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Abstract

Integrated modelling of biological systems is challenged by composing components with sufficient kinetic data and
components with insufficient kinetic data or components built only using experts’ experience and knowledge. Fuzzy
continuous Petri nets (FCPNs) combine continuous Petri nets with fuzzy inference systems, and thus offer an hybrid
uncertain/certain approach to integrated modelling of such biological systems with uncertainties. In this paper, we give a
formal definition and a corresponding simulation algorithm of FCPNs, and briefly introduce the FCPN tool that we have
developed for implementing FCPNs. We then present a methodology and workflow utilizing FCPNs to achieve hybrid
(uncertain/certain) modelling of biological systems illustrated with a case study of the Mercaptopurine metabolic pathway.
We hope this research will promote the wider application of FCPNs and address the uncertain/certain integrated modelling
challenge in the systems biology area.
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Introduction

Modelling and simulation play an essential role in the study of
systems biology by constructing mathematical or computational
models of biological systems, which help biologists to better
understand and predict system behaviour [1, 2]. Recently, high-
throughput experimental technologies for biological systems
have rapidly developed and we have obtained an increasingly
deeper understanding of biological mechanisms. Thus, more and
more complicated biological models have been constructed to
study the behaviour of systems from a holistic point of view. In
this case, integrated modelling of biological systems is becoming

crucial [3], which incorporates into one model different types of
biological networks, built by more than one modelling method.
Furthermore, whole-cell modelling [4, 5] has been proposed,
which attempts to incorporate all the essential genes and pro-
cesses and their interactions of a cell into one model.

Integrated modelling of biological systems faces many chal-
lenges, e.g. different components may have distinct structures
and characteristics and available kinetic data and knowledge
may also vary quite a lot [6]. By incorporating these hetero-
geneous components to achieve an integrated model, hybrid
methods are necessary [7]. Hybrid methods [8] do by definition
integrate more than one modelling formalism into one model,
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thus permitting the adoption of an appropriate formalism for
each specific component according to its characteristics.

So far, many modelling formalisms have been proposed to
address different issues encountered in systems biology, which
can be categorized in several ways [6, 7, 9]: qualitative or quanti-
tative, discrete or continuous, deterministic or stochastic, certain
or uncertain. For example, ordinary differential equations (ODEs)
and continuous Petri nets (CPNs) [10] can be classified as quan-
titative, continuous, deterministic and certain. Standard Petri
nets [11] are qualitative and discrete. Fuzzy rules are qualitative,
discrete and uncertain.

Combinations of two or more of these formalisms result
in hybrid methods, which aim to address more complicated
(biological) modelling issues. For example, one popular combi-
nation is to integrate stochastic and deterministic formalisms,
in which Gillespie’s stochastic simulation algorithm [12] and
numerical ODE solvers are adopted to solve the constructed
hybrid models [13]. Such a combination is by its very nature
still one of the quantitative approaches. Hybrid functional Petri
nets [14] are another hybrid method that integrates discrete Petri
nets and ODEs. These hybrid methods are essential to achieve
integrated modelling of biological systems, but they are by far
not sufficient.

Currently, modelling of biological systems is inevitably
affected by uncertainties due to the lack of kinetic data or
insufficient understanding of the inherent mechanisms of
biological systems [6]. As a result, integrated modelling is chal-
lenged by composing components with sufficient kinetic data
and components with insufficient kinetic data or components
built only using experts’ experience and knowledge. Fuzzy
continuous Petri nets (FCPNs) are a promising method to address
this challenge.

FCPNs [9, 15, 16] combine CPNs [11] with fuzzy logic [17]
and offer a hybrid uncertain/certain approach to modelling and
analysing a complex biological system, where some compo-
nents are built as a set of ODEs, if kinetic data are sufficiently
well known, and the others as a set of uncertain fuzzy infer-
ence systems (FISs) by resorting to the experience and knowl-
edge of biologists, if kinetic data are insufficiently known or
completely unavailable. The concepts and analysis methods of
FCPNs have been discussed in [15, 16] and further compared in
[9]. FCPNs have been used for modelling the green fluorescent
protein expression in a cell-free in vitro transcription/translation
system [15] and a hypothetical repressilator with three genes
[16]. This previous work well illustrates the power of FCPNs. In
[9], we classified the wide variety of fuzzy Petri nets into three
categories: basic fuzzy Petri nets (full structural uncertainty),
fuzzy quantitative Petri nets (partial structural uncertainty) and
Petri nets with fuzzy kinetic parameters (only parametric uncer-
tainty). FCPNs as discussed in this paper fall into the second
category of fuzzy Petri nets. That is, an FCPN model is divided
into two parts, the certain ODE part and the uncertain FIS part.

FCPNs are very helpful for constructing and analysing
biological models by integrating both quantitative kinetic data
and qualitative expert knowledge. However, FCPNs have been
used so far for very few applications in this area. This could be
because there are neither a formal definition nor simulation
algorithm or easy-to-use tool of FCPNs. Currently, Matlab is
usually used for building FCPN models with its fuzzy toolbox
and ODE solvers. This, however, has many drawbacks, e.g. it
requires writing code and has no simple user interface. These
drawbacks hinder the wider use of FCPNs by biologists.

To address these issues, we formally defined FCPNs and
designed a related simulation algorithm. We also developed a

graphical tool, called FCPN tool, for modelling and simulating
of biological networks with FCPNs. In this paper, we will focus
on presenting a methodology and workflow about how to utilize
FCPNs to achieve hybrid (uncertain/certain) modelling of biolog-
ical systems illustrated with a case study of the mercaptopurine
metabolic pathway. We hope this research will promote the
wider application of FCPNs and to some extent address the
hybrid uncertain/certain modelling challenge in the systems
biology area.

