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Abstract

We establish explicit bounds on the convex distance between the distribution of a vector
of smooth functionals of a Gaussian field, and that of a normal vector with a positive definite
covariance matrix. Our bounds are commensurate to the ones obtained by Nourdin, Peccati
and Réveillac (2010) for the (smoother) 1-Wasserstein distance, and do not involve any addi-
tional logarithmic factor. One of the main tools exploited in our work is a recursive estimate
on the convex distance recently obtained by Schulte and Yukich (2019). We illustrate our
abstract results in two different situations: (i) we prove a quantitative multivariate fourth
moment theorem for vectors of multiple Wiener-Itô integrals, and (ii) we characterise the
rate of convergence for the finite-dimensional distributions in the functional Breuer-Major
theorem.
Keywords: Breuer-Major Theorem; Convex Distance; Fourth Moment Theorems; Gaussian
Fields; Malliavin-Stein Method; Multidimensional Normal Approximations.
AMS 2020 Classification: 60F05; 60G15; 60H07

1 Introduction
Fix m ≥ 1, and consider random vectors F and G with values in Rm. The convex distance
between the distributions of F and G is defined as

dc(F,G) := sup
h∈Im

∣∣Eh(F)− Eh(G)
∣∣, (1)

where the supremum runs over the class Im of indicator functions of the measurable convex
subsets of Rm. For m ≥ 2, the distance dc represents a natural counterpart to the well-known
Kolmogorov distance on the class of probability distributions on the real line, and enjoys a
number of desirable invariance properties that make it well-adapted to applications1.

The aim of the present note is to establish explicit bounds on the quantity dc(F,G), in the
special case where F is a vector of smooth functionals of an infinite-dimensional Gaussian field,
and G = NΣ is a m-dimensional centered Gaussian vector with covariance Σ > 0. Our main
tool is the so-called Malliavin-Stein method for probabilistic approximations [17], that we

∗University of Luxembourg, Department of Mathematics, inourdin@gmail.com
†University of Luxembourg, Department of Mathematics, giovanni.peccati@gmail.com
‡University of Bath, Department of Mathematical Sciences, xiaochuan.j.yang@gmail.com
1For instance, one has that dc(T F, T G) = dc(F, G), whenever the mapping T : Rm −→ Rm is an invertible

affine mapping — see e.g. [4, 28] for more details.
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will combine with some powerful recursive estimates on dc, recently derived in [29] in the context
of multidimensional second-order Poincaré inequalities on the Poisson space — see Lemma 2.1
below.

Multidimensional normal approximations in the convex distance have been the object of
an intense study since several decades, mostly in connection with multivariate central limit
theorems (CLTs) for sums of independent random vectors — see e.g. [4, 10, 13, 14] for some
classical references, as well as [28] for recent advances and for a discussion of further relevant
literature. The specific challenge we are setting ourselves in the present work is to establish
bounds on the quantity dc(F, NΣ) that coincide (up to an absolute multiplicative constant) with
the bounds deduced in [19] on the 1-Wasserstein distance

dW (F, NΣ) := sup
h∈Lip(1)

|Eh(F)− Eh(NΣ)| , (2)

where Lip(1) denotes the class of C1 mappings h : Rm → R with Lipschitz constant not exceeding
1. We will see that our estimates systematically improve the bounds that one can infer from the
general inequality

dc(F, NΣ) ≤ K
√
dW (F, NΣ), (3)

where K is an absolute constant uniquely depending on Σ. For the sake of completeness, a full
proof of (3) is presented in Appendix A, where one can also find more details on the constant
K.
Remark 1.1. In order for the quantity dW (F, NΣ) to be well-defined, one needs that E‖F‖Rm <
∞. In Appendix A we will also implicitly use the well-known representation

dW (F, NΣ) = inf
(U,V)

E ‖U−V‖Rm ,

where the infimum runs over all couplings (U,V) of F and NΣ. See [30, Ch. I-6] for a proof of
this fact, and for further relevant properties of Wasserstein distances.

The main contributions of our paper are described in full detail in Section 1.4 and Section 1.5.
Section 1.1 contains some elements of Malliavin calculus that are necessary in order to state our
findings. Section 1.2 discusses some estimates on the smooth distance d2 (to be defined therein)
that can be obtained by interpolation techniques, whereas Section 1.3 provides an overview of
the main results of [19].
Remark on notation. From now on, every random element is assumed to be defined on a common
probability space (Ω,F ,P), with E denoting expectation with respect to P. For p ≥ 1, we write
Lp(Ω) := Lp(Ω,F ,P).

1.1 Elements of Malliavin calculus

The reader is referred e.g. to the monographs [17, 23, 24] for a detailed discussion of the concepts
and results presented in this subsection.

