This material has been published in revised form in Journal of Paleontology https://doi.org/10.1017/jpa.2021.105. This version is free to view and download for private research and study only. Not for re-distribution or re-use. Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society.

1 Diverse labechiid stromatoporoids from the Upper Ordovician

2 Xiazhen Formation of South China and their paleobiogeographic

3 implications

4	
5	Juwan Jeon ^{1, 2} , Kun Liang ¹ *, Jino Park ³ , Stephen Kershaw ^{4, 5} , and Yuandong Zhang ^{1, 2}
6	
7	¹ State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and
8	Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese
9	Academy of Sciences, Nanjing 210008, China
10	² University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
11	³ Department of Geology, Kangwon National University, Chuncheon, 24341 Republic of
12	Korea
13	⁴ Department of Life Sciences, Brunel University, Kingston Lane, Uxbridge, UB83PH, United
14	Kingdom
15	⁵ Earth Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD,
16	UK
17	
18	E-mail: Juwan Jeon [jjeon@nigpas.ac.cn], Kun Liang [kliang@nigpas.ac.cn], Jino Park
19	[jinopark@kangwon.ac.kr], Stephen Kershaw [stephen.kershaw@brunel.ac.uk], Yuandong
20	Zhang [ydzhang@nigpas.ac.cn]

*Corresponding author: Kun Liang: kliang@nigpas.ac.cn

22

23 **Running Header:** Late Ordovician labechiid stromatoporoids from South China

24

Abstract.—A diverse labechiid stromatoporoid assemblage that includes 16 species in 8 25 26 genera was found in the Upper Ordovician Xiazhen Formation (mid-late Katian) at Zhuzhai, Jiangxi Province of South China. The assemblage is characterized by a combination of: a) 27 28 North China provincial species succeeding from their origination in the Darriwilian, 29 including Pseudostylodictyon poshanense Ozaki, 1938, Labechia shanhsiensis Yabe and Sugiyama, 1930, Lb. variabilis Yabe and Sugiyama, 1930 and Labechiella regularis (Yabe 30 and Sugiyama, 1930), and b) South China endemic species, including three new species (Lb. 31 zhuzhainus Jeon sp. nov., Lblla. beluatus Jeon sp. nov., Sinabeatricea luteolus Jeon gen. et 32 sp. nov.), and four species in open nomenclature (Rosenella sp., Cystostroma sp., 33 34 Pseudostylodictyon sp. and Labechia sp.). The finding of Lblla. gondwanense Jeon sp. nov., Stylostroma bubsense Webby, 1991, Sty. ugbrookense Webby, 1991 and Thamnobeatricea 35 gouldi Webby, 1991 in the formation indicates that Tasmania was closely related to South 36 37 China, and had a closer paleobiogeographical relation with peri-Gondwanan terranes than Laurentia. In addition, the occurrences of Labechia altunensis Dong and Wang, 1984 and 38 Stylostroma species support a close biogeographic link between Tarim and South China 39 through the Middle to Late Ordovician interval, corresponding with the results from other 40 fossil groups such as brachiopods, conodonts and chitinozoans. The diverse labechiids from 41 the Xiazhen Formation improve our understanding of the diversity of Ordovician 42 43 stromatoporoids in peri-Gondwanan terranes and the biogeographic affinities among

44 Australia (especially Tasmania rather than central New South Wales), Tarim and South45 China.

46

47 UUID: http://zoobank.org/4f46c91b-fa4c-4fe5-bea9-e409f1785677

48 Introduction

49

50 The Ordovician is a crucial period for the early evolution of stromatoporoids, manifested by their first-known appearance (Li et al., 2017; Jeon et al., 2019) and early diversification 51 52 (Webby, 2004). Stromatoporoids achieved one of their highest diversity and widest circum-53 equatorial distributions throughout the late Middle to Late Ordovician times, as many as 26 genera on a global scale (Webby, 1979c, 1980, 1994, 2004, 2015; Stock et al., 2015). Among 54 them, labechiids, which are grouped by common internal morphological characteristics of 55 56 cyst plates, denticles and pillars, were predominant stromatoporoids (Webby, 2015a). After the appearance of the pioneering genus *Cystostroma* in the early Floian in South 57 58 China (Li et al., 2017; Jeon et al., 2019), 12 labechiid genera demonstrate stromatoporoid diversification in the late Darriwilian from North China, Sibumasu, Siberia, Tasmania and 59 Laurentia (Stock et al., 2015), in conjunction with significant global-scale development of 60 61 reef-building organisms including bryozoans, sponges and corals (Carrera and Rigby, 2004; 62 Webby, 2004, 2015a; Ernst, 2018; Servais and Harper, 2018). During this period, stromatoporoid species in different terranes show a high level of endemism (Nestor and 63 64 Webby, 2013; Stock et al., 2015). Subsequently, provincial species gradually dispersed to other neighboring regions, resulting in an increased diversity level, with 19 genera recorded 65 in the Katian (Webby, 2004; Stock et al., 2015). 66

67	Upper Ordovician carbonate successions of South China yield skeletal-dominated reefs
68	within the Jiangshan-Changshan-Yushan (JCY) triangle area near the border between
69	Jiangxi and Zhejiang provinces of southeastern China (Fig. 1.2; Chen et al., 1987; Webby,
70	2002; Zhang et al., 2007; Lee et al., 2012; Li et al., 2015). Stromatoporoids are among the
71	most common reef components, in both volume and abundance, through the Upper
72	Ordovician succession of South China, but these taxa have not been studied in detail. Only
73	brief information is available in previous geological and stratigraphic studies (Bian et al.,
74	1996; Chen et al., 1987; Chen, 1995, 1996; Lee et al., 2012; Webby, 2002; Zhang et al.,
75	2007). As a result, South China was not considered significant in terms of the biogeographic
76	patterns of Ordovician stromatoporoids in recent publications (e.g., Nestor and Webby, 2013;
77	Stock et al., 2015). It has been postulated that South China and Australia (especially New
78	South Wales) may have had a close biogeographical relationship during Late Ordovician
79	time, judging from the occurrence of few common clathrodictyid stromatoporoids (Lin and
80	Webby, 1988, 1989), but species-level taxa of labechiids have not been evaluated.
81	A recent study of Late Ordovician stromatoporoids revealed a total of eleven
82	stromatoporoid genera from the Xiazhen Formation and indicated that South China was also
83	one of the loci for the diversification of early stromatoporoids (Jeon et al. 2020a), in
84	accordance with extensive reef developments during the Great Ordovician Biodiversification
85	Event (Servais and Harper 2018). Labechiids in the formation belong to 8 genera and are
86	much more diversified than the clathrodictyids (Jeon et al., 2020a). In this study, we carried
87	out detailed species-level taxonomic work and report 16 labechiid species from the Xiazhen
88	Formation. Based on the occurrences of labechiid species, we propose a paleobiogeographic
89	relationship between peri-Gondwanan terranes and others during the Ordovician Period.
90	

91 Geological setting

93	The Upper Ordovician Xiazhen Formation at Zhuzhai, Yushan County, is one of the best-
94	exposed Ordovician carbonate successions in the Jiangshan-Changshan-Yusahn (JCY) area.
95	It is well-known for the occurrence of diverse invertebrate marine organisms including
96	spiculate sponges and stromatoporoids, corals, bryozoans, brachiopods, trilobites, as well as
97	graptolites, (Chen et al., 1987; Chen, 1995, 1996; Kwon et al., 2012; Lee et al., 2012; Lee,
98	2013; Dai et al., 2015; Lee, et al. 2016a, 2016b, 2019; Liang et al., 2016; Sun et al., 2016;
99	Zhang, 2016; Park et al., 2017; Zhang et al., 2018; Jeon et al., 2020a, b). The formation has
100	been interpreted as a mixed carbonate-siliciclastic ramp-type platform (Park et al., 2021),
101	which developed along the northern margin of the Cathaysian landmass of South China (Li et
102	al., 2004; Zhang et al., 2007).
103	The measured section of the Xiazhen Formation is approximately 190 m thick, and
104	exposed at three small hills (named as sub-sections ZU 1, ZU 2, and ZU 3; Fig. 1.3),
105	separated by Quaternary sedimentary deposits (Lee et al., 2012). The stratigraphy of the
106	formation at Zhuzhai has been revised according to detailed lithological and paleontological
107	data (see Lee et al., 2012) and adopted in the present study (Fig. 2). The formation was
108	divided into the lower limestone member, the lower shale member, the middle mixed
109	lithology member and the upper shale member in ascending order, judging from different
110	lithofacies (Lee et al., 2012; Fig. 2).
111	The Xiazhen Formation has been estimated to be the middle to late Katian, judging from
112	corals and the rough correlation with the Sanqushan and Changwu formations (Zhang et al.,
113	2007). A recent discovery of the graptolite Anticostia uniformis (Mu and Lin in Mu et al.,
114	1993) in the upper shale member of ZU 1 (see fig. 1b of Chen et al. 2016 for detailed
115	specimen location) indicated that the upper part of Xiazhen Formation ranges from the

116 Dicellograptus complanatus Biozone to the Paraorthograptus pacificus Biozone

(*Diceratograptus mirus* Subzone) of the late Katian (Chen et al., 2016). Overall, the Xiazhen
Formation is most likely to be the mid to late Katian in age.

119

120 Materials and methods

121

The occurrence and abundance of stromatoporoids in the Xiazhen Formation are considered 122 to be largely governed by depositional environment (e.g., water depth, substrate adaptability, 123 siliciclastic sediment input, depositional energy level). Stromatoporoids are not only common 124 in patch reef environments but also present in non-reef environments. The general co-125 126 occurrence of stromatoporoids and calcareous algae in the formation indicates that stromatoporoids lived within the photic zone. Labechiid stromatoporoids exhibited shorter 127 stratigraphic ranges compared with those of tabulate corals and clathrodictyid 128 stromatoporoids (see Liang et al., 2016; Sun et al., 2016; Jeon et al., 2020a). 129 Eighteen stromatoporoid-bearing intervals are recognized from the Xiazhen Formation at 130 131 Zhuzhai (Jeon et al., 2020a; labelled as S1 to S18; Fig. 2, 3). Among approximately 420 randomly collected stromatoporoid specimens, approximately 110 specimens are labechiid 132 133 stromatoporoids collected from the S2 to S8 intervals in sub-section ZU 2 (more than 70 specimens), S8 to S18 in sub-section ZU 1 (40 specimens) and the upper part of sub-section 134 ZU 3 (three fragmented specimens, indicative of transportation before burial) (Fig. 2). 135 Transverse and longitudinal thin sections of the stromatoporoid specimens were prepared for 136 137 species identification. The majority of specimens are well preserved while a few poorlypreserved specimens were studied by the "white card technique" to enhance views of 138

stromatoporoid internal structures (e.g., Delgado, 1977; Zenger, 1979; Folk, 1987; Jeon et al.,
2019; Fig. 4.2, 4.3). The suprageneric taxonomic assignments and terminology used in this
study follow those of Webby (2015b, 2015c).

Network analysis, which provides a clear visible network diagram to understand 142 143 paleobiogeographic links and connections with specific nodes and edges, has been applied in 144 both modern biology and paleobiology (e.g., Sidor et al., 2013; Kiel, 2017; Rojas et al., 2017; Huang et al., 2018; Fang et al., 2019). The occurrences of Ordovician stromatoporoids are 145 organized as a binary dataset (i.e., terranes and labechiid species) and imported into the 146 network analysis software Gephi version 0.9.2 (Bastian et al., 2009). Lines in the diagram 147 (called "edges" in network analysis terminology) connect a source node (terrane) to a target 148 node (labechiid species). A target node linked to only a single source node represents an 149 150 endemic labechiid. A cosmopolitan species is represented by a multi-connected node. The 151 size of a target node reflects the degree of cosmopolitanism, and larger node size indicates higher degree of cosmopolitanism. There are several options within Gephi for displaying the 152 data, and the layout option called Force Atlas 2 was applied here for the diagram layout. The 153 following parameters within Gephi were used in this study: scaling 2.0, gravity 1.0, edge 154 weight influence 1.0, number of threads 7, tolerance 1.0 and approximation 1.2 155

156 The dataset of the Ordovician labechiid stromatoporoids for the network analysis was compiled from previous publications as well as this study, including 181 labechiid species 157 from peri-Gondwanan regions, including South China, North China (Yabe and Sugiyama, 158 159 1930a, b; Endo, 1932; Ozaki, 1938; Sugiyama, 1941; Dong, 1982; Kano et al., 1994; Jeon et al., 2017, 2019), Sibumasu (Webby et al., 1985), Australian terranes (Webby, 1969, 1971, 160 1979b, 1991; Pickett and Percival, 2001; Percival et al., 2001), and Tarim (Dong and Wang, 161 1984), Laurentia (Galloway, 1957; Galloway and St. Jean, 1961; Kapp and Stearn, 1975; 162 Webby, 1977; Bolton, 1988; Nestor et al., 2010; Copper et al., 2013), Baltica (Nestor, 1960, 163

164	1964; Bogoyavlenskaya, 1973; Webby, 1979a), Siberia (Yavorsky, 1955, 1961; Nestor, 1976;
165	Khromykh, 2001), Altai-Sayan Fold Belt (Khalifina, 1960), Tuva (Bogoyavlenskaya, 1971),
166	and Kazakh terranes (Yavorsky, 1961; Karimova and Lessovaya, 2007). A few Ordovician
167	labechiid species are not added in this study due to problematic taxonomic assignment (e.g.,
168	Bol'shakova and Ulitina, 1985; Jiang et al., 2011), inaccessibility of original publications, or
169	impoverished occurrence of data. Due to insufficient biostratigraphic precision (i.e.,
170	conodonts, graptolites) from carbonate successions, stromatoporoid study relies on relatively
171	coarse temporal resolution. Thus, in this study, we compiled all the data within the
172	Ordovician, using the updated genera-level taxonomic revision of Webby (2015c).
173	
174	Repository and institutional abbreviation. — All labechiid stromatoporoid specimens and
175	thin sections in this study are housed in Nanjing Institute of Geology and Palaeontology
176	(NIGP), Chinese Academy of Sciences, Nanjing, China.
177	
178	Systematic paleontology
179	
180	Phylum Porifera Grant, 1836
181	Class Stromatoporoidea Nicholson and Murie, 1878
182	Order Labechiida Kühn, 1927
183	Family Rosenellidae Yavorsky in Khalfina and Yavorsky, 1973
184	
185	Cystostroma Galloway and St. Jean in Galloway, 1957
186	Type species.—Cystostroma vermontense Galloway and St. Jean in Galloway, 1957.
187	Cystostroma sp. indet.
188	Figure 4.1, 4.2, 4.3

- 190 2020 Cystostroma Jeon, Liang, Park, Choh and Lee: p. 200, fig. 5a.
- 191
- 192 *Occurrence* The S2 interval of the Xiazhen Formation (Upper Ordovician, Katian) at
- 193 Zhuzhai, Yushan County, Jiangxi Province, China.
- 194 *Description.*—Skeletons are thin laminar, less than 3 mm in height (0.8 mm in average),
- 195 exclusively encrusting on fragmented shells.
- 196 The majority of the skeletons are poorly preserved and fragmented. In longitudinal section,
- 197 cyst plates are moderately convex, of variable cyst sizes, ranging from 0.13–0.35 mm in
- height (n=13, species average 0.19 mm) and 0.31–0.71 mm in width (n=13, species average
- 199 0.44 mm). Cyst width/height ratio ranges from 1.42 to 3.80, and average 2.38 (n=13).
- 200 Denticles, latilaminae and mamelons are not observed.
- 201 *Material.* Two specimens, including NIGP 168771 and 175160 from the S2 interval.
- 202 *Remarks.* The distinguishable characteristic of the present specimen of this taxon is that its
- 203 cyst size is more variable than in other species from peri-Gondwanan regions (*Cystostroma*
- sp. in Webby et al., 1985 and *Cystostroma primordia* Jeon et al., 2019). *C. primordia*, which
- is the earliest known species of *Cystostroma*, possessed the smallest cysts, ranging from
- 206 0.04–0.20 mm in height and 0.09–0.39 mm in length (Jeon et al., 2019). Cysts in
- 207 *Cystostroma* sp. from Sibumasu range from 0.2–0.6 mm high and 0.7–1.0 mm wide (Webby
- et al., 1985), bigger than both C. primordia and the Xiazhen species. Denticles were not
- 209 found in all peri-Gondwanan species.
- 210
- 211

Genus Rosenella Nicholson, 1886a

- 212 Type species.—Rosenella macrosystis Nicholson, 1886a
- 213 *Rosenella* sp. indet.

