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State Estimation for Stochastic Time-Varying Boolean
Networks

Hongwei Chen, Zidong Wang, Jinling Liang and Maozhen Li

Abstract—In this paper, a general theoretical framework is developed
for the state estimation problem of stochastic time-varying Boolean
networks (STVBNs). The STVBN consists of a system model describing
the evolution of the Boolean states and a model relating the noisy
measurements to the Boolean states. Both the process noise and the
measurement noise are characterized by sequences of mutually indepen-
dent Bernoulli distributed stochastic variables taking values of 1 or 0,
which imply that the state/measurement variables may be flipped with
certain probabilities. First, an algebraic representation of the STVBNs is
derived based on the semi-tensor product. Then, based on the Bayes’
theorem, a recursive matrix-based algorithm is obtained to calculate
the one-step prediction and estimation of the forward/backward state
probability distribution vectors. Owing to the Boolean nature of the state
variables, the Boolean Bayesian filter is designed that can be utilized to
provide the minimum mean-square error state estimate for the STVBNs.
The fixed-interval smoothing filter is also obtained by resorting to the
forward-backward technique. Finally, a simulation experiment is carried
out for the context estimation problem of the p53-MDM2 negative-
feedback gene regulatory network.

Index Terms—Stochastic Boolean networks, state estimation, forward-
backward smoothing, mean-square error, semi-tensor product.

I. INTRODUCTION

The concept of Boolean network (BN) has been proposed in the
pioneering works by Kauffman [18] and Thomas [31]. BNs have
emerged as prominent qualitative models of gene regulatory networks
(GRNs) that, on one hand, require no kinetic information (or detailed
mechanisms) and, on the other hand, unveil interesting dynamical
phenomena of the network structure and the gene-gene interactions.
In a BN model, the expression level of each gene is either “ON” or
“OFF”, which is updated according to a preappoint Boolean function
concerning the expression levels of other related genes. When such
updates are performed for several time steps, trajectories of the
BN are produced, which can then be utilized to compare with the
experimental data for validation and refinement purposes. Notably,
the qualitative nature of the states in the BN configuration makes it
possible to simulate the dynamics of various biological systems [11]
such as the cell cycle of several different organisms, the mammalian
immune response to bacteria, the differentiation process of T-helper
lymphocytes, as well as the GRN in Drosophila melanogaster.

Controlling the dynamics of GRNs is essential for developing new
drugs and medical treatment techniques in the fields of biomedicine
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and bioengineering. An attractive abstraction, namely, Boolean con-
trol networks (BCNs), has been proposed in [1] for the sake of
designing and analyzing the therapeutic intervention strategies. The
ultimate objective of this line of research is to seek a discrete-time
control sequence with minimum cost that will steer the network
from a diseased state to a healthy one. Assisted by the semi-
tensor product (STP) technique, a theoretic framework has been
constructed for converting a BCN into its equivalent algebraic form
that is quite similar to the standard discrete-time bilinear system
[9]. This algebraic representation paves a convenient way for coping
with the control-theoretic problems of BCNs, and many interesting
results have been reported in the literature on various dynamics
analysis problems such as stability and stabilization [3], [10], [23],
[29], [39], [40], controllability and observability [26], [37], [38],
optimal control [12], [19], [20], [35], system decomposition [28],
[41], network synchronization [6], [24], [27]. In addition, the STP
technique has been applied in tackling the problems of fault detection
[13], asynchronous sequential machines [36], game theory [8] and so
on.

Partially observed Boolean dynamical systems (POBDSs), origi-
nally introduced by Braga-Neto [4], have come to play a prominent
role in many biological applications especially in genomic signal
processing. Such models are nonlinear systems consisting of a
stochastic Boolean model describing the state evolution and a noisy
measurement model, thereby extending the classical Boolean models
in two ways that account for i) uncertainty in the state evolution and
ii) partial observation of the state variables through measurement
noises. Many recent findings have shown that the POBDSs are
capable of simulating the dynamical sequence of protein activation
patterns of GRNs [2]. In practice, one of the main tasks is to figure out
the true activity (state) of the genes based on the sample data. In most
real-word applications, however, it is often the case that only partial
information (or even no information) is observable about the states
of practical GRNs through available measurement outputs. Hence,
the state estimation issue for POBDSs has become a hot research
topic with theoretical significance and practical importance, and many
excellent results have been presented in the literature based on the
Bayesian filtering approach [4], [16], [17].

Note that the state model and the measurement model in the
proposed POBDSs are both governed by the Boolean function plus
binary noise (i.e., modulo-2 addition), which implies that the intro-
duced process and measurement noises are both “additive”. However,
from the systems’ point of view, the noise can appear in the form
of any logical relationship related to the systems’ state [7], [22],
[25], [35], due mainly to the insufficient experimental evidence or
incomplete understanding of a GRN. Recent results have further
confirmed that the transitions between states in a GRN do occur
in a random fashion [30], [32]–[34]. Theoretical models without
taking the intrinsic stochastic noises into consideration might not
be as serviceable as expected in practical applications. Therefore,
stochastic noises should be recognized as a characteristic that has
to be taken into account when modeling the dynamical behaviors
of GRNs by BNs. In the remarkable paper [5], a new BN called
stochastic time-invariant BN (STIBN) has been proposed, and the
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inference of the discrete coefficient of determination for such kind
of STIBN has been addressed. In recent years, many control-related
problems of STIBN have been studied extensively, such as robust
stabilization [22], robust control [25] and discounted optimal control
[35]. On the other hand, it has now been well recognized that the
dynamics of gene expression regulatory networks in practice is often
time-varying [14], which leads to a general class of stochastic time-
varying Boolean networks (STVBNs).

