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Abstract—Brain signals generated during silent speech
have shown to be useful in designing a communication-
based brain computer interface (BCI). However, brain signals
are non-stationery and complex in nature, and therefore
challenging to recognize. We propose a framework for recog-
nizing imagined words using brain signals captured through
electroencephalograph (EEG) sensors. Our method consists of
two main components: (i) an electrode selection method, and
(ii) a convolutional attention network. The electrode selection
method provides the electrodes containing the most dis-
criminative time-frequency information for imagined speech
recognition. Further, spectrograms from selected electrodes
are used as input to the convolutional attention network, that
extracts time-frequency features and performs classi�cation
by ascribing higher importance to the time points with
higher discriminatory capacity. Experimental results using
EEG dataset shows that the proposed method e�ciently
recognizes mentally spoken words and exhibits performance
superior to that of state-of-the-art methods.

Index Terms—EEG, Brain Computer Interface, Convolu-
tional Network, Attention, Inner Speech, Silent Speech, Elec-
trode Selection, Time-Frequency

I. Introduction

The use of electroencephalography (EEG) signals has
grown in prominence for a wide array of applications during
the last few decades [1]. Simultaneously, the analysis and
interpretation of EEG signals generated during imagined
speech has sparked considerable scienti�c attention [2]. As
brain signals are non-stationary and challenging to analyze,
previous techniques have concentrated on binary classi-
�cation of silently spoken words [2], [3], [4]. Sereshkeh
[3] employed multi-linear perceptron neural networks and
attained a classi�cation rate of 63% with two classes and
54% with three classes. In addition, a new method for binary
classi�cation of imagined words based on a covariance matrix
descriptor was proposed by Nguyen [2], which achieved a
classi�cation rate of 50% for short words and 66% for long
words. Further, a convolutional neural network-long short-

term memory units (CNN-LSTM) and deep auto-encoders
was used to recognize the presence of an articulation from
silent speech EEG signals [5]. Similarly, di�erent articulations
were recognized from silent speech using wavelet features
and deep learning classi�er [6].

Although the above approaches show partial success, rec-
ognizing neural events associated with a given word remains
a challenge due to the �eeting nature of a single event.
Humans are capable of producing a word in 0.33-0.5 seconds
[7], therefore, recognizing neural events associated with
a given word becomes complicated. Furthermore, feature
extraction methodologies have limitations; for example, Fast
Fourier Transform (FFT) is most e�ective when the signals
are stationary [8], while auto-regressive modelling can su�er
from poor spectral estimation of signal [9]. The most popular
features used in EEG research are time-frequency features,
such as the spectrograms [10]. On the other hand, deep learn-
ing has been successful in feature learning for brain computer
interface (BCI) applications [11]. In addition, attention-based
neural networks have improved accuracy in several deep
learning tasks, especially with sequential data [12]. To exploit
the ability of neural networks to learn non-linear features, in
this paper we introduce an application of the convolutional
attention network for silent speech recognition.

In order to capture EEG signals from the di�erent scalp
regions multiple electrodes are needed, resulting in a high
dimensionality of the EEG data. EEG signals from a large
number of electrodes require extra computational resources
and time to analyze [13]. For optimization, it is crucial to
minimize the dimensionality of the data by appropriately
choosing the electrodes. The standard procedure within the
�eld is aggregating features from di�erent electrodes into a
vector; however, this technique does not exploit the spatial
correlation between electrodes [11]. Therefore, in this paper
we introduce an e�cient electrode selection technique to
reduce the EEG data dimensionality. Further, to explore the
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Fig. 1: Electrodes in the head-cap used for data acquisition.

spatial correlation between electrodes, spectrograms from the
selected electrodes were processed as a multi-channel input
by the proposed convolutional attention network.

To summarize, the proposed framework for recognition of
silent speech from EEG signals presented here, combines the
following novel features:

1) An electrode selection method that reduces the dimen-
sionality of the EEG data providing the most discrim-
inatory information for recognition of silently spoken
words.

