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Abstract—The market and renewable generation uncertainties
bring challenges to the profit-oriented offering and generation
scheduling problem of commercial virtual power plants (VPP). To
address the challenges, this paper proposes a two-stage minimax
regret (MMR) model to obtain an optimal VPP offering and gen-
eration scheduling strategy. To solve the strongly NP-hard two-
stage MMR problem, we firstly reformulate it into a two-stage
robust optimization (TSRO) problem with fixed recourse, then
solve it using the column-and-constraint generation algorithm,
which has been proved efficient for solving TSRO problems.
In the numerical experiments, we evaluate the performance of
the MMR approach by comparing it with the maximin profit
approach and the perfect information approach under different
assumptions.

Index Terms—Virtual Power Plant (VPP), uncertainty, min-
imax regret (MMR), two-stage robust optimization (TSRO),
column-and-constraint generation (C&CG)

NOMENCLATURE

Parameters
η Penalty factor of the balancing market
γ Uncertainty parameter used to adjust the range of the

uncertainties
λDA,t Upper bound of day-ahead market price at time t
P th,i Maximum power output of thermal unit i
Pw,t Upper bound of wind power output at time t
λDA,t Lower bound of day-ahead market price at time t
P th,i Minimum stable power output of thermal unit i
Pw,t Lower bound of wind power output at time t
RDth,i Ramp down limits of thermal unit i
RUth,i Ramp up limits of thermal unit i
Sets and Indices
i(I) Indices and set of thermal units
t(τ) Index and set of time in the offering and scheduling

horizon
U ′ Enlarged uncertainty set in the reformulated problem
u(U) Index and set of uncertainty scenario of market price

and wind generation
Variables
λBM,b,t Balancing market buying price at time t
λBM,s,t Balancing market selling price at time t

λDA,t day-ahead market price at time t
θ Auxiliary variable used to represent the objective

value of the slave problem in the C&CG algorithm
PBM,t Power exchange with the balancing market at time t
PO,t Offering power in the day-ahead market at time t
Pth,i,t thermal unit i power output at time t
X Second-stage decisions in the MMR model
Xu Optimal second-stage decisions given u and Yu in the

MMR model
Y First-stage decisions in the MMR model
Yu Optimal first-stage decisions under scenario u in the

MMR model

I. INTRODUCTION

Electricity is vital for human society development, however,
traditional centralized power generation and long-distance
power transmission strategy faces problems like environmental
issues, high transmission loss, high penetration of renewable
generations and low reliability. Transforming from centralized
generation and long-distance supply strategy to distributed
generations (DGs) and local supply strategy is a promising
way to address the aforementioned challenges.

VPP as a cloud-based aggregation of DGs has recently
attracted intensive attention. Its main objective is to maximize
the profit via optimally bidding in the electricity market and
scheduling its DGs. However, VPP’s potential of participating
in the market and maximizing the utility of the DGs has
been hindered by various uncertainties such as the market
price and renewable generation. Currently, the most common
practices in dealing with uncertainties in VPPs include the
stochastic optimization and robust optimization [1]. Stochastic
optimization as a probabilistic approach has been extensively
studied in the literature. In [2] [3] [4], uncertainties of load,
market prices and renewable outputs are described using
scenarios generated from certain probability distributions.

Robust optimization as a alternative approach for dealing
with uncertainties, only requires a deterministic uncertainty
set instead of accurate probability distribution [5]. In [6], a
two-stage robust Stackelberg game is proposed to solve the
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problem of day-ahead (DA) energy management of a VPP,
the uncertainties of intermittent renewable energy output and
market price are modeled using uncertainty sets. In [7], the
authors established the DA scheduling model of VPP. In this
work, the robust optimization method is adopted to deal with
the uncertainty of wind power output and the scenario method
is used to deal with the uncertainty of market price. In [8],
cardinal uncertainty set is used to describe the renewable un-
certainties in the robust optimization model, tuning parameters
are used to control the degree of influence of the uncertainty
offset in the scheduling problem of a VPP.