Materials and methods
Fuzzy inference systems

Fuzzy logic [17, 18] was proposed to deal with vagueness and
imprecise information and simulate human reasoning, which
has been proved to be a helpful tool to address the uncertainty
modelling issue due to the lack of data or insufficient under-
standing of systems by taking advantage of the experience of
experts.

The basic concept of fuzzy logic is the fuzzy set, which allows
an element to partially belong to a set, i.e. each element in a set
is given a membership degree between 0 and 1. Formally, a fuzzy
set A is defined by its membership function μA over a universal
set U, i.e. μA : U → [0, 1]. In contrast, in a classical crisp set, an
element is either a member of the set or not, i.e. the membership
degree of an element is either 0 or 1.

Commonly used membership functions include triangular,
trapezoidal and Gaussian membership functions. The former
two are piecewise linear, continuous functions, while the latter
one is a smooth differentiable function. A linguistic value or term
is a fuzzy set defined on a universe, e.g. the set of real numbers,
and is usually used for defining fuzzy rules. For example, to
describe the concentration of a species, we may define three
linguistic terms, Low, Medium and High, each taking a triangular
membership function.

Fuzzy set operations are used for generating new fuzzy sets.
Let A and B be two fuzzy sets defined on a common universe U.
The fuzzy union of A and B, denoted by A ∪ B, is usually defined
as μA∪B(x) = μA(x) ∨ μB(x), and the fuzzy intersection of A and B,
denoted by A∩B, is defined as μA∩B(x) = μA(x)∧μB(x), where x ∈ U.

Fuzzy sets and fuzzy set operations can be considered as
the subjects and verbs of fuzzy logic, respectively. Further, fuzzy
IF-THEN rules are used to project input variables onto output
space. A single fuzzy IF-THEN rule takes the following form:

IF x is A and y is B, THEN z is C. (1)

The IF part is called the antecedent or premise, where x and y are
input variables. The THEN part is called the consequent, where
z is the output variable. A, B and C are linguistic terms defined
over their respective universe sets.

A FIS is used to achieve the mapping from a given input to
an output using fuzzy logic. There are two major types of FISs,
the Mamdani FIS [19] and the Takagi–Sugeno (T-S) FIS [20]. These
two FISs are similar in many aspects, e.g. fuzzifying inputs and
applying fuzzy operators during reasoning. The main difference
is that the T-S output membership functions are either linear or
constant, while the Mamdani output membership functions are
fuzzy.

An FIS usually consists of four components (see Figure 1):
fuzzifier, fuzzy rule base, inference engine and defuzzifier (does
not apply to T-S FIS).

The fuzzifier is responsible for comparing the crisp values
of input variables with the membership functions on the
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Figure 1. The main components of a fuzzy inference system. The fuzzifier is used to fuzzify crisp input values to fuzzy values. The fuzzy rule base stores all the

fuzzy rules that model a system. An inference engine performs the following three steps: compute the firing strength of each rule, compute the consequent of a rule

by combining the rule strength and the output membership function and aggregate the consequents of all rules to obtain the output value. Finally, a crisp output is

obtained via the defuzzifier; this only applies to the Mamdani inference. Except the defuzzifier, all other components apply to both types of FISs. Figure 2 gives an FIS

example to illustrate this reasoning process.

antecedent part to obtain the membership values of each
linguistic term.

The fuzzy rule base contains a set of fuzzy IF-THEN rules that
model a system. For a Mamadani FIS, the fuzzy rules take the
form given in Eq. 1. But for a T-S FIS, the fuzzy rules take the
following form:

IF x is A and y is B, THEN z = f(x, y), (2)

where f(x, y) is usually a polynomial function.
The inference engine combines the membership values on

the antecedent part to get the firing strength (or weight) of each
rule, denoted by α, usually by means of minimum or multipli-
cation operations, e.g. α = μA ∧ μB for the rule given in Eq. 1. It
then generates the qualified consequent of each rule, and finally
combines the fuzzy sets that represent the output of each rule
into a single fuzzy set for the Mamdani inference, or combines
the crisp output of each rule into a single output value for the
T-S inference.

For the Mamdani inference, there is another component, the
defuzzifier, which converts the aggregated output fuzzy set to a
crisp output value using such methods as centroid of area. See
Figure 2 for an FIS example that illustrates the reasoning process
sketched in Figure 1.

The individual advantages of the Mamdani inference and
T-S inference are as follows. The Mamdani FIS is intuitive
and well-suited to human input and reasoning, which is
appropriate to help biologists to construct fuzzy models by
using their experience when there are only a few kinetic
data and not much understanding about the biological mech-
anisms. In contrast, the T-S FIS is computationally more
efficient, and can easily take advantage of adaptive techniques
to learn its parameters when there are sufficient kinetic
data available.

In our approach, we consider a special class of FISs, where
each FIS is defined as a multi-input and single-output FIS:
y = f(x), where y is the output and x = (x1, x2, . . .) are
inputs.

Learning of fuzzy rules

Fuzzy modelling based on FISs is an effective method for rep-
resenting uncertain systems; however, this method has one
main drawback—it is hard to identify fuzzy rules and tune the
membership functions of the FISs (especially for T-S FISs). Thus,
neural networks (NNs) have been combined with FISs to form
fuzzy neural networks (FNNs) by utilizing the learning capability
of NNs. With FNNs, we can acquire the fuzzy rules and tune

membership functions simultaneously by learning from data.
So far, many FNNs have been proposed (see a recent review in
[21]), e.g. the adaptive neuro-fuzzy inference system [22], which
is widely used to train T-S fuzzy rules.

In the following, we briefly describe how to construct a FNN
to train Mamdani fuzzy rules [23] by considering the following
four rules.

Rule 1: IF x1 is A1 and x2 is B1, THEN y is C1.
Rule 2: IF x1 is A1 and x2 is B2, THEN y is C2.
Rule 3: IF x1 is A2 and x2 is B1, THEN y is C3.
Rule 4: IF x1 is A2 and x2 is B2, THEN y is C4.

