l; = [;(x,y, z) for the linear form defining the line L;.
For instance, if C'is the Klein quartic curve, then VSP(C, 6) is the smooth Fano threefold
in the family Ne1.10 from Example 4.1.13.

If the threefold X is general, then the quartic curve Cy is irreducible and nonsingular.
More generally, for every point P € Cy, either P is a smooth point of the curve Cy
and the corresponding line £p C X has normal bundle Ny, x = Op1 @ Op1(—1), or P is
a singular point of the curve Cx and N, x = Op1 (1) & Op1(—2).

For the members of the family with infinite automorphism group, we have the following
description of the curve C'x.

o If X = X, then Cx is a union of two smooth conics that meet at one point.

o If Aut’(X) = G,,, then the quartic curve C'x is a union of two smooth conics that
tangent to each other at two distinct points.

e X is the Mukai-Umemura threefold X24Y if and only if C is a double conic [174].

In view of this correspondence between plane quartic curves and smooth members
of the family Ne1.10, it is interesting to compare Donaldson’s conjecture with the naive
induced correspondence between GIT of plane quartic curves and K-stability of threefolds.
Indeed, a plane quartic curve is known to be GIT-stable (respectively, strictly polystable)
precisely when it has no worse than A; or A, singularities (respectively, if it is a double
conic or 2 conics tangent at 2 points, at least one of which is smooth). In particular,
the members of the family with infinite automorphism group that are K-polystable do
have GIT-polystable Hilbert scheme of lines, while the one that is strictly semistable has
non-GIT-polystable Hilbert scheme of lines.

7.2. Family Ne2.20. The 3-dimensional family Ne2.20 contains a unique smooth Fano
threefold X with infinite automorphism group [42]. In Proposition 5.8.12 we showed that
this threefold is K-polystable, and proved that the general Fano threefold in the family
Ne2.20 is K-stable. It follows from Remark 1.1.18 that there is at least one member of
the family that is not K-polystable. We explicitly exhibit such a non K-polystable in
Lemma 7.2.5 below.

Recall that the Fano threefolds in the family N°2.20 can be described as blow ups of

the unique smooth Fano threefold Ne1.15 described in Example 3.4.1, denoted by V3, along
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twisted cubic curves. In order to draw the conjectural picture of K-polystability for this
family, we describe the Hilbert scheme of twisted cubic curves in V; following [111, 180].
The SLy(C)-action on Vs has been described in Section 5.10. We use the notation
introduced in the very beginning of that section. Recall from [180, Proposition 2.46] that
the Hilbert scheme of twisted cubic curves in the threefold Vi is SLy(C)-equivariantly
isomorphic to Gr(2, V). To explain this, note that, as SLy(C)-representations, we have

Sym?(A) = Sym? (Sym2(W)) 2Vl

where T is the trivial representation. Composing the Veronese map A — Sym?(A) with
the projection V @I — V induces a SLy(C)-equivariant embedding

n: P2 =P(A) — P(V) =P~

Set . = im(n). Then .¥ 2 P? and . C P* is an SLy(C)-invariant surface of degree 4.
For later use, we also introduce the smooth rational quartic curve ¢ C . C P(V) that
is the image of the unique SLy(C)-invariant conic in P(A).

Let 0: % — P* be the blow up of the surface .. By [180, Remark 2.47|, there
exists an SLo(C)-equivariant isomorphism % = P(% ), where % is the restriction to
the threefold V5 of the tautological vector bundle of the Grassmannian Gr(2,V’). Thus,
we obtain the following SLs(C)-equivariant commutative diagram:

(7.2.1)

where ¢: % — Vs is the induced P*-bundle. Let L be a line in P* and let C, = ¢, (o*(L)).
Then C7, is a (possibly singular) twisted cubic curve in V5. Moreover, one can show that
the curve C, is a smooth if and only if LN .Y = @.

Let X} be the blow up of the threefold V5 along the curve C';,. Then X, is a possibly
singular Fano threefold Ne2.20. If the curve C7, is smooth, the threefold X, is also smooth.
In this case, we expect that the smooth Fano threefold X is K-polystable if and only if
the orbit of the line L considered as a point in Gr(2,V") is GIT-polystable with respect
to the SLy(C)-action.

Next we look at the smooth members of the family Ne2.20 from a slightly different, but
more explicit, perspective. We fix the quartic curve Cy C P3 given by [r? : rds : rs3 : 5]
for [s: r] € P'. Let G = Aut(P3,Cy). Then G contains transformations

Tiy:z:it| — x:sy:332:34t
[ =1

for s € C*, and G contains the involution 7: [z : y : z : t] — [t : z : y : x]. Since G is
naturally embedded to Aut(Cy) = PGLy(C), either G = G, X py, or G = Aut(Cy) [161].
This is impossible, since H(Ops(1)|¢,) is an irreducible representation of Aut(Cj), and
the embedding Cy < P? is not linearly normal.

The curve C} is contained in the G-invariant smooth surface S, C P? given by xt = yz.
Let y: P3 --» PS be the G-equivariant map given by
[:17 Sy iz t] > [:p(a:t—yz) cy(wt—yz) : z(at—yz) : t(at—yz) 22—yt s P a—yP syt —23.
Then yx is well-defined away from C}y, and the closure of its image is isomorphic to Vs.

Let Cy = x(S2). Then Cs is the unique G-invariant smooth conic in V5 by Corollary 5.8.8.
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Thus, we have the following G-equivariant commutative diagram:

(7.2.2) / \

______ = Vs

where 7 is a blow up of the twisted quartic curve Cy, and 6 is a blow up of the conic Cs.
Let ¢ be a line in P?, and let Cy = 6,(7*(¢)). Then Cy is a (possibly singular) twisted
cubic curve in V5. Moreover, the curve Cy is smooth <— /(NC, = @.

Lemma 7.2.3. Every smooth Fano threefold N2.20 can be obtained by blowing up
the threefold Vi along the image of a suitable line ¢ C P? such that N Cy = @

Proof. Let us recall from [180, Proposition 2.32| the identification of the space of conics
in the variety Vs with P(V*). For a hyperplane H C P(V'), let H be the proper transform
of H in the variety %', and denote by w: H — H be the induced birational morphism.
Then w is the blow up of the hyperplane H along a (possibly singular) quartic curve
H N .7, and we can expand diagram (7.2.1) as follows:

/@\
Vi Pt — P(V).
9
SO

H
where ¥ is the blow up of a (possibly singular) conic Cy C V5. Moreover, one can show
that Cy is smooth <= H N .7 is smooth, and all conics in V5 are obtained in this way.

If Cyy is smooth, then H is a smooth Fano threefold Ne2.22, and Aut(H) 2 Aut(Vs, Cy).
In this case, we have the following possibilities:

e The curve HN.” is tangent to the curve € C .7 at two points, Aut(]:l) = G X g,
and H is the smooth Fano threefold constructed in Example 4.4.2.

e The curve HN.% is smooth, it is tangent to ¢ C . at one point, and it intersects
the curve % in two extra points. In this case, Aut(H) is finite, and H is the non-
K-polystable smooth Fano threefold N°2.22 explicitly described in Section 7.4.

e The curve H N . is smooth, it intersects ¥ C . transversally, and Aut(H) is
finite.

Recall that every every smooth Fano threefold X in Family N¢2.20 is isomorphic to X,
for some line L C P(V') such that LN. = &. Let M be the linear subsystem in |Ops(1)|
consisting of all hyperplanes that contain L. Suppose that M contains a hypeprlane H
such that

(1) H is G,,-invariant for some subgroup G,, C SLy(C),

(2) the curve H N.¥ is smooth.
Then we can take (P3,Cy, () = (H, H N.¥, L) in the previous construction, and get that
X is the blow up of the threefold V5 along C). Notice that if there is a hypeprlane H in
M satistying (1) and (2) above, then it must be tangent to € at two distinct points. Vice

versa, if M contains a hyperplane that is tangent to € at two distinct points, then this
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hyperplane is G,,-invariant for the subgroup G,, C SLy(C) that fixes these two points,
and, moreover, this hyperplane must intersect . along a smooth curve. So, to complete
the proof, it is enough to show that

(%) M contains a hyperplane that is tangent to ¢ at two distinct points.

Parameter count shows that (¥ ) holds if the line L is general. However, we have to prove
this for every line L in P* that does not meet the surface .7 .

The linear system M is a net (a two-dimensional linear system), and L is its base locus.
The restriction M| is also a net, which does not have base points, since L N . = @.
To prove (%), it is enough show that M|y contains a smooth curve that is tangent to
the curve € at two distinct points. In fact, it is enough to prove that M|y contains
a curve C such that Cly = 2P + 2@ for two distinct points P and () in the curve €. If we
find such a curve C', then it is automatically smooth, since it is cut out by a hyperplane
in P4,

Now, let us explicitly describe the SLy(C)-action on our P* = P(V'). To do this, we fix
the embeddings P! < P? given by [u : v] — [u? : v* : uv] and P? < P° given by

2

[a::y:z} — [m%xz:%
Then we equip both P? and P° with the SLy(C)-action such that our explicit embeddings
are SLo(C)-equivariant with respect to the standard action of the group SLy(C) on P
Let n: P2 — P* be the morphism [z : y : 2] — [2? : 22 : # : yz : y?]. Then n is
a composition of the embedding P? < P® and projection from the SL,(C)-fixed point.
This gives us the SLy(C)-action on P* such that 7 is equivariant. This action is given by
the monomorphism SLy(C) < SL;(C) given by

at 4a3b 6a%b? 4ab? bt

cyz iyt ay — 22,

- ac  a*d+ 3a’bc 3a’bd + 3ab?c 3ab’d 4+ b3c  b3d
( J ) — | a®c® 2a%cd 4 2abc?  a’d? + 4abed + b*c? 2abd? 4 2b%cd b d?
¢ Ba  3acd + bc3 3acd? + 3bc2d ad® + 3bed®  d®b
c* 43d 6c2d? ded? d*
It should be pointed out that . = im(n), and the SLy(C)-invariant curve ¢ is given

by the parametrization [u? : u3v : u?v? : uv® : v¥], where [u : v] € P!. For simplicity, let

us identify . = P? via the embedding 1. Then ¥ is the conic in P? given by xy = 22,
and the net M|y is a linear subsystem in |Op2(2)| that consists of conics

M+ No(zy +22%) 4+ Asy? + Mgzz + Asyz = 0,

where [A; : Ay 0 A3 : Ayt As] € PY Then M|y is also a net, since M| does not contain %'
Hence, to prove (¥%), it is enough show that the net M|y contains a divisor 2P + 20,
where P and @) are two distinct points in 4. Suppose that the latter assertion is wrong.

Applying Lemma A.7.5, we see that the net M|y contains divisors 4P, 4Q) and 3P+ @),
where P and @) are two distinct points in . Since SLy(C) acts transitively on pairs of
distinct points in €, we may assume P =1[0:1:0] and @ = [1:0:0]. Then 4P is cut
out on € by 22 = 0, 4Q is cut out by y> = 0, and 3P + Q is cut out by xz = 0. Since
the net M|y is uniquely determined by the net M|, we see that M| is the net

2’ + poy” + parz =0,

where [y : po : p3] € P2, But this net contains a base point, which is a contradiction. [
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Remark 7.2.4. The choice of the line £ in Lemma 7.2.3 is not unique even up to G-action.
For instance, the following 4 distinct lines in P lie in different G-orbits:

(1) the line that passes through [12:0:3: —12] and [0:3:0: =3 : 12],
(2) the line that passes through [-48 : 12 — 3 : 51] and [48 : —12:0: —9: 21],
(3) the line that passes through the points

[144+496V/5 : —36 : 21—12v/5 : 63—30V/5], [240+48V/5 : —12v/5+36 : —21+15v/5 : —39+21v/5],
(4) the line that passes through the points
[1008—480v/5 : —844+48V/5 : 9 : 9+6v/5], [624—336V/5 : —84+60v/5 : 935 : —15-3v/5],

Moreover, they all are disjoint from the curve C;. On the other hand, one can show that
the corresponding smooth Fano threefolds Ne2.20 are isomorphic.

Let X, be a blow up of the threefold V5 at the curve C,. If Cy is smooth, then X, is
a smooth Fano threefold N¢2.20. In this case, we expect that X, is K-polystable if and only
if the G-orbit of the line ¢ considered as a point in Gr(2,4) is GIT-polystable with respect
to the induced G-action. In the table below, we list all lines that are not GIT-stable:

Line ¢ Equation GIT-stability Cy
Ly r=t=0 polystable smooth twisted cubic
L, =z =0 polystable union of a gogd lir_le and two bad line§
# such that bad lines intersect the good line
Li(a,b) | © =t —ay — bz =0 | strictly semistable smooth twisted cubic
Ly(a,b) | t =2 —ay — bz =0 | strictly semistable smooth twisted cubic
Ls(a,b) | y — ax = z — bx = 0 | strictly semistable union of a conic and a bad line
Ly(a,b) | z—at =y —bt =0 | strictly semistable union of a conic and a bad line
L. r=2z=0 unstable union of the conic (' and a bad line
Ly, y=t= unstable union of the conic Cy and a bad line
L, r=y= unstable triple bad line
L., z=t= unstable triple bad line

Here, we assume that (a,b) € C?\ (0,0) and we use conventions from Section 5.10.
If ¢ = L, then X, is the unique smooth Fano threefold in the family N¢2.20 that has
an infinite automorphism group. This threefold is K-polystable by Proposition 5.8.12.

Lemma 7.2.5. Let { = Ly(a,b) or { = Ly(a,b). Then X, is strictly K-semistable.
Proof. This immediately follows from Proposition 5.8.12 and Corollary 1.1.14. U

Our conjecture says that all smooth Fano threefolds in Family No2.20 other than the ones
from Lemma 7.2.5 are K-polystable. This conjecture cannot be extended to singular
threefolds: if ¢ is given by ¢t —y = z — z = 0, then ¢ is GIT-stable, but v (¢) is a point, so
that C, is a union of three lines that met at ¥ (¢), and X, is K-unstable by Lemma 5.8.1.
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7.3. Family Ne2.21. Smooth Fano threefolds of the 2-dimensional family Ne2.21 can be
described as blow ups of the smooth quadric threefold in P4 along a twisted quartic curve.
By [42, Lemma 9.2], the general member of this family has finite automorphism group,
and all smooth members that have infinite automorphism groups can be described as
follows.

(1) There is a one-dimensional subfamily in the family Ne2.21 consisting of smooth
threefolds admitting an effective G,,-action, see Section 5.9 for their description.
(2) There exists a unique smooth Fano threefold X® in the family with non-reductive
automorphism group, and Aut’(X?) = G,.
(3) There is a unique threefold X in the family with Aut’(X) = PGLy(C).
The threefold X® in (2) is not K-polystable by Theorem 1.1.4. On the other hand, we
showed in Section 5.9 that all remaining smooth Fano threefolds N¢2.21 that have infinite
automorphism groups are K-polystable, and concluded in Corollary 4.2.3 that the general
smooth Fano threefold in family Ne2.21 is K-stable.

In order to draw the conjectural picture of K-polystability for this family, let us fix
the standard SLy(C)-action on W = C2, set V = Sym*(W), let Z be the SLy(C)-invariant
twisted quartic curve in P* = P(V'), which is given by [u : v] = [v* : uv? : v?0? : wdv : ul].
Then Z is given by the vanishing of the following quadratic forms:

2 2
fo =5 — Tax4, f1 = Tox3 — 124, fo = T5 — Ty,

2 2
f3 = w129 — T3, f4 = X1 — Tol2, f5 = 3y — 4w1w3 + T4

Let Q be a (possibly singular) quadric threefold in P that contains the quartic curve Z,
and let m: X — @ be the blow up of the quadric @) along Z. Then @ is given by

sofo+ s1fi + safa +83fs + safs +85f5 =0

for some [sg : s1 : 83 : 83 : 84 85] € P(V @ C). Applying Lemma A.7.3 to P(V & C)
equipped with a natural action of the group PGLy(C), we see that X is GIT-stable except
for the seven cases described in the table below.