Though stochastic and robust programming approaches have
provided efficient tools for dealing with uncertainties in the
VPP offering and generation scheduling problem, they still
have drawbacks. The need for accurate probabilistic distri-
butions of the uncertain parameters, along with requiring a
large number of scenario samples to achieve higher accuracy,
have hindered the application of the stochastic method [5]. In
this sense, conventional robust optimization is advantageous
since it is distribution-free, but it is generally considered to be
too conservative. To overcome these drawbacks, we propose
a MMR-based optimization model for the VPP offering and
generation scheduling problem under market and renewable
uncertainties. The MMR approach as a distribution-free and
less conservative approach has been applied to several fields
in the power system researches. In [1], the authors compared
the performances of the MMR approach and the minimax cost
(MMC) approach in a transmission expansion problem, it is
concluded that MMR and MMC approaches may outperform
each other when making transmission expansion plans. In the
unit commitment problem described in [9], the MMR approach
has been applied to address the uncertain wind generation. In
[10], the authors developed a thermal power generator bidding
strategy under price uncertainty based on the MMR criterion.

In this paper, we propose a MMR-based model for the
VPP DA offering and generation scheduling problem under
renewable and price uncertainties. We characterize the uncer-
tainties using intervals and the formulated two-stage MMR
problem is strongly NP-hard. To solve the two-stage MMR
problem, we first reformulate it into a TSRO problem with
fixed recourse, then solve it under the C&CG framework [11].
The rest of this paper is organized as follows. In Section II, we
describe the VPP offering and generation scheduling problem
and present our two-stage MMR model. In Section III, we
propose a solution method including a TSRO reformulation of
the original problem and a detailed C&CG framework to solve
the problem. Section IV provides and analyzes the results of
the numerical tests. Finally, we conclude our work in Section
V.

II. MODEL FORMULATION

We assume the VPP to be a price-taker in the DA market and
a deviator in the balancing market (BM). In the DA market,
the VPP only needs to submit hourly quantity offers for the
next day. In the BM, the power deviations of the VPP will be
balanced at penalty prices. The penalty prices in the BM are

related to the DA prices through a penalty factor η. In this
section, we first present the uncertainty models and the BM
pricing scheme, then give the MMR formulation of the VPP
DA offering and generation scheduling problem under price
and renewable uncertainties.

A. Uncertainty Models for DA Market Price and Wind Gen-
eration

We assume that the uncertain wind power generation and
DA price at time t lie in deterministic intervals denoted
by [Pw,t, Pw,t] and [λDA,t, λDA,t], respectively. Also, we
assume the uncertainty intervals are symmetrical about the
forecast value and an uncertainty parameter γ ranging between
[0,1] is used to control the range of the intervals. Denote
Pwf,t as the wind power generation forecast at time t, the
uncertainty interval of wind generation can be expressed as
[Pwf,t × (1 − γ), Pwf,t × (1 + γ)]. Similarly, the uncertainty
interval for DA market price at time t can be expressed as
[λf,t × (1 − γ), λf,t × (1 − γ)], where λf,t is the DA price
forecast at time t.

B. BM Price Model

A dual pricing scheme is applied to the BM, where the
purchasing and selling prices are related to the DA market
price λDA,t by:

λBM,b,t =
1

1− η
× λDA,t (1a)

λBM,s,t = (1− η)× λDA,t (1b)

By adjusting the penalty factor η, we can simulate different
market penalty levels towards deviations. Specifically, by
increasing the penalty factor η, the market punishes the VPP
more for its deviations.

C. MMR-Based Problem Formulation

In our work, the regret is defined as the absolute profit dif-
ference between the optimal solution with perfect information
and our compromise solution. The optimal solution can only
be determined after all the uncertainties are revealed. The
optimal solution profit Q(u) for a given scenario u can be
obtained by solving the following deterministic problem:

Q(u) = max
Pth,i,t,PO,t,PBM,t

{∑
t∈τ

PO,t × λDA,u,t

−
∑
i∈I

h(Pth,i,t)− g(PBM,t)
} (2a)

s.t ∑
i∈I

Pth,i,t + PBM,t + Pw,u,t = PO,t (2b)

Pth,i,min ≤ Pth,i,t ≤ Pth,i,max,∀ (2c)

RDth,i ≤ Pth,i,t+1 − Pth,i,t ≤ RUth,i (2d)

Where the first term in the objective function is the revenue
from the DA market, the second and third terms represent
the generator fuel costs and deviation costs in the BM,
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respectively. Constraint (2b) is the power balance constraint,
constraints (2c) and (2d) restrict the power output and ramping
limits of the thermal generators, respectively. It should be
noted that, for different uncertainty realizations, the optimal
solutions can be different.