The corresponding FNN is shown in Figure 3, comprising five
layers, namely the input layer, membership function layer, rule
layer, normalization layer and output layer.

(1) In the input layer, each node corresponds to an input
variable, such as x1 or x2.

(2) In the membership function layer, each node corresponds
to a linguistic term, such as A1 or B1. This layer calculates the
membership degree μ of an input value, e.g. x1, belonging to its
corresponding fuzzy set, e.g. A1. Take the Gaussian function as
an example. The degree μ can be calculated using Eq. 3.

μij = exp

(
−

(
xi − cij

)2

2σ 2
ij

)
(3)

where i = 1, . . . , m and j = 1, . . . , ni. m is the number of input
variables and ni is the number of linguistic terms of the ith input
variable xi. cij and σij are the center and variance of the corre-
sponding membership function, respectively. In this example,
m and ni are equal to 2.

(3) In the rule layer, each node corresponds to a rule. The
firing strength α can be calculated using Eq. 4.

αk = μ1p1 ∧ · · · ∧ μipi
(4)

where k = 1, . . . , q, i = 1, . . . , m and pi ∈ [1, . . . , ni]. q is the number
of rules. In this example, q is equal to 4. αk can be obtained by
calculating the minimum value from μ1p1 to μipi

.
(4) In the normalization layer, we normalize the firing

strengths of fuzzy rules using Eq. 5.

ᾱk = αk∑q
k=1 αk

(5)
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Figure 2. An FIS example. (A) A simple model consisting of three proteins, A, B and C. (B) Two linguistic terms, Low and High, each taking a triangular membership

function, which are used to describe the concentration levels of these three proteins. (C) Two fuzzy rules that describe how the concentration of C changes according

to the concentrations of A and B. (D) A Mamdani inference process by applying the FIS given in Figure 1.

Figure 3. An FNN example that represents the four fuzzy rules given above.

(5) In the output layer, we perform the defuzzification opera-
tion using Eq. 6.

y =
q∑

k=1

ωkᾱk (6)

Since we use the centroid defuzzification method, ωk is the
linguistic value of the kth rule’s output whose corresponding
degree of membership is equal to 1. Its initial value is obtained
by a random initialization.

The FNN for Mamdani fuzzy rules uses the back-propagation
algorithm and gradient descent. The error can be calculated
using Eq. 7.

Error = 1
2

(
yactual − ypredict

)2 (7)

When we construct an FNN, we first train it with data, and
thus obtain parameters for all membership functions.

Continuous Petri nets

Petri nets [24, 25] are weighted, directed, bipartite multigraphs.
A Petri net consists of two kinds of nodes, places and transi-
tions, and arcs that connect these two kinds of nodes. In the
biological scenario, places usually represent chemical species
or other specific compounds, and transitions represent their
reactions or interactions. The tokens residing on places, given
as non-negative integers, represent the number of molecules or
concentration levels of species.

Petri nets have been extended in many ways to adapt them to
different scenarios. One extension is CPNs [26], in which tokens
are allowed to be non-negative real values that represent, e.g.
the concentration of species or compounds. Transitions now fire
continuously, if at all. Thus, both places and transitions are not
discrete any more, but continuous.

A CPN model represents graphically a set of ODEs and thus
the underlying semantics of a CPN is a system of ODEs, where
each equation describes the continuous token change for a given
place, i.e. the continuous increase by its pretransitions’ flow and
the continuous decrease by its posttransitions’ flow. An equation
for a place p has the following form:

dm(p)

dτ
=

∑
t∈•p

f(t, p)v(t) −
∑
t∈p•

f(p, t)v(t),

where •p and p• denote the pretransitions and posttransitions
of a place p, respectively, f(t, p) and f(p, t) the multiplicity of
the arc (t, p) and (p, t), respectively, and v(t) the rate of the
transition t.
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Figure 4. (A) A CPN model of a feed-forward loop [29], which consists of three genes. A transcription factor A regulates a co-factor B, both of which jointly regulate a

target gene C. (B) Simulation plot of the model. The values of the kinetic parameters for t0 and t1 are arbitrarily set to k0 = 0.5 and k1 = 0.3, respectively.

During simulation, the CPN models are automatically trans-
formed in the background into ODEs and then solved using
standard ODE solvers (see [27] for a detailed description); there-
fore, there is no difference in terms of the computation speed
between CPNs and ODEs. Petri nets including CPNs have been
used for constructing large models such as whole genome scale
metabolic models (GEMs) [28].

For example, Figure 4A gives a CPN model of a feed-forward
loop. This model generates the following set of ODEs, when
applying the mass action semantics for the transition rates. Note
that we arbitrarily set the kinetic parameters (here 0.3, 0.5) for
this illustrative CPN example.

⎧⎪⎨
⎪⎩

dA/dt = −(0.5 ∗ A) − (0.3 ∗ A ∗ B),
dB/dt = (0.5 ∗ A) − (0.3 ∗ A ∗ B),
dC/dt = 0.3 ∗ A ∗ B.

When running numerical simulation for this CPN model, we
obtain a simulation result as illustrated in Figure 4B.

Fuzzy continuous Petri nets

The concept of combining ODEs (or CPNs) with fuzzy rules was
proposed in [15, 16]. However, these previous articles neither
provide a formal definition nor a simulation algorithm. To clarify
the concept and precise semantics of FCPNs, we give in the
following the formal definition of an FCPN, which builds on the
formal definition for CPNs given in [26], however extended by
FISs.

An FCPN is a six-tuple N =< P, T, F, f , v, m0 >, where:

• P is a finite, non-empty set of continuous places.
• T is a finite, non-empty set of continuous transitions.
• P and T are disjunctive.
• F ⊆ (P × T) ∪ (T × P) is a finite set of directed arcs.
• f : F → {R+ ∪ {FIS}} is a function that assigns a non-negative

real value or an FIS to each arc a ∈ F. Each FIS is defined as
a multi-input and single-output FIS: y = f(x), where y is the
output and x = (x1, x2, · · · ) are inputs, with y, xi ∈ P. Each FIS
is either a Mamdani or T-S FIS.