It is worth mentioning that all the aforementioned results on state
estimation of POBDSs have been based on an implicit assumption
that the process/measurement noises are additive, and therefore the
developed filters cannot be directly utilized to deal with the general
STVBNs. Specifically, the prediction matrix and the update matrix
of the algorithms proposed in [4], [16] are both Boolean functions
of the corresponding noise distribution, which are usually difficult
to be calculated in case of the general STVBNs due to the lack of
available tools to cope with the logical dynamic systems. As such,
there is a practical need to investigate the state estimation problem for
the general STVBNs. Such a problem is, to the best of the authors’
knowledge, still open and remains challenging, and the purpose of this
paper is therefore to shorten this gap by providing a rather rigorous
framework.

The main objective of this paper is to design a recursive minimum-
mean-square-error (MMSE) estimator for a class of BNs subjected
to randomly occurring state/measurement flips. The main technical
contributions of this paper can be highlighted as twofold. i) A
recursive matrix-based algorithm is proposed to calculate the one-step
prediction and estimation of the state probability distribution vector
by resorting to the STP technique and Bayes’ theorem, and Boolean
Bayesian filter is also designed to estimate the true states of the
STVBNs. ii) By applying the forward-backward approach, the fixed-
interval smoothing filter is put forward to obtain the state estimate at
each time instant based on a fixed interval of noisy measurements,
where the estimation is usually better than that acquired by the
Boolean Bayesian filter.

Notations: The notations used throughout this paper are fairly
standard except where otherwise stated. N and N+ denote the sets of
nonnegative integers and positive integers, respectively. Rm×n refers
to the set of all m×n real matrices. The superscript “⊤” stands for
matrix transposition. ∆k means the set {δik|i = 1, 2, . . . , k}, where
δik is the ith column of the identity matrix Ik with degree k. A matrix
A ∈ Rm×n is called a logical matrix if A = [δi1m δi2m · · · δinm ]
(i1, i2, . . . , in ∈ {1, 2, . . . ,m}). Lm×n is the set of all m × n
logical matrices. Let Rowi(A) (respectively, Coli(A)) denote the
ith row (respectively, column) of matrix A. The Bernoulli distribution
with success probability p is simply denoted by B(1, p). E{·} is the
mathematical expectation of a stochastic variable “·”. ∥ · ∥1 means
the 1-norm of vectors.

II. MODEL FORMULATION

The STVBNs under consideration consist of a stochastic Boolean
state model and a noisy measurement model. Specifically, the dy-
namic process of the state evolution is expressed as

Xi(k) = f i
k−1(X(k − 1), U(k − 1),W (k − 1)), k ∈ N+ (1a)

where i = 1, 2, . . . , n; X(k) , (X1(k), . . . , Xn(k))
⊤ ∈ Dn is the

state variable with D , {1, 0}; U(k) , (U1(k), . . . , Um(k))⊤ ∈
Dm stands for the control input which is assumed to be known;
W (k) , (W1(k), . . . ,Wl1(k))

⊤ ∈ Dl1 represents the process noise
obeying Bernoulli distribution with certain success probability, that is,
Wi(k) ∼ B(1, pik) for i = 1, 2, . . . , l1; and f i

k(·, ·, ·) : Dn+m+l1 →

D is the time-varying network function. Correspondingly, the mea-
surement output can be described as follows:

Yj(k) = hj
k(X(k), V (k)), j = 1, 2, . . . , q (1b)

where, for k ∈ N+, Y (k) , (Y1(k), . . . , Yq(k))
⊤ ∈ Dq (q ≤

n) is the measurement information at discrete time k; V (k) ,
(V1(k), . . . , Vl2(k))

⊤ ∈ Dl2 represents the measurement noise with
Vj(k) ∼ B(1, qjk) for j = 1, 2, . . . , l2; and hj

k(·, ·) is the time-
varying Boolean function. In this paper, the noises W (k) and V (k)
are assumed to be white and mutually independent. It is also supposed
that the noise processes are independent with the initial state variable
X(0).

Remark 1: It is worth pointing out that, in Boolean model, the state
space is not the usual continuous-valued set Rn but a Boolean-valued
one Dn (i.e, {0, 1}). Although modern expression-based technologies
(e.g., RNA-seq) would generate non-Boolean noises, the thresholding
approaches can be utilized to binarize the noise expressions, which
means Bernoulli-type process/measurement noises are possible to be
realized/considered in this paper.

Remark 2: Note that the process and measurement noises intro-
duced in [4] for POBDSs are both “additive”, that is to say, both the
state model and the measurement model are governed by the Boolean
functions plus binary noises. While in the STVBN model (1), the
noise can be in any form of the logical relationships with the system’s
states. From this point of view, system (1) under consideration is quite
general, which includes the POBDS as a special case. In addition,
the STVBN is capable of investigating some particular scenarios
encountered in the transcriptomic analysis by allowing for noisy
observations as well as incomplete measurements of the gene states
(for instance, some of the genes in a pathway are not monitored).

