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The mobilization of large-scale datasets of specimen images and metadata through
herbarium digitization provide a rich environment for the application and development
of machine learning techniques. However, limited access to computational resources
and uneven progress in digitization, especially for small herbaria, still present barriers
to the wide adoption of these new technologies. Using deep learning to extract
representations of herbarium specimens useful for a wide variety of applications, so-
called “representation learning,” could help remove these barriers. Despite its recent
popularity for camera trap and natural world images, representation learning is not yet as
popular for herbarium specimen images. We investigated the potential of representation
learning with specimen images by building three neural networks using a publicly
available dataset of over 2 million specimen images spanning multiple continents and
institutions. We compared the extracted representations and tested their performance
in application tasks relevant to research carried out with herbarium specimens. We
found a triplet network, a type of neural network that learns distances between images,
produced representations that transferred the best across all applications investigated.
Our results demonstrate that it is possible to learn representations of specimen images
useful in different applications, and we identify some further steps that we believe
are necessary for representation learning to harness the rich information held in the
worlds’ herbaria.

Keywords: deep learning, digitized herbarium specimens, natural history collections, machine learning, computer
vision

INTRODUCTION

Herbarium collections provide primary data for scientific activities across plant science (Page
et al., 2015; Meineke et al., 2019). The push toward digitizing collections has made this data more
widely available and has increasingly enabled studies encompassing larger groups of species and
a greater proportion of the world. However, current digitization workflows focus on capturing
information from specimen labels, leaving a wealth of data in hard-to-browse specimen images.
New technologies, like deep learning, can help researchers make full use of this rich data source
(Pearson et al., 2020; Orr et al., 2021).
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Digitized Herbarium Specimens
A herbarium specimen is a physical record of an individual plant,
providing verifiable data for reproducible science (Nic Lughadha
et al., 2019). Pieces of a plant are dried, pressed, and mounted
to display the specimen’s features clearly. Information about the
collection event is recorded on a specimen label, including who
collected it, when, and where. However, this collection metadata
is often incompletely recorded or not recorded at all, especially
for older specimens. Taxonomic determinations are recorded on
the specimen sheet and may comprise multiple revisions long
after the specimen was collected. During digitization, both images
of specimens and the details on specimen labels are captured.

The past two decades have seen initiatives for digitizing
natural history collections established at institutional, national,
and international levels (Nelson and Ellis, 2019). These initiatives
have mobilized a vast amount of biodiversity data held in the
estimated 396 million specimens across 3,500 herbaria (Thiers,
2021), making it available to researchers through aggregated
portals like GBIF (2021) and iDigBio (2021), and virtual herbaria
like the Reflora Virtual Herbarium (Reflora - Virtual Herbarium,
2021). The increasing pace of digitization and data mobilization
enables more and newer studies each year; in 2019, more
than two studies a day cited data published through GBIF
(Paton et al., 2020).

Despite this progress, specimen data is not entirely digitally
mobilized. Variation in approaches to digitization projects (Dillen
et al., 2019) means different amounts of data are captured
and made available; images may be available with minimal
metadata, full metadata may be available with no image, or
anything in between. As a result, while digital aggregators
hold tens and hundreds of millions of records from preserved
specimens, only two-fifths of those in GBIF (2021) and one-
half of those in iDigBio (2021) have images available. This
situation is only exacerbated for smaller herbaria not part of well-
funded digitization projects, which undoubtedly contain many
important specimens for local flora (Marsico et al., 2020).

Deep Learning
Deep learning, a branch of machine learning that uses neural
network models composed of many stacked layers, is particularly
effective for image-based tasks. The stacked network layers
can learn patterns from images that correspond to details like
edges, circles, or even eyes—features that would need to be
manually extracted for other machine learning or modeling
techniques (LeCun et al., 2015). Recent studies demonstrate
good performance for tasks that populate or enrich collection
metadata from digitized specimen images, including species
identification (Wäldchen and Mäder, 2018; Little et al., 2020),
masking specimen labels (White et al., 2020), extracting traits
(Mirnezami et al., 2020), and classifying the phenological state
of a specimen (Lorieul et al., 2019).