Case Equation of ) Is X GIT-semistable? | Aut®(X) Is Q smooth?
(0) fs=0 GIT-polystable PGL,(C) Yes
(1) 3fa+Afs=0,Ae€C GIT-polystable G Yes if A ¢ {0,—1,3}
(2) fo=0 GIT-unstable Ga x G,y No
(2) fot+fs=0 strictly GIT-semistable G, Yes
(3a) | fo+3fa+Afs=0,1€C GIT-semistable 1 Yes if A ¢ {0, 1,3}
(3b) fi=0 GIT-unstable G, No
(30) fi+tfs=0 strictly GIT-semistable 1 Yes

If @ is smooth (so that X is smooth as well), we expect that X is K-polystable if and
only if the threefold X is GIT-polystable. We point out that [164, Theorem 3.4] implies

the (=-)-direction of this conjecture, which also follows from Corollary 1.1.14.
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7.4. Family Ne2.22. Let X be a smooth Fano threefold in the 1-parameter family Ne2.22.
Then X can be described both as the blow up of P? along a smooth twisted quartic curve,
and the blow up of V;, the unique smooth threefold Nel1.15, along a smooth conic. More
precisely, there is a smooth twisted quartic curve Cy C P3, a smooth conic C' C Vs, and
a commutative diagram

where 7 is the blow up of Cy C P2, ¢ is the blow up of C' C Vi, Vs is embedded in P° as
described in Section 5.10, and ¢ is given by the linear system of cubics containing Cl}.
The curve Cy is contained in a unique smooth quadric surface S, C P3, and ¢ contracts
the proper transform of this surface. Note that Aut(X) = Aut(P?, C,) = Aut(Ss, Cy).
Choosing appropriate coordinates on P?, we may assume that Sy is given by zoxs = 7129,
where xg, 1, T2, T3 are coordinates on P3. Fix the isomorphism Sy & P! x P! given by

([u:v],[w:y]) > [xu:xv:yu:yx},

where ([u : v], [z : y]) are coordinates in P! xIP*. Swapping [u : v] and [z : y] if necessary, we
may assume that Cy is a curve of degree (1, 3) in Sy, so that Cy = {uf3(x,y) = vgs(x,y)},
where f3(x,y) and g3(z,y) are co-prime cubic forms.

The projection ([u : v], [z : y]) — [u : v] gives a triple cover Cy — P!, which is ramified
in at least two points. Hence, after an appropriate change of coordinates [u : v], we may
assume that this triple cover is ramified over the points [1 : 0] and [0 : 1]. This means
that both forms f3(z,y) and g3(x,y) have multiple roots. Hence, changing coordinates
[z : y] if necessary, we may assume that these roots are [0 : 1] and [1 : 0], respectively.
Keeping in mind that C, is smooth, we see that C; = {u(z® + ax?y) = v(y® + by*zx)} for
some complex numbers a and b, after a suitable scaling of the coordinates. If a = b = 0,
then the curve Cy is given by uz® = vy?, so that Aut(X) = G,, ¥ p,, and X is the unique
smooth Fano threefold Ne2.22 with an infinite automorphism group [42]. In this case, we
know that X is K-polystable (see Section 4.4).

If a =0 and b # 0, we can scale the coordinates ([u : v], [z : y]) further and assume
that the curve Cj is given by

(7.4.1) ur® =v(y’ + y’z).

If a # 0 and b = 0, then we can scale the coordinates and swap them to put the defining
equation of the curve Cy into (7.4.1). In this case, we have

Lemma 7.4.2. If Cy is given by (7.4.1), then X is strictly K-semistable.
Proof. This follows from Corollary 1.1.14, cf. the proof of Corollary 4.7.7. U

Hence, to solve the Calabi Problem for every smooth threefold in the family Ne2.22
we may assume that a # 0 and b # 0. Therefore, scaling further the coordinates on Sy,
we may assume that Cy = {u(x®+ A\z?y) = v(y® + A\y?z)} for some A\ € C*. Then X\ # +1,
since Cy is smooth. Moreover, if A = £3, then we can change our coordinates such that
Cy is given by (7.4.1). Hence, we may also assume that A\ # £3. We believe that X is
K-stable for all remaining values of the parameter \. By Proposition 4.4.1, we know that
X is K-stable if ) is general. We remark that by taking A = /3, we obtain the smooth

Fano threefold Ne2.22 with automorphism group 2, described in Example 4.4.6
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7.5. Family Ne3.5. Let X be a smooth Fano threefold in the 5-parameter family Ne3.5.
Then X can be described as the blow up of P! x P? along a curveof degree (5,2). To
describe X explicitly, let S = P! x P!, and let C' be a smooth curve in S of degree (1,5).
Arguing as in Section 7.4, we can choose coordinates ([u : v], [z : y]) on the surface S such
that the curve C' is given by the following equation:

u(z® + a1ty + axx®y® + azr®y®) + o (y° + biy'e + boy’z® + bsya®) =0,

where a1, as, as, by, by, bg are some complex numbers. The shape of this equation simply
means that the point ([1 : 0], [0 : 1]) and the point ([0 : 1],[1 : 0]) are among ramifications
points of the finite degree five cover n: C' — P! that is given by ([u : v], [z : y]) = [u : v].
Note that the ramification index of the point ([1: 0], [0 : 1]) is

2 if az # 0,

3if a3 =0 and ay # 0,

4 if a3 = ay =0 and a; # 0,

5if az =a9 =a; = 0.
Similarly, the ramification index of the point ([0 : 1],[1 : 0]) is

2 if by #£ 0,

3if b3 =0 and by # 0,

4 if b3 = by = 0 and by # 0,

5if b3 = by = by = 0.

Without loss of generality, we may assume that ([1 : 0], [0 : 1]) has the largest ramification
index among all ramifications points of the morphism n: C' — P!, and the ramification
index of the point ([0 : 1],[1 : 0]) is the second largest index. If both these indices are 5,
then a; = as = ag = by = by = b3 = 0, so that 1 does not have other ramification points,
and the equation of the curve C' simplifies as uz® +vy® = 0, so that Aut(S, C) = G,, x p,.
In all other cases, Aut(S, C) is finite by [42, Corollary 2.7].

Consider the Aut(S)-equivariant embedding S < P! x P? given by

([u ), o y]) — ([u o), [2? 2y yz]),

which gives an embedding Aut(S) — Aut(P! x P?). Let us identify S and C' with their
images in P! x P2, and let us identify Aut(S) with a subgroup of the group Aut(P! x P?).
Then C' is a smooth curve of degree (5,2) in P* x P2.

Let m: X — P! x P2 be the blow up of the curve C. Then X is a Fano threefold Ne3.5,
and every smooth Fano threefold in this deformation family can be obtained in this way:.
Since the Aut(S, C)-action lifts to X, we identify Aut(S,C) with a subgroup in Aut(X).
Arguing as in the proof of [42, Lemma 8.7], we get Aut(X) = Aut(S,C).

If ay = ay = a3 = by = by = by = 0, the threefold X is K-polystable by Corollary 5.14.8.
In Section 5.14, we proved that X is K-stable for a general choice of ay, as, as, by, ba, bs.
On the other hand, arguing as in the proof of Corollary 4.7.7, we obtain

Lemma 7.5.1. Let (a1, az,a3) = (0,0,0) # (b1, ba, b3). Then X is strictly K-semistable.
Proof. Take A € C. Let C) be the curve in S given by

uz® +v(y° + Azy® + Nboa®y® + Nba’y?) = 0,
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and let X be the Fano threefold Ne3.5 obtained by blowing up P! x P? along the curve C.
We know that X is K-polystable. On the other hand, we have X, = X for every A # 0.
This gives a test configuration for X, whose special fiber is a K-polystable Fano threefold.
Then X is strictly K-semistable by Corollary 1.1.14. U

If (a1, as,as3) # (0,0,0), then we must have (by, by, b3) # (0,0,0) by our assumption on
the ramification indices. We believe that X is always K-stable in this case. Let us restate
this conjecture in a coordinate-free language.

Let R be the effective divisor on C' that is the ramification divisor of the finite cover 7,
let P, =([1:0],[0:1]) and P, = ([0:1],[1:0]). Then P;, P, € Supp(R), so that

R=n1P1+n2P2+Z13P3+n4P4—|—n5P5+---—|—nkP;3

Zero <— aj] = as :\;3:b1:b2:b3:0
for some points P, ..., P, in the curve C, and some integers ny, no,...,n; in {1,2,3,4}.
Keeping in mind our assumptions on the ramification indices, we may further assume that
ny = ng =ng = -+ = ng. By the Riemann—Hurwitz formula, we have ny 4+ --- + n, = 8.
If the curve C' is general, then k = 8 and ny =ny =n3 =--- =ng = 1. Note that ny =4
if and only if a1 = ay = a3 = 0. Similarly, we have a; = a3 = a3 = by = by = b3 = 0 if
and only if R = 4(Py 4+ P,). If ny = 4, then the log Fano curve (C, £ R) is K-polystable if
and only if R = 4(P, + P,) by [93, Corollary 1.6]. Likewise, if ny < 3, then the log Fano
curve (C, %R) is K-stable. Thus, we can translate our conjecture as follows:
(1) X is K-polystable <= the log Fano curve (C, +R) is K-polystable;
(2) X is K-stable <= the log Fano curve (C, : R) is K-stable.
Observe that p; om: X — P! is a fibration by del Pezzo surfaces of degree 4, and each
singular fiber of this fibration is a normal del Pezzo surface that has Du Val singularities.
We can also restate our conjecture as follows: X is K-stable <= the singular fibers of

p1 o m have singular points of type Aj, Ay or Asz. The (=)-direction of this conjecture
holds by Lemma 7.5.1.

7.6. Family Ne3.8. Let X be a smooth Fano threefold in the 3-parameter family Ne3.8.
Then X can be described as the blow up of P! x P? along a curve of degree (4,2).
The explicit description of X is similar to that of family Ne3.5, so that we omit details.
Let S = P! x P!, and let C' be a smooth curve in S that is given by

u(x4 + a2’y + a2x2y2) + U(y4 + byyla + b2y2x2) =0

for some complex numbers ay, as, by, by, where ([u : v], [z : y]) are coordinates on S.
Identify S and C with subvarieties in P! x P? via the embedding S < P! x P? given by

([w: o], [z y]) = ([u:v], 2% 2y 2 y7)).
Let m: X — P! x P? be the blow up along the curve C. Then X is a Fano threefold Ne3.8,
and every smooth Fano threefold in this deformation family can be obtained in this way.
If aj = a3 = by = by = 0, then Aut(X) = G,,, X py, so that X is the unique smooth
threefold in the deformation family Ne3.8 that has an infinite automorphism group [42].
In this case, the threefold X is K-polystable by Proposition 5.16.4 and Remark 5.16.5.
In other cases, the group Aut(X) is finite, so that X is K-polystable <= it is K-stable.

Lemma 7.6.1. Let a; = ay = 0 and (by,by) # (0,0). Then X 1is strictly K-semistable.

Proof. See the proof of Lemma 7.5.1. O
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Let n: C — P! be the quadruple cover given by the projection ([u : v], [x : y]) — [u : v],
and let R be its ramification divisor. Write

k
R=7) npP,
i=1

where Py, P, ..., Py are points in the curve C, and ny,na, ..., n; are integers in {1, 2, 3}.
Note that ny + -+ + ny = 6, and Supp(R) contains ([1 : 0],[0 : 1]) and ([0 : 1],[1 : 0]).
Therefore, if kK = 2, then ny = 3 and ny = 3, so that R = 3([1: 0],[0: 1])+3([0 : 1],[1 : 0]),
which means that a; = ay = by = by = 0. We know that X is K-polystable in this case.
Vice versa, if £ > 2, then Aut(X) is finite, so that X is K-polystable <= it is K-stable.
Moreover, we expect that the Fano threefold X is K-stable if and only if ramification
indices of all ramification points of 7 are at most 3. We can restate this as follows:

X is K-stable <= each n; <2 <= the log Fano curve (C’, %R) is K-stable.

Alternatively, we can also restate this as follows: X is K-stable <= the singular fibers
of p; o 7 have singular points of type A; or A,. Note that p; om: X — P! is a fibration
into del Pezzo surfaces of degree 5.

7.7. Family Ne3.12. Let X be a smooth Fano threefold in the 1-parameter family Ne3.12.
Then X can be described as the blow up of P! x P? along a curve of degree (3,2). To
describe X explicitly, let S = P! x P!, and let C' be a smooth curve in S of degree (1, 3).
In Section 7.4, we showed that we can choose coordinates ([u : v], [z : y]) on S such that
the curve C' is given by one of the following three equations:

(1) uxd 4+ vy =0,

(2) uxd 4+ v(y® + y?z) = 0,

(3) u(z® + Az%y) + v(y® + A\y?x) = 0, where A € C* such that A\ # 41 and \ # £3.
As in Sections 7.5 and 7.6, we identify S and C' with subvarieties in P! x P? using the em-
bedding S < P'xP? given by ([u: v], [z : y]) = ([u: v],[2?: 2y : y?]). Let m: X — P'xP?
be the blow up of the curve C'. Then X is a Fano threefold Nv3.12. Moreover, every smooth
Fano threefold in this family can be obtained in this way.

If C is given by uz®+vy? = 0, then Aut(X) = G,, X p,, so that X is the unique smooth
threefold in the deformation family Ne3.12 that has an infinite automorphism group [42].
In this case, the threefold X is K-polystable by Proposition 5.18.2.

If C'is given by ux® + v(y® + y*x) = 0, then, arguing as in the proof of Lemma 7.5.1,
we see that X is strictly K-semistable, so that, in particular, X is not K-polystable.

In the remaining case, we believe that the threefold X is K-stable for all A ¢ {0, £1, £3}.
In this case, the fibration p; o m: X — P! has exactly four singular fibers, and each of
them has one singular point, which is an ordinary node.

We can describe X as a blow up of P? along the line zyp = 23 = 0 and the twisted cubic

{xoxg — a:% +axrix3 =0, 2123 — x% — ax§ + bxoxre = 0, xox3 — T129 + bror = O},

where a and b are some complex numbers. If ¢ = 0 and b = 0, then X is the K-polystable
threefold with Aut(X) = G,, X p,. Vice versa if a = 0 or b = 0 (but not both), then we
can scale the coordinates appropriately and assume that b = 1 or a = 1, respectively, Up
to isomorphism, this gives us one special smooth Fano threefolds N¢3.12. This threefold is
our strictly K-semistable smooth Fano threefold Ne3.12 described above. Our conjecture

says that all other smooth Fano threefolds in this family are K-stable.
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APPENDIX A. TECHNICAL RESULTS USED IN THE PROOF OF MAIN THEOREM

A.1. Nadel’s vanishing and Kollar-Shokurov connectedness. In this short section,
we present one important result, known as Nadel’s vanishing, and some of its corollaries.
To state it, we remind basics facts about singularities of pairs following [58, 123, 124, 126].

Let X be a normal variety such that Ky is a Q-Cartier divisor, let 7: X — X be its

resolution of singularities. Denote the m-exceptional divisors by Ei, ..., E,,. Then
i=1
for some rational numbers e, ..., e,. For each i € {1,...,m}, we let Ax(E;) =1 —¢;

and say that Ay (E;) is the log discrepancy of the divisor E;. We say that

e X has terminal singularities if each e; < 0,

e X has canonical singularities if each e; < 0,

e X has Kawamata log terminal singularities if each e¢; < —1,
e X has log canonical singularities if each e¢; < —1.

One can show that these definitions do not depend on the choice of the morphism 7.

If X is smooth, then its singularities are terminal. Moreover, if X is a surface, then
X is smooth if and only if it has terminal singularities. Similarly, if X is a surface, then
it has canonical singularities if and only if X has Du Val singularities. Likewise, if X
is a surface, then it follows from [124, Theorem 3.6] that X has Kawamata log terminal
singularities if and only if X has quotient singularities. In all dimensions, Kawamata log
terminal singularities are rational by [124, Theorem 11.1]. Starting from now, we assume
that the variety X has Kawamata log terminal singularities.

Let Bx be an effective Q-divisor on X. Then

(A12) BX == Z&iBi,
i=1

where each B; is a prime Weil divisor on X, and each a; is a non-negative rational number.
We say that (X, Bx) is a log pair, By is its boundary, and Ky + By is its log canonical
divisor. Let us define singularity classes for the log pair (X, Bx) following [124, 120].

Let Bl, .. B be the proper transforms on X of the divisors By, ..., By, respectively.
Let us also replace (if necessarily) the resolution of singularities : X=X by a slightly
better one such that the divisor

> B+)Y E
=1 =1

has simple normal crossing singularities. Such resolution of singularities exists [110, 125],
and it is often called a log resolution of the log pair (X, Bx). Suppose, in addition, that

the divisor By is a Q-Cartier divisor. Then there are rational numbers d, ..., d,, such
that

=1 =1
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Using this, we define the log pull back of the pair (X, Bx) as follows:

(%> b+ Z 4:F;)
i=1

This new log pair is often denoted as (X, BX ). We say that

e (X, Bx) has Kawamata log terminal singularities if each a; < 1 and each d; < 1,

e (X, Bx) has log canonical singularities if each a; < 1 and each d; < 1.
Both these definitions do not depend on the choice of the log resolution 7: X = X.
Moreover, it is easy to check (using definition) that (X, Bx) has log canonical singularities
if and only if (X BX ) has log canonical singularities. Note that BX isnot always effective.
Nevertheless, our definition still works in this case. Similarly, one can show that the log
pair (X, By) has Kawamata log terminal singularities if and only if the log pair ()A( , BYX)
has Kawamata log terminal singularities.

Let P be a point in X. Then we can localize our definitions of singularities at this point.
Namely, we say that the pair (X, Bx) has log canonical singularities at P if the following
two conditions are satisfied:

e for every R in (A.1.3) such that P € B;, one has a; < 1,

o for every E; in (A.1.3) such that P € w(E;), one has d; < 1.
Likewise, we say that the log pair (X, Bx) has Kawamata log terminal singularities at
the point P if the following two conditions are satisfied:

e for every Ez in (A.1.3) such that P € B;, one has a; < 1,

o for every E; in (A.1.3) such that P € w(E;), one has d; < 1.

