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Abstract: Many advanced driver assistance systems (ADAS) are currently trying to utilise multi-
sensor architectures, where the driver assistance algorithm receives data from a multitude of sensors.
As mono-sensor systems cannot provide reliable and consistent readings under all circumstances
because of errors and other limitations, fusing data from multiple sensors ensures that the envi-
ronmental parameters are perceived correctly and reliably for most scenarios, thereby substantially
improving the reliability of the multi-sensor-based automotive systems. This paper first highlights
the significance of efficiently fusing data from multiple sensors in ADAS features. An emergency
brake assist (EBA) system is showcased using multiple sensors, namely, a light detection and ranging
(LiDAR) sensor and camera. The architectures of the proposed ‘centralised’ and ‘decentralised’ sensor
fusion approaches for EBA are discussed along with their constituents, i.e., the detection algorithms,
the fusion algorithm, and the tracking algorithm. The centralised and decentralised architectures
are built and analytically compared, and the performance of these two fusion architectures for EBA
are evaluated in terms of speed of execution, accuracy, and computational cost. While both fusion
methods are seen to drive the EBA application at an acceptable frame rate (~20 fps or higher) on an
Intel i5-based Ubuntu system, it was concluded through the experiments and analytical comparisons
that the decentralised fusion-driven EBA leads to higher accuracy; however, it has the downside of a
higher computational cost. The centralised fusion-driven EBA yields comparatively less accurate
results, but with the benefits of a higher frame rate and lesser computational cost.

Keywords: sensor fusion; autonomous driving; ADAS; object detection and tracking

1. Introduction

In today’s state-of-the-art technology, the application of multiple sensors that are
fine tuned to perceive the environment precisely is seen as instrumental for increasing
road safety [1,2]. Thanks to robust and reliable exteroceptive sensors, such as the LiDAR
sensor [3], the radio detection and ranging (RADAR) sensor [4], cameras, and ultrasonic
sensors [5], amongst several others, intelligent vehicles are capable of accurately perceiving
the environment around them [2]. This allows them to anticipate and/or detect emerging
dangerous situations and threats.

In case of mono-sensor applications, the system is prone to errors, as failure of the only
available sensor can lead to breakdown of the entire system [6]. Having multiple sensors
with different field-of-views and capabilities often helps in making the system more robust,
as the system can still operate with acceptable efficacy after failure of one or more sensors
from an agglomeration of multiple sensors [6,7]. Different sensors have different levels of
reliability under a multitude of scenarios. For example, the performance of a camera sensor
is deteriorated substantially in dark conditions. Thus, the probability of false positives
or false negatives increases under such circumstances [8,9]. A LiDAR sensor is relatively
robust under dark situations, thereby allowing for more dependable detections. However,
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it has certain drawbacks as it cannot recognise the colour of the detected object [10]. Hence,
applications like ‘traffic sign recognition’ cannot be carried out by using LiDAR alone.
In such cases, use of a camera sensor is mandatory [8,11].

Multi-sensor fusion is the process of combining data from multiple sensors so that the
cumulative data are enhanced in terms of reliability, consistency, and quality, compared
to the data that would be acquired from a single sensor [12,13]. In this paper, we focus
on ‘object-level’ or ‘high-level’ multi-sensor fusion techniques for emergency brake assist
(EBA) systems. First, we concentrate on the importance of a multi-sensor fusion approach,
followed by an exegesis of ‘centralised’ and ‘decentralised’ object-level multi-sensor fusion
to drive the EBA feature. Once the environment is fully perceived, with the present con-
ditions known and future conditions estimated, the vehicle software can then undertake
proactive decisions and actions to either avoid the upcoming threat, or, in case the situation
is inevitable, boost safety of the driver and other occupants [12,13]. Thus, ADAS applica-
tions utilising multi-sensor fusion as their backbone have potential to make mobility safer
and more efficient [14,15].

Emergency brake assist (EBA) is an ADAS system that assists the driver in avoiding a
collision or decreasing the impact of collision with other vehicles or vulnerable road users
when the collision is unavoidable [16,17]. Research shows that in many critical situations,
human drivers tend to react either too late or in a wrong way [18]. In such scenarios, the
best alternative is to apply the vehicle brakes with the safe maximum force to minimise the
consequences of the unavoidable impact [19]. EBA primarily consists of two parts [20]:

(1) Detection: identify critical scenarios which can lead to an accident and warn the
driver accordingly through audio and/or visual indications;

(2) Action: in scenarios where impacts or accidents are inevitable, EBA can decrease the
speed of the ego-vehicle by applying brakes in advance to achieve minimal impact.

In this paper, we will only focus on the ‘detection’ part of EBA. For EBA to function
appropriately, a precise environment perception is required. As a result, a reliable and
consistent sensor fusion network is necessary to drive this algorithm [21]. For this paper,
the EBA is designed such that an alert shall be displayed on the dashboard notifying that
either a critical or a safe scenario has been detected.

The work outlined in this paper contributes to the research by:

1. Highlighting the advantages and challenges of using multi-sensor fusion driven
ADAS algorithms over mono-sensor ADAS features.

2. Providing analytical comparisons of the two proposed methodologies of sensor
fusion—‘centralised’ and ‘decentralised’ fusion architectures.

3. Implementing an EBA algorithm and critically analysing the behaviour, performance,
and efficacy of the feature driven by the two proposed fusion methods.

The paper is structured as follows: Section 1 provides the introduction and motivation
behind this work. Section 2 presents the literature review, where a multitude of papers and
work done by various researchers is critically studied and analytically compared. Section 3
sheds light on the proposed methods for sensor fusion alongside the sensor building
blocks, such as the camera and LiDAR object detection, tracking and fusion algorithms,
types and methods of sensor fusion, and their fundamentals. This part covers the theory
required to implement the multi-sensor fusion-based EBA feature. Section 4 shows the
implementation of EBA and analytically compares the performance of centralised and
decentralised fusion-driven EBA, based on execution speed, accuracy, noise immunity, and
computational cost. Section 5 concludes the work.

