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Abstract: In view of the fact that vibration signals of rolling bearings are much contaminated by noise
in the early failure period, this paper presents a new denoising SVD-VMD method by combining
singular value decomposition (SVD) and variational mode decomposition (VMD). SVD is used to
determine the structure of the underlying model, which is referred to as signal and noise subspaces,
and VMD is used to decompose the original signal into several band-limited modes. Then the
effective components are selected from these modes to reconstruct the denoised signal according
to the difference spectrum (DS) of singular values and kurtosis values. Simulated signals and
experimental signals of roller bearing faults have been analyzed using this proposed method and
compared with SVD-DS. The results demonstrate that the proposed method can effectively retain the
useful signals and denoise the bearing signals in extremely noisy backgrounds.

Keywords: singular value decomposition (SVD); variational mode decomposition (VMD); difference
spectrum (DS) of singular value; roller bearing; denoising

1. Introduction

As a basic supporting component, rolling element bearings are widely used in rotating
mechanical systems, and play an important role in a variety of industries. As a matter
of fact, more than 50% of rotating machinery failures are related to bearing faults [1,2].
Therefore, it is very necessary for bearings to carry out condition monitoring and analysis,
in which, early weak faults of the bearings can be detected, and the fault situation can
be controlled in time. It will help to cut costs related to long downtimes, emergency
maintenance and human injuries. Vibration signal analysis is widely used for the detection
of bearing faults because of its easy measurement and high correlation with structural
dynamics [3–6]. However, the main obstacle of bearing signal analysis from vibration
data is that the collected non-stationary signals usually mixed with heavy noise caused by
coupled machine components and the running environment [7,8]. It is difficult to extract
effective features; nonetheless, several ideas on feature selection can be found in [9–13]. As
it is difficult to detect early faults from the non-stationary signals with heavy and complex
background noise, vibration signal denoising is an important step for early fault detection
and diagnosis of bearing faults.

There are many signal decomposition methods proposed for signal denoising, such
as wavelet transform (WT), empirical mode decomposition (EMD), variational mode de-
composition (VMD), and so on. WT can deal with signals mixed with non-stationary noise
signals by decomposing them into non-overlapping frequency bands, but its accuracy
depends excessively on the selection of wavelet basis function and the decomposition
scale [14,15]. EMD, an adaptive signal processing method, has been proposed for solving
non-linear and non-stationary signal analysis by Hilbert Huang et al. in 1998 [16], which
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can adaptively decompose the signal into a series of intrinsic mode functions (Intrinsic
Mode Function, IMF) from high frequency to low frequency according to the characteristic
time scale of the signal itself. Although EMD makes up for the limitations of WT, it still has
some shortcomings. For example, EMD will amplify the envelope estimation error due to
multiple recursive decompositions, resulting in end effects, modal aliasing, and pseudo-
pulse phenomena [17]. Variational mode decomposition (VMD) method is a non-recursive
signal processing method with a firm theoretical foundation proposed by Dragomiretskiy
and Zosso in 2014 [18]. It can not only overcome the mode aliasing in EMD but also obtain
a better filtering effect based on its own Wiener filtering characteristics. Owing to the
advantages of small end effect, high operation efficiency and good noise robustness, VMD
has gained much attention by researchers since it was proposed [19–22]. However, the
key step in the decomposition algorithm is to find the appropriate parameters K and α,
where K is the number of intrinsic mode functions and α is the penalty factor, which affect
the decomposition precision of IMFs [23]. Huang et al. [24,25] proposed an improved
scale space guided VMD algorithm which included dividing resonance frequency bands of
signal frequency band in scale space to determine the number of intrinsic modes in VMD,
estimate the initial center frequency and corresponding penalty factor of each intrinsic
function of VMD according to the boundary of resonance frequency band, and improve the
adaptability and accuracy of VMD. These methods require a priori experience to determine
key parameters through estimation. Some researchers use evolutionary algorithms (such as
GA [26,27], PSO [28,29], etc.) to optimize parameters of VMD. Optimization methods with
evolutionary algorithms can solve complex problems without a priori knowledge, but the
results are not easy to interpret, and always consume a lot of computing time.