Figure 4.4, 4.5, 4.6 214 215 2020 Rosenella Jeon, Liang, Park, Choh and Lee: p. 200, fig. 5b, c. 216 217 218 Occurrence.— The S11 interval of the Xiazhen Formation (Upper Ordovician, Katian) at Zhuzhai, Yushan County, Jiangxi Province, China. 219 Description.— The skeleton is thin laminar, 31 mm in width and 9 mm in height. It was 220 preserved in upside-down position, encrusted by another stromatoporoid (Ecclimadictyon). In 221 longitudinal section, cysts are small, low-profile and long, ranging from 0.17–0.53 mm high 222 223 (n=12, species average 0.31 mm) and 0.99–2.91 mm width (n=12, species average 1.89 mm). Cyst width/height ratio ranges from 3.60 to 13.13, with an average of 6.6 (n=12). Denticles 224 225 are sporadically developed, appearing as small dots in transverse sections. Latilaminae are 226 not observed. Mamelon-like up-growths are found, approximately 2 mm in height. Material.— One specimen of NIGP 168772 from the S11 interval. 227 Remarks.—Rosenella. woyuensis Ozaki, 1938 and R. amzassensis Khalfina, 1960 differ in 228 229 having much larger cysts. The cysts of *R. amzassensis* commonly range from 1–3 mm in height and 1–9 mm in width, but in rare cases up to 5 mm in height (Khalfina, 1960), while 230 231 the cysts of *R. woyuensis* range from 0.3–0.5 mm in height and 0.4–12 mm in width (Ozaki, 1938; Webby, 1969, 1991; Webby et al., 1985). 232 233 234 Genus Pseudostylodictyon Ozaki, 1938

235 *Type species.—Pseudostylodictyon poshanense* Ozaki, 1938.

236 *Remarks.*—The original description of genus *Pseudostylodictyon* mentioned the existence of

- 237 vertical elements, which penetrate through two or even more thinner and low cyst plates (p.
- 238 209 in Ozaki, 1938). Vertical elements are best described as pillars, but not well-matched

239	with the rosenellid family group, which mainly comprises cyst plates and accessory denticles.
240	However, subsequent descriptions of stromatoporoid genus previously attributed to
241	Pseudostylodictyon and its species did not mention the existence of pillars (e.g., Galloway,
242	1957; Galloway and St. Jean, 1961; Webby, 1969; Kapp and Stearn, 1975). The most specific
243	characters of long and low cyst plates and mamelon columns have been considered as the
244	most important distinguishable features of this genus (e.g., Galloway, 1957; Galloway and St.
245	Jean, 1961). The most recent description of the type specimens (NIGP 121556a, b; Ps.
246	poshanense Ozaki, 1938) described this penetrating vertical structure as 'a vague impression
247	of one or two, more continuous, upwardly and outwardly radiating, pillar-like structures' and
248	'weakly developed pattern of concentrically arranged cyst plates, outwardly radiating
249	structures, mainly denticles and a few incomplete pillars' in p. 719 of Webby (2015a). Our
250	materials from the Xiazhen Formation, which are identified as P. poshanense Ozaki, 1938
251	and Pseudostylodictyon sp., have well-developed pillar-like structures (see Fig. 4.8, 4.9),
252	restricted to mamelon columns. Such features in P. poshanense imply that the genus
253	Pseudostylodictyon may not be included in the family Rosenellidae and therefore raises the
254	question as to defining the difference between genera Stylostroma and Pseudostylodictyon.
255	Thus, a follow-up study is required to investigate the presence of pillars in other
256	Pseudostylodictyon species.
257	
258	Pseudostylodictyon poshanensis Ozaki, 1938
259	Figure 4.7, 4.8
260	
261	1938 Pseudostylodictyon poshanensis Ozaki: p. 208, pl. 24, fig. 2, pl. 25, fig. 1a-e.
262	

263	Type specimen.—Syntype, longitudinal section of the Pseudostylodictyon poshanense Ozaki,
264	1938 skeleton (NIGP 121556) from the Machiakou Formation (Middle Ordovician,
265	Darriwilian), north of Woyu, Boshan County, Shandong Province, China (Ozaki, 1938, pl.
266	24, fig. 2; pl. 25, 1a–e).

267 *Occurrence.*— The upper part (rudstone interval) of sub-section ZU 3 of the Xiazhen

Formation (Upper Ordovician, Katian) at Zhuzhai section, Yushan County, Jiangxi Province,
China.

270 Description.—The specimens are transported fragments (thus difficult to determine growth

form), up to 30 mm in width and 45 mm in height. Mamelon columns are regularly spaced,

5.52–9.75 mm apart and 4.51–6.72 mm in diameter. Latilaminae are not found.

273 Cysts are commonly long and low, and range 0.19–1.67 mm in height (n=64, species

average 0.57 mm), and 0.59–4.32 mm in width (n=64, species average 1.80 mm). Cyst

width/height ratio ranges from 0.38 to 8.53 (n=64, species average 3.65). Cysts, composed of

276 mamelon columns, closely spaced and range 0.19–1.60 mm in height (n=44, species average

0.45 mm) and 0.60-3.57 mm in width (n= 44, species average 1.49 mm). Cyst width/height

ratios are from 1.30 to 6.38 (n=44, species average 3.70). Sediment-filled cysts are common,

279 particularly placed between mamelon columns. Vertical elements commonly penetrate

through two to three cysts, thus corresponding to the concept of 'pillar' in labechiids. These

pillar-like structures are slender and only restricted in mamelon columns (Fig. 4.8), and range

0.46-2.11 mm (n=11, species average 0.99) in height and 0.10-0.21 mm in diameter (n=11,

species average 0.16), with flanged and hollow preservation. Denticles are well-developed

284 (Fig. 4.7, 4.8).

285 *Materials.*—Two specimens, including NIGP 175161 and 175162 from the upper rudstone

interval of sub-section ZU 3 of the Xiazhen Formation (Upper Ordovician, Katian) at

287 Zhuzhai section, Yushan County, Jiangxi Province, China.

288	Remarks.—The most recent description of the type specimens of Pseudostylodictyon
289	poshanense Ozaki, 1938 skeleton (NIGP 121556) includes vertical elements, which are
290	presented as 'vague pillar-like structures' (see p. 719 of Webby, 2015a). These vague
291	structures seem to be due to the oblique section of mamelon columns in the limited material
292	available and caused the incomplete morphological shape of pillars. However, subsequent
293	study of Pseudostylodictyon species did not describe pillar-like structures (e.g., Galloway,
294	1957; Galloway and St. Jean, 1961; Webby, 1969; Kapp and Stearn, 1975). Further
295	interspecific comparison of internal morphological features of each Pseudostylodictyon
296	species is required.
297	
298	Pseudostylodictyon sp. indet.
299	Figure 4.9
300	
301	2020a Pseudostylodictyon Jeon, Liang, Park, Choh and Lee: p. 200, fig. 5d.
302	
303	Occurrence.—The S15 interval of the Xiazhen Formation (Upper Ordovician, Katian) at
304	Zhuzhai section, Yushan County, Jiangxi Province, China.
305	Description.—The specimens are fragmentary, with evidence of small domical growth forms,
306	encrusted by other stromatoporoid (Clathrodictyon) and spiculate sponges. Fragmentary
307	specimens are up to 20 mm wide and 30 mm high. Mamelon columns are regularly spaced,
308	5.52–5.74 mm apart and 3.47–4.86 mm in diameter.
309	The majority of the cyst plates are silicified and poorly preserved. Cysts are long, low and
310	variable, ranging from 0.11–0.48 mm (n=29, species average 0.19 mm) in height and 0.44–
311	1.55 mm in width (n=29, species average 0.85 mm). Cyst width/height ratio ranges from
312	0.38-8.53 (n=29, species average 4.65). Sediment-filled cysts commonly occur between

313	mamelon columns. Stout pillar-like vertical structures pass through two or more cyst plates.
314	These structures are restricted to mamelon columns, ranging from 0.52–2.70 mm in height
315	(n=14, species average 1.21 mm) and 0.13–0.23 mm in diameter (n=14, species average 0.17
316	mm).
317	Materials.—Two specimens, including NIGP 168773 and 175163 from the S15 interval of
318	the Xiazhen Formation (Upper Ordovician, Katian) at Zhuzhai section, Yushan County,
319	Jiangxi Province, China.
320	Remarks.—The present specimen has cysts of various sizes, but it possesses smaller cysts and
321	stouter pillars than those of Pseudostylodictyon poshanense Ozaki, 1938.
322	
323	Family Labechiidae Nicholson, 1879
324	Genus Labechia Edwards and Haime, 1951
325	Type species. Monticularia conferta Lonsdale, 1839
326	
327	Labechia altunensis Dong and Wang, 1984
328	Figure 5.1, 5.2
329	
330	1984 Labechia altunensis Dong and Wang: p. 248, pl. 1, fig 3a, b.
331	1984 Labechia sibirica Yavorsky; Dong and Wang: p. 247, pl. 1, fig 1a, b.
332	
333	Type specimen.—Syntype, one thin section of Labechia altunensis Yang and Dong 1984
334	(NIGP 70384) from the Malieziken Group (probably upper Darriwilian to lower Sandbian),
335	eastern Ruoqiang County, Xinjiang Province, China (Dong and Wang, 1984, pl. 1, fig 3a, b).
336	Occurrence.— The S15 interval of the Xiazhen Formation (Upper Ordovician, Katian) at
337	Zhuzhai section, Yushan County, Jiangxi Province, China.

- 338 *Description.* The specimens are fragmented, thus the original growth form is unknown.
 339 Latilaminae, mamelon columns and astrorhizae are not found.
- Cysts are relatively small, round and regular in shape, and range from 0.19–0.47 mm high
- (n=67, species average 0.30 mm) and 0.29-1.86 mm wide (n=67, species average 1.86 mm).
- 342 Cyst plates have low to moderate convexity and cyst width/height ratio ranges from 1.55–
- 343 6.43 (n=67, species average 3.17). Pillars are vertically and continuously well-developed with
- downward-opening growth lines (also often referred to as 'cone-in-cone structure'), and
- range 1.17-5.44 mm in height (n=14, species average 2.58 mm) and 0.10-0.37 mm in
- diameter (n=155, species average 0.18 mm). Tops of the pillars are moderately round, but
- 347 slightly sharp shapes are also seen.
- 348 *Materials.* One specimen of NIGP 175164 from the S15 interval.
- 349 *Remarks.*—Two *Labechia* species (i.e., *Lb. altunensis* Dong and Wang, 1984 and *Labechia*
- *sibirica* Yavorsky, 1955 in Dong and Wang, 1984) from the Middle Ordovician of Tarim
- 351 Basin, are closely similar to the present species. *Labechia sibirica* Yavorsky 1955 is first
- reported from the uppermost Silurian of the Stony Tunguska River, Siberian Platform
- 353 (Yavosky, 1955). Although this Silurian species has similar thicknesses of pillars (about 2
- mm; Yavorsky, 1995) with the former two species, it is distinguishable with bigger cysts,
- ranging from 0.40–1.0 mm high (Yavorsky, 1955) than those earlier species. The specimen of
- *Lb. sibirica* (NIGP 70382), described by Dong and Wang (1984) possesses very similar
- morphological measurements of both cysts (cysts ranging from 0.2–0.5 mm high and 0.3–1.4
- mm wide) and pillars (0.1–0.2 mm in diameter) with *Lb. altunensis* in Dong and Wang 1984
- and present study. Judging from the possession of key morphological characteristics and
- numeric features of *Lb. altunensis* in the specimens of *Lb. sibirica* (NIGP 70382), i.e., small,
- 361 round and regular shaped cysts, continuously developed solid pillars and the identical

362	dimension of measurements, thus herein it is regarded as being conspecific with Lb.
363	altunensis Dong and Wang, 1984.
364	
365	
366	Labechia variabilis Yabe and Sugiyama 1930
367	Figure 5.3, 5.4, 5.5
368	
369	1930a Labechia variabilis Yabe and Sugiyama: p. 54, pl. 17, figs. 1–9.
370	1938 Labechia variabilis Yabe and Sugiyama; Ozaki: p. 211, pl. 28, fig. 1a-d.
371	1982 Cystistroma donnellii Etheridge; Dong: p. 578, pl.1, figs. 1, 2.
372	1982 Cystistroma canadense Nicholson and Murie; Dong: p. 578, pl. 1, figs. 3, 4
373	1982 Rosenella cf. woyuensis Ozaki; Dong: p. 579, pl.1, figs. 5, 6
374	1982 Labechia changchiuensis Ozaki; Dong: p. 579, pl. 2, figs. 1, 2
375	1985 Labechia variabilis Yabe and Sugiyama; Webby et al.: p. 161, fig. 3a-e.
376	2017 Labechia yeongwolense Jeon, Park, Choh and Lee: p. 336, fig. 4f-h.
377	2020 Labechiella Jeon, Liang, Park, Choh and Lee: p. 201, fig. 6b.
378	
379	<i>Type specimen.</i> —Syntype 37679a, b, 37680a, b, 37682a, b, c in Tohoku University, Japan
380	(Yabe and Sugiyama, 1930a, p. 54, pl. 17, figs. 1–9).
381	Occurrence.—The S17 interval of the Xiazhen Formation (Upper Ordovician, Katian) at
382	Zhuzhai, Yushan County, Jiangxi Province, China.
383	Description.—The skeletons are laminar, up to 50 mm in height and 180 mm in width.
384	Latilaminae, mamelon columns and astrorhizae are not found.
385	Cysts range from 0.40–1.72 mm high (n=69, species average 0.81 mm) and 1.33–6.02 mm
386	wide (n=69, species average 2.71 mm). Cyst plates have low to moderate convexity, and their

cyst width/ height ratios range from 1.76 to 6.21 (n=69, species average 3.42). The
preservation of cysts is variable from normal cement-filled, dissolved spar-filled and
sediment-filled spaces.

Pillars are sporadically developed, and short, ranging from 1.33–4.77 mm in height
(n=25, species average 2.56 mm) and 0.21–0.80 mm in diameter (n=84, species average 0.41
mm). In tangential sections, pillars appear as ellipsoidal to circular shapes. Preservation is
variable and selective as solid, hollow and flanged, and dissolved unflanged pillars. *Materials.*— Four specimens, including NIGP 168778, 175166–175168 from the S17

395 interval.

396 Remarks.— Labechia variabilis Yabe and Sugiyama 1930 was first known from the Middle Ordovician Toufangkou and Shanpingchou formations (upper Darriwilian) of northeastern 397 China and Sangsori 'Series' (Sandbian to Katian; see p. 217 in Lee et al., 2017 for the 398 399 problem of stratigraphic nomenclature in North Korea) of northeastern Korean Peninsula (Yabe and Sugiyama, 1930). One of the key characteristic features of this species is round, 400 stout and small pillars, which are not persistently developed. Its wide range of skeletal 401 402 variation caused taxonomic confusion, particularly between Labechia and Labechiella, together with the poor quality of old illustrations in Yabe and Sugiyama, 1930. Recent 403 404 confirmation of the syntypes deposited in Tohoku University and detailed comparisons with subsequently reported Labechia species through China (deposited in NIGPAS, Nanjing; 405 Dong et al., 1982) and Korea (deposited in National Heritage Center of the Cultural Heritage 406 Administration in Korea, Daejeon; Jeon et al., 2017) prove that they are conspecific with 407 Cystistroma donnellii Etheridge 1895 in Dong (1982), Cystistroma canadense Nicholson and 408 Murie, 1878 in Dong (1982), Rosenella cf. woyuensis Ozaki, 1938 in Dong (1982), Labechia 409 changchiuensis Ozaki, 1938 in Dong (1982), Labechia yeongwolense Jeon, Park, Choh and 410

411	Lee, 2017 and Labechiella sp. in Jeon et al. (2020), judging from the morphological
412	characteristics and numerical measurements.
413	
414	Labechia shanhsiensis Yabe and Sugiyama, 1930
415	Figure 5.6, 5.7
416	
417	1930a Labechia shanhsiensis Yabe and Sugiyama: p. 56, pl. 18, figs. 2-4.
418	
419	Type specimen.—Syntype IGPS 37685a, b, c, d in Tohoku University, Japan (Yabe and
420	Sugiyama, 1930a, p. 56, pl. 18, figs. 2–4).
421	Occurrence.—The S18 interval of the Xiazhen Formation (Upper Ordovician, Katian) at
422	Zhuzhai, Yushan County, Jiangxi Province, China.
423	Description.—Skeleton is thin laminar, up to 18 mm high and 115 mm wide. Latilaminae,
424	mamelon columns and astrorhizae are not found.
425	Cysts range 0.33–1.25 mm high (n=96, species average 0.57 mm) and 0.18–3.89 mm wide
426	(n=96, species average 1.29 mm). Cyst plates have moderately to highly convexity, and cyst
427	width/height ratio ranges 0.31-6.98 (n=96, species average 2.29). Pillars are consistently
428	well-developed with long and slender shapes, ranging from 1.62–7.84 mm in height (n=32,
429	species average 3.32 mm) and 0.17–0.52 mm (n=45, species average 0.36 mm) in diameter,
430	and exclusively preserved as flanged and hollow with downward-opening growth lines. In
431	some cases, pillars are curved, perhaps indicating geotrophic growth (white arrow in Fig.
432	5.6). In the tangential section, pillars are well rounded circular shape.
433	Materials.—One specimen of NIGP 175165 from the S18 interval.