2. Background and Previous Work
2.1. Related Work

Sensor fusion targets a variety of applications in the automotive domain. The archi-
tecture of the fusion algorithm and the methodology, and the amount and type of sensors
used depend on the task to be performed and the sensitivity and criticality of the parent
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system. Sensors such as cameras, LiDAR, ultrasonic sensors, and RADAR can be used
to perceive the environment around the ego-vehicle under different circumstances. An
efficient technology, which involves fusing information from a point cloud (generated by
LiDAR) and an image (generated by camera), is discussed by Kocic et al. [18]. Accordingly,
we shall use the LiDAR–camera combination of sensors in our work. By using a similar
fusion architecture, the localisation and mapping can also be done; however, we shall
restrict the scope of our work to the construction of an alert-based EBA system only.

The work done by Herpel et al. [1] presents a systematic and detailed analysis of
high-level (object-level) and low-level sensor fusion. Low-level sensor fusion techniques
usually involve heavy computation and are more susceptible to noise, and the authors
of [1] highlighted the advantage of use of object-level fusion, which involves relatively
less computational prowess and high immunity to noise. Thus, for real-time embedded
systems, object-level sensor fusion techniques are more suited than low-level fusion. Work
done by Badue et al. [22] highlights the benefit of using more than one sensor (which is
also backed by Stampfle et al. [9]) and fusing their data at an object level. Accordingly, we
implemented object-level multi-sensor fusion in the work described in this paper. These
works were closely studied in order to understand the spatial synchronisation aspect of the
LiDAR and camera sensor fusion.

Research done by De Silva et al. [23] sheds light on the factors involved in combining
data from various sensors involving temporal and spatial synchronisation. In this work,
a geometrical model is worked upon for spatial synchronisation of data. In our work,
we use a similar model for converting a 3D point cloud bounding box into a 2D space
and then fusing the camera and LiDAR sensor data together. In their work, the authors
used a resolution-matching algorithm based on Gaussian process regression to estimate
unreliable or missing data. To combat the problem of uncertain data, we used a tracker
algorithm. Thus, we can say that our work is a further development of the framework
used in the project undertaken by De Silva et al. [23]. Decisions that are undertaken in
driverless cars need to be computed with the help of as many sensor inputs as possible.
Moreover, these decisions must be made in the presence of uncertainties and noise that
come with pre-processing algorithms and data acquisition methods. Work done by De
Silva et al. [23] addresses these two issues surrounding automotive sensor fusion. Work
done by Yang et al. [24] and Wan et al. [25] also describes the application of the unscented
Kalman filter in target tracking for automotive-specific applications. Based on these
works, we considered the use of the unscented Kalman filter (UKF) as a tracker method in
our system.

Various classification schemes for sensor data fusion are discussed in the work done by
Castanedo [8]. Several sensor fusion algorithms are classified based on different parameters
such as type of data processed, type of output data, and structure of framework. Based on
this work, we propose the two fusion algorithms that we shall be focussing on—centralised
and decentralised fusion methods. The architectures of these two methods were primarily
inspired from the work done by Castenado [8] and Grime et al. [26].

In their work, Stampfle et al. [9] describe the construction of a Robot Operating System
(ROS)-based sensor fusion node. ROS is a meta-operating system and provides standard
operating system services like contention management, hardware abstraction, and process
management, alongside high-level functionalities like synchronous and asynchronous calls
and centralised databases. Being language independent, it is possible to develop software
modules in ROS in C++ as well as Python, which allows for freedom to use necessary
software nodes off the shelf without converting the code into one standard language. ROS
also allows for use of a 3D visualisation tool—RViz, which will be used extensively for
this work to project the camera and LiDAR images (input as well as output). By studying
the work done by Bernardin et al. [27], we critically analyse the performance of the sensor
fusion algorithms used to drive the said EBA features. In this case, mean average precision
(mAP) values are used to gauge the consistency of an algorithm. The false positives, false
negatives, and true positives values required for the calculation of the mAP value are



Sensors 2021, 21, 5422 4 of 29

derived from the confusion matrix by comparing the output of the fusion algorithm against
KITTI dataset’s ground truth data.

Sensor technology—sensors and sensor fusion methodologies—form a critical part of
modern autonomous vehicles. As specified in the work done by Badue et al. [22], different
sensors used in varied fusion architectures lead to substantially different performances. It
is clear from the work done by Aeberhard et al. [28] that most original equipment manufac-
turers (OEMs) prefer the use of high-level data fusion architecture for implementing ADAS
algorithms in vehicles. Aeberhard et al. [28] showcase this through experimental analysis
performed on the BMW 5 Series vehicle. Accordingly, we also consider a high-level sensor
fusion architecture for our work.

2.2. Classification of Sensor Fusion Methods

Sensor data fusion involves the consideration of fundamental parameters like the
speed of operation of the fusion algorithm on an embedded platform, its accuracy, computa-
tional load, architecture, type of data at the input and output, type of sensor configuration,
and, ultimately, the cost of implementation. Hence, it is imperative to thoroughly classify
various sensor fusion techniques. By studying various works and projects, we broadly
classify sensor fusion techniques according to some criteria, as shown in Table 1.

Table 1. Classification of sensor fusion techniques.