Let H be a real separable Hilbert space, and write 〈·, ·〉H for the corresponding inner product.
In what follows, we will denote by X = {X(h) : h ∈ H} an isonormal Gaussian process
over H, that is, X is a centered Gaussian family indexed by the elements of H and such that
E[X(h)X(g)] = 〈h, g〉H for every h, g ∈ H. For the rest of the paper, we will assume without loss
of generality that F coincides with the σ-field generated by X.
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Every F ∈ L2(Ω) admits a Wiener-Itô chaos expansion of the form

F = EF +
∞∑
q=1

Iq(fq),

where fq belongs to the symmetric qth tensor product H�q (and is uniquely determined by F ),
and Iq(fq) is the q-th multiple Wiener-Itô integral of fq with respect to X. One writes
F ∈ D1,2(Ω) if ∑

q≥1
qq! ‖fq‖2H⊗q <∞.

For F ∈ D1,2(Ω), we denote by DF the Malliavin derivative of F , and recall that DF is by
definition a random element with values in H. The operator D satisfies a fundamental chain
rule: if ϕ : Rm → R is C1 and has bounded derivatives and if F1, . . . , Fm ∈ D1,2(Ω), then
ϕ(F1, . . . , Fm) ∈ D1,2(Ω) and

Dϕ(F1, . . . , Fm) =
m∑
i=1

∂iϕ(F1, . . . , Fm)DFi. (4)

For general p > 2, one writes F ∈ D1,p(Ω) if F ∈ Lp(Ω) ∩ D1,2(Ω) and E[‖DF‖pH] <∞.
The adjoint of D, customarily called the divergence operator or the Skorohod integral,

is denoted by δ and satisfies the duality formula,

E[δ(u)F ] = E[〈u,DF 〉H] (5)

for all F ∈ D1,2(Ω), whenever u : Ω→ H is in the domain Dom(δ) of δ.
The generator of the Ornstein-Uhlenbeck semigroup, written L, is defined by the rela-

tion LF = −
∑
q≥1 qIq(fq) for every F such that

∑
q≥1 q

2q! ‖fq‖2H⊗q <∞. The pseudo-inverse
of L, denoted by L−1, is the operator defined for any F ∈ L2(Ω) as L−1F = −

∑
q≥1

1
q Iq(fq).

The crucial relation that links the objects introduced above is the identity

F = EF − δ(DL−1F ), (6)

which is valid for any F ∈ L2(Ω) (in particular, one has that, for every F ∈ L2(Ω), DL−1F ∈
Dom(δ)).

1.2 Bounds on the smooth distance d2

Fix m ≥ 1 and assume that F = (F1, ..., Fm) is a centered random vector in Rm whose compo-
nents belong to D1,2(Ω). Without loss of generality, we can assume that each Fi is of the form
Fi = δ(ui) for some ui ∈ Dom(δ); indeed, by virtue of (6) one can always set ui = −DL−1Fi
(although this is by no means the only possible choice). Let also NΣ = (N1, . . . , Nm) be a
centered Gaussian vector with invertible m × m covariance matrix Σ = {Σ(i, j)} = {Σ(i, j) :
i, j = 1, ...,m}. Finally, consider the so-called d2 distance (between the distributions of F and
NΣ) defined by

d2(F, NΣ) = sup
h

∣∣Eh(F)− Eh(NΣ)
∣∣,

where the supremum is taken over all C2 functions h : Rm → R that are 1-Lipschitz and such
that supx∈Rm ‖(Hessh)(x)‖H.S. ≤ 1; here, Hessh stands for the Hessian matrix of h, whereas
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‖ · ‖H.S. (resp. 〈·, ·〉H.S.) denotes the Hilbert-Schmidt norm (resp. scalar product), that is,
〈A,B〉H.S. = Tr(ABT) =

∑
1≤i,j≤mA(i, j)B(i, j) and ‖A‖2H.S. = 〈A,A〉H.S. for anym×mmatrices

A = {A(i, j)} and B = {B(i, j)}.
For a given h : Rm → R ∈ C2 with bounded partial derivatives, let us introduce its mollifi-

cation at level
√
t, defined by

ht(x) := E[h(
√
tNΣ +

√
1− tx)], x ∈ Rm. (7)

One has

Eh(NΣ)− Eh(F) =
∫ 1

0

d

dt
E[ht(F)]dt

= 1
2

m∑
i=1

∫ 1

0

{ 1√
t
E[∂ih(

√
tNΣ +

√
1− tF)Ni]−

1√
1− t

E[∂ih(
√
tNΣ +

√
1− tF)Fi]

}
dt.