2) A convolutional attention network that treats the spec-
trograms as a time-varying input and uses convolu-
tional layers to extract features from each time point
separately. In addition, we used the self-attention layer
for learning the most discriminatory temporal features
associated with silently spoken word.

3) The evaluation of the proposed approach, combining
electrode selection technique with the convolutional
attention network obtained high accuracy in recog-
nizing silently spoken words. In addition, our results
demonstrate robustness of the proposed method in
comparison to previous techniques.

II. Data Recording and Pre-Processing
A. EEG Head-Cap

To record EEG data, we used a Neuroscan 64 channel Quik
cap (electrodes) with extended 10-20 system, which included
the horizontal electrooculogram (HEOG) and vertical elec-
trooculogram (VEOG) electrodes for eye blink measurements.
The position of electrodes in the head-cap is shown in Figure
1. The cap was connected to a synamp ampli�er operating
at a 1kHz sampling rate. The ampli�er was connected to
the system where signals were being recorded in Neuroscan
Curry 8.

B. Data Collection
An EEG dataset was acquired from 12 participants (Mean

age 37, range 21-71). The inclusion criteria were: (i) �uency in
English and (ii) no neurological or speech impairments. The
recording was performed in a laboratory speci�cally designed

Fig. 2: The order of stimulus presentation for recording a
single EEG trial. In our evaluation, we used only 3 sec of
activity per trial to avoid overlapping of inter-trial activity.

for EEG-based experiments at Brunel University London, UK.
Participants sat on a chair one meter away from the computer
screen and were requested to stay stationary throughout
the recording. Each participant performed four tasks; for the
purpose of this study, only covert speech signals were used,
i.e., when the participant was requested to silently speak the
presented word. The participants were informed of their right
to withdraw from the study at any time. The study has been
approved by the College of Engineering, Design, and Phys-
ical Sciences Research Ethics Committee, Brunel University
London, reference number 7361-LR-Sep/2017-8301-1.

Each recording session included words Apple and Write.
The words were select from the list of most frequently used
words in spoken and written English [14]. In addition, both
words match phonetically, having the same number of letters
and syllables, as well as being a�ectively neutral. To eliminate
the temporal e�ects, words were displayed randomly on
the screen [15]. E-prime-2 software was used to design the
experimental paradigm. The words were presented on a
white background, black in color with capital letters. The
white background was used to reduce the potential caused
by visual stimulus [16]. First, a blank screen appeared for
1 sec, where the participant did not perform any activity.
This was followed by the word appearing for 2 sec, where
the participant was told to mentally read the word as soon
as it was presented. The word presentation was followed
by another blank screen for 1 sec. Each trial lasted 4 sec;
however, only 3 sec (500 ms before and 2,500 ms after
stimulus onset) of trial was used to avoid overlapping of EEG
activity between trials, as shown in Figure 2. Each participant
performed ten trials for each word. The data recording was
time-locked to ensure that the stimulus appeared on the
screen at the correct time. To minimize fatigue, participants
were given a break half way through the experiment.

C. Pre-Processing
Noise and artifacts such as eye blinks, eye movements,

breathing, and muscle movement were removed from the
EEG signals. The raw EEG data were �ltered using a 0.01Hz
high-pass �lter to remove artefacts such as slow voltage
shifts, which occur at frequencies less than 0.1 Hz. A notch
�lter was utilized to remove the 50Hz line noise. The
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EMG electrode was used to eliminate the noise at higher
frequencies, such as noise caused by muscle movement. To
account for eye movement artifacts, the peak-to-peak voltage
of the VEOG signal was measured in conjunction with the
threshold voltage of ±200 µV [16]. Baseline raw data were
corrected in real time and during o�ine processing.

