
FINAL 1

Distributed Set-Membership Fusion Filtering for
Nonlinear Two-Dimensional Systems Over Sensor
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Abstract—In this paper, the distributed set-membership fu-
sion filtering problem is investigated for a class of nonlinear
two-dimensional shift-varying systems subject to unknown-but-
bounded noises over sensor networks. The sensors are com-
municated with their neighbors according to a given topology
through wireless networks of limited bandwidth. With the pur-
pose of relieving the communication burden as well as enhancing
the transmission security, a logarithmic-type encoding-decoding
mechanism is introduced for each sensor node so as to encode the
transmitted data with a finite number of bits. A distributed set-
membership filter is designed to determine the local ellipsoidal set
that contains the system state by only utilizing the data from the
local sensor node and its neighbors, where the proposed filter
scheme is truly distributed with desirable scalability. Then, a
new ellipsoid-based fusion rule is developed for the designed
set-membership filters in order to form the fused ellipsoidal
set that has a globally smaller volume than all local ellipsoidal
sets. With the aid of the mathematical induction technique,
the set theory and the convex optimization approach, sufficient
conditions are derived for the existence of the desired distributed
set-membership filters and the fusion weights. Then, the filter
parameters and the fusion weights are acquired by solving a
set of constrained optimization problems. Finally, an illustrative
example is given to demonstrate the effectiveness of the proposed
fusion filtering algorithm.

Index Terms—Two-dimensional systems, sensor networks, dis-
tributed set-membership filtering, fusion filtering, encoding-
decoding mechanism.

I. I NTRODUCTION

Since Fornasini-Marchesini (F-M) model was proposed in
1976 by using the Nerode equivalence method, the two-
dimensional (2-D) systems have been gaining steadily growing
research attention owing to their practical significance and
theoretical importance [8], [9]. Specifically, 2-D systems are
suitable for modeling a variety of practical processes ranging
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from grid sensor networks, sheet forming, stream heating, to
image processing [35], [36]. Moreover, the 2-D system theory
serves as a theoretical basis for batch process control, iterative
learning control, and so on [38]. It is worth noting that the
system states in 2-D systems evolve along two independent
directions and, due to this distinguishing feature, existing
theories for one-dimensional (1-D) systems may become in-
applicable in the 2-D settings. Accordingly, a host of research
interest has been aroused in the dynamics analysis problem
for 2-D systems from both industry and academia, see, e.g.,
[1], [14], [17], [18], [24], [33].

In the past decades, sensor networks have played an increas-
ingly important role in a wide variety of practical situations,
for instance, remote system monitoring, information collec-
tion, and target tracking [31], [41], [48]. A sensor network is
normally made up of a multitude of smart sensor nodes that
are distributed spatially in a certain region via communicating
with their neighboring nodes over typically wireless networks,
and this kind of features brings several advantages, e.g., easy
installation, satisfactory fault tolerance and self-organizing
flexibility [20], [28]. It is well acknowledged that thedis-
tributed filtering/estimation issue is one of the fundamental
research topics for signal processing over sensor networks,
whose main concern is to improve the filtering performance
in a collaborative manner [15], [25].

In response to the popularity of sensor networks, the the-
ory of distributed filtering has recently undergone a rapid
development and the available results are centered on two
general categories, namely, distributedpointwise filtering and
the distributedset-membership filtering (SMF, also known as
set-valued filtering). For the former, each distributed filter
computes a point estimation of the system state at each
instant based on the neighboring sensors’ information or the
distributed fusion strategy, and some of the representative
algorithms include distributedH∞ filtering methods and dis-
tributed Kalman filtering methods [2], [10], [13], [27], [30].
For the distributed SMF, each distributed filter determines
an ellipsoidal set that contains the system state with 100%
confidence by using information from neighboring sensors
according to the topology [21], [39], [42].

When the sensor networks are exposed to unknown-but-
bounded (UBB) noises, the distributedH∞/Kalman filters
might not provide the satisfactory performance. In this case,
the distributed SMF method serves as an ideal candidate. In
most existing SMF-related literature, thelocal ellipsoidal set
containing the system state is determined for each sensor
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node by designing a suitable distributed set-membership filter
structure [23], [40], [46]. Compared with the local ellipsoidal
set, an adequatelyfused ellipsoidal set contains the intersection
of all local ellipsoidal sets and could have a comparatively
small region that contains the system state, thereby ensuring
better filtering performance. Unfortunately, such a seemingly
interesting ellipsoid-basedfusion filtering issue has received
very little attention for 2-D systems over sensor networks, let
alone the case where nonlinearities and shift-varying param-
eters are also taken into account, and this situation motivates
our current investigation.

When it comes to the applications of sensor networks, two
challenges we have to face are the communication constraints
and the transmission security that are unavoidable due to the
inherently limited communication capacity and the nowadays
increasing demands on cybersecurity. These two challenges,
if not handled appropriately in the sensor networks, would
inevitably deteriorate the system performance [4], [5], [11],
[16], [19], [26], [43]. Fortunately, the so-calledencoding-
decoding mechanism (EDM) provides a rather promising
countermeasure to the challenges. A typical EDM consists
of two parts, namely, the encoder and the decoder, where
the encoder is capable of encrypting the system signals and
then mapping them into codewords with finite bits before
transmission, and the decoder can reconstruct the codewords
into the original data as accurately as possible according to
certain rules.

Recently, the EDM has become a prevailing research topic
from both signal processing and control communities [29],
[32], [37], [45]. For example, an EDM-based iterative learning
control strategy has been designed in [32] to investigate the
tracking control problem for linear discrete-time systems.
Moreover, the recursive filtering issue has been studied in [37]
for 1-D nonlinear systems with a coding scheme. Neverthe-
less, to the best of the authors’ knowledge, theEDM-based
distributed set-membership fusion filtering (SMFF) problem
has not been fully examined yet, not to mention the si-
multaneous consideration of the 2-D shift-varying systems,
sensor networks and nonlinearities, and this constitutes another
motivation of our current research.

In connection with the discussions made so far, in this
paper, our focus is on the EDM-based distributed SMFF
problem for nonlinear 2-D shift-varying systems over sensor
networks. Theresearch questions we are confronted with are
summarized as follows: 1) how to cope with the nonlinear
functions in 2-D shift-varying systems over sensor networks
in the framework of distributed SMF? 2) how to construct an
appropriate EDM for each sensor node under the 2-D setting
with a focus on the inherent characteristics of information
propagation along with two independent directions? and 3)
how to develop a distributed SMFF mechanism under the 2-D
setting to achieve the efficient distributed processing of system
information gathered from sensor nodes? The main objective
of this paper is, therefore, to answer the above questions by
initializing a systematic investigation.

The maincontributions of this paper can be highlighted as
follows.

• With the help of the Taylor series expansion formula and

the interval analysis technique, the nonlinear function in
the 2-D shift-varying system is tackled and the Lagrange
remainder is bounded by a minimized ellipsoidal set.

• A logarithmic-type EDM is, for the first time, proposed
for a class of nonlinear 2-D shift-varying systems over
sensor networks with aim to reduce the burden of network
communication and strengthen the security of signal
transmission, where the developed logarithmic-type EDM
is dependent on the bidirectional evolution of the system
dynamics.

• A truly distributed set-membership filter is constructed
for nonlinear 2-D systems over sensor networks, where
the proposed distributed filter scheme is scalable as it
only uses the information from the local sensor and its
neighboring sensors.