Supposing in addition (and without loss of generality) that F and NΣ are independent, we can
write, using the Gaussian integration by parts

E[∂ih(
√
tNΣ +

√
1− tF)Ni] = EF(ENΣ [∂ih(

√
tNΣ +

√
1− tF)Ni]

)
=
√
t
m∑
j=1

E[∂2
ijh(
√
tNΣ +

√
1− tF)]E[NiNj ],

and, combining the duality formula (5) with the chain rule (4),

E[∂ih(
√
tNΣ +

√
1− tF)Fi] = ENΣ

(
EF[∂ih(

√
tNΣ +

√
1− tF)Fi]

)
=
√

1− t
m∑
j=1

E[∂2
ijh(
√
tNΣ +

√
1− tF)〈DFi, uj〉H].

Putting everything together leads to

Eh(NΣ)− Eh(F) = 1
2

∫ 1

0
E[〈(Hessh)(

√
tNΣ +

√
1− tF),Σ−MF 〉H.S.]dt,

where MF is the random m×m matrix given by

MF (i, j) = 〈DFi, uj〉H. (8)

It is then immediate that
d2(F, NΣ) ≤ 1

2 E‖MF − Σ‖H.S.. (9)

Inequalities in the spirit of (9) were derived e.g. in [18] (in the context of limit theorems for
homogeneous sums) and [27] (in the framework of multivariate normal approximations on the
Poisson space) — see also [29] and the references therein.

1.3 Bounds on the 1-Wasserstein distance

For random vectors F and NΣ as in the previous section, we will now discuss a suitable method
for assessing the quantity dW (F, NΣ) defined in (2), that is, for uniformly bounding the absolute
difference |Eh(F)− Eh(NΣ)| over all 1-Lipschitz functions h of class C1.
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Since we do not assume h to be twice differentiable, the method presented in Section 1.2
no longer works. A preferable approach is consequently the so-called ‘Malliavin-Stein method’,
introduced in [16] in dimension 1, and later extended to the multivariate setting in [19]. Let us
briefly recall how this works (see [17, Chapter 4 and Chapter 6] for a full discussion, and [1] for
a constantly updated list of references).

Start by considering the following Stein’s equation, with h : Rm → R given and f : Rm →
R unknown:

m∑
i,j=1

Σ(i, j)∂2
ijf(x)−

m∑
i=1

xi∂if(x) = h(x)− Eh(NΣ), x ∈ Rm. (10)

When h ∈ C1 has bounded partial derivatives, it turns out that (10) admits a solution f = fh
of class C2 and whose second partial derivatives are bounded — see e.g. [17, Proposition 4.3.2]
for a precise statement. Taking expectation with respect to the distribution of F in (10) gives

Eh(F)− Eh(NΣ) =
m∑

i,j=1
Σ(i, j)E[∂2

ijfh(F)]−
m∑
i=1

E[Fi∂ifh(F)].

We can apply again the duality formula (5) together with the chain rule (4), to deduce that

Eh(F)− Eh(NΣ) = E[〈(Hess fh)(F),MF − Σ〉H.S.], (11)

where MF is defined in (8). Taking the supremum over the set of all 1-Lipschitz functions
h : Rm → R of class C1, we infer

dW (F, NΣ) ≤ c1 E‖MF − Σ‖H.S., (12)

with
c1 = sup

h∈Lip(1)
sup

x∈Rm
‖(Hess fh)(x)‖H.S. ≤

√
m ‖Σ−1‖op ‖Σ‖1/2op , (13)

and ‖·‖op is the operator norm for m × m matrices. The estimate (12) is the main result of
[19] (see also [17, Theorem 6.1.1]), whereas a self-contained proof of (13) can be found in [17,
Proposition 4.3.2].

1.4 Main results: bounds on the convex distance

The principal aim of the present paper is to address the following natural question: can one
obtain a bound similar to (12) for distances based on non-smooth test functions h : Rm → R,
such as e.g. indicator functions of measurable convex subsets of Rm?

If h is such an indicator function, then we recall e.g. from [29, Lemma 2.2] that, for all
t ∈ (0, 1),

∣∣Eh(F)− Eh(NΣ)
∣∣ ≤ 4

3 |Eht(F)− Eht(NΣ)|+ 20m√
2

√
t

1− t ,

where ht stands for the mollification at level
√
t of h, as defined in (7). Let ft = fht be the

solution of the Stein’s equation (10) associated with h = ht. In [6] (see also [29]), it is shown
that

max
1≤i,j≤m

sup
x∈Rm

|∂2
ijft(x)| ≤ c2| log t|,
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with c2 = c2(m,Σ) a constant depending only on m and Σ. Combining such an estimate with
(11) yields the existence of a constant c3 = c3(m,Σ) > 0 such that

∣∣Eh(F)− Eh(NΣ)
∣∣ ≤ c3

(
E‖MF − Σ‖H.S.| log t|+

√
t

1− t

)
. (14)

From (14), it is straightforward to deduce the existence of c4 = c4(m,Σ) > 0 such that

dc(F, NΣ) ≤ c4 E‖MF − Σ‖H.S.
∣∣ log{E‖MF − Σ‖H.S.}

∣∣. (15)

Comparing (15) with (9) and (12) shows that such a strategy yields a bound on dc(F, NΣ) differ-
ing from those deduced above for the distances d2 and dW by an additional logarithmic factor.
See also [11, 20] for more inequalities analogous to (15) — that is, displaying a multiplicative
logarithmic factor — related respectively to the (multivariate) Kolmogorov and total variation
distances.