III. Electrode Selection using Time-Freqency
Information

A. Short Time Fourier Transform

Temporal characteristics alone are incapable of capturing
the properties of EEG data. For instance, signals generated
by two distinct triggers or events (di�erent words in this
case) may be comparable in terms of head mappings and
neural activity, but di�erent in terms of frequency charac-
teristics [17]. As a result, we used the Short Time Fourier
Transform (STFT) to analyze the brain signals in this study.
Windowing was used during the STFT calculation to avoid
discontinuities referred to as leakage. We employed the Hann
window in our STFT implementation [8]. The length of the
window was taken to be 256 and a temporal overlap of 87%
was used between consecutive windows. The short window
provides excellent temporal resolution and aids in detecting
the events in the signal. Additionally, we performed baseline
normalization to avoid the reduced power representation
at high frequencies [8]. Baseline normalization also helps
in highlighting task-discriminative activity from background
activity [4].

B. Electrode Selection using Spectrograms

EEG signals recorded from multiple electrodes result in
increased computational complexity and processing time.
Further, EEG signals from multiple electrodes can lead to
over�tting and poor performance of a BCI system [13].
Therefore, an e�cient electrode selection technique is essen-
tial for improving speed and recognition rate of a BCI system.
We propose an electrode selection method that provides
the most task-discriminative electrodes for recognition of
imagined speech.

The proposed method (Algorithm 1) takes input spectro-
grams from all electrodes and selects the top-K electrodes
that contribute most towards recognition of silently spoken
word. Where K is a user de�ned parameter. Input to the
electrode selection algorithm was the training data X ∈
Rn×C×T×F , where n denotes the total number of training
trials, T denotes the total number of time points in the
spectrogram, F denotes the total number of frequency points
in the spectrogram, and C is the total number of electrodes.

The �rst step is to average the spectrograms St,f along the
time axis. This is performed on spectrograms belonging to all
trials and electrodes. This generates a frequency vector Sf

for each electrode in a trial. In the next step, Sf from each
electrode is divided into j overlapping vectors of varying
length. A jth overlapping vector Sf ′

j
is obtained from the

vector Sf , where f − mj refers to the length of the new
vector Sf ′

j
. In our analysis, we created three new vectors

Algorithm 1 Select Top-K Electrodes
Requires: A matrix X ∈ Rn×C×T×F , where T × F are di-

mensions of a spectrogram St,f belonging to an electrode
C of the nth trial. K the no of electrodes to be selected,
and mj the vector length.

1: Calculate mean across T for each spectrogram
2: create an empty array Xf of size n× C

LOOP through all trials n and electrodes C
3: for n ∈ 1, ..., n do
4: for C ∈ 1, ..., C do
5: Sf = Mean(St,f , axis=0) {Mean across time axis}

Create vector of varying length from the frequency
vector Sf .

6: Sf ′
1
, Sf ′

j
,..., Sf ′

j
= Sf−m1 , Sf−m2 ,..., Sf−mj

{where length of Sf ′
j

> Sf ′
2

> Sf ′
1
}

7: a1, a2,..., aj = Mean(Sf ′
1
), Mean(Sf ′

2
),..., Mean(Sf ′

j
)

8: if (a1 > 0 or a2 > 0 or aj > 0) then
9: Xf (n,C) = 1 {Cth position in Xf (n,C) is 1}

10: else
11: Xf (n,C) = 0 {Cth position in Xf (n,C) is 0}
12: end if
13: end for
14: end for

Create an array containing the number of times an
electrode C was 1

15: L = Sum(Xf (n,C), axis=0) {sum across n trials}
16: L = Argsort(L) {Arrange indices of values in descending