• An ellipsoid-based fusion scheme is proposed for the
filtering problem in the 2-D setting, and the fused filtering
performance is shown to be better than that of any local
sensor by means of matrix trace.

The rest of this paper is organized as follows. In Section
II, the distributed set-membership filter is formulated for non-
linear 2-D shift-varying systems over sensor networks under
purposely introduced EDMs. In Section III, both the distribut-
ed SMF algorithm and the ellipsoid-based fusion filtering rule
are developed, and the filter parameters and the fusion weights
are then obtained by solving a set of optimization problems.
Section IV utilizes an illustrative example to demonstrate
the effectiveness of the proposed fusion filtering algorithm.
Conclusions are drawn in Section V.

Notations: Rn and Rm×n denote, respectively, then-
dimensional Euclidean space and the set of allm × n real
matrices. For a symmetric matrixX ,X > 0 means thatX is a
positive definite matrix.{Xi,j}i,j∈[0,T ] denotes the set of ma-
trices {Xi⋆,j⋆ | 0 ≤ i⋆ ≤ T , 0 ≤ j⋆ ≤ T }. [X ]k,l represents
the(k, l) element of the matrixX . col{x1, x2, . . . , xM} means
[

xT1 xT2 · · · xTM
]T

andcolM{·} is a column vector with
M blocks. diag{·} stands for a block-diagonal matrix and
diagM{·} is a block-diagonal matrix withM blocks. In
symmetric block matrices, “*” is used as an ellipsis for terms
induced by symmetry.I and0 denote the identity matrix and
zero matrix with appropriate dimensions, respectively. The
superscript “T” stands for the transpose of a matrix.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Model

Consider a nonlinear 2-D shift-varying system described by
the general F-M second model:

xi+1,j+1 = f (1)(xi,j+1) + f (2)(xi+1,j)

+B
(1)
i,j+1wi,j+1 +B

(2)
i+1,jwi+1,j (1)

where i, j ∈ [0, T ] are horizontal and vertical coordinates
with T ∈ N; xi,j ∈ Rnx is the state vector;f (1)(xi,j)
andf (2)(xi,j) are known continuously differentiable nonlinear
functions;B(1)

i,j and B(2)
i,j are known shift-varying matrices

with appropriate dimensions; andwi,j ∈ Rnw is the UBB
process noise that is confined to the following ellipsoidal set:

E (0,Wi,j) ,
{

wi,j |w
T
i,jW

−1
i,j wi,j ≤ 1

}

(2)
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Fig. 1. Block diagram for 2-D systems with EDM

with Wi,j being a known positive definite matrix.
In this paper, the sensor network hasM sensor nodes whose

topology is represented by a directed graphG = (V,E,A).
Here, V = {1, 2, . . . ,M} is the set of sensing nodes;
E ⊆ V × V is the set of edges;A = [αst]M×M is the
weighted adjacency matrix withαst > 0 if (s, t) ∈ E;
and the set of neighbors for nodes ∈ V is denoted by
Ns = {t ∈ V | (s, t) ∈ E}.

The measurement of thesth sensor node is described as

y
(s)
i,j = C

(s)
i,j xi,j +D

(s)
i,j v

(s)
i,j , s = 1, 2, . . . ,M (3)

where y(s)i,j ∈ Rny is the measurement output of thesth

sensor node;C(s)
i,j andD(s)

i,j are known shift-varying matrices

with appropriate dimensions; andv(s)i,j ∈ Rnv is the UBB
measurement noise that is confined to the following ellipsoidal
set:

E

(

0, V
(s)
i,j

)

,

{

v
(s)
i,j | (v

(s)
i,j )

T(V
(s)
i,j )−1v

(s)
i,j ≤ 1

}

(4)

with V
(s)
i,j being a known positive definite matrix.

B. Encoding-Decoding Mechanism

During data transmissions, the signals are processed by the
logarithmic-type EDM as shown in Fig. 1, where the main
principles are described as follows.

Encoding:
The encoding rule for thesth sensor node is given by



























χ
(s)
0,j = χ

(s)
i,0 = 0, ∀ i, j ∈ N

χ
(s)
i,j = δ

(s)
i,j ψ

(s)
i,j + k

(s,1)
i−1,jχ

(s)
i−1,j + k

(s,2)
i,j−1χ

(s)
i,j−1

ψ
(s)
i,j = Q

{

1

δ
(s)
i,j

(

y
(s)
i,j − k

(s,1)
i−1,jχ

(s)
i−1,j − k

(s,2)
i,j−1χ

(s)
i,j−1

)

}

(5)
where χ(s)

i,j ∈ Rnχ and ψ(s)
i,j ∈ Rnψ are the internal state

and the output of the encoder, respectively;δ
(s)
i,j is the known

scaling parameter; andk(s,1)
i,j , k(s,2)

i,j are known shift-varying
matrices with appropriate dimensions. Here, the logarithmic

quantizerQ is characterized by

Q(ζ) ,











Q(ζ1)
Q(ζ2)

...
Q(ζnζ )











(6)

where, for~ = 1, 2, . . . , nζ ,

Q(ζ~) ,















ℓκ,
ℓκ

1 + τ
≤ ζ~ <

ℓκ

1− τ

0, ζ~ = 0

− Q(−ζ~), ζ~ < 0

(7)

with the set of quantization levels being

U = {±ℓκ | ℓκ = ℘κℓ0, κ = 0,±1,±2, . . . ,±R}∪{0}. (8)

Here, τ ,
1−℘
1+℘

, 0 < ℘ ≤ 1, ℓ0 > 0, andR is a positive
integer.

Decoding:
The decoding rule for thesth filter is given as
{

y̌
(s)
0,j = y̌

(s)
i,0 = 0, ∀ i, j ∈ N

y̌
(s)
i,j = δ

(s)
i,j ψ

(s)
i,j + k

(s,1)
i−1,j y̌

(s)
i−1,j + k

(s,2)
i,j−1y̌

(s)
i,j−1

(9)

wherey̌(s)i,j ∈ Rny is the output of the decoder.

By denoting the decoding error ase(s)i,j , y̌
(s)
i,j − y

(s)
i,j , we

have

e
(s)
i,j , y̌

(s)
i,j − y

(s)
i,j

= δ
(s)
i,j ψ

(s)
i,j + k

(s,1)
i−1,j y̌

(s)
i−1,j + k

(s,2)
i,j−1y̌

(s)
i,j−1 − y

(s)
i,j

= δ
(s)
i,j

{

Q

{ 1

δ
(s)
i,j

(

y
(s)
i,j − k

(s,1)
i−1,jχ

(s)
i−1,j − k

(s,2)
i,j−1χ

(s)
i,j−1

)}

−
1

δ
(s)
i,j

(

y
(s)
i,j − k

(s,1)
i−1,j y̌

(s)
i−1,j − k

(s,2)
i,j−1y̌

(s)
i,j−1

)

}

= δ
(s)
i,j

{

Q

{ 1

δ
(s)
i,j

(

y
(s)
i,j − k

(s,1)
i−1,j y̌

(s)
i−1,j − k

(s,2)
i,j−1y̌

(s)
i,j−1

)}

−
1

δ
(s)
i,j

(

y
(s)
i,j − k

(s,1)
i−1,j y̌

(s)
i−1,j − k

(s,2)
i,j−1y̌

(s)
i,j−1

)

}

= δ
(s)
i,j q

(s)
i,j . (10)

Here,q(s)i,j is the quantization error and satisfies the following
condition:

(q
(s)
i,j )

T(q
(s)
i,j − 2τς

(s)
i,j ) ≤ 0 (11)

where

ς
(s)
i,j ,

1

δ
(s)
i,j

(

y
(s)
i,j − k

(s,1)
i−1,j y̌

(s)
i−1,j − k

(s,2)
i,j−1y̌

(s)
i,j−1

)

.