Lemma A.1.4. Suppose that X is smooth at P. Then the following assertions hold:
(i) if multp(Byx) < 1, then (X, Bx) is log canonical at P;

(i) if multp(Bx) < 1, then (X, Bx) is Kawamata log terminal at P;

(iii) of multp(Bx) > dim( ), then (X, Bx) is not log canonical at P;

(iv) if multp(Bx) = dim(X), then (X, Bx) is not Kawamata log terminal at P.

Proof. This is [124, Lemma 8.10] and [58, Exercise 6.18]. O

Example A.1.5. Suppose that X = P2, Let ¢ be a line in X. Then —Kx ~ 3/, so
that a(X) < 3. If a(X) < 3, there is an effective divisor By on the surface X such that
the log pair (X, Bx) is not log canonical at a point P € X, and Bx ~g —AKx for some
positive rational number A < % Now, choosing ¢ to be a general line containing P, we

get 1 >3\ = Bx - £ > multp(Bx) > 1 by Lemma A.1.4. This shows that a(X) = 3.

To measure how far is the log pair (X, Bx) from being log canonical, we can use
the following number, which is called log canonical threshold:

let(X, Bx) = sup{)\ € Q-0 ‘ (X, ABx) has log canonical singularities}.
We can localize it at point P € X as follows:
letp(X, Bx) = sup{)\ € Qo ’ (X, ABx) has log canonical singularities at P}.
Similarly, if Z is an irreducible subvariety of the variety X, we let

letz(X, Bx) = sup{)\ € Q-9 ‘ (X, ABx) is log canonical at every point in Z}.
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Now, let us denote by NKklt(X, Bx) the subset in X consisting of all points where
the singularities of the pair (X, Bx) are not Kawamata log terminal. To be precise, let

Nklt(X, By) = (U BZ-> U <U W(Ei)> C X.
a;>1 d;>1
This locus has been introduced in [188, Definition 3.14] as the locus of log canonical
singularities of the log pair (X, Bx). Because of this, it is often denoted by LCS(X, Bx).
Observe that Nklt(X, By) = @ <= (X, Bx) has Kawamata log terminal singularities.
The locus Nktl(X, Bx) can be equipped with a subscheme structure as follows: let

z(x, BX> _— (0)?( N ldi)E - ZmBi))
i=1 i=1
Since the Q-divisor By is assumed to be effective, Z(X, By) is an ideal sheaf [131, § 9.2],
which is commonly known as the multiplier ideal sheaf of the log pair (X, Bx).

Since Z(X, By) is an ideal sheaf, it defines some subscheme of the variety X, which we
denote by L£(X, Bx). The subscheme L£(X, Bx) is usually called the log canonical singu-
larities subscheme of the log pair (X, Bx). Note that Supp(L(X, Bx)) = Nklt(X, Bx). If
(X, Bx) has log canonical singularities, then £(X, Bx) is reduced (possibly empty).

Theorem A.1.6 ([131, Theorem 9.4.8]). Let D be an arbitrary Cartier divisor on X, and
let H be some nef and big Q-divisor on the variety X. Suppose that D ~o Kx + Bx + H.
Then H(Ox(D) ® Z(X, Bx)) = 0 for every i > 1.

Theorem A.1.6, known as Nadel’s vanishing theorem or simply Nadel’s vanishing [157],
implies the following result, which is known as Kollar-Shokurov connectedness theorem
or simply Kollar-Shokurov connectedness [188, 123].

Corollary A.1.7. If —(Kx + Bx) is big and nef, then Nklt(X, By) is connected.
Proof. See the proof of Corollary A.1.9 below. O
This result is [188, Connectedness Lemmal, [124, Theorem 17.4], [126, Corollary 5.49].

Example A.1.8. Suppose X = P! x P!. Then a(X) < %, since —Kx ~ 201 + 2{5, where
¢y and {5 are curves in X of degree (1,0) and (0, 1), respectively. If a(X) < 3, there exists
an effective divisor Bx on the surface X such that the pair (X, Bx) is not log canonical at
apoint P € X, and By ~g —AKx for some positive rational number A < % In this case,
intersecting Bx with ¢; and /5, we see that the locus Nklt(X, Bx) is zero-dimensional, so
that Nklt(X, Bx) = P by Corollary A.1.7, which implies that Nklt(X, ¢, + Bx) = ¢, U P.
But Nklt(X,¢; + By) is connected by Corollary A.1.7. Thus, choosing ¢; not passing
1

through the point P, we obtain a contradiction. This shows that a/(X) = 3.

Let us present more corollaries of Theorem A.1.6.
Corollary A.1.9. Let us use assumptions and notations introduced in Theorem A.1.6.

Let 33 be the union of zero-dimensional irreducible components of the locus Nklt(X, By).
Then ¥ contains at most h®(Ox (D)) points of the variety X.

Proof. Let L = L(X, Bx). Using the exact sequence of sheaves

0— Ox(D) ®I(X, Bx) — Ox(D) — Og & Ox(D) — 0,
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and applying Theorem A.1.6, we obtain the surjection
H°(Ox(D)) — H*(O; ® Ox(D)),
which gives |X| < h%(O; ® Ox (D)) < h%(Ox (D)) as required. 0

Corollary A.1.10. Let us use assumptions and notations introduced in Theorem A.1.6.

If the locus Nklt(X, By) is a finite set, then |Nklt(X, Bx)| < h°(Ox(D)).

Corollary A.1.11. Let M be a non-empty linear system on X that is base point free,
let M be a general divisor in M, let Z be a union of some one-dimensional irreducible
components of the locus Nklt(X, Bx), and let Dy be a Cartier divisor on M such that

Dy ~g Ky + Bx|,, + Hy
for some nef and big Q-divisor Hyy on the variety M. Then M - Z < h°(M, Oy (Dyy)).
Proof. First, we observe that M is normal and has Kawamata log terminal singularities.
But (M, Bx|y) is not Kawamata log terminal at every point of the intersection Z N M.

Moreover, these points are isolated components of the locus Nklt(M, Bx|y), so that it
follows from Corollary A.1.9 that M - Z = |[M N Z| < h°(M, O (Dyr)). O

Corollary A.1.12. Let M be a non-empty base point free linear system on the variety X,
let M be a general divisor in M, let Z be a union of some one-dimensional irreducible
components of Nklt(X, Bx). Suppose that —Kx is nef and big, and Bx ~qg —AKx for
some rational number A\ < 1. Then M - Z < h°(S, On(M|ar)).

Proof. Apply Corollary A.1.11 with Hy = —(1 — A) Kx| - O

Corollary A.1.13. Suppose X = P? and Bx ~g —AKx for some rational number A\ < %.
Let Z be the union of one-dimensional components of Nklt(X, Bx). Then Ops(1)-Z < 1.

Proof. Apply Corollary A.1.11 with M = |Ops(1)| and Dy, = Oy O

Corollary A.1.14. Suppose that X is a smooth Fano threefold such that —Kx ~ 2H for
some ample Cartier divisor H on it, and Bx ~g —AKx for some rational number A < 1.
Let Z be the union of one-dimensional components of Nklt(X, Bx). Then H-Z < H*+1.

Proof. Observe that H is a smooth del Pezzo surface, — Ky ~ H|y and
hW(H,Oy(—Ky)) = Kp+1=H*+1.
Thus, we can apply Corollary A.1.12 with M = |H|. O

Corollary A.1.15. Suppose that —Kx is nef and big, Bx ~g —AKx for some rational
number X < 1, and there exists a surjective morphism with connected fibers ¢: X — P*.
Set H = ¢*(Op1(1)). Let Z be the union of one-dimensional components of Nklt(X, ABx).
Then H - Z7 < 1.

Proof. Apply Corollary A.1.11 with M = |H| and Dy; = Oy,. O

Corollary A.1.16. Suppose that —Kx is nef and big, Bx ~g —AKx for some rational
number X < 1, and there exists a surjective morphism with connected fibers ¢: X — P2,
Set H = ¢*(Op2(1)). Let Z be the union of one-dimensional components of Nklt(X, ABx).
Then H - Z < 2.

Proof. Apply Corollary A.1.11 with M = |H| and Dy, = M|y, O
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Let us conclude this section by the following known application of Theorem A.1.6.

Corollary A.1.17. Suppose that —(K x + Bx) is nef and big, and dim(Nklt(X, Bx)) = 1.
Then the locus Nklt(X, Bx) has the following properties:

(o) the locus Nklt(X, By) is connected,
i) each its irreducible component is isomorphic to P!,
(ii) any two intersecting irreducible components intersect transversally by one point,
(iii) no three irreducible components intersects at one point,
(iv) no irreducible components form a cycle.

Proof. Note that assertion (o) follows from Corollary A.1.7, and all other assertions follow
from [157, Theorem 4.1]. For the convenience of the reader, let us prove assertion (i), which
also follows from [87, Theorem 6.3.5].

Let C be an irreducible component of the locus Nklt(X, Bx), let Z¢ be its ideal sheaf,
let J =Z(X,Bx), and let £ = L(X, Bx). Then J C Z¢, while £ is one-dimensional.
But h!(X,J) = 0 and h*(X,J) = 0 by Theorem A.1.6. Hence, using the exact sequence

0—J —>0x — 0, —0,
we get the following exact sequence of cohomology groups:
0=H'(Ox) — H'(O;) — H*(J) =0,
which gives h'(O,) = 0. Now, looking at the exact sequence of sheaves
0—Zc/T — Opr — Oc — 0
on the subscheme L, we get the following exact sequence of cohomology groups:
0=H(Or) — H(Oc) — H*(Zc)T),

where h*(Z¢/J) = 0, because L is one-dimensional. Thus, we see that h'(O¢) = 0, which
implies that C' is a smooth rational curve (see [157, Section 4] for details). O

A.2. Inversion of adjunction and Kawamata’s subadjunction. Let X be a normal
projective variety that has Kawamata log terminal singularities, and let Bx be an effective
Q-divisor on the variety X that is given by (A.1.2). The following result is commonly
known as the inversion of adjunction.

Theorem A.2.1 ([126, Theorem 5.50]). Suppose that a; = 1, By is a Cartier divisor,
and By has Kawamata log terminal singularities. The following assertions are equivalent:
e (X, Bx) is log canonical at every point of the divisor By;
e the singularities of the log pair (B1,) ._,a;B;|g,) are log canonical.

Corollary A.2.2. Suppose that X is a surface, (X, Bx) is not log canonical at some
point P € By, and the curve By is smooth at this point. If ay < 1, then

(gaia) B, > ((;a3> .31>P o1

Note that Corollary A.2.2 can be proved without using more powerful Theorem A.2.1.

Instead, one can use basics of intersection multiplicities (see the proof of [31, Theorem 7]).
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Example A.2.3 (cf. Example A.1.8). Suppose X = P! x P'. If a(X) < 1, there exists
an effective divisor By on the surface X such that the pair (X, By) is not log canonical at
a point P € X, and Bx ~g —AKx for some rational number \ < % Write Bx = al + A,
where a is a non-negative rational number, ¢ is the curve in X of degree (1,0) that passes
through the point P, and A is an effective Q-divisor whose support does not contain ¢.
Since By is a Q-divisor of degree (2),2)\) and A < %, we see that a < 1, so that

1>2 =Bx - {=A-l>(A-{),>1

by Corollary A.2.2, so that a(X) > 1.

Let Z be a proper irreducible subvariety of the variety X. Following [119, Definition 1.3],
we say that Z is a center of log canonical singularities or a log canonical center of the log
pair (X, Bx) if one of the following conditions is satisfied:

e / = B, for Ez in (A.1.3) such that a; > 1,
o 7 = 7(E;) for some E; in (A.1.3) such that d; > 1,

for some choice of the log resolution 7: XX . IfZisa log canonical center of the log
pair (X, By), then Z C Nklt(X, Bx). Using Lemma A.1.4, we get

Corollary A.2.4. Suppose that X is non-singular at general point of the subvariety Z.
If Z is a center of log canonical singularities of the log pair (X, Bx), then multz(Bx) > 1.

From now on and until the end of this section, we assume, additionally, that
(%) the pair (X, Bx) has log canonical singularities in every point of the subvariety Z.

We need this additional assumption, because centers of log canonical singularities behave
much better under it. It can be illustrated by the following result:

Lemma A.2.5 ([119, Proposition 1.5]). Let Z' be a proper irreducible subvariety in X.
Suppose that Z and Z' are centers of log canonical singularities of the log pair (X, Bx).
Then every irreducible component of the intersection Z N Z' is a center of log canonical
singularities of the log pair (X, Bx).

If Z is a log canonical center of the log pair (X, By), we say that it is a minimal log
canonical center if Z does not contain a proper irreducible subvariety that is also a center
of log canonical singularities of the log pair (X, Bx).

Theorem A.2.6 ([120, Theorem 1}). Suppose that Z is a minimal center of log canonical
singularities of the log pair (X, Bx). Then Z is normal and has rational singularities.
Let H be an ample Q-Cartier Q-divisor on X. Then (Kx + Bx + H)|z ~q Kz + Bz for

an effective Q-divisor By on Z such that (Z, Bz) has Kawamata log terminal singularities.
This result is Kawamata’s subadjunction theorem or Kawamata’s subadjunction.

Corollary A.2.7. Suppose that —Kx is ample, Bx ~ A\(—Kx) for a rational number \,
and Z is a minimal log canonical center of (X, Bx), and Z is a curve. Then Z is smooth.
Moreover, if A < 1, then —Kx-Z < % and Z 1is rational. If A\ > 1, then —Kx-Z > %,
where g is the genus of the curve Z.

Proof. By Theorem A.2.6, the curve Z is smooth. Let g be its genus. Chose small rational
number € > 0. Set H = ¢(—Kx). Then (A—1+4¢)(—Kx-Z) = (Kx+Bx+H)-Z >2g—2
by Theorem A.2.6. Since € can be arbitrary small, we get (A — 1)(—=Kx - Z) > 2g — 2,

which implies all required assertions. U
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A.3. Mobile log pairs and Corti’s inequality. Let us use assumptions and notations
introduced in Appendix A.1. Recall from Appendix A.1 that that X is a normal projective
variety with Kawamata log terminal singularities, and By is an effective Q-divisor on X.
In this book, we occasionally consider log pairs like (X, AM), where M is a non-empty
linear system on X, and A is a non-negative rational number. For instance, we will use
the following result, known as Corti’s inequality, in the proof of Theorem 5.4.5.

Theorem A.3.1 ([57, Theorem 3.1]). Let Z be an irreducible subvariety in X such that
the variety X is non-singular at its general point, let M be a mobile linear system on X,
and let X be a positive rational number. If the log pair (X, AM) is not log canonical at
general point of the subvariety Z, then

4
mult (M- M') > —
for two general divisors M and M’ in the linear system M.

More generally, we can consider log pairs (X, Bx + Mx) with M is defined as
(A.3.2) My = ZCiMi7
i=1

where each M; is a non-empty mobile linear system on X, i.e. it has no fixed components,
and each ¢; is a non-negative rational number. For the log pair (X, Bx + Mx), we say
that By is the fixed part of its boundary, and My is the mobile part of its boundary.

We can work with the log pair (X, Bx + Mx) in the same way as with a usual log pair.
In fact, replacing each linear system M, in (A.3.2) with its general member, we can handle
the mobile part M x as a Q-divisor. If By = 0, then (X, Mx) is said to be mobile log pair.
Mobile log pairs naturally appear in many problems, see [4, § 1.8] and [50, § 2.2].

Suppose that the following condition is satisfied: both By and My are Q-Cartier.
Then we can replace (A.1.3) by

(A.3.3) K+ i a; B; + i M + zm: d;E; ~q 7 (Kx + Bx),

=1 =1 =1

where each M\Z is a proper transform on X of the mobile linear system M;, and the log
resolution 7: X — X is chosen in such way that each linear system M; is base point free.
Now, following [124, Definition 4.6], we say that the pair (X, Bx + Mx) is log canonical
at the point P € X if the following two conditions are satisfied:

e a; < 1in (A.3.2) for every R such that P € B;,

e d; < 1in (A.3.2) for every E; such that P € w(E;).
Similarly, we say that (X, Bx + M) is Kawamata log terminal at P if the following two
conditions are satisfied:

e a; < 1in (A.3.2) for every B, such that P € B;,
e d; < 1in (A.3.2) for every E; such that P € 7(E;).

These are the same definitions we gave in Appendix A.1 for (X, Byx), since we do not
impose any constraints on the coefficients ¢y, ..., cs of the mobile part of the boundary.
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Remark A.3.4. Tt follows from [124, Theorem 4.8] that the pair (X, Bx + Mx) has log
canonical (Kawamata log terminal, respectively) singularities if and only if the log pair

s N
(X, Bx+Y Y CNM’)
i=1 j=1

has log canonical (Kawamata log terminal, respectively) singularities for some N > 0,
where each M is a general divisor in the linear system M.