order}
17: topK = L(1 : K) {Retrieve �rst K electrodes from the

list L}
18: return topK

(j=3); Sf ′
1
, Sf ′

2
, Sf ′

3
. All the vectors are of varying length,

such that the length of vector Sf ′
1

is less than Sf ′
2
, and Sf ′

3

being the longest. For each vector Sf ′
j

mean was estimated,
with aj being the mean of jth vector. This was done in
order to capture the magnitude of activity from di�erent
frequency bands. The proposed method regards an electrode
as informative if the mean aj of the vector Sf ′ j is above zero.
Mean was calculated to provide a measure of overall power
within the vector Sf ′ j . A matrix Xf of size n×C is obtained,
which contains information about C electrodes from all n
trials. The Cth position of the matrix contained 1 or 0 value,
depending on the mean value aj of a vector (Algorithm 1,
step 8). All values in Xf (n,C) were added along n axis, to
obtain an array. From the array, indices of K electrodes with
highest values were retrieved. These were regarded as the
K most informative electrodes. The top-K electrodes were
estimated using training data and same electrodes were used
in the test data for classi�cation purposes.
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Fig. 3: Illustration of the proposed convolutional attention network. Input to the network is a multi-dimensional tensor,
which is processed by a separate convolutional layer at each time point. At each time point t chain of three blocks is used to
extract features from C channels, where each channel is a vector of length F = 86, which is the length of each frame input to
the convolutional attention network. Two blocks containing one-dimensional convolutional and batch normalization layers
other containing residual module. The output of these blocks is processed by a dense block followed by the self-attention
layer for learning of important features.

IV. Classification using the Convolutional Attention
Network

The proposed network architecture is shown in Figure
3. It uses the convolutional and attention layers to learn
spectral and temporal patterns from the input spectrograms.
At the �rst stage, the network uses convolutional layers to
extract the important frequency components from each time
point in the spectrograms. This reduces the input size and
allows our network to exploit spatial correlations between
neighboring electrodes. Further, the parallel dense layers
perform dimensionality reduction on features extracted by
the convolution blocks. We used a self-attention mecha-
nism to learn important temporal points from the features
extracted by the convolution blocks. In addition, the self-
attention layer emphasizes the time points that provide most
discriminative features. This makes the network capable of
learning important spectro-temporal components belonging
to the spectrograms of the selected electrodes.

Our proposed network consists of three convolution blocks
and a dense block, proceeded by the self-attention mechanism
and three dense layers, with the �nal dense layer performing
binary classi�cation using the sigmoid function. Each block
contains T parallel one-dimensional (1-D) convolution layers
and batch normalization layers, where T denotes time points
in the input spectrograms. 1-D convolution was used to
extract the features at each time point (frequency vectors)
in the spectrogram, two convolution blocks have single con-
volutional layer, and one block contains residual module with
two convolutional layers [18]. The �rst block’s convolutional
layer �lters the data using 64 kernels with a receptive �eld of
size 3 and a stride of size 2. This procedure can extract high-
level information from the spectrogram’s frequency vectors.
The second block in the network contains a residual module
with two convolutional layers [18] with 128 kernels of size 3.

The third block’s convolutional layer uses 128 kernels of size
3 that are applied with a stride of size 2. The feature extracted
by the convolution blocks are transferred to the dense layers
for dimensionality reduction. Strategically constructed layers
endowed with non-linearities can help deep learning models
[19]. Thus, the exponential linear unit (ELU ) [20] activation
was utilized in the network to learn non-linear patterns from
EEG spectrograms. The convolutional and dense layers used
the ELU function.

It is known that the neural events associated with a cogni-
tive activity of a short duration last only a few milliseconds
[21]. As a result, not all EEG time points are helpful for
detecting covertly spoken words. Therefore, we used the
self-attention mechanism to highlight the most informative
temporal aspects in the output generated by the convolution-
dense blocks. To integrate attention in our network, we
created a self-attention layer, which used the output of
parallel dense layers as input to construct a more informa-
tive global feature map g. In order to implement the self-
attention mechanism, we initially calculated the normalized
importance vector αt using two successive fully connected
layers: �rst layer (FC1) with the tanh and second layer (FC2)
with the softmax activation function. Both layers had only
one neuron and αt were calculated as follows:

αt =
exp (W2 · tanh(W1 · ht))∑T
t=1 exp (W2 · tanh(W1 · dt))

(1)

where dt is the output from the dense layers at each time
point and W1, W2 are the weights of �rst and second layer.
Subsequently, the global feature vector g [22] was calculated
as:

g =

T∑
t=1

αtht (2)
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TABLE I: Subject-dependent (SD) evaluation of accuracy achieved by electrodes selected using the proposed method in
section III-B. The baseline is C=64, i.e., when spectrograms from all the electrodes are used for training and testing the
network, where C is the number of electrodes. The results are presented in a subject-by-subject manner.