Remark 1: For 1-D systems,logarithmic-type EDM has
been quite popular in analog-digital signal conversion. The
EDM characterized in (5)–(9) is, to the best of the authors’
knowledge, the first one of the kind for2-D systems that
takes into account two time-indexes representing bidirectional
dynamics evolution. Note that the introduction of the 2-D
version of EDM (5)–(9) makes it possible to relieve the
communication burden (because of the reduced data size) and
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enhance the communication security (because of the encoding-
encoding scheme) at the cost of dealing with added complexity
in system analysis/synthesis. More specifically, such added
complexity stems from the strong coupling effects between
the decoding errore(s)i,j and the system measurement output

y
(s)
i,j , the decoder outpuťy(s)i,j , as well as the scaling parameter

δ
(s)
i,j , and one of the technical challenge is therefore to handle

this coupling issue in the subsequent investigation.
Remark 2: The proposed 2-D version of logarithmic-type

EDM possesses the followingcharacteristics: 1) it facilitates
the distributed implementation and is therefore suitable for
sensor networks; 2) the parameterδ(s)i,j can be dynamically
adjusted, which provides extra flexibilities in the subsequent
distributed filter design for a better performance; and 3) the
security of the transmitted data can be further improved due
to the introduction of coefficientsk(s,1)

i,j andk(s,2)
i,j .

C. Distributed Set-Membership Filter

In this paper, a distributed encoding-decoding-based set-
membership filter is constructed for the nonlinear 2-D shift-
varying system over sensor networks as follows:

x̂
(s)
i+1,j+1 = f (1)(x̂

(s)
i,j+1) + f (2)(x̂

(s)
i+1,j)

+K
(s,1)
i,j+1ν

(s)
i,j+1 +K

(s,2)
i+1,jν

(s)
i+1,j

+
∑

t∈Ns

αstG
(st,1)
i,j+1(x̂

(t)
i,j+1 − x̂

(s)
i,j+1)

+
∑

t∈Ns

αstG
(st,2)
i+1,j (x̂

(t)
i+1,j − x̂

(s)
i+1,j) (12)

where x̂(s)i,j ∈ Rnx is the local estimate ofxi,j on sensors,

K
(s,1)
i,j , K(s,2)

i,j , G(st,1)
i,j andG(st,2)

i,j are filter parameters to be
calculated, and

ν
(s)
i,j , y̌

(s)
i,j − C

(s)
i,j x̂

(s)
i,j .

By applying the Taylor series expansion formula, the non-
linear functionsf (1)(xi,j) andf (2)(xi,j) are linearized as

f (1)(xi,j) = f (1)(x̂
(s)
i,j ) + Ψ

(s,1)
i,j (xi,j − x̂

(s)
i,j ) + r

(s,1)
i,j (13a)

f (2)(xi,j) = f (2)(x̂
(s)
i,j ) + Ψ

(s,2)
i,j (xi,j − x̂

(s)
i,j ) + r

(s,2)
i,j (13b)

whereΨ(s,1)
i,j , Ψ(s,2)

i,j are Jacobian matrices; andr(s,1)i,j , r(s,2)i,j

are high order Lagrange remainders. Here,

Ψ
(s,1)
i,j ,

∂f (1)

∂x

∣

∣

∣

x=x̂
(s)
i,j

, Ψ
(s,2)
i,j ,

∂f (2)

∂x

∣

∣

∣

x=x̂
(s)
i,j

r
(s,1)
i,j ,

1

2
diagM

{

(xi,j − x̂
(s)
i,j )

T
}∂2f (1)

∂x2

∣

∣

∣

x=ρ
(s)
i,j

(xi,j − x̂
(s)
i,j )

r
(s,2)
i,j ,

1

2
diagM

{

(xi,j − x̂
(s)
i,j )

T
}∂2f (2)

∂x2

∣

∣

∣

x=ρ
(s)
i,j

(xi,j − x̂
(s)
i,j )

ρ
(s)
i,j , λ

(s)
i,j xi,j + (1− λ

(s)
i,j )x̂

(s)
i,j

λ
(s)
i,j , diag

{

λ
(s,1)
i,j , λ

(s,2)
i,j , . . . , λ

(s,nx)
i,j

}

λ
(s,k)
i,j ∈ [0, 1] (k = 1, 2, . . . , nx).

Denoting the estimation error asη(s)i,j , xi,j − x̂
(s)
i,j , we

obtain

η
(s)
i+1,j+1 =A

(s,1)
i,j+1η

(s)
i,j+1 + A

(s,2)
i+1,jη

(s)
i+1,j + r

(s,1)
i,j+1

+ r
(s,2)
i+1,j +B

(1)
i,j+1wi,j+1 +B

(2)
i+1,jwi+1,j

−K
(s,1)
i,j+1(D

(s)
i,j+1v

(s)
i,j+1 + e

(s)
i,j+1)

−K
(s,2)
i+1,j(D

(s)
i+1,jv

(s)
i+1,j + e

(s)
i+1,j)

−
∑

t∈Ns

αstG
(st,1)
i,j+1(x̂

(t)
i,j+1 − x̂

(s)
i,j+1)

−
∑

t∈Ns

αstG
(st,2)
i+1,j (x̂

(t)
i+1,j − x̂

(s)
i+1,j) (14)

where

A
(s,1)
i,j , Ψ

(s,1)
i,j −K

(s,1)
i,j C

(s)
i,j

A
(s,2)
i,j , Ψ

(s,2)
i,j −K

(s,2)
i,j C

(s)
i,j .

Assumption 1: The initial conditions of (1) are given by






x0,j ∈ E

(

x̂
(s)
0,j , Q

(s)
0,j

)

,

{

x0,j
∣

∣ h(s)(x0,j) ≤ 1
}

xi,0 ∈ E

(

x̂
(s)
i,0 , Q

(s)
i,0

)

,

{

xi,0
∣

∣h(s)(xi,0) ≤ 1
} (15)

for s = 1, 2, . . . ,M , where

h(s)(x0,j) , (x0,j − x̂
(s)
0,j)

T(Q
(s)
0,j)

−1(x0,j − x̂
(s)
0,j) ≤ 1

h(s)(xi,0) , (xi,0 − x̂
(s)
i,0 )

T(Q
(s)
i,0 )

−1(xi,0 − x̂
(s)
i,0 ) ≤ 1

with Q
(s)
0,j andQ(s)

i,0 being known positive definite matrices.
The main purpose of this paper is highlighted in threefold

as follows.

• First, we aim to design distributed set-membership filter
gainsK(s,1)

i,j , K(s,2)
i,j , G(st,1)

i,j andG(st,2)
i,j such that, for

s = 1, 2, . . . ,M , the system statexi,j is confined to the
local ellipsoidal setZ (s)

i,j as

Z
(s)
i,j , E

(

x̂
(s)
i,j , Q

(s)
i,j

)

=
{

xi,j
∣

∣h(s)(xi,j) ≤ 1
}

(16)

where

h(s)(xi,j) , (xi,j − x̂
(s)
i,j )

T(Q
(s)
i,j )

−1(xi,j − x̂
(s)
i,j )

with Q
(s)
i,j being the positive definite matrix.