In this paper, we will show that one can actually remove the redundant logarithmic factor
on the right-hand side of (15), thus yielding a bound on dc(F, NΣ) that is commensurate to (9)
and (12) (with moreover an explicit multiplicative constant). Our main result is the following:

Theorem 1.2. Let F = (F1, ..., Fm) = (δ(u1), . . . , δ(um)) be a vector in Rm of centered random
variables such that ui ∈ Dom(δ), for i = 1, ...,m. Let also NΣ = (N1, . . . , Nm) be a centered
Gaussian vector with invertible m×m covariance matrix Σ = {Σ(i, j)}. Then

dc(F, NΣ) ≤ 402
( ∥∥∥Σ−1

∥∥∥3/2

op
+ 1

)
m41/24

√
E
[
‖MF − Σ‖2H.S.

]
,

with MF defined in (8).

As anticipated, to prove Theorem 1.2, we shall combine the somewhat classical smoothing
estimate (14) with a remarkable bound by Schulte and Yukich [29].

1.5 Applications

We illustrate the use of Theorem 1.2 by developing two examples in full detail.

Quantitative fourth moment theorems. A fourth moment theorem (FMT) is a mathemat-
ical statement implying that a given sequence of centered and normalized random variables
converges in distribution to a Gaussian limit, as soon as the corresponding sequence of fourth
moments converges to 3 (that is, to the fourth moment of the standard Gaussian distribution).
Distinguished examples of FMTs are e.g. de Jong’s theorem for degenerate U -statistics (see
[8, 9]) as well as the CLTs for multiple Wiener-Itô integrals proved in [25, 26]; the reader is
referred to the webpage [1] for a list (composed of several hundreds of papers) of applications
and extensions of such results, as well as to the lecture notes [31] for a modern discussion of
their relevance in mathematical physics. Our first application of Theorem 1.2 is a quantitative
multivariate fourth moment theorem for a vector of multiple Wiener-Itô integrals, considerably
extending the qualitative multivariate results proved in [26]. Note that such a result was already
obtained by Nourdin and Rosiński [22, Theorem 4.3] for the 1-Wasserstein distance dW . Thanks
to Theorem 1.2, it is not difficult to generalize their result to the dc metric.
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Corollary 1.3. Fix m ≥ 1 as well as q1, . . . , qm ≥ 1. Let F = (F1, ..., Fm) where Fi = Iqi(fqi)
with fqi ∈ H�qi. Let NΣ be a centered Gaussian vector with covariance matrix Σ = (EFiFj)i,j∈[m]
supposed to be invertible. Then

dc(F, NΣ) ≤ 402
( ∥∥∥Σ−1

∥∥∥3/2

op
+ 1

)
m41/24

√
E ‖F‖4 − E ‖NΣ‖4.

In particular, for a vector F of multiple Wiener-Itô integrals to be close in the convex
distance to a centered Gaussian vector NΣ with matching covariance matrix, it is enough that
E‖F‖4 ≈ E ‖NΣ‖4.

The multivariate Breuer-Major theorem. The second example concerns the convergence towards
a Brownian motion occurring in the Breuer-Major theorem proved in [5]. Let us briefly recall
this fundamental result (see [17, Chapter 7] for an introduction to the subject, as well as [15, 7]
for recent advances in a functional setting). Let {Gk : k ∈ Z} be a centered Gaussian stationary
sequence with ρ(j − k) = E[GjGk] and ρ(0) = 1; in particular, Gk ∼ N(0, 1) for all k. Let
ϕ ∈ L2(R, γ) where γ(dx) = (2π)−1/2e−x

2/2dx denotes the standard Gaussian measure on R.
Since the Hermite polynomials {Hk : k ≥ 0} form an orthonormal basis of L2(R, γ), one has

ϕ =
∑
k≥d

akHk,

with d ∈ N and ad 6= 0. The index d is known as the Hermite rank of ϕ ∈ L2(R, γ). Suppose
in addition that

∫
R ϕdγ = E[ϕ(G0)] = 0, that is, suppose d ≥ 1. The Breuer-Major theorem [5]

states the following: if
∑
k∈Z |ρ(k)|d <∞, then 1√

n

bntc∑
k=1

ϕ(Gk) : t ≥ 0

 f.d.d.−→ {σW (t) : t ≥ 0} (16)

where W is a standard Brownian motion, f.d.d.−→ indicates convergence in the sense of finite-
dimensional distributions, and

σ2 :=
∑
k≥d

a2
kk!