C S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Avg
Accuracy

Avg
Precision

64 55.0 54.3 67.5 71.1 100 77.7 83.8 69.0 78.7 63.5 88.8 76.5 73.8 64.8
32 51.5 73.5 68.8 73.8 99.4 76.1 88.3 64.0 71.3 66.5 92.7 83.5 75.7 67.7
9 70.0 84.5 73.3 78.3 100 81.1 88.3 85.0 70.6 67.5 87.2 75.0 80.0 69.5

where g represents output of the attention layer known as
the global feature vector. The self-attention layer is trained
using back-propagation and the gradient is used to learn
signi�cant temporal points [22]. Following the self-attention
layer, the network contains two dense layers of 128 and
64 neurons each. The dense layers employed in the ELU
as an activation function, enabling the network to transfer
non-linear information from the previous layers. For binary
classi�cation, the �nal layer utilizes the sigmoid function.

The networks were implemented using the Keras library
[23] with Tensor�ow backend [24]. The network was trained
on NVIDIA Tesla P100 for 200 epochs, the Adam optimizer
[25] was used for weight optimization, and the cross-entropy
loss was minimized with the learning rate of 0.0001. Due to
weight sharing in convolutional networks, the gradient at
di�erent layers can vary widely [11]; therefore, we used a
slower learning rate. The model was trained using a mini-
batch gradient descent of size 5 for subject-dependent (SD)
and 64 for subject-independent (SI) evaluation. Further, in
order to avoid the problem of unstable gradient, our network
used the He weight initialization method [26].

V. Results

For the experimental evaluation of our method, we used
EEG signals acquired during silent speech of two words,
i.e., Apple, and Write. We tested our system for the binary
classi�cation of silently spoken words formed from the above
two words. The electrodes used in the recognition task were
obtained using our electrode selection method. The pro-
posed electrode selection method was evaluated by selecting
di�erent number of electrodes. All calculated spectrograms
were of dimension 50× 86. Spectrograms from the selected
electrodes were combined to form a multi-channel input of
shape T ×F ×C . In the multi-channel input, C refers to the
number of electrodes (channels), T = 50 refers to the number
of time points, and F = 86 is the number of frequency points
in the spectrograms. Therefore, input to the convolutional
attention network was a three-dimensional tensor, of shape
T×F×C . Electrode selection was performed on training data
and electrodes for the test data were selected based on the
training electrodes. The e�ectiveness of the proposed con-
volutional attention network and electrode selection method
was evaluated using two evaluation methods, presented in
Table II.

TABLE II: Two evaluation methods: subject-dependent (SD)
and subject-independent (SI). SD was performed on a subject-
by-subject basis, i.e., training and testing used di�erent data
from the same subject, and SI used data from all subjects.

Exp Training Testing
Subjects Trials Batch Size Subjects Trials

SI All 90% 64 All 10%
SD - 90% 5 - 10%

A. Subject-Dependent (SD)
The �rst evaluation method was subject-dependent (SD).

In this evaluation only trials from one participant were
used for training and testing of the proposed system. In
general, 10 trials for each class were recorded from each
participant. However, after artifact rejection some partici-
pants contributed only 9 trials. Results for each participant
were obtained using leave-one-out cross validation, where
the dataset was divided into 90% training and 10% testing
data. To circumvent variation in the network parameters
caused by the stochastic nature of deep learning algorithms
[27], the convolutional attention network was trained and
tested ten times for each trial. The results for each outcome
were averaged per participant.

