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Abstract—Similarity learning is often adopted as an auxiliary
task of deep multi-task learning methods to learn discriminant
features. Most existing approaches only use the single-layer
features extracted by the last fully connected layer, which
ignores the abundant information of feature channels in lower
layers. Besides, small cliques are the most commonly used
methods in similarity learning task to model the correlation
of data, which can lead to the limited relation learning. In
this paper, we present an end-to-end hierarchical deep multi-
task learning framework for similarity learning which can learn
more discriminant features by sharing information from different
layers of network and dealing with complex correlation. Its
main task is graph similarity inference. We build focus graphs
for each sample. Then, an attention mechanism and a node
feature enhancing model are introduced into backbone network
to extract the abundant and important channel information from
multiple layers of network. In similarity inference task, a relation
enhancing mechanism is applied to graph convolutional network
to leverage the crucial relation in channels, which can effectively
facilitate the learning ability of the whole framework. Extensive
experiments have been conducted to demonstrate the effectiveness
of the proposed method on person re-identification and face
clustering applications.

Index Terms—Hierarchical learning, multi-task, graph simi-
larity inference.

I. INTRODUCTION

EEP metric learning (DML) as one of the similarity

learning methods has attracted more and more attentions
recently in the field of deep learning [1]-[7]. Its common
strategy is to exploit a deep end-to-end feature representation.
DML methods take the relations between samples into consid-
eration and map samples into a new embedding space where
samples with the same label are closer while the samples with
different labels are far apart. However, the features learned by
deep metric learning methods may yield suboptimal results if
they only modeled simple relations of the data. For this reason,
many deep learning methods introduce a multi-task learning
mechanism [8], [9], i.e., optimizing the classification task and
similarity learning task at the same time. In this way, these
methods can achieve better results. However, there are still
two problems existed in these methods.
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1) A variety of existing methods only extract single-layer
features from the last fully-connected layer of deep neural
networks [10]-[12]. As a matter of fact, the features extracted
from images in low layers have abundant details like posi-
tion, while high-layer features contain semantic information
like shapes and targets. Hence, single-layer features may be
sensitive to variations like viewpoints and illumination.

2) Most deep multi-task metric learning methods organize
the training samples into small cliques to compute their corre-
lations, such as pairs [13], [14], triplets [15]-[17], quadruplets
[10]. Accordingly, the learned features may be discriminative
only in cliques while not in the whole embedding space due
to limited correlation.

To deal with the first problem mentioned above, we intend to
obtain hierarchical features with different descriptive capabil-
ities from both low and high layers of the backbone network.
However, the channels of these hierarchical features contain
redundant information, that is, some channels play a greater
role in distinguishing categories, while some other channels
play a negligible role. In the process of network learning,
the important discriminative information should be reinforced
gradually. Multi-task learning based on feature sharing [8],
[16], [18]-[21] has been proven to be an effective implicit data
addition mechanism, which can make full use of the learned
hierarchical information here. In order to solve the second
problem, modeling more complex correlation of samples is a
promising way. It is noteworthy that some methods [22], [23]
developed graph structures with a specific number of nodes to
describe rich contextual similarities, and achieved competitive
results. However, the graph structure and feature learning of
these methods are completely separated, thus the advantages
of the graph structure in feature learning are not exploited.

With the above ideas, we propose an end-to-end hierarchical
deep multi-task learning framework for similarity learning,
which contains three parts, i.e., a shared hierarchical node fea-
ture embedding work with attention called shared hierarchical
attention network (shared HA-Net), an auxiliary task for node
classification, and a main task for graph similarity inference
based on a relation enhancing graph convolutional network
(RE-GCN). Considering the rich and complex relationship
between samples, we treat each sample as a focus node
and then build a focus graph (F-Graph) for it. The whole
framework takes F-graphs as inputs, and then extracts the
node feature embeddings hierarchically through the shared
HA-Net, where the attention mechanism is introduced to
recalibrate the features, so that important feature channels
get more responses. Besides, we can further calculate more
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discriminative information contained in these channels using
a node feature enhancing (NFE) model. Then, under multi-task
learning mechanism, all hierarchical discriminative feature
information can be shared to realize the parallel learning of
the two tasks. On one hand, an identification loss is employed
to optimize the node classification auxiliary task. On the other
hand, the shared feature embeddings and the structures of F-
Graphs are both inputted into RE-GCN for graph similarity
inference task. In particular, in order to boost the inference per-
formance of GCN, we also introduce an attention mechanism
in RE-GCN to stress the channels with important relations
between nodes while suppressing the channels with inferior
relations. With the powerful adjacency aggregation ability of
RE-GCN, the main task of graph similarity inference can
fuse relevant neighbor information effectively to improve the
performance of the whole framework.