∑
j∈Z

ρ(j)k ∈ [0,∞),

(That σ2 is a well-defined positive real number is part of the conclusion.) We refer to our note
[21] and references therein for results on the rate of convergence in the total variation distance for
one-dimensional marginal distributions (that is, in dimension 1). We intend to apply Theorem
1.2 to address the rate of convergence for the following multivariate CLT implied by (16): for
every 0 = t0 < t1 < ... < tm = T <∞, 1√

n

bnt1c∑
k=1

ϕ(Gk), ...,
1√
n

bntmc∑
k=1

ϕ(Gk)

 d−→ N(0,Σ(t1, ..., tm))

where d−→ indicates converges in distribution, and N(0,Σ(t1, ..., tm)) is a m-dimensional centred
Gaussian vector with covariance Σ(t1, ..., tm) having entries σ2ti ∧ tj , i, j = 1, ...,m. Notice that
for any m×m invertible matrix A,

dc(F,G) = dc(AF, AG).
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Therefore, choosing A appropriately, it suffices to consider the vector Fn = (Fn,1, ..., Fn,m) with

Fn,i = 1√
n

bntic∑
k=bnti−1c+1

ϕ(Gk), i ∈ [m]

and obtain the rate of convergence for

Fn
d−→ N(0, σ2Diag(t1 − t0, ..., tm − tm−1)) =: NΣ. (17)

The following result provides a quantitative version of this CLT with respect to the distance dc.
Recall from [21] that the minimal regularity assumption over ϕ for obtaining rates of convergence
via the Malliavin-Stein method is that ϕ ∈ D1,4(R, γ), meaning that ϕ is absolutely continuous
and both ϕ and its derivative ϕ′ belong to L4(R, γ). We say that ϕ is 2-sparse if its expansion
in Hermite polynomials does not have consecutive non-zero coefficients. In particular, even
functions are 2-sparse.

Corollary 1.4. Let Fn and NΣ be given in (17). Suppose that ϕ ∈ D1,4(R, γ) with Hermite
rank d ≥ 1. Then,

i) There exists a constant C depending only on ϕ,m,Σ such that for each n ∈ N,

dc(Fn, NΣ) ≤ C
m∑

i,j=1
|Σ(i, j)− E[FiFj ]|+ Cn−

1
2

∑
|k|<n

|ρ(k)|

 3
2

.

ii) If d = 2, ϕ is 2-sparse and b ∈ [1, 2], then there exists a constant C depending only on
ϕ,m,Σ such that for each n ∈ N,

dc(Fn, NΣ) ≤ C
m∑

i,j=1
|Σ(i, j)− E[FiFj ]|+ Cn−( 1

b
− 1

2 )

∑
|k|<n

|ρ(k)|2
 1

2
∑
|k|<n

|ρ(k)|b
 1

b

.

iii) If d = 2, ϕ is 2-sparse, and
∑
k∈Z |ρ(k)|2 <∞, then as n→∞,

dc(Fn, NΣ)→ 0.

The rest of the note is organized as follows. The proof of Theorem 1.2 is given in Section
2.1, Corollary 1.3 in Section 2.2, Corollary 1.4 in Section 2.3. We use C to denote a generic
constant whose value may change from line to line.
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2 Proofs

2.1 Proof of Theorem 1.2

We divide the proof into several steps.
Step 1 (smoothing). For any bounded and measurable h and t ∈ (0, 1), recall its mollification at
level

√
t from (7). Then it is plain that ht is C∞ with bounded derivatives of all orders and the

solution to (10) with h = ht is given by

ft(x) := −1
2

∫ 1

t

1
1− s(E[h(

√
sNΣ +

√
1− sx)]− E[h(NΣ)])ds,

see [29, p.12]. Finally, recall from e.g. [29, Lemma 2.2] that, for any t ∈ (0, 1),

dc(F, NΣ) ≤ 4
3 sup
h∈Im

|Eht(F)− Eht(NΣ)|+ 20m√
2

√
t

1− t .

Step 2 (integration by parts). An integration by parts by (5) and (4) (see [17, Chapter 4] for
more details), together with Cauchy-Schwarz’s inequality, implies,

|Eht(F)− Eht(NΣ)| =

∣∣∣∣∣∣E
d∑

i,j=1
Σ(i, j)∂2

ijft(F)− E
d∑

k=1
Fk∂kft(F)

∣∣∣∣∣∣ (18)

=

∣∣∣∣∣∣E
d∑

i,j=1
(Σ(i, j)− 〈DFi, uj〉)∂2

ijf(F)

∣∣∣∣∣∣
≤

√√√√√ d∑
i,j=1

E[(Σ(i, j)− 〈DFi, uj〉)2]

√√√√√ d∑
i,j=1

E[∂2
ijf(F)2].