Sr. No. Criteria Reference

1

Classification based on relation between the
different input sources, which can be:

1. Cooperative
2. Complimentary
3. Redundant

Whyte et al. [29]
Chavez-Garcia et al. [30]
Steinhage et al. [31]

2

Classification based on data types of input and
output data, which can be:

1. Data In-Data Out
2. Data In-Feature Out
3. Feature In-Feature Out
4. Feature In-Decision Out
5. Decision In-Decision Out

Dasarathy et al. [32]
Steinhage et al. [31]
Heading et al. [33]

3

Classification based on abstraction level of fused
data, which can be:

1. Raw Data (Low level)
2. Decision or Object (High level)

Luo et al. [34]
Chavez-Garcia et al. [30]

4

Classification based on type of fusion
architecture:

1. Hierarchical
2. Distributed
3. Clustered

Castanedo [8]
Makarau et al. [35]
Heading et al. [33]

Object-level sensor fusion (by Luo et al. [34]) has significant advantages over raw
data-based sensor fusion (low-level fusion) as it ensures modularity and allows for ease
of benchmarking. Moreover, the fusion techniques can be relatively simple to develop.
Studying sensor fusion architectures and differences in performance for multiple fusion
methodologies is important since, when it comes to implementing sensor fusion algorithms
on embedded systems [21], it is important to use an optimum architecture which gives
acceptable accuracy.
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Accordingly, in our work, we chose to use and analytically compare object-level
‘centralised’ and ‘decentralised’ fusion methods, as inspired from the work done by Cas-
tanedo [8] in order to drive the EBA features.

3. Proposed Fusion Methods
3.1. Fusion Architectures—Centralised and Decentralised Fusion

In this paper, the centralised sensor fusion is referred as object-level centralised sensor
fusion (OCSF) and the decentralised sensor fusion as (object-level decentralised sensor
fusion (ODSF). The architecture of OCSF is shown in Figure 1.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 29 
 

 

Studying sensor fusion architectures and differences in performance for multiple fusion 
methodologies is important since, when it comes to implementing sensor fusion algo-
rithms on embedded systems [21], it is important to use an optimum architecture which 
gives acceptable accuracy. 

Accordingly, in our work, we chose to use and analytically compare object-level ‘cen-
tralised’ and ‘decentralised’ fusion methods, as inspired from the work done by Cas-
tanedo [8] in order to drive the EBA features. 

3. Proposed Fusion Methods 
3.1. Fusion Architectures—Centralised and Decentralised Fusion 

In this paper, the centralised sensor fusion is referred as object-level centralised sen-
sor fusion (OCSF) and the decentralised sensor fusion as (object-level decentralised sensor 
fusion (ODSF). The architecture of OCSF is shown in Figure 1. 

 
Figure 1. Architecture of OCSF. 

The terminology used in Figure 1 is explained below: 
A’, B’—Raw data from sensor (pixel-level data for camera and point cloud data for Li-
DAR) 
A, B—Processed data from sensor object detection blocks. Pre-processing blocks indicate 
object detection algorithms implemented for the respective sensors. 
C—Temporally and spatially synchronised data from the two sensors. 
D—Fused data. Output of sensor fusion; these data are the output of the tracking algo-
rithm, and are immune to false negatives, false positives, and other noise present in sensor 
data. 

In OCSF, the fusion and tracking node is built inside the central processor. The fusion 
block receives synchronised data from various input blocks, which in this case are sensors 
A and B (camera and LiDAR, respectively). The output of the fusion block is given as the 
input to the tracker block. The tracker helps in suppressing noise, false positives, and false 
negatives, thereby providing fusion output with least errors. 

The architecture of ODSF is shown in Figure 2. 

Figure 1. Architecture of OCSF.

The terminology used in Figure 1 is explained below:

A’, B’—Raw data from sensor (pixel-level data for camera and point cloud data for LiDAR)
A, B—Processed data from sensor object detection blocks. Pre-processing blocks indicate
object detection algorithms implemented for the respective sensors.
C—Temporally and spatially synchronised data from the two sensors.
D—Fused data. Output of sensor fusion; these data are the output of the tracking algorithm,
and are immune to false negatives, false positives, and other noise present in sensor data.

In OCSF, the fusion and tracking node is built inside the central processor. The fusion
block receives synchronised data from various input blocks, which in this case are sensors
A and B (camera and LiDAR, respectively). The output of the fusion block is given as the
input to the tracker block. The tracker helps in suppressing noise, false positives, and false
negatives, thereby providing fusion output with least errors.

The architecture of ODSF is shown in Figure 2.
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The terminology used in Figure 2 is explained below:

A’, B’—Raw data from sensor (pixel-level data for camera and point cloud data for LiDAR).
A, B—Data from the sensor object detection blocks. Pre-processing blocks indicate object
the detection algorithm implemented for the respective sensors.
C—Tracking data of Sensor A. This block ensures that data are consistent despite inconsis-
tencies at the output of the pre-processing block.
D—Tracking data of Sensor B. This block ensures that data are consistent despite inconsis-
tencies at the output of the pre-processing block.
E—Output of the fusion block. Data from both sensors are spatially and temporally aligned.

In ODSF, the fusion node is built inside the central processor; however, the tracking
nodes for respective sensors are outside the central processor. The tracker, which is
applied to both sensors, independently helps in suppressing false positives, noise, and
false negatives for each sensor, thereby providing the central processor with data that are
pure and devoid of errors and inconsistencies. As the tracker is applied independently to
both sensors, it can be understood that this architecture involves higher processing and is
computationally heavier than OCSF. However, as highly consistent data from both sensors
are fed to the fusion algorithm, the output of the architecture is highly precise.

In both these methods, the pre-processing block comprises the respective object
detection algorithms. The tracking block is the unscented Kalman filter used in both
architectures (in a different manner, however). The alignment block takes care of the
spatial and temporal alignment of data from the two sensors. The fusion block ultimately
associates the data from the two sensors to a single fixed target.

The only difference between the two proposed methods is the way the ‘tracker’ block
is used. As we shall later see in the experiments and results section, the position of the
tracker block significantly affects the algorithm performance. In ODSF, the tracker is
applied on individual sensor data before the data are fused, while in OCSF, the tracker is
applied only once on the final fused output.