For mobile pairs, we can also define canonical singularities and terminal singularities as
it is done in [124, Definition 3.5]. Namely, we say that the log pair (X, Mx) is canonical
(terminal, respectively) at the point P if the following condition is satisfied:

e for every E; in (A.1.3) such that P € w(E;), one has d; < 0 (d; < 0, respectively).

Of course, these definitions also make sense for non-mobile pairs, but they behave better
for mobile pairs. In this book, we only consider them for mobile log pairs (occasionally).

The following result, known as Noether—Fano inequality, is used in Example 1.6.17, and
also in the proof of Theorem 5.4.5.

Theorem A.3.5. Suppose that X s a Fano variety with at most terminal singularities,
there exists a reductive subgroup G C Aut(X) such that vk C1°(X) = 1, and for every
G-invariant mobile linear system M on the variety X, the log pair (X, AM) has canonical
singularities for X € Q- defined via AM ~qg —Kx. Then X is G-birationally superrigid,
i.e. the following two conditions are satisfied:
(1) there is no G-equivariant dominant rational map X --+Y such that general fibers
of the map X --+Y are rationally connected, and 0 < dim(Y") < dim(X),
(2) there is no G-equivariant birational non-biregular map X --» X' such that X' is
a Fano variety with at most terminal singularities, and rk C1°(X') = 1.

Proof. This is well-known. See, for example, [50, Chapter 3.1.1], where this assertion has
been proved in the case when G is a finite group. O

Arguing as in Appendix A.1, we can define the locus Nklt(X, Bx +Mx), the multiplier
ideal sheaf Z(X, Bx+Mx) and the log canonical singularities subscheme £(X, By+Mx).
Likewise, we can generalize other notions and results presented in Appendices A.1 and A.2
for log pairs whose boundaries have non-empty mobile parts.

A.4. Equivariant tie breaking and convexity trick. Let X be a projective variety
with Kawamata log terminal singularities, and let G be a reductive subgroup in Aut(X).

Lemma A.4.1 ([86, Lemma 2.7]). Let P be a point in X that is fized by the group G.
Then the induced linear G-action on the Zariski tangent space Tp(X) is faithful.

Corollary A.4.2. If X is a curve, and G fixes a smooth point in X, then G is cyclic.

Let Bx be an effective Q-divisor on X that is given by (A.1.2), let My be a mobile
boundary on X that is given by (A.3.2), let Z be a proper irreducible subvariety in X.
Suppose that both Bx and My are Q-Cartier, and both Bx and M x are G-invariant.
The former condition means that for any g € G, any B; in (A.1.2), and any M, in (A.3.2),
there are B; in (A.1.2) and My, in (A.3.2) such that ¢(B;) = B, and g(M;) = M.
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Lemma A.4.3. Suppose that dim(Z) = dim(X)—1, the variety X is smooth along Z, and
the subvariety Z is G-invariant. Letn: X — X be the blow up of the subvariety Z, let I be

the m-exceptional divisor, let Bg and M g be the proper transforms on X of Bx and ./\/lX,
respectively. Suppose that Z C Nklt(X, Bx + Myx), but multz(Bx) + multz(Mx) <

Then the G-action lifts to X and F' contains a unique G-invariant irreducible proper
subvariety 7 such that the induced morphism n|z: Z — Z is birational, and the log pair

(A.4.4) (X, Bg + Mg + (multz(By) + multz(My) — 1)F>

1s not Kawamata log terminal along Z. Moreover, one has
(A4.5) multz (By) + multz (My) + mult;(Bg) + mult;(Myg) > 2.
Proof. The required assertion follows from [37, Remark 2.5]. Namely, we have
Ky + By + Mg + (multz (Bx) +multz(Mx) = 1) F) ~g " (Kx + Bx + M),

which implies that the log pair (A.4.4) is the log pull back of the log pair (X, Bx + Mx).
Thus, since multz(By) + multz(Mx) < 2, the divisor F' contains a proper G-invariant
G-irreducible subvariety Z such that the induced morphism 7| : 7 — 7 is surjective, and
the log pair (A.4.4) is not Kawamata log terminal along Z.

Since mult (Bx )4multz(Mx) < 2, the log pair (X, Bg+ M5 +F) is not log canonical
along Z. Now, applying Theorem A.2.1, we see that (F, Bz|p+M 5|r) is not log canonical

along the subvariety Z either. Since Z is a divisor in F', we have ord;(Bg|r+Mz|r) > 1.
Let ¢ be a sufficiently general fiber of the natural projection F' — Z. Then

2 > multy(Bx)+multz(Mx) = (B§|F+M)~(\F)~£ > ord; (Bg| .+ Mgz, )eNZ] > |nZ|

by Lemma A.1.4. Then |[¢{N Z| =1, and the induced morphism nlz: Z — 7 is birational.
Applying Lemma A.1.4 to the pair (X, Bx+Mx), we get multz(Bx)+multz(Mx) > 1.
Now, applying Lemma A.1.4 to (A.4.4), we obtain (A.4.5), cf. [29, Corollary 2.7]. O

Starting from now and until the end of this section, we suppose, in addition, that
(%) (X, Bx + M) is log canonical at every point of the subvariety Z.

If Z is a minimal center of log canonical singularities of the log pair (X, Bx + Mx), then
the subvariety g(Z) is also a minimal center of log canonical singularities of this log pair
for every g € G, so that Lemma A.2.5 gives Z Ng(Z) # @ <= Z = g(Z). Therefore, if
the subvariety Z is a divisor in X that is a minimal center of log canonical singularities
of the pair (X, Bx + Mx), then X does not contain other log canonical centers of this
log pair that meet Z. If dim(Z) < dim(X) — 2, this is not always true, because Z maybe
contained in a center of log canonical singularities of larger dimension. In this case, we
can often modify the boundary Bx + M x to obtain a similar assertion.

Lemma A.4.6 ([50, Lemma 2.4.10]). Suppose that Z is a minimal center of log canonical
singularities of (X, Bx + Mx), one has dim(Z) < dim(X) — 2, and Bx + Mx ~qg H for
an ample Q-diwisor H on the variety X. For a sufficiently divisible n > 0, let

D= {D € |nH| : g(Z) C Supp(D) for every g € G}.
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Then D is a G-invariant linear subsystem in |nH| that does not have fized components.
Fiz e € Q-. Then there are rational numbers 1 > €1 > 0 and 1 > €5 > 0 such that

(1 —€)(Bx + Mx) +&D ~g (1+€)H,

the pair (X, (1 —¢€;)(Bx + Mx)+€D) is log canonical at every point of the subvariety Z,
and Z is the only center of log canonical singularities of this log pair that intersects Z.
Moreover, if the original log pair (X, Bx + Mx) has log canonical singularities, then

Nklt(X,(l — 61)(BX +Mx) +€2D> = |_| {Q(Z)}7

geG

so that the new log pair (X, (1—e€1)(Bx +Mx)+€D) also has log canonical singularities,
and NkIt(X, (1 — €1)(Bx + Mx) + D) is a G-irreducible subvariety in X.

Proof. See the proofs of [119, Theorem 1.10] and [120, Theorem 1]. O

This lemma is an equivariant version of the so-called Kawamata—Shokurov trick or tie
breaking [119, 120]. Using Lemma A.4.6 and Corollary A.1.7, we obtain

Corollary A.4.7. Suppose that X is a Fano variety, and Bx + Mx ~q —vKx for
some rational number v < 1, and the subvariety Z is a minimal center of log canonical
singularities of the log pair (X, Bx + Mx). Then Z is G-invariant.

This corollary implies the following technical result.

Lemma A.4.8. Suppose that G = G|, x B for a finite group B, and X is a Fano threefold
such that ag(X) < p for some positive rational number pn < 1. Suppose, in addition, that
the following two conditions are satisfied:

(i) X does not contain G-fized points,
(ii) X does not contain G-invariant surface S such that —Kx ~gq aS+A, where a > /%
and A is an effective Q-divisor on X.

Then X contains an effective G-invariant Q-divisor D ~qg —Kx and a smooth G-invariant
irreducible rational curve Z such that (X, AD) is strictly log canonical for some positive
rational number A < u, and Z is the unique log canonical center of the log pair (X, \D).

Proof. By Lemma 1.4.1, our X contains an effective G-invariant Q-divisor D such that
the log pair (X, AD) is strictly log canonical for some positive rational number A < p.
Then Nklt(X, AD) is at most one-dimensional by (ii).

The locus Nklt(X, AD) is connected by Corollary A.1.7. Using Corollary A.4.7 and (i),
we see that this locus is one-dimensional, and there are no points in X that are log
canonical centers of the pair (X, AD).

Now, using Lemma A.2.5, we conclude that Nklt(X, AD) consists of a single curve Z.
By Corollary A.1.17 or by Theorem A.2.6, the curve Z is smooth and rational. U

Let us present another application of Lemma A.4.6 and Theorem A.1.6,

Corollary A.4.9. Suppose that X is a Fano variety that does not contain G-fixed points,
the locus NKIt(X, Bx) is one-dimensional, and Bx ~g —AKx for some A € QN (0,1).
Let C' be an irreducible G-invariant curve in X that is contained in the locus Nklt(X, Bx).
Choose 6 € QN (0, 1] such that (X,dBx) is log canonical and not Kawamata log terminal.

Then C' is a minimal log canonical center of the log pair (X,0Bx).
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Proof. Let Z be a minimal log canonical center of the pair (X,0Bx). By Corollary A.4.7,
the subvariety Z is G-invariant, so that Z is a curve, since X contains no G-fixed points.
If Z = C, we are done. Hence, we assume that Z # C'. Let us seek for a contradiction.
We observe that Z C Nklt(X, Bx). But it follows from Corollaries A.1.7 and A.1.17 that
the locus Nklt(X, By) has the following properties:

(0) it is connected,

(i) each its irreducible component is isomorphic to P!,

(ii) any two intersecting irreducible components intersect transversally by one point,
(iii) no three irreducible components intersects at one point,
(iv) no irreducible components form a cycle.
Thus, irreducible curves in Nklt(X, Bx) form a tree, and Z and C are G-fixed vertices
in this tree of curves. But this tree contains a unique path that joins these two vertices,
so that this path must be G-invariant, and all its vertices also must be G-invariant, which
implies that C' contains a G-fixed point, which is a contradiction. O

If the log pairs (X, == Bx) and (X, 2 M) are log canonical at some point P € X for

P l-a
some a € QN (0, 1), then (X, Bx + M) is also log canonical at this point. This gives
Corollary A.4.10. Suppose that Bx ~g N\H, Mx ~q uH, Bx + Mx ~q vH for some
ample Q-Cartier Q-divisor H on the variety X, and rational numbers A\, u, v = X\ + L.
If (X, Bx 4+ M) is not log canonical at a point P € X, then (X, 5Bx) or (X, 2Mx) is

not log canonical at this point.
Applying the same idea to the components of the divisor By, we obtain

Corollary A.4.11. If X is a Fano variety, (X, Bx) is not log canonical at a point P € X,
and rk CIG(X) =1, then X contains a G-irreducible effective Weil divisor B such that
the log pair (X,bB) is not log canonical at P for b € Q¢ such that bB ~q Bx.

Now, let us generalize this corollary for arbitrary varieties.

Lemma A.4.12. Let D be some G-invariant effective Q-divisor on the variety X such
that D ~q Bx + Mx and Supp(D) C Supp(Bx), but D # Bx + Mx. Then there exists
a non-negative rational number p such that the Q-divisor (1+ u)Bx — uD is effective, but
its support does not contain at least one G-irreducible component of Supp(D). Moreover,
if (X, Bx + Mx) is not log canonical at some point P € X, and (X, D) is log canonical
at this point, then (X, (1 + pu)(Bx + Mx) — uD) is also not log canonical at P.

Proof. The proof is essentially the same as the proof of [37, Lemma 2.2]. Namely, we have

i=1 i=1 i=1
where each b; is a non-negative number, and each B; is a prime Weil divisor from (A.1.2).
For every non-negative rational number €, consider the divisor (1 4 €¢)Bx — eD. Then

(1 -+ E)BX —eD = Z (e(ai — bl) + CLZ')BZ',
i=1
and (A.4.13) implies that at least one number among a; —by, as —bs, . .., a,.—b, is negative.
Then we can choose € > 0 such that €(a; — b;) + a; > 0 for every i € {1,...,r}, but at

least one of these number is zero. Then we can let p be this e.
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Finally, if both pairs (S, D) and (S, (1 + u)(Bx + Mx) — uD) are log canonical at P,
then the log pair (S, Bx + M) is also canonical at P, because

_ 1 _
BX—I—Mx—1+IUD+1+M<(1+[L)(BX+M)() p,D>

and ﬁ + ﬁ =1. O
Example A.4.14 (cf. Examples A.1.8 and A.2.3). Suppose X = P! x PL. If a(X) < 1,
there exists an effective divisor By on the surface X such that the pair (X, Bx) is not log
canonical at a point P € X, and Bx ~g —AKx for some positive rational number A < %
Let /1 and ¢5 are curves in X of degree (1,0) and (0, 1) that pass through P, respectively.
Then —Kx ~ 201+20s, but (X, ¢1+/5) is log canonical. Thus, if a(X) < %, it follows from
Lemma A.4.12 that there is an effective divisor By on X such that By ~g —AKx, the log
pair (X, BY) is not log canonical at some point P € X, but Supp(BY) does not contain
one of the curves ¢, or ¢5. Without loss of generality, we may assume that ¢; ¢ Supp(B).
Then it follows from Lemma A.1.4 that 1 > 2\ = B - {; > multp(BY%) > 1, which is

absurd. This shows that a(X) > 1.

Let us conclude this section by proving one simple result, which is used in Example 4.5.2.

Lemma A.4.15 (cf. [168, Theorems 1.6]). Let X be a del Pezzo surface such that K% = 2,
and X has one ordinary double point. Then

2
— if | = Kx| contains a tacnodal curve singular at Sing(X),
a(X)=1¢13

3
1 otherwise.

Proof. Recall that |— Kx| gives a double cover w: X — P? that is branched over a reduced
quartic curve R. Since X contains one ordinary double point, the curve R also has one
ordinary double point, which implies that R is irreducible. Thus, if C' is a singular curve
in the linear system | — Kx/|, then C' = w*(L) for a line L C P? such that either L passes
through the point Sing(R), or L is tangent to R at a smooth point of the curve R. Let

a(X) = inf{lct(X, D> | D is a divisor in | — KX|}.

It is not hard to compute a;(X). Namely, we have

2
— if | = Kx| contains a tacnodal curve singular at Sing(X),

a1 (X) = g
1 otherwise.

Note that [168, Theorems 1.4] claims that a;(X) = 2, which is wrong in general.

Now, arguing almost as in the proof of [168, Theorems 1.6], we obtain a(X) = oy (X).
Namely, suppose that a(X) < «;(X). Using Lemma A.4.12, we see that X contains
an effective Q-divisor D such that D ~g —Kx, the pair (X, D) is not log canonical at
some point P € X for some positive rational number A < a1(X), and Supp(D) does not
contain at least one irreducible component of every curve in | — K|.

Suppose that w(P) is a smooth point of the curve R. Then | — Kx| contains a unique

curve T that is singular at P — w(7') is the line that is tangent to R at the point w(P).
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If T is irreducible, then T ¢ Supp(D), so that Lemma A.1.4 gives
2=K%=T-D > multp(T)multp(D) > 2multp(D) > 2.

Therefore, we conclude that T' = T + 15, where T and 15 are two irreducible curves such
that —Kx -7 = —Kx -To =1 and T} ¢ Supp(D). Then 1 =T - D > multp(D), which
contradicts Lemma A.1.4. This shows that either w(P) ¢ R or P = Sing(X).

Now, let 7: X — X be a blow up of the point P, let E be the n-exceptional curve, and
let D be the proper transform on X of the divisor D. Then D ~Q 77 *(D) — mEFE for some
rational m > 0. If P # Sing(X), then m = multp(D), so that m > § by Lemma A.1.4.

If X is smooth at P, we let 6 = 1. Likewise, if X is singular at P, we let 6 = 0. Then
the log pair ()?, AD + (Am — §)FE) is not log canonical at some point () € E. Therefore,
applying Lemma A.1.4 to (X, AD + (Am — 6)E), we get

149

(A.4.16) m + multo (D) > "

Furthermore, if Am — 0 < 1, applying Corollary A.2.2 to ()N(, AD + (Am — 0)E), we get
m if P # Sing(X),

- D-E) <D -E=
<( )Q {2m if P = Sing(X).

A
In particular, if P = Sing(X), then we have m > % as we mentioned earlier.

Since w(P) ¢ R or P = Sing(X), the linear system | — K x| contains a curve C such that
the curve C' passes through P, and its proper transform on X passes through the point Q).
Denote by C the proper transform of the curve C' on the surface X. IfCis irreducible,
then the curve C' is not contained in the support of the divisor D, so that

~ -~ 2 —m if P # Sing(X),
multg(D) < D-C'= {2 — 2m if P = Sing(X).