The following remarkable estimate is due to M. Schulte and J. Yukich.

Lemma 2.1 (Proposition 2.3 in [29]). Let Y be an Rm-valued random vector and Σ be an
invertible m×m covariance matrix. Then,

sup
h∈Im

E
m∑

i,j=1
|∂2
ijft(Y)|2 ≤

∥∥∥Σ−1
∥∥∥2

op

(
m2(log t)2dc(Y, NΣ) + 530m17/6

)
.

where the left-hand side depends on h through the function ft solving Stein’s equation with test
function ht given by (7).

Remark 2.2. Lemma 2.1 improves upon the uniform bound (see [6] or [29])

|∂2
ijft(x)| ≤ C(m,Σ) ‖h‖∞ | log t|,

when some a priori estimate on dc(Y, NΣ) is available.
As consequence,

|Eht(F)− Eht(NΣ)|

≤
∥∥∥Σ−1

∥∥∥
op

(
m| log t|dc(F, NΣ)1/2 + 24m17/12

)√√√√√ d∑
i,j=1

E[(Σ(i, j)− 〈DFi, uj〉)2].

9



Letting

κ = dc(F, NΣ),

γ =

√√√√√ d∑
i,j=1

E[(Σ(i, j)− 〈DFi, uj〉)2],

we have thus established

κ ≤ 4
3

∥∥∥Σ−1
∥∥∥

op
(m| log t|

√
κ+ 24m17/12)γ + 20m√

2

√
t

1− t . (19)

Step 3 (exploiting the recursive inequality). If γ ≥ 1/e, then the bound we intend to prove holds
trivially (observe that dc(F, NΣ) ≤ 1 by definition). Without loss of generality we can and will
therefore assume that γ ≤ 1/e. Let t = γ2. Using the fact that κ ≤ 1 for the κ on the right-hand
side of the (19), one has

κ ≤ 4
3

∥∥∥Σ−1
∥∥∥

op
(2m| log γ|+ 24m17/12)γ + 20

√
2mγ.

Therefore,

| log γ|
√
κ ≤

∥∥∥Σ−1
∥∥∥1/2

op

√
8m
3 γ1/2| log γ|3/2 +

(∥∥∥Σ−1
∥∥∥

op
32m17/12 + 20

√
2m
)1/2

γ1/2| log γ|.

Since supx∈(0,1/e] x
1/2| log x|3/2 ≤ 4, one has

| log γ|
√
κ ≤ 8

√
6

3

∥∥∥Σ−1
∥∥∥1/2

op
m1/2 + 16

√
2
∥∥∥Σ−1

∥∥∥1/2

op
m17/24 + 8

√
10m1/2

≤ 58
(∥∥∥Σ−1

∥∥∥1/2

op
+ 1

)
m17/24.

Hence, putting the estimate back into (19) with t = γ2 gives

κ ≤ 4
3

∥∥∥Σ−1
∥∥∥

op

(
2m
(
58(
∥∥∥Σ−1

∥∥∥1/2

op
+ 1)m17/24

)
+ 24m17/12

)
γ + 20

√
2mγ

≤
(

4
3 × 140× 2

( ∥∥∥Σ−1
∥∥∥3/2

op
+ 1

)
m41/24 + 20

√
2m
)
γ

≤ 402
( ∥∥∥Σ−1

∥∥∥3/2

op
+ 1

)
m41/24γ.

The proof is complete.

2.2 Proof of Corollary 1.3

We will obtain the desired conclusion as a direct application of Theorem 1.2 with ui = −DL−1Fi,
see (6). Indeed, recall that by Step 2 of [22, Proof of Theorem 4.3], for any i, j ∈ [m],

E[(E[FiFj ]− 〈DFi,−DL−1Fj〉)2] ≤ Cov(F 2
i , F

2
j )− 2E[FiFj ]2.

On the other hand, Step 3 of [22, Proof of Theorem 4.3] shows that
m∑

i,j=1
Cov(F 2

i , F
2
j )− 2E[FiFj ]2 = E ‖F‖4 − E ‖NΣ‖4 .

Plugging these estimates into Theorem 1.2 gives the result.
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2.3 Proof of Corollary 1.4

We follow closely the arguments of [21] and assume without loss of generality that T = 1.
First, one can embed the Gaussian sequence in the statement in an isonormal Gaussian process
{X(h) : h ∈ H}, in such a way that

{Gk : k ∈ Z} d= {X(ek) : k ∈ Z} ,

for some appropriate family {ek} ⊂ H verifying 〈ej , ek〉H = ρ(k − j) for all j, k. For ϕ =∑
`≥d a`H` ∈ L2(R, γ), we define the shift mapping ϕ1 :=

∑
`≥1 a`H`−1 and set

un,i := 1√
n

bntic∑
m=bnti−1c+1

ϕ1(Gm)em, i ∈ [m].

