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Fig. 1 Schematic diagram of seepage path changes in unsaturated soil slope excavation simulation

(Blue lines in the figure are the seepage lines)
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Fig. 2 Slope stability simulation process under alternating excavation and rainfall
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Fig. 3 Slope morphology and engineering geological conditions
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Fig. 4 Status of the slope sliding area in January 2015
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Fig. 5 Development of the slope sliding area from May to June 2015
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Fig. 6 Status of the slide after the modified excavation in January 2016
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(a) Schematic diagram of the measuring point layout
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(b) Schematic diagram of the measuring point layout

in the third stage

Fig. 7 Schematic diagrams of the measuring point layouts in each monitoring stage

(AZKO0-1 and 0-2 in the figure are newly added points in the second stage)
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(a) The reduction ratio of 3:1 (b) The reduction ratio of 4:1

(F=0.998) (F,=0.982)

(c) The reduction ratio of 4:1 (d) The reduction ratio of 5:1
(F=0.994) (F=0.996)

Fig. 9 Final sliding surfaces obtained by the inversion analysis
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Fig. 10 The seepage boundary functions of the three rainfall events
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Fig. 11 Permeability function curve of the silty clay
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Fig. 12 Water content function curve of the silty clay
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Fig. 13 Permeability function curve of the fully weathered tuff
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. 14 Water content function curve of the fully weathered tuff
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Fig. 15 Permeability function curve of the strongly weathered tuff
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Fig. 16 Water content function curve of the strongly weathered tuff
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Fig. 17 Pore water pressure distribution with time induced by three rainfall events



Stage 4 of initial excavation . S 3 of initial excavation

Firstrainfall of initial excavation Secondary rainfall of initial excavation

Stage 3 of modified excavation Rainfall of modified excavation

Fig. 18 Maximum shear strain and yield evolution in the slope (Red dots in the figures represent tensile yield elements)
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Fig. 19 Safety factor in each stage of the slope excavation sequence
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Fig. 20 Horizontal displacement distribution after initial excavation of the third-level slope
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Fig. 21 Maximum principal stress distribution after initial excavation of the third-level slope
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Fig. 22 Horizontal displacement distribution after the second rainfall
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Fig. 23 Horizontal displacement distribution after the modified excavation rainfall