In a two-stage MMR model where Y is the first-stage de-
cision and X is the second-stage decision, the regret Reg(Y )
for a fixed first-stage decision Y is defined as:

Reg(Y ) = max
u∈U

{
Q(u)− max

X∈D(Y,u)
{f(Y, u)− h(Y )

−g(X)}
} (3)

Where Q(u) is the maximum perfect information profit
achieved under scenario u, D(Y, u) is the feasible domain
of X for a given first-stage decision Y and an uncertainty
realization u. In the VPP DA offering and scheduling problem,
f(Y, u) is the revenue in the DA market, h(Y ) and g(X) are
the generators fuel costs and the deviation costs in the BM,
respectively.

The MMR problem tries to identify the best first-stage Y
such that its regret is the smallest among all feasible first-stage
decisions.

min
Y

Reg(Y ) (4a)

s.t.
AY ≤ b (4b)

EY +GX +Mu ≤ d (4c)

u ∈ U (4d)

Where constraints in (4b) are the feasibility constraints for
the first-stage decisions. Specifically, in the VPP offering and
generation scheduling problem, it represents the power output
limits and the ramping limits of the generators, as well as the
limits of power offered in the DA market. Constraints in (4c)
restrict the feasible region of X and Y ; constraints in (4d)
state the intervals of the uncertainties.

III. SOLUTION METHODOLOGY

In this section, we first provide a TSRO reformulation of the
original MMR problem, then decompose the TSRO problem
into a master and a slave problem. Finally, we present a
detailed C&CG framework to solve the problem.

A. Problem Reformulation and Decomposition

The detailed expression of Reg(Y ) is:

Reg(Y ) = max
u∈U

{
max
Yu,Xu

{f(Yu, u)− h(Yu)− g(Xu)}

− max
X∈D(Y,u)

{f(Y, u)− h(Y )− g(X)}
} (5)

To integrate the inner optimization problem, we enlarge our
uncertainty set U = Ru to U ′ = Ru×Yu×Xu by adding the

optimal decisions into the uncertainty set [12]. The Reg(Y )
becomes:

Reg(Y ) = max
(u,Yu,Xu)∈U ′

{
f(Yu, u)− h(Yu)− g(Xu)

− max
X∈D(Y,u)

{f(Y, u)− h(Y )− g(X)}
} (6a)

= max
(u,Yu,Xu)∈U ′

{
min

X∈D(Y,u)
{h(Y ) + g(X)− f(Y, u)

+f(Yu, u)− h(Yu)− g(Xu)}
} (6b)

= h(Y ) + max
(u,Yu,Xu)∈U ′

{
min

X∈D(Y,u)
{g(X)− f(Y, u)

+f(Yu, u)− h(Yu)− g(Xu)}
} (6c)

In (6b), we rewrote the inner maximization problem as
a minimization problem by changing its signs. In (6c), we
take the term h(Y ) out of the optimization problem since the
generators fuel costs will not be affected in the second-stage
problem. Now the MMR problem (4) can be rewritten as:

min
Y

{
h(Y ) + max

u,Yu,Xu

{
min
X
{g(X)− f(Y, u)

+f(Yu, u)− h(Yu)− g(Xu)}
}} (7a)

s.t.
AY ≤ b (7b)

EY +GX +Mu ≤ d (7c)

EYu +GXu +Mu ≤ d (7d)

u ∈ U (7e)

Problem (7) is a typical TSRO problem with fixed recourse
and we can apply the C&CG algorithm to solve it. To apply the
C&CG algorithm, we need to decompose the TSRO problem
into a master and a slave problem.

Given problem (7), we define the slave problem as the
embedded maximin problem:

Θ(Y ) = max
u,Yu,Xu

min
X
{g(X)− f(Y, u)

+f(Yu, u)− h(Yu)− g(Xu)}
(8a)

s.t.
EY +GX +Mu ≤ d (8b)

EYu +GXu +Mu ≤ d (8c)

u ∈ U (8d)

We use an auxiliary variable θ to represent the optimal
objective value of the slave problem (8), the master problem
is then defined as:

min
Y,θ

h(Y ) + θ (9a)

This article has been accepted for publication in a future issue of this society general meeting, but has not been fully edited. Content may change prior to 
final publication. Citation information: DOI10.1109/PESGM46819.2021.9637835, 2021 IEEE Power & Energy Society General Meeting (PESGM)



s.t.
AY ≤ b (9b)

EY +GXl +Mu?l ≤ d (9c)

EY +GXl +Mu ≤ d (9d)

θ ≥ g(Xl)− f(Y, u?l ) + f(Y ?u,l, u
?
l )−h(Y ?u,l)− g(X?

u,l) (9e)

θ ∈ R (9f)

Where Xl are new variables added to the master problem
in the lth iteration, u?l , Y

?
u,l and X?

u,l are the calculated values
from the slave problem in the lth iteration.