One disadvantage of deep learning is its data-hungry nature,
usually requiring numerous carefully curated and labeled images
to train models that achieve good performance. This problem
is especially acute for fine-grained classification problems, like
species identification, that have many potential classes with only

a few images available for training. Similarly, it can take a lot of
time and expertise to label a training dataset for more complex
tasks like counting the number and type of organs on a specimen.
This problem is exacerbated by the fact that some herbaria have
so far digitized only a fraction of their collections, limiting the
number of specimens available for some plant groups.

Representation Learning
Deep neural networks can be viewed as being composed of two
parts—an encoder network that automatically extracts features
from an input and a head that uses those features to perform a
particular task (Figure 1). Visual representation learning focuses
on training neural networks to extract features from images that
transfer across different tasks (Bengio et al., 2014). Learning
generalized representations from readily available benchmarking
datasets like ImageNet reduces the need to assemble large sets of
labeled images for each problem.

Two popular methods for learning these representations differ
in the type of task used to train the neural network. In supervised
learning, neural networks are trained to classify images using
a labeled dataset. Self-supervised networks, on the other hand,
are trained to perform tasks where the labels are created from
the images themselves, such as reconstructing the original image
after some transformation or identifying which of two images is
a transformed version of a target. Although supervised models
have historically performed better, self-supervised models have
recently achieved comparable performance (Chen et al., 2020b).

Self-supervised representation learning has gained popularity
with researchers that use wildlife images from community
platforms and camera traps. Both these sources produce a high
volume of images with few or uncertain labels, and assembling
high-quality labeled datasets presents a bottleneck for training
models to mine these images for novel information. Recent
work by Van Horn et al. (2021) has demonstrated the need for
domain-specific datasets for learning effective representations.

Unlike natural world images, representation learning has
had little attention in the realm of natural history specimens.
Two recent examples include using representations learned by
classifying the genera of fern images to explore morphological
diversity (White et al., 2019) and using a triplet network
to test evolutionary hypotheses about mimicry in butterflies
(Hoyal Cuthill et al., 2019).

Efforts from herbaria like the New York Botanical Garden
(NYBG) to provide datasets of herbarium specimens for species
identification challenges (Little et al., 2020; de Lutio et al., 2021)
offer ideal training sets for both supervised and self-supervised
representation learning. However, unlike images of plants in
the wild, digitized herbarium specimens are almost always
accompanied by some determination of the taxon’s identity.
Therefore, there may be little benefit to using self-supervision to
learn representations of herbarium specimens.

Self-supervision may, however, avoid potential problems
caused by the estimated large number of mislabeled specimens.
Similarly, self-supervision may handle the long-tail of species
represented by very few specimens (Enquist et al., 2019).

An alternative to both these methods is metric learning, where
a neural network is trained to learn a distance function between
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FIGURE 1 | Schematic diagrams of the three types of neural networks used to learn representations of specimen images in this study: a classifier trained to predict
genus, an autoencoder, and a triplet network. The schematic demonstrates the different parts of a neural network: the encoder, or feature extraction layers, that
produces a lower-dimensional representation of the input and the head, which uses the representation to perform a task like predicting the genus (classifier) or
reconstructing the original image (autoencoder). Representation learning focuses on training neural networks to extract features from images that transfer across
different tasks. Unlike the other two networks, the triplet network takes three images as input: an anchor (a), a positive example (p) from the same class as the
anchor, and a negative example (n) from a different class to the anchor. The network learns features that minimize the distance between examples from the same
class (dap) and maximize the distance between examples from different classes (dan). Inset specimen images © RBG Kew.

different classes of images. In a triplet network (Figure 1), one
implementation of metric learning (Hoffer and Ailon, 2018),
a neural network is presented with three images: an anchor,
a positive example from the same class as the anchor, and a
negative example from a different class than the anchor. During
training, the triplet network learns representations that minimize
the distance between images in the same class while maximizing
the distance between images in different classes. As such, metric
learning offers a balance between self-supervised and supervised
neural networks.

Herbarium Specimen Representations
Here, we evaluate the potential for using a publicly available
dataset of herbarium specimen images to learn generalizable
representations. To do this, we train three different neural
networks that serve as a progression from self-supervised to
supervised learning: an autoencoder, a triplet network that
selects training examples based on the specimen’s genus, and
a classifier trained to predict the genus of a specimen. We

explore the differences between these representations using
visualizations and evaluate their potential generalizability using
three downstream tasks relevant to work in herbaria.