• v : T → H is a function that assigns a firing rate function ht

to each transition t ∈ T, whereby H := ⋃
t∈T{ht|ht : R

+|• t| →
R} is the set of all firing rate functions, and v(t) = ht for all

transitions t ∈ T. •t denotes all the preplaces of t. R and R
+

denote the set of real numbers and the set of all non-negative
real numbers, respectively.

• m0 : P → R
+ gives the initial marking.

The most important difference between our FCPN model and
those given in [15, 16] is that both only allow Mamdani FISs,
but we incorporate both Mamdani and T-S FISs. Thus, when we
model a biological system, we can choose either Mamdani or T-
S FIS for a specific component, depending on its characteristics
and the availability of kinetic data. Similar to [15], we allocate
FISs to arcs, while in [16] an FIS is associated with a transition. A
detailed comparison about where to hold an FIS can be found in
[9].

In our definition, we achieve the fuzzy modelling by associ-
ating an FIS with an arc and we only allow an FIS to be a multi-
input and single-output system. Assume we want to assign an
FIS to an arc a, and the transition that a connects is denoted
by t whose preplaces and postplaces are denoted by •t and
t•, respectively. If a connects a place p ∈ •t, the input of the
FIS associated with a is the concentration of only p and the
output is the concentration change of p, as this FIS describes the
concentration decrease of p due to only p. If a connects a place p ∈
t•, the inputs of the FIS associated with a are the concentrations
of all •t and the output is the concentration change of p, as this
FIS describes the concentration increase of p due to all preplaces
of t.

That is, an FIS models how the concentrations of the inputs
produce the change (increment or decrement) of the output.
With FISs, we can incorporate expert knowledge and experience
into a quantitative model, offering a semi-quantitative method
for constructing larger and more complete models even when
some components lack kinetic data.

For example, Figure 5A gives an FCPN model by adapting
the CPN model given in Figure 4A. The arc from transition t0

to place B has a T-S FIS, called FIS(A;B), which describes the
change of species B in terms of species A. FIS(A;B) is defined
by the membership functions given in Figure 5B and the fuzzy
rules given in Figure 5C. The arc from transition t1 to place C
has a Mamdani FIS, called FIS(A,B;C), which describes the change
of species C in terms of species A and B. FIS(A,B;C) is defined
by the membership functions given in Figure 5B and the fuzzy
rules given in Figure 5D. Apart from these two FISs, the FCPN is
described by a set of ODEs.
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Figure 5. (A) An FCPN model of a feed-forward loop [29]. (B) Membership functions of the fuzzy sets describing the concentrations of A and B, and the concentration

change of C (from top to bottom). (C) A set of T-S fuzzy rules for defining FIS(A;B). (D) A set of Mamdani fuzzy rules for defining FIS(A,B;C).

If we remove {FIS} from f : F → {R+ ∪ {FIS}}, then an FCPN
degrades to a CPN. The semantics of an FCPN is defined by a
set of ODEs, a set of FISs and the interplay between ODEs and
FISs; so we may have to resort to simulation to check its dynamic
behaviour. When numerically solving the set of ODEs, at each
simulation step we have to reason each FIS to update the state
of the model. By repeating this process, we finally obtain the
dynamic behaviour of the model. This will be discussed in detail
in the next section.

Hybrid simulation algorithm

The simulation algorithm for our FCPNs is given in Algorithm 1,
which works as follows.

Algorithm 1. Hybrid simulation algorithm

1: Set the initial simulation time to t0;
2: Assume the initial marking of the model is C0;
3: Set the fixed time step to δ(t) and the number of simulation

steps to N;
4: Let t = t0;
5: for n = 1 to N do
6: t = t + δ(t); //Advance simulation time
7: Let Cn = Cn−1;
8: for each place p do
9: Numerically solve the ODE associated with p for Cn−1;

10: Obtain the change of p, denoted by �1(p);
11: Update Cn(p) = Cn(p) + �1(p);
12: for each FIS associated with p do
13: Reason the FIS for Cn−1;
14: Obtain the change of p, denoted by �2(p);
15: Update Cn(p) = Cn(p) + �2(p);
16: end for
17: end for
18: Let n = n + 1;
19: end for

Figure 6. A hybrid simulation plot of the FCPN model given in Figure 5A. The

mean squared errors of A, B and C between Figure 6 and Figure 4B are computed

as 2.6788E-06, 1.24899E-04 and 2.52172E-01, respectively, i.e. the hybrid traces

closely approximate the corresponding ODE traces.

At each time step n, for each place we perform the following
two computational steps in parallel, although we give these
two steps in the pseudocode sequentially. One is to numerically
solve the ODE associated with each place p using any numerical
solvers with fixed steps, e.g. the Runge–Kutta method, then
obtain the change (increment or decrement) of p, denoted by
�1(p), and update the concentration of p in terms of Cn(p) =
Cn(p) + �1(p) (compare lines 9–11).

The other step is to perform reasoning of each FIS associated
with a place p according to the following steps (compare lines
12–16, and see Figure 1 for an example):

i. Fuzzify the given input places of the FIS from crisp to fuzzy
values.

ii. Calculate the fuzzy concentration change of the output
place p via the inference engine by applying fuzzy rules.

iii. Defuzzify the fuzzy value of p to a crisp one.
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iv. Update the concentration of the place p according to the
concentration change resulting from the FIS reasoning, i.e.
Cn(p) = Cn(p) + �2(p).

The simulation algorithm precisely describes the operational
semantics of FCPNs. For example, if we simulate the FCPN model
given in Figure 5A, we obtain a hybrid simulation plot, illustrated
in Figure 6, which is almost consistent with the ODE plot given
in Figure 4B, but obtained with less knowledge resp. weaker
assumptions.