If P # Sing(X), this contradicts (A 4.16). If P = Sing(X ) we get 2 —2m > muth(f)),
but (A.4.16) gives m~+multg(D) > L, so that we have 2—3 >m > 5, which gives A > 3.
Since A < %, we see that C' is redu01ble

Thus, we have C' = (] + Cs, where C; and Cy are smooth irreducible curves such
that —Kx - C; = —Kx - Cy = 1. If Sing(X) ¢ C, then C? = C% = —1 and C, - Cy = 2.
Likewise, if Sing(X) € C, then Sing(X) € C1NCy, so that Cf = C5 = —% and C;-C, = 3.
Furthermore, we also know that one of the curves C} or Cj is not contained in Supp(D).
Hence, Wlthout loss of generality, we may assume that Cy ¢ Supp(D).

2)\’

Let C; and Cs be proper transforms on X via n of the curves C and Cy, respectively.
Then both curves C'1 and Cg are smooth. Moreover, we also know that () S C'1 or () € C’g
IfQe 02, then 02 intersects F transversally at (), so that muth(D) <D- Cg =1-
which contradicts (A.4.16), because A < a1 (X) < 3. Therefore, we conclude that Q € 61.
Observe that the curve C intersects E transversally at the point Q).

Write D = aC + A, where a is a non-negative rational number, and A is an effective
Q-divisor on the surface X whose support does not contain C;. Then

2a if Sing(X) ¢ C,

l=—Kx Cy=(aCi+A) Cy=aCy-Co+A-Cy > aCy-Cy = 3—a1f8111g( X)ecC.
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Thus, we see that

if Sing(X) € C,
(A.4.17) a

N
LR N =

if Sing(X) € C.

In particular, we see that Aa < 1.

Let A be the proper transform on X of A. Then A ~g 7*(A) — nE for some rational
number n > 0. If P # Sing(X), then m = n + a. If P = Sing(X), then m = n + §. Note
that (X, AaCy + AA 4+ (Am — 8)E) is not , log canonical at the point @ = CLNE. Applylng
Corollary A.2.2, we obtain (Am —68)+AA-C} > 1, so that m+A-Cy > L2 On the other
hand, we have A-Cy = (n*(A) —nE)-Ci =A-C, —n=1—aC2 —n. Smce C? <0, we
get

L

1_012 if P # Sing(X),
(A.4.18) a> 9 s

2 if P = Sing(X).

%_012 i ing(X)
If P # Sing(X) and Sing(X) ¢ C, then § = 1 and C} = —1, so that a > + — 3 > 2.
If P # Sing(X) and Sing(X) € C, then 6 = 1 and C} = —3, so that a > 5+ — 2 > 42

In both cases, we get a contradiction with (A.4.17). Thus, we have P = Sing(X).
Now, we have § = 0 and C} = —3, so that (A.4.18) gives a > 1 — 1 > #, which does
not contradicts (A.4.17), but this inequality can still be used to obtam a contradiction.

Namely, since P = Sing(.X), the point P is contained in both curves C and Cj, so that

~ o~ 3
0<A-Cy=((A)—nE)-Cy = ACQ—n_1—7“—n
WhiChgiV@S’R+3a 1 Thus, s1ncen—|———m>—> ,Weget§+a<n+3§<1,
which contradicts a > 3 L and completes the proof. U

A.5. a-invariants of del Pezzo surfaces over non-closed fields. Let F be any field
that has characteristic zero, e.g. F = Q or F = C(x). If C' is a smooth conic in P? defined
over the field F, then

1 if C contains an F-point,

a(C) =

— if S does not contain F-points.

In this section, we will generalize this result for smooth del Pezzo surfaces, i.e. smooth
geometrically irreducible surfaces with ample anticanonical divisor.

Namely, let S be a smooth del Pezzo surface defined over [F, and let F be the algebraic
closure of the field F. Recall from Section 1.4 that

alS) = inf{lct(S, D) | D is an effective Q-divisor on S defined over F such that D ~qg —Ks}.

If F =T, all possible values of the number «(S) have been computed in [29, 146], see big
table in Section 2. To summarize these results, let

a,(S) = inf{lct (S, %D) | D is a divisor in | — nKS|}
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for every n € N. Clearly, we have o(S) < a,,(5) for every n € N and

= inf a,(9).
a(S) inf o (S)
Note also that the number «;(.S) is not very hard to compute — to do this, one has to
compute log canonical thresholds of all singular curves in | — Kg|. Moreover, we have

Theorem A.5.1 ([167, 29, 146]). If F is algebraically closed, then a(S) = a;(S).
In general, we may have a(S) # «1(S) if the field F is not algebraically closed.

Example A.5.2. Let f(t) be an arbitrary irreducible polynomial in F[t] that has degree 5,
let &1, &, &3, &4, &5 beits roots in IF, let m: S — P? be the blow up of the reduced subscheme
consisting of the points

[51 5% : 1]7 [52 : 522 : 1]7 [53 : §§ : 1]’ [54 : fi : 1]7 [55 : 5? : 1]7

let Cy be the conic in P? that is given by yz = 22, and let C be its proper transform on S,
where x, y, z are coordinates on P2. Then S is a quartic del Pezzo surface defined over
the field F, and C is a line in S. We will see in Lemma A.5.5 that a(S) = 2. On the other

— 3
hand, one can show that a;(S) > 3.

In the remaining part of this section, we will find all values of the number «(S) without
assuming that the field F is algebraically closed. Unless it is explicitly stated otherwise,
we will assume that everything we deal with is defined over the field F. We will use basic
facts about del Pezzo surfaces over non-closed fields, which can be found in [136, 189]. To
avoid confusion, let us present the glossary we will use:

a point is a F-point;

a curve is a (possibly geometrically reducible) curve defined over [F;

a conic is a (geometrically irreducible) curve isomorphic to a smooth conic in P?;
a singular conic is a curve isomorphic to a reduced singular conic in P?;

a line in S is a geometrically irreducible curve C' C S such that C? = —1;

a conic in S is a geometrically irreducible curve C' C S such that C? = 0;

a singular conic in S is a singular curve C' C S such that —Kg-C = 2 and C? = 0;
if K% = 3, an Eckardt point in S is a point P € S such that there exists a curve
in the linear system | — Kg| that has multiplicity 3 at the point P;

a divisor on S is a Weil divisor on S defined over [F;

Pic(S) is a group of divisors on S modulo rational equivalence;

a Q-divisor on S is a Q-divisor on S defined over TF;

F is the algebraic closure of the field F.

Note that lines in S are isomorphic to P!. Thus, if S contains a line, it also contains a point.
Similarly, conics in S are isomorphic to smooth conics in P2, and singular conics in S are
isomorphic to reduced singular conics in P2. In particular, if S contains a singular conic,
then it contains a point. Recall that | — Kg| gives an embedding S < P for K2 > 3,
where n = K%. In this case, lines, conics and singular conics in .S are just usual embedded
lines, conics and singular conics in P”, respectively.

First, let us present a table that contains all possible values of the number «(5).
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Conditions imposed on the surface S

S contains a point

S does not contain points

S is a blow up of P? in one point

S =~ P! x C for a conic C

| CO |00 |©|©

S is a quadric in P3

co

S = C x ' for two non-isomorphic conics C' and C’
such that both C' and C’ do not contain points

Pic(S) = Z[— K]

S is a blow up of P? in two points

S contains a line or a conic

S does not contain lines and conics, but S contains a point

S does not contain lines, conics and points

S contains a line

Pic(S) # Z[—Kg], but S does not contain lines

Pic(S) = Z[— K]

= Ottt OY| O | | 0o

S contains a line or a singular conic

S does not contain lines and singular conics,
but | — Kg| contains a tacnodal curve

S does not contain lines and singular conics,
| — K| contains no tacnodal curves, | — Kg| contains a cuspidal curves

ot B[S WIN [Cs [WIN [N | = [N [N [ | = — N= [N [l | = (o= CQ
S—

S does not contain lines and singular conics,
and | — K| contains no tacnodal and cuspidal curves

—_

S contains an Eckardt point

S contains no Eckardt points, but | — Kg| contains a tacnodal curve

[N [CRIIIN]

S contains no Eckardt point, | — Kg| contains no tacnodal curves,
but | — K| contains a cuspidal curve

[« [¥]

S does not contain Eckardt point,
| — Ks| does not contain tacnodal and cuspidal curves

—_

| — K| contains a tacnodal curve

| — Kg| contains no tacnodal curves, but | — Kg| contains a cuspidal curve

| — K| does not contain tacnodal and cuspidal curves

| — Kg| contains a cuspidal curve

N NN

| — K| does not contain cuspidal curves

[t (=21 LA I e (oY (S PN [V
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Now, let us explain in details how to compute the numbers in this table. To start with,
let us compute a-invariants of two-dimensional Severi—Brauer varieties.

Lemma A.5.3. Suppose that K2 =9. Then

1 of S contains a point,

a(S) = ay(S) =

1
3 if S does not contain points.

Proof. If the surface S contains a point, then S = P2, so that o(S) = %, see Example A.1.5.
Thus, we may assume that S contains no points. Then Pic(S) = Z]—Kx| and «(S) < 1.

We claim that a(S) = 1. Indeed, suppose that «(S) < 1. Then S contains an effective
Q-divisor D such that D ~g —Kg, and (S, AD) is not log canonical for some A € QN (0, 1).
Since Pic(S) = Z[—K x|, we deduce that the locus Nklt(S, A\D) must be zero-dimensional.
Then Nklt(.S, AD) must be a point by Corollary A.1.7. Since Nklt(S, AD) is defined over F,

we see that S contains a point, which is a contradiction. Il
Now, let us consider del Pezzo surfaces of small degree.
Lemma A.5.4. Suppose that K% < 3. Then a(S) = a;(S).

Proof. The assertion follows from [37, Theorem 1.12]. Indeed, suppose that a(S) < a;(.5).
Then there exists an effective Q-divisor D on the surface S such that D ~g —Kg, and
the log pair (S,AD) is not log canonical for some positive rational number A < a;(.5).
Applying Lemma A.4.12, we may assume that Supp(D) does not contain at least one
irreducible component of every curve in |— Kg|. Applying [37, Theorem 1.12], we see that
the log pair (S, AD) has log canonical singularities, which is a contradiction. U

Using Lemma A.5.4, it is not hard to find all possible values of the number «;(S) in
the case when K2 € {1,2,3}, which are presented in the table above. See [167] for details.
Now, we deal with quartic del Pezzo surfaces.

Lemma A.5.5. Suppose that K% = 4. If the surface S contains a line or a singular
conic, then o(S) = aa(S) = 2. Otherwise, we have a(S) = a1 (S).

Proof. Recall that the del Pezzo surface S is a complete intersection of two quadrics in P*.
Note that «(S) > % by [29, Theorem 1.7]. On the other hand, if S contains a line L, then
projection from this line P* --» P? gives a birational morphism 7: S — P? that contracts
a geometrically reducible curve %, which splits over F as a union of five (—1)-curves,
so that 3L + ¢ ~ —2Kg, which gives (S) < as(S) < 2, so that a(S) = ay(S) = 2.
Therefore, to proceed, we may assume that the surface S does not contain lines.

Similarly, if S contains a singular conic C, then |— Kg— C| is a base point free pencil, so
that it contains a unique curve C’ that passes through Sing(C'), so that let(S, C+C") < %,
which gives a(S) < a2(S) < a1(S) < 2, which implies that «(S) = as(S) = a(S) = 2.
Hence, to proceed, we may assume that S does not contain singular conics as well.

To complete the proof, we must show that «(S) = «;(.S). Suppose that a(S) < a;(5).
By Lemma A.4.12, the surface S contains an effective Q-divisor D such that D ~g —Kg,
the log pair (S, AD) is not log canonical for some positive rational number A < a4(5), and
the support of the divisor D does not contain at least one irreducible component of every
curve in | — Kg|. Arguing as in the proof of [29, Lemma 3.4], we see that Nklt(S, AD) does
not contain curves, because S does not contain lines. Thus, it follows from Corollary A.1.7

that the locus Nklt(S, AD) is a point. For simplicity, we let P = Nklt(S, AD).
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Let n S — S be a blow up of the point P, and let E' be the n-exceptional curve.
Then S is a smooth cubic surface. Let D be the proper transform on S of the divisor D.
Then D + (multp(D) — 1)E ~g —K3z. Thus, arguing as in the proof of Lemma 2.8 we
see that multp(D) < 2. Now, arguing as in Lemma A.4.3, we see that the curve F
contains a point @) such that the log pair (§, D + (Amultp(D) — 1) E) is not Kawamata
log terminal at @, so that (S, D + (multp(D) — 1)E) is not log canonical at Q.

Observe that | — Kz — E| is a base point free pencil. Let Z be the curve in this pencil
that passes through ). Since the pair (S D+ (multp(D) — 1)E) is not log canonical at @,
it follows from [37, Theorem 1.12] that Z N E = @, and Supp(D) contains all irreducible
components of the curve Z. Let Z = 7T(Z ). Then either Z is a geometrically reducible
curve that has a tacnodal singularity at P, or Z is a geometrically irreducible curve that
has a cuspidal singularity at P. Therefore, we see that Z € | — Kg|, and the support of
the divisor D contains all irreducible components of the curve Z, which contradicts our
initial assumption. U

If K% = 4, then using Lemma A.5.5 and going through all singular curves in | — K],
we can find all possibilities of the number «(S) in this case. Note also that the proof of
Lemma A.5.5 implies

Corollary A.5.6. If K2 =4 and S does not contain points, then a(S) = 1.
We deal with quintic del Pezzo surfaces in several lemmas. First, we prove

Lemma A.5.7. Suppose that K% =5 and Pic(S) = Z[—Ks]. Then a(S) = as(S) = 2.

5

Proof. The proof is similar to the proof of [29, Lemma 5.8]. Let us prove that a(S) > %.
Suppose that a(S) < %. Then S contains an effective Q-divisor D ~g —Kg, and
the log pair (S, \D) is not Kawamata log terminal for a positive rational number A < %.
Since Pic(S) = Z][—Kg], the locus Nklt(S, AD) is zero-dimensional. By Corollary A.1.7,
the locus Nklt(S, AD) consists of a single point O, which is defined over F.

Over the field F, the surface S contains ten (—1)-curves. But none of these ten curves
contains O, because Pic(S) = Z[—Kg]. Moreover, over I, the surface S contains five
smooth curves 2, Zo, Z3, Zy, Z5 such that —Kg-Z; =1 and O = Z1NZy N Z3 N Zy N Zs,.
These are conics in X defined over F which contain O. Let € = Z, + Zy + Zs + Z4 + Zs.
Then ¢ is defined over the field F, the curve € is irreducible, € ~g —2Kg, and

1 4
Using Lemma A .4.12, we may assume that ¢ ¢ Supp(D). Then 10 = ¢"-D > bmulty (D).

Let : S — S be the blow up of the point O, let E be the m-exceptional curve, and
let D be the proper transform of the divisor D on the surface S. Using Lemma A.4.3,
we see that F contains a point Q such that (S, A\D + (Amulto(D) —1)E) is not Kawamata

log terminal at the point (), which is defined over F. Then multg(D)+multo(D) > % > 32

by Lemma A.4.3. Observe also that S is a smooth del Pezzo surface of degree 4.
Let Zl, Z2, Zg, Z4, Z5 be the proper transform on S of the curves Zy, Loy L3, Ly, L,
respectively. Note that Zy, Zo, Zs, Z4, Z5 are disjoint (—1)-curves, which (a priori) are

defined over F. Moreover, since Pic(S) = Z[— K], we have Q ¢ Zl U 22 U Z3 U Z4 U Z5
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Furthermore, we have the following Sarkisov link:

SN,

where ¢ is a contraction of the curves Z;, Zo, Zg, Z, and Zs. The curve ¢(F) is the unique
conic in P? that passes through the points O(21), &(Zs), ¢(Z5), ¢(Zs) and &(Zs).

Over the algebraic closure F, the plane P? contains five lines Ly, Ly, L3, L4, L5 such
that L, is the line that goes through ¢(Q) and (b( ;). Let Ly, Ly, Ly, Ly, Ls be the proper
transforms on S of the lines Ly, Lo, L3, Ly, Ls, respectively. Then

w(El) + w(Eg) + W(Eg) + w(i4) + W(E5) ~qg —3Kg,

and (L) +7(Ly) +m(Ls) +7r(L4) —|—7T(L5) is an irreducible curve defined over the field F.
Moreover, the log pair (S, 75 (7 m(Ly) + m(Ly) + m(Ly) + 7(Ly) + 7(Ls))) has Kawamata log
terminal singularities. Hence, using Lemma A.4.12, we may assume that Supp(D) does
not contain (L), 7(Ly), 7(Ls), 7(L4), 7(Ls). Then 3 —multo(D) = D- Ly > multo(D),
which implies that multo(D) + multg (D) < 3.