MATERIALS AND METHODS

Learning Representations
Data
We used images from the Herbarium 2021 “Half-Earth
Challenge” (de Lutio et al., 2021) of the Eighth Fine-Grained
Visual Categorization workshop (FGVC8) for training neural
networks to learn generalized representations. The “Half-
Earth” dataset—so named because it covers half of the world’s
continents—contains over 2 million images of specimens
collected from 5 herbaria, representing nearly 65,000 species of
vascular plants across the Americas, Oceania, and the Pacific.

The challenge provides a labeled set of images for participants
to develop, train, and validate their models and an unlabeled
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set to assess their performance in the competition. We used the
labeled dataset for our study, which comprises 2,257,759 images
covering 64,500 species in 6,437 genera across 451 families and 81
orders of vascular plants (Figure 2A).

The Half-Earth dataset reproduces the empirical long-tailed
distribution for plant species observations (Enquist et al., 2019);
almost three-quarters of species have fewer than 25 images, and
nearly a third have fewer than 5. To avoid over-representing
a small number of species and reduce neural network training
times, we downsampled the dataset to limit species to at most
25 images. We randomly sampled 25 images for species that
exceeded this limit.

We subsequently split this labeled dataset sequentially to give
3 distinct test sets (Figure 2B):

1. All images from herbaria other than NYBG, by far the most
represented herbarium in the dataset (139,529 images).
It may seem natural for an institution to train a neural
network on only their digitized images, but specimens
relevant to a particular study may be distributed across
herbaria. We chose this test set to examine how well
representations learned from one institution will transfer
to others. Hereafter referred to as test set H.

2. All images for a random sample of 10% of the remaining
species (62,997 images). New species are still regularly
discovered in the wild, and continuing digitization of a
collection makes images available for species that were not
used to learn the representations. We chose this test set
to examine how well representations generalize to unseen
species. Hereafter referred to as test set S.

3. A random sample of 10% of the remaining specimens
(58,886 images). Herbarium collections hold multiple
specimens for many taxa, but time and funding constraints
mean they may focus digitization on a subset of these, such
as only type specimens. We chose this test to examine how
well representations learned from a set of species generalize
to unseen specimens from those species. Hereafter referred
to as test set R.

We used the remaining specimens to train the neural networks
(424,544 images), reserving 20% for validation (106,136 images)
during model development (Table 2). We removed images from
the 3 test sets that represented genera not present in the training
data to prevent the need to make predictions for classes present
in the training data but missing in the test data when testing the
classification network.

We pre-sized images to 526 × 526 pixels before applying
standard random transformations (flipping, rotating, zooming,
warping, and brightening) during training and resizing to the
final size of 256 × 256 pixels for both training and evaluation.

Neural Networks
All neural networks used a pre-trained ResNet-18 architecture
as an encoder, producing feature representations of 512
units. We trained three different neural networks to compare
the representations resulting from self-supervised learning,
supervised metric learning, and supervised classification
(Figure 1 and Table 1).

We chose to use the specimen images’ genus as the target for
classification and for selecting positive and negative examples for
the triplet network. We felt this provided a good balance between
reducing the total number of classes and minimizing the variation
within each class.

We trained all networks for 25 epochs on a Tesla V100 GPU
and measured the performance of the final models on the 3 test
sets described above.

Comparing Representations
We compared the separability of taxonomic groups in the
extracted representations using silhouette scores, a measure of the
average distance between members of the same group compared
to the average distance to members of the nearest other group
used in cluster analysis (Shahapure and Nicholas, 2020). We
visualized and compared specimen representations with UMAP, a
non-linear dimensionality reduction method that preserves local
neighborhoods in a dataset but not absolute distances between
points (McInnes et al., 2020).

We examined the activations of the final layer in the ResNet-18
encoder for each network to gain insights into the representation
they learned. Each encoder produced specimen representations
of 512 units and, therefore, had 512 channels. To limit the
number of channels we looked at, we selected the channel
from each network with the greatest standard deviation in
representations of the training specimens. We produced images
optimized to give the maximum and minimum activation for
these channels (Olah et al., 2017). We also selected example
specimens from the training dataset that produced a range of
activations from the lowest to the highest.