Singular value decomposition (SVD) is a powerful representation which can decom-
pose a matrix into three component-matrices, exposing many of the useful and interesting
properties of the original matrix. SVD can be used to denoise signals [30] as a kind of
subspace algorithm. It can easily trade noise and signal quality by selectively removing
singular values in the SVD pseudoinverse. However, it may cause serious distortion of
a signal, especially when the signal contains some impact components. In order to solve
the distortion of denoised signal of SVD and the dilemma of parameter selection of VMD,
this paper proposes to combine the methods of SVD and VMD. Here, the parameter K is
focused on optimization because the number of IMFs is more important, and has direct
influence on exposing the components of signals. The main contributions of this paper are
summarized as follows:

(1) SVD and difference spectrum (DS) of singular value are proposed to determine the
number of intrinsic mode functions (IMFs) of VMD;

(2) The effective order of SVD and the kurtosis of VMD are used to select the IMFs of VMD,
and non-stationary signals are denoised by reconstructing the selected components of
VMD;

(3) The effectiveness and performance of the proposed method is verified using simu-
lation bearing data and real experimental bearing data. These results are compared
with those from SVD-DS.

The rest of this paper is arranged as follows. In Section 2 we introduce the theoretical
basis of VMD, SVD, and difference spectrum (DS) of singular value. A novel denoising
approach of combination of VMD and SVD is proposed in Section 3. The feasibility and
performance of the proposed approach are discussed in Section 4 for simulated bearing
signals and in Section 5 for real experimental bearing signals, respectively. Conclusions are
drawn in Section 6.

2. Theoretical Basis
2.1. Singular Value Decomposition (SVD)

Singular value decomposition (SVD) has attracted a lot of attention because of its ability
of noise filtering, disturbance in-sensitivity and high-resolution spectral factorization [31].
As pointed out by De Moor [32], SVD can also be applied to determine the structure of
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the underlying model which is contained in the singular values. The underlying model is
referred to as signal and noise subspaces.

For a real matrix [A] of dimension p × q, there exists a p × p orthogonal matrix [U], a
q × q orthogonal matrix [V] and a p × q diagonal matrix [Σ] (possibly a diagonal square
matrix augmented with zero rows or columns), so that the following decomposition holds:

A = UΣVT

Σ =


σ1
·
·

σp

; (p = min(m, n))
(1)

where Σ contains the singular values ordered in descending order of magnitude,
σ1 > σ2 > · · · > σp ≥ 0. U and V consist of the left and right singular vectors of A.

SVD reveals useful information about A. The number of non-zero singular values co-
incides with the rank k of A. if we choose a number r which is smaller than k and set (p− r)
singular values to zero, we can construct a new rank-reduced singular matrix inversion.

A′ = UΣrVT (2)

A′ is an optimal lower-rank approximation to A and such a SVD is called truncated
SVD. The value designed for r is very important because it will be a tradeoff between
information loss and sensitivity to noise, which is called the number of effective singular
values, and also called the effective order of the SVD.

2.2. Difference Spectrum of Singular Values

Difference spectrum of singular values [33] describes the changes of two adjacent
singular values. There must be a peak in the difference spectrum which represents the
boundary between useful signal and noise signal. It indicates that the singular value before
and after the position has the largest difference in nature. Define the difference between
adjacent singular values as follows:

bi = σi − σi+1; (i = 1, 2, · · · , (p− 1)) (3)

Then, the sequence B =
[
b1, b2, · · · , bp−1

]
is called difference spectrum of singular

values. The position of the maximum mutation point of the singular value can be found
from the difference spectrum. The components corresponding to the r singular values
before the mutation position are useful signals, and the components corresponding to other
singular values after the mutation position are noise ones.