In summary, the main contribution of our work is threefold:

(1) An F-Graph is devised to represent the rich correlation
of data and then a RE-GCN, in which attention mechanism
is introduced between adjacency aggregation processes, is
designed to strengthen the relations between the node feature
channels with discriminative information, promoting the deep
inference of complex similarity between samples.

(2) We propose an end-to-end hierarchical deep multi-
task learning framework for similarity learning, where node
classification task is to assist similarity inference task based
on the RE-GCN. Furthermore, we design a shared HA-Net
equipped with attention mechanism and the NFE model to
overcome the sensibility of single-layer features. The whole
framework can fully exploit the hierarchical features in which
low layers describe details while high layers represent se-
mantic information to improve the performance of similarity
learning.

(3) Our approach was validated on four public datasets
on two visual tasks, namely face clustering and person re-
identification, and it confirmed that the proposed network was
compared favorably against the state-of-the-art methods.

II. RELATED WORKS

Due to the fact that distinguishing similar or dissimilar is
ubiquitous in many fields, deep metric learning (DML) has
been widely applied to person re-identification [24], [25],
image clustering [26], [27], image retrieval [28]-[30], and
so on. For example, in person re-identification, similarity
measurement is indispensable for associating the same people
across different cameras. In image clustering, we need to
allocate the corresponding labels according to the similarities
between samples. The purpose of similarity learning is to
learn a similarity measurement method which can make the
samples with the same labels more similar while the samples
with different labels more dissimilar. So, the key barrier to
similarity learning is how to enlarge the intra-class distance
and decrease inter-class distance.

A lot of works have combined multi-task learning with deep
metric learning for avoiding suboptimal results. For example,
Yao et al. [8] integrated a identified loss and a metric learning
loss into a unified multi-task framework for affective image
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retrieval and classification. Gao et al. [16] proposed a deep
multi-task similarity learning approach for classification and
novel class detection on high-dimensional data streams, which
is optimized with a identify loss and a triplet loss. Cheng
et al. [13] trained the model with a cross entropy loss and
a contrastive loss for solving the problems of within-class
diversity and between-class similarity. Sangkloy et al. [18]
proposed a triplet network for sketch-based image retrieval,
in which a common feature space for sketches and photos is
learned by the joint training of a loss for identification and
a triplet loss. Although these methods take the advantage of
multi-task learning for deep similarity learning, they are still
constrained in the following respects.

Due to the unique advantages of deep convolutional neural
networks, a number of deep multi-task similarity learning
methods only extract the features from the last fully connected
layer [10]-[13], [17], [18], [31]. For example, Sangkloy et al.
[18] extracted the features of triplets from the last fully con-
nected layer of GoogLeNet. The triplets in [11] were passed
through three networks with shared parameters and were also
extracted from the last fully connected layer. But actually,
low-layer features have higher resolution and contain more
detailed information, while high-layer features have semantic
information. Therefore, the extracted high-layer features are
weak in details and sensitive to changes (e.g. variations of
illumination and viewpoints), which makes similarity learning
more difficult.

What is more, small cliques are the most common used
methods in deep multi-task similarity learning, such as pairs
[13], [32], [33], triplets [8], [11], [15], [16], [18], [31],
and quadruplets [10], [34]. Zhang et al. [11] considered the
relationships between triplets to learn the fine-grained feature
representations effectively. With multi-task learning, Karaman
et al. [10] designed quadruplet selection methods to improve
the performance. It is not hard to see that these methods rely on
sampling strategies, which may lead to limited performance.
If the selected samples are easy to distinguish, then the
performance can be limited to samples that hard to distinguish.
Besides, these methods only focus on small cliques that have
limited relationships, so that the learned feature embeddings
may only discriminative in cliques that they belong to while
not in the whole embedding space. However, it is worth
noting that graph structures have been used to represent more
complex correlation of data [22], [23]. For example, Shi et
al. [23] constructed hypergraphs to formulate the relationships
in visual data and mine the underlying relationships with a
hypergraph-induced convolutional network. However, in these
methods, the feature extraction and the graph similarity infer-
ence are two stages of complete separation. That is to say,
the features input to the graph model are learned and fixed,
and feature extraction can not be optimized according to the
inference process of graph similarity. They are not an organic
whole.

Consequently, we design a multi-task framework for deep
similarity learning, which can extract hierarchical features and
realize the complementary advantages of low-layer and high-
layer features. Furthermore, similarity inference task based
on graph structure are leveraged to explore the deeper latent
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relationships between samples. Under the promotion of multi-
task learning mechanism, this task can fully share hierarchical
information to extract more discriminant features.