Remark 3: Note that one can always assume that pik ≤ 1
2

(i =
1, 2, . . . , l1) and qjk ≤

1
2

(j = 1, 2, . . . , l2) without loss of generality.
Specifically, if pik > 1

2
, then one can employ an equivalent model

in which Wi(k) is substituted by Wi(k), where the overline “ ¯ ”
represents the logical function “NOT”, and the new noise parameter
will have a success probability 1− pik ≤ 1

2
. On the other hand, it is

worth pointing out that pik and qjk represent the strength of the noises.
If pik = qjk ≡ 0 (or equivalently, 1) holds for all k ∈ N, the network
can be regarded as a noiseless one and the state transition can be
viewed to be deterministic, while if pik = qjk = 0.5, the uncertainty
in the state evolution as well as output measurement is maximum, and
for this particular case, the estimation discussed here does not make
much sense. The estimation usually might have a better performance
when pik and qjk uniformly close to 0 with respect to k.

Given the noisy measurements {Y (1), . . . , Y (k)} denoted by Y1:k,
the conditional mean-square error (MSE) of the estimator X̂(k) with
respect to the unknown state variable X(k) is defined as

MSE[X̂(k)] , E
{∥∥∥X(k)− X̂(k)

∥∥∥2

2

∣∣∣∣ Y1:k, U0:k−1

}
(2)

where U0:k−1 , {U(0), . . . , U(k−1)} and ∥·∥2 means the Euclidean
norm. Then, the optimal state estimation problem to be investigated
in this paper is to find an estimator X̂(k) = ĝ(Y1:k, U0:k−1) that
minimizes the conditional MSE (2) at each time instant k for all
possible realizations of Y1:k and U0:k−1.

III. MAIN RESULTS

To facilitate the analysis of the optimal estimation problem, we first
transform system (1) into its algebraic representation by utilizing the
STP technique introduced in [9], where the Boolean variable Xi(k) ∈
D is identified with the vector xi(k) = δ

2−Xi(k)
2 ∈ ∆2, and such a

correspondence is extended naturally to the bijection between Dn and
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∆N with N = 2n, i.e., the state vector X(k) is regarded completely
as the vector x(k) = nn

i=1xi(k) ∈ ∆N . For each f i
k−1 (respectively,

hj
k), one can calculate its structure matrix F i

k−1 (respectively, Hj
k)

[9], and system (1) can be converted into the following component-
wise algebraic representation:

xi(k) = F i
k−1w(k − 1)u(k − 1)x(k − 1) (3a)

yj(k) = Hj
kv(k)x(k) (3b)

where u(k) = nm
i=1ui(k) ∈ ∆M with M , 2m; w(k) =

nl1
i=1wi(k) and v(k) = nl2

i=1vi(k) are, respectively, L1-valued and
L2-valued random logical variables with L1 , 2l1 and L2 , 2l2 . By
further denoting y(k) = nq

j=1yj(k) ∈ ∆Q with Q , 2q , using the
properties of STP, the compact algebraic representation of system (1)
can be obtained as follows:

x(k) = Fk−1w(k − 1)u(k − 1)x(k − 1) (4a)

y(k) = Hkv(k)x(k) (4b)

where Fk−1 = ∗ni=1F i
k−1 ∈ LN×(ML1N) and Hk = ∗qj=1H

j
k ∈

LQ×(L2N), in which “∗” is the Khatri-Rao product.

A. Boolean Bayesian Filter

Suppose that the vector forms of the noisy measurements and
the control sequence are y1:k , {δλ1

Q , . . . , δ
λk
Q } and u0:k−1 ,

{δµ0
M , . . . , δ

µk−1

M }, respectively. The forward state probability distri-
bution vectors π(k|j) are defined by

π(k|j) ,

Pr
{
x(k) = δ1N |y1:j , u0:k−1

}
...

Pr
{
x(k) = δNN |y1:j , u0:k−1

}
 (5)

for k = 1, 2, . . . and j = k − 1, k, where Pr {·|·} refers to the
conditional probability. In the notation that follows, we use π(0|0)
to denote the initial (or namely, prior) distribution of the state before
any measurements are available. Note that π(k|k − 1) and π(k|k)
are the one-step prediction and the estimation of the forward state
probability distribution vector at time instant k.

Based on the Bayes’ theorem, the following result provides a
recursive matrix-based algorithm to calculate the one-step prediction
and estimation of the forward state probability distribution vector.

Lemma 1: Consider system (4) with noisy measurements y1:k and
control sequence u0:k−1. Let π(0|0) be the initial distribution of the
state. Then, we have

π(k|k − 1) = (Fk−1 n δ
µk−1

M )π(k − 1|k − 1) (6a)

π(k|k) = [Rowλk (Hk)]
⊤ ◦ π(k|k − 1)

[Rowλk (Hk)]π(k|k − 1)
(6b)

where, for k ∈ N+, “◦” represents the Hadamard (or element-wise)
product and

Fk−1 , Fk−1 nl1
i=1

[
pik−1 1− pik−1

]⊤ (7)

Hk , Hk nl2
i=1

[
qik 1− qik

]⊤
. (8)

Proof: It follows from (5) that

π(k|k − 1) =

N∑
i=1

δiN · Pr
{
x(k) = δiN |y1:k−1, u0:k−1

}
= E{x(k)|y1:k−1, u0:k−1}

which, together with (4a), yields

π(k|k − 1) = Fk−1 n E{w(k − 1)}n u(k − 1)

n E{x(k − 1)|y1:k−1, u0:k−1}
:= (Fk−1 n δ

µk−1

M )π(k − 1|k − 1)

(9)

where Fk−1 = Fk−1E{w(k − 1)} ∈ RN×MN and

E{w(k − 1)} = nl1
i=1E{wi(k − 1)}

= nl1
i=1

[
pik−1 1− pik−1

]⊤
.