FCPN tool

To facilitate the use of FCPNs, we developed a graphical tool,
called FCPN tool, for modelling and simulating biological net-
works with FCPNs. FCPN tool provides functions for constructing
FCPN models, for simulating them, and for plotting and export-
ing simulation results. The tool allows to graphically create FCPN
models by simply dragging nodes (places or transitions) to the
palette and then connect appropriate nodes with arcs. Each
place holds a real number as token value, describing the concen-
tration of a species. In the tool, we achieve the fuzzy modelling by
associating an FIS with an arc. When opening the dialogue to edit
the properties of an arc and then clicking the FIS button, we can
enter the fuzzy setting dialogue, where we provide easy-to-use
interfaces to specify the inputs and output of an FIS, to define
their membership functions and to write fuzzy rules. Moreover,
the tool offers two kinds of membership functions, triangular
and Gauss, and two popular inference methods, Mamdani and
T-S inference systems to define an FIS, which can be solely
or together applied in one model. Besides, we can export the
structure of an FIS (including specified inputs and outputs, types
of membership functions, etc.) from the FCPN tool to a Matlab
file, and then achieve the learning of fuzzy rules in the Matlab
environment.

When an FCPN model is constructed, the simulation can be
triggered by clicking the simulation button in the main window
and then the simulation dialogue is opened. When simulation
is finished, we can view the plot or data of the chosen places.
Moreover, the tool allows to export plots to popular figure for-
mats such as eps, pdf and png, to export data to a csv file, or to
directly print plots.

The tool is written in the programming language C++ with
QT 5.6.1. Currently, we offer windows, Linux and Mac OS X
versions. The FCPN tool, user manual and a couple of examples
can be found at https://github.com/liufei2016/FCPN.

In addition, we implemented the FNNs for both Mamdani
and T-S fuzzy rules using Matlab, which achieve learning fuzzy
rules and parameters. We also used Charlie [30] for structural
analysis of FCPN models and the MC2 tool [31] for simulative
model checking of simulation traces. Using a combination of
these tools achieves an efficient approach for modelling and
analysing of FCPN models.

Results
Workflow for using FCPNs

In this section, we will give a workflow of using FCPNs for
modelling and analysing biological systems, which is shown in
Figure 7. In the following, we first introduce a running example
for illustrating our workflow and then in detail describe each
element of the workflow.

Figure 7. Workflow of modelling and analysing of biological systems using

FCPNs. First, the model structure is determined by drawing an FCPN model and

validated using Petri net analysis techniques. Second, the parameter estimation

methods for ODE models are adopted to obtain parameter values if kinetic data

are available; otherwise, experts are asked to specify fuzzy parameters directly, or

FNNs are constructed to learn fuzzy rules and parameters. After these two steps,

the model is constructed. Third, simulation is performed in different settings and

results can be obtained with appropriate plots. Fourth, the model is analysed and

validated against the real biological system. When the model passes validation,

it can be used for behaviour prediction. To support the workflow, we adopt the

following tools: 1FCPN tool, 2Charlie, 3Matlab and 4MC2.

A running example

The thiopurine antimetabolites mercaptopurine (MP) is one
of the important chemotherapy drugs for treating acute
lymphocytic leukemia (ALL). It undergoes complicated metabolic
intracellular transformations that result in the production
of thionucleotides and active metabolites. In this paper, we
consider the mercaptopurine metabolic pathway given in [32],
which works as follows [32, 33]. Intracellular mercaptopurine
(MPex) goes into a cell after cellular uptake, and then the
mercaptopurine inside a cell (MPin) is converted into TIMP
(6-Thioinosine-5’-monophosphate) by hypoxanthine-guanine
phosphoribosyl transferase. After that, TIMP is converted into
TXMP (6-Thioxanthosine-5’-monophosphate), then finally to
TGMP (6-Thioguanosine monophosphate). The transformation
of TIMP to TITP (6-Thioinosine-5’-triphosphate) is another
considered pathway. The original modelling purpose in [32]
was to reveal the principal dynamics of the 6-MP metabolic
transformations during the treatment of ALL and further to
explore how ATP regulates the production of TITP and affects
the transition of TXMP to TGMP.

However, we are not following this objective. Rather we will
convert the ODE model given in [32] into an FCPN model, and
illustrate the validity of our FCPN approach by comparing the
result of the FCPN model with that of the original ODE model in
[32]. In the following, we will use this pathway as our running
example to illustrate our approach step by step.

Determine the model structure

The first step to construct a model is to determine its structure
by carefully analysing the biological system to be modelled and
collecting key concepts (e.g. species and reactions) from litera-
ture or by asking relevant experts. We then turn these species
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Figure 8. Mercaptopurine metabolic pathway. MPex—mercaptopurine outside of cell; MPin—mercaptopurine entering a cell after cellular uptake; TIMP—

6-Thioinosine-5’-monophosphate; TITP—6-Thioinosine-5’-triphosphate; TXMP—6-Thioxanthine-5’-monophosphate; TGMP—6-Thioguanosine-5’-monophosphate;

meTGMP—Methylthioguanosine monophosphate; ATP, ADP and AMP—adenosine tri-, di- and monophosphates; PPi—pyrophosphate; VD, VPUR and VOUT—fluxes

involving the incorporation to DNA and RNA of cells, the inhibition of purine biosynthesis de novo and the outflux to the environment, respectively; ki—kinetic constants

of reactions. The dotted lines connecting ADP with AMP and PPi mean that ADP is converted to AMP and PPi after several intermediate steps.