TABLE I
NOTATIONS AND DEFINITIONS

Notations  Definitions

o the size of dataset

D the set of all samples

v a random node in D

v}i) i-th nearest node to vy

g the graph constructed based on vy

Vi the node set of graph G )

Ap the adjacent matrix of graph Gy

,K( ) the Laplacian matrix of Gy

4 the node sets of all graphs

X ((})) the feature embeddings of a node in G )

;CE?)(C) c-th channel of X Z f)

Z/ch))(c) the numerical descriptor of xgi)

X 834 P the feature embeddings of a node after GAP

X g;w p the feature embeddings of a node after GMP

m the feature embeddings of a node attained by the shared HA-Net

My the node feature matrix of in graph Gy,

AL the node feature matrix transformed by [-th GCN

Z}l) the node feature matrix transformed by /-th RE-GCN

S; T_he inferred similarities between vy and all the other nodes
in graph Gy

L1 loss function for classification task

Lo loss function for graph similarity inference task

III. METHODOLOGY

The proposed method utilizes graph structures to represent
the rich relationships in data. With multi-task learning, the
hierarchical information can be shared for similarity inference
task. This section describes the hierarchical deep multi-task
learning with attention mechanism for similarity learning in
detail. The most important symbols are summarized in Table
L.

A. Overview

We design a framework for hierarchical deep multi-task
learning with attention for similarity learning to solving the
problems mentioned above. The overall framework is shown
in Fig. 1.

Firstly, the proposed graph construction method is utilized
for original samples to build F-Graphs. Assuming that the set
of samples is D = {vy,vs,...,0,}, where o represents the
number of all samples. Gy is the F-Graph built with a node
vy in D as the focus node. V) denotes the sampled node set
according to the focus node vy and Ay represents the graph
structure of g(f). As shown in Fig. 1, the node set V(f) is
the input of shared HA-Net. Through shared HA-Net, shared

feature embeddings m are achieved and treated as a bridge
for two tasks. The first one is an auxiliary task, i.e. node
classification. The other one is the main task, i.e. similarity
inference. m and Ay are both the input of RE-GCNs for
similarity inference. Shared HA-Net is modified based on
ResNet-50 [35], which attaches the attention block after each
residual block and node feature enhancing model after the last
three residual blocks. Then the last three feature embeddings
are concatenated as shared feature embedding m. There are
four RE-GCNs in architecture and each of them consists of
two parts, i. e. graph convolutional layer and the proposed
attention mechanism. Then with two fully connected layers,
the similarities between nodes can be inferred. At last, two
tasks are optimized with a joint loss. The details are depicted
in the following sections.

B. The Construction of F-Graph

To consider the overall structure of data space, we propose
to utilize graph structures to embed the relationships between
samples. Due to large number of samples, it is impractical to
embed all data into one graph. As a result, we propose to build
an F-Graph for each sample.

We take an F-Graph based on focus node vy as an example.
As mentioned before, the F-Graph Gy = (Vy), A(y)) is built
based on focus node vy, where V( ) represents the nodes set
that required to build Gy) and Ay is the adjacent matrix of
Q( f)» 1.€., the graph structure. To build g( £)» we firstly need
to determine which nodes should be choosen for V( 7)o then
descide which connection will be built for Ay).

Firstly, the similarities between vy and other nodes are
calculated, which can be denoted as,

i iv2y 1

d(vs,vy) = (v} —v})?)2 (1
where j € {t|]l <t <o & t+# f& j € Nt} d(vs,v;) is the
Euclidean distance between vy and v;. Based on Eq. (1), we
calculate the distance between vy and all the other nodes and
then choose k nearest nodes for V( 1)» which can be defined
as,

min®)

d(ve,v; 2
1<ien iy s 05 0) @

Vip =
where min(¥) represents choosing top k nearest nodes, Vi
denotes the nodes set of graph G ). V() can also be presented
as a node matrix, i.e.,

Vipy = [ o o) 3)

where vff) is the ¢ —th neighbor of vy and vgf) € D. We build
a F-Graph for each node and each F-Graph needs a node set.
There are o nodes in dataset, so o node sets are needed. The
node sets of o nodes are denoted as

V=WV Vi - Viol” @)
where V/;) represents a node set of graph G ;) which take v; as

the focus node. Once V( £ is attained, the connection between

them will be built. For a non-focus node v}i) in graph Gy),
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Fig. 1. The architecture of the proposed approach. Conv represents the convolutional layer and BN denotes batch normalization. Res 1, 2, 3, and 4 are four
residual blocks. NFA and NFE are the proposed models which are described in Section III-C. RE-GCN 1536, 512, and 256 denote the output dimension of
RE-GCN are 1536, 512, and 256 respectively. FC represents the fully connected layers.

10

vy v

Fig. 2. F-Graph construction. The rectangle with gray borders denotes the
F-Graph going to build. Yellow circles denote V(). v denotes the focus
node. Green circles denote the node set of ”/2‘

there exists one F-Graph which takes 7)§f) as the focus node,

o) v?) has its own node set. As shown in Fig. 2, if there are
some nodes in the node set of v}l)
(1)

e

and also appear in V{y),
then connect these nodes with v
In Fig. 2, vy represents the focus node of g( ) and the

yellow nodes represent the node set V| s. For node 0;2), it has

its own node set which is shown in green and three of them
are also in V(f), i.e. vftl), v(3), and vf4). As a result, ’U;Q) will

be connected to vgcl), 11503), and U;4). We evaluate every node

of V(s in this way so that graph Gy is built.