434	Remarks.—Labechia shanhsiensis Yabe and Sugiyama, 1930, described in Yabe and
435	Sugiyama (1930), has slightly thinner pillars (0.10–0.21 mm in diameter) than the present
436	specimens, and this is considered as the intraspecific variation.
437	
438	Labechia zhuzhainus Jeon new species
439	Figure 6.1, 6.2, 6.3, 6.4, 6.5
440	
441	<i>Type specimen.</i> —Holotype NIGP 175169, paratype NIGP 168777 and 175170
442	Diagnosis.—A species of Labechia with low to moderately convex cyst plates and well-
443	developed continuous stout pillar; cysts, ranging from 0.09–0.99 mm (species average 0.52
444	mm) high and 0.46–3.99 mm (species average 1.62 mm) wide, with cyst width/height ratio
445	from 1.00 to 22.04, in general, 3.31; pillars ranging from 1.03–5.18 mm (species average 2.44
446	mm) high and 0.08–0.80 mm (species average 0.35 mm) in thickness.
447	Occurrence.—The S10 and S16–S18 intervals of the Xiazhen Formation (Upper Ordovician,
448	Katian) at Zhuzhai, Yushan County, Jiangxi Province, China.
449	Description.—Skeletons are laminar, up to 40 mm high and 130 mm wide, as having either
450	smooth or ragged skeletal margins. The internal structures are commonly silicified.
451	Latilaminae, rhythmic changes, mamelon columns, and astrorhizae are not found. It
452	commonly encrusted on tabulate coral Catenipora, perhaps caused its growth termination
453	(Fig. 6.5), but no evidence of intergrowth association is seen.
454	Cysts range 0.09–0.99 mm high (n=132, species average 0.52 mm) and 0.46–3.99 mm
455	wide (n=132, species average 1.62 mm). Cyst plates have low to moderate convexity, and
456	cyst width/height ratio ranges from 1.00 to 22.04 (n=132, species average 3.31). Pillars are
457	persistent, stout and short, ranging from 1.03–5.18 mm in height (n=82, species average 2.44

458	mm) and 0.08–0.80 mm (n=314, species average 0.35 mm) in diameter and dominantly
459	preserved as solid form. Branching pillars are not found.
460	Etymology.—Labechia zhuzhainus: from Zhuzhai, a regional name of the place where this
461	species commonly occurs.
462	Materials.—Eleven specimens, including NIGP 168777 and 175169–175178 from the S18
463	interval, four specimens, including NIGP 168779–168782 from the S16 interval, one
464	specimen NIGP 175183 from the S10 interval.
465	Remarks.—This species is distinguishable with its persistently developed pillars, comparable
466	with Labechia altunensis Dong and Wang, 1984 and Lb. shanhsiensis Yabe and Sugiyama,
467	1930 from this formation. However, the internal structure of the present species has larger
468	sizes of cyst than Lb. altunensis (Cysts ranging from 0.19–0.47 mm high and 0.29–1.86 mm
469	wide; pillar ranging from 0.10–0.37 mm in diameter). Lb. shanhsiensis possesses a similar
470	cyst size to the present species, but it is differentiated by shapes of pillars; Labechia
471	zhuzhainus has rounder and stouter pillars than Lb. shanhsiensis.
472	
473	Labechia sp.
474	Figure 6.6, 6.7
475	
476	Occurrence.—The S18 interval of the Xiazhen Formation (Upper Ordovician, Katian) at
477	Zhuzhai, Yushan County, Jiangxi Province, China.
478	Description.—Skeletons are thin laminar, up to 4 mm high and 72 mm wide. One specimen
479	(NIGP 169634) encrusts the growth surface of <i>Clathrodictyon</i> and shows irregularly
480	developed physical contacts between those two species with deformed internal structures.
481	Cysts range 0.35–1.93 mm high (n=15, species average 0.72 mm) and 0.60–3.52 mm wide
482	(n=15, species average 1.43 mm). Cyst plates have moderate to high convexity, having cyst

483	width/height ratio from 1.00 to 3.85 (n=15, species average 2.04). Pillars are generally
484	preserved as flanged and hollow, with blade-like sharp top margin, ranging from 1.03–5.18
485	mm in height (n=82, species average 2.44 mm) and 0.15–0.66 mm in diameter (n=65, species
486	average 0.29 mm).
487	One specimen (NIGP 169634), interpreted spatial competition with a species of
488	Clathrodictyon (Jeon et al., 2020b), shows a variety of internal skeletal morphology and
489	variation of cysts and pillars in both structure and size. Deformed cysts up to 2.08 mm high
490	and 5.76 mm wide with irregular thickness. The shape of pillars is also variable, ranging from
491	sharply triangular to stoutly round. The majority of pillars are preserved as hollow and
492	flanged, but solid pillars are also present.
493	Material.—Three specimens including NIGP 169634, 175184, 175185 from the S18 interval.
494	<i>Remarks.</i> — The present species is distinguishable with its blade-like sharp and short pillars.
495	However, owing to the thin shape and small size of the entire skeleton, with a wide range of
496	internal skeletal morphological features, it is currently required that the species remains in
497	open nomenclature.
498	This is the only Labechia species showing paleoecological interaction (in this case
499	competition) with <i>Clathrodictyon</i> , with <i>Labechia</i> probably a paleoecological subordinate to
500	Clathrodictyon (Jeon et al., 2020b).
501	
502	Genus Labechiella Yabe and Sugiyama, 1930
503	Type species. —Labechia serotina Nicholson, 1886b
504	
505	Labechiella beluatus Jeon new species
506	Figure 7.1, 7.2, 7.3, 7.4
507	

- 508 *Type specimen.*—Holotype NIGP 175187, paratype NIGP 175188
- 509 *Diagnosis.*—A species of *Labechiella* with moderately convex cyst plates and very large
- 510 persistent pillars; cysts, ranging from 0.25–0.84 mm (species average 0.84 mm) high and
- 511 0.30–11.08 mm, (species average 2.56 mm) wide; cyst width/height ratio ranging from 0.58–
- 512 7.48, (species average 3.02); pillars ranging from 0.26–0.93 mm (species average 5.37 mm)
- high and 0.15–0.54 mm (species average 0.32 mm) in diameter.
- 514 *Occurrence*. —The S15 interval of the Xiazhen Formation (Upper Ordovician, Katian) at
- 515 Zhuzhai, Yushan County, Jiangxi Province, China.
- 516 *Description.* Skeletons are fragmented, perhaps pieces of large laminar in growth forms,
- up to 50 mm high 110 mm wide. Latilaminae, rhythmic changes, mamelon columns, andastrorhizae are not found.
- 519 Cysts range 0.25–0.84 mm (n=186, species average 0.84 mm) high and 0.30–11.08 mm
- 520 (n=186, species average 2.56 mm) wide. Cyst plates have moderate convexity, and cyst
- 521 width/height ratio ranges 0.58–7.48 (n=186, species average 3.02). Pillars are very large and
- persistently distributed, ranging from 0.25–0.84 mm in height (n=186, species average 0.84
- 523 mm) and 0.30–11.08 mm (n=186, species average 2.56 mm) in diameter. Branching pillars
- 524 are commonly seen.
- 525 *Etymology.*—*Labechiella beluatus*: from Latin *béluae*, the meaning of beast, wild animal,
- 526 monster, in referring to persistently well-developed large pillars.
- 527 *Materials.*—Three specimens, including NIGP 175187–175189.
- 528 *Remarks.*—This new species is distinguishable from previously known Ordovician
- 529 *Labechiella* species in that the former has very large and multi-branching pillars.
- 530

531

Labechiella gondwanense Jeon new species

- Figure 7.5, 7.6, 7.7
 - 22

- 533 1969 Labechia variabilis Yabe and Sugiyama; Webby: p. 650, pl. 121, figs. 1, 2.
- 1991 Labechiella variabilis (Yabe and Sugiyama); Webby: p. 198, figs. 3a–d, 4e–f.
- 535 2011 Cystistroma donnellii (Etheridge 1895) Jiang et al. p. 302 pl. 1 figs 1,2
- 536 *Type specimen.* Holotype NIGP 175186
- 537 Diagnosis.— A species of Labechiella with low to moderately convex cyst plates, and
- 538 persistently well-developed slender pillar with slightly-developed downward-opening growth
- lines; cysts ranging from 0.45–1.07 mm (species average 0.78 mm) high and 1.47–10.01 mm
- 540 (species average 3.27 mm) wide; cyst width/height ratio ranging from 1.71–11.08 (species
- 541 average 4.16); pillars ranging from 0.44–9.53 mm in height (species average 4.58 mm) and
- 542 0.16–3.81 mm (species average 0.45 mm) in diameter.
- 543 Occurrence.—The S17 interval of the Xiazhen Formation (Upper Ordovician, Katian) at
- 544 Zhuzhai, Yushan County, Jiangxi Province, China.
- 545 *Description.* Skeleton is laminar, up to 19 mm high and 90 mm wide. Latilaminae and

astrorhizae are not found. Mamelon-like upward growth is seen.

- 547 Cysts range 0.45–1.07 mm (n=52, species average 0.78 mm) high and 1.47–10.01 mm
- 548 (n=52, species average 3.27 mm) wide. Cyst plates have low to moderate convexity, and cyst
- 549 width/height ratio ranges from 1.71–11.08 (n=52, species average 4.16). Pillars are
- continuously well-developed with slightly-developed downward-opening growth, ranging
- 551 from 0.44–9.53 mm in height (n=26, species average 4.58 mm) and 1.47–10.01 mm in
- diameter (n=52, species average 3.27 mm). Branching forms are intensely developed with
- particular mamelon-like upward growth. Pillars are commonly preserved as solid, but hollow
- and flanged pillars are also found.
- 555 *Etymology.*—Named after its wide distribution throughout the peri-Gondwanan regions
- 556 including North China, South China and Australia during the Middle to Late Ordovician
- 557 interval.

558 *Materials.*—One specimen of NIGP 178186 from the S17 interval.

559 Remarks.—Previously known Labechiella variabilis (Yabe and Sugiyama, 1930) in Webby (1969, 1991) is fairly different from the original description of type specimens of Labechia 560 variabilis Yabe and Sugiyama, 1930. The former species is characterized by its flat and 561 562 gently convex cyst plates and vertically persistent long pillars (Webby, 1969, 1991), which is 563 consistent with the concept of genus Labechiella, rather than Labechia (Webby, 2015a). Both species from New South Wales and Tasmania has branching pillars (Webby, 1969, 1991), 564 which is similar to the present specimens from the Xiazhen Formation. However, Lb. 565 variabilis is characterized by variable cyst size with low to moderate convexity and 566 567 sporadically developed stout, short pillars, but branching pillars have not been confirmed (Yabe and Sugiyama, 1930; Ozaki, 1938; Dong, 1982; Jeon et al., 2017; present study). 568 569 Therefore, this formerly known species from New South Wales and Tasmania is considered 570 to be an independent species of *Labechiella* from *Lb. variabilis* Yabe and Sugiyama 1930, and we named as Lblla. gondwanense Jeon sp. nov., judging from its morphological 571 characteristics of Labechiella and numerical similarity of internal structures. 572 Cystistroma donnellii (Etheridge, 1895) in Jiang et al. (2011) is far from the concept of 573 genus Cystistroma (see Webby, 1969, p. 652, pl. 122, figs. 3-8, pl. 123, figs. 1-5 for 574 Cystistroma donnellii and Webby, 2015c, p. 785 for genus Cystistroma), judging from its 575 plain and parallel cyst plates (see Jiang et al., 2011, p. 302, pl.1, fig. 1). This species has 576 577 rather thick and straight pillars, punctuating up to two parallel cyst plates. The morphological 578 features are close to the concept of genus Labechiella, and share morphological and numerical similarity with current Xiazhen material. Thus, herein this Cystistroma species 579 from North China is regarded as being conspecific with Lblla. gondwanense. 580 581

582

Labechiella regularis (Yabe and Sugiyama, 1930)

Figure 7.8

1930a Labechia regularis Yabe and Sugiyama: p. 56, pl. 18, figs. 5, 6, pl. 21, fig. 8.

583 584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

- 1930a Labechia regularis var. tenuis Yabe and Sugiyama: p. 57, pl. 21, figs. 9-10. 1930b Labechia regularis var. tenuis Yabe and Sugiyama: p. 9, pl. 3, fig. 1, pl. 4, figs. 1–2. 1938 Labechia regularis Yabe and Sugiyama; Ozaki: p. 210, pl. 26, fig. 2a-d. 1955 Labechia regularis Yabe and Sugiyama; Yavorsky: p. 59, pl. 24, figs. 4, 5. 1969 Labechia regularis Yabe and Sugiyama; Webby: p. 649, pl. 120, fig. 1, pl. 121, figs 3-6, pl. 124, figs 1, 2. 1971 Tuvaechia regularis (Yabe and Sugiyama); Bogoyavlenskaya: p. 35, pl. 2, fig. 1a, b 1991 Labechiella regularis (Yabe and Sugiyama); Webby: p. 200, fig. 3g. 1994 Labechiella regularis (Yabe and Sugiyama); Kano et al.: p. 453, figs 3, 4a-e. 2017 Labechiella regularis (Yabe and Sugiyama); Jeon et al.: p. 335, fig. 4a-c. *Type specimen.*—Syntype 37684 in Tohoku University of Japan; others are probably missing (Yabe and Sugiyama, 1930a, pl. 18, figs. 5, 6, pl. 21, fig. 8). Occurrence.—The S15 interval of sub-section ZU2 and the upper part (rudstone interval) of sub-section ZU 3 of the Xiazhen Formation (Upper Ordovician, Katian) at Zhuzhai, Yushan County, Jiangxi Province, China. Description.—Skeletons are low domical, up to 55 mm high and 220 mm wide. Latilaminae, mamelons and astrorhizae are not found. Cyst plates are regularly spaced, gently parallel to slightly concave to other cyst plates, which shares morphological similarity with laminae. The height of cysts ranges from 0.21-0.73 mm (n=155, species average 0.39 mm). The marginal edge of cyst plates is obscure,
- because of silicified preservation. Distances between each pillars are 0.25–2.44 mm (n=155,

- species average 0.92 mm). Pillars are persistent, long, and vertically well-developed,
- although they are variably preserved as solid or hollow without any outlines. Pillars range
- 1.91-9.43 mm in height (n=70, species average 4.23 mm) and 0.21-0.52 mm in diameter
- 611 (n=70, species average 0.36 mm).
- 612 *Materials.*—Three specimens including NIGP 175190–175192.
- 613 *Remarks. Labechiella regularis* (Yabe and Sugiyama, 1930) has the widest distribution
- among other Ordovician labechiid species. It occurs in many peri-Gondwanan regions,
- 615 including North China (Yabe and Sugiyama, 1930; Ozaki, 1938; Jeon et al., 2017), South
- 616 China (present study) and Australia (Webby, 1969, 1991), to Siberian Platform (Yavorsky,
- 617 1955) and Tuva (Bogoyavlenskaya, 1971) during the late Middle to Late Ordovician interval.
- 618 Among them, the Xiazhen materials are particularly close to *Lblla. regularis* from the Upper
- 619 Ordovician of the Stony Tunguska and Kotuy rivers (Yavorsky, 1955), central New South
- 620 Wales (Webby, 1969) and Tasmania (Webby, 1991), whereas the materials from Tuva
- 621 exhibit thinner pillar, ranging from 0.10–0.15 mm (Bogoyavlenskaya, 1971). *Lblla. regularis*
- from the Upper Ordovician strata of Mongolia, described by Bol'shakova and Ulitina (1985),
- 623 is not consistent with the original description and illustration of Yabe and Sugiyama (1930).
- 624 The Mongolian samples possess much thinner cysts and slender pillars compared to
- previously reported materials (see Bol'shakova and Ulitina, 1985, p. 48, pl. 2, fig. 1a, b), and
- 626 it seems to be an independent species of *Labechiella*, rather than *Lblla*. *regularis*.
- 627
- 628 Family Stylostromatidae Webby, 1993
- 629