3.2. Components of the Proposed Fusion Methods
3.2.1. Camera Object Detection

You Only Look Once (YOLO) is a popular algorithm based on convolutional neural
networks for detecting objects in a 2D image. It is not one of the most accurate algorithms,
but it is very efficient in terms of accuracy and real-time detection [36,37]. Alongside
predicting class labels, YOLO also detects the location of respective target objects within the
image. For our application, we are not focusing on the class labels; however, this algorithm
was chosen so that, if our work were to evolve in the future, such that object classes were
to be made useful, no substantial changes would have to be made to the architecture. This
algorithm divides the image into numerous smaller regions and predicts probabilities of
object presence, and its bounding box within the selected region [37]. Figure 3 shows a
high-level flow diagram for YOLOv3.

Compared to the prior versions, YOLOv3 has a multi-scale detection and a much
stronger feature extractor network, alongside changes in the loss function [38]. As a result,
YOLOv3 has the capability to detect a multitude of targets, despite their size. Like any other
single-shot detectors, this algorithm also makes real-time inference possible on standard
CPU-GPU devices [37,38]. The network architecture for YOLov3 is as seen in Figure 4. In
YOLOv3, a slightly tweaked architecture is used with the application of a feature extractor
known as DarkNet-53. DarkNet-53 consists of 53 convolutional layers such that each
layer is followed by Leaky ReLU activation and batch normalisation [38]. YOLOv3 is an
open-source algorithm and was used off the shelf, as worked upon by Lee et al. [36].
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3.2.2. LiDAR Object Detection

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is popular
and, as the name suggests, a ‘density-based clustering non-parametric algorithm’ [39]. If
a set of points are fed to its input, the algorithm works towards grouping points that are
closely packed [40]. The algorithm marks such points as ‘inliers’. On the other hand, the
points which lie outside the detected clusters are called ‘outliers’. In short, the DBSCAN
algorithm separates high-density clusters from low-density point cloud pixels [41]. The
flow chart for DBSCAN is as shown in Figure 5.
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Here, ‘Eps’ is the maximum distance neighbourhood between points in a cluster, and
‘MinPts’ is the minimum size of points necessary to form a cluster.

The DBSCAN algorithm can be summarised in terms of input, output, and process as
shown below:

Input: N objects to be clustered and some global parameters (Eps, MinPts)
Output: Clusters of objects
Process:

1. Select a point p arbitrarily.
2. Retrieve all density-reachable points from p with respect to Eps and MinPts.
3. If p is a core point, a cluster is formed.
4. If p is a border point, no points are density reachable from p and DBSCAN visits the

next arbitrary point in the database.
5. Continue the process until all points in the database are visited.

In LiDAR point clouds, with a typical example that can be seen in Figure 6, the
vehicles and objects on and beside the road are seen as high-density, closely packed clusters.
The algorithm detects these clusters and draws a bounding box around them, as shown
in Figure 7.
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DBSCAN for LiDAR detection is an open-source algorithm and was used off the shelf,
as worked upon by Ester et al. [42].

3.2.3. Tracking

Tracking in automotive sensor fusion is the ability of the system to visualise and
perceive various road objects around the vehicle and successfully track or follow them
along the course of navigation. Detection and tracking are the core tasks in modern
autonomous vehicles [24]. While detection algorithms help to create an object list of
presence of various objects surrounding the ego-vehicle, tracking helps in understanding
the way the obstacle or object has been moving and estimates the position of object in near
future. Tracking algorithms are important because they help in combating the phenomenon
of false positives and false negatives to a great extent [43]. As the past state of the object
is always known, one can estimate the present state of the object even if the detection
algorithm does not detect or falsely detects the present state of said object.

In our application, the tracker shall be exposed to highly non-linear inputs, as is in the
case of realistic real-world cases. The detection algorithm may or may not always detect
the obstacles (in case of false negatives) or can detect non-existent obstacles in few cases
(in case of false positives). Furthermore, obstacles can occur and disappear outside of any
control or pattern. When the system is nonlinear, the extended Kalman filter (EKF) tends to
diverge [43], while unscented Kalman filter (UKF) tends to produce comparatively better
results [24,43].

The unscented transformation is a method used to calculate the statistics and be-
haviour of any random variable subjected to nonlinear transformation. The unscented
Kalman filter utilises a set of points to propagate them through the actual nonlinear func-
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tion, instead of linearising the functions. The points to be fed to the filter are chosen such
that their mean, covariance, and higher order moments match that of the Gaussian random
variable. The mean and covariance can be recalculated using these propagated points
to yield better and more accurate results compared to a Taylor Series function (which
is fully linear). Here, sample points are not selected arbitrarily. In their work, Lee [44]
demonstrated the superior performance gain of UKF over EKF for the estimation of state
of the detected objects in highly non-linear systems. Thus, among the two considered
predictors, we choose the UKF for our application.

The flowchart for UKF implementation can be seen in Figure 8. The states that are
implemented in UKF are as follows: (1) state predictor, (2) measurement predictor, and (3)
state updater.
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The UKF for position estimation of objects is an open-source algorithm and was used
off the shelf as worked upon by Wan et al. [25].
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3.2.4. Data Fusion
Synchronicity of Data

This step applies to both OCSF and ODSF. In OCSF, data synchronicity is maintained
before tracking, while in ODSF, data synchronisation is carried out after tracking blocks. An
advantage of using the KITTI dataset (http://www.cvlibs.net/datasets/kitti/, (accessed on
31 July 2021) see Section 3.3 for details) is that the data are already temporally synchronised.
As a result, we only take care of the spatial synchronisation of LiDAR and camera data.

To spatially synchronise the LiDAR and camera data (tracked and filtered in the case
of ODSF, and unfiltered processed data in the case of OCSF), the calib_velo_to_cam.txt
file provided in the KITTI dataset is used. This file consists of the rotation matrix and
translation vector necessary to map the 3D LiDAR data onto the 2D image data. The spatial
synchronisation part of the algorithm is done by the ‘alignment block’.