C. Shared HA-Net and The Node Classification Task

To extract more discriminative feature embeddings and
benefit for similarity inference, we propose a shared node
feature embedding network based on hierarchical attention
(shared HA-Net). The proposed shared HA-Net contains two
important models, i.e. node feature embedding with attention
(NFA) and node feature enhancer (NFE). Shared HA-Net takes
V(s as input. The architecture of shared HA-Net is illustrated
in Fig. 3. ResNet-50 is chosen for the backbone which is
mainly composed of a convolutional layer, max pooling layer,
and four residual blocks. We add NFA model for each residual
block and three NFE models for the last three residual blocks.
The details of the NFA and NFE model are described as
follows.

1) The NFA Model: Suppose the feature embeddings of
a random node in V() after going through the four resid-

ual blocks are X((})) € RW*XHXC where i € {1,2,3,4},
(1)

respectively. And X(f) = [xg?)(l),xg;))(Z), .. ,I’Eif))(c)] where
$E?)(c) € RWxH, J:Eif))(c) represents the c-th channel of node
feature embeddings X ) in the i-th stage. The channel number

of these four node feature embeddings are 64, 256, 512,
and 1024 respectively. For z9, we first get the numeri-
cal descriptors of each channel with global average pooling
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Fig. 3. The architecture of shared HA-Net. Conv is the convolutional layer and BN is batch normalization. Res 1, 2, 3, and 4 come from ResNet-50. The
detailed architecture of NFA is also shown in (a). (b) is the proposed NFE model. GAP denotes global average pooling and GMP denotes global maximum

pooling.

operation (GAP), i.e.,

Z)(C)
Yir)

w
Z Z T Z)(C) ’ (5)

a=1b=1

tol)—‘

where 5 = W x H, xE f)( (a,b) represents the value at the

(a,b) on the c-th channel in X((f)), ae€{l,2,...,W} and b €

{1,2,... H}. As a result, the numerical descriptor of X (( fi

(@) _ p,, (H@A)  (0)(2) (1)(C)
Yo = [y(f) Wi oY )
a fully connected layer are utilized for Y((Jf) To make the value

of Y((Jf; range from O to 1, we use a sigmoid function. The
process can be described as

. Then batch normalization,

B = Sigmoid((Y}))) ©)
where ¢(-) denotes the fully connected layer. After the sig-
moid function, the significant channels will have higher values.
In order to make the B((}) applied reasonably, we adjust the
Value of it between 0.3 and 1. The new descriptor is defined

) (1) 7 l)(2) ()
as B(f)_[b(f) by e bipy ], where

b(z)(c)—/\l*ﬁ—/\g*b © 4 g 7)

()
where ¢ € {1,2,3,...,C}, bg f))( ) represents the value of c-th
channel in B(( f)) € is a hyperparameter and we set it to 0.3

according to our empirical practice. If bg?(c) is less than €, A\;

equals to 1, Ay and A5 equals to 0. If bg?)(c) is bigger than 0.9,

A3z equals to 1, Ay and Az equals to 0. Otherwise, Az equals
to 1, A\; and A3 equals to 0. So, minimum value of BY s e.
And if some values are larger than 0.9, we set them to 1 which
indicates that these channels are important. After that, we can

achieve the feature embeddings with attention by using the
weighted sum of numerical descriptors, which can be defined
as

oen e <Ko
where the weighted feature embeddings can be used for the
next stage. With the attention mechanism, the discriminative
information in node feature embeddings has high responses
while the interfering information has low responses.

2) The NFE Model: In order to make full use of the
common information and the discriminative information in
the channel, a node feature enhancer is proposed. The feature
embeddings after the last three residual blocks are X ((})) €
RWXHXC respectively, where i € {2,3,4}. We leverage
global average pooling (GAP) and global maximum pooling

(GMP) for X((f) So X(( )) is transformed to XSAP and XSMP

respectively. X 84 p means that each feature map is globally
pooled and therefore has a global receptive field while X g MP
mainly focus on the salient channels in feature maps. We attach
a fully connected layer after the sum of X 84 p and X é MP
which can be denoted as

m® = FC{(XGhp & Xarp) ®

where @ represents the operation of adding the values at
the corresponding entries of the features, F'Cy is the fully
connected layer and the number of neurons is 512. After that,
m®@, m®) and m™ are attained. We concatenate these feature
embeddings along the feature dimension, i.e.,

m = Geoncat (M, m3 m)) (10)

where @concqr 18 the operation of concatenation and the
dimention of m is 1536. m denotes the feature embedding
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Fig. 4. The architecture of RE-GCN. GCN is the graph convolutional layer
in Eq. (11). SQ is the operation of squeeze and fdim denotes the dimension
of outputs.