• Second, based on the obtained results in the first step, we
shall determine the fusion weights such that

(

Z
(1)
i,j

⋂

Z
(2)
i,j

⋂

· · ·
⋂

Z
(M)
i,j

)

⊆ Z
(f)
i,j (17)

whereZ
(f)
i,j is the fused ellipsoidal set with

Z
(f)
i,j , E

(

x̂
(f)
i,j , Q

(f)
i,j

)

=
{

xi,j
∣

∣ h(f)(xi,j) ≤ 1
}

h(f)(xi,j) , (xi,j − x̂
(f)
i,j )

T(Q
(f)
i,j )

−1(xi,j − x̂
(f)
i,j ).

Here, x̂(f)i,j is the fused estimate andQ(f)
i,j is the positive

definite matrix.
• Third, we intend to establish a sufficient condition such

that

Tr(Q
(f)
i,j ) ≤ Tr(Q

(s)
i,j ), s = 1, 2, . . . ,M (18)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
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and calculate the optimal values of the parametersx̂
(f)
i,j

and the positive definite matrixQ(f)
i,j by solving a con-

strained optimization problem.

III. M AIN RESULTS

In this section, an encoding-decoding-based distributed
SMFF scheme is designed for shift-varying nonlinear 2-D
systems over sensor networks. Sufficient conditions are es-
tablished for the existence of the desired parameters which
guarantee that the required performance constraints are sat-
isfied. Then, the design parameters are obtained by solving
certain optimization problems.

Before proceeding further, the following lemmas are re-
called to facilitate the derivation of our main results.

Lemma 1: (Two-dimensional mathematical induction [34])
Let Si,j denote a proposition withi, j ∈ N. Suppose that

1) (initial step) Si,j is true for all (i, j) ∈ {(i, j)|i, j ∈
N, i = 0 or j = 0};

2) (inductive step) if Si⋄,j⋄ is true for all(i⋄, j⋄) ∈ ∆i,j ,

{(i− 1, j), (i, j − 1)}, thenSi,j is true.
Then,Si,j is true for all i, j ∈ N.

Lemma 2: Consider the vectorsχ(s)
i,j andy̌(s)i,j in (5) and (9).

For s = 1, 2, . . . ,M , we have

χ
(s)
i,j = y̌

(s)
i,j . (19)

Proof: This lemma is proved by two-dimensional math-
ematical induction, which is conducted via the following two
steps.

1) Initial step. It is known from (5) and (9) thatχ(s)
i,j = y̌

(s)
i,j

is true for all (i, j) ∈ {(i, j)|i, j ∈ N, i = 0 or j = 0}.
2) Inductive step. Suppose thatχ(s)

i⋄,j⋄ = y̌
(s)
i⋄,j⋄ is true for

all (i⋄, j⋄) ∈ ∆i,j , {(i − 1, j), (i, j − 1)}. Then, it remains
to prove thatχ(s)

i,j = y̌
(s)
i,j is true. In fact, one has

χ
(s)
i,j − y̌

(s)
i,j

= δ
(s)
i,j ψ

(s)
i,j + k

(s,1)
i−1,j y̌

(s)
i−1,j + k

(s,2)
i,j−1y̌

(s)
i,j−1

− δ
(s)
i,j ψ

(s)
i,j − k

(s,1)
i−1,jχ

(s)
i−1,j − k

(s,2)
i,j−1χ

(s)
i,j−1

=k
(s,1)
i−1,j(y̌

(s)
i−1,j − χ

(s)
i−1,j) + k

(s,2)
i,j−1(y̌

(s)
i,j−1 − χ

(s)
i,j−1)

= 0,

which ends the proof.
Lemma 3: Consider the high-order Lagrange remainders

r
(s,1)
i,j andr(s,2)i,j in (13). Fors = 1, 2, . . . ,M , suppose that

xi,j ∈ E

(

x̂
(s)
i,j , Q

(s)
i,j

)

. (20)

Then, we have






r
(s,1)
i,j ∈ E

(

0, R
(s,1)
i,j

)

,

{

r
(s,1)
i,j

∣

∣h(r
(s,1)
i,j ) ≤ 1

}

r
(s,2)
i,j ∈ E

(

0, R
(s,2)
i,j

)

,

{

r
(s,2)
i,j

∣

∣h(r
(s,2)
i,j ) ≤ 1

} (21)

where, for̺ = 1, 2,

h(r
(s,̺)
i,j ) , (r

(s,̺)
i,j )T(R

(s,̺)
i,j )−1r

(s,̺)
i,j

[

R
(s,̺)
i,j

]

k,l
,

{

2
[

R̄
(s,̺)
i,j

]

k
, k = l

0, k 6= l

[

R̄
(s,̺)
i,j

]

k
,

(

[(

~X
(s,̺)
i,j

)+]

k
−
[(

~X
(s,̺)
i,j

)−]

k

)2

~X
(s,̺)
i,j ,

1

2
diagM

{

(X
(s)
i,j )

T
}













H
(̺)
1 (x̂

(s)
i,j + X

(s)
i,j )

H
(̺)
2 (x̂

(s)
i,j + X

(s)
i,j )

...

H
(̺)
nx (x̂

(s)
i,j + X

(s)
i,j )













X
(s)
i,j

X
(s)
i,j ,

[

−Q
(s)
i,j , Q

(s)
i,j

]

Q
(s)
i,j ,

[

(
√

[

Q
(s)
i,j

]

1,1

)T

. . .
(
√

[

Q
(s)
i,j

]

nx,nx

)T
]T

.

Here,
[

R
(s,̺)
i,j

]

k,l
and

[

Q
(s)
i,j

]

k,l
are, respectively, the(k, l)

element of the matricesR(s,̺)
i,j and Q(s)

i,j ;
[

R̄
(s,̺)
i,j

]

k
is the

kth element of the vector̄R(s,̺)
i,j ;

(

~X
(s,̺)
i,j

)+

and
(

~X
(s,̺)
i,j

)−

denote the maximum and minimum values in the interval
vector ~X

(s,̺)
i,j ; and H

(̺)
k (·) is the Hessian matrix of the

nonlinear functionf (̺)
k (·) that is thekth entry of the vector

f (̺)(·) (k = 1, 2, . . . , nx).
Proof: It follows from (20) that

(xi,j − x̂
(s)
i,j )

T(Q
(s)
i,j )

−1(xi,j − x̂
(s)
i,j ) ≤ 1. (22)

Then, it is easy to verify that, for

ρ
(s)
i,j , λ

(s)
i,j xi,j + (1− λ

(s)
i,j )x̂

(s)
i,j ,

one obtains

(ρ
(s)
i,j − x̂

(s)
i,j )

T(Q
(s)
i,j )

−1(ρ
(s)
i,j − x̂

(s)
i,j ) ≤ 1. (23)

According to (23), we have

ρ
(s)
i,j ∈ X̄

(s)
i,j ,

[

−Q
(s)
i,j + x̂

(s)
i,j , Q

(s)
i,j + x̂

(s)
i,j

]

. (24)

Then, with the help of the interval analysis technique and
according to the high-order Lagrange remaindersr

(s,1)
i,j and

r
(s,2)
i,j in (13), we obtain the following interval vector:

~X
(s,̺)
i,j ,

1

2
diagM

{

(X
(s)
i,j )

T
}













H
(̺)
1 (x̂

(s)
i,j + X

(s)
i,j )

H
(̺)
2 (x̂

(s)
i,j + X

(s)
i,j )

...