We validated the performance of the proposed electrode
selection method with a baseline, i.e., when spectrograms
from all the electrodes (C = 64) were used as input to the
convolutional attention network. For electrode selection, we
used C=9 & C=32, i.e., spectrograms were selected from the
C most informative electrodes using the proposed electrode
selection method to train and test the network. Training data
were used for obtaining the most discriminative electrodes.
Three sets of results were obtained from each participant. As
shown in Table I, the results obtained with C=9 achieves the
highest recognition rate of 80%, outperforming the baseline.
This means that our electrode selection method reduces
the dimensionality and rejects noise in the EEG data to
provide more task-discriminative information. Despite the
high recognition rate the precision of the network is low.

B. Subject-Independent (SI)
The second experiment evaluated the convolutional atten-

tion network and electrode selection method in a SI manner,
where the network was trained and tested on EEG data from
all participants. In total, 113 trials were available for each
class, where 90% were used for training and 10% for testing
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TABLE III: Classi�cation accuracy of the proposed convolu-
tional attention network and electrode selection technique in
a subject-independent (SI) manner.

SI C=64 C=32 C=9
Accuracy 74.0 74.2 71.1
Precision 74.9 75.3 71.9

data. We validated the performance of the convolutional
attention network in a leave-one-out cross validation manner.
For electrode selection, we tested the system for three sets
of electrodes with C = 9, 32, and 64. As shown in Table
III the highest accuracy was achieved for C = 32. In SI
evaluation, recognition rate is low with C=9, resulting from
inter-subject variation in the EEG data; therefore, a larger set
of electrodes performed better compared to fewer electrodes.
This shows, the proposed electrode selection method can help
reduce inter-subject variability by using fewer electrodes.
In addition, our results show robustness of the proposed
convolution-attention network in dealing with inter-subject
variations.

C. Attention Weights Visualization

Figure 4 shows the attention weights for the two words.
The self-attention mechanism assigned highest weights to
the time points with most discriminative information about
the silently spoken word. The attention weights for all the
networks trained in SI and SD evaluation were averaged to
create the global attention weights, shown in Figure 4. As
can be seen in Figure 4, EEG signals for the word Apple
exhibits most distinct characteristic at 1 sec, whereas EEG
signals for the word Write contain important features after
2.5 sec. Interestingly, the weights at the pre-stimulus time
period for the two conditions vary, which can be attributed
to the trial-by-trial �uctuations in participants focus during
the task which give rise to new features[28]. However,
the convolutional attention network is designed to extract
features associated with the silently spoken words, hence
signi�cant weights are given to the features after the stimulus
onset.

D. Comparison with the State-of-the-art Optimization Methods

TABLE IV: Comparison of performance achieved by the pro-
posed electrode selection methods with the state-of-the-art
optimization methods in selecting electrodes for recognition
of silently spoken words. SD: Subject-Dependent; SI: Subject-
Independent.

Method Accuracy Precision Processing Time
SI SD SI SD SI SD

PSO 72.8 71.1 73.7 62.5 3.6 min 2.6 min
GA 72.5 71.6 74.1 63.3 2.4 min 1.1 min

Proposed 74.2 75.7 75.3 67.7 41 sec 8 sec

We compared the proposed electrode selection method
with the state-of-the-art optimization methods such as the

(a)

(b)

Fig. 4: Attention weights for the two words: (a) Apple; (b)
Write.