of a node in graph Gy, which is given by shared HA-Net.
Similarly, the node feature embeddings of all nodes in V()
can be achieved, we define it as My and My € RF*1536,

3) The Node Classification Task: Next, M is used for two
tasks, i.e. auxiliary task and main task. For auxiliary task, M
will go through a fully connected layer for node classification
task and we use a multi-class cross entropy loss, i.e.,

k Cis

:——ZZt”log ) (11)

=1 j=1

where Cls represents the number of node classes. t;; equals
to 1 if node 7 belongs to class j and equlas to O if not. ¢;; is
the predicted probability of the node belonging to class j.

D. The Graph Similarity Inference Task Based on RE-GCNs

In order to mine the similarities between nodes in the
F-Graph, a relation enhancing graph convolutional network
is proposed. We add an attention mechanism between GCN
layers, thus enhance the important relationships. Specifically,
the nodes in the graph can take into account the correlation
between samples with adjacency aggregation. Therefore, the
proposed attention mechanism is able to make the channels
with important relation information get more responses so
that important relations are enhanced. The architecture of RE-
GCNs is shown in Fig. 1 (b).

The shared HA-Net introduced before mainly process the
node set V() and output a node feature matrix M. The
RE-GCN takes M) and A(y) as input. The architecture of
the proposed RE-GCN is shown in Fig. 4. In RE-GCN, the
GCN can be expressed as

Z(l)—a(hstack:( (=1 A Z(l 1)) wi=1) (12)

where [ denotes the layer number of graph convolution,
1 €{1,2,3,4}, Z; represents the results that My transformed
by graph convolution, Z ¢ denotes Z; with attention and
Z](co) = My, Zf is the Laplacian matrix of graph and
A r= D’%A( f)D’%, D represents the diagonal degree matrix
of Ay, W=D is the leanable parameters of (I — 1)-th
graph convolutional layer, o denotes the activation function,
hstack(-) represents stacking two feature matrices horizon-
tally.
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After graph convolution, the node feature embeddings are
embedded with neighbor information by adjacent aggregation.
Then an attention model is designed to enhance the feature
channels with important relationships, as illustrated in Fig. 4.
Given Z}) € RM/4im where fdim € {1536,512,256}, we
first extend the dimension of Z](cl) to RFxSdimx1x1 then GAP
is utilized to obtain the initial weights of feature channels cw.
After that, cw is squeezed and batch normalized. Then, cw is
input into a fully connected layer and an activation function
ReLU. Finally, the sigmoid function is utilized to make the
value of cw range from 0 to 1 and we use cw to denote
it. Therefore, the enhanced node feature embeddings can be
described as

Z¥ =2V ocw (13)

where Zj(cl) e Rkxfdim) i e REXFdim o denotes the
multiplication of the corresponding entries of the two matrices.
To inference the similarities between nodes, we first initialize
the edge features ¢ with node feature matrix Z 7\ ), then
a fully connected layer is leveraged to transform the node
features to edge features. After an activation function, another
fully connected layer is used to classify the edges into two
classes. The process can be described as

St = softmax(oe (EfWy + b1)Wo + by) (14)

where W and b; are the parameters and bias of the first fully
connected layer, o, is the activation function, W5 and b, are
the parameters and bias of the second fully connected layer. S
is the inferred similarities between the focus node and all the
other nodes in Q( ) Similarly, we can obtain such similarities
of all F-Graphs, which can be represented as S and S =
[S1,S2,...,50]

In the training stage, we use a binary cross entropy loss
function, i.e.,

1 R ~
Ly=—2 > ypiloggsi + (1= ygi)log(1 = ggi)  (15)

=1

where yy; equals to 1 if the focus node vy is truly connected
to node v; and equals to O if not. §js; denotes the predicted
probability that vy connects to v;. As a result, the joint loss of
the proposed method is L = L; + L. With the optimization
of the joint loss, the auxiliary task can help the main task
improve the performance for similarity learning.

In the testing stage, the rank results of person Re-ID could
be easily achieved by sorting the similarities in S. For face
clustering, we need to design pseudo label propagation. It
focuses on whether two nodes that have the same true label are
assigned to the same class rather than the labels it assigned.
Consequently, we first traverse .S. In every iteration, the nodes
that are connected with high edge weights will be added to
the same class. But if the number of nodes in a certain class
is bigger than a predefined number, then this class is left for
the next iteration. When iterations are finished, the clusters are
obtained and we assign labels to these clusters starting from
1.
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IV. EXPERIMENTS

A. Datasets and Settings

In order to verify the effectiveness of the proposed method,
we evaluate it on two tasks, i.e. person Re-ID and face
clustering.