Applying Representations
We assessed how well the representations learned by
the networks generalized by applying them to three
potential applications.

Taxonomic Identification at Different Scales
Identification of herbarium specimens is a common taxonomic
task at herbaria for both research and curation. Despite
significant recent progress, practical details still need to
be resolved before automated specimen identification is
incorporated into day-to-day research and curation workflows.
Generalized specimen representations may help resolve some of
these details, potentially allowing researchers to build smaller,
bespoke identification models that could be beneficial where
limited computing resources are available.

During curation in herbaria, incoming specimens are
often sorted at a higher taxonomic level before fine-scaled
determination by an expert. Therefore, specimen representations
should perform well across the taxonomic hierarchy, from order
down to genus and, ideally, species.

Application Data
We used the three test sets split from the Half -Earth dataset
(Table 2) to represent settings where the specimens are from
herbaria not used to train the feature-extractor neural network
(test set H), the specimens are for newly digitized species
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FIGURE 2 | (A) A visual representation of the Herbarium 2021: Half-Earth Challenge dataset, released as part of the FGVC8 workshop illustrating the distribution of
images within categories of the taxonomic hierarchy, where each dot represents the relative number of images associated with a category. (B) A schematic diagram
of the steps we took to split the Half-Earth dataset into the training and test sets used in this study, highlighting their relative sizes.

Frontiers in Plant Science | www.frontiersin.org 5 January 2022 | Volume 12 | Article 806407

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-806407 January 11, 2022 Time: 13:43 # 6

Walker et al. Herbarium Representation Learning

TABLE 1 | Description of the three neural networks used for representation learning.

Model Description Pre-training
dataset

Loss function

Autoencoder A symmetric autoencoder with a ResNet-18 encoder, a
latent space of 256 units, and a ResNet-18 decoder where
convolutions have been replaced by resizing convolutions.

CIFAR-10 Mean squared error (MSE)
of the reconstructed image.

Triplet network A ResNet-18 encoder, through which three images are
passed—an anchor, an example from the same class
(positive), and an example from a different class (negative).

ImageNet Triplet loss

Classifier A ResNet-18 encoder with a classification head comprising
two densely connected layers, each preceded by
batch normalization and dropout layers.

ImageNet Cross-entropy loss

TABLE 2 | Description of image datasets used.

Stage Task Name Source Number of specimens

Learning representations - Training set Half-earth dataset 424,544

Learning representations - Validation set Half-earth dataset 106,136

Applying representations Taxonomic identification Herbarium test set (H) Half-earth dataset 139,529

Applying representations Taxonomic identification Species test set (S) Half-earth dataset 62,997

Applying representations Taxonomic identification Random specimen test set (R) Half-earth dataset 58,886

Applying representations Genus discrimination/Identifying mislabels Syzygium RBG, Kew 1,996

Applying representations Genus discrimination/Identifying mislabels Eugenia RBG, Kew 8,358

Applying representations Genus discrimination/Identifying mislabels Dendrobium RBG, Kew 1,004

(test set S), and the specimens are from the same herbarium and
species used to train the feature-extractor (test set R).

Application Method
We extracted representations of specimens for each of the three
test sets using the three trained feature-extractor networks,
resulting in nine groups of specimen representations. We then
used multinomial logistic regressions to predict the order, family,
and genus of a specimen for each group of representations,
resulting in 27 models.

We measured the top-1 accuracy, macro-averaged precision,
and macro-averaged F1-score of each model by fivefold cross-
validation. We used L2 normalization to prevent overfitting and
sample weighting to balance the classes in the datasets.

Discrimination of Similar and Distinct Genera
Often a researcher will want to know if a specimen belongs to one
of two possible taxa rather than all possibilities. The differences
between these two taxa may be fairly obvious, but the specimens
need to be sorted quickly, or the differences may be difficult even
for an expert to tell apart. Generalized specimen representations
should allow successful discrimination in both cases. Syzygium
and Eugenia are two closely related and visually similar genera
in the family Myrtaceae that are often misidentified as each other,
while Dendrobium is a large genus of orchids from Southeast Asia
and is therefore easily distinguished from Syzygium.