2.3. Variational Mode Decomposition (VMD)

VMD can effectively decompose non-stationary and nonlinear signals into a discrete
set of quasi-orthogonal band limited intrinsic mode functions (IMFs) [18]. Each IMF
component uk has a central frequency and a finite bandwidth. To evaluate the bandwidth
of each mode, the corresponding constrained variational problem is given as follows:

min
{uk},{ωk}

{
∑
k

∥∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
ejωkt

∥∥∥∥ 2

s.t. ∑
k

uk = f
(4)

where, {uk} = {u1, u2, · · · , uk} is a set of modal component functions, the sum of them
is the original signal f . ∂t represents the gradient with respect to the time script t,
{ωk} = {ω1, ω2, · · · , ωk} is the center frequency set of the components, δ(t) denotes the
impulse function, j is an imaginary unit, and ∗ represents the convolution operation.
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To solve the above constrained problem, the quadratic penalty factor α and Lagrangian
multiplier λ(t) are introduced to convert the constrained problem into the unconstrained
variational problem. The augmented Lagrangian is expressed as

L({uk}, {ωk}, λ) = α ∑
k

∥∥∥∥∂t

[(
σ(t) + j

πt

)
e−jωkt

]∥∥∥∥2

2

+

∥∥∥∥ f (t)−
K
∑
k

uk(t)
∥∥∥∥2

2
+

〈
λ(t), f (t)−

K
∑
k

uk(t)
〉 (5)

In detail, the implementation process of the VMD is described as follows.
Step 1: Initialize mode {û1

k}, central frequency {ω̂1
k}, Lagrangian multiplier λ1, and

iterations n.
Step 2: Execution cycle: n = n + 1.
Step 3: For all ω ≥ 0, update uk, ωk and λk.

un+1
k = arguk

minL(
{

un+1
i<k

}
,
{

un
i≥k
}

, {ωn
i }, λn) (6)

ωn+1
k = argωk

minL(
{

un+1
i

}
,
{

ωn+1
i<k

}
,
{

ωn+1
i<k

}
,
{

ωn
i≥k
}

, λn) (7)

λn+1
k = λn + τ( f −∑

k
un+1

k ) (8)

Step 4: Repeat steps (2) to (3), until the convergence stop condition is satisfied. The
stop condition is given as follows:

∑
k

(
‖un+1

k − un
k ‖

2
2/‖un

k ‖
2
2

)
< ε (9)

Step 5: Stop the iterations and obtain the IMF components.
More details of the VMD algorithm can be found in [18].

3. The Proposed SVD-VMD Methodology

Combining the above theoretical basis, a novel denoising method for non-stationary
signals based on SVD-VMD algorithm is proposed. There are two stages in the algorithm.
In the first stage, the effective singular value order is obtained which reveals the underlying
model structure of the signals. The detailed process is shown in the left part of the Figure 1.
At first, the vibration signal with one-dimension is converted into a matrix form. We
construct Hankel matrix [34] to satisfy the above requirement. For a vibration signal
X = [x(1), x(2), · · · , x(N)], a Hankel matrix can be formed as

H =


x(1) x(2) · · · x(n)

x(2) x(3) · · · x(n + 1)
...
...
...

...
x(m) x(m + 1) · · · x(N)


where 1 < m < N, n = N −m + 1. Here, we set m = N/2.
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Then, SVD is used to decompose the Hankel matrix and obtain two orthogonal
matrices containing the left and right singular vectors, respectively, as well as a diagonal
matrix containing the singular values ordered in descending order magnitude. Then, the
difference spectrum of singular values is calculated, and the effective order r of singular
values is determined according to the maximum mutation position of difference spectrum.

In the second stage, we use the obtained order to instruct VMD to decompose the
original signal and select the relevant components to reconstruct denoised signal. The
detailed process is shown in the right part of the Figure 1. Firstly, the original signal is
decomposed by VMD with the number of IMFs K, where K is designed as (r + 2) when r
is smaller than 3, else K is equal to r. When k is greater than 10, we set k as 10. The IMFs
are obtained by decomposing the original signal with VMD, and the kurtosis values are
calculated for each IMF. Finally, the relevant component corresponding to the maximum
kurtosis value is selected to reconstruct the denoised signal.