A 3D point ‘x’ in the 3D LiDAR space can be projected into a point ‘y’ into 2D camera
space as shown in Equation (1) [43,45,46]:

Y = p × R × x (1)

where:
p is the Projection matrix after rectification:

p =


721.53 0.00 609.55
0.00 0.00 721.53

172.85 0.00 0.00
0.00 1.00 0.00

 (2)

where R is the rectifying rotation matrix. For rotation in a three-dimensional space, we
can describe this as an anti-clockwise rotation by an angle θ about the z-axis. The 3 × 3
orthogonal matrix representing the transformation is given by:

R =

 cos θ −sin θ 0
sin θ cos θ 0

0 0 1

 (3)

Thus, by using Equation (1) with values from Equations (2) and (3) for p and R,
respectively, we can associate the 3D LiDAR points with the 2D image points, as seen
in Figure 9.
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Figure 9. 3D object bounding box as projected into corresponding 2D space.

Executing Fusion Node—OSCF and ODSF

This step applies for both OCSF and ODSF. In OCSF, aligned and untracked noisy
data are fed to the fusion node, while in ODSF, aligned tracked data are fed to the fusion
node. However, the principles of operation and execution remain the same for both.

http://www.cvlibs.net/datasets/kitti/
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The objects detected by the camera object detection algorithm are identified by two
parameters, namely:

1. Parameters of top left corner of the bounding box, that is, (x1, y1), and
2. Width and height of the bounding box, that is, (h, w).

This can be understood from the details shown in Figure 10.
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Figure 10. Description of a bounding box for a detected object in 2D space.

In Figure 10, consider the bounding box (ABCD). Accordingly, the cartesian coordi-
nates of points A, B, C, and D can be as seen in Table 2.

Table 2. Cartesian coordinates for the 2D bounding box with top left corner A (x,y), height h, and
width w.

Sr. No. Point Coordinates

1 A (x1, y1)
2 B (x1 + w, y1)
3 C (x1 + w, y1—h)
4 D (x1, y1—h)

Objects detected by the LiDAR object detection algorithm are also identified by two
parameters, namely:

(1) Parameters of front top left corner of the bounding box, that is, (x1, y1, z1).
(2) Width, height, and depth of the bounding box, that is, (h, w, l).

The cartesian coordinates of points B, C, D, E, F, G, and H, as they can be derived, are
shown in Table 3 (consider Figure 9 for the naming convention).

Table 3. Cartesian coordinates of the 3D bounding box.

Sr. No. Point Coordinates

1 A (x1, y1, z1)
2 B (x1 + w, y1, z1)
3 C (x1 + w, y1—h, z1)
4 D (x1, y1—h, z1)

5 E (x1, y1—h, z1 + l)
6 F (x1, y1, z1 + l)
7 G (x1 + w, y1, z1 + l)
8 H (x1 + w, y1—h, z1 + l)
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By using spatial transformation, every point in the LiDAR 3D space in Table 3 will
be transformed into a respective point in the 2D camera space. Thus, after transforming
3D bounding boxes into the 2D space, we shall have a total of two 2D bounding boxes for
each detected object—one bounding box is a result of camera object detection algorithm
and the other one is the transformed output of the LiDAR object detection algorithm. If the
transformation is accurate, and both sensors have detected the object with precision, the
overlap between the two bounding boxes should be high. For this work, an intersection of
union (IoU) value [11] of 0.7 was used, that is, the detection is considered as a true positive
if more than 70% of the area of the 2D bounding boxes is overlapping.

These two bounding boxes can be seen in Figure 11. The yellow bounding box is the
transformed LiDAR detection from 3D to 2D and the green bounding box is the camera-
detected 2D box.
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Figure 11. Camera (green bounding box) and transformed LiDAR bounding box (yellow) imposed
in the 2D space.

The fusion node associates camera data to the LiDAR data. The transformed bound-
ing box detected by the LiDAR detection algorithm is associated on a pixel level with
the bounding box detected by the camera detection algorithm. As the intersection over
union (IoU) value is more than 0.7, the detections from the camera and LiDAR are fused
together, and the transformed 2D bounding box detected by the LiDAR is considered as
the final detection.

However, this technique works perfectly if both sensors provide reliable data with
considerable accuracy. Bounding boxes of the two sensors can be associated only if both
sensors detect an object. Data cannot be associated if one sensor picks an object and the
other one fails to detect the same. For OCSF, where data are inconsistent at the input of the
fusion node, consider a case as below:

1. Both sensors have detected an object, and the fusion node now associates their
bounding boxes.

2. Some frames later, one of the two sensor detection algorithms gives a false negative
detection and does not detect the object.

In this case, the fusion cannot be carried out and the fusion node provides a NULL
output (which is similar to ‘No Object Detected’). This results in inconsistencies in the
output of the fusion node. We then use the tracking node to tackle this problem for OCSF.
In ODSF, however, as filtered data are received at the input of the fusion node, lesser
anomalies are observed, and even if noise, false positives, or false negatives are present in
the output of the camera and LiDAR object detection algorithms, the output of the fusion
node is consistent, thanks to the tracking node, which is independently applied to both
sensors before fusion. However, if inconsistent tracks are found in ODSF (different tracks
for two different sensor outputs), the tracks are ignored, resulting in a NULL output. This
is unexpected and would lead to an undesirable output from the fusion block.
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3.3. Implementation of OSCF and ODSF

We have implemented the OCSF and ODSF architectures in the Robot Operating
System (ROS)-based environment. For all implementation and experimentation, an Intel
i5-based Ubuntu 18.04 machine was used. To make the system language agnostic, the
Robot Operating System (ROS) is used. The KITTI dataset is used for the camera and
LiDAR images used to develop and test the proposed algorithms. The advantage of using
the KITTI dataset is the variety of testing data—for both camera and LiDAR—alongside
being open source and having ease of compatibility for using the sensor data as they are [3].
The KITTI dataset also provides an easy method to convert the available to rosbag, thereby
making it convenient to interface the data with a ROS environment.