(10)

Now, we need to derive the measurement-update equation for the
probability distribution vector π(k|k). Based on the Bayes’ theorem,
the ith entry of π(k|k), denoted by πi(k|k), can be obtained as

πi(k|k)

=
Pr

{
y(k)|x(k) = δiN

}
· Pr{x(k) = δiN |y1:k−1, u0:k−1}

Pr{y(k)|y1:k−1, u0:k−1}

=
Pr

{
y(k)|x(k) = δiN

}
· Pr{x(k) = δiN |y1:k−1, u0:k−1}

N∑
j=1

Pr{y(k)|x(k) = δjN} · Pr{x(k) = δjN |y1:k−1, u0:k−1}

:=
Vi · πi(k|k − 1)

V ⊤π(k|k − 1)

where Vi means the ith entry of vector V and V is defined by the
above equation, in which the event “y(k) = δ

λk
Q ” is represented as

“y(k)” for simplicity. By taking the expectation operation on both
sides of (4b), for the deterministic state variable x(k) = δiN , one has

E{y(k)|x(k) = δiN} = Hk n E{v(k)}n x(k)

= Hk nl2
i=1

[
qik 1− qik

]⊤ n δiN

:= Coli(Hk)

(11)

where Hk = Hk nl2
i=1

[
qik 1 − qik

]⊤. On the other hand, it is
obtained that

E{y(k)|x(k) = δiN} =
Q∑

j=1

Pr
{
y(k) = δjQ|x(k) = δiN

}
· δjQ

=

Pr
{
y(k) = δ1Q|x(k) = δiN

}
...

Pr{y(k) = δQQ |x(k) = δiN}

 .
With the above in mind, we can use (11) to obtain

V =


Pr{y(k) = δ

λk
Q |x(k) = δ1N}
...

Pr{y(k) = δ
λk
Q |x(k) = δNN }


=

 (Hk)λk,1

...
(Hk)λk,N

 = [Rowλk(Hk)]
⊤

(12)

and then it follows that

π(k|k) = 1

V ⊤π(k|k − 1)

 V1 · π1(k|k − 1)
...

VN · πN (k|k − 1)


=
V ◦ π(k|k − 1)

V ⊤π(k|k − 1)
=

[Rowλk(Hk)]
⊤ ◦ π(k|k − 1)

[Rowλk(Hk)]π(k|k − 1)

which completes the proof.
Remark 4: It is worth pointing out that the term Rowλk(Hk) might

be zero, and even if it is not zero, the denominator of (6b) might
also be zero. Therefore, some numerical issues would arise when
implementing the above developed algorithm. In order to avoid such
kind of possible numerical problems, in the real implementation, the
estimate of the forward state probability distribution vector is always
modified as follows:

π(k|k) =

 [Rowλk
(Hk)]

⊤◦π(k|k−1)

V , if V ̸= 0

π(k|k − 1), if V = 0
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where V , Rowλk(Hk)π(k|k − 1).
Now, we are in the position to design the Boolean-valued state esti-

mator X̂(k) by using the state probability distribution vector π(k|k).
For the convenience of later development, let us define X̂∗(k) as the
optimal estimate of X(k) based on the noisy measurements y1:k.
Let S , [X1 · · · XN ], where Xi ∈ Dn and Xi ∼ δiN (i.e., Xi is
identified with the vector δiN )), i ∈ {1, 2, . . . , N}.

Theorem 1: Consider system (1) with noisy measurements Y1:k

and control sequence U0:k−1. The optimal MMSE filter X̂∗(k) is
given by

X̂∗(k) = g(Sπ(k|k)) (13)

where the function g(·) : [0, 1]n → Dn is defined as g(α) =
(g(α1), g(α2), . . . , g(αn))

⊤ with α = (α1, α2, . . . , αn)
⊤ ∈ [0, 1]n

and g(·) given below:

g(α) ,
{
1, 0.5 ≤ α ≤ 1

0, 0 ≤ α < 0.5.

Furthermore, the corresponding optimal filtering MSE is

MSE[X̂∗(k)] =
n

2
− ∥Sπ(k|k)−Θ∥1 (14)

where Θ ∈ Rn×1 is a vector with all of its elements being 1
2

.
Proof: From the definition of the conditional MSE, one has

MSE[X̂(k)] = E

{
n∑

i=1

(Xi(k)− X̂i(k))
2

∣∣∣∣Y1:k, U0:k−1

}
. (15)

Since Xi(k) ∈ D and X̂i(k) ∈ D, it is easy to verify that

(Xi(k)− X̂i(k))
2 = |Xi(k)− X̂i(k)|.

It then follows from (15) that

MSE[X̂(k)] =
n∑

i=1

E
{
|Xi(k)− X̂i(k)|

∣∣Y1:k, U0:k−1

}
. (16)

The optimal estimator X̂∗(k) with MMSE in (16) can be derived as

X̂∗(k) = argmin
X̂(k)∈Dn

n∑
i=1

E
{∣∣Xi(k)− X̂i(k)

∣∣∣∣Y1:k, U0:k−1

}
.