Then, standard computations using (6) lead to

δ(un,i) = Fn,i. (20)

Applying Theorem 1.2 and the triangle inequality implies that

dc(F, NΣ) ≤ C
m∑

i,j=1
|Σ(i, j)− E[FiFj ]|+ C

√√√√ m∑
i,j=1

Var(〈DFn,i, un,j〉) =: I1 + I2.

Note that, by the chain rule and the relation D(Gk) = ek,

〈DFn,i, un,j〉H = 1
n

∑
k∼ti

∑
`∼tj

ϕ′(Gk)ϕ1(G`)ρ(k − `),

where k ∼ ti means that the sum is taken over k ∈ {bnti−1c+ 1, ..., bntic}, and similarly for the
symbol ` ∼ tj . Hence,

Var(〈DFn,i, un,j〉H)

= 1
n2

∑
k∼ti

∑
`∼tj

∑
k′∼ti

∑
`′∼tj

Cov(ϕ′(Xk)ϕ1(X`), ϕ′(Xk′)ϕ1(X`′))ρ(k − `)ρ(k′ − `′)

≤ 1
n2

n∑
k,k′,`,`′=1

∣∣∣Cov(ϕ′(Xk)ϕ1(X`), ϕ′(Xk′)ϕ1(X`′))ρ(k − `)ρ(k′ − `′)
∣∣∣. (21)

The variance is bounded because of the assumption that ϕ ∈ D1,4. Once (21) is in place, one
can apply Gebelein’s inequality as in [21]. In particular, one infers that (see [21, Proposition
3.4])

dc(Fn, NΣ) ≤ C

√√√√ 1
n2

n−1∑
i,j,k,`=0

∣∣∣∣ρ(j − k)ρ(i− j)ρ(k − `)
∣∣∣∣.

If, in addition, ϕ is 2-sparse, then

dc(Fn, NΣ) ≤ C

√√√√ 1
n2

n−1∑
i,j,k,`=0

∣∣∣∣ρ(j − k)2ρ(i− j)ρ(k − `)
∣∣∣∣.
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Items i)-ii) now follow from these inequalities, as shown in [21]; we include a proof for complete-
ness. Applying twice Young’s inequality for convolutions, one has, with ρn(k) = |ρ(k)|1|k|<n,

n−1∑
i,j,k,`=0

∣∣∣∣ρ(j − k)ρ(i− j)ρ(k − `)
∣∣∣∣ ≤ n−1∑

i,`=0

(
ρn ∗ ρn ∗ ρn

)
(i− `)

≤ n ‖ρn ∗ ρn ∗ ρn‖`1(Z) ≤ n ‖ρn‖
3
`1(Z) ,

yielding Item i). Rewrite the sum of products as a sum of the product of convolutions by
introducing the function 1n(k) := 1|k|<n. We have

n−1∑
i,j,k,`=0

|ρ(j − k)2ρ(i− j)ρ(k − `)|

=
n−1∑

i,j,k,`=0
|ρ(j − k)2ρ(i− j)ρ(k − `)1n(`− i)|

≤
n−1∑
j,`=0

(ρn ∗ 1n)(`− j)(ρn ∗ ρ2
n)(`− j) ≤ n〈ρn ∗ 1n, ρn ∗ ρ2

n〉`2(Z).

For b ∈ [1, 2], we have

〈ρn ∗ 1n, ρn ∗ ρ2
n〉`2(Z) ≤ ‖ρn ∗ 1n‖

`
b

b−1 (Z)

∥∥∥ρn ∗ ρ2
n

∥∥∥
`b(Z)

(22)

≤ ‖ρn‖`b(Z) ‖1n‖
`

b
2b−2 (Z)

‖ρn‖`b(Z)

∥∥∥ρ2
n

∥∥∥
`1(Z)

≤ (2n)
2b−2

b

∥∥∥ρ2
n

∥∥∥
`1(Z)

‖ρn‖2`b(Z) ,

yielding Item ii). Now we move to the proof of Item iii). Notice that taking b = 2 for the
right-hand side of (22), together with an application of Young’s inequality, yields that

〈ρn ∗ 1n, ρn ∗ ρ2
n〉`2(Z) ≤ ‖ρn ∗ 1n‖`2(Z) ‖ρn‖

3
`2(Z) .

Thus,

1
n2

n−1∑
i,j,k,`=0

∣∣∣∣ρ(j − k)2ρ(i− j)ρ(k − `)
∣∣∣∣ ≤ 1

n
‖ρn ∗ 1n‖`2(Z) ‖ρn‖

3
`2(Z) .