1) Person Re-ID: Market-1501 dataset [36] and
DukeMTMC-reID dataset [37] are used for evaluating
the proposed method on person Re-ID task. Market-1501
dataset used six cameras, including 5 high-resolution cameras,
and one low-resolution camera. The dataset contains 32,668
annotated bounding boxes of 1,501 identities which were
collected in Tsinghua University. There are 12,936 images
of 751 identities for training and 19,732 images of 750
identities for testing. DukeMTMC-reID dataset is a subset
of the DukeMTMC dataset. It contains 36,411 annotated
bounding boxes of 1,404 identities. There are 17,661 images
of 702 identities for training, 16,522 images of 702 identities
for testing and 2,228 imagse as query images.

Cumulative Matching Characteristics (CMC) curves is the
most common evaluation metric for person Re-ID task. The
abscissa of the curve is the number of rank, and the ordinate
is the recognition rate. Rank-n denote the top n results in
the descending order of similarity that contain targets. The
recognition rate denotes the ratio of Rank-n to the total number
of query samples.

2) Face Clustering: For face clustering, we adopted the
CASIA-WebFace dataset [38] for training, the IARPA Janus
Benchmark-B (IJB-B) dataset [39] and the TARPA Janus
Benchmark-C (IJB-C) dataset [40] for testing. The CASIA-
WebFace dataset is collected from the Internet and contains
494,414 images of 10,575 subjects. 5,000 subjects were ran-
domly chosen for training. IJB-B and IJB-C datasets were
proposed by the National Institute of Standards and Technol-
ogy (NIST). IIB-B provides seven subsets for face clustering.
There are 32, 64, 128, 256, 512, 1024, 1845 subjects in seven
subsets, respectively. We choose the largest three subsets for
testing. IJB-C dataset is an upgraded version of 1JB-B dataset.
It has four subsets which contains 32, 1021, 1839, 3531
subjects, respectively. We select the largest three subsets that
contains 41,074, 71,392, and 140,623 images respectively.

The evaluation criteria of face clustering are diverse, but the
normalized mutual information (NMI) is commonly used, so
we adopt it as an evaluation metric. Mutual Information can
measure the similarity of two data distributions. Suppose C' is
the true clusters of NV samples and C' is the predicted clusters
of N samples, then the entropies of two distributions can be
denoted as

ICI

H(C) =) P(i)log(P(i))
=1

el
H(C) = P'(j)log(P'(j))

j=1

where p(i) = |C;]/N and P'(j) = |C;|/N, then MI has the
formulation

. Icl ¢ PG, )
MI(C,C) = P(i,j)log(—=———rr—
(eXe) ;g (- 9)leo( b 5777
where P(i,5) = |C; (N C,|/N, so the NMI is denoted as
NMI(C,C) = M
H(C)H(C)

The value of NMI ranges from O to 1 and the high
value represents the predicted clusters are similar to the real
situation.

B. Implementation Details

1) System Settings: We implemented the proposed method
with Pytorch deep learning framework, including torch 1.6.0,
cudnn 7.6.3, CUDA 10.1.243. The python version is 3.8.5. The
hardware of the server contains 12G GeForce RTX 2080 Ti,
Intel(R) Core(TM) i9-9820X CPU @ 3.30GHz. The operating
system is Ubuntu 16.04.7 LTS.

2) Training Settings: The origin images are all resized to
256 x 128 and randomly horizontal flipped for data augmenta-
tion. Stochastic Gradient Descent (SGD) is utilized to optimize
the proposed model with an initial learning rate of 0.001 and
the momentum is 0.9. The value of weight decay is 0.0001.
The proposed model is trained for 20 epochs. At epoch 12,
16, and 18, the learning rate is multiplied by 0.1 at each time.

C. Ablation Study

In order to demonstrate the impact of each part of the pro-
posed method, various experiments are conducted on Market-
1501 dataset, as shown in Table II.

In these ablation experiments, the graph construction pa-
rameter k is set to 50 and the layer number [ is set to 4.
In Table II, ”Variants Numeration” denotes the number for
marking variants. "CNN” denotes ResNet-50 baseline. "Graph
Process” means which kind of graph convolution is utilized,
”GCNs” represents four layers of graph convolutional layers in
Eq. (12), and "RE-GCNs” denotes four layers of the proposed
RE-GCNs.

There are three NFE models in the proposed method. So
”1st” denotes the first NFE model, ”2nd” denotes the second
NEF model, and ”3rd” denotes the third NFE model. "NFA”
denotes the introduced NFA model in shared HA-Net. "mAP”
and “Rank-1”" represent the mAP abd Rank-1 performance.
”v” denotes using this part.