Figure 9. A Petri net model of the Mercaptopurine metabolic pathway, which describes the structure of the model only. To demonstrate the use of FCPNs, we set the

arcs from TIMP to t8 and from t3 to TGMP (highlighted in red) to hold an FIS, Note that the three pairs of places with the same name (also given in the same colour) are

logical nodes, which means they are actually the same node with two graphical representations.

and interactions into a Petri net model by representing each
species as a place and each reaction as a transition and a couple
of directed arcs according to the flow of the reaction. We further
determine the model structure from the following two points of
view.

Determine CPN components. For those components for
which we have sufficient kinetic data and already understand
their mechanisms, we try to obtain their chemical reactions or
ODE representations and then model them as CPNs. Related
aspects have been thoroughly discussed in [27, 34], e.g. how
to derive ODEs from chemical reactions with mass-action or
Michaelis–Menten kinetics, how to generate CPN models from
ODEs, or vice versa.

Following the approaches given in [27, 34], we determine the
model structure according to the scheme given in Figure 8 and
the ODEs given in [32]; the resulting Petri net model is illustrated
in Figure 9.

Determine fuzzy components. On the other hand, if we do
not have a clear understanding of the biological mechanisms
or sufficient kinetic data, we may model their dynamics with
FISs. Another important scenario for using FISs is to connect
different components described by ODEs with FISs, thus offering
a possibility to produce larger models from isolated quantitative
components. To create a fuzzy component, we may adopt the
following simple procedure (see Figure 4 for an example): first
determining the inputs and output of the component, then
specifying membership functions of the inputs and output, and
finally writing fuzzy (Mamdani or T-S) rules.

To demonstrate the use of FISs, we arbitrarily chose the arc
from TIMP to t8 and the arc from t3 to TGMP to hold an FIS,
respectively. Apart from these two arcs, the rest of the model is
considered as an ODE/CPN model.

Model validation using structural analysis techniques. An
important merit of FCPNs is to combine isolated qualitative
and quantitative components of a biological system to form a
larger model in order to gain deeper insights into the system
behaviour. For such kind of hybrid models, it is essential but hard
to verify them. As a special kind of Petri nets, FCPNs can easily
take advantage of structural analysis techniques belonging to
the standard body of Petri net theory, such as place/transition
invariant or siphon/trap analysis; see [11] for details.

For this purpose, we export the model in Figure 9 as con-
structed with FCPN tool to a file of the ANDL format (our defined
data exchange format), and feed it into Charlie [30], a Petri net
analysis tool. We obtain the following analysis results.

The net is fully connected without any isolated components
and structurally bounded (due to the source place MPex).
Although it enjoys six minimal transition invariants (T-
invariants for short) and two place invariants (P-invariants
for short), it is neither covered with T-invariants nor with P-
invariants. The six T-invariants exactly correspond to the six
reversible reactions and the two P-invariants, (AMP,ATP) and
(ATP,TITP,PP), reflect mass conservation.

However, if we add an input transition (named ti) as pre-
transition to the place MPex, which means to add a continuous
supply of mercaptopurine, the net gets three more non-trivial
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T-invariants (i.e. not corresponding to reversible reactions),
(ti,t0,VPUR), (ti,t0,t1,t2,t3,t_7,t8,VD) and (ti,t0,t1,t2,t3,t4,t_7,t8,
VOUT), and is now covered with T-invariants. A T-invariant
describes how often the transitions of the invariant have to fire
to return to a given state. Moreover, T-invariants may be read to
reflect the steady state behaviour in a metabolic network. These
three non-trivial T-invariants exactly describe three steady state
behaviours caused by the input transition ti and each of the
three output transitions, VPUR, VOUT and VD. With structural
analysis, we can easily find out and verify each basic behaviour
(reflected by each invariant) existing in a model, which can be
used for checking larger models by dividing them into basic
components.

Besides, we observe that the Siphon-Trap Property (STP)
holds in the net: the two P-invariants are the only minimal
siphons in the model, which are by definition at the same time
traps, and both are marked. The STP ensures that there are no
dead states in the dynamic behaviour reachable.

After these structural analysis steps, we consider the mer-
captopurine metabolic pathway model as validated. However,
taking into account the usually finite supply of medicine (here
mercaptopurine), we have to remove the newly added input
transition ti for the further quantitative analysis.

Determine the model parameters

It is obvious that an FCPN model is divided into two parts: the
CPN part and the fuzzy part. These two parts require different
methods for determining their parameters.

Estimation of kinetic parameters. For the CPN part, after
determining the model structure and automatically deriving
the corresponding set of ODEs, we usually obtain the parame-
ters from literature or estimated from a data fit by using well-
established parameter estimation methods, see, e.g. [35, 36].
Parameter estimation or data fitting typically starts with a guess
about parameter value ranges and then tunes those values
to minimize the discrepancy between the model outputs and
measured observations by help of a selected metric. There are
many parameter estimation methods available to achieve this
goal, which are usually categorized into two groups, the global
group such as simulated annealing and evolutionary algorithms
[37], and the local group such as gradient-based methods for
least-squares [36]. We can choose the most appropriate methods
according to the model structure and the available data.

In this paper, we focus on illustrating the application of
FCPNs, so we do not perform parameter estimation for the
mercaptopurine metabolic pathway model, but directly adopt
the kinetic parameters given in [32]. Moreover, we first construct
a pure CPN model based on [32] in order to compare the hybrid
FCPN model to be constructed and its corresponding CPN model.

Determining fuzzy parameters by experts. For the fuzzy part,
we may adopt different strategies to determine the parame-
ters related to the membership functions defined for linguistic
terms. If kinetic data is unavailable or insufficient, we may have
to ask experts (biologists) to determine fuzzy parameters by
hand with their experience and knowledge. On the contrary,
if kinetic data is sufficient, we may automatically learn the
parameters from the data. This section will describe the former
situation.

(1) If kinetic data is unavailable or insufficient, we may ask
experienced biologists to directly use simple (triangular) mem-
bership functions, which then allow us to perform simulations
to see if the outputs of the model are consistent with the
observations, or what the biologists expect to obtain. In this

case, Mamdani FISs are usually preferred. The model in Figure 5
illustrates this strategy, where we directly specify the fuzzy
parameters of triangular membership functions and fuzzy rules
according to our experience, which can be imitated by anyone.