4. Simulative Case Study

To verify the effectiveness of the proposed method, we used a simulated signal [35]
which simulates the impact signal generated by the inner ring fault, and the signal was
contaminated by white Gaussian noise. The time diagram and the spectrum of the impul-
sive signal are shown in Figure 2, and the time-domain waveform and frequency spectrum



Sensors 2022, 22, 195 6 of 17

of the simulated signal are shown in Figure 3. The description of the simulation signal is
shown in Equation (10).

x(t) = s(t) + n(t) = ∑
i

Aih(t− iT) + n(t)

h(t) = exp(−Ct) cos(2π fnt)

Ai = 1 + A0 cos(2π frt)

(10)

in which, x(t) represents is the observed signal, s(t) simulates the periodic impact com-
ponent, and n(t) is the Gaussian noise signal, where SNR is −13 dB. A0 is the amplitude
which is set to be 0.3 and fr is the rotation frequency which is 30 Hz. C is the attenuation
coefficient of 700 and resonance frequency is set to 4 KHz. The characteristic frequency of
inner ring failure is 120 Hz. sampling frequency is 12 KHz and the signal length is 4096.
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When the impulsive signal is weak or it is covered by strong background noise, the
impulsive frequency may be hidden by noise. The simulated signal is formed by adding the
Gaussian noise signal with SNR−13 dB to the impulsive signal. Figure 3 is the time-domain
waveform and the frequency spectrum of the simulated signal.

Comparing Figure 3 with Figure 2, it is found that the periodic impact components
in the simulated signal are completely submerged by noise, the impulsive frequency is
hidden by noise, and the resonance frequency is also faintly visible.

Now we use the proposed SVD-VMD method to denoise the simulated signal. Firstly,
we convert the simulated signal into the Hankel matrix and use SVD to decompose the
Hankel matrix. The difference spectrum of singular values is shown in Figure 4. There
are three peaks on the difference spectrum and the maximum peak occurs at the second
index which has a far bigger peak than the other two peaks. It indicates that the properties
of singular values are quite different before and after the position of the maximum peak.
Therefore, we determine the effective order r of singular values to be two.
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In Figure 6, the time domain waveform of the denoised signal reveals the obvious
impulsive components. Furthermore, from the frequency spectrum of the denoised signal,
it not only exposes that the resonance frequency is 4 KHz corresponding to the maximum
peak, but also exposes that the impulsive frequency is 0.12 KHz corresponding to the
frequency difference of the adjacent peaks.

As we know, SVD itself can also be used for noise reduction if the effective order of
singular values is found. The components corresponding to the effective order are useful
and the other components are noise. There are many methods to determine the effective
order of singular values such as the difference spectrum of singular values, singular value
mean and singular value median. In this paper, we use difference spectrum (DS) of
singular values to determine the effective order. This denoising method is called SVD-DS
method. The denoised result is achieved by using SVD-DS is shown in Figure 7. We can
see that the reconstructed signal is distorted and the impulsive components are nearly
submerged in the noise due to its small intensity. From the frequency spectrum of the
reconstructed signal, only resonance frequency can be seen, and the impulsive frequency
has completely disappeared.
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In order to evaluate quantitatively the noise reduction performance of the denoising
methods, two indicators, namely, the output signal-to-noise ratio (SNRout) and the root-
mean-square error (RMSE) were used. The definition of SNRout and RMSE are described
as follows:

SNRout = 10log ∑N
n=1 f 2(n)

∑N
n=1[ f ′(n)− f (n)]2

RMSE =

√√√√ 1
N

N

∑
n=1

[ f ′(n)− f (n)]2

where, f ′(n) is the denoised signal and f (n) is the original signal, and N is the length of
the signal.