Stylostioniandae (Veoby, 1995

29

Genus Stylostroma Gorsky, 1938

- 630 *Type species.—Stylostroma crissum* Gorsky, 1938.
- 631

632

Stylostroma bubsense Webby, 1991

Figure 8.1, 8.2, 8.3, 8.4 633 634 1991 Stylostroma bubsense Webby: p. 204, figs. 6d-e, 7a-b. 2020 Pachystylostroma Jeon, Liang, Park, Choh and Lee: p. 200, fig. 5g. 635 636 637 *Type specimen.*—Holotype UTGD 94659 from the lower part of the Gordon Limestone at 638 Bubs Hill, and one paratype UTGD 94660 from the Dogs Head Formation of the middle Chudleigh Subgroup between Overflow Creek and Sassafras Creek, 1.5 km northwestern way 639 of Ugbrook (Webby, 1991, p. 204, figs. 6d-e and 7a-b); deposited in University of 640 641 Tasmania, Australia. 642 Occurrence.—The S15 and S17 intervals of the Xiazhen Formation (Upper Ordovician, Katian) at Zhuzhai, Yushan County, Jiangxi Province, China. 643 644 Description.—Skeletons are distinctively well-mammillate with domical growth form, up to 645 40 cm high and 100 cm wide, but mostly less than 46 mm in height and 90 mm in width. The mamelon columns are regularly placed, up to 12.26 mm (species average 6.97 mm) apart, 646 ranging from 6.14–26.35 mm in height (n=10, species average 13.06 mm) and 1.45–3.42 mm 647 in diameter (n=22, species average 2.51 mm). A certain phase without any mamelon columns 648 is also observed. 649 650 Cysts are variable in both size and shape, ranging from 0.20–3.44 mm (n=153, species average 1.08 mm) high and 0.57–10.40 mm (n=153, species average 3.17 mm) wide. 651 652 Generally, it has moderate convexity, but elongated, flat or highly convex cyst plates also commonly occur, and cyst width/height ratio ranges 1.36–7.59 (n=153, species average 3.27). 653 Cyst plates particularly in the area of inter-mamelon are rather more irregularly and widely 654 placed than the non-mamelon skeletal phase. 655

Denticles are the most predominant vertical elements. Pillars are generally short and less
continuous and range 0.27–2.70 mm in height (n=14, species average 1.21 mm) and 0.09–

658	0.23 mm (n=14, species average 0.17 mm) in diameter. Preservation is variable from solid
659	hollow, and spar-filled forms.

Materials.—Ten specimens, including NIGP 168776 and 175193–175201 660

Remarks. — The present Xiazhen specimens of Stylostroma bubsense Webby 1991 share 661

662 close morphological similarity with the Tasmanian specimens (Webby, 1991). Both

specimens exhibit elongate to moderately convex cyst plates. The distributions of pillars are 663

also similarly intensively developed in mamelon columns, while sparsely distributed in other 664 skeletal phases (Webby, 1991). 665

Stylostroma bubense is also comparable with Pachystylostroma mammillatum Webby, 666

667 1979. However, due to lack of key characteristics of the genus Pachystylostroma (i.e., cysts of variable size, with alternating gently wavy cyst plates with wall thickness ranging from 668 thin to very thick; Nestor, 1964, Webby, 2015a), the former Pachystylostroma mammillatum 669 670 has been revised as a species of Stylostroma, Sty. mammillatum (Webby, 1979) (see p. 201 in Webby, 1991). It differs in exhibiting more commonly developed pillars than the present 671 specimens. In addition, its mamelons do not exhibit any vertical elements, i.e., denticles and 672 pillars (Webby 1979). 673

674

675 Stylostroma ugbrookense Webby, 1991 676 677 Stylostroma ugbrookense Webby, p. 202, figs. 5a-e, 6a-c. 678 1991 2020 Stylostroma Jeon, Liang, Park, Choh and Lee: p. 200, fig. 5f. 679 680

Type specimen.—Holotype UTGD 94648 and nine paratypes (UTGD 90521, 94649, 681

98500-98506) from the upper part of the Dogs Head Formation (Upper Ordovician, early 682

Figure 8.5, 8.6

Katian) of the Gordon Group of Ugbrook in Mole Creek area and Gunns Plains of Tasmania,
Australia (Webby, 1991, p. 202, figs. 5a–e and 6a–c); deposited in University of Tasmania,
Australia.

Occurrence.—The S3, S5–6 intervals of the Xiazhen Formation (Upper Ordovician, Katian)
at Zhuzhai, Yushan County, Jiangxi Province, China. It occurs commonly in S6 interval with
domical growth form up to 40 cm high and 100 cm wide, while it is rare in S3 and S5 with
laminar growth form up to 5 cm high and 13 cm wide.

Description.—Skeletons are laminar to low domical growth forms, up to 40 cm high and 100 cm wide, and it has slightly to highly wavy laminar forms. Mamelons are generally slender, regularly spaced, up to 18 mm (but normally around 9 mm) apart, and vertically aligned, probably owing to geotrophic growth. Non-mamelon skeletal phase also occurs. Undulating sediment-filled spaces between mamelon columns are commonly observed, but do not have lateral continuity. Latilaminae are seen, up to 70 mm, but not common.

Cysts are generally small, ranging from 0.11–0.57 mm high (n=255, species average 0.27 696 mm) and 0.20–14.33 mm wide (n=255, species average 2.39 mm). Cyst plates have low to 697 moderate convexity, ranging in cyst width/height ratio from 1.00 to 30.93 (n=255, species 698 average 8.11). Cysts, in the area between two mamelon columns, are slightly to moderately 699 700 larger than those that occur in mamelon columns and non-mamelon skeletal phases. Pillars are slender and well-developed through the skeleton, but also absent in some parts of the 701 702 skeleton, which is composed of only cyst plates and denticles. Pillars are more dominantly 703 developed with outward curved direction in mamelon columns. Pillars range 0.54–6.36 mm 704 in height (n=132, species average 2.40 mm) and 0.13-0.39 mm in diameter (n=132, species average 0.21mm). In tangential sections, pillars show 'distinctive stellate branching patterns' 705 (Webby, 1991), thus astrorhizae. Preservation is variable, even within a single skeleton, 706 ranging from solid to hollow, with or without outlined walls, and spar-filled pillars. 707

708	Materials. —Twenty-three specimens, including NIGP 168775 and 175202–175223 from the
709	S6 interval, NIGP 175224 from the S5 interval, NIGP 175225 from the S3 interval.
710	Remarks.—The materials from Tasmania exhibit cysts with variable size and shape ranging
711	from 0.1–0.3 mm high and 0.6–1.2 mm wide, and well-developed pillars, ranging up to 12
712	mm high and 0.20 mm in diameter (Webby, 1991) which is closely similar to the present
713	Xiazhen materials. However, in the present material, a skeletal phase without any vertical
714	element, which is only composed of cyst plates, is also observed. This difference is
715	considered as intraspecific variation.
716	
717	Family Aulaceratidae Kühn, 1927
718	Genus Thamnobeatricea Raymond, 1931
719	Type species.—Thamnobeatricea parallela Raymond, 1931
720	
721	Thamnobeatricea gouldi Webby, 1991
722	Figure 9.1, 9.2, 9.3, 9.4, 9.5, 9.6
723	1979 Cryptophragmus? sp. Webby: p. 97, fig. 5c.
724	1991 Thamnobeatricea gouldi Webby: p. 220, Figs. 14a-f, 16b
725	2020 Aulacera Jeon, Liang, Park, Choh and Lee: p. 200, fig. 5e.
726	
727	Type specimen.—Holotype, deposited in University of Tasmania, Australia, UTGD 94654
728	and two paratypes (UTGD 81647, 98525) from the upper part of the Lower Limestone
729	Member of the Benjamin Limestone (Gordon Group) in the Florentine Valley, Tasmania
730	(Webby, 1991, p. 220, figs. 14a–f, 16b).
731	Occurrence.—The S2-S5 and S8 intervals of the Xiazhen Formation (Upper Ordovician,

732 Katian) at Zhuzhai, Yushan County, Jiangxi Province, China.

Description.—Skeletons are long, continuous, dominated by single columnar growth form,
and up to 160 mm in height and 11 mm in width (commonly 8 to 10 mm). Branching form is
rarely observed. They are preserved in a variety of orientations and mostly fragmented.
Astrorhizae are not found.

737 Internal skeletal structure is composed of axial, lateral and outer recrystallized lateral zones, which can be distinguished by the presence and size of cyst plates. The axial zone 738 occupies more than 50 percent of the diameter, composed of slightly overlapping large cyst 739 plates. Cysts range from 1.58–5.79 mm in height (species average 2.96 mm, n=75) and 1.04– 740 8.41 mm in width (species average 4.72 mm, n=75). Cyst plates have moderate to high 741 convexity, and cyst width/height ratio ranges from 0.34–3.73 (n=75, species average 1.59). 742 Lateral zone is composed of up to 5 cyst plates, ranging from 0.29–2.20 mm, mostly 743 744 approximately 1 mm. Cysts in the lateral zone are smaller than those in the axial zone, ranges 745 0.12-1.30 mm in height (n=276, species average 0.26 mm) and 0.21-1.58 mm in width (n=276, species average 0.61 mm). Cyst plates have moderate convexity, and cyst 746 width/height ratio ranges from 0.91–4.56 (n=276, species average 2.39). Denticles are rarely 747 748 developed, and pillars are not found. Branches developed from the abnormally large cyst plates in the lateral zone (Fig. 9.5). Outer lateral zone, which does not exhibit any internal 749 750 structure, composed of coarse calcite spar replacement, ranging from 0.54–2.82 mm, mostly around 1.50 mm, with distinctive nodular external surfaces. The outer surface is also 751 752 characterized by sporadically developed denticles. 753 Cyst plates vary from sharp-leaf or pointed-top shapes to overlapping bubble-like forms as 754 the skeleton grew (Fig. 9.3, 9.4). The lateral zone, which is composed of small cysts, is

rudimentary in early growth, but the outer coarse-calcite-recrystallized lateral zone are

756 persistent.

758	specimens, including 168774 and 175226–175230 from the S4 interval, NIGP 175249 from
759	the S5 interval, and thirteen specimens, including NIGP 175236–175248 from the S8
760	interval.
761	Remarks.—The present specimens are similar to Tasmanian specimens in terms of both
762	skeletal features and measurements. However, the Tasmanian specimens (particularly UTGD
763	90454; see fig. 16b in Webby 1991) commonly show branching form, which is rare in the
764	specimens of the Xiazhen Formation. It seems to show intraspecific variation in different
765	environmental conditions.
766	
767	Genus Sinabeatricea Jeon new genus
768	Type species.—Sinabeatricea luteolus new genus new species
769	Diagnosis.—Branching columnar aulaceratid, composed of two skeletal zones; in the axial
770	zone, an open radiating fibrously reticulate network occupying about 60 % of the diameter,
771	surrounded by low to moderately convex cyst plates, and penetrated by short and stout
772	pillars; round papillae well-developed, representing tops of individual pillars on the terminal
773	growth surface; astrorhizae unknown.
774	Occurrence.— The S3 interval of the lower Xiazhen Formation (Upper Ordovician, Katian)
775	at Zhuzhai section, Yushan County, Jiangxi Province, China.
776	Etymology.—Latin, Sina, China. Billings (1857) did not state the derivation of his genus
777	name Beatricea, which has been revised as a junior synonym of Aulacera Plummer, 1843. It
778	probably derived from the Latin word Beatrix, bringer of happiness.
779	Remarks.— The internal structure of Sinabeatricea gen. nov. is divided into two skeletal
780	zones: the central axial columnar zone and the outer surrounded lateral zone, which is a
781	typical characteristic of aulaceratid stromatoporoids. Aulaceratid genera were reported from

Materials.—Five specimens, including NIGP 175231–175235 from the S3 interval, six

757

peri-Gondwana, Laurentia, and Siberia (i.e., Aulacera Plummer, 1843, Thamnobeatricea 782 783 Raymond, 1931, Sinodictyon Yabe and Sugiyama, 1930, Ludictyon Ozaki, 1938, Alleynodictyon Webby, 1971, Quasiaulacera Copper, Stock and Jin, 2013), but not in 784 785 Baltica. This group possesses large, convex-up, and widely spaced cyst plates with or without 786 denticles in their axial zones. Sinabeatricea is differentiated from previous known aulaceratid 787 genera by possession of the open reticulate skeletal elements in the axial column, while other genera possess large, convex, widely spaced overlapped cyst plates in the axial column 788 (Webby, 2015c). This unique axial zone is surrounded by moderately convex cyst plates with 789 continuous, stout, and short pillars, similar to other aulaceratid genera, possessing common 790 791 skeletal characteristics Labechia. The diversification of aulaceratid stromatoporoids occurred intensively in the Middle 792 793 Ordovician interval, and their early diversification was epichroic (Stock et al., 2015; Nestor 794 and Webby, 2013). Aulaceratid labechiids initially diversified only in North China, recorded by five genera, and none of them are known from the other contemporary terranes of late 795 Darriwilian age (Stock et al., 2015; Nestor and Webby, 2013, Webby, 2015a). However, 796 797 those North Chinese Darriwilian provincial aulaceratids are not known in the Upper Ordovician succession of North China. Together with the highest diversity peak of 798 799 Ordovician stromatoporoids in the Katian, seven aulaceratid genera are known, mostly from Australia (Webby, 1971, 1991) and Laurentia (Cameron and Copper, 1994; Copper et al., 800 801 2013). This probably indicates that their subsequent diversification was related to worldwide 802 dispersion during the Middle to Late Ordovician interval. It is postulated that aulaceratids were highly diverse in Laurentia and Siberia (Personal communication with Paul Copper, 803 2020), but only a few species have been reported (Copper et al., 2013). Recent studies reveal 804 805 that Greenland (Harper et al., 2014) and Siberia (Dronov et al., 2016) are also promising for aulaceratid research, and further detailed study is needed. 806

808	Sinabeatricea luteolus Jeon new species
809	Figure 10.1, 10.2, 10.3, 10.4, 10.5
810	
811	Type specimen.—Holotype NIGP 175250, paratypes 175251 and 175252.
812	Diagnosis.—A species of Sinabeatricea with open radiating reticulate network of 16–20 mm
813	in diameter in the axial zone, occupying up to about 60 percent of the diameter of the fossil;
814	the reticulate network surrounded by lateral zone, and composed of low to moderately convex
815	cyst plates penetrated by short and stout pillars; cyst plates ranging from 0.19–0.69 mm high
816	and 0.11–1.80 mm wide; pillars ranging from 1.04–3.75 mm high and 0.18–0.68 mm in
817	diameter.
818	Occurrence.—The S3 interval of the lower Xiazhen Formation (Upper Ordovician, Katian) at
819	Zhuzhai section, Yushan County, Jiangxi Province, China.
820	Description. Skeletons are restricted to columnar growth form, up to 40 mm in diameter.
821	Height is indeterminable because the specimens are preserved as fragmented stems with a
822	variety of orientations. Mamelons and astrorhizae are not found.
823	Internal skeletal structure is divided into two different skeletal zones, axial and lateral
824	zones. Those skeletal zones are differentiated by open reticulate skeletal structure and cyst
825	plates with well-developed pillars. The axial zone is composed of open radiating reticulate
826	skeletal structure, ranging from 0.09–0.15 mm in thickness. The axial zone grades to the
827	lateral zone, which is composed of cyst plates and continuous well-developed pillars. Cysts
828	range from 0.19–0.69 mm high (n=43, species average 0.35 mm) and 0.11–1.80 mm wide
829	(n=43, species average 0.73 mm). Cyst plates have low to moderate convexity, and cyst
830	width/height ratio ranges from 0.42-5.04 (n=43, species average 2.12). Pillars, which are
831	round and persistently well-developed, generally penetrate less than four cyst plates, ranging