genetic algorithm (GA) and particle swarm optimization
(PSO) [29]. The GA and PSO are meta-heuristic algorithms,
which have been e�ective in solving complex engineering
optimization problems [30]. Therefore, we applied the GA
and PSO to select electrodes, which were then used to train
the convolutional attention network for recognizing silently
spoken words. For the GA, we used a population size of 500
and the algorithm converged after 20th generation, similar to
[31]. A logistic regression classi�er was employed to produce
the measure of �tness. For the PSO, we used 20 particles
in a swarm with an inertial weight of 0.3. The objective
function provided the measure of accuracy using the logistic
regression classi�er and the algorithm converged after 500
iterations. Input to the GA and PSO was a two-dimensional
matrix X ∈ Rn×C , where n is the number of training
trials and C = 64 is the number of electrodes. The input
was estimated by averaging spectrograms across time and
frequency axis for each electrode. As can be seen from Table
IV reporting the comparison of performance achieved by
the three methods, the proposed electrode selection method
outperformed the PSO and GA optimization methods. In ad-
dition, our method is much faster, i.e., requires less processing
time, making it more suitable for a BCI application.
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E. Comparison Against a Baseline Network without Attention
Mechanism

TABLE V: Comparison of performance of the proposed
convolutional attention network with the baseline. Where
the baseline is the network without attention mechanism.
Performance of the two networks was compared using t-test.

C Without Attention Conv Attention p-value
SI SD SI SD SI SD

64 70.4 64.9 74.0 73.8 <0.001 0.045
32 70.1 66.9 74.2 75.7 0.58 0.056
9 67.9 70.2 71.1 80.0 0.02 0.015

To validate the contribution of attention mechanism in
the proposed network, we compared the performance of
the convolutional attention network with a baseline net-
work. The baseline network had similar architecture to the
proposed network without attention mechanism. As can be
seen from Table V, the convolutional attention network
performed signi�cantly better than the network without
attention mechanism for all comparisons for both subject-
independent and dependent evaluations, except for C=32 for
subject-independent evaluation (see Table V for p-values).
This shows e�ectiveness of attention mechanism in high-
lighting important features for the recognition of silently
spoken words.

F. Comparison with Existing Methods

TABLE VI: Comparison of accuracy achieved by di�erent
methods on our EEG dataset. Each method was evaluated in
subject-dependent (SD) and subject-independent (SI) manner.

Method C SD SI
Sereshkeh [3] 64 52.4% 68.8%
Panachakel [6] 64 51.7% 50.0%
Bashivan [11] 64 50.5% 65.0%

Proposed 64 73.8% 74.0%
Proposed 32 75.7% 74.2%
Proposed 9 80.0% 71.1%

We also compared our results with methods proposed in
previous studies for the recognition of imagined words using
EEG signals [3], [6]. Further, our comparison included the
method proposed in [11] that processes EEG data as a time-
varying input using convolutional recurrent network. The
parameters used for the three methods were as described in
[3], [11], [6]. We report the performance of previous methods
on our EEG dataset in Table VI. The results demonstrate that
more accurate recognition of words can be achieved using
our proposed framework with fewer electrodes.

VI. Limitations and Future Work
One limitation of the proposed method is that it uses Short

Time Fourier Transform (STFT) to extract time-frequency
information which is computationally expensive. Therefore,
in future work we intend to analyze EEG signals in time

domain. Further, the electrode selection method failed to
achieve high recognition rate with C=9 in the subject-
independent evaluation. In addition, the number of electrodes
selected has to be decided in advance. Therefore, it would be
interesting to implement an electrode selection mechanism
within the convolutional attention network which can select
important electrodes in an end-to-end fashion. It would also
be interesting to investigate a fully attention-based network
for spectral and temporal pattern learning. Our future work
will involve collecting a comprehensive dataset and EEG
signals for a larger vocabulary of words (classes) including
“no word” scenario.

VII. Conclusion
In this work, we proposed a framework for recognition

of silently spoken word from EEG signals. The proposed
methods reduce the dimensionality of EEG data and provide
the most task discriminative information by using electrode
selection method. Further, the convolutional attention net-
work is used to learn frequency features and important tem-
poral information of EEG signals. Experimental evaluation
showed that combination of our electrode selection method
and convolutional attention network can recognize silently
spoken words more accurately than previously proposed
state-of-the-art methods.
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