Let &: S - S be the blow up of the point Q and let F' be the {-exceptional divisor.
Denote by E and D the proper transforms on S of the divisors E and D, respectively.
Using Lemma A.4.3 again, we see that I’ contains a unique point P such that the log pair

(S.AD + (Amulto (D) = 1) E + (Amulto(D) + Amultq (D) — 2) F)
is not Kawamata log terminal at P, and
(A5.9)  Amultp (ﬁ) + ()\multo (D) — l)multp (E) + Amultp (D) + Amultg (IN)) > 3

Let T be the proper transform on S of the line in P? that is tangent to o(F) at ¢(Q).
Then mo¢ ( ) is a cuspidal curve in | — Kg|. Thus, , using Lemma A.4.12, we may assume
that Supp(D) does not contain 7. Hence, if P € E, then P € T, so that

5 — 2multo (D) — multg(D) =T - D > multp(D) > 5 — 2multo (D) — multg (D)

by (A.5.9). Then P & E, so that (A.5.9) gives multo (D) + multo(D) + multp(D) > b

Observe that P? contains a unique line L that passes through ¢(Q) such that its proper
transform on S contains the point P. Since the line L is defined over F, it does not contain
any of the F-points ¢(Z1), ¢(Zs), gb(Zg) (Zy), <;§(Z5) Now, we denote by L the proper
transform of the line L on the surface 5. Then 7ro§( ) is a nodal curve in | — Kg|, so that,
using Lemma A.4.12, we may assume that Supp(D) does not contain L. Then

5 — 2multo (D) — multg(D) =L - D > ? — multo (D) — multg (D),

which gives multo(D) < 2. Then (S, AD) is Kawamata log terminal at O by Lemma A.1.4,
which contradicts our assumption.
We see that a(S) > 3. To show that «a(S) = ay(S) = %, recall that S always contains
a point [195, 186]. Thus, arguing as above, we can find a curve ¢ € | — 2Kg| such that
the equality (A.5.8) holds. This gives a(S) < az(S) < &. O
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Now, we are ready to prove the following result:

Lemma A.5.10. Suppose that K% =5 and Pic(S) # Z[—Kg|. Then
1

ap(S) = 5 if S contains a line,

as(S) = 3 if S does not contain lines.

Proof. 1f the surface S contains a line L, then the linear system |— K ¢—L| gives a birational
map 7: S — @ such that @ is a smooth quadric surface in P3, and (L) is a hyperplane
section of the quadric (). Moreover, the morphism 7 contracts a curve &, which splits over

the algebraic closure F as a disjoint union of three (—1)-curves that intersect the line L.
Then 2L + & ~ —Kg, so that a(S) < a1(S) < 3, and a(S) = 5 by [29, Theorem 1.7].

— 2
To complete the proof of the lemma, we may assume that the surface S contains no lines.

Since Pic(S) # Z[—Kg| and S contains a point, this implies that Pic(S) = Z? and there

exists the following Sarkisov link:
S
RN
P2 P!

where 7 is a birational morphism, and ¢ is a conic bundle. Moreover, the morphism 7 that
contracts an irreducible curve & that splits over F as a union of four disjoint (—1)-curves.

Let € be a fiber of the conic bundle ¢ over a point in P!. Then %‘5 + %S ~o —Kg,
so that a(S) < az(S) < 3. We claim that «(S) = 2. Indeed, suppose that (S) < 3.
Then S contains an effective Q-divisor D ~g —Kg, and the pair (S, AD) is strictly log
canonical for a positive rational number A\ < %

We claim that Nklt(S, AD) is zero-dimensional. Indeed, suppose that Nklt(S, AD) con-
tains an irreducible curve C. Then 3¢ + 1€ ~g D = +C + A, where A is an effective
Q-divisor whose support does not contain C'. In particular, we see that C' # £, because
¢ and £ generate the Mori cone of the surface S. Then C' ~ 7*(Op2(d)) — m& for some
positive integer d and some non-negative integer m. We have

3 1 d d m

so that m < g, % < % and % -3 < %, which leads to a contradiction, since A < %
Using Corollary A.1.7, we see that the locus Nklt(S, AD) consists of a single point O.
Note that O & &, so that the log pair (P?, Aw(D)) is not Kawamata log terminal at m(O).

Let L be a line in P? that does not contain 7(O). Then
LUO C Nklt(P?, L + Ar(D)),

but Nklt(P?, L + Ar(D)) contains no curves except L. This contradicts Corollary A.1.7.

The obtained contradiction shows that a(S) = as(S) = 2. O

We compute a-invariants of sextic del Pezzo surfaces in the following lemma:
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Lemma A.5.11. Suppose that K% = 6. Then

1 if S does not contain lines, conics and points,

if S does not contain lines and conics, but S contains a point,

a(S) =

N — Wl N

if S contains a line or a conic.

Proof. Let us describe geometry of the del Pezzo surface S over the algebraic closure F.
Over the field F, we have a birational morphism w: S — P? that blows up three distinct
non-collinear points P, Py, P,. Let E1, Fy, E3 be w-exceptional curves that are mapped
to the points Py, P, P, respectively. For every ¢ and j in {1, 2,3}, let L;; be the proper
transform on S of the line in P? that passes through the points P; and P;, Then the set

(A5.12) {Ev Ba, By, Liz, Lus, Las }

contains all (—1)-curves in S. Moreover, there exists the diagram

S
RN
P2 P2

where ¢ is the contraction of the (—1)-curves Lis, L13, Loz. In general, this diagram as
well as the morphisms w and ¢ are not defined over F.
The Galois group Gal(F/F) naturally acts on the set (A.5.12), and its possible splitting
into the Gal(FF/F)-orbits can be described as follows:
(D12) {E1, Es, Es, Ly, L3, Las},
( ) {El,EQ,Eg} and {ng,ng,ng,},

(Hz a) {E4, Los} and {Es, Es, Lo, L3},
(13.0) {Es, L1z} and {Ey, B3, Lua, Las},
(NQ C) {Es, Lo} and {Ey, Ey, L3, Las},

( ) {El, ng}, {EQ, ng} and {Eg, ng},
(Hz a) {Eh Lzs}, {Ez, L12} and {Eg, L13},
( ) {EQ, ng}, {El, ng} and {Eg, L23},
(NQ C) {Es, Lio}, {E4, L1z} and {E5, Las},
(my.a') {E1}, {Las}, {Ea, Es} and {Lia, L13},
(ko) {E2}, {L13}, {E1, Es} and {Liz, Lo},
(Mz C/) {Es}, {L12}, {E1, Eq} and {Li3, Lo},

( ) {El}? {L23}7 {E2}7 {L13}7 {ES}a {L12}-

Suppose that S contains a line L. Then L is a Gal(F/F)-invariant curve in (A.5.12). We
may assume that L = Lis. Then 2L15 + 2(E) + E») + 2(L13 + Las) ~g —Kg, where both
curves Fy + FEy and Liz + Loz are defined over F. Hence, in this case, we have a(S) < %,
so that a(S) = 3 by [29, Theorem 1.7].

Similarly, if S contains a conic C, then the linear system | — Kg — C| gives a birational
map 7: S — @ such that Q is a smooth quadric surface in P?, and 7(C) is its hyperplane
section. In this case, the morphism 7 contracts a curve & that splits over F as a disjoint
union of two (—1)-curves that intersect C, which gives 2C + & ~ —Kg, so that a(S) < 3,
which implies that a(S) = £ by [29, Theorem 1.7].
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Thus, to complete the proof, we may assume that S does not contain lines and conics.
This assumption also implies that S does not contain singular conics. Indeed, if S contains
a singular conic C, then the linear system |C| gives a conic bundle S — P!, so that S also
contains a (smooth) conic. Thus, our assumptions impose strong restrictions on the way
the group Gal(F/F) acts on the set (A.5.12). Namely, we only can have splittings of this
set into the orbits described in (D13), (63), (u3.a), (u3.b), (u3.c), (p,)-

If S has no points, let 4 = 1. If S has a point, we let 1 = 2. We claim that a(S) < p.
Indeed, if S does not contain points, the claim is obvious. If S contains a point P, then
the surface S contains a curve Z that splits over F as Z = Z, + Zy + Z3, where Zy, Zs, Zs
are smooth rational curves such that —Kg -2, = —Kg-Zy = —Kg - Z3 = 2. Indeed, we
can let Z; be the proper transform via w of the line in P? that passes through the points
w(P) and w(E;). Thus, in this case, we have Z; + Zy + Z3 ~ —Kg and

ICt(S, Z1 + ZQ + Zg) = ICtP(S, Zl + ZQ + Zg) = U = g,
so that a(S) < u. Note that the curve Z is defined over F.

We claim that «(S) = u. Indeed, suppose that «(S) < p. Then S contains an effective
Q-divisor D such that D ~g —Kg, and the log pair (5, AD) is strictly log canonical for
a positive rational number A < mu. Let us seek for a contradiction.

If NKklIt(S, AD) is zero-dimensional, then it consists of a single point by Corollary A.1.7,
which must be defined over F, so that A\ < p = %, and we can obtain a contradiction
arguing exactly as in the end of the proof of Lemma A.5.10. Therefore, we conclude that
the locus NkIt(S, AD) contains an irreducible curve C. Then D = $C + A, where A is
an effective Q-divisor whose support does not contain C'. We have

1 1
2= (L12 +E2) D= X(le +E2) O+ (L12 +E2) A > X(Lw + Ez) C,
1 1
2= (L23 + E3) D= X(L23 + ES) -C'+ (L23 +E3) A2 X(L23 + E3) C,
1 1
2= (L13+E1) - D= X(L13+E1) -C'+ (L13+E1) A> X(L13+E1) 'C,
because divisors Lis + Es, Loz + E3, L1z + E; are nef. Thus, we see that
(Lias+ Ey)-C <1,
(A.5.13) (Lag + E3) - C < 1,
(Lis+ Ey)-C<1
In particular, this gives —Kg-C = (Lo + E3) - C + (Log + E3) - C+ (Lis + Ey) - C < 3.

Therefore, keeping in mind that S does not contain lines, conic and singular conics,
the curve C is irreducible, and the del Pezzo surface S is an intersection of quadrics in its
anticanonical embedding in P9, we obtain the following cases:

(1) C = El + L23,

(2) C = Ey + Lis,

(3) C — E3 + L12,

(4) C = Ey + Ey + Es,

(5) C = Lia + L3 + Log,

(6) C' ~ Lis + Ey + Es,
(7)

C ~ ng +L13 —|—E1
301



The first three cases are contradict (A.5.13). If C' = FE; + E; + Ej3, then
1 1 3
3= (L12+L13+E1)'D = X(L12+L13+E1)-C’+(L12+L13+E1)-A > X(L12+L13+E1)'0 =\
which is impossible, since A < 1. Similarly, if C' = L5 + L3 + Loz, then

1 1 3
3= (L12+E1+E2)'D = X(L12+E1+E2)'C+ (L12+E1+E2)'A = X(L12+E1+E2)'C =\
which is a contradiction. Thus, we see that either C' ~ Lo+ FE+FEy or C ~ Lis+ L3+ Ej.

If C ~ Lis+ E| + E,, then |C| gives the birational map @: S — P?| so that it is defined

over F, which implies in particular that S contains a point, so that u = % and

3= (L12+L13+E1) D == %(L12+L13+E1) 'C:§>%:3,
because Lo + L3 + F4 is nef. Similarly, if C' ~ Lis + L1z + Eq, then pu = % and
3:§(L12+E1+E2) C+ (Lin+ B+ Ey)-A> %(L12+E1+E2) -C:§>%:3,
because Lo + E7 + E5 is nef. The obtained contradiction completes the proof. O

If K2 = 7, then S is a blow up of P in two points, so that a(S) = % by [29, Theorem 1.7].

Similarly, if S is a blow up of P? in one point, we get a(S) = % Finally, we prove

Lemma A.5.14. Suppose that K% =8, and S is not a blow up of P? in one point. Then

1
— if S is a smooth quadric surface in P* or S =2 P! x C for a conic C,

a(S) =<2

1 otherwise.

Proof. Note that a(S) < 1, since | — K| is not empty. Moreover, if S is a smooth quadric
surface in P3, then a(S) < let(S,2H) = 1 for any hyperplane section H of the surface S,
so that a(S) = § by [29, Theorem 1.7]. Similarly, we see that a(S) = 1 if S = P! x C for
an arbitrary conic C' defined over F. Furthermore, if Pic(S) = Z[— K], then S does not
have points. In this case, arguing as in the proof of Lemma A.5.3, we see that «(S) = 1.

Now, we may assume that Pic(S) # Z[— K] and S is not a quadric in P3. This implies
that rk Pic(S) = 2, and X 2 C'xC for any conic C. Thus, it follows from [189, Lemma 3.4]
that S = 1 xCy, where C and (5 are two non-isomorphic conics such that neither of them
contains points. We claim «(S) = 1. Indeed, suppose that a(S) < 1. Then S contains an
effective Q-divisor D ~qg —Kg, and (S, AD) is not log canonical for some positive rational
number A < 1. If Nklt(S, A\D) is zero-dimensional, then Nklt(S, AD) must be a point by
Corollary A.1.7, which contradicts our assumption. Thus, we conclude that Nklt(S, A\D)
contains an irreducible curve C'. Then D = aC' + A for some rational number a > % > 1,
where A is an effective Q-divisor on S. Then C' ~ pri(—ni1 K¢, ) + pri(—n2K¢,) for some
non-negative integers n; and ng, where pry: S — C and pry: S — (5 are projections to
the first and the second factors, respectively. Then

pr{( — K01> + prZ( — KC2> ~ —Kg~g D ~q pr{( — leKcl) + pr§< — angKCQ) + A,

which immediately leads to a contradiction, since a > 1. O
302



A.6. Groups acting on Hirzebruch surfaces. In this section, we describe properties
of some groups acting faithfully on Hirzebruch surfaces. Let X = F,, and let G be
a reductive subgroup in Aut(X). If n > 0, we denote by 7: X — P! the natural G-
equivariant projection. In this case, we denote by s the section of 7 such that s> = —n,
and we denote by f a fiber of this projection. Observe that the curve s is G-invariant,
and |s + nf| also contains smooth G-invariant curve, which is disjoint from s.

If n = 0, we denote by m;: X — P! and my: X — P! the projections to the first and
the second factors, respectively. Then 7, and 75 are G-equivariant <= 1k Pic%(X) = 2.

We start with the case G = PGLy(C).
Lemma A.6.1 ([141, Theorem 5.1]). Suppose that G = PGLy(C). If X = P! x P!, then

(1) either G acts trivially on one of the factors of the surface X ;
(2) or G acts diagonally on X, and the only proper closed G-invariant subvariety in
the surface X 1is its diagonal.

Stmilarly, if n > 1, then X contains exactly two proper closed irreducible G-invariant
subvarieties: the section s and a unique G-invariant curve in |s + nf| disjoint from s.

Now, we consider the case when G = (G, X py) X fho.

Lemma A.6.2. Suppose that X = P' x P!, G = (G,, X fty) X py and tkPic®(X) = 2.
Then G contains two involutions o and T such that G = (G, 0,7), (G, 0) = Gy X o,
and up to conjugation in Aut(X) the G-action on X can be described as follows: either
At ([zo = 2], [yo : 1)) ([)\l"o 21}, [yo : 11l),
(A.6.3) o ([o : 1], [yo = ) = ([z1 : o), [yo = 1),
7 ([zo : 1), [yo : 1)) = ([zo : fUl] (=0 = 1)),

or there are a € Z~o and b € Z such that ged(a,b) =1 and

At ([zo a1, [yo = 1)) = (Mao = 1], [Nowo : 1)),
(A.6.4) o: ([xo @], [yo = ) = ([21 = o], [y1 * wol),
7: ([zo s 1]y [yo : 1)) = ([0 = @1, [—yo = wi)),

where A € Gy, and ([zo : 1], [yo : 11]) are coordinates on X = P! x PL.

Proof. Since 7, and 7, are G-equivariant, they induce homomorphisms p;: G — Aut(P!)
and py: G — Aut(P!), respectively. Up to a change of coordinates, for A € G,, we have

pr(N) ([zo = 1) = [N = 2],
p2(N) ([wo = 11]) = N0 = w1l

where a € Z~( and b € Z such that ged(a,b) = 1.

Recall that G = (G,, X py) X py. Let o be the generator of the factor p, in G, ¥ o,
and let 7 be the generator of the direct factor p,. Observe that p;(o) is an involution
that normalizes p;(G,,) but does not commute with it. Then p;(o)([xo : 21]) = [z : 20
for some a € G,,. Rescaling the coordinate x( if necessary, we may assume that a = 1.
Moreover, since pi(7) commutes with pi(G,), we get p1(7)([xo @ z1]) = [Fxo @ x1].
Replacing 7 by +/—17 if necessary, we may assume that p,(7) is trivial.
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Suppose that b # 0. As above, up to a change of coordinates we obtain

p2(0) ([yo : 91]) = [y : wol,
02(7)([90 : yl]) = [£yo : 1.
However, since p1(7) is trivial, ps(7) cannot be trivial, so that ps(7)([yo : 11]) = [~v0 : ¥1]-
This gives the action (A.6.4).
Now, we suppose that b = 0. Then po(7) is a non-trivial involution, so that, up to
a change of coordinates, we have po(7)([vo : ¥1]) = [—¥o : v1]. Since pa(0) commutes

with 7, either it is trivial, or pao(o)([yo : v1]) = [v1 : yo|. In the former case, we get
the action (A.6.3). In the latter case, we get the action (A.6.4) witha=1and b=0. O

Corollary A.6.5. Suppose X = F,, withn >0, and G = (G, X p5) X po. Then n is even,
and there exists the following G-equivariant commutative diagram:

X-o--Y_ - P! x P!
P! ¢ P!

where 1 is a birational map, ¢ is an isomorphism, m s the projection to the first factor,
and the G-action on P' x P! is as in (A.6.3).