Minimization of the above equation is derived if X̂i(k) ∈ D is chosen
to minimize the expectation

E
{∣∣Xi(k)− X̂i(k)

∣∣∣∣Y1:k, U0:k−1

}
for all i = 1, . . . , n, that is,

X̂∗
i (k) = argmin

X̂i(k)∈D
E
{∣∣Xi(k)− X̂i(k)

∣∣∣∣Y1:k, U0:k−1

}
= argmin

X̂i(k)∈D

∣∣E{Xi(k)|Y1:k, U0:k−1

}
− X̂i(k)

∣∣
= argmin

X̂i(k)∈D

∣∣X̄i(k|k)− X̂i(k)
∣∣ (17)

where X̄(k|k) = (X̄1(k|k), X̄2(k|k), . . . , X̄n(k|k))⊤ represents the
mathematical expectation of state X(k) conditional on measurements
up to (and including) time k and the control sequence U0:k−1. The
above equation yields

X̂∗
i (k) =

{
1, if 0.5 ≤ X̄i(k|k) ≤ 1

0, if 0 ≤ X̄i(k|k) < 0.5

:= g(X̄i(k|k))
(18)

and hence

X̂∗(k) =
(
X̂∗

1 (k), . . . , X̂
∗
n(k)

)⊤
= g(X̄(k|k)). (19)

Combining (17) and (18), one obtains that

E
{∣∣Xi(k)− X̂∗

i (k)
∣∣∣∣Y1:k, U0:k−1

}
=

∣∣X̄i(k|k)− g(X̄i(k|k))
∣∣

=

{
1− X̄i(k|k), if 0.5 ≤ X̄i(k|k) ≤ 1

X̄i(k|k), if 0 ≤ X̄i(k|k) < 0.5

= 0.5−
∣∣X̄i(k|k)− 0.5

∣∣ .
Then, the optimal conditional MSE obtained by X̂∗(k) can be
computed as follows:

MSE[X̂∗(k)] =

n∑
i=1

(
0.5−

∣∣X̄i(k|k)− 0.5
∣∣)

=
n

2
−

∥∥X̄(k|k)−Θ
∥∥
1
.

(20)

Both (19) and (20) require the computation of X̄(k|k), which can
be obtained as

X̄(k|k) =
N∑
i=1

XiPr
{
X(k) = Xi ∼ δiN |Y1:k, U0:k−1

}
= [X1 · · · XN ]π(k|k) := Sπ(k|k).

The proof is now complete.
Lemma 1 and Theorem 1 provide a recursive matrix-based method

for computing the optimal estimator X̂∗(k) and its MMSE, whose
procedure is displayed in Algorithm 1.

Algorithm 1 Boolean Bayesian Filter

Input: the noisy measurements y1:k = {δλ1
Q , . . . , δλk

Q } and the
control sequence u0:k−1 = {δµ0

M , . . . , δ
µk−1

M }, the prediction matrix
Fk, the update matrix Hk, the matrix S, and the function g(·)
Output: the state probability distribution vectors π(k|k), the
Boolean-valued state estimation X̂∗(k), and the corresponding con-
ditional MSE[X̂∗(k)]

1: procedure BOOLEAN BAYESIAN FILTER

2: Initialization: Set π(0|0) := E{x(0)}
3: for k = 1, 2, . . . do
4: Prediction:

π(k|k − 1) := (Fk−1 n δ
µk−1

M )π(k − 1|k − 1)

5: Update:

π(k|k) =

 [Rowλk
(Hk)]⊤◦π(k|k−1)

V , if V ̸= 0

π(k|k − 1), if V = 0

6: State Estimation: X̂∗(k) := g(Sπ(k|k))
7: Optimal Conditional MSE:

MSE[X̂∗(k)] :=
n

2
− ∥Sπ(k|k)−Θ∥1

8: end for
9: return (π(k|k), X̂∗(k),MSE[X̂∗(k)])

10: end procedure

B. Boolean Bayesian Smoother

In the post-mortem analysis, it is often the case that some future
measurements are available for the current state estimation. Based
on a fixed interval of noisy measurements, fixed-interval smoothing
method is to be developed for the state estimation of STVBN, which
usually might have a better performance than the algorithm proposed
in the previous section. In other words, if we have measurements
y1:τ = {δλ1

Q , . . . , δλτ
Q } in a fixed interval that are available, then we
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desire to obtain X(1|τ), X(2|τ), . . . , X(τ |τ), where X(k|τ) is the
exact state value of (1) for k = 1, 2, . . . , τ . Such an estimator is
applicable in the case when one has recorded some measurements
which are available for post-processing.

Now, we are interested in deriving an estimate of the state X(k)
based on the measurements from t = 1 to t = τ with τ > k. An
optimal smoothing filter is an estimator X̂(k) = ĝ(Y1:τ , U0:τ−1) of
the state variable X(k) that minimizes the smoothing mean-square
error (SMSE) defined below:

SMSE[X̂(k)] , E
{∥∥X(k)− X̂(k)

∥∥2

2

∣∣Y1:τ , U0:τ−1

}
.

In what follows, the forward-backward approach will be intro-
duced to deal with the smoothing problem. To this end, we first define
the backward probability distribution vector for state x(r) concerning
←−y τ :j = {δλτ

Q , . . . , δ
λj

Q } and ←−u τ−1:r{δ
µτ−1

M , . . . , δµr
M } as

←−π (r|j) ,

Pr
{
x(r) = δ1N |←−y τ :j ,

←−u τ−1:r

}
...

Pr
{
x(r) = δNN |←−y τ :j ,

←−u τ−1:r

}
 (21)

for r = τ, τ − 1, . . . , k and j = r, r + 1.
The smoothed probability distribution vector for state x(k) is

defined as

Π(k|τ) ,

Pr
{
x(k) = δ1N |y1:τ , u0:τ−1

}
...

Pr
{
x(k) = δNN |y1:τ , u0:τ−1

}
 .