H
(̺)
nx (x̂

(s)
i,j + X

(s)
i,j )













X
(s)
i,j .

(25)
By recurring to (25), the high-order Lagrange remainders

r
(s,1)
i,j andr(s,2)i,j can be bounded by ellipsoidal sets (21) with

minimized volume [7], which completes the proof.

Remark 3: The ellipsoidal sets E

(

0, R
(s,1)
i,j

)

and

E

(

0, R
(s,2)
i,j

)

containing the high order Lagrange remainders

r
(s,1)
i,j and r(s,2)i,j are determined in Lemma 3 by applying

the interval analysis technique. It should be noted that this
method represents one of the first few attempts to deal
with the distributed set-membership filter design issue for
nonlinear 2-D shift-varying systems over sensor networks.
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A. Design of the Distributed Set-Membership Filter

To simplify notations, we denote

Π(0) , diag {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Π
(s,1)
i⋄,j⋄ , diag {−1, I, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Π
(s,2)
i⋄,j⋄ , diag {−1, 0, I, 0, 0, 0, 0, 0, 0, 0, 0}

Π
(s,3)
i⋄,j⋄ , diag

{

−1, 0, 0, R
(s,1)
i,j+1, 0, 0, 0, 0, 0, 0, 0

}

Π
(s,4)
i⋄,j⋄ , diag

{

−1, 0, 0, 0, R
(s,2)
i+1,j, 0, 0, 0, 0, 0, 0

}

Π
(s,5)
i⋄,j⋄ , diag {−1, 0, 0, 0, 0,Wi,j+1, 0, 0, 0, 0, 0}

Π
(s,6)
i⋄,j⋄ , diag {−1, 0, 0, 0, 0, 0,Wi+1,j, 0, 0, 0, 0}

Π
(s,7)
i⋄,j⋄ , diag

{

−1, 0, 0, 0, 0, 0, 0, V
(s)
i,j+1, 0, 0, 0

}

Π
(s,8)
i⋄,j⋄ , diag

{

−1, 0, 0, 0, 0, 0, 0, 0, V
(s)
i+1,j, 0, 0

}

Π
(s,9)
i⋄,j⋄ ,





0 ∗ ∗

−τ δ̄
(s)
i,j Ω

(s,1)
i,j+1 I ∗

0 0 0





Π
(s,10)
i⋄,j⋄ ,

[

0 ∗

−τ δ̄
(s)
i,j Ω

(s,2)
i+1,j I

]

Ω
(s,1)
i,j ,

[

Ω
(s,1,1)
i,j Ω

(s,1,2)
i,j Ω(s,1,3) D

(s)
i,j 0

]

Ω
(s,2)
i,j ,

[

Ω
(s,1,1)
i,j 0 Ω

(s,1,2)
i,j Ω(s,1,3) D

(s)
i,j 0

]

Ω
(s,1,1)
i,j , C

(s)
i,j x̂

(s)
i,j − ỹ

(s)
i,j , Ω

(s,1,2)
i,j , C

(s)
i,j Ξ

(s)
i,j

Ω(s,1,3) ,
[

0 0 0 0 0
]

, δ̄
(s)
i,j , (δ

(s)
i,j )

−1

ỹ
(s)
i,j , k

(s,1)
i−1,j y̌

(s)
i−1,j + k

(s,2)
i,j−1y̌

(s)
i,j−1

(i⋄, j⋄) ∈ ∆i+1,j+1 , {(i, j + 1), (i+ 1, j)}.

The following theorem is given to provide a sufficient
condition that guarantees that the system state satisfies the
performance constraint (16).

Theorem 1: Consider the system (1), the logarithmic-type
EDM (5)–(9), and the distributed set-membership filter (12).
For s = 1, 2, . . . ,M , let the sequences of positive def-
inite matrices {Q(s)

i,j+1}i,j∈N and {Q
(s)
i+1,j}i,j∈N be given.

The system statexi+1,j+1 belongs to the local ellipsoidal

set E

(

x̂
(s)
i+1,j+1, Q

(s)
i+1,j+1

)

if there exist filter parameters

K
(s,1)
i,j+1, K(s,2)

i+1,j , G
(st,1)
i,j+1 and G(st,2)

i+1,j , positive scalarsǫ(s,θ)i⋄,j⋄

(θ = 1, 2, . . . , 10), and a positive definite matrixQ(s)
i+1,j+1

satisfying
[

−~Π
(s)
i⋄,j⋄ ∗

Φ
(s)
i⋄,j⋄ −Q

(s)
i+1,j+1

]

≤ 0 (26)

where

~Π
(s)
i⋄,j⋄ , Π(0) +

10
∑

θ=1

ǫ
(s,θ)
i⋄,j⋄Π

(s,θ)
i⋄,j⋄

Φ
(s)
i⋄,j⋄ ,

[

Φ
(s,1)
i⋄,j⋄ Φ

(s,2)
i⋄,j⋄ Φ

(s,3)
i⋄,j⋄ Φ

(s,4)
i⋄,j⋄

]

Φ
(s,1)
i⋄,j⋄ , −

∑

t∈Ns

αstG
(st,1)
i,j+1(x̂

(t)
i,j+1 − x̂

(s)
i,j+1)

−
∑

t∈Ns

αstG
(st,2)
i+1,j (x̂

(t)
i+1,j − x̂

(s)
i+1,j)

Φ
(s,2)
i⋄,j⋄ ,

[

A
(s,1)
i,j+1Ξ

(s)
i,j+1 A

(s,2)
i+1,jΞ

(s)
i+1,j I I B

(1)
i,j+1

]

Φ
(s,3)
i⋄,j⋄ ,

[

B
(2)
i+1,j −K

(s,1)
i,j+1D

(s)
i,j+1 −K

(s,2)
i+1,jD

(s)
i+1,j

]

Φ
(s,4)
i⋄,j⋄ ,

[

−δ
(s)
i,j+1K

(s,1)
i,j+1 −δ

(s)
i+1,jK

(s,2)
i+1,j

]

.

Proof: This theorem is proved by two-dimensional math-
ematical induction, which is conducted via the following two
steps.