(2) If there are some (limited) measurements at specific time
points available, which thus can generate concentrations of
species, we can utilize this limited information to refine the
fuzzy parameters of the membership functions and obtain more
accurate fuzzy rules. To achieve this, we may adopt the following
steps. Assume that we want to construct a fuzzy model whose
input variables are x1 and x2, and the output variable is y, and we
obtain measurements at some time points.

i. Compute the concentration change �y of y at every time
point relative to its previous time point.

ii. Estimate the concentration range of each input (x1 and x2)
and output variable (�y), perform fuzzy partitioning of the
concentration range of each variable and specify a member-
ship function (e.g. Low, Medium and High) for each partition.

iii. Construct a fuzzy rule at each time point in terms of the fuzzy
partitioning obtained in the previous step. For example, at
some time point, we may have such a rule: IF x1 is High and
x2 is Medium, THEN �y is High. Thus we can obtain a fuzzy
model with limited measurements. See the supplementary
information file for a detailed example.

Learning of fuzzy rules and parameters. If kinetic data are
sufficient, but the biological mechanisms are not well under-
stood, we may use FNNs to learn the fuzzy rules to obtain those
fuzzy parameters, which have been discussed in detail in Section
2. In this case, either Mamdani or T-S fuzzy rules can be used. We
may adopt the following procedure to achieve this.

(1) FNN construction. For a selected (either Mamdani or T-S)
FIS, e.g. FIS(TXMP,ATP;TGMP), construct its FNN, which is similar
to that given in Figure 3. This is automatically done in FCPN tool
by generating its Matlab code.

(2) Data acquisition. We then need to acquire the input and
output data for training the FNN. For illustrative purposes, we
obtain the data by running the above mentioned CPN/ODE model
in FCPN tool and exporting the data.

(3) Data preprocessing. Take FIS(TXMP,ATP;TGMP) as an
example. We need to compute the concentration change
(increment or decrement) of an output, e.g. TGMP, resulting from
the inputs, e.g. TXMP and ATP, at each selected time step.

(4) Training and testing. We then feed the preprocessed data
into the FNN and train it in Matlab, which implicitly achieves
learning the fuzzy rules of a FIS, e.g. FIS(TXMP,ATP;TGMP).
After testing, we will obtain values of all fuzzy parameters of
membership functions and fuzzy rules of the FIS. The training
and testing results of FIS(TXMP,ATP;TGMP) together with their
errors are given in Figure 10. The FNN codes of the example
can be found in the FCPN tool website (see https://github.com/
liufei2016/fcpn/blob/master/Examples/Example_FNN.zip), and
the detailed procedure for learning fuzzy rules is given in our
tool manual [38].

(5) Fuzzy parameter determination. When we obtain the
fuzzy parameter values from learning the FNN, we need to add
them to the FCPN model to obtain the final model with the FCPN
tool.

Perform hybrid simulation

Hybrid simulation. After determining the structure and param-
eters of a model, we can now perform hybrid simulation to
visually investigate its dynamic behaviour using the simulation

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/1/438/5673899 by Brunel U

niversity London user on 14 January 2022

https://github.com/liufei2016/fcpn/blob/master/Examples/Example_FNN.zip
https://github.com/liufei2016/fcpn/blob/master/Examples/Example_FNN.zip


Fuzzy continuous Petri nets 447

Figure 10. Training and testing result. (A) The variation of the errors calculated by Eq. 7 in 100 epoches. (B) Concentration changes of TGMP resulting from TXMP and

ATP using the training dataset during the training. (C) Concentration changes of TGMP resulting from TXMP and ATP using the testing dataset during testing. The ratio

of the training dataset to the testing dataset is 3:7.

algorithm given above and implemented in the FCPN tool. For
hybrid models like FCPNs, due to their heterogeneous compo-
sitions with distinct modelling formalisms, we usually cannot
directly perform mathematical or formal analysis of the models.
In this case, simulation may be the best means to reveal the
dynamic behaviour of a model.

In the FCPN tool, after setting the initial values for places,
start and end of the simulation time and the simulation step,
we can start simulation. After it finishes, the corresponding plot
will be shown immediately.

Tuning fuzzy parameter with simulation. If an FCPN model
contains membership functions directly specified by experts,
we may have to run simulation and check simulation traces to
tune each fuzzy parameter specified by hand. This step aims
to refine the fuzzy parameters determined by experts in the
previous stage. After multiple iterations between the parameter
determining stage and the simulation stage, we can finally deter-
mine appropriate fuzzy parameters. Besides, in this step we may
adopt all the analysis methods given in the next stage. To avoid
repetition, we only describe them in the next section.

Result analysis and validation

Having finished the construction and simulation of a model, we
have to analyse and validate it before utilizing it for prediction;
otherwise, it may result in wrong predictions. Depending on
whether reference data (i.e. real or measured data) is available
or not, different methods can be adopted.

Objective validation. If reference data is available, we may
adopt objective approaches to compare the simulation trace of a
species with its corresponding reference trace in terms of such
criteria as mean-square errors or absolute errors [39, 40].

In the following, we will take the model given in Figure 9 as an
example to illustrate how to analyse an FCPN model in different
fuzzy settings.

(1) Mamdani setting. First we only consider a Mamdani FIS in
our model, i.e. FIS(TXMP,ATP;TGMP), by setting the other part of

the model to the ODE semantics, and compare its behaviour with
that of the corresponding pure CPN (ODE) model, illustrated in
Figure 11A. From the plot, we can see there is a slight discrepancy
between the hybrid (Mamdani) trace and the pure ODE trace
(the mean squared error is 1.37661E-04), but both traces show
a very similar trend of change for the species TIMP. Moreover,
the hybrid trace gives more insight into the evolution of the
species than the corresponding qualitative model, and therefore
we should try to construct a hybrid model with FCPNs rather
than a qualitative model, if there is not sufficient data available
in order to better reveal the mechanism of the system to be
studied. In fact, even if we do not resort to learning of fuzzy
rules, and specify the rules and parameters only with experts’
experience, we can obtain similar results as given in Figure 11A.