Variant 1 leverages the graph convolution in Eq. (12).
Compared with variant 6, the performance is 88.41% on
mAP and 95.96% on Rank-1, i.e., the RE-GCNs brings the
improvement of 1.24% on mAP and 2.37% on Rank-1. In RE-
GCNs, the feature embeddings have aggregated the informa-
tion of neighbors after GCN. Then, with attention mechanism,
these feature embeddings are recalibrated. With the help of
training, the RE-GCNs make the channels with discriminative
information gain larger weights. This is the reason that the
performance of variant 6 is better than variant 1.
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As shown in Table II, the performance of variant 2 is worse
than variant, i.e., the performance gain of the NFA model is
0.16% on mAP and 0.12% on Rank-1.

Variant 3 to variant 5 are to demonstrate the effectiveness
of the NFE model and the hierarchical features. Variant 3
removes the NFE model in contrast to variant 6 and the
performance gain of the NFE model is 2.12% on mAP and
3.74% on Rank-1, which improves the effectiveness of the
proposed NFE model. Variant 4 only uses the high-layer
features for classification and variant 5 uses the second and
the third ones. The hierarchical features of variant 6 bring the
mAP improvement of 0.45% compared to variant 4 and 0.18%
compared to variant 5. The hierarchical features of variant 6
bring the Rank-1 improvement of 0.44% compared to variant 4
and 0.03% compared to variant 5. Low-layer features provide
detailed information that can contribute to discriminative fea-
tures. And high-layer features possess semantic information,
the importance of which is self-evident. Consequently, the
performance of variant 6 is better than variant 4 and 5.

From variant 1 to 6, it is not hard to learn that every
component in isolation improves the performance. By means
of these components, the proposed method (i.e. variant 6)
reaches the mAP of 89.65% and Rank-1 of 98.33%.

D. Parameters Analysis

TABLE III
PARAMETER k INFLUENCE ON PERFORMANCE

k mAP Rank-1 Rank-5 Rank-10
10 0.8762 0.9655 0.9955 0.9997
20 0.8839 0.9685 0.9928 0.9994
30 0.8842 0.9673 0.9934 0.9994
40 0.8893 0.9720 0.9946 0.9997
50 0.8928 0.9756 0.9970 0.9994

In this section, we are varying the layer number of RE-
GCN [ and the graph construction parameter k£ to analyze
their influence. [ denotes the number of layers of RE-GCN
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TABLE II
ABLATION STUDY FOR REVEALING THE IMPACT OF IMPROTANT COMPONENTS ON FINAL PERFORMANCE
. . Graph Process NFE
Variants Numeration CNN NFA mAP Rank-1
GCNs RE-GCNs Ist 2nd 3rd
1 v v v v v v 0.8841 0.9596
2 v v v v v 0.8949 0.9821
3 v v v 0.8753 0.9459
4 v v v v 0.8920 0.9789
5 v v v v v 0.8947 0.9830
6 v v v v v v 0.8965 0.9833
Variant 2 removes the NFA model in contrast to variant 6. TABLE IV

PARAMETER ! INFLUENCE ON PERFORMANCE

! mAP Rank-1 Rank-5 Rank-10

2 0.8897 0.9759 0.9967 0.9994
0.8928 0.9756 0.9970 0.9994

4 0.8965 0.9833 0.9955 0.9997

involved and k denotes the number of nodes chosen for V().
The results are reported on Market-1501 dataset.

k is varied in {10, 20, 30, 40,50} and the layer number of
RE-GCNss is set to 3. k equals to 10 means there are 10 nodes
in the graph. The results are shown in Fig. 5. We use k; to
denote the situation when k equals to .

As shown in Fig. 5, the mAP gain of k5q is 0.35% compared
to k49, 0.86% compared to ks3g, 0.89% compared to koo, and
1.66% compared to k1y. And the Rank-1 gain of ks5q is 0.36%
compared to k49, 0.83% compared to ksp, 0.71% compared
to kog, and 1.01% compared to k1¢. In conclusion, the results
are relatively stable and reach the best performance when & is
set to 50.

[ is varied in {2,3,4} and k is set to 50. The results are
shown in Fig. 6. Also, we use [; to denote the situation when
l sets to 7. As shown in Fig. 6, the mAP gain of I is 0.37%
compared to I3, and 0.68% compared to l5. The Rank-1 gain
of ly is 0.77% compared to [, and 0.74% compared to lo. The
accuracy is relatively stable and reaches the best performance
when [ is set to 4.

E. Performance Comparison

1) Comparison on Person Re-ID Task: The proposed
method is compared to other state-of-the-art methods on
Market-1501 and DukeMTMC-reID datasets that are briefly
introduced as follows.