1) Initial step. It is known immediately from Assumption 1
that

xi,j ∈ E

(

x̂
(s)
i,j , Q

(s)
i,j

)

, s = 1, 2, . . . ,M (27)

is true for all (i, j) ∈ {(i, j)|i, j ∈ N, i = 0 or j = 0}.
2) Inductive step. Let

xi⋄,j⋄ ∈ E

(

x̂
(s)
i⋄,j⋄ , Q

(s)
i⋄,j⋄

)

, s = 1, 2, . . . ,M (28)

be true for all(i⋄, j⋄) ∈ ∆i+1,j+1 , {(i, j + 1), (i + 1, j)}.
Then, it remains to prove that

xi+1,j+1 ∈ E

(

x̂
(s)
i+1,j+1, Q

(s)
i+1,j+1

)

, s = 1, 2, . . . ,M (29)

is also true.
First, it is easy to verify from (14) and (28) that there exist

ϑ
(s)
i,j+1 andϑ(s)i+1,j (with ‖ϑ

(s)
i,j+1‖ ≤ 1 and‖ϑ(s)i+1,j‖ ≤ 1) such

that
{

xi,j+1 = x̂
(s)
i,j+1 + Ξ

(s)
i,j+1ϑ

(s)
i,j+1

xi+1,j = x̂
(s)
i+1,j + Ξ

(s)
i+1,jϑ

(s)
i+1,j

(30)

where Ξ
(s)
i,j+1 and Ξ

(s)
i+1,j are factorizations ofQ(s)

i,j+1 and

Q
(s)
i+1,j , respectively, i.e.,Q(s)

i,j+1 = Ξ
(s)
i,j+1(Ξ

(s)
i,j+1)

T and

Q
(s)
i+1,j = Ξ

(s)
i+1,j(Ξ

(s)
i+1,j)

T.
Letting

ξ
(s)
i⋄,j⋄ ,

[

1 (ξ
(s,1)
i⋄,j⋄)

T (ξ
(s,2)
i⋄,j⋄)

T (ξ
(s,3)
i⋄,j⋄)

T
]T

,

in view of (30), system (14) is rewritten as

η
(s)
i+1,j+1 = Φ

(s)
i⋄,j⋄ξ

(s)
i⋄,j⋄ (31)

where

ξ
(s,1)
i⋄,j⋄ ,

[

ϑ
(s)
i,j+1

ϑ
(s)
i+1,j

]

, ξ
(s,2)
i⋄,j⋄ ,











r
(s,1)
i,j+1

r
(s,2)
i+1,j

wi,j+1

wi+1,j











, ξ
(s,3)
i⋄,j⋄ ,











v
(s)
i,j+1

v
(s)
i+1,j

q
(s)
i,j+1

q
(s)
i+1,j











.

According to (2), (4), (21) and (30), the following conditions
are satisfied:






























‖ϑ
(s)
i,j+1‖ ≤ 1, ‖ϑ

(s)
i+1,j‖ ≤ 1

r
(s,1)
i,j+1 ∈ E

(

0, R
(s,1)
i,j+1

)

, r
(s,2)
i+1,j ∈ E

(

0, R
(s,2)
i+1,j

)

wi,j+1 ∈ E (0,Wi,j+1) , wi+1,j ∈ E (0,Wi+1,j)

v
(s)
i,j+1 ∈ E

(

0, V
(s)
i,j+1

)

, v
(s)
i+1,j ∈ E

(

0, V
(s)
i+1,j

)

(32)

which can be rearranged in terms ofξ(s)i⋄,j⋄ as follows:

(ξ
(s)
i⋄,j⋄)

TΠ
(s,θ̄)
i⋄,j⋄ξ

(s)
i⋄,j⋄ ≤ 0, θ̄ = 1, 2, . . . , 8. (33)
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Next, we proceed to cope with the decoding errorse
(s)
i,j+1

ande(s)i+1,j in system (14). According to (10)–(11), we have
{

(e
(s)
i,j+1)

Te
(s)
i,j+1 − 2τδ

(s)
i,j+1(e

(s)
i,j+1)

Tς
(s)
i,j+1 ≤ 0

(e
(s)
i+1,j)

Te
(s)
i+1,j − 2τδ

(s)
i+1,j(e

(s)
i+1,j)

Tς
(s)
i+1,j ≤ 0

(34)

which, in terms ofξ(s)i⋄,j⋄ , are expressed as
{

(ξ
(s)
i⋄,j⋄)

TΠ
(s,9)
i⋄,j⋄ξ

(s)
i⋄,j⋄ ≤ 0

(ξ
(s)
i⋄,j⋄)

TΠ
(s,10)
i⋄,j⋄ ξ

(s)
i⋄,j⋄ ≤ 0.

(35)

By applying Schur Complement Lemma [3], it follows from
(26) that

−~Π
(s)
i⋄,j⋄ + (Φ

(s)
i⋄,j⋄)

T(Q
(s)
i+1,j+1)

−1Φ
(s)
i⋄,j⋄ ≤ 0. (36)

It is deduced from (36) that

(Φ
(s)
i⋄,j⋄ξ

(s)
i⋄,j⋄)

T(Q
(s)
i+1,j+1)

−1Φ
(s)
i⋄,j⋄ξ

(s)
i⋄,j⋄

≤ (ξ
(s)
i⋄,j⋄)

T~Π
(s)
i⋄,j⋄ξ

(s)
i⋄,j⋄ . (37)

By further resorting toS-procedure [3], it can be derived from
(31), (33), (35) and (37) that

(η
(s)
i+1,j+1)

T(Q
(s)
i+1,j+1)

−1η
(s)
i+1,j+1 ≤ 1 (38)

is true, which means that the system statexi+1,j+1 belongs

to the local ellipsoidal setE
(

x̂
(s)
i+1,j+1, Q

(s)
i+1,j+1

)

. Therefore,
according to the principle of mathematical induction, the proof
is now complete.

B. Design of the Fusion Rule for Ellipsoid-Based Filtering

It follows from Theorem 1 that the system statexi,j belongs
to the intersection of all local ellipsoidal setsZ (s)

i,j (s =
1, 2, . . . ,M). Obviously, the intersection set has a smaller
volume/region than all local ellipsoidal sets (see Fig. 2),
thereby ensuring a better filtering performance. Based on this
fact, we shall first determine a fused ellipsoidal setZ

(f)
i,j that

contains the intersection set. Then, we proceed to calculate
corresponding fusion parameters such that the fused ellipsoidal
set guarantees the satisfactory filtering performance.

Theorem 2: Consider the system (1), the logarithmic-type
EDM (5)–(9), and the distributed set-membership filter (12).
Fors = 1, 2, . . . ,M , let the local estimatêx(s)i,j and the positive

definite matrixQ(s)
i,j be given. Then, ~Zi,j ⊆ Z

(f)
i,j if the fused

estimatex̂(f)i,j and the positive definite matrixQ(f)
i,j are given

as

x̂
(f)
i,j , Q̄

(f)
i,j

M
∑

s=1

ε
(s)
i,j (Q

(s)
i,j )

−1x̂
(s)
i,j (39)

Q
(f)
i,j , (1−̟i,j)Q̄

(f)
i,j (40)

where

ε
(s)
i,j ≥ 0,

M
∑

s=1

ε
(s)
i,j = 1

(Q̄
(f)
i,j )

−1 ,

M
∑

s=1

ε
(s)
i,j (Q

(s)
i,j )

−1

̟i,j ,

M
∑

s=1

ε
(s)
i,j (x̂

(s)
i,j )

T(Q
(s)
i,j )

−1x̂
(s)
i,j

− (x̂
(f)
i,j )

T(Q̄
(f)
i,j )

−1x̂
(f)
i,j

~Zi,j , Z
(1)
i,j

⋂

Z
(2)
i,j

⋂

· · ·
⋂

Z
(M)
i,j .