832	from 1.04–3.75 mm (n=58, species average 2.27 mm) high and 0.18–0.68 mm (n=99, species
833	average 0.31 mm) in diameter. Preservation is solid and partially silicified.
834	Etymology.—Sinabeatricea luteolus: from Latin lūteolus, yellowish, in referring to its
835	distinctive color.
836	Materials.—Five specimens including NIGP 175250–175254 from the S2 interval.
837	Remarks.—This species is distinguishable from other known aulaceratid species by a
838	distinctive axial zone with open reticulate skeletal structure, surrounded by moderately
839	convex cyst plates that are penetrated by short and stout pillars. This meshwork structure has
840	not been observed in other aulaceratid species, nor other labechiid groups. The basal part of
841	the skeleton has not been found, thus it is difficult to compare with other taxa and also to
842	assess how this columnar species initially grew. A further study of better-preserved
843	specimens is required to reveal its growth characteristics.
844	
844 845	Paleobiogeographic pattern of Ordovician labechiid stromatoporoids
844 845 846	Paleobiogeographic pattern of Ordovician labechiid stromatoporoids
844 845 846 847	Paleobiogeographic pattern of Ordovician labechiid stromatoporoids A total of 181 species is recorded in publications and this new study, which is a relatively
844 845 846 847 848	Paleobiogeographic pattern of Ordovician labechiid stromatoporoids A total of 181 species is recorded in publications and this new study, which is a relatively large number of taxa, and may represent most, if not all, of the total stromatoporoid low-level
844 845 846 847 848 849	Paleobiogeographic pattern of Ordovician labechiid stromatoporoids A total of 181 species is recorded in publications and this new study, which is a relatively large number of taxa, and may represent most, if not all, of the total stromatoporoid low-level taxa (species) of this part of the Ordovician record. However, this study cannot address the
844 845 846 847 848 849 850	Paleobiogeographic pattern of Ordovician labechiid stromatoporoids A total of 181 species is recorded in publications and this new study, which is a relatively large number of taxa, and may represent most, if not all, of the total stromatoporoid low-level taxa (species) of this part of the Ordovician record. However, this study cannot address the validity of this range of taxa, so the full complement of recorded taxa is used in analysis here.
844 845 846 847 848 849 850 851	Paleobiogeographic pattern of Ordovician labechiid stromatoporoids A total of 181 species is recorded in publications and this new study, which is a relatively large number of taxa, and may represent most, if not all, of the total stromatoporoid low-level taxa (species) of this part of the Ordovician record. However, this study cannot address the validity of this range of taxa, so the full complement of recorded taxa is used in analysis here. Thus the analyzed 181 species belong to 22 genera of labechiid stromatoporoids that occurred
844 845 846 847 848 849 850 851 852	Paleobiogeographic pattern of Ordovician labechiid stromatoporoids A total of 181 species is recorded in publications and this new study, which is a relatively large number of taxa, and may represent most, if not all, of the total stromatoporoid low-level taxa (species) of this part of the Ordovician record. However, this study cannot address the validity of this range of taxa, so the full complement of recorded taxa is used in analysis here. Thus the analyzed 181 species belong to 22 genera of labechiid stromatoporoids that occurred throughout 12 terranes. Most of the stromatoporoid species were endemic and occur only
844 845 846 847 848 849 850 851 852 853	Paleobiogeographic pattern of Ordovician labechiid stromatoporoids A total of 181 species is recorded in publications and this new study, which is a relatively large number of taxa, and may represent most, if not all, of the total stromatoporoid low-level taxa (species) of this part of the Ordovician record. However, this study cannot address the validity of this range of taxa, so the full complement of recorded taxa is used in analysis here. Thus the analyzed 181 species belong to 22 genera of labechiid stromatoporoids that occurred throughout 12 terranes. Most of the stromatoporoid species were endemic and occur only within a single terrane. Laurentia shows the highest species-level diversity among all
844 845 846 847 848 849 850 851 851 852 853 854	Paleobiogeographic pattern of Ordovician labechiid stromatoporoids A total of 181 species is recorded in publications and this new study, which is a relatively large number of taxa, and may represent most, if not all, of the total stromatoporoid low-level taxa (species) of this part of the Ordovician record. However, this study cannot address the validity of this range of taxa, so the full complement of recorded taxa is used in analysis here. Thus the analyzed 181 species belong to 22 genera of labechiid stromatoporoids that occurred throughout 12 terranes. Most of the stromatoporoid species were endemic and occur only within a single terrane. Laurentia shows the highest species-level diversity among all terranes. However, in terms of generic level, 14 labechiid genera have been reported from

855 peri-Gondwanan regions, particularly South China and Australian regions, possessing the

highest genetic diversity level (compiled data from Webby in Stock et al., 2015, present study
and other compiled references). The result of the network analysis (Fig. 11) shows that the
Ordovician stromatoporoids can be grouped into two faunal provinces, the peri-Gondwana–
Tarim–Siberia (GTS) and Laurentia–Baltica–Siberia (LBS), judging from the occurrences of
characteristic genera (i.e., *Labechiella* and *Stromatocerium*) and co-occurring stromatoporoid
species.

862

876

Peri-Gondwana-Tarim-Siberia (GTS) Province. - The GTS Province is characterized by the 863 co-occurrences of Rosenella woyuensis, Pseudostylodictyon poshanense, Labechia 864 865 shanhsiensis, Lb. variabilis, Labechiella regularis (Fig. 11). Their earliest reports are from the Middle Ordovician carbonates (upper Darriwilian) of North China (Yabe and Sugiyama, 866 1930; Ozaki, 1938; Dong, 1982). The North Chinese fauna reached its greatest diversity 867 868 during the late Darriwilian. This stromatoporoid assemblage is initially provincial in North China during the Middle Ordovician but became widely distributed to adjacent regions during 869 the Late Ordovician. This identifiable, successive stromatoporoid fauna is herein termed 870 North China Darriwilian provincial assemblage. The GTS Province is also characterized by 871 the wide distribution of Labechiella, comparable to that of Stromatocerium in Laurentia, 872 873 Baltica, and a certain part of Siberia. The occurrences of Labechia altunensis Dong and Wang, 1984 and Stylostroma-related 874

species indicate that Tarim was close to South China and Tasmania in biogeographic

relations during the Late Ordovician, as it has also been observed from other fossil groups

(e.g., Han et al., 2009; Tang et al., 2017; Fang et al., 2019; Sproat and Zhan, 2019).

878 Although the Mongolian species in Bol'shakova and Ulitina (1985) require further re-

879 evaluation of taxonomy, species of Labechiella, Lophiostroma and Ludictyon occur in the

880 Upper Ordovician strata of Mongolia, indicating that Mongolia had a close biogeographic

affinity with peri-Gondwanan terranes (especially North China) and Siberia (Stock et al.,
2015; Nestor and Webby, 2014).

883

Laurentia-Baltica-Siberia (LBS) Province. - The LBS Province represents the highest 884 885 diversity species level of labechiid stromatoporoids and only a few species shared among Laurentia, Baltica, and Siberia. LBS province is also characterized by the occurrence of 886 Stromatocerium (e.g., Galloway, 1957; Galloway and St. Jean, 1961; Bogoyavlenskaya, 887 1973; Nestor, 1976; Bolton, 1988; Khromykh, 2001). Baltica has distinctively low species-888 level diversity, which is possibly due to the late arrival of early labechiid stromatoporoids. In 889 890 addition, columnar aulaceratid stromatoporoids were not found to occur in Baltica, but they have been reported from both Laurentia and Siberia (e.g., Yavorsky, 1955; Galloway, 1957; 891 892 Galloway and St. Jean, 1961; Bolton, 1988; Copper et al., 2013). 893 In Siberia, the labechiid assemblage is characterized by a mixture of both Laurentian and peri-Gondwanan species, judging from the occurrence of Stromatocerium, gigantic Aulacera, 894 and Labechiella (particularly Labechiella regularis), and other co-occurring labechiids such 895 as Rosenella woyuensis, Labechia huronensis, Lb. macrostyla, Stromatocerium australe, 896 Aulacera undulata (Fig. 11.1). This reflects the bilateral migration patterns from both peri-897 898 Gondwana and Laurentia, which corresponds to the study of possible oceanic currents during the Middle to Late Ordovician interval (e.g., Servais et al., 2014; Pohl et al., 2016). 899

900

901 **Discussion**

902

903 Stromatoporoids indicate shallow, tropical to subtropical waters (Nestor and Webby, 2013;

904 Stock et al., 2015). Ordovician labechiid stromatoporoids are specifically regarded as

905 temperature-sensitive and thermophilic (Nestor and Stock, 2001; Webby, 2004). In the past

several decades, the paleobiogeographic study of Ordovician stromatoporoids in both 906 907 regional and global scales provided the basis for understanding their distribution patterns and biogeographic affinities among different terranes (e.g., Lin and Webby, 1989; Nestor and 908 909 Webby, 2013; Stock et al., 2015; Webby, 1980, 1992). However, these studies did not pay 910 enough attention to South China, due to a lack of sufficient investigation of stromatoporoids 911 from this terrane, as only few genera have been reported from South China before (e.g., Lin and Webby, 1989; Nestor and Webby, 2013; Stock et al., 2015). Recent investigation (Jeon et 912 al., 2020) revealed a diverse stromatoporoid fauna in the Xiazhen Formation, indicating that 913 South China was also a favorable region for the diversification of stromatoporoids similar to 914 915 other peri-Gondwanan regions. As many as 19 genera of labechiid stromatoporoids globally occurred in the Katian, attaining the highest generic diversity level during the entire 916 917 evolutionary history of labechiids (Webby, 2004; Stock et al., 2015). In geographic ranges, 918 they also attained the widest circum-equatorial distribution (Webby, 2004). Due to the obvious higher generic diversity level, the peri-Gondwanan regions, including Australia and 919 South China and some other terranes, has been proposed to be the diversification center for 920 Late Ordovician stromatoporoids (Stock et al., 2015, Nestor and Webby, 2013, Jeon et al., 921 2020a). 922

923 Pseudostylodictyon poshanense, Labechia shanhsiensis, Lb. variabilis, and Labechiella regularis are found in the Xiazhen Formation. These species occurred first in the upper 924 925 Darriwilian of North China, which possessed the most diverse and distinctive Darriwilian labechiid fauna, including 24 species in 9 genera (Yabe and Sugiyama, 1930a, b; Endo, 1932; 926 927 Ozaki, 1938; Sugiyama, 1941; Dong, 1982; Kano et al., 1994; Jeon et al., 2017, 2019), and are herein defined as North China Darriwilian provincial species. Among these early North 928 Chinese species, Rosenella woyuensis and Lb. variabilis also occur in the coeval succession 929 of Sibumasu (Unit J of the Lower Setul Limestone of the Langkawi Islands, Malaysia; 930

931	Webby et al., 1985), reflecting the close paleogeographic distance between North China and
932	Sibumasu during the Ordovician (Burrett et al., 2014, 2017). The subsequent occurrences of
933	those particular species in South China and Australian regions indicate that the North China
934	provincial species dispersed among the peri-Gondwana regions during the late Middle
935	Ordovician to Late Ordovician interval. Of these species, Lblla. regularis significantly shows
936	the widest geographic distribution (Fig. 11.1), occurring in North China (Darriwilian of the
937	Middle Ordovician; Yabe and Sugiyama, 1930; Ozaki, 1938 Kano et al., 1994; Jeon et al.,
938	2017), Australian terranes (including New South Wales and Tasmania; Katian of Upper
939	Ordovician; Webby, 1969; Webby, 1991), Kazakh terranes (Katian of Upper Ordovician;
940	Karimova and Lesovaya, 2007) and Siberia (Katian of Upper Ordovician; Bogoyavlenskaya,
941	1971; Yavorsky, 1955; Khromych, 2001). The dispersal pattern of other North China
942	Darriwilian provincial labechiids, including Rosenella woyuensis, Pseudostylodictyon
943	poshanense, Labechia variabilis, and Lb. shanhsiensis, are fairly similar to that of Lblla.
944	regularis (Fig. 11.1). The distribution and dispersal pattern of North China provincial species
945	show that co-occurring species of stromatoporoids occur more commonly in terranes which
946	are geographically close together, thus evaluation of co-occurring stromatoporoid species can
947	be useful for the criterion for establishment of the biogeographic realm of terranes (Fig. 11).
948	Together with those North China Darriwilian provincial labechiid species, other species
949	also support a close paleobiogeographic affinity with Australia. It has been proposed that
950	South China and Australia (including New South Wales and Tasmania) may have close
951	paleobiogeographic relationships, judging from the occurrences of a few clathrodictyid
952	species (Stock et al. 2015). Our network analysis shows that South China shares many
953	common labechiid species with those of central New South Wales and Tasmania (Fig. 11.1),
954	including Labechiella gondwanense sp. nov., Lblla. regularis, Stylostroma bubsense, Sty.
955	ugbrookense and Thamnobeatricea gouldi. Labechiella gondwanense sp. nov. occurs widely

in North China (formerly Cystistroma donnellii in Jiang et al., 2011), South China, New 956 957 South Wales (formerly Labechia variabilis in Webby 1969), and Tasmania (formerly Labechiella variabilis in Webby 1991) during the Katian. Until now, Tasmanian 958 stromatoporoids fauna were thought to be closely related to those from Laurentia, judging 959 960 from the shared occurrences of the labechiid genera Thamnobeatricea, Pachystylostroma, and Aulacera (Stock et al. 2015; Lin and Webby 1989; Webby 1991; Webby et al., 2000). 961 However, the finding of co-occurring labechild species, including *Stylostroma bubsense*, *Sty.* 962 ugbrookense and Thamnobeatricea gouldi in both South China and Tasmania (Webby, 1991 963 and the present study) indicates that the Tasmanian Shelf had a much closer 964 965 palaeobiogeographic affinity with peri-Gondwanan regions than with Laurentia. It is noteworthy that New South Wales had a quite different labechiid assemblage from that of 966 Tasmania (Nestor and Webby, 2013, Webby et al., 2000), although they were geographically 967 968 close to each other during the Late Ordovician. In the case of the Tasmanian labechiids, species of Pachystylostroma, Aulacera, and Thamnobeatricea are found but these are not 969 known from coeval successions of New South Wales. A species of Cystistroma was found to 970 occur in New South Wales (Webby, 1969) instead of Tasmania and South China. In contrast, 971 Alleynodictyon commonly occurs in both Tasmania and New South Wales (Webby, 1971, 972 973 1991, Webby et al., 2000), whereas it is not found in South China. Although the exact location of Tarim during the Late Ordovician is still controversial, the 974 paleobiogeographic studies of various fossil groups consistently show that Tarim and other 975 976 peri-Gondwanan terranes share faunal affinities (Webby et al., 2000; Stock et al., 2015; Tang et al., 2017; Han et al., 2017; Sproat and Zhan, 2019). In terms of stromatoporoids, judging 977 from the occurrence of Labechia altunensis Dong and Wang 1984 in South China and Tarim, 978 Stylostroma in Tasmania (Webby, 1991), South China, and Stylostroma-related species in 979 Tarim (formerly classified as Pseudolabechia in Dong and Wang, 1984; ranges from 980

981	probably late Darriwilian to early Sandbian; Webby et al., 2000), those two terranes are
982	closely related. This close biogeographic affinity is correspondingly supported by other fossil
983	groups, including brachiopods (Sproat and Zhan, 2019), distinctive conodonts
984	Tasmanognathus (Zhen et al., 2010) and Serratognathus (Wang et al., 2007; Zhen et al.,
985	2009), chitinozoans (Tang et al., 2017), and corals (Han et al., 2017). However, it should be
986	noted that North China Darriwilian provincial species (e.g., Rosenella woyuensis,
987	Pseudostylodictyon poshanense, Labechiella regularis and Lblla. variabilis) occurred in
988	many peri-Gondwanan regions (particularly South China and Australia) but not in Tarim,
989	indicating a relatively large distance between North China and Tarim.
990	Rhynchonelliform brachiopods, which were one of the most common invertebrate fossil
991	groups during the Great Ordovician Biodiversification Event, exhibit similar biogeographic
992	patterns to that of the labechiid stromatoporoids. The South China rhynchonelliform
993	brachiopods were generally composed of cosmopolitan species, having faunal similarity with
994	the Kazakh terranes in the Sandbian (Harper et al., 2013, Cocks and Torsvik, 2020). During
995	the middle to late Katian, the South China brachiopods exhibited a close relationship with
996	those of the eastern Gondwanan (particularly, New South Wales) fauna, reflecting the
997	northern path via South China (Torsvik and Cocks, 2017), and this pattern became more
998	evident by the middle to late Katian as South China likely intersected migration pathways
999	defined by surface currents (Harper et al., 2013). This is rather similar to the biogeographic
1000	pattern of Late Ordovician labechiid stromatoporoids in that South China shares a number of
1001	co-occurring species with eastern Gondwanan regions (including New South Wales and
1002	Tasmania). A recently-proposed new term 'Cathay-Tasman Province' (Cocks and Torsvik,
1003	2020) correspondingly shows similar recognition of a faunal province, judging from the
1004	studies of brachiopods and trilobites. However, it differs from the current GTS Province, as
1005	the former does not include Siberia, Altai-Sayan Fold Belt, and Mongolia (see fig. 6 and

corresponding text in Cocks and Torsvik, 2020). Graptolites and cephalopods, which are 1006 1007 mobile organisms reached a high diversity level in the Late Ordovician, exhibiting generally increasing endemism throughout the Katian, apparently different from the above-mentioned 1008 1009 benthic sessile organisms (Goldman et al., 2013; Fang et al., 2019). During the Late 1010 Ordovician, the cephalopod assemblage of South China had biogeographic affinities with those from small terranes of peri-Gondwana (i.e., Sibumasu, Lhasa, Himalaya) located 1011 between South China and Australia, but it is remarkably different from that of Australia 1012 (Fang et al., 2019). The pattern of cephalopod distribution is somewhat different from that of 1013 of labechiid stromatoporoids, which is likely due to different modes of living strategies. 1014 1015 Overall, the Xiazhen labechiid assemblage is influenced by the northward rifting of South 1016 China along peri-Gondwana, forming a more favorable environmental condition for the 1017 development of stromatoporoids, judging from combination of the succeeding North China 1018 Darriwilian provincial species and Australian (especially Tasmania) faunas. This labechiid assemblage reflects the idea that South China was likely the locus for the intersectional 1019 migrations of North Chinese Darriwilian and Australian labechiid species during the Late 1020 1021 Ordovician. The high diversity level in these peri-Gondwanan terranes is possibly due to the 1022 strong dispersal ability and rapid speciation rate of the labechiid stromatoporoids during their 1023 early evolutionary history.