Application Data
We downloaded all available images held at Royal Botanic
Gardens, Kew for Syzygium (1,996), Eugenia (8,358), and
Dendrobium (1,004) from iDigBio (Table 2). We resized all

images to 256 × 256 pixels but did not subject them to any of the
pre-processing steps of the Half-Earth dataset, like label blurring.

Application Method
After extracting representations for the three genera using
the three feature-extractor networks, we trained one logistic
regression model to distinguish between Syzygium and Eugenia
(similar genera) and one to distinguish between Syzygium and
Dendrobium (distinct genera) for each set of representations from
the networks. We evaluated the accuracy and f1-score of the
models using fivefold cross-validation and used L2 normalization
and sample weighting, as before.

Identification of Mislabeled Specimens
Recent estimates suggest that over half of specimens for
some plant groups may be mislabeled in digitized collections
(Goodwin et al., 2015) due to genuine misidentifications,
mistakes during digitization, or delays in updating names to the
latest determination. However, identifying mislabeled specimens
is difficult without expert taxonomic inspection of each image.
Representations of specimen images could be used as the input
for methods to identify such errors rapidly.

Application Data
We used the same representations of images for Syzygium,
Eugenia, and Dendrobium as in the previous task. However, to
simulate mislabeled specimens, we swapped the labels of 10% of
specimens in each genus, between Syzygium and Eugenia, and
Syzygium and Dendrobium.

Application Method
We predicted the probability of a specimen belonging to
one of the two genera in each pair using an L2 penalized
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logistic regression, with representations extracted by each of our
three neural networks as the inputs. To prevent over-confident
predictions, we made these predictions on the validation fold
of each split in a fivefold cross-validation. We then used the
method implemented in cleanlab (Northcutt et al., 2021) for
identifying the most likely mislabeled specimens based on the
joint distribution of noisy and true labels in the data.

Software
We used Python version 3.8 to perform all analyses in this
study. We used fastai to load and transform the image data
and pytorch lightning to build and train the models. We sub-
classed the ResNet-18 autoencoder architecture from pytorch
lightning bolts. We used lucent, a pytorch port of lucid, to
visualize neural network channel activations. We used scikit-
learn to build all linear models, implement cross-validation, and
calculate silhouette scores.

RESULTS

Learning Representations
All neural networks appeared to converge after 25 epochs
(Figure 3), with final validation losses of 0.011 (autoencoder,
MSE), 0.358 (triplet network, triplet loss), and 1.758 (classifier,
cross-entropy loss). These final networks achieved comparable
losses on held-out test sets comprising randomly selected

specimens (0.010; 0.354; 1.745) and specimens for unseen species
(0.010; 0.323; 2.308) but higher losses for the held-out images
from unseen herbaria (0.0136; 0.442; 6.520).

2-dimensional embeddings of the representations extracted by
each network (Figure 4) appeared to show decreasing structure in
the representations as supervision increased. Overlaying values of
the channel with the greatest standard deviation from the feature
extraction layer of each network also showed clear gradient in
the embeddings from the autoencoder and triplet network but
not for the embeddings from the classifier. However, the average
silhouette score showed the opposite trend (Table 3), suggesting
supervised learning increases the separability of classes at all
levels of the taxonomic hierarchy. Overall, silhouette scores
were negative, indicating a high degree of overlap for all
taxonomic groupings.

We visualized the optimized activations for the representation
channel with the largest standard deviation for the training
and validation images (Figure 5). These channels all appeared
to pick up on textures across the images rather than well-
defined features. Example images with contrasting high and low
activations make it clear the channel with the greatest variation
for the autoencoder was discriminating between light, thin
specimens at low activation and dark, broad-leaved specimens
at high activation. The activations for the triplet network and
classifier were harder to interpret but may have separated images
based on the presence of long blade-like sections and repeating
feathery structures, respectively.

FIGURE 3 | Performance of the (A) autoencoding neural network, (B) triplet network, and (C) classifier after training for 25 epochs on the validation data, a held-out
test data set of randomly selected images, a held out test data set of all images for randomly selected species, a held out test data set of all images from institutions
other than New York Botanic Gardens.
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FIGURE 4 | 2-dimensional visualizations of feature vectors extracted from the training and validation images derived from the Half-Earth dataset by an autoencoding
neural network, a triplet network, and a classifier. The 2-dimensional embeddings were generated using UMAP, a non-linear dimensionality reduction technique that
aims to preserve that local neighborhoods in a dataset rather than absolute distances between points. Each visualization is colored by the relative value of the
channel with the greatest standard deviation in the feature extraction layer of the corresponding network.