Using the forward-backward technique for smoothing, two condition-
al probability distribution vector estimates are obtained concerning
the state x(k). The first estimate, π(k|k) (i.e., a posteriori estimate
at time instant k), is based on the Boolean Bayesian filter that runs
forward in time from t = 1 to t = k by utilizing the measurements
y1:k. The second estimate, ←−π (k|k + 1), is based on the Boolean
Bayesian filter that operates backward in time from t = τ back to
t = k by using the measurements ←−y τ :k+1, that is, a priori estimate
at time instant k from a reversed time perspective. Then, the optimal
smoothed estimate of the conditional probability distribution vector
concerning the state x(k), denoted by Π(k|τ) for convenience, can
be obtained by combining these two estimates.

Note that the backward estimate needs to operate backward in
time by starting at the terminal time instant τ . Since the backward
and forward estimates must be independent, the information that has
been utilized in the forward estimate is not allowed to be re-utilized
in the backward estimate. Hence, the backward initial distribution of
the state at the final time t = τ is set to be

←−π (τ |τ + 1) ,
[
1

N

1

N
· · · 1

N

]⊤

. (22)

The following result provides an efficient method for calculating
the one-step prediction and estimation of the backward state proba-
bility distribution vector.

Lemma 2: Consider system (1) with algebraic form (4). Let
←−π (τ |τ + 1) be the initial distribution of the state at the terminal
time instant τ . Then, one has

←−π (γ|γ) =
[
Rowλγ (Hγ)

]⊤ ◦←−π (γ|γ + 1)

[Rowλγ (Hγ)]
←−π (γ|γ + 1)

(23a)

←−π (γ − 1|γ) = ((δ
µγ−1

M )⊤ n F⊤
γ−1)Ψγ−1

←−π (γ|γ) (23b)

for γ = τ, τ − 1, . . . , k + 1, where ←−π (τ |τ + 1) is defined as
in (22), and Ψγ−1 , diag{1/∥ψ1

γ−1∥1, . . . , 1/∥ψN
γ−1∥1} with

ψi
γ−1 = Coli((δ

µγ−1

M )⊤ n F⊤
γ−1), i = 1, 2, . . . , N .

Proof: The proof of (23a) follows a similar line as that of (6b)
in Lemma 1, and is thus omitted here for the sake of brevity. In

Algorithm 2 Boolean Bayesian Smoother

Input: the noisy measurements y1:τ = {δλ1
Q , . . . , δλτ

Q } and the
control sequence u0:τ−1 = {δµ0

M , . . . , δ
µτ−1

M }, the prediction matrix
Fk, the update matrix Hk, the matrix S, and the function g(·)
Output: the state probability distribution vectors Π(k|τ), the
Boolean-valued state estimation X̂∗(k), and the corresponding opti-
mal SMSE[X̂∗(k)]

1: procedure BOOLEAN BAYESIAN SMOOTHER

2: Initialization: Set π(0|0) := E{x(0)} and

←−π (τ |τ + 1) :=

[
1

N

1

N
· · · 1

N

]⊤

3: for γ := 1, 2, . . . , k do
4: Prediction:

π(γ|γ − 1) := (Fγ−1 n δ
µγ−1

M )π(γ − 1|γ − 1)

5: Update:

π(k|k) =

 [Rowλk
(Hk)]⊤◦π(k|k−1)

V , if V ̸= 0

π(k|k − 1), if V = 0

6: end for
7: for γ := τ, τ − 1, . . . , k + 1 do
8: Update:

←−π (γ|γ) :=
[
Rowλγ (Hγ)

]⊤ ◦←−π (γ|γ + 1)

[Rowλγ (Hγ)]
←−π (γ|γ + 1)

9: Prediction:
←−π (γ − 1|γ) = ((δ

µγ−1

M )⊤ n F⊤
γ−1)Ψγ−1

←−π (γ|γ)

10: end for
11: Smoothed Distribution Vector:

Π(k|τ) :=
←−π (k|k + 1) ◦ π(k|k)
∥←−π (k|k + 1) ◦ π(k|k)∥1

12: State Estimation: X̂∗(k) := g(SΠ(k|τ))
13: Optimal SMSE:

SMSE[X̂∗(k)] :=
n

2
− ∥SΠ(k|τ)−Θ∥1

14: return (Π(k|τ), X̂∗(k), SMSE[X̂∗(k)])
15: end procedure

the following, we show the validity of (23b). Note that the matrix
Fγ−1 n δ

µγ−1

M is the transition probability matrix of the controlled
Markov chain defined by the state equation (4a) [6], that is,

(Fγ−1 n δ
µγ−1

M )i,j

= Pr{x(γ) = δiN |x(γ − 1) = δjN , u(γ − 1) = δ
µγ−1

M }.

For the given x(γ) = δiN and u(γ − 1) = δ
µγ−1

M , the backward
probability distribution vector of state x(γ − 1), denoted by π(γ −
1|x(γ), u(γ − 1)) (i.e., πj(γ − 1|x(γ), u(γ − 1)) , Pr{x(γ − 1) =
δjN |x(γ) = δiN , u(γ − 1) = δ

uγ−1

M } for j = 1, 2, . . . , N ), can be
obtained as

π(γ − 1|x(γ), δµγ−1

M ) =

[
Rowi(Fγ−1 n δ

µγ−1

M )
]⊤∥∥∥[Rowi(Fγ−1 n δ

µγ−1

M )
]⊤∥∥∥

1

=
Coli((δ

µγ−1

M )⊤ n F⊤
γ−1)∥∥Coli((δµγ−1

M )⊤ n F⊤
γ−1)

∥∥
1

.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI 10.1109/TAC.2020.2973817, IEEE Transactions on Automatic Control



FINAL VERSION 6

Thus, it follows that
←−π (γ − 1|γ)