To proceed, we handle the convolution involving 1n a bit differently. Set

ρ̃n(k) = ρ(k)1N≤|k|<n,
ρ̂n(k) = ρ(k)1|k|≤N

so that ρn = ρ̃n + ρ̂n. One has

1
n
‖ρn ∗ 1n‖`2(Z) ≤

1
n
‖ρ̃n‖`2(Z) ‖1n‖`1(Z) + 1

n
‖ρ̂n‖`1(Z) ‖1n‖`2(Z)

≤
( ∑
N≤|k|<n

ρ(k)2
)1/2

+ (2N + 1)n−1/2,

from which Item iii) follows. The proof is complete.
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A Proof and discussion of relation (3)
Inequality (3) is a direct consequence of the following statement, whose proof exploits a strategy
already adopted in [2, Proof of Theorem 3.1].

Proposition A.1. Fix m ≥ 1, and let NΣ denote a m-dimensional centered Gaussian vector
with invertible covariance matrix Σ. Then, for any m-dimensional random vector F one has
that

dc(F, NΣ) ≤ 2
√

2 Γ(Σ)1/2 dW (F, NΣ)1/2, (23)

where Γ(Σ) is the isoperimetric constant defined by

Γ(Σ) := sup
Q,ε>0

P(NΣ ∈ Qε)− P(NΣ ∈ Q)
ε

,

where Q ranges over all Borel measurable convex subsets of Rm, and Qε indicates the set of all
elements of Rm whose Euclidean distance from Q does not exceed ε.

Remark A.2. In [14] it is proved that, for some absolute constants 0 < c < C <∞,

c
√
‖Σ‖H.S. ≤ Γ(Σ) ≤ C

√
‖Σ‖H.S.,

where ‖ · ‖H.S. stands as above for the Hilbert-Schmidt norm. When Σ = Im (identity matrix),
one has also the well-known estimate Γ(Im) ≤ 4m1/4 (see [3]), as well as Nazarov’s upper and
lower bounds

e−5/4 ≤ lim inf
m

Γ(Im)
m1/4 ≤ lim sup

m

Γ(Im)
m1/4 ≤ (2π)−1/4 < 0.64,

see [14, p. 170]. In [28, Theorem 1.2], it is proved that Nazarov’s upper bound can be reduced
from 0.64 to 0.59; see also [4] for related computations in the framework of the multivariate
CLT.

Proof of Proposition A.1. We can assume that F and NΣ are defined on a common probability
space, and that E‖F−NΣ‖Rm = dW (F, NΣ). Fix a convex set Q, as well as ε > 0. We have that

P[F ∈ Q]− P[NΣ ∈ Q] ≤ P[F ∈ Q, ‖F−NΣ‖Rm ≤ ε]− P[NΣ ∈ Q] + ε−1E[‖F−NΣ‖Rm ]
≤ P[NΣ ∈ Qε]− P[NΣ ∈ Q] + ε−1dW (F, NΣ)
≤ Γ(Σ)ε+ ε−1dW (F, NΣ).

On the other hand, defining Q−ε as the set of those y ∈ Q such that the closed ball with radius
ε centered at y is contained in Q,

P[NΣ ∈ Q]− P[F ∈ Q] ≤ P[NΣ ∈ Q, ‖F−NΣ‖Rm ≤ ε]− P[F ∈ Q−ε] + ε−1E[‖F−NΣ‖]
≤ Γ(Σ)2ε+ ε−1dW (F, NΣ),

where we have used the inequality

P[NΣ ∈ Q, ‖F−NΣ‖Rm ≤ ε]− P[F ∈ Q−ε] ≤ P[NΣ ∈ Q]− P[NΣ ∈ Q−2ε].

The conclusion follows from a standard optimisation in ε.
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Remark A.3. Fix m ≥ 1, and let Rm be the collection of all hyper-rectangles of the type
R = (−∞, t1] × · · · × (−∞, tm]. In [2, Theorem 3.1] it is proved that, if N is a m-dimensional
centered Gaussian vector with identity covariance matrix and F is any m-dimensional random
vector, then

sup
R∈Rm

∣∣P[F ∈ R]− P[N ∈ R]
∣∣ ≤ 3(logm)1/4dW (F, N)1/2. (24)

The left-hand side of the previous inequality is usually referred to as theKolmogorov distance
between the distributions of F and N . The presence of the factor (logm)1/4 is consistent with
the fact that, for the standard Gaussian measure on Rm, the isoperimetric constant associated
with all hyper-rectangles of Rm is bounded from above by

√
logm, see [3, 14]. An estimate

analogous to (24) is established by different methods in [12, Corollary 3.1].
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