B. Solving Algorithm

Under the C&CG framework, we first relax the constraints
of the original problem, then gradually add them back by solv-
ing the slave problem using different first-stage decisions. If
we add enough constraints to the relaxed problem, its optimal
objective value will approach the true optimal objective value
of the original problem. There are two kinds of constraints un-
der the C&CG framework, namely, the feasibility constraints
when the slave problem is not feasible, and the optimality
constraints when the slave problem is feasible. We assume that
the BM can settle the power deviations of the VPP for any
wind generation and offering as well as generation scheduling
decisions, under this assumption, the second-stage problem
is always feasible. Therefore, we only need to consider the
optimality constraints in this problem. We will update the
lower and upper bounds of the original problem by solving
the master and slave problems. Specifically, by solving the
master problem, we will obtain a lower bound of the original
problem, this is because the master problem is a relaxation
of the original minimization problem and its result is over-
optimal. Similarly, we can acquire an upper bound by solving
the slave problem since the feasible region in the slave problem
is reduced (by restricting Y to a fixed value) compared to the
original problem and the obtained result is sub-optimal.

C&CG Framework

1) Set lower bound LB = −∞, upper bound UB = ∞,
iteration number l = 0; set tolerance ε to a satisfactory
level.

2) Solve the master problem (9), derive an optimal solution
of (Y ?l+1, θ

?
l+1). Update the lower bound of the problem

to max
{
LB, h(Y ?l+1) + θ?l+1

}
.

3) Solve the slave problem by substituting the optimal
first-stage decision Y ?l+1 into it. Derive an optimal so-
lution (u?l+1, Y

?
u,l+1 and X?

u,l+1) and its optimal ob-
jective value Θ(Y ?l+1), Update the upper bound to
min

{
UB, h(Y ?l+1) + Θ(Y ?l+1)

}
.

4) If UB − LB ≤ ε, return Y ?l+1 and terminate the
algorithm. Otherwise, create new variables Xl+1 and add
the following constraints to the master problem, return
to step 2.

EY +GXl+1 +Mu?l+1 ≤ d (10a)

EY +GXl+1 +Mu ≤ d (10b)

θ ≥ g(Xl+1)− f(Y, u?l+1) + f(Y ?u,l+1, u
?
l+1)

−h(Y ?u,l+1)− g(X?
u,l+1)

(10c)

IV. COMPUTATIONAL RESULTS

In this section, we first describe the details of the experiment
setup, then present and analyze the numerical results. We
apply two distribution-free approaches, the proposed MMR
approach and the maximin profit (MMP) approach, to the VPP
offering and generation scheduling problem and compare their
performances. We also apply the perfect information approach
(PIA) to the same problem, where decisions are made after all
the uncertainties are known. We use the performance of the
PIA as the benchmark for evaluation.

A. Numerical Settings

a) VPP and Market Configuration The considered VPP
consists of one wind generator and two thermal units, the
generators characteristics are present in Table I. The VPP
participates in both the DA market and the BM. In the DA
market, the VPP only needs to submit hourly quantity offers
and will accept the market-clearing prices. In the BM, the VPP
power deviations will be balanced at penalty prices calculated
from equations (1a) and (1b).

TABLE I
CHARACTERISTICS OF GENERATORS

Pmin Pmax a b c RU RD

(MW) (MW) (£) (£/MW) (£/MW2 ) (MW/h) (MW/h)

Diesel 5 38 49 16 0.15 10 10

Gas 5 40 23 18 0.24 15 15

Wind 0 60 0 0 0

b) Uncertainty Modelling The uncertainties considered in
this work include the DA market price and the wind power
generation. The wind power forecast data is obtained from
[13]. The price forecast data are obtained using the seasonal
ARIMA model arima(1, 0, 1)(1, 1, 1)24, where real-world
price data is from [14]. The uncertainty interval calculations
are presented in section II, by changing the uncertainty
parameter γ, we can adjust the range of the uncertainties.
Specifically, when γ increases, the range of uncertainties
increases.