=

N∑
i=1

Pr{x(γ) = δiN |←−y τ :γ ,
←−u τ−1:γ} · π(γ − 1|x(γ), δµγ−1

M )

=

N∑
i=1

←−π i(γ|γ)
Coli((δ

µγ−1

M )⊤ n F⊤
γ−1)∥∥Coli((δµγ−1

M )⊤ n F⊤
γ−1)

∥∥
1

=

[
Col1((δ

µγ−1

M )⊤ n F⊤
γ−1)∥∥Col1((δµγ−1

M )⊤ n F⊤
γ−1)

∥∥
1

· · ·
ColN (δ

µγ−1

M n F⊤
γ−1)∥∥ColN ((δ

µγ−1

M )⊤ n F⊤
γ−1)

∥∥
1

]
←−π (γ|γ)

=
(
(δ

µγ−1

M )⊤ n F⊤
γ−1

)
Ψγ−1

←−π (γ|γ),

which completes the proof.
Lemma 3: Consider system (1) with noisy measurements y1:τ

and control sequence u0:τ−1. The smoothed conditional probability
distribution vector Π(k|τ) is derived as

Π(k|τ) =
←−π (k|k + 1) ◦ π(k|k)
∥←−π (k|k + 1) ◦ π(k|k)∥1

. (24)

Proof: Based on the Bayes’ theorem, one can verify that (25)
holds which is shown at the bottom of the next page. Notice that

Pr{←−y τ :k+1,
←−u τ−1:k|x(k) = δiN}

=
Pr{x(k) = δiN |←−y τ :k+1,

←−u τ−1:k} · Pr{←−y τ :k+1,
←−u τ−1:k}

Pr{x(k) = δiN}
which, together with (25), implies that (24) holds.

With the help of Theorem 1 and Lemma 3, we have the following
result immediately.

Theorem 2: Consider system (1) with noisy measurements y1:τ and
control sequence u0:τ−1. The optimal minimum SMSE filter X̂∗(k)
is designed as follows

X̂∗(k) = g(SΠ(k|τ)) (26)

and the corresponding optimal SMSE can be calculated by

SMSE[X̂∗(k)] =
n

2
− ∥SΠ(k|τ)−Θ∥1 .

The pseudocode for computing the optimal smoother and its
minimum SMSE is displayed in Algorithm 2.

Remark 5: The relating issues concerning the state estimation of
BNs have been discussed recently in [15], where both the minimum
mismatching estimation and the maximum posterior estimation of the
state have been provided for BCNs with stochastic disturbance. When
referring to the state estimation for STVBNs, the similar discussions
are much more complex. Moreover, it is worth pointing out that in
[15], the conditional probability distribution of the state is calculated
based on only the historical control inputs and measurement outputs.
However, in the post-mortem analysis, it is often the case that some
future measurements are available for the state estimation. Based on a
fixed interval of noisy measurements, the forward-backward approach
is utilized for the state estimation of STVBNs, which usually might
have a better performance than the algorithms proposed in [15].

Remark 6: The main results in this paper (i.e., Theorems 1-2)
establish a general theoretical framework for the state estimation
problem of stochastic time-varying BNs, and the developed matrix-
based algorithms (i.e., Algorithms 1-2) provide an efficient way to
compute the state estimation with minimum MSE for the STVBNs.
However, Fk and Hk involved in the above mentioned algorithms
are respectively N × NM and Q × N matrices, which means that
the dimensions of Fk and Hk will grow exponentially as the size of

the corresponding network increases. Hence, the designed algorithms
are applicable only to STVBNs with scales not too large.

Remark 7: In Theorems 1-2, a general theoretical framework is
established for the state estimation problem of STVBNs. Our main
results distinguish with the existing ones in the following two aspects:
1) the one-step prediction and estimation of the state probability
distribution vector are calculated by using a new recursive matrix-
based algorithm with the help from STP technique and Bayes’ theo-
rem, thereby facilitating the design of the desired Boolean Bayesian
filter; and 2) the fixed-interval smoothing filter is designed using the
forward-backward approach.

IV. A BIOLOGICAL EXAMPLE

The well-known p53-MDM2 negative-feedback GRN contains
a single Boolean signal Z (corresponding to the DNA damage
input) and four Boolean state variables X1, . . . , X4 (representing
the activity/inactivity of four different genes: ATM , p53, Wip1,
Mdm2, respectively). In the recent paper [21], a Boolean model
has been established to describe the regulation mechanism of p53-
MDM2 negative-feedback GRN as follows:

X1(k) = X3(k − 1) ∧ (X1(k − 1) ∨ Z(k − 1)),

X2(k) = X4(k − 1) ∧ (X1(k − 1) ∨X3(k − 1)),

X3(k) = X2(k − 1),

X4(k) = X1(k − 1) ∧ (X2(k − 1) ∨X3(k − 1))

(27)

where “∧” and “∨” are the logical operators “AND” and “OR”,
respectively.

With the help of STP and setting x(t) , n4
i=1xi(t), the BN model

(27) can be converted into its algebraic form as follows:

x(k) = Fz(k − 1)x(k − 1) (28)

where z(k − 1) is the vector form of the Boolean signal Z(k − 1)
and F ∈ L16×32.

The BN model (27) has two different contexts, where the value of
the external signal z determines which context is active. Specifically,
the input z in (28) may attain one of its possible two values: DNA
damage z = δ12 or no-stress z = δ22 . For each of these two possible
values, Fi , F nδi2 (i = 1, 2) is a 16×16 logical matrix that can be
treated as the state transition matrix of the corresponding constituent
BN, denoted by BNi for simplicity.