Table 2 describes the comparison between SVD-DS and SVD-VMD in terms of SNR
and RMSE. The denoised signal by using SVD-VMD has higher signal-to-noise ratio and a
smaller RMSE than that by using SVD-DS.
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Table 2. Comparison between SVD-DS and SVD-VMD for simulated signals.

SVD-DS SVD-VMD

SNRout (dB) −7.16 −0.65
RMSE 0.49 0.23

The denoising performance of SNRout and RMSE by the abovementioned methods
for the noisy simulated non-stationary signal with different SNRin from −20 dB to 5 dB is
displayed in Table 3.

Table 3. Denoising performance with different SNRin (dB).

SNRin
SNRout of
SVD-DS

SNRout of
SVD-VMD

RMSE of
SVD-DS

RMSE of
SVD-VMD

−20 −18.09 −7.66 1.72 0.52
−10 −17.57 1.57 1.62 0.18
−5 −17.31 4.19 1.57 0.13
−1 −15.44 4.24 1.27 0.13
5 −14.52 3.41 1.14 0.14

In Table 3, the proposed SVD-VMD method can denoise the signals with improved
SNRout at different SNRin but SVD-DS method can obtain the improved SNRout only at
SNRin− 20 dB. Compared with SVD-DS method, the proposed SVD-VMD method showed
the better performance of SNRout and RMSE at all different SNRin.

5. Experimental Case Study

The real roller bearing vibration signal data are used to verify further the effectiveness
of the proposed SVD-VMD method; these experimental data come from the electrical
engineering laboratory of Case Western Reserve University [36]. The test bearings are drive-
end bearings (6205-2RSJEM SKF, deep groove ball bearing), which support the motor shaft.
As shown in Figure 8, a 2-hp motor is set on the left of test bed, and a torque transducer and
encoder are located at the center of the test bed, and a dynamometer is arranged on the right
of the test bed. The dynamometer is controlled so that desired torque load levels can be
achieved. Single point faults were introduced to the test bearings using electrical-discharge
machining with fault diameters of 21 mil, (1 mil = 0.001 inches). A 16-channel DAT recorder
is used to collect vibration signals with a sampling frequency of 12 kHz per channel. Each
data set contains 1.2 × 105 points. The experimental rotating frequency is about 30 Hz. The
vibration signal of the rolling bearing with the inner ring failure is shown in Figure 9. The
calculated defect frequency is 5.4152 times the shaft rotational speed (Hz). Since the shaft
rotational speed is 1797 rpm (corresponding to the rotational frequency fr = 29.2 Hz), the
inner ring fault frequency is 162.19 Hz.

From Figure 9, we can see that the maximum frequency spectrum is focused in
2.5~3.5 KHz of the frequency band. In order to observe the inner fault frequency, the
frequency spectrum limited in 0.9 KHz is shown in Figure 9c. The inner ring fault frequency
is 158.2 Hz which is close to the calculated 162.19 Hz, we also clearly observe 257.8 Hz
(158.2 + 3*fr), 360.4 Hz (158.2 + 6*fr), 445.3 Hz (158.2 + 9*fr), and so on. These frequency
components are their harmonics.
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Figure 9. Time-domain waveform and frequency spectrum of vibration signal with inner ring failure.
(a) Time-domain waveform of vibration signal with inner ring failure; (b) Frequency spectrum of
vibration signal with inner ring failure; (c) Frequency spectrum limited in 0.9 KHz of vibration signal
with inner ring failure.
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The denoising results of the proposed SVD-VMD method is shown Figure 10. Com-
pared Figure 10b with Figure 9b, the noise signal with high frequency has been diminished
and the useful signal containing the inner ring fault has been kept and easy to identify.
Figure 11 is the results of the SVD-DS method. It can reveal the periodic impulsive signal
but cannot identify the inner ring fault frequency.
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Figure 11. Time-domain waveform and frequency spectrum of denoised signal using SVD-DS.