Proof. As we already mentioned, there exists a smooth G-invariant curve C' € |s + nf].
Since C' is G-invariant and C' = P!, we conclude that C contains a G-orbit of length 2.
Blowing up this G-orbit and contracting the proper transforms of two curves in |f| that
meet this orbit, we obtain the following G-equivariant commutative diagram:

X—-—---- -,
P! P!
where 6 is the constructed birational map, and m =n — 2.

Applying this construction L"T_lj times, we get a G-equivariant commutative diagram

X---- -,
P! P!

such that 9 is a birational map, w is a natural projection, 1 (s) and ¥ (C') are two disjoint
G-invariant sections of the projection w, and

0 if n is even,
"T\1ifnis odd.

A similar idea has been used in the proof of of [32, Lemma B.15].

If » = 1, then there exists a G-equivariant birational contraction F; — P?, which implies
that P? contains G-fixed point, which gives an embedding G < GLy(C) by Lemma A.4.1.
However, the group GL3(C) does not contain subgroups isomorphic to G, so that r = 0.

Now, applying Lemmas A.6.2, we obtain the required assertion. O
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Now, we consider the case when G = (G,, X p3) X py = G, ¥ Ss.

Lemma A.6.6. Suppose that X = P' x P!, G = (G,, x p3) ¥ py and rk Pic®(X) = 2.
Then there are an involution o € G and an element of order three T € G that together with
the subgroup G,, generate the group G, and up to conjugation in Aut(X) the G-action on
the surface X can be described as fOZZOwS' either

A ([zo = 1], [yo = 1)) — (P\l’o z1], [Yo : 1)),
(A.6.7) o ([wo: 21, [yo = n]) = ([ : 2ol [yo = ),
7 ([0 = 1], [0 : yﬂ ([0 ml], [wyo = y1l),

)=
or there are a € Z~q and b € Z such that gc

d(a,b) =1 and

A ([zo s ), [yo 1 n]) = (
(

(

[Nz 2], [Nyo = 1),
(A.6.8) o ([zo : 2], [yo = 1)) = ([z1 = @ol, [y1 : wo)),
7: ([wo 1 21, [yo : 1)) = ([xo : 21], [wyo = w1)),

where w is a primitive cube root, X € G,,, and ([xo : z1], [yo : y1]) are coordinates on X .

Proof. Arguing as in the proof of Lemma A.6.2, we see that there are two natural group
homomorphisms p;: G — Aut(P!) and py: G — Aut(P'). Up to a change of coordinates,
for A € G,, we have p;(\)([zo : 21]) = [N : 71] and pa(N)([yo : v1]) = [\ w0 : y1] for some
integers a > 0 and b such that ged(a, b) = 1.

Fix an isomorphism G = (G,, X p3) X py. Let 7 be a generator of the factor w4, and
let o be the generator of the semi-direct factor p,. Then p(o)([xg : x1]) = [21 : x0).
Since the centralizer of the torus p;(G,,) in Aut(P!) coincides with p;(G,,), we conclude
that p1(7)([zo : x1]) = [yzo : 1], where 7 is a (possibly trivial) cube root of unity.
Therefore, replacing 7 by WT, we may assume that 7 € ker(p;).

Suppose that b # 0. Up to a change of coordinates, we have pa(o)([yo : y1]) = [v1 : Yo
and po(T)([yo : v1]) = [wyo : y1], where w is a cube root of unity. Since 7 € ker(p,), we
have 7 & ker(py), so that w is a primitive cube root of unity. This gives the action (A.6.8).

Suppose b = 0. Up to a change of coordinates, we have po(7)([yo : ¥1]) = [wyo : y1] for
a primitive cube root of unity w. For the element py(c) we have two options: it is either
trivial, or pa(o)([yo : v1]) = [y1 : Yo]. Thus, in the former case, we get the action (A.6.7).
Likewise, in the latter case, we get the action (A.6.8) with a =1 and b = 0. g

Corollary A.6.9. Suppose X =F,, withn > 0, and G = (G,, X p3) X puy. Then n is even,
and there exists the following G-equivariant commutative diagram:

X-o--2 - P! x P!
P! ¢ P!

where Y is a birational map, ¢ is an isomorphism, m is the projection to the first factor,
and the G-action on P' x P! is as in (A.6.7).

Proof. The proof is the same as the proof of Corollary A.6.5. The only difference is that
now we should use Lemma A.6.6 instead of Lemma A.6.2. U

Now, we present very one very result, which is used in the proof of Lemma 5.1.1.
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Lemma A.6.10. Suppose that X = Fy and G = S4. Then |s + kf| does not contain
G-irreducible curves for k € {5,6,7,8,9}, and |s+4f| contains unique G-invariant curve.

Proof. 1f C'is a G-irreducible curve in |s + kf| for £ > 5, then |[CNs| < C-s =k — 4,
which gives k > 10, since P! does not have G,-orbits of length less than 6.

As we already mentioned, the linear system |s + 4f| contains an irreducible G-invariant
curve C. If C' is another G-invariant curve in |s + 4f|, then |C NC| < C - C = 4, which is
impossible as well. This shows that C is the only G-invariant curve in |s + 4f|. 0

The following lemma is used in Example 4.4.6

Lemma A.6.11. Suppose that X = P! x P!, G = 24, and the G-action on X is diagonal.
Then X contains two G-invariant curves of degree (1,3), and both of them are smooth.
Moreover, if € is one of these curves, then the group Aut(X, %) is finite.

Proof. To start with, we describe the G-action on the surface X. Let G = 2.2, = SLy(F3),
and let U, be a two-dimensional irreducible representation of the group G. This gives us
a faithful G-action on P* = P(U,), which gives the diagonal G-action on X.

Let A be the G-invariant diagonal curve in X, let H be a divisor on X of degree (1, 3).
Then H|a is a divisor on A = P! of degree 4, and the restriction map gives the following
epimorphism of @—representations:

U, @ Sym* (Us) = H(Ox (H)) — H°(O(H]s)) = Sym*(U,),

But H(Oa(H|a)) contains two non-isomorphic one-dimensional G-subrepresentations,
because the curve A contains exactly two G-orbits of length 4. Therefore, we conclude
that H°(Ox(H)) also contains two non-isomorphic one-dimensional G-subrepresentations.

Thus, we see that |H| has at least two G-invariant curves. These curves are irreducible
and smooth, because X does not contain G-invariant curves of degree (1,0) and (0, 1),
since otherwise intersecting them with A we would get G-fixed points, which do not exist.
This also implies that |H| contains exactly two G-invariant curves.

Let € be a G-invariant curve in X of degree (1,3). We claim that Aut(X, %) is finite.
Indeed, if it is not finite, then arguing as in the proof of [42, Corollary 2.7], we see that
the projection the first factor X — P! induces a G-equivariant Galois triple cover ¢ — P!
branched in two points, which must form a G-invariant subset. The latter is impossible,
since the length of the smallest G-orbit in P! is 4. This shows that Aut(X, %) is finite. [

Similarly, we obtain the following result, which is used in Section 5.14.

Lemma A.6.12. Suppose that X = P x P!, G = &,, and the G-action on X is diagonal.
Then X contains a unique G-invariant curve of degree (1,5), and this curve is smooth.
Moreover, if € is this curve, then Aut(X,%) = G.

Proof. Let A be the diagonal curve in S, and let H be a divisor on X of degree (1,5).
Since A is G-invariant, the restriction H°(Ox(H)) — H°(Oa(H|a)) is a epimorphism of
two representations of the group 2.&,4. On the other hand, the curve A contains a unique
G-orbit of length 6, so that |H|a| contains unique G-invariant divisor. Therefore, we see
that H°(Oa(H|a)) contains unique one-dimensional subreprepresentation of 2.&,, which
implies that H°(Ox(H)) contains one-dimensional subreprepresentation of this group.

Hence, we conclude that |H| contains a G-invariant divisor €.
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We claim that % is reduced and irreducible. Indeed, otherwise we have € = ¢ + D for
some effective G-invariant divisor D on X, and a G-invariant ruling ¢ of the surface X.
Then ¢ N A is a G-invariant point in A, which does not exist. Hence, we see that € is
reduced and irreducible. This also implies that € is the unique G-invariant divisor in |H|.

Keeping in mind that % is a divisor of degree (5,1), we see that % is a smooth curve.

Arguing as in the very end of proof of Lemma A.6.11, we see that Aut(X, %) is finite,
which implies that Aut(X, %) = G, because the group G = &, is not contained in any
finite subgroup in Aut(%) = PGLy(C) except itself. O

A.7. Auxiliary results. In this section, we present few sporadic lemmas.

Lemma A.7.1. Let X be an arbitrary normal projective algebraic variety of dimension n,
let A and B be Cartier divisors on X such that A is big and nef, and A + aB is nef for
some a € Z~o. Then

n+1

3" R(X,mA+ kB) = mn
k=0 )

/a(A + uB)"du + O(m").

Moreover, for any Cartier divisor D on X and any i > 0, we have

> WX, mA+ kB + D) = O(m"™).

k=0
Proof. Let V. =P(O® B), let m: V — X be the P!-bundle, let H be the tautological line
bundle on V', and let £ = aH + 7*(A). Then L is nef by [158, Lemma IV.2.6(2)].

Consider the section o: X — V that corresponds to the embedding O — O ¢ B.

Then o*(H) = Ox, and the normal bundle of o(X) in V is 7*(—B). Then ¢*(£) = A
and 0(X) ~ H —7*(B). Let L ~ ac(X) + 7*(A+ aB). Then

LM (A+aB) = aA™" - (A4 aB) + L - 7" (A + aB)™!
for every ¢ € {0,...,n}. This gives
En—&-l — iaAn—j X (A+CLB>] — iaiﬁ-li (J)An—z X Bz — iai—i-l (n+ 1>An—z . Bz
. : — \ i : i+1
7=0 =0 7=t =0
As (?:11) = (n+1)(}) - 75, we have
i+1

L =(n+1)- Z (7;) (Amt . BZ’)Z,“+ C=(nt 1) /Oa(A + uB)"du.

1=0

Thus, to prove the first required equality, it remains to notice that

HO(V,mL) = H'(X,5"(0 ® B) © Ox (mA) ) = @ H'(X,mA + jB).
7=0
Since L is nef, we have by asymptotic Riemann—Roch that

0 mn+1 n+1 n

which implies the first required equality.
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Now, let us prove the second required equality. Using Leray’s spectral sequence, we get

H(V,mL @ 7*(D)) = H (X, 7.(mL @ 7* D)) = HP(@ O(mA + jB + D)),
=0
since Rim,(mL ® 7*(D)) = 0 for all ¢ > 0. Now, using [101, Corollary 7], we get
R (V,mL + *(D)) < O(m"™),
which implies the second required equality. Il

Lemma A.7.2 (cf. [152, Example 1.5]). Let Q be a smooth quadric hypersurface in P*,
let C' be a smooth curve in Q) such that C is a scheme-intersection of surfaces in |Opa(2)|g],
and let m: X — @ be a blow up of the curve C. Then X s a Fano threefold.

Proof. Lt E be the m-exceptional surface. Then |7*(Ops(2)|q) — E| is base point free,
which implies that the divisor Kx ~ 7*(Ops(3)|q) — E is ample. O

Lemma A.7.3. Let W be the standard two-dimensional SLy(C)-representation equipped
with some basis, let W* be the dual representation, and let u, v be the dual basis in W*.
Consider the representation Sym®*(W*) with the basis

(BOa €1, €2, €3, 64) = (u47 Ug'U, UQUga U,'U37 U4)’

Then non-GIT-stable SLy(C)-orbits in Sym*(W*) can be described as follows:

(1.1) closed 2-dimensional orbit SLy(C).ceq with stabilizer G,,, where o € C*,

(1.2) non-closed 2-dimensional orbit SLy(C).eq with stabilizer G, and 0 € SLy(C).ey,
(1.3.a) non-closed 3-dimensional orbit SLy(C).(eg + aes) with

SLQ((C).O(@Q - SLQ(C)(@Q + OC@Q) 3 0,

where o € C*,

(1.3.6) non-closed 3-dimensional orbit SLy(C).e; with SLy(C).eq C SLa(C).eq 3 0.
Let P* = P(Sym*(W*)) that is equipped with the induced PGLy(C)-action and coordinates.
Then non-GIT-stable PGLy(C)-orbits in P* can be described as follows:

(2.1) polystable 2-dimensional orbit PGLg(C).[0:0:1:0: 0] with stabilizer G,,,

(2.2) unstable 1-dimensional orbit PGLg(C).[1:0:0:0: 0] with stabilizer G, x G,
(2.3.a) strictly semistable 3-dimensional orbit PGLy(C).[1:0:1:0:0],
(2.3.b) unstable 2-dimensional orbit PGLy(C).[0:1:0: 0 : 0] with stabilizer G,,.

The closure of every non-GIT-stable orbit contains the orbit (2.2).

Proof. The description of non-GIT stable SLy(C)-orbits in Sym*(1W*) is well-known and
can be found in [172, 68]. The remaining assertions follows this description. U

Corollary A.7.4 ([42, Lemma 9.1]). In the assumptions and notations of Lemma A.7.3,
we let P° = P(Sym*(W*) @ 1), where I is the trivial representation of the group SLy(C).
For the induced PGLy(C)-action on P, non-GIT-stable orbits can be described as follows:

(3.0) polystable fized point [0:0:0:0:0 : 1] with stabilizer PGLy(C),

(3.1) polystable orbit PGLy(C).[0:0:1:0:0: A with stabilizer G,,, where A € C,
(3.2) unstable orbit PGLy(C).[1:0:0:0:0:0] with stabilizer G, x G,,,
(3.2") strictly semistable orbit PGLy(C).[1:0:0:0:0 : 1] with stabilizer G,,
(3.3.a) strictly semistable orbit PGLg(C).[1:0:3:0:0: A], where A € C,
(3.3.b) unstable orbit PGLy(C).[0:1:0:0:0:0],
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(3.3.b") strictly semistable orbit PGLy(C).[0:1:0:0:0:1].
Proof. Observe that set-theoretically we have the following decomposition
P(Sym4(W*) & I[) = P(Sym4 (W)) L Sym* (W),
so that the required description follows from Lemma A.7.3. U

Recall that two-dimensional linear systems are called nets.

Lemma A.7.5. Let M be a net in |Opi(4)| that is base point free. Then P! contains two
distinct points P and Q) such that one of the following (excluding) possibilities holds:

(1) the net M contains 2P + 2Q);
(2) the net M contains 4P, 4Q and 3P + Q.

In the second case, the net M is uniquely determined up to the action of PGLy(C).

Proof. Identify H°(Op1(4)) with vector space of quartic polynomials in variables z and y.
Let V be the three-dimensional vector subspace in H°(Opi(4)) that corresponds to M,
and let f(x,y), g(z,y), h(x,y) be its basis. Then the system of equations

f(z,y) =0
(A.7.6) g(z,y) =0
h(z,y) =0

has no solution in P*. We want to show that there are numbers a, b, ¢, a, 3, v such that
(A.7.7) af + g+ vh = (az® + bry + cy2)2 and b* # 4ac

with one possible exceptions: when, after an appropriate linear change of variables x and y,
the vector space V is generated by z*, y* and 23y. Moreover, if V = span(z?,y?, 23y),
then the condition (A.7.7) is equivalent to the following system of equations:

(bc = 0,
b% = 2ac,
a=ad’,
g=c,
v = ab,
\bQ = 4ac,

which does not have solutions, so that this case is really an exception.

Let IT be the two-dimensional subspace in P* = P(H°(Op1(4))) that corresponds to M.
Since our P* is equipped with the natural action of the group PGLy(C), we are in position
to use notations of Lemma A.7.3. Let . be the closure of the PGLy(C)-orbit (2.1), and
let € be the closure of the orbit (2.2). Then % is a curve, and . is a surface containing %
We refer the reader to Section 7.2 for an explicit description of this curve and surface.
Observe that the condition (A.7.7) holds <= IIN(.\¥) # @. Since I[IN.Y # &, we see
that (A.7.7) is satisfied if we do not assume that b # 4ac. The inequality b* # 4ac simply
means that the corresponding point in IIN.# is not in €. In particular, if [IN% = &, then
we are done. Hence, we may assume that I1 N % # @. Therefore, applying appropriate

linear change of x and y, we may assume that f = 2.
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First, we suppose that IIN% contains at least two points. Applying appropriate linear
change of variable, we may assume that h = y*. Now, we can choose g € V such that

g = azz’y + axx’y® + ayxy’

for some numbers ag, as and a;. If [IINE| > 3, then g = \(4x3 + 62%y? + 4xy?) for
A € C*, so that V contains 2, y*, (z +y)?, (22 + yx + y*)?, and we are done. Therefore,
we may assume that IT N % consists of two points, which correspond to z* and y*.