Now, let us discuss the context estimation problem of BN mod-
el (27) based on the noisy measurements. As a matter of fact, the
unobserved context that selects between the constituent BNs can be
encoded by the external signal Z, that is, Z = 1 for BN1 and
Z = 0 for BN2. The evolution of the context process is assumed
to be independent with the other state variables. The logical equation
for the context selector Z is governed by

Z(k) = Z(k − 1)⊕W (k − 1) (29)

where W (k) ∈ D is the stochastic Bernoulli-type white noise with
W (k) ∼ B(1, pk), the logical operator “⊕” leaves the state of the
context selector Z(k) unaltered when W (k − 1) = 0 and flips it
when W (k−1) = 1. The parameter pk indicates the intensity of the
noise, which can be regarded as the context switching probability of
system (27) determining the possibility that the context will switch
between BN1 and BN2 at a given time instant k.

To facilitate the context estimation problem, we put together the
state and the context processes to obtain the following augmented
system: {

X(k) = f(X(k − 1), Z(k − 1))

Z(k) = Z(k − 1)⊕W (k − 1)
(30a)
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Fig. 1. The real observation value of the measurement output in (30b).

where f(·, ·) is defined the same as in (27). The measurement output
in this example is given as

Y (k) = X(k)⊕ V (k) (30b)

which implies that only the state variables X1, . . . , X4 are observable
under noisy conditions. Here, the measurement noise V (k) =
(V1(k), . . . , V4(k)) is assumed to be white with Vj(k) ∼ B(1, qjk)
for j = 1, . . . , 4.

In this example, we take pk ≡ 0.08 and qjk ≡ 0.01. Fig. 1
displays the real observation value of the measurement output Y (k),
from which we can see that, under no damage, the system spends
a significant amount of time in the equilibrium state (0, 0, 0, 0),
whereas under DNA damage, more states are visited periodically.
Fig. 2 presents the value of the conditional expectation Z̄(k|k) =
E{Z(k)|Y1:k} and the optimal MMSE filter Ẑ∗(k) returned by
Algorithm 1 as well as the context selector Z(k). It can be observed
that the filter Ẑ∗(k) performs quite well in tracking the true signal
Z(k). From Theorem 1, one obtains

MSE[Ẑ∗(k)] =
1

2
−

∣∣∣∣Z̄(k|k)− 1

2

∣∣∣∣
which implies that

∣∣Z̄(k|k)− 1
2

∣∣ can be regarded as the confidence
in the estimation of the context [4]. We can see clearly from Fig. 2
that the confidence become small near the transition of the context.
Moreover, there always exists a lag before Ẑ∗(k) responds to a tran-
sition in Z(k) (e.g., the transition at time instants k = 11, 23, 31, 38).
During this lag, enough contradictory measurements are accumulated
in order to switch the estimation of the context.

In addition, Fig. 3 depicts the MSE returned by Algorithm 1 and
the SMSE calculated by Algorithm 2, from which it can be observed
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Fig. 2. Estimated and true context trajectories of BN model (27).
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Fig. 3. MSE and SMSE returned by the proposed algorithms.

that the SMSE is much smaller than the MSE in most of the time
instants, since the Boolean Bayesian smoother also uses the future
measurements, whereas the Boolean Bayesian filter uses only the
measurements up to the present time instant. It is worth pointing
out that, in some particular/extreme situations, the performance of
the Boolean Bayesian smoother might not be better than that of the
Boolean Bayesian filter as expected. Fortunately, such cases usually
do not occur.

Pr{x(k) = δiN |y1:τ , u0:τ−1} =
Pr{←−y τ :k+1,

←−u τ−1:k|x(k) = δiN , y1:k, u0:k−1} · Pr{x(k) = δiN |y1:k, u0:k−1}
Pr{←−y τ :k+1,

←−u τ−1:k|y1:k, u0:k−1}

=
Pr{←−y τ :k+1,

←−u τ−1:k|x(k) = δiN} · Pr{x(k) = δiN |y1:k, u0:k−1}∑N
j=1 Pr{x(k) = δjN ,

←−y τ :k+1,
←−u τ−1:k|y1:k, u0:k−1}

=
Pr{←−y τ :k+1,

←−u τ−1:k|x(k) = δiN} · Pr{x(k) = δiN |y1:k, u0:k−1}∑N
j=1 Pr{

←−y τ :k+1,
←−u τ−1:k|x(k) = δjN} · Pr{x(k) = δjN |y1:k, u0:k−1}

(25)
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V. CONCLUSION

In this paper, the state estimation problem has been investigated
for a class of time-varying BNs subjected to stochastic disturbances,
which have been simulated by a series of mutually independent
random variables obeying Bernoulli distribution with certain success
probabilities. An algebraic representation of the STVBNs has been
obtained by resorting to the STP technique. Consequently, Boolean
Bayesian filter has been developed to estimate the true states of
the STVBNs, and a recursive matrix-based algorithm has been put
forward to calculate the one-step prediction and estimation of the state
probability distribution vector. Moreover, the fixed-interval smoothing
filter has also been achieved by applying the forward-backward
approach. Finally, a simulation experiment has been employed to il-
lustrate the applicability and effectiveness of the proposed algorithms.

For the derived theoretical results, their limitation lies in the com-
putational complexity. Note that the state space grows exponentially
as the size of the corresponding network increases, the designed
filters in this paper are available only to STVBNs with small scales.
In the near future, we will focus on the topics of decreasing the
computational complexities concerning STVBNs so as to improve
the established filtering algorithms.
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