The collected vibration signal in Figure 9 has clear properties because there are obvious
impulsive components from the time-domain waveform of Figure 9a. In order to verify the
capability of the proposed method for dealing with the non-stationary signals containing
strong noise, Gaussian noise signal with −13 dB of SNR has been added to the collected
bearing signal, which is shown in Figure 12. The time-domain waveform has not obvious
impulsive components which is submerged in the strong noise and the frequency spectrum
distributed in the whole frequency band and has not obvious characteristics.
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Figure 12. Time-domain waveform and frequency spectrum of the vibration signal with strong noise.

To use the proposed SVD-VMD method, we construct Hankel matrix and decompose
the matrix by SVD, then calculate the difference spectrum of singular which is shown in
Figure 13. According to the difference spectrum, we find the maximum mutation position,
from which we can determine the effective order of singular values. In Figure 13, there
are four peaks and the maximum peak is at the index of eight which is larger than the
other peaks.
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Figure 13. Difference spectrum of singular values for the bearing signal with strong noise.

According to the effective order, we decompose the vibration signal with strong noise
into eight intrinsic mode functions. The kurtosis of each mode is calculated in Table 4. The
kurtosis value at the sixth mode has the maximum value which is far larger than the other
modes. The sixth component is selected to reconstruct denoised signal which is described
in Figure 14. Compared the time-domain waveform of Figure 14 with that of Figure 12,
it is visible that the denoised signal can reveals obvious impulsive components. Due to
interference of the noise intensity, the components of inner ring fault frequency which are
always low frequency are diminished as the noise ones. From the retained spectrum we
can get 30 Hz of the rotational frequency.

Table 4. Kurtosis values of IMFs for experimental signals.

IMF 1 2 3 4 5 6 7 8

Kurtosis value 34.05 31.67 32.41 34.75 20.76 50.10 26.04 30.88
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We also reconstructed the components corresponding to the effective order of sin-
gular values. The denoised results are shown in Figure 15. The time-domain waveform
reveals that the signal contains impulsive components and the frequency spectrum is
also focused on the high frequency. Although the frequency spectrum is very clear, we
cannot get any fault frequency or rotational frequency. Comparing the frequency spectrum
of Figures 14 and 15 with that of Figure 13, the peak of Figure 14 is very close to that of
Figure 13, but the peak of Figure 15 is very different, whatever the peak value or the
corresponding frequency. In order to quantify the evaluation of denoising effectivity, the
SNR and RMSE are calculated for the two methods in Table 5. It should be noted that the
collected vibration signal is treated as the clear signal for the convenience of calculation. It is
obvious that the proposed SVD-VMD has better performance even for the real experimental
signal with strong noise.
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Table 5. Comparison between SVD-DS and SVD-VMD for experimental signals.

SVD-DS SVD-VMD

SNRout (dB) −6.58 1.60
RMSE 1.10 0.43

6. Conclusions

This paper has proposed a novel denoising method which utilizes both SVD and VMD.
SVD is used to expose the underlying model of the signal, where we obtain the effective
order of singular values by calculating the difference spectrum of singular values. The
obtained effective order guides VMD to set the appropriate numbers of IMFs. Calculating
the kurtosis value for each IMF, the IMF corresponding to the maximum value is selected to
reconstruct the denoised signal. Compared with the evolutionary algorithm, this method
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is not a black box, and the results can be explained. Moreover, it does not require a lot
of computation and time. Compared with SVD-DS, the proposed method has superior
denoising performance when it is applied to the simulation signals and the real experimen-
tal signals of the roller bearing faults. The results demonstrate that, whether it is for high
signal-to-noise ratio signals or low signal-to-noise ratio signals, the proposed SVD-VMD
performs better.

It should be noted that there are other denoising techniques, e.g., K-SVD and com-
pressed sensing, which have not been studied here. We consider the proposed denoising
technique in this paper will be effective for vibration signals from rotating machines. We
also anticipate that this technique will work with some other types of signals. In the
future, we may use this new denoising method in the acoustic analysis and compare the
advantages/disadvantages between vibration analysis and acoustic analysis.
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