Creating the ROS Environment

Using Robot Operating System (ROS) provides flexibility for development and helps
in maintaining modularity. Multiple nodes can be added or removed without hassle and
data can be easily debugged, envisioned, and processed. ROS provides cross-language
development liberty and is language agnostic. As a result, the camera object detection
algorithm in Python 3.6 and the LiDAR object detection algorithm developed in C++ can
be integrated easily. In the Sensor_Fusion node, software nodes, as shown in Table 4, are
used for both architectures (OCSF and ODSF). However, the order in which they are made
to work differs.

Table 4. Description of ROS nodes for OCSF and ODSF.

Sr. No. ROS Node Description

1 Detection_LiDAR This node performs object detection on LiDAR data
2 Detetcion_Camera This node performs object detection on camera data

3 Sensor_Sync This node applies transformation matrix and statially
synchronises LiDAR and camera data

4 Sensor_Fusion
This node associates the synchronised LiDAR and
camera data together, thereby creating an object list
which includes data from both the camera and LiDAR

5 Tracking
This node performs functionality of the unscented
Kalman filter. The UKF is implemented on fused data
for OCSF and independently on sensor data in ODSF.

An evaluation node is built for evaluating the performance of the fusion architectures.
This node primarily gives an idea of the computational power required for implementing
the architecture. Visualisation node is built to display the fused data on RViz, which is the
visualisation tool used in ROS.

3.4. Examples for Sensor Data Fusion

We tested the system in three scenarios for both OCSF and ODSF:

1. Detections in highly contrasting situations (bright roads and dark shadows)—Figure 12.
2. Detections in brightly lit scenarios—Figure 13.
3. Reliable detections at far distances in brightly lit scenarios—Figure 14.

Figure 12 shows that the fusion algorithm provides output as expected when exposed
to highly contrasting scenes. Vehicles in darker parts of the image (the one with green
bounding box) are detected well alongside the objects in the brighter parts of the image
(with purple and yellow bounding boxes).
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Figure 13 depicts the scenario in a bright sunny environment. Target objects in very
bright surroundings are also detected properly.

Figure 14 depicts a scenario in which vehicles are far away from the ego vehicle. Such
objects are also detected properly.
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Thus, for both OCSF and ODSF, the qualitative performance of the algorithms seems
acceptable under a myriad of circumstances. We shall now utilise these sensor fusion
algorithms to gauge the performance of EBA.

4. Emergency Brake Assist (EBA) Using OCSF and ODSF

The output of central processor in the fusion framework is fed to the EBA application.
The EBA is designed as worked upon by Ariyanto et al. [19], where ultrasonic sensors are
used to detect any object in the vicinity of the vehicle. In this work, a similar feature is
designed, except instead of ultrasonic sensors, fused data from camera and LiDAR are
used to perceive the environment. The scenario shall be considered as an ‘Unsafe Scenario’
if the target object(s) detected is/are closer than 5 m in the driving path of the ego-vehicle.

The projected driving path (PDP) is considered to be the area in front of the ego-vehicle
with a width of 1.6 m (which is the width of the ego-vehicle) and length of 5 m. If any one
of the four corners of the any detected bounding box of the target object(s) shall lie within
the PDP, the EBA shall display ‘Brake!’ on the display window (thereby categorising the
scenario as an ‘unsafe’ one). For safe scenarios, it shall display ‘Safe’ in the display window.
The flow chart of functionality of this application is as seen in Figure 15.
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4.1. Safe Scenario for EBA

Consider a detected bounding box whose four corners are P1 (x1, y1), P2 (x2, y2),
P3 (x3, y3), and P4 (x4, y4).
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As shown in Figure 16, the detected target bounding box does not protrude into the
projected driving path (PDP). As the PDP is void of any target objects, the system considers
it as a ‘safe’ scenario. Figure 17 shows a real-time representation of this scenario.
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4.2. Unsafe Scenario for EBA

Consider a detected bounding box whose four corners are P1 (x1, y1), P2 (x2, y2),
P3 (x3, y3), and P4 (x4, y4).

As shown in Figure 18, the detected target bounding box does protrude into the PDP.
As a result, the system considers it as an ‘unsafe’ scenario and displays ‘Unsafe!’ in the
display window, as shown in Figure 19.
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4.3. OCSF-Driven EBA

Figures 20–22 show various safe and braking scenarios. In Figure 20, no objects are
present in the PDP. As a result, the scenario is classified as a safe one.
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Figure 22. Unsafe scenario as detected by OCSF-driven EBA (object IDs are depicted above the 3D bounding boxes).

In Figures 21 and 22, road occupants are present inside the PDP. As a result, the
scenario is classified as an unsafe one.

For all three circumstances shown in Figures 20–22, the following observations are of
particular interest.

1. The frame rate is consistent around 31 frames/s.
2. Instances of false positives or false negatives are observed at times, as expected from

the OCSF-driven EBA algorithm.
3. The tracker algorithm does a good job of suppressing the false positives (FP) and false

negatives (FN); however, not all FPs and FNs are filtered. It can be understood that the
number of FPs and FNs would be considerably higher if the tracker were not used.

The PDP is a fixed area in front of the vehicle. As of now, the steering angle and
vehicle speed do not affect the area under the PDP quadrilateral. However, as we are
demonstrating the sensor fusion-based ADAS feature, this is an acceptable compromise,
and this can be evolved in later versions of the work.

4.4. ODSF-Driven EBA

Figures 23–25 show various safe and braking scenarios for ODSF-driven EBA. In
Figure 23, one or more corners of the bounding boxes of vehicles parked alongside the
road enter the PDP. As a result, the scenario is identified as an unsafe one.
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Figures 24 and 25 depicts a safe scenario in which no target objects are present in the PDP.
For all three circumstances shown in Figures 23–25, the following observations are of

particular interest.