Proof: First, for anyxi,j , it follows from Theorem 1 that

xi,j ∈ Z
(s)
i,j , E

(

x̂
(s)
i,j , Q

(s)
i,j

)

, s = 1, 2, . . . ,M (41)

which means

xi,j ∈ ~Zi,j , Z
(1)
i,j

⋂

Z
(2)
i,j

⋂

· · ·
⋂

Z
(M)
i,j . (42)

Next, combining (16) and (41), it is easy to see that there
exist positive scalarsε(s)i,j with

∑M

s=1 ε
(s)
i,j = 1 such that the

following inequality holds:

M
∑

s=1

ε
(s)
i,j (xi,j − x̂

(s)
i,j )

T(Q
(s)
i,j )

−1(xi,j − x̂
(s)
i,j ) ≤ 1. (43)

Then, by some straightforward algebraic manipulations, it
follows from (43) that

(

xi,j − Q̄
(f)
i,j

M
∑

s=1

ε
(s)
i,j (Q

(s)
i,j )

−1x̂
(s)
i,j

)T

(Q̄
(f)
i,j )

−1

×
(

xi,j − Q̄
(f)
i,j

M
∑

s=1

ε
(s)
i,j (Q

(s)
i,j )

−1x̂
(s)
i,j

)

+

M
∑

s=1

ε
(s)
i,j (x̂

(s)
i,j )

T(Q
(s)
i,j )

−1x̂
(s)
i,j

− (x̂
(f)
i,j )

T(Q̄
(f)
i,j )

−1x̂
(f)
i,j ≤ 1. (44)

Substituting (39)–(40) into (44), we have

(xi,j − x̂
(f)
i,j )

T(Q
(f)
i,j )

−1(xi,j − x̂
(f)
i,j ) ≤ 1 (45)

which implies that the following relationship is satisfied:

xi,j ∈ Z
(f)
i,j , E

(

x̂
(f)
i,j , Q

(f)
i,j

)

(46)

and, therefore, it is easy to deduce that~Zi,j ⊆ Z
(f)
i,j . The

proof is now complete.
From Theorem 2, it is easily seen that the volume of the

fused ellipsoidal setZ (f)
i,j is dependent on parametersε(s)i,j

(s = 1, 2, . . . ,M). In order to derive a fused ellipsoidal set
that has a smaller volume than all local ellipsoidal setsZ

(s)
i,j

(s = 1, 2, . . . ,M) in the sense of matrix trace, we present the
following theorem.

Theorem 3: Consider the system (1), the logarithmic-type
EDM (5)–(9), and the distributed set-membership filter (12).
Fors = 1, 2, . . . ,M , let the local estimatêx(s)i,j and the positive

definite matrixQ(s)
i,j be given. Then,Tr(Q(f)

i,j ) ≤ Tr(Q
(s)
i,j )

(s = 1, 2, . . . ,M) if there exist positive scalarsε(s)i,j with
∑M

s=1 ε
(s)
i,j = 1 satisfying

M
∑

s=1

ε
(s)
i,j (Q

(s)
i,j )

−1 ≥ (1−̟i,j)(Q
(t)
i,j )

−1, t = 1, 2, . . . ,M.

(47)
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Local Ellipsoidal Set

Fused Ellipsoidal Set

Fig. 2. The scheme for ellipsoid-based filtering fusion

Proof: It is evident that the following equivalences hold:

M
∑

s=1

ε
(s)
i,j (Q

(s)
i,j )

−1 ≥ (1−̟i,j)(Q
(t)
i,j )

−1

⇐⇒ (1−̟i,j)
−1

M
∑

s=1

ε
(s)
i,j (Q

(s)
i,j )

−1 ≥ (Q
(t)
i,j )

−1

⇐⇒ (1−̟i,j)
−1(Q̄

(f)
i,j )

−1 ≥ (Q
(t)
i,j )

−1

⇐⇒Q
(f)
i,j ≤ Q

(t)
i,j , t = 1, 2, . . . ,M. (48)

We can conclude from (48) thatTr(Q(f)
i,j ) ≤ Tr(Q

(s)
i,j ),

which completes the proof.
Remark 4: In accordance with Theorems 1–3, an ellipsoid-

based fusion filtering scheme is, for the first time, formulated
to handle the distributed SMFF problem for 2-D systems
over sensor networks. The proposed scheme has the following
advantages: 1) the distributed SMF algorithm proposed in
Theorems 1 only utilizes the information from the local
sensor node and its neighboring nodes, which avoids the
computational complexity issue associated with the increased
number of sensor nodes; and 2) the ellipsoid-based fusion
filtering rule proposed in Theorems 2–3 provides a better
filtering performance than the local SMF algorithm in the
sense of matrix trace.

C. Optimization Problem

Theorems 1–3 outline the procedure of seeking filter pa-
rameters and fusion parameters. It should be noted that this
procedure does not provide an optimal solution. In what
follows, some corollaries are presented to determine the fil-
ter parameters and the fusion parameters via optimizing the
constraint sets in the sense of matrix trace.

Corollary 1: Consider the system (1), the logarithmic-type
EDM (5)–(9), and the distributed set-membership filter (12).
For s = 1, 2, . . . ,M , let the sequences of positive definite
matrices{Q(s)

i,j+1}i,j∈N and{Q(s)
i+1,j}i,j∈N be given. The local

ellipsoidal setZ (s)
i+1,j+1 is minimized in the sense of matrix

trace if there exist filter gainsK(s,1)
i,j+1, K(s,2)

i+1,j , G
(st,1)
i,j+1 and

G
(st,2)
i+1,j such that the following optimization problem(OP 1)

is feasible:

OP 1 : min
K

(s,1)
i,j+1,K

(s,2)
i+1,j,

G
(st,1)
i,j+1 ,G

(st,2)
i+1,j

Tr
(

Q
(s)
i+1,j+1

)

subject to(26). (49)

Corollary 2: Consider the system (1), the logarithmic-type
EDM (5)–(9), and the distributed set-membership filter (12).
Fors = 1, 2, . . . ,M , let the local estimatêx(s)i,j and the positive

definite matrixQ(s)
i,j be given. Then,~Zi,j ⊆ Z

(f)
i,j , Tr(Q(f)

i,j ) ≤

Tr(Q
(s)
i,j ), and the fused ellipsoidal setQ(f)

i,j is minimized in

the sense of matrix trace if there exist positive scalarsε
(s)
i,j such

that the following optimization problem(OP 2) is feasible:

OP 2 : min
ε
(s)
i,j

,s=1,2,...,M

Tr
(

Q
(f)
i,j

)

subject to(47) and
M
∑

s=1

ε
(s)
i,j = 1. (50)

For the purpose of numerical calculation, we describe the
filter design procedure in Algorithm 1, which is based on the
recursive linear matrix inequality (RLMI) approach.

Algorithm 1: Encoding-decoding-based distributed SMFF
algorithm

Input : System initial conditionsx0,j , xi,0, x̂(s)0,j , x̂
(s)
i,0 ,

δ
(s)
i,j , k(s,1)

i,j , k(s,2)
i,j (s = 1, 2, . . . ,M).

Output : K(s,1)
i,j , K(s,2)

i,j , G(st,1)
i,j , G(st,2)

i,j , Q(f)
i,j , x̂(f)i,j .