APPLYING REPRESENTATIONS

Taxonomic Identification at Different
Scales
Models trained on the autoencoder representations were the most
sensitive to the coarseness of the task, with accuracy improving
from genus to order for all held out test sets (Figure 6A).
Models trained on the triplet and classifier representations were
less affected by the coarseness of the task, with their highest
accuracies being achieved when predicting the genus of the held-
out herbaria images (47.3%) and the randomly held-out specimen
images (33.9%), respectively. Overall, the models trained on the
triplet representations performed the best across all test sets.

Discrimination of Similar and Distinct
Genera
All models showed high accuracy when discriminating between
two representations of two genera extracted from images
from Kew’s herbarium (Figure 6B). The models trained on
autoencoder and triplet representations achieved near-perfect
accuracy for both the similar and distinct genera. However,
the models trained with the classifier did not perform as
well and showed higher accuracy discriminating between
Syzygium and Dendrobium (95.3%) than between Syzygium and
Eugenia (87.9%).

Identification of Mislabeled Specimens
Similarly, models trained on the classifier representations
correctly identified the fewest mislabeled specimens (Figure 6C)

TABLE 3 | Silhouette scores for taxonomic groupings in representations of the
Half-Earth dataset from three different neural networks.

Model Genus Family Order

Autoencoder −0.27 −0.19 −0.12

Triplet network −0.38 −0.40 −0.30

Classifier −0.14 −0.11 −0.05

for both the similar (66.4%) and distinct genera (80.0%).
Models trained on the autoencoder and triplet representations
identified over 80% of mislabeled specimens in both sets of
genera while incorrectly flagging fewer than 5% of correctly
labeled specimens. The triplet representations were the best
for identifying mislabeled specimens between similar genera
(85.2%), while the autoencoder representations were slightly
better with distinct genera (88.0%).

DISCUSSION

Learning Representations
Our results highlight the differences between the representations
learned by the three neural networks under different levels
of supervision. Evaluating the separability of taxa in this
representation space, we found that the Classifier produced the
most separable representations. This result is perhaps expected,
as supervised training aims to maximize the differences between
the target classes. Perhaps more surprising, though, was that
the representations produced by the Triplet network were the
least separable.

Visualizations of the optimized activations for the channel
from each network with the highest variation in the training
data confirmed that the level of supervision influenced the
information encoded in the representations. While the most
active channel of the Autoencoder appeared to pick up on
the amount of an image filled by the specimen, both the
Triplet and Classifier networks discriminated between thin
branching structures and repeating blob-like shapes. Despite the
subjective interpretations that these visualizations necessitate,
we found them vital for contrasting between the different
networks and diagnosing any potential problems with the
representations learned.

Although there was no indication from the activation
visualizations that the neural networks were encoding
spurious information, like the presence of a scale bar, in
the representations, we did not investigate all channels of the

Frontiers in Plant Science | www.frontiersin.org 8 January 2022 | Volume 12 | Article 806407

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-806407 January 11, 2022 Time: 13:43 # 9

Walker et al. Herbarium Representation Learning

FIGURE 5 | A visualization of the features that are extracted by the (A) autoencoding neural network, (B) triplet network, and (C) classification network after training
on the Half-Earth dataset of herbarium specimen images. Only one out of the 512 channels in the extracted features are visualized for each network, chosen as the
channel with the greatest standard deviation in the training dataset. We generated images optimized to produce the minimum (left) and maximum (right) output from
these channels and selected example images from the training dataset that had the most negative, slightly negative, slightly positive, and most positive activations.
Activations and examples for the autoencoder (A) suggest it is separating specimens based on how much of the image is covered, while the triplet network (B) and
classification network (C) separate specimens using finer-scale details.

feature extraction layer. With more investigation, the need to
mask the specimen from the rest of the image may become
apparent. We should be able to build on a recently published
workflow which generates masks for specimens of ferns, though
this will need evaluation to ensure that features seen in other
vascular plant groups (such as flowers and fruits) are properly
handled. A comprehensive masking strategy effective across
vascular plant groups will allow us to determine the effect of
masking specimens on the applications of their representations.