(2) T-S setting. We then only consider a T-S FIS in our model,
i.e. FIS(TIMP,PP;TIMP), by setting the other part of the model to
the ODE semantics, and compare its behaviour with that of the
corresponding pure ODE model, illustrated in Figure 11B. From
the plot, we can see that the two plots (fuzzy and ODE) do well
match (with a mean squared error of 1.21706E-09). In fact, the T-
S model usually gives a much more accurate result, if we learn
the parameters with FNNs. However, it is not easy to specify the
T-S fuzzy rules by hand.

(3) A mixture of Mamdani and T-S FISs. Finally, we combine
these two kinds of fuzzy rules in one model to explore its
dynamic behaviour; the comparison is given in Figure 11C. The
fuzzy and ODE plots for each species are still very consistent,
which shows that a mixed use of both kinds of fuzzy rules in
one model is also applicable.

Subjective validation. However, for FCPN models, usually not
all species can be measured to obtain their real traces and thus
not all kinetic data are available; therefore, we may have to com-
bine both objective and subjective approaches to evaluate the
validity of models. In the subjective approach, experts usually
are asked to check the simulation plots and examine whether
the directions (i.e. the general tendency in terms of increasing or
decreasing) of the output behaviours are correct or even whether
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Figure 11. (A) ODE plot and fuzzy plot in the Mamadani setting for TGMP with a mean squared error of 1.37661E-04. (B) ODE plot and fuzzy plot in the T-S setting

for TIMP with a mean squared error of 1.21706E-09. (C) ODE plot and fuzzy plot in both Mamadani and T-S setting for TXMP and TIMP with mean squared errors of

3.02501E-09 and 1.32112E-09, respectively.

the magnitudes are reasonable, as experts of a system usually
know the directions and possibly the range of the magnitudes of
the output behaviours [41].

Subjective validation aided by simulative model checking.
Simulative model checking based on Probabilistic Linear-time
Temporal Logic (PLTL), implemented in the MC2 tool [31], is used
to determine if time series traces of a model fulfil given prop-
erties specified in temporal logic. With PLTL, we can check both
qualitative properties like the general trend of the behaviour and
quantitative properties over absolute concentration values. As
described above, the power of FCPNs is to combine qualitative
components with quantitative components in one model. There-
fore, simulative model checking is an ideal tool to check both the
qualitative and quantitative properties of an FCPN model.

For example, we can use the following formula to check if
the concentration of a species x (e.g. TGMP) rises once and then
strongly falls forever (the change trend of x):

P>=1[F(d[$x] > 0) ∧ (d[$x] > 0 U (G(d[$x] < 0)))]

where d[$x] returns the derivative of the concentration of a
species x at each time point. Such a formula is very useful for
checking an FCPN model with fuzzy rules directly specified by
experts. Moreover with PLTL, we can at the same time check a
number of traces for many species. This advantage of PLTL offers
a good means for tuning fuzzy parameters when membership
functions are manually specified by experts.

Discussion
FCPNs, by combining ODEs with FISs, offer a good means to
model biological systems with uncertainties due to the lack of
kinetic data or insufficient understanding of the mechanisms of
biological systems. With FCPNs, some components are built as
deterministic ODEs, if kinetic data are sufficient, and the others
as uncertain FISs by resorting to the experience of biologists,
if kinetic data are insufficient or unavailable. Therefore, FCPNs

offer a tool for integrating experts’ qualitative knowledge with
measured quantitative data, and thus can partially overcome the
challenges of integrated modelling of biological systems due to
uncertainties.

Moreover, resorting to appropriate simulation algorithms, e.g.
as given in this paper for the first time, and simulative model
checking as given, e.g. in [42], we can observe and check the
dynamic behaviour of the constructed qualitative/quantitative
hybrid FCPN models. That is, not only the FCPN model can be
graphically seen, but also the model’s behaviour can be visually
observed. Therefore, this permits biologists to check their quali-
tative knowledge through dynamic simulation runs.

This paper not only gives a formal definition and simula-
tion algorithm of FCPNs, but also presents a detailed workflow
comprising a set of methods and associated tools for how to
utilize FCPNs to model and analyse biological systems. This
workflow should clarify many modelling and analysis issues of
FCPNs and offers an easy-to-follow guide for constructing hybrid
qualitative and quantitative models. We have implemented the
modelling and simulation of FCPNs in a tool, called FCPN tool,
which can be freely accessed via the given website. We hope
this will promote the wider application of FCPNs to address
the integrated modelling challenges due to uncertainties, thus
contributing to the systems biology area.

In a next step, we will continue to improve the FCPN tool
according to the experience of users and to consider more func-
tionalities by thoroughly analysing further integrated modelling
challenges.

Key Points
• Integrated modelling of biological systems is chal-

lenged by composing components with sufficient
kinetic data and components with insufficient kinetic
data or components built only using experts’ experi-
ence and knowledge.
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• Fuzzy continuous Petri nets (FCPNs), by combining con-
tinuous Petri nets with fuzzy inference systems, offer a
hybrid uncertain/certain approach to integrated mod-
elling of such biological systems with uncertainties.

• In this paper, we give a formal definition of FCPNs
and a corresponding simulation algorithm of FCPNs,
and focus on presenting a methodology and workflow
utilizing FCPNs to achieve hybrid (uncertain/certain)
modelling of biological systems.

• We hope this research will promote the wide applica-
tion of FCPNs and address the uncertain/certain inte-
grated modelling challenge in the systems biology area.
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