1024

1025 Conclusions

1026

(1) A diverse fauna of labechiid stromatoporoids is recorded from the Upper Ordovician
Xiazhen Formation of South China, which represents one of the highest diversity levels
among the terranes of the Late Ordovician. A total of 16 labechiid species belonging to eight
genera are identified, including one new genus and four new species.

(2) The assemblage is characterized by a mixture of South China endemic species and North 1031 1032 China Darriwilian provincial species (Ps. poshanense, Lb. shanhsiensis, Lblla. regularis and Lblla. variabilis), which were also commonly found in the other coeval peri-Gondwanan 1033 1034 terranes, especially New South Wales and Tasmania of Australia. The dispersal of North 1035 China Darriwilian labechiid provincial species through the Late Ordovician of peri-Gondwanan terranes shows that endemism declined as stromatoporoids achieved their widest 1036 1037 Ordovician circum-equatorial distribution. Moreover, the finding of Sty. ugbrookense and Tha. gouldi from both South China and the Tasmanian Shelf indicates that those two regions 1038 had a closer biogeographic affinity during Late Ordovician than previously thought. 1039 1040 (3) The northward shift of South China near to north-eastern Gondwanan terranes provided 1041 migration pathways of early labechiid stromatoporoids, resulting in a highly diverse Xiazhen 1042 labechiid assemblage that shared strong affinities to those of North China and Australian 1043 regions (especially Tasmania) during the Late Ordovician.

1044

1045 Acknowledgments

1046

This study was supported by grants from the enhibits reducing of before	rom the Chinese Academy of Sciences	from the Chir	y grants	supported by	This study was	1047
---	-------------------------------------	---------------	----------	--------------	----------------	------

1048 (XDB26000000) and the National Natural Science Foundation of China (Grant No.

1049 42030510, 41402013 and J1210006) to Y. Zhang and K. Liang, and National Research

1050 Foundation of Korea (2019R1I1A1A01061336) to J. Park. Chinese Academy of Sciences

- 1051 (CAS) 'One Belt and One Road' Master Fellowship, ANSO Scholarships for Young Talents
- and the 2019 and 2020 Nanjing Municipal Government International Students Scholarship to
- 1053 J. Jeon are also acknowledged.

1054	We deeply appreciate Dr. Ursula Toom (Tallinn University of Technology), Nemoto Jun
1055	(Tohoku University), Dr. Olga Obut (Trofimuk Institute of Petroleum Geology and
1056	Geophysics), and Dr. Patrick Smith (Australian Museum) for providing references and
1057	opportunities to check the Ordovician stromatoporoid type specimens from Estonia, China,
1058	Altai, and New South Wales of Australia. We are grateful to Dong-Jin Lee (Jilin University),
1059	Xiang-Dong Wang (Nanjing University), Suk-Joo, Choh (Korea University), Mirinae Lee
1060	(Korea Polar Research Institute), and Heeju Park for their assistance in fieldwork and thin
1061	section preparation during the last decade. We thank to Clive Burrett (Mahasarakham
1062	University), an anonymous reviewer, and editor Joseph Botting for their helpful comments.
1063	The warm hospitality and assistance of the residents of Zhuzhai village during fieldwork are
1064	also greatly appreciated. This paper is a contribution to IGCP 735 'Rocks and the Rise of
1065	Ordovician Life: Filling knowledge gaps in the Early Palaeozoic Biodiversification'.
1066	
1067	
1068	References
1069	
1070	
1071	Bastian, M., Heymann, S., and Jacomy, M., 2009, Gephi: an open source software for
1072	exploring and manipulating networks: Proceedings of the International Conference on
1073	Web and Social Media, v. 8, p. 361–362.
1074	Bian, L.Z., Fang, Y.T., and Huang, Z.C., 1996, On the types of Late Ordovician reefs and
1075	their characteristics in the neighboring regions of Zhejiang and Jiangxi provinces, South
1076	China, in Fan J.S., ed., The Ancient Organic Reefs of China and their Relation to Oil
1077	and Gas: Beijing Ocean Publication House, p. 54–75.

1078	Bogoyavlenskaya, O.V., 1971, Ordovikskie i siluriiskie labekhiidy Tuvy [The Ordovician
1079	and Silurian Labechiidae of Tuva]: Paleontologicheskiy Zhurnal, v. 3, p. 32-38.
1080	Bogoyavlenskaya, O.V., 1973, Ordovikskie stromatoporoidei zapadnogo sklona Urala
1081	[Ordovician stromatoporoids of the western slope of the Urals]: Paleontologicheskiy
1082	Zhurnal, v. 1973, p. 18–24.
1083	Bol'shakova, L.N., and Ulitina, L.M., 1985, Stromatoporaty i biostratigrafiia nizhnego
1084	paleozoia Mongolii [Stromatoporates and biostratigraphy of lower Paleozoic of

- 1085 Mongolia]: Moscow, Sovmestnaia sovetsko-mongol'skaia paleontologicheskaia
- 1086 ekspeditsiia, Trudy 27, 87 p.
- Bolton, T., 1988, Stromatoporoidea from the Ordovician rocks of central and eastern Canada:
 Geological Survey of Canada Bulletin, v. 379, p. 17–45.
- 1089 Burrett, C., Zaw, K., Meffre, S., Lai, C. K., Khositanont, S., Chaodumrong, P., Udchachon,
- 1090 M., Ekins, S., and Halpin, J., 2014. The configuration of Greater Gondwana– Evidence
- 1091 from LA ICPMS, U–Pb geochronology of detrital zircons from the Palaeozoic and
- 1092 Mesozoic of Southeast Asia and China: Gondwana Research, v.26, p. 31–51.
- 1093 Burrett, C., Udchachon, M., and Thassanapak, H., 2016, Palaeozoic correlations and the
- 1094 palaeogeography of the Sibumasu (Shan-Thai) Terrane a brief review: Research &
- 1095 Knowledge, v. 2, p. 1–17.
- 1096 Cameron, D., and Copper, P., 1994, Paleoecology of giant Late Ordovician cylindrical
- sponges from Anticosti Island, eastern Canada, *in* R.W.M. van Soest, Th. M.G. van
- 1098 Kempen, and Braekmann, J. C., eds., Sponges in Time and Space. Rotterdam. Balkema,1099 p.13–21.
- 1100 Carrera, M.C., and Rigby, J.K., 2004, Sponges, in Webby, B.D., Paris, F., Droser, M.L., and
- 1101 Percival, I.G. eds., The Great Ordovician Biodiversification Event, New York,
- 1102 Columbia University Press, p. 102–111.

1103	Chen, X.S., 1995, The Late Ordovician stromatoporoid-coral patch reef at Dashanjiao,
1104	Yushan, Jiangxi: Marine Origin Petroleum Geology, v. 2, p. 20-30. [in Chinese with
1105	English abstract]
1106	Chen, X.S., 1996, Patch reef of Late Ordovician stromatoporoids and corals in Yushan,
1107	Jiangxi: Oil and Gas Geology, v. 17, p. 326–332. [in Chinese with English abstract]
1108	Chen, X., Bergström, S. M., Zhang, Y., and Fan, JX., 2009, The base of the Middle
1109	Ordovician in China with special reference to the succession at Hengtang near
1110	Jiangshan, Zhejiang Province, southern China: Lethaia, v. 42, p. 218–231.
1111	Chen, X., Rong, J.Y., Qiu, J.Y., Han, N.R., Li, L.Z., and Li, S.J., 1987, Preliminary
1112	stratigraphy, sedimentologic and environmental investigation of Zhuzhai section:
1113	Journal of Stratigraphy, v. 11, p. 23–34. [in Chinese with English abstract]
1114	Chen, Z.Y., Kim, M.H., Choh, SJ., Lee, DJ., and Chen, X., 2016, Discovery of Anticostia
1115	uniformis from the Xiazhen Formation at Zhuzhai, South China and its stratigraphic
1116	implication: Palaeoworld, v. 25, p. 356–361.
1117	Cocks, L.R.M., and Torsvik, T.H., 2020, Ordovician palaeogeography and climate changes:
1118	Gondwana Research, https://doi.org/10.1016/j.gr.2020.09.008.
1119	Copper, P., Stock, C.W., and Jin, J. S., 2013, Quasiaulacera, a new Hirnantian (Late
1120	Ordovician) aulaceratid stromatoporoid genus from Anticosti Island, Canada: Journal of
1121	Paleontology, v. 87, p. 664–676.
1122	Dai, M., Liu L., Lee, DJ., Peng, Y., and Miao, A., 2015, Morphometrics of Heliolites

- 1123 (Tabulata) from the Late Ordovician, Yushan, Jiangxi, South China: Acta Geologica
- 1124 Sinica (English Edition), v. 89, p. 38–54.
- 1125 Delgado, F., 1977, Primary textures in dolostones and recrystallized limestones: a technique
- for their microscopic study: Journal of Sedimentary Petrology, v. 47, p. 1339–1341.

1127	Dong, DY., 1982, Lower Ordovician stromatoporoids of northern Anhui: Acta
1128	Palaeontologica Sinica, v. 21, p. 577–582. [in Chinese with English abstract]
1129	Dong DY., and Wang BY., 1984, Paleozoic stromatoporoids from Xinjiang and their
1130	stratigraphic significance: Bulletin of the Nanjing Institute of Geology and
1131	Palaeontology, Academia Sinica, v. 7, p. 237–286. [in Chinese with English abstract]
1132	Dronov, A.V., Kushlina, V.B., and Harper, D.A.T., 2016, A stromatoporoid trace fossil from
1133	the Upper Ordovician of the Siberian platform: ICNIA-2016: Abstract book. UNESCO
1134	Geopark Naturtejo/International Ichnological Association, Castelo Branco, p. 166–167
1135	Edwards, H.M., and Haime, J., 1851, Monographic des polypiers fossils des terraines
1136	paleozoïques. Première Partie. Distribution Méthodique de la classe des polypes, tome 5:
1137	Paris, Achives du Muséum d'Histoire naturelle, 502 p.
1138	Endo, R., 1932, The Cambrian and Ordovician formations and fossils of South Manchuria:
1139	Bulletin of the United States National Museum, v. 164, p. 1–152.
1140	Ernst, A., 2018, Diversity dynamics of Ordovician Bryozoa: Lethaia, v. 51, p. 198–206.
1141	Etheridge, R. Jr., 1895, On the occurrence of a stromatoporoid, allied to Labechia and
1142	Rosenella in the Siluro-Devonian rocks of N.S.Wales: Records of the Geological Survey
1143	of New South Wales, v. 4, p. 134–140.
1144	Fang, X., Burrett, C., Li, W.J., Zhang, Y B., Zhang, Y.D., Chen, T.E., and Wu, X.J., 2019,
1145	Dynamic variation of Middle to Late Ordovician cephalopod provincialism in the
1146	northeastern peri-Gondwana region and its implications: Palaeogeography,
1147	Palaeoclimatology, Palaeoecology, v. 521, p. 127-137.
1148	Folk, R.L., 1987, Detection of organic matter in thin-sections of carbonate rocks using a
1149	white card: Sedimentary Geology, v. 54, p. 193-200.
1150	Galloway, J.J. 1957. Structure and classification of the Stromatoporoidea: Bulletins of
1151	American Paleontology, v. 37, p. 345-480.

- Galloway, J.J., and St. Jean J., 1961, Ordovician Stromatoporoidea of North America:
 Bulletins of American Paleontology, v. 43, p. 5–119.
- 1154 Goldman, D., Maletz, J., Melchin, M.J., and Fan, J.-X., 2013, Graptolite palaeobiogeography,
- in Harper, D. A. T., and Servais, T., eds., Early Palaeozoic biogeography and
- 1156 palaeogeography: Geological Society of London Memoir 38, London, p. 415–428.
- 1157 Gorsky, I.I., 1938, Nekotorye Stromatoporoidea iz paleozoľskikh otlozhenii Novoľ Zemli
- 1158 [Some stromatoporoids from Paleozoic beds of Novaya Zemlya]. Trudy Arkticheskogo
- Instituta (Leningrad), v. 101, p. 7–45. [In Russian with English with translation, 26–41]
- 1160 Grant, R.E, 1836, Animal Kingdom: The Cyclopaedia of Anatomy and Physiology, v. 1, p.
- 1161 107–118.
- 1162 Han, X., Zhang, X., Yang B., Sun J., Zhou, F., Zhao, P., and Wang, Q., 2017, Discovery and
- 1163 geological significance of the coral fossils of the Yingan Formation in Keping, Xinjiang.
- Geological Science and Technology Information, v. 36, p. 13–19. [in Chinese withEnglish abstract]
- 1166 Harper, D.A.T., Jin, J., Rasmussen, C.M.Ø. 2014 Late Ordovician carbonate mounds form
- 1167 North Greenland: a peri-Laurentian dimension to the Boda Event?: GFF, v. 136, p. 95–
 1168 99.
- Harper, D.A.T., Rasmussen, C.M.Ø., Liljeroth, M., Blodgett, R.B., Candela, Y., Jin, J.,
- 1170 Percival, I.G., Rong, J.Y., Villas, E., and Zhan, R.B., 2013, Biodiversity, biogeography
- and phylogeography of Ordovician rhynchonelliform brachiopods, *in* Harper, D.A.T.,
- and Servais, T., eds., Early Palaeozoic biogeography and palaeogeography: London,
- 1173 Geological Society of London Memoir 38, p. 127–144.
- Huang, B., Jin, J.S., and Rong, J.Y., 2018, Post-extinction diversification patterns of
- brachiopods in the early–middle Llandovery, Silurian: Palaeogeography,
- 1176 Palaeoclimatology, Palaeoecology, v. 493, p. 11–19.

- Huang, B., Zhan, R.B., and Wang, G.X., 2016, Recovery brachiopod associations from the
 lower Silurian of South China and their paleoecological implications: Canadian Journal
 of Earth Sciences, v. 57, p. 674–679.
- Jiang H., Sun, L., Bao, H., and Wu, Y., 2011, Stromatoporoids from the Ordovician reefs in
- the southern edge of the Ordos Basin, North China: Acta Micropalaeontologica Sinica v.
 28(3), 301–308.
- Jeon, J., Li, Q., Oh, J.-R., Choh, S.-J., and Lee, D.-J., 2019, A new species of the primitive
 stromatoporoid *Cystostroma* from the Ordovician of East Asia: Geosciences Journal, v.
 23, p. 547–556.
- 1186 Jeon, J., Liang, K., Lee, M., and Kershaw, S., 2020b, Earliest known spatial competition
- between stromatoporoids: evidence from the Upper Ordovician Xiazhen Formation of
 South China: Journal of Paleontology, v. 94, p. 1–10.
- 1189 Jeon, J., Liang, K., Park J., Choh, S.-J., and Lee, D.-J., 2020a, Late Ordovician
- stromatoporoids from the Xiazhen Formation of South China: paleoecological and
- 1191 paleogeographical implications: Geological Journal, v. 55, p. 197–209.
- 1192 Jeon, J., Park, J., Choh, S.-J., and Lee, D.-J., 2017, Early labechiid stromatoporoids of the
- 1193 Yeongheung Formation (Middle Ordovician), Yeongwol Group, mideastern Korean
- 1194 Peninsula: Part II. Systematic paleontology and paleogeographic implications.
- 1195 Geosciences Journal, v. 21, p. 331–340.
- 1196 Kano, A., Lee, D.-J., Choi, D.K., and Yoo, C.-M., 1994, Ordovician (Llanvirnian)
- stromatoporoids from the Youngwol Area, southern Korea: Transactions and
- 1198 Proceedings of the Palaeontological Society of Japan New Series, v. 174, p. 449–457.
- 1199 Kapp, U.S., and Stearn, C.W., 1975, Stromatoporoids of the Chazy Group (Middle
- 1200 Ordovician), Lake Champlain, Vermont and New York: Journal of Paleontology, v. 49,
- 1201 p. 163–186.