1 for i=1:T do
2 for j=1:T do
3 Compute the filter parametersK(s,1)

i,j , K(s,2)
i,j ,

G
(st,1)
i,j andG(st,2)

i,j by solving theOP 1 from
Corollary 1;

4 Compute the local estimatêx(s)i,j from sth sensor
node by system (12);

5 Compute the fused estimatex(f)i,j by Theorem 2
and Corollary 2;

6 return K
(s,1)
i,j , K(s,2)

i,j , G(st,1)
i,j , G(st,2)

i,j , Q(f)
i,j , x̂(f)i,j ;

Remark 5: So far, the distributed SMFF problem has been
solved for the addressed nonlinear 2-D shift-varying sys-
tem over sensor networks. Note that, in comparison to the
rich body of existing literature on set-membership filtering
problems, our results exhibit the following distinguishing
features: 1) the addressed distributed SMFF problem is new
that represents one of the first few attempts to cope with
both the distributed SMF and the fusion filtering problems for
nonlinear 2-D shift-varying systems over sensor networks; 2)
the proposed logarithmic-type EDM is new, which is designed
based on the logarithmic-type zooming-in/out encoder and
decoder under the 2-D setting and is capable of dealing
with dynamics evolving along both horizontal and vertical
coordinates; and 3) the designed distributed SMFF algorithm
is new, scalable, and efficient.

Remark 6: This paper launches a systematic investigation
on the distributed SMFF issue for a class of nonlinear 2-
D shift-varying systems over sensor networks in the con-
text of networked systems with certain engineering-oriented
complexities (i.e., EDMs and UBB noises). By exploiting a
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combination of several up-to-date approaches such as set-
membership filtering method, interval analysis technique, two-
dimensional mathematical induction approach, and set theory,
the addressed problem has been thoroughly examined and
the desired parameters have been formulated in terms of
the solutions to a set of optimization problems. Within the
established framework, it is not difficult to extend our results
to more general systems with more complicated dynamics with
more complex network-induced phenomena.

IV. I LLUSTRATIVE EXAMPLE

In this section, the effectiveness of the proposed encoding-
decoding-based distributed SMFF algorithm is verified by a
simulation example. The system parameters are given as

f (1)(xi,j) =

[

0.3x1i,j + 0.05 sin(x2i,j)
0.25x2i,j + 0.1 cos(x1i,j)

]

f (2)(xi,j) =

[

0.45x1i,j + 0.1 sin(x2i,j)
0.2x2i,j + 0.15 sin(x1i,j)

]

B
(1)
i,j =

[

0.55 + 0.3e−3i

0.05

]

, B
(2)
i,j =

[

0.45
0.1 cos(i)

]

C
(s)
i,j =























































[

0.8 0.2 + e−2i
]

, s = 1
[

1.1 0.25 + e−j
]

, s = 2
[

−0.1 0.5 + sin(5j)
]

, s = 3
[

−0.15 0.35 + sin(3j)
]

, s = 4
[

0.25− e−2j 0.75
]

, s = 5
[

−0.85 −0.25 + e−2i
]

, s = 6

D
(1)
i,j = 0.65, D

(2)
i,j = 0.3, D

(3)
i,j = 0.5

D
(4)
i,j = 0.45, D

(5)
i,j = 0.35, D

(6)
i,j = 0.55.

The process noisewi,j and the measurement noisev(s)i,j are
selected as

wi,j = 0.15 sin(0.3(i+ j))

v
(1)
i,j = 0.1 sin(0.25(i+ j))

v
(2)
i,j = 0.18 sin(0.5(i+ j))

v
(3)
i,j = 0.05 cos(0.4i), v

(4)
i,j = 0.2 cos(0.3i)

v
(5)
i,j = 0.3 sin(0.2j), v

(6)
i,j = 0.25 sin(0.25j)

whose weighting matrices are chosen asWi,j = 0.03I,
V

(1)
i,j = 0.02I, V (2)

i,j = 0.03I, V (3)
i,j = 0.01I, V (4)

i,j = 0.05I,

V
(5)
i,j = 0.1I andV (6)

i,j = 0.1I. The quantization density is set

as℘ = 0.7. The scaling parameters are selected asδ
(s)
i,j = 0.9

andk
(s,1)
i,j = k

(s,2)
i,j = 0.45I (s = 1, 2, . . . , 6). The topology

structure of the sensor networks is shown in Fig. 3. Let the

Fig. 3. The topology structure of the sensor networks

Fig. 4. The system statex[1] and local estimatêx(1)
[1]

of sensor node 1

initial conditions be given as











































































x0,j = xi,0 =
[

2.5 1.8
]T

, ∀ i, j ∈ [0 25]

x̂
(1)
0,j = x̂

(1)
i,0 =

[

2 1.5
]T

, ∀ i, j ∈ [0 25]

x̂
(2)
0,j = x̂

(2)
i,0 =

[

3 2
]T

, ∀ i, j ∈ [0 25]

x̂
(3)
0,j = x̂

(3)
i,0 =

[

2.2 1.45
]T

, ∀ i, j ∈ [0 25]

x̂
(4)
0,j = x̂

(4)
i,0 =

[

1.9 1.9
]T

, ∀ i, j ∈ [0 25]

x̂
(5)
0,j = x̂

(5)
i,0 =

[

2.5 1.7
]T

, ∀ i, j ∈ [0 25]

x̂
(6)
0,j = x̂

(6)
i,0 =

[

2.8 2
]T

, ∀ i, j ∈ [0 25].

The simulation results are presented in Figs. 4–12. Among
them, Figs. 4–9 plot the system statexi,j and the local esti-
mateŝx(s)i,j of sensor nodes 1, 3, and 6, respectively. Fig. 10–11

depicts the system statexi,j and the fused estimatêx(f)i,j . The

trace evolution of matricesQ(f)
i,j andQ(s)

i,j (s = 1, 2, . . . , 6) are

shown in Fig. 12, from which we can see that theTr(Q
(f)
i,j )

is the smallest of all. Thus, Figs. 4–12 show the effectiveness
of the proposed encoding-decoding-based distributed SMFF
algorithm.
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Fig. 5. The system statex[2] and local estimatêx(1)
[2]

of sensor node 1

Fig. 6. The system statex[1] and local estimatêx(1)
[1]

of sensor node 3

Fig. 7. The system statex[2] and local estimatêx(1)
[2]

of sensor node 3

Fig. 8. The system statex[1] and local estimatêx(1)
[1]

of sensor node 6

Fig. 9. The system statex[2] and local estimatêx(1)
[2]

of sensor node 6

Fig. 10. The system statex[1] and fused estimatêx(f)
[1]
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Fig. 11. The system statex[2] and fused estimatêx(f)
[2]

Fig. 12. The trace evolution ofQ(f) and Q(s) (s = 1, 2, . . . , 6)

V. CONCLUSION

This paper has addressed the distributed SMFF problem for
a class of nonlinear 2-D shift-varying systems subject to UBB
noises over sensor networks. A new logarithmic-type EDM
has been designed for 2-D systems, where the zooming-in/out-
based encoder and decoder have been utilized to strengthen
communication security and efficiency. An ellipsoid-based
fusion filtering rule has been developed for 2-D systems
over sensor networks to confine the system state to a fused
ellipsoidal set in a global view. It has been shown that the
fused filtering performance is better than the local filtering
performance in the sense of matrix trace. By resorting to the
two-dimensional mathematical induction approach and the set
theory, the feasibility of the proposed fusion filtering algorithm
has been examined, and the parameters can be computed by
solving a series of optimization problems. Finally, a simulation
example has been provided to verify the usefulness of the
proposed fusion filtering scheme. One of the future research
topics would be to extend the main results in this paper
to systems with network-induced phenomena [6], [12], [22],
[44], [47]. It is worth mentioning that the proposed distributed
fusion filtering scheme in this paper can be applied to some

practical applications such as chemical process and the specific
applications are our future work.
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