B. Results and Discussion

Define the profit percentages of the MMP and MMR
approaches as (ProfitMMP /ProfitPIA) × 100% and
(ProfitMMR/ProfitPIA)×100%, respectively. We compare
the performances of the two distribution-free approaches by
1) The average profit percentage, 2) The sensitivity of the
profit percentages to different uncertainty parameters and 3)
The sensitivity of the profit percentages to different penalty
factors. For each parameter setup, we generate 1000 evaluating
scenarios based on the forecast values and the uncertainty
parameter γ to obtain a statistically significant result.
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TABLE II
PROFITS AND PROFIT PERCENTAGES UNDER DIFFERENT UNCERTAINTY

PARAMETERS

γ 0.3 0.4 0.5 0.6 0.7 0.8 Average

MMR 59563 56431 56714 54457 52016 50646 54971
% 92.40% 89.52% 86.50% 82.80% 79.47% 75.73% 84.32%

MMP 54685 47946 42352 33493 26231 21194 37650
% 84.83% 76.06% 64.60% 50.92% 40.08% 31.69% 57.75%

PIA 64465 63039 65562 65773 65453 66873 65194

Table II presents the profits and profit percentages of each
method under different values of the uncertainty parameter γ,
the penalty factor η is set to be 0.6 in this case. In Table
II, profit percentages of the MMP approach vary between
[31.69%,84.83%], the average profit is 57.75% of the PIA
average profit. Profit percentages of the MMR approach vary
between [75.73%,92.40%] and the average profit of the MMR
approach reaches 84.32% of the PIA average profit. It is
indicated that the proposed approach can provide a solution
that is close to the optimal solution in terms of the average
profit percentage. Also, we observe that as the uncertainty pa-
rameter γ increases, namely, the uncertainty intervals increase,
the profit percentages of both the MMR approach and the
MMP approach will decrease. As we increase the uncertainty
parameter η from 0.3 to 0.8, the profit percentage of the MMP
approach dropped from 84.83% to 31.69%, whereas the profit
percentage of the MMR approach only dropped from 92.40%
to 75.73%, this small reduction in profit percentage shows that
the proposed MMR approach is robust in a highly volatile
environment.

TABLE III
PROFITS AND PROFIT PERCENTAGES UNDER DIFFERENT UNCERTAINTY

PARAMETERS

η 0.2 0.3 0.4 0.5 0.6 0.7 Average

MMR 62097 58748 59796 57740 55395 53579 57892
% 94.56% 92.91% 91.21% 88.79% 86.37% 83.13% 89.50%

MMP 49123 45662 45745 43544 41196 40127 44233
% 74.80% 72.21% 69.77% 66.96% 64.23% 62.26% 68.39%

PIA 65673 63234 65562 65032 64135 64452 64681

Table III displays the profits and profit percentages of each
method for different values of penalty factor η, the uncertainty
factor γ is set to be 0.5 in this case. In Table III, profit per-
centages of the MMP approach vary from 62.26% to 74.80%
with an average of 68.39%. However, the profit percentages
of the MMR approach vary between 83.13% and 94.56%,
which means that even the smallest profit percentage of the
MMR approach is larger than the largest profit percentage
of the MMP approach. The average profit percentage of the
MMR approach is 89.50%, which indicates that the proposed
approach can find a solution that is very close to the optimal
one. From Table III, we observe that as the penalty factor
η increases, namely, the market punishes more for deviations,
the profit percentages of both the MMR and MMP approaches
will decrease. As we increase η from 0.2 to 0.7, the profit
percentage of the MMP approach dropped by 53.14%, while
the profit percentage of the MMR approach only slightly
dropped by 11.43%. Therefore, we can conclude that our
approach is robust against highly penalizing pricing schemes.

V. CONCLUSION

In this work, we proposed a two-stage MMR model for
the VPP offering and generation scheduling problem with
renewable and market uncertainties. To solve the resulting
problem, we developed a solution method including a TSRO
reformulation of the two-stage MMR problem and a C&CG
framework. Numerical experiments are conducted to evaluate
the performance of the proposed model, we also provided
the results obtained from the MMP approach and the PIA.
By comparing the performances of the three methods, we
conclude that our approach can find a solution that is very
close to the optimal one, and its performance is robust in
a highly volatile environment and a significantly penalizing
balancing market.
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