1202	Karimova, F.S., and Lesovaya, A.I., 2007, Stromatoporoids, in Kim, A.I., Salimova, F.A.,
1203	Kim, I.A. and Meshchankina, N.A., eds., Palaeontological Atlas of Phanerozoic Faunas
1204	and Floras of Uzbekistan, Vol. I.: Tashkent, Republic of Uzbekistan State Committee on
1205	Geology and Mineral Resources, p. 28–29.
1206	Khalfina, V.K., 1960, Otriad Stromatoporoidei: Ordovikskaia sistema [Order
1207	Stromatoporoidea: Ordovician System], in Khalfina, L. L., ed., Biostratigrafiia Paleozoia
1208	Saiano-Altaĭskoĭ Gornoĭ Oblasti, Tom I: Nizhniĭ Paleozoĭ [Paleozoic Biostratigraphy of
1209	the Sayan-Altai Mountain Region, vol. I: Lower Paleozoic]: Sibirskogo Nauchno-
1210	issedovatel'skogo Instituta Geologii, Geofiziki i Mineral'nogo Syr'ia, Trudy 19, p. 370-
1211	373.
1212	Khalfina, V.K., and Yavorsky, V. I., 1973, Klassificatsiia stromatoporoidea [Classification of
1213	the stromatoporoids]: Paleontologicheskiy Zhurnal, v. 1973(2), p. 19-34.
1214	Khromykh, V.G., 2001, Novye stromatoporoidei iz verkhnego ordovika Taimyra [New
1215	Upper Ordovician Stromatopororoidea from Taimyr]: Paleontologicheskiy Zhurnal, v.
1216	35, p. 11–15.
1217	Kiel, S., 2017, Using network analysis to trace the evolution of biogeography through
1218	geologic time: a case study: Geology, v. 45, p. 711-714.
1219	Kühn, O., 1927, Zur Systematik und Nomenklatur der Stromatoporen: Zentralblatt für
1220	Mineralogie, Geologie und paläontologie (Abteilung B), v. 1927, p. 546-551.
1221	Kwon, S.W., Park, J., Choh, SJ., Lee, D.C., and Lee, DJ., 2012, Tetradiid-siliceous
1222	sponge patch reefs from the Xiazhen Formation (late Katian), southeast China: a new
1223	Late Ordovician reef association: Sedimentary Geology, v. 267, p. 15-24.
1224	Lee, DC., 2013, Late Ordovician trilobites from the Xiazhen Formation in Zhuzhai, Jiangxi
1225	Province, China: Acta Palaeontologica Polonica, v. 58, p. 855-882.

1226	Lee, DC., Choh, SJ., Lee, DJ., Ree, JH., and Lee, JH., 2017, Where art thou "the great
1227	hiatus?'-review of Late Ordovician to Devonian fossil-bearing strata in the Korean
1228	Peninsula and its tectonostratigraphic implications: Geosciences Journal, v. 21, p. 913-
1229	931.
1230	Lee, DC., Park, J., Woo, J., Kwon, Y.K., Lee, JG., Guan L., Sun N., Lee, SB., Liang K.,
1231	Liu L., Rhee, CW., Choh, SJ., Kim, BS., and Lee, DJ., 2012, Revised stratigraphy
1232	of the Xiazhen Formation (Upper Ordovician) at Zhuzhai, South China, based on
1233	palaeontological and lithological data: Alcheringa, v. 36, p. 387-404.
1234	Lee, M., Elias, R. J., Choh, SJ., and Lee, DJ., 2016a, Insight from early coral-
1235	stromatoporoid intergrowth, Late Ordovician of China: Palaeogeography,
1236	Palaeoclimatology, Palaeoecology, v. 463, p. 192-204.
1237	Lee, M., Elias, R. J., Choh, SJ., and Lee, DJ., 2019, Palaeobiological features of the
1238	coralomorph Amsassia from the Late Ordovician of South China: Alcheringa, v. 43, p.
1239	18–32.
1240	Lee, M., Park, H., Tien, N. V., Choh, SJ., Elias, R.J., and Lee, DJ., 2016b, A new species
1241	of Amsassia from the Ordovician of Korea and South China: paleobiological and
1242	paleogeographical significance: Acta Geologica Sinica (English Edition), v. 90, p. 796-
1243	806.
1244	Li, Q., Li, Y., and Kiessling, W., 2015, The first sphinoctozoan-bearing reef from an
1245	Ordovician back-arc basin: Facies, v. 61, p. 1–9.
1246	Li, Q., Li, Y., and Kiessling, W., 2017, The oldest labechiid stromatoporoids from
1247	intraskeletal crypts in lithistid sponge-Calathium reefs: Lethaia, v. 50, p. 140-148.
1248	Li, Y., Kershaw, S., and Mu, X., 2004, Ordovician reef systems and settings in South China
1249	before the Late Ordovician mass extinction: Palaeogeography, Palaeoclimatology,

1250 Palaeoecology, v. 205, p. 235–254.

- 1251 Liang, K., Elias, R.J., Choh, S.-J., Lee, D.-C., and Lee, D.-J., 2016, Morphometrics and
- 1252 paleoecology of *Catenipora* (Tabulata) from the Xiazhen Formation (Upper
- 1253 Ordovician), Zhuzhai, South China. Journal of Paleontology, v. 90, p. 1027–1048.
- Lin, B.-Y., and Webby, B. D., 1988, Clathodictyid stromatoporoids from the Ordovician of
- 1255 China: Alcheringa, v. 12, p. 233–247.
- Lin, B.-Y., and Webby, B. D., 1989, Biogeographic relationships of Australian and Chinesecorals and stromatoporoids: Memoir of the Association of Australiasian
- 1258 Palaeontologists, v. 8, p. 207–217.
- 1259 Lonsdale, W., 1839, Corals, in Murchison, R.I., ed. The Silurian System, Part 2: London,
- 1260 John Murray, p. 675–694.
- 1261 Mu, E.Z., Li, J.J., Ge, M.Y., Chen, X., Lin, Y.K., and Ni, Y.N., 1993, Upper Ordovician
- graptolites of central China region: Palaeontologia Sinica, v. New Series B 29, p. 1–393.
 [in Chinese with English summary]
- 1264 Nestor, H. 1960. *Plurnatalinia*: Novyi rod otriada Stromatoporoidea iz verkhnego ordovika
- 1265 Estonskoi SSR [*Plurnatalinia*: A new genus of Stromatoporoidea from the Upper
- 1266 Ordovician of the Estonian SSR]: Izvestiya Akademii Nauk Estinskoi SSR, Seriya
- 1267 Fiziko-Matematicheskikh i Tekhnicheskikh Nauk, v. 9, p. 225–228.
- 1268 Nestor, H., 1964, Stromatoporoidei Ordovika i Llandoveri Estoniï [Ordovician and
- 1269 Llandoverian Stromatoporoidea of Estonia]. Tallinn, Akademiia Nauk Estonskoi SSR,
- 1270 Institut Geologii, 112 p.
- 1271 Nestor, H., 1976, Rannepaleozoiskie stromatoporoidei basseina reki Moiero: Sever Sibirskoi
- 1272 platformy [Early Paleozoic stromatoporoids from the Moiero River: North of the
- 1273 Siberian Platform]: Tallinn, Akademiia Nauk Estonskoi SSR, Institut Geologii, 95 p.
- 1274 Nestor, H., and Stock., C.W. 2001, Recovery of the stromatoporoid fauna after the Late
- 1275 Ordovician extinction, *in* Ezaki, Y., Mori, K., Sugiyama, T., and Sorauf, J.E., eds.,

1276	Proceedings of the 8th International Symposium on Fossil Cnidaria and Porifera,
1277	September 12-16, 1999: Bulletin of the Tohoku Imperial University Museum, Sendai,
1278	Japan, p. 333–341.
1279	Nestor, H., and Webby, B.D., 2013, Biogeography of the Ordovician and Silurian
1280	Stromatoporoidea, in Harper, D.A.T., and Servais, T., eds., Early Palaeozoic biogeography
1281	and palaeogeography: Geological Society of London, Memoir 38, London, p. 67–79.
1282	Nestor, H., Copper, P., and Stock, C., 2010, Late Ordovician and Early Silurian
1283	Stromatoporoid Sponges from Anticosti Island, Eastern Canada: Crossing the O/S Mass
1284	Extinction Boundary: Ottawa, National Research Council Research Press, 152 p.
1285	Nicholson, H.A., 1879, On the structure and affinities of the "Tabulate Corals" of Palaeozoic
1286	Period: Edinburgh and London, William Blackwood and Sons, 342 p.
1287	Nicholson, H.A., 1886a, A Monograph of the British Stromatoporoids. Part I, General
1288	Introduction, vol. 39, in Nicholson, H. A., ed., A Monograph of the British
1289	Stromatoporoids: London, Palaeontographical Society, p. 1-130
1290	Nicholson, H.A., 1886b, On some new and imperfectly known species of stromatoporoids,
1291	part 2: Annals and Magazine of Natural History (series 5), v. 18, p. 8–22.
1292	Nicholson, H.A., and Murie, J., 1878, On the minute structure of <i>Stromatopora</i> and its allies:
1293	Zoological Journal of the Linnaean Society, v. 14, p. 187-246.
1294	Oh, JR., Choh, SJ., and Lee, DJ., 2015, First report of Cystostroma (Stromatoporoidea;
1295	Ordovician) from Sino-Korean Craton: Geosciences Journal, v. 19, p. 25-31.
1296	Ozaki, K.E., 1938, On some stromatoporoids from the Ordovician limestone of Shantung and
1297	South Manchuria: Journal of the Shanghai Science Institute, v. 2, p. 205–223.
1298	Park, J., Lee, JH., Hong, J., Choh, SJ., Lee, DC., and Lee, DJ., 2017, Crouching shells,
1299	hidden sponges: Unusual Late Ordovician cavities containing sponges: Sedimentary
1300	Geology, v. 347, p. 1–9.

1301	Park, J., Lee, JH., Liang, K. and Choh, SJ. 2021. Faceis analysis of the Upper Ordovician
1302	Xiazhen Formation, southeast China: Implications for carbonate platform development
1303	in South China prior to the onset of the Hirnantian glaciation: Facies, v. 67, 18 (p. 1–
1304	20).

- 1305 Percival, I.G., Webby, B.D., and Pickett, J.W., 2001, Ordovician (Bendigonian to Eastonian)
- invertebrate faunas from the northern Molong Volcanic Belt of central New South
 Wales: Alcheringa, v. 25, p. 211–250.
- 1308 Pickett, J., and Percival, I.G., 2001, Ordovician faunas and biostratigraphy in the
- 1309 Gunningbland area, central New South Wales, Australia: Alcheringa, v. 25, p. 9–52.
- Pohl, A., Nardin, E., Vandenbroucke, T.R., and Donnadieu, Y., 2016, High dependence of
 Ordovician ocean surface circulation on atmospheric CO₂ levels: Palaeogeography,
- 1312 Palaeoclimatology, Palaeoecology, v. 458, p. 39–51.
- Raymond, P.E., 1931, Further notes on *Beatricea*-like organisms: Bulletin Museum of
 Comparative Zoology, Geological Series 9, p. 177–184.
- 1315 Rojas, A., Patarroyo, P., Mao, L., Bengtson, P., and Kowalewski, M., 2017, Global
- biogeography of Albian ammonoids: a network-based approach: Geology, v. 45, p. 659–
 660.
- 1318 Rong, J.-Y., Zhan, R.-B., and Harper, D.A.T., 1999, Late Ordovician (Caradoc–Ashgill)

1319 brachiopod faunas with *Foliomena* based on data from China: Palaios, v. 14, p. 412–

- 1320 431.
- 1321 Rosen, F.B., 1867, Über die Natur der Stromatoporen und über die Erhaltung der Hornfaser
- 1322 der Spongien im fossilen Zustande: Verhandlungen der Russisch Kaiserlichen
- 1323 Mineralogischen Gesellschaft zu St. Petersburg (series 2), v. 4, p. 1–98.
- 1324 Servais, T., and Harper, D.A.T., 2018, The Great Ordovician Biodiversification Event
- 1325 (GOBE): definition, concept and duration: Lethaia, v. 51, p. 151–164.

1326	Servais, T., Danelian, T., Harper, D.A.T, and Munnecke, A., 2014, Possible oceanic
1327	circulation patterns, surface water currents and upwelling zones in the Early Palaeozoic:
1328	GFF, v. 136, p. 229–233.
1329	Servais, T., Owen, A.W., Harper, D.A.T., Kröger, B., and Munnecke, A., 2010, The great
1330	Ordovician biodiversification event (GOBE): the palaeoecological dimension:
1331	Palaeogeography, Palaeoclimatology, Palaeoecology, v. 294, p. 99-119.
1332	Sidor, C.A., Vilhena, D.A., Angielczyk, K.D., Huttenlocker, A.K., Nesbitt, S.J., Peecook,
1333	B.R., Steyer, J.S., Smith, R.M.H., and Tsuji, L.A., 2013, Provincialization of terrestrial
1334	faunas following the End-Permian mass extinction: PNAS, v. 110, p. 8129-8133.
1335	Sproat, C.D., and Zhan R., 2019, Paleogeographic and paleoecological significance of
1336	Schachriomonia (Brachiopoda) from the Upper Ordovician of the Tarim Basin,
1337	Northwest China: Journal of Paleontology, v. 93, p. 1075–1087.
1338	Stearn, C.W., 2015, Diversity trends of the Paleozoic Stromatoporoidea, in Selden, P.A., ed.,
1339	Treatise on Invertebrate Paleontology. Part E (Revised), Porifera, Vol. 4-5, Lawrence,
1340	Kansas, The University of Kansas Paleontological Institute, p. 593–597.
1341	Stock, C.W., Nestor, H., and Webby, B.D., 2015, Paleobiogeography of the Paleozoic
1342	Stromatoporoidea, in Selden, P.A., ed., Treatise on Invertebrate Paleontology. Part E
1343	(Revised), Porifera, Vol. 4–5, Lawrence, Kansas, The University of Kansas
1344	Paleontological Institute, p. 653–689.
1345	Sugiyama, T., 1941, On a new form of the genus Labechiellata from Tyosen (Korea): Journal
1346	of the Geological Society of Japan, v. 48, p. 75–77.
1347	Sun, N., Elias, R.J., Choh, SJ., Lee, DC., Wang, XL., and Lee, DJ., 2016,

- 1348 Morphometrics and palaeoecology of the coral *Agetolites* from the Xiazhen Formation
- 1349 (Upper Ordovician), Zhuzhai, South China: Alcheringa, v. 40, p. 251–274.

1350	Tang, P., Wang, Y., Xu, HH., Jiang, Q., Yang, ZL., Zhan, JZ., and Zhang, XL., 2017,
1351	Late Ordovician (late Katian) cryptospores and chitinozoans from the Mannan-1
1352	borehole, south Tarim Basin, China: Palaeoworld, v. 26, p. 50-63.
1353	Torsvik, T.H., and Cocks, L.R.M., 2017, Earth History and Palaeogeography: Cambridge,
1354	Cambridge University Press, 317 p.
1355	Wang, Z., Qi, Y., and Bergström S.M., 2007, Ordovician conodonts of the Tarim Region,
1356	Xinjiang, China: Occurrence and use as palaeoenvironment indicators: Journal of Asian
1357	Earth Sciences, v. 29, p. 832–843.
1358	Webby, B.D. 2015a, Early evolution of the Paleozoic Stromatoporoidea, in Selden, P.A., ed.,
1359	Treatise on Invertebrate Paleontology. Part E (Revised), Porifera, Vol. 4-5, Lawrence,
1360	Kansas, The University of Kansas Paleontological Institute, p. 575–592.
1361	Webby, B.D., 2015b, Glossary of terms applied to the hypercalcified Porifera, in Selden,
1362	P.A., ed., Treatise on Invertebrate Paleontology. Part E (Revised), Porifera, Vol. 4-5,
1363	Lawrence, Kansas, The University of Kansas Paleontological Institute, p. 397-416.
1364	Webby, B.D. 2015c, Labechiida: Systematic descriptions, in Selden, P.A., ed., Treatise on
1365	Invertebrate Paleontology. Part E (Revised), Porifera, Vol. 4-5, Lawrence, Kansas, The
1366	University of Kansas Paleontological Institute, p. 709–754.