1. The frame rate is consistent around 20 frames/s; thus, comparatively less frame rate
is observed.

2. Compared to OCSF-driven EBA, lesser false positives and false negatives are observed,
as expected from the ODSF-driven EBA.

3. In this case, the tracker algorithm suppresses the false positives and negatives. As
these FPs and FNs are suppressed at a modular level before the data are fused, the
accuracy of this method is much higher than the OCSF-driven EBA.

4. Like in the previous method as well, the steering angle and vehicle speed do not
affect the area under the PDP quadrilateral. However, as we are demonstrating the
sensor fusion-based ADAS feature, this is an acceptable compromise, and this can be
evolved in later versions of the work.

4.5. Results

Object-level centralised and decentralised sensor fusion can thus be successfully
used to drive the said ADAS algorithm. Furthermore, through experiments, we also
conclude that both fusion techniques provide a higher qualitative performance compared
to mono-sensor systems. For benchmarking of the mono-sensor system, we consider the
EBA-driven by camera sensor alone. While there are some imminent drawbacks with
camera-driven EBA, such as lesser reliability of the system in low-light conditions, we
consider a scenario under perfect lighting for the sake of comparison. For experimental
analysis, more than 100,000 frames of the KITTI dataset in urban, semiurban, and highway
scenarios were considered. Various objects, such as commercial, heavy, and light on-road
vehicles, pedestrians, and other relevant road objects were considered.

4.5.1. Frame Rate for the Execution of EBA

The execution speed of an algorithm is a direct indication of the computational load
that is incurred by the software on the system on which it is executed. Both fusion
algorithms provide acceptable speed (~20 fps for ODSF and ~30 fps for OCSF). For the
mono-sensor system, the frame rate is highest at ~37 fps. For the execution of multiple
videos under different circumstances, Table 5 shows the frame rates observed for EBA
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driven by both fusion methods and mono-sensor architecture (the videos are chosen from
the KITTI dataset).

Table 5. Frame rate for multiple videos for OCSF- and ODSF-driven EBA.

Experiment
Number Scenario Frame Rate for

EBA with OCSF

Frame Rate for
EBA with

ODSF

Frame Rate for
EBA with

Mono-Sensor

1 Densely populated
urban street

32 fps 18 fps 36 fps

2 32 fps 20 fps 37 fps

3 Moderately
populated urban

33 fps 20 fps 37 fps

4 31 fps 20 fps 37 fps

5 Sparsely populated
highway

32 fps 22 fps 39 fps

6 32 fps 21 fps 38 fps

7 Densely populated
highway

32 fps 21 fps 37 fps

8 32 fps 20 fps 38 fps

The frame rate of EBA executed with OCSF is ~50% higher than EBA executed with
ODSF, while the frame rate of EBA executed using mono-sensor architecture is ~35% higher
than the one executed using OCSF. The prime reason for higher execution speed of OSCF-
as compared to ODSF-driven EBA is because the computationally heavy tracker algorithm
is implemented only once in OCSF, whereas in ODSF, it is implemented twice (once for
each sensor output) for a single frame. In mono sensor-driven EBA, a higher frame rate
is observed as a processing of only one sensor has to be done. The time profiling for EBA
executed with both sensor fusion methods is as given in Tables 6 and 7, respectively.

Table 6. Time profiling for EBA driven with OCSF.

Sr. No. Software Block—OCSF Time Taken for Execution (ms)

1 LiDAR object
detection—DBSCAN 4

2 Camera object
detection—YOLOv3 5

3 Alignment—Temporal and
spatial data synchronisation 3

4 Data Fusion—Association of
target objects 2.5

5 Tracking—UKF 16
6 EBA 2

TOTAL 32.5

On the current system, where the CPU does not allow for much parallelisation of tasks,
a stark difference between the performance of two architectures can be seen. However, if a
capable embedded platform like NVIDIA Drive AGX [47], which has numerous GPU cores
to allow for parallelisation of independent tasks, the ODSF can be implemented as fast or
nearly as fast as the OCSF [30,48].

It can be seen from Tables 6 and 7 that the tracker algorithm is computationally heavier
than all other components in the system. The UKF algorithm consists of many approxima-
tions and iterations, because of which it is expected to be computationally heavy [49–53].
Other alternatives, such as the extended Kalman filter, might be computationally lighter
but are prone to more errors [54].
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Table 7. Time profiling for EBA driven with ODSF.

Sr. No. Software Block—ODSF Time Taken for Execution (ms)

1 LiDAR object
detection—DBSCAN 4

2 Camera object
detection—YOLOv3 5

3 Tracking for LiDAR
detection—UKF 16.2

4 Tracking for camera
detection—UKF 16.5

5 Alignment—Temporal and
spatial data synchronisation 3

6 Data Fusion—Association of
target objects 1.8

7 EBA 2

TOTAL 48.5

4.5.2. Accuracy and Precision of EBA

The tracklets.xml file in the KITTI dataset contains ground truth data for all instances.
For both fusion methods, OCSF and ODSF, we store the bounding box data in the /eval-
uation folder. Later, the contents in the /evaluation folder are compared with data in
tracklets.xml to get an idea of the accuracy of each architecture. A Python script is written
to compare the objects detected by the fusion algorithm against the ground truth data. The
IoU measures the overlap of the two bounding boxes under consideration—the ground
truth box and the actual detected bounding box. For the current project, an IoU of 0.7 was
considered in calculating the accuracy and precision of the detection fusion algorithms.
A detected bounding box (the output of the fusion algorithm) is considered as a true
positive if the IoU with the ground truth data are greater than 0.7. By calculating the true
positives, false positives, and false negatives values, the mAP values for the OCSF output,
the ODSF output, and the mono-sensor output for IoU of 0.7 for four separate videos
were obtained and are listed in Table 8. If the IoU threshold is increased, the mAP values
decrease accordingly for both OCSF and ODSF; however, the IoU threshold is set at 0.7 for
optimum results.