Applying Representations
We have demonstrated that representations from all three
networks generalize well to different classification tasks through
our three application tasks. Although the accuracies achieved
in the first application (taxonomic identification across scales)
were all below 50%, this was the most challenging task. The best
performing models, trained on representations extracted by the
Triplet network, had a similar accuracy across all held-out test
sets and at all levels of the taxonomic hierarchy. These results are
encouraging for the prospect of using specimen representations
to build lightweight models for identifying herbarium specimens
where computational resources are limited.

The better performance in this task from representations
extracted by the Classifier and Triplet networks over those
from the Autoencoder aligns with the reported advantage
of supervised over self-supervised methods for representation
learning. However, the Autoencoder and Triplet representations
achieved better results than those from the Classifier in the other
two application tasks. Overall, the Triplet network gave the best
results across all tasks, suggesting that although some supervision
is beneficial, too much might overfit the representations to the
task they were trained on.

Improving Representations
Our study presents the first steps in applying representation
learning to herbarium collections, and there is much we can try
to improve these representations. While we used an autoencoding
network as our example of self-supervision, contrastive methods
like SimCLR (Chen et al., 2020a) offer an alternative that
can approach the performance of supervised methods in some
applications. However, these contrastive models can be expensive
to train and, despite their promise, may not work well across all
domains (Cole et al., 2021).

Recent work in the camera trap literature has generated
improved representations from self-supervised learning by using
context information about the time and location of images
to develop spatio-temporal priors (Mac Aodha et al., 2019)
and identify likely related images (Pantazis et al., 2021).
Herbarium specimens are accompanied by rich context about
their collection and identification histories and how they relate
to each other through duplicates deposited across different
herbaria and co-citation networks (Nicolson et al., 2018). As
in the camera trap applications, this context could be used to
improve representations learned by self-supervision. However,
it could also be used to define novel methods for sampling
triplets of images during training of a triplet network, as
could information about the geographic or phylogenetic distance
between specimens.

Specimen representations worked surprisingly well for
discriminating between two genera and identifying mislabeled
specimens. However, we need to evaluate their use across a
broader range of tasks like counting organs on a specimen sheet,
detecting phenology, and picking out low-quality specimens.
As these are frequent tasks across different research projects
and herbarium collections, we could usefully define a set
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FIGURE 6 | The performance of features extracted by our pre-trained autoencoder, triplet, and classifier networks in three applications: (A) identifying the order,
family, and genus for the held-out test sets of random specimen images (R), images from unseen herbaria (H), and images of unseen species (S) from the Half-Earth
dataset; (B) discriminating between specimens of two similar (Syzygium and Eugenia) and two distinct (Syzygium and Dendrobium) genera; (C) identifying mislabeled
specimens in these two sets of specimens. All three applications used logistic regression models for classification and were evaluated by fivefold cross-validation
using: (A) accuracy, macro-averaged precision, and macro-averaged F1-score; (B) accuracy. Application (C) used the cross-validated predictions to identify likely
mislabeled specimens and was assessed using the proportion of mislabeled specimens correctly identified (true positive rate; TPR) and the proportion of correctly
labeled specimens wrongly identified as mislabeled (false positive rate; FPR).

of tasks as a resource to evaluate future approaches. The
NeWT dataset for benchmarking representation learning using
natural world images offers a template for achieving this goal
(Van Horn et al., 2021).

CONCLUSION

Our investigation has demonstrated the potential benefits
of representation learning in the setting of herbarium

collections. By contrasting different levels of supervision,
we have identified metric learning through a triplet network as
providing the best balance between fully and self-supervised
representation learning. We evaluated the use of herbarium
specimen representations across three tasks and found they were
particularly effective for discriminating between genera and
identifying mislabeled specimens. Although our representations
achieved only mediocre performance in fine-grained taxonomic
identification, we have identified several routes for improving
the learning of herbarium specimen representations.
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Overall, we believe representation learning offers a way
of harnessing large-scale digitized collections for the
benefit of researchers working across all 3,500 herbaria
worldwide. We intend to further investigate how we can
use the rich context surrounding herbarium specimens
to construct task sets and datasets to further develop
this research area.
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