- Webby, B.D., 1969, Ordovician stromatoporoids from New South Wales: Palaeontology, v.
 12, p. 637–662.
- Webby, B.D., 1971, *Alleynodictyon*, a new Ordovician stromatoporoid from New South
 Wales: Palaeontology, v. 14, p. 10–15.
- Webby, B.D., 1977, *Labechia aldonensis* sp. nov., an Ordovician stromatoporoid from
 Scotland: Geological Magazine, v. 115, p.53–56.
- 1373 Webby, B.D., 1979a, Ordovician stromatoporoids from the Mjøsa district, Norway: Norsk
- 1374 Ggeologisk Tidsskrift, v. 59, p. 199–211.

- Webby, B.D., 1979b, The oldest Ordovician stromatoporoids from Australia: Alcheringa, v. 3,
 p. 237–251.
- 1377 Webby, B.D. 1979c. The Ordovician stromatoporoids: Proceedings of the Linnean Society of
 1378 New South Wales, v. 103, p. 83–121.
- Webby, B.D., 1991, Ordovician stromatoporoids from Tasmania: Alcheringa, v. 15, p. 191–
 227.
- Webby, B.D., 1994, Evolutionary trends in Ordovician stromatoporoids: Courier
 Forschungsinstitut Senckenberg, v. 172, p. 373–380.
- 1383 Webby, B.D., 2002, Patterns of Ordovician reef development, in Kiessling, W., Flügel E.,
- and Golonka J., eds., Phanerozoic reef patterns: Tulsa, SEPM Special Publication 72, p.
 129–179
- 1386 Webby, B.D., 2004, Stromatoporoids, in Webby, B.D., Paris, F., Droser, M.L., and Percival,
- 1387 I.G. (eds) The Great Ordovician Biodiversification Event: New York, Columbia
 1388 University Press, p. 112–118.
- Webby, B.D., Wyatt, D., and Burrett, C., 1985, Ordovician stromatoporoids from the
 Langkawi Islands, Malaysia: Alcheringa, v. 9, p. 159–166.
- Webby, B.D., 1980, Biogeography of Ordovician stromatoporoids: Paleogeography,
 Palaeoclimatology, Paleoecology, v. 32, p. 1–19.
- 1393 Webby, B.D., 1992, Global biogeography of Ordovician corals and stromatoporoids, *in*
- Webby, B.D., and Laurie, J.R., eds. Global Perspectives on Ordovician Geology:
 Rotterdam, Balkema, p. 261–276.
- 1396 Webby, B.D., 1993, Evolutionary history of Palaeozoic Labechiida (Stromatoporoidea):
- 1397 Memoirs of the Association of Australasian Palaeontologists, v. 15, p. 57-67
- 1398 Webby, B.D., Percival, I.G., Edgecombe, G.D., Cooper, R.A., Vandenberg, A.H.M., Pickett,
- 1399 J.W., Playford, G., Winchester-Seeto, T., Young, G.C., Zhen, Y.-Y., Nicoll, R.S., Ross,

1400	J.R.P., and Schallreuter, R., 2000, Ordovician paleobiogeography of Australasia:
1401	Memoir of the Association of Australasian Palaeontologists, v. 23, p. 63–126.
1402	Yabe, H., and Sugiyama, T., 1930a, On some Ordovician stromatoporoids from south
1403	Manchuria, North China and Choseon (Corea), with notes on two new European forms:
1404	Tohoku Imperial University, Science Report (Series 2, Geology), v. 14, p. 47-62.
1405	Yabe, H., and Sugiyama, T., 1930b, Notes on two stromatoporoids from Chosen (Corea):
1406	Japanese Journal of Geology and Geography, v. 8, p. 9–10.
1407	Yavorsky, V.I., 1955, Stromatoporoidea Sovetskogo Soyuza, chast' pervaya, prilozhenie k
1408	chasti pervoy [Stromatoporoidea of the Soviet Union, part 1 and supplement to part 1].
1409	Vsesoiuznogo Nauchno-Issledovatel'skogo Geologicheskogo Instituta (VSEGEI), Trudy
1410	(new series) 8, 173 p.
1411	Yavorsky, V.I., 1961, Stromatoporoidea Sovetskogo Soyuza, chast' tret'ya [Stromatoporoidea
1412	of the Soviet Union, part 3]. Vsesoiuznogo NauchnoIssledovatel'skogo
1413	Geologicheskogo Instituta (YSEGEI), Trudy (new series) 44, 64 p.
1414	Zenger, D.H., 1979, Primary textures in dolostones and recrystallized limestone: a technique
1415	for their microscopic study: Discussion: Journal of Sedimentary Petrology, v.49, p. 677-
1415 1416	for their microscopic study: Discussion: Journal of Sedimentary Petrology, v.49, p. 677–678.
1415 1416 1417	for their microscopic study: Discussion: Journal of Sedimentary Petrology, v.49, p. 677– 678. Zhan, RB., and Cocks, L.R.M., 1998, Late Ordovician brachiopods from the South China
1415 1416 1417 1418	 for their microscopic study: Discussion: Journal of Sedimentary Petrology, v.49, p. 677–678. Zhan, RB., and Cocks, L.R.M., 1998, Late Ordovician brachiopods from the South China Plate and their palaeogeographical significance: Special Papers in Palaeontology, v. 59,
1415 1416 1417 1418 1419	for their microscopic study: Discussion: Journal of Sedimentary Petrology, v.49, p. 677– 678. Zhan, RB., and Cocks, L.R.M., 1998, Late Ordovician brachiopods from the South China Plate and their palaeogeographical significance: Special Papers in Palaeontology, v. 59, p. 1–70.
1415 1416 1417 1418 1419 1420	 for their microscopic study: Discussion: Journal of Sedimentary Petrology, v.49, p. 677–678. Zhan, RB., and Cocks, L.R.M., 1998, Late Ordovician brachiopods from the South China Plate and their palaeogeographical significance: Special Papers in Palaeontology, v. 59, p. 1–70. Zhang, F., 2016, Recognizing morphospecies in the heliolitid coral <i>Plasmoporella</i>:
1415 1416 1417 1418 1419 1420 1421	 for their microscopic study: Discussion: Journal of Sedimentary Petrology, v.49, p. 677–678. Zhan, RB., and Cocks, L.R.M., 1998, Late Ordovician brachiopods from the South China Plate and their palaeogeographical significance: Special Papers in Palaeontology, v. 59, p. 1–70. Zhang, F., 2016, Recognizing morphospecies in the heliolitid coral <i>Plasmoporella</i>: Palaeoworld, v. 25, p. 32–42.
1415 1416 1417 1418 1419 1420 1421 1422	 for their microscopic study: Discussion: Journal of Sedimentary Petrology, v.49, p. 677–678. Zhan, RB., and Cocks, L.R.M., 1998, Late Ordovician brachiopods from the South China Plate and their palaeogeographical significance: Special Papers in Palaeontology, v. 59, p. 1–70. Zhang, F., 2016, Recognizing morphospecies in the heliolitid coral <i>Plasmoporella</i>: Palaeoworld, v. 25, p. 32–42. Zhang, M., Xia, FS., Taylor, P.D., Liang, K., and Ma, JY., 2018, Upper Ordovician

1424 Palaeoworld, v. 27, p. 343–359.

1425	Zhang, Y., Chen, X., Yu, G.H., Dan, G.D., and Liu, X., 2007, Ordovician and Silurian rocks
1426	of northwest Zhejiang and northeast Jiangxi provinces, SE China: Hefei, University of
1427	Science and Technology of China Press, 189 p.
1428	Zhen, Y.Y., Burrett, C.F., Percival, I.G., and Lin, B.Y., 2010, A Late Ordovician conodont
1429	fauna from the Lower Limestone Member of the Benjamin Limestone in central
1430	Tasmania, and revision of Tasmanognathus careyi Burrett, 1979: Proceedings of the
1431	Linnean Society of New South Wales, v. 131, p. 43-72.
1432	Zhen, Y.Y., Percival, I.G., Liu, J. B., and Zhang, Y.D., 2009, Conodont fauna and
1433	biostratigraphy of the Honghuayuan Formation (Early Ordovician) of Guizhou, South
1434	China: Alcheringa, v. 33, 257–295.
1435	
1436	FIGURE CAPTIONS
1437	
1438	Figure 1. (1) Geographic map of China showing South China. (2) Enlargement of the study
1439	area near the border area between Jiangxi and Zhejiang provinces. The Zhuzhai section
1440	is indicated by the white square. (3) Geological map of the Xiazhen Formation, which is
1441	divided into three sub-sections, ZU 1, ZU 2, and ZU3.
1442	Figure 2. Stratigraphic column of the Xiazhen Formation with 18 stromatoporoid-bearing

1443 intervals. The red-colored intervals indicate where labechiid stromatoporoids were found

1444 mostly together with clathrodictyids except S6 and S8 intervals. The black-colored

intervals indicate where only clathrodictyid stromatoporoids were found C= claystone;

1446 M = mudstone or lime mudstone; W = wackestone; P = packstone; G = grainstone, F =

1447 floatstone or framestone; R = rudstone. LLM = lower limestone member; LSM = lower

shale member; MMM = middle mixed-lithology member; USM = upper shale member.

1449 Modified after Lee et al. (2012) and Park et al. (2021). A large size version of this

figures is presented in Supplementary Data 1. Full size of the column is presented in the Supplementary Data 1.

1452	Figure 3. Lithofacies, interpreted energy-level and distributions of labechiid stromatoporoids
1453	and growth forms from the each stromatoporoid-bearing interval of the Xiazhen
1454	Fomation; SBI = stromatoporoid-bearing interval; M = mudstone, W = wackestone, P =
1455	packstone, G = grainstone, L–S couplets = limestone–shale couplets; L = low-energy
1456	depositional environment; M = medium-energy depositional environment; H = high-
1457	energy depositional environment; 1 = <i>Rosenella</i> sp.; 2 = <i>Cystostroma</i> sp.; 3 =
1458	<i>Pseudostylodictyon poshanense</i> ; 4 = <i>Pseudostylodictyon</i> sp.; 5 = <i>Labechia altunensis</i> ; 6
1459	= Labechia shanhsiensis; 7 = Labechia variabilis; 8 = Labechia zhuzhainus sp. nov.; 9 =
1460	Labechia sp.; 10 = Labechiella beluatus sp. nov.; 11 = Labechiella gondwanense sp.
1461	nov.; 12 = Labechiella regularis; 13 = Stylostroma bubsense; 14 = Stylostroma
1462	<i>ugbrookense</i> ; 15 = <i>Thamnobeatricea gouldi</i> ; 16 = <i>Sinabeatricea luteolus</i> gen. et sp. nov.
1463	Figure 4. (1–3) <i>Cystostroma</i> sp. from the S2 interval of the formation. (1) Longitudinal
1464	section showing Cystostroma sp. encrusted on shelly skeletal fragments, NIGP 168771-
1465	1. (2) Enlarged photograph noted in white rectangular area in (1). (3) Longitudinal
1466	section of Cystostroma sp. with variable size of cysts, NIGP 175160. (4-6) Longitudinal
1467	and tangential sections of <i>Rosenella</i> sp. from the S11 interval, NIGP 168772. (7, 8)
1468	Pseudostylodictyon poshanense Ozaki 1938 from the upper part of rudstone interval of
1469	ZU 3, NIGP 175161. (7) Longitudinal section showing skeletal phase without mamelon
1470	columns. (8) Longitudinal section showing skeletal phase with mamelon with vertically
1471	punctuating vertical skeletal structure, seems to be pillars (white arrows). (9)
1472	Longitudinal section of selectively silicified Pseudostylodictyon sp. from the S15
1473	interval. Note the white arrows indicating the vertically punctuating stout vertical
1474	skeletal structures that seem to be pillars, NIGP 168773.

Figure 5. (1, 2) Longitudinal and tangential sections of *Labechia altunensis* Dong and Wang, 1475 1476 1984 from the S15 interval, NIGP 175164-1. (3-5) Longitudinal and tangential sections of Lb. variabilis Yabe and Sugiyama, 1930 from the S17 interval, NIGP 168778-1, 5, 3, 1477 respectively. Branching and slender pillars are also seen in (5). (6–7) Longitudinal and 1478 1479 tangential sections of Lb. shanhsiensis Yabe and Sugiyama, 1930 from the S 18 interval, NIGP 175165-1, 3, respectively. The white arrow indicates a curved pillar in (6), 1480 perhaps due to geotropic growth. 1481 Figure 6. (1, 2) Longitudinal and tangential sections of *Labechia zhuzhainus* Jeon sp. nov. 1482 from the S18 interval, holotype NIGP 175169. (3, 4) Longitudinal and tangential 1483 1484 sections of of Lb. zhuzhainus sp. nov. from the S18 interval, paratype NIGP 168777. 1485 Note the skeletal variation in (3). (5) Longitudinal sections showing *Lb. zhuzhainus* sp. 1486 nov. encrusted on tabulate coral *Catenipora* from the S18 interval, paratype NIGP 1487 175170. Note that the coral and stromatoporoid were not in a symbiotic intergrowth association. (6, 7) Longitudinal and tangential sections of Labechia sp. from the S18 1488 interval, NIGP 175184 and NIGP 175185-1, respectively. 1489 1490 Figure 7. (1–3) Longitudinal and tangential sections of *Labechiella beluatus* Jeon sp. nov. 1491 from the S15 interval, holotype NIGP 175187-1, 2, respectively. Note very large, well-1492 developed and persistent pillars. (4) Gradual skeletal change from longitudinal to tangential view of Lblla. beluatus sp. nov. from the S15 interval, paratype NIGP 1493 1494 175188-1. Note the existence of multi-branching pillars. (5-7) Longitudinal and 1495 tangential sections of *Lblla. gondwanense* Jeon sp. nov. from the S17 interval, holotype 1496 NIGP 175186-1, 2, 14, respectively. White arrow in (6) indicates a branching pillar 1497 developed in mamelon-like up-growth of the skeleton. (8) Longitudinal view of 1498 selectively silicified Lblla. regularis (Yabe and Sugiyama, 1930) from the rudstone interval of upper ZU 3, NIGP 175190. 1499

1500	Figure 8. (1, 2) Longitudinal and tangential sections of <i>Stylostroma bubsense</i> Webby 1991
1501	from the S15 interval, NIGP 175193-1, 5, respectively. Note well-developed, but also
1502	sporadically developed, mamelon columns in (1). (3, 4) A variety of longitudinal
1503	skeletal phases of Sty. bubsense from the S17 interval, NIGP 175194 and 175195,
1504	respectively. (5, 6) Longitudinal and tangential sections of Sty. ugbrookense Webby
1505	1991 from the S6 and S3 intervals, NIGP 175202 and 175225-1 respectively. Note
1506	variable preservation of pillars, ranging from hollow (white arrows) and solid (black
1507	arrow) pillars in (5).

Figure 9. (1–6) Longitudinal and tangential sections of *Thamnobeatricea gouldi* Webby 1508 1991. Note the ontogenetic variation of cyst plates. (3, 4) Black arrows indicate the 1509 sharp marginal top of cyst plates in the early growth stage and white arrows indicate 1510 mature round cyst plates. (5) The occurrence of unusual large cyst plates (white arrows) 1511 in the later zone results in branching skeletons. (1) NIGP 175236-1 from the S8 interval, 1512 (2) NIGP 175237 from the S8 interval, (3) NIGP 175232 from the S3 interval, (4) NIGP 1513 175233 from the S3 interval, (5) NIGP 175238 from the S8 interval, (6) NIGP 175249 1514 from the S5 interval. 1515

Figure 11. (1) Network analysis diagram of Ordovician labechiid stromatoporoids using the
layout Force Atlas 2 in Gephi version 0.9.2 (also see text) during the Ordovician. The

- 1524 listed species are co-occurring labechiids between two or more terranes. North China
- 1525 Darriwilian provincial species are indicated with an asterisk mark (*). (2) Two major
- 1526 faunal provinces of labechiid stromatoporoid distribution during the Ordovician.
- 1527 Paleogeographic reconstruction modified from Cocks and Torsvik (2020). Note that the
- 1528 global stromatoporoid distribution is restricted to tropical to subtropical climatic zones.