Table 8. mAP values for different videos for OCSF, ODSF, and mono-sensor output.

Experiment
Number Scenario OCSF mAP (%) ODSF mAP (%) Mono-Sensor

mAP (%)

1 Densely populated
urban street

57.7857 63.9002 30.323

2 54.3361 64.7871 29.8019

3 Moderately
populated urban

57.0128 66.6676 31.7009

4 58.9919 65.0118 33.2245

5 Sparsely populated
highway

64.0089 70.5824 32.2637

6 64.3327 69.9066 33.034

7 Densely populated
highway

62.7008 68.6842 30.8026

8 61.1029 67.7183 29.0807

As elaborated in Section 2.1, the false positives (FP), false negatives (FN), and true
positives (TP) values are calculated by comparing the output of the fusion algorithm against
the KITTI dataset’s ground truth data. mAP values are then calculated using the TP, FP, and
FN values. The prime downside of the mono-sensor system can be observed from Table 8.
For the mono-sensor architecture, the mAP value in all tested scenarios is less than half of
the mAP value for the fusion architectures. Thus, despite the high frame rate, as seen in
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Table 5, the application of the mono-sensor architecture is not preferred due to extremely
poor accuracy. The higher value of accuracy for ODSF is justified in ODSF, as noise (false
positives, false negatives, and ghost object detections, etc.) is suppressed earlier than OCSF
by using tracker immediately after detection algorithm. As a result, the data fed to sensor
fusion node are already filtered and the effects of noise are nullified beforehand. Thus, the
fusion algorithm can operate with minimal error, thereby providing more accurate results.
Even if it is computationally heavier, ODSF provides more accurate results.

In general, the errors in the output of the fusion block are observed when either sensor
fails to detect the object. This is the major reason behind lower performance of the OCSF.
This inconsistency in the detection or false positive detections can be referred to as ‘Noise’.
For ODSF, however, when an object is not detected, or falsely detected for few frames by
any sensor, the respective tracker predicts its right position, and it drives the algorithm
accordingly for the next frames.

Hence, if the ADAS algorithm needs to be run in situations where accuracy is of
utmost importance, and cost of hardware platform is a second priority, ODSF shall provide
for a better solution. It can thus be understood that OCSF is less immune to sensor noise
and errors. As a result, at several instances, false negatives and false positives are observed
in the sensor fusion output for OCSF. This error directly corresponds to a failure of the EBA
under critical situations.

4.5.3. Computational Cost of EBA

OCSF can be implemented on hardware platforms with fewer resources/lesser compu-
tational prowess, while ODSF requires platforms with more resources/high computational
prowess to achieve the real-time performance. As ODSF is computationally heavier than
OCSF, the cost of execution of OCSF is lesser than that of ODSF if a real-time application,
such as EBA, is to be implemented using these methods. When executed on a computer
with NVIDIA GeForce 1080 GTX Graphics card, OCSF was seen to be running at 46 fps
and ODSF at 42 fps. Thus, on higher end machines, the performance of the two algorithms
is on par with each other.

The computational cost of implementation of ODSF increases proportionally with the
number of sensors in the system. However, the ability of the system to tackle more noise
brought in by more sensors is also strengthened. Thus, depending on the criticality, budget,
and nature of application of the target ADAS system, this can either be an advantage or
disadvantage of ODSF compared to OCSF. Thus, on a general hardware platform with
limited resources, EBA executed using OCSF shall still provide acceptable output, while
EBA using ODSF shall show degraded performance (in terms of frame rate and hardware
resources consumed). To obtain a real-time performance from EBA using ODSF, more
expensive hardware will be required, while the same is not necessary for EBA using OCSF.

5. Conclusions

While it can be seen from Table 5 that mono-sensor-driven EBA provides very high
frame rate, Table 8 proves that this high execution speed comes at the price of very poor
accuracy. In ADAS applications, we need to attain a balance between the speed of execution
and the accuracy of the system. Thus, due to substantially degraded accuracy of the mono-
sensor system, fusion-based systems are preferred, thanks to their higher accuracy and
acceptable execution speed. Even the least accurate version of sensor fusion-driven EBA
(from the two methods stated in this paper) is more reliable and worthy than EBA driven
by a mono-sensor system. Fusing data from multiple sensors might add to the cost of the
system; however, the accuracy, precision, and reliability of the ADAS algorithm increase
manifold, which, in turn, justify the higher cost of the fusion algorithm.

Considering the accuracy, computational load, and cost of execution of the two sensor
fusion methods for driving EBA, we can say that both OCSF and ODSF have their respective
advantages and disadvantages. While OCSF is simpler to execute and is computationally
lighter, it provides comparatively less accuracy (as seen in Table 8); ODSF is more accurate
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than OCSF and has a better immunity to noise; however, it is computationally heavy
and, hence, has a higher computational cost. Mono-sensor systems, on the other hand,
are very light computationally; however, they also provide very poor accuracy. If an
ADAS algorithm needs to be run on a less-expensive embedded platform, which has lesser
hardware resources (a smaller number of CPU and GPU cores and less cache and RAM),
like a Cortex-M-based STM32 platform [55,56], and less accuracy of EBA is acceptable,
OCSF shall prove to be a comparatively better option. However, if hardware resources
and computational cost are not a concern, and the accuracy and precision of the ADAS
algorithm utilising the fusion architecture is of the utmost importance, ODSF is a more
favourable option for driving EBA [57–60].

In real-world on-vehicle scenarios, if EBA is executed in L1–L2 automated vehi-
cles [61,62], where the driver shall be expected to always remain attentive and in control of
the vehicle, EBA driven by OCSF might be a beneficial option; however, if the vehicle is
automated to L3 or higher, where the driver is not always expected to be attentive or in
control of the vehicle, EBA driven by ODSF shall certainly be a more reliable and better
alternative [63].
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