If a3 = 0 and ay # 0, we can scale both g and z to get either g = 22y? or g = 2%y +y*.
In the first case, we are done. In the second case, we have (z—y)?(z+y)?> = f—2g+3h € V,
which is exactly what we want. If a3 = 0 and ay = 0, then we have V = span(z?, y*, 2/),
which is our exception up to a swap of x and y. Therefore, we may assume that as # 0,
so that we can replace g by ¢g/as and assume that a3 = 1.

If as = a; = 0, then we get our exceptional case. If as = 0 and a; # 0, then scaling =,
we may assume that a; = 1. In this case, we have

(2 +vV=2ry +12) =2t +yt 2V 2(2Py +ay®) = f+2V/ 29+ h e V.

Thus, we may assume that as # 0. Then, scaling z, we may assume that as = 1. Then

flz,y) = ",
g(z,y) = 2%y + 2*y* + a1zy®,
h(z,y) = y*.

In order to verify (A.7.7), it is enough to find some numbers «, 3, v, a, b and ¢ such that
azt + Byt + 7(m3y +2%y% + alxyg) = (ax2 + bxy + cy2)2,

where (a,b) # (0,0) and (b, c) # (0,0), which guarantees that b* # 4ac, since we assume

that the intersection II N € consists of exactly two points. This gives

( 2

a=a’,
f=d,

vya, = 2bc,

v = 2ab,

v = 2ac + b°.

Eliminating o = a?, 8 = ¢ and v = 2ab, we obtain aba; = bc and 2ab — 2ac — b*> = 0.
Therefore, we can put a = 1, ¢ = a; and then choose a non-zero b using b*> — 2b+ 2a; = 0.
This gives us the required solution to (A.7.7), since b # 0.

To complete the proof, we may assume that the intersection IIN% consists of one point,
which corresponds to the monomial 2* € V. Thus, in order to verify (A.7.7), it is enough
to find some numbers «, 3, v, a, b and ¢ such that

(A.7.8) af + Bg+vh = (ax® + bry + cy2)2 and (b, c¢) # (0,0).
As before, we have f = x*. But now we can choose g and h such that
f=at

g = azz’y + a2y’ + arvy® + agy’

h = b2x2y2 + blxy?’ + b0y4
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for some numbers as, as, ai, ag, ba, by, by.

First, let us consider the subcase by = 0. Then by # 0, since |IIN%| = 1 by assumption.
Therefore, dividing h by by, we may assume that b; = 1. Then, replacing g by g — a1h,
we may assume that a; = 0. If by = 0, then ay # 0, since (A.7.6) has no solutions in P!,
so that scaling x, we may assume ag = 1, which gives

f=at

g9 = asz’y + ax’y’ +y*,

h =y,
where (a3, az) # (0,0), since [IIN%’| = 1, so that we can find b # 0 using b* —asb+az = 0,

2\2
and let a = ‘mgi, c=1,a= %, f =1, v = 2b, which gives us a solution to (A.7.8).
Hence, to complete the proof, we may assume that by # 0. Now, appropriately scaling vy,
we may also assume that by = 1. Then f = 2*, g = asz3y + ax2?®y? + aoy?, h = zy3 + y*.
If a3 = 0, then as # 0, so that we can assume that a; = 1 by scaling x, which implies that
f=a* g=2%%+ agy*, h = vy + y*, so that we can find b # 0 using agh® +2b — 1 = 0,
and let a = a =0, c =1, 8 = b?, v = 2b, which is a required solution to (A.7.8). Hence,
we may assume that as = 1. Then f = 2%, g = 2%y + as2®y® + aoy*, h = 2y + y*.
2 2

If ap # 0, then one solution to (A.7.8) is given by a = €2 p =1, ¢c=¢ a= 582

2a0 4a(2) ’
B = 5(3—32), v = 2, where £ is a root of 2% — (ay + 2)2% + 2a2x + ag. If ag = 0 and ay = 0,
then

(xQ —dzxy — 83;2)2 =2' — 8%y + 64(zy® +y*) = f —8g +64h € V.
If ag = 0 and ay # 0, then (a, b, ¢, a, 5,7) = (1,2as,0, 1,4as,0) gives a solution to (A.7.8).
This proves the required assertion in the subcase when by, = 0.

We may assume that by # 0, so that replacing h by h/by, we may assume that by = 1.
Then, swapping g with g —ash, we may assume that a; = 0. If by = by = 0, then 2%y? € V.
Similarly, if b, = 0 and by # 0, then (22 + 2bpy?)? = 2t + 4bo(2%y? + boy*) = f +4boh € V.
Thus, if b; = 0, then we are done. Hence, we may assume that b; # 0. Then, scaling
r, we may assume that b; = 1, so that we have f = 2% ¢ = as23y + a1zy® + agy?,
h = 2?y* + zy® + boy*. If by = 1, then 4h = (22 + y)*y* and we are done. So, we may
assume that by # }L. Moreover, if a3 = 0, then a; # 0, since otherwise V' would contain
x' and y*, which is excluded by our assumption that [ITN%| = 1. Hence, if a3 = 0, then

(04332 + 2(aybg — ao)y2)2 =alf — 4(ayby — ag)g + 4ay(a1by — ag)h €'V,

so that we are done if a1by # ag. If a3 = 0 and a;by = ag, then a;2%y* = a;h —g €V,
so that we are also done. Therefore, to complete the proof, we may assume that az # 0.
Then, dividing g by a3, we may also assume that a3 = 1. Thus, we have f = 2%,
g = 2%y + a1y’ + apy* and h = 22y + 2y® + boyt.

Now, let us try to find a solution to (A.7.8) witha =1, a =1, 8 = 2b and v = b? + 2c.
Then to complete this to a solution to (A.7.8), we must also have (b, c) # (0,0) and

b2b0 + 20b0 + 2(10() - 02 = 0,
2a1b + b* — 2bc + 2¢ = 0.

(2(11 +b)b

If b ¢ {0, 1}, the second equation gives ¢ = S0

, so that the first equation simplifies as

(A.7.9) (4by — 1)b* + (8ag — 4a; — 4bo)b* + (8arby — 4aF — 16a0)b + (8ag — 8aiby) = 0.
311



This polynomial equation in b always has a solution, because we assumed that by, # 71'

Moreover, if b is a solution to (A.7.9) and b ¢ {0, 1}, than we can let a = 1, ¢ = %‘zgfgb,

a=1,8=2b v =0+ % to get a solution to (A.7.8). Hence, if (A.7.9) has
a solution b ¢ {0, 1}, then we are done. Observe also that b = 0 is a solution to (A.7.9)

if and only if ag = a1by. Similarly, b = 1 is a solution to (A.7.9) if and only if a; = —3.

Moreover, if a; = —3, then (A.7.9) simplifies as (b—1)?((4by — 1)b+8ag +4by) = 0. Thus,

ifap = —1, ag # =22, by # —2ay, then b = % satisfies (A.7.9) and b ¢ {0, 1}, so that

we are done. On the other hand, if a; = —% and ag = 1_88b°, then

(2x2+21:y+y2)2 = 4o+ (82°y—Azy®+(1-8bo)y*) +8(z*y*+ 2y’ +boy") = 4f+8g+8h € V,

which is exactly what we need. Similarly, if a; = —% and by = —2ag, then

3
(:1:2+xy—4aoy2)2 = $4+2<x3—%+a0> +2(x2y2+:vy3—2a0y4) = f+2g+(1—8ap)h €V,

which gives a solution to (A.7.8). Hence, if a; = —%, then the required assertion is proved.
Therefore, we may assume that a; # —%. Then b =1 is not a solution of (A.7.9).

If ap = ayby, then (A.7.9) simplifies as b(b + 2a;)((1 — 4bo)b + 2a; + 4by) = 0, so that
b = —2a, gives us a solution to (A.7.9) such that b ¢ {0, 1} provided that a; # 0 Hence,
if ag = a1by and ay # 0, then we are done. Similarly, if ag = a; = 0, then b = 4§0b31 gives
a solution to the equation (A.7.9) such that b ¢ {0, 1}, since by # 0 in this case, since
(A.7.6) does not have solutions in P!. Therefore, we proved that (A.7.8) has a solution,
which completes the proof of the lemma. U

Let us conclude the appendix by the following result (cf. [211] and [42, § 10]).

Lemma A.7.10 ([15, 83]). Let X be a smooth divisor in P? x P? that has degree (1,2).
Then one can choose coordinates ([x :y : 2], [u : v : w]) on P? x P? such that X is given
by one of the following three equations:

(1) (pvw +u?)z + (puw + v?)y + (puv +w?)z = 0 for some p € C such that p* # —1,
(2) (vw + v*)x + (uw + v*)y + w?z = 0.
(3) (vw + u?)x + viy + w?z = 0.

Proof. To prove the required assertion, it is enough to show that X can be given by
(A.7.11) (10w + azu®)z + (byuw + bav®)y + (cruv + w?)z =0

for some numbers ay, as, by, be, ¢; and . Indeed, suppose that X is given by (A.7.11).
Then asbycy # 0, because X is smooth. Thus, scaling u, v and w appropriately, we may
assume that ay = by = ¢, = 1. Choose a, b and ¢ such that a®> = a;, b® = b; and & = ¢;.
If abc # 0, we scale our coordinates as x +— x,y — yt%, 2 — 282, u — u,v > Swe g
for s = 2 and t = §. Then we are in case (1) with 4 = abc, and X is singular if and only
if 4 = —1, so that the remaining assertions follows from [71]. Similarly, if abc = 0, then
we can scale and permute the coordinates accordingly to get either case (2) or case (1).
Now, let us prove that we can choose u, v, w, x, y, z such that X is given by (A.7.11).
Let pry: X — P? be the projections to the first factor. Then pry is a conic bundle,
whose discriminant curve % is a cubic curve. Since X is smooth, % is either smooth or

nodal. If ¥ is reducible, the required assertion is well-known (see [211] or [42, § 10]).
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Thus, we may assume that % is irreducible. Then it follows from [71] that we can choose
coordinates x, y and z such that € is given by

(A.7.12) az® + By® + 2 + dwyz =0

for some «, 8, v and § such that o # 0 and 8 # 0. To prove the required assertion, it is
enough to choose the coordinates u, v, w such that X is given by the equation (A.7.11).
In the following, we will not change the coordinates z, y and z except for scaling (once).

Let Cy, Cy, C, be the fibers of the conic bundle pry over [1:0:0],[0:1:0], [0:0: 1],
respectively. Since ¢ contains neither [1: 0 : 0] nor [0 : 1 : 0], both C, and C,, are smooth.
In particular, we can choose u, v and w such that C, is given by vw +u? = y = z = 0.
Then X is given by

(vw + u?)z + folu,v,w)y + f3(u,v,w)z =0,
where fo(u, v, w) and f3(u,v, w) are some quadratic polynomials such that C, is given by
the equation fs(u, v, w) = x = z = 0, and the curve C, is given by f3(u,v,w) =z =y = 0.
Abusing notations, we consider all three curves C,, C, and C, as conics in one plane P?|
which are given by the equations vw+u? = 0, fo(u,v,w) = 0, f3(u, v, w) = 0, respectively.
If € is singular, then [0 : 0 : 1] = Sing(%’), so that C, is a double line.

Observe that C;, NC,NC, = &, since X is smooth. But C;,; NC, # @ and C, NC, # .
Therefore, since Aut(P? C,) = PGLy(C) and this groups acts faithfully on C, = P!
we can choose u, v and w such that [0: 0: 1] € Cy and [0: 1:0] € C,. Then

fou, v, w) = a1v? + agu® + agvu + aow + asuw,

f3(u, v, w) = bjw? 4 byu® + bsvu + byvw + bsuw,
where a1, as, as, a4, as, by, ba, b3, by, b5 are some numbers. Note that we still have some
freedom in changing the coordinates u, v and w. Namely, the subgroup in Aut(P?; C,) that
preserves the subset {[0:0: 1],[0: 1: 0]} is G,;, X po, where the G,,-action is just the scal-

ing u — u,v — sv,w +— * for s € C*. Using this scaling, we could get the following new
equation for our threefold:

a b b
(u2+vw) T+ <s2a102+a2u2+agsvu+a4vw+—5uw> y+ (—;w2+bgu2+sbgvu+b4vw+—5uw> z=0,
s s s

where a0, # 0, since C, N Cy, N C, = &. Thus, if a5 # 0, we can scale v, w, x and 2
such that a; = a5 = by = 1. Similarly, if a5 # 0, we can scale y and z to get a; = by = 1.
Therefore, we can assume that a; = b; = 1, and either a5 = 0 or a5 = 1. Note also that

(A.7.13) 2azasas — 2a3 — 2azaj # 0,
because the conic Cy is smooth.

Now, we compute the equation of the curve € using the equation of the threefold X.
Namely, the curve € is given by

x — (a3a4a5 — apaj — ag)yij’ — (b3b4b5 — byb] — bg)zg—
— (4: — 2@264 + a3b5 — 2@4()2 — 2@41)4 + a5bg)xyz+
+ (a2 + 2a4)x2y — (bg + 2b4)a:2z — (a3a5 — 2a9a4 — ai)xyz — (b3b5 — 2byby — bi)a:z2—
— (4&2 — 2&2&4174 + a3a4b5 + a3a5b4 — aibg + a4a5b3 — CL?)’ — 2a5b5)y22—

— (4b2 — agbi + a3b4b5 — 2a4b2b4 + (Z4bgb5 + a5b3b4 — 2@3()3 — bg)yZZ = 0.
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Thus, since € is given by (A.7.12), we obtain the following equations:

as + 2@4 = 0 b2 + 2b4 = 0 asas — 2@20,4 - a4 0 b3b5 - 2b2b4 - b 0
4&2 — 2a2a4b4 + a3a4b5 + a3a5b4 — Cl4b2 + CL4CL5b3 — a3 — 2&565 = 0,
4b2 — azbi + (Zgb4b5 — 2a4b2b4 + CL4bgb5 + a5bgb4 — 2a3b3 — bg = 0.
Substituting ay = —2ay and by = —2b, into the third equation, we get 2aszas + 6a3 = 0.

Hence, if a5 = 0, then a4 = 0, which contradicts (A.7.13). Therefore, we see that a5 = 1.
Then equations simplify as

ag = —2a4,by = —2by, 3a3 + a3 = 0, bsbs + 3b] = 0,

a3a4b5 + 6aib4 — (lg + CL3b4 + a4b3 - 8@4 - 2b5 = 0,
a3b4b5 + a4bgb5 + 6&4[)?1 — 2&3[)3 + b3b4 — bg — 8b4 = 0,

so that a3 = —3a?. In particular, the threefold X is given my
(v +vw)z+ (v* +uw — Bajuv — 2a,u” + agvw) y + (byuv — 2bsu” + byow + byuw +w?) z = 0.

Now, we change our u, v and w as follows: u +— w — a4V, v = v, W — 244w — a3V — U.
Then, in new coordinates, the threefold X is given by the equation:

(u® +vw)z + (uw + av®)y + (v + cw® + cv® + czvu + cavw + csuw) z = 0,

where a = a3 +1, ¢; = 4a3+2a4b5—2by, co = a4+a 3bs —3a3by —aubs, c3 = —2a3 —asbs+ by,
cy = —4ai — 3a3bs + 6agby + b3, c5 = 4ay + bs. Now, recomputing again the equation of
the cubic curve % in terms of a, ¢, ca, c3, ¢4, c5, We see that € is given by

2 + ay3 + (clcg + cgcg — c3c4C5 — 4cco + ci) 23— (4@01 + 03)xyz + (204 + 1)3:22—1—
+ (2ac5 + CQ)y z — (40102 + c3c5 — c4 — 204)xz + (ac5 dacy + 2c9c5 — 0304)yz = 0.

As above, this gives 2¢4 +1 =0, 2acs + co = 0, 4ciey + e3¢5 — 2 — 2¢4 = 0, acg —4dac; +
2coc5 — c3cq = 0, so that ¢4 = —% and cg = —2acs. This gives ¢4 = %, cy = —2acs,
—8acics + c3c5 —|— = 0 3ac5 +4ac; — 5 = 0. Then ¢3 = 6a65 + 8acy. Substituting this

into —8acics + 0365 + Z = 0, we get 6ac5 + 3 = 0. In particular, we see that c5 # 0.

Summarizing, we see that c; # 0, ¢4 = —%, co = —2acs, c3 = 6ac + 8acy, a = — 53
5
Therefore, our threefold X is given by
(42 + vw) +< v2> +< +'112 3uv  uve Uw~|—cuw+u>z 0
u® +ow)x uw — —5 cw? - — — =0.
sc2 )Y ! 4¢2 des c 2 °

Now, if we change u, v and w as u — c5(u+v+2w), v — 4eb?u+civ—4aciw, w — 2u—v+w,
then X would be given by

?J2C5

5 —4
(u2c§ + cng)x + <c5uw - T)y + <(20§ + 01)w2 + M)z,

4

which is a special case of (A.7.11). This completes the proof of the lemma. O
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