MHN [41] treated person Re-ID as zero-shot learning task
and proposed mixed high-order attention network. CBN [42]
considered the distribution of all cameras and proposed a
camera-based formulation. SAN [43] is a sampling-based
attention mechanism which is sharper than gating-based soft
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Fig. 5. Parameter k influence on performance

TABLE V
RESULTS COMPARISONS OVER MARKET-1501

Methods Ref Market-1501
mAP(%) Rank-1(%) Rank-5(%) Rank-10(%)

MHN [41] ICCV2019 85.0 95.1 98.1 98.9
CBN [42] ECCV2020 83.6 94.3 97.9 98.7
SAN [43] TCSVT2019 70.1 85.9 94.9 97.0
PCB + RPP [44] ECCV2018 81.6 93.8 97.5 98.5
MuDeep [45] TPAMI2020 84.6 95.3 98.1 98.7
DLPA [46] ICCV2017 63.4 81.0 92.0 94.7

MVP [47] ICCV2019 80.5 91.4 - -
pyramidal [48] CVPR2019 88.2 95.7 98.4 99.0
SVDNet [49] ICCV2017 62.1 823 92.3 95.2
Structural [50] TNNLS2019 67.3 84.3 93.6 96.0
Group-shuffling [51] CVPR2018 825 92.7 96.9 98.1
SGGNN [52] ECCV2018 82.8 92.3 96.1 97.4

CACE-Net [53] arXiv2020 90.3 95.9 - -
Proposed 89.6 98.3 99.5 99.7

attention. PCB + RPP [44] is a part-based convolutional base-
line with refined part pooling for learning part-level features.
MuDeep [45] is a multi-scale deep learning model for person
Re-ID. DLPA [46] computes the representations over the
regions that are discriminative.

The proposed method is also compared to deep metric
learning methods. MVP [47] is a method for mining hard
sampled pairs within metric learning framework. Pyramidal
[48] is a coarse-to-fine pyramidal model. SVDNet [49] opti-
mizes the deep representation learning process with singular
vector decomposition. Structural [50] utilizes a hardness-
aware structural metric learning objective for learning feature
representations and distance metric.

In addition, the proposed method is compared to graph-
based methods. Group-shuffling [51] method has a novel
group-shuffling random walk layer to obtain probe-to-gallery
affinities. SGGNN [52] incorporates the inter-gallery-image
relations to enhance feature learning process. CACE-Net [53]
integrated visual clue alignment and conditional feature em-
bedding for person Re-ID.

The comparison results of CMC curves on Market-1501
dataset are shown in Fig. 7. It can be seen that the proposed
method achieves the best performance from Rank-1 to Rank-
10. The numerical results are shown in Table V.
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Fig. 7. CMC comparison on Market-1501 dataset

As shown in Table V, the mAP improvement of the pro-
posed method is 4.6% against MHN, 6.0% against CBN,
19.5% against SAN, 8.0% against PCB + RPP, 5.0% against
MuDeep, and 26.2% against DLPA. Compared to deep metric
learning methods, the mAP improvement of the proposed
method is 9.1% against MVP, 1.4% against pyramidal, 27.5%
against SVDNet, and 22.3% against Structural. Compared to
graph-based methods, the mAP improvement of the proposed
method is 7.1% against Group-shuffling and 6.8% against
SGGNN. The mAP of CACE-Net is higher than ours, but the
Rank-1 improvement of the proposed method is 2.4% against
CACE-Net.

The proposed method is also evaluated on DukeMTMC-
relD dataset. P2-Net [54] extracts dual part-aligned representa-
tions for person Re-ID. SPRelD [55] employs human semantic
parsing to hardness local visual cues. CL [58] reduces the
inter-class correlation with orthogonalization. PIE [56] is pose
invariant embedding for person re-identification. AVA-reID
[57] is a principled adversarial feature learning approach to
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TABLE VI
RESULTS COMPARISONS OVER DUKEMTMC-REID

DukeMTMC-relD

Methods Ref
mAP(%) Rank-1(%) Rank-5(%) Rank-10(%)
MHN [41] ICCV2019 772 89.1 94.6 96.2
CBN [42] ECCV2020 70.1 84.8 92.5 95.2
P2-Net [54] ICCV2019 73.1 86.5 93.1 95.0
SPRelD [55] CVPR2018 71.0 84.4 91.9 93.7
PIE [56] TIP2019 64.1 80.8 88.3 90.7
AVA-reID [57] TCSVT2020 67.2 80.1 89.5
MVP [47] ICCV2019 70.0 83.4 - -
CL [58] TIP2021 79.0 87.7 94.1 96.1
pyramidal [48] CVPR2019 79.0 89.0 94.7 96.2
SVDNet [49] ICCV2017 56.8 76.7 86.4 89.9
Group-shuffling [51] CVPR2018 66.4 80.7 88.5 90.8
SGGNN [52] ECCV2018 68.2 81.1 88.4 91.2
CACE-Net [53] arXiv2020 81.3 90.9
Proposed 85.4 95.3 96.9 97.8
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Fig. 8. CMC comparison on DukeMTMC-reID dataset

learn a latent viewinvariant feature space.

The comparison results of CMC curves on DukeMTMC-
reID dataset are shown in Fig. 8. It can be seen that the
proposed method achieves the best performance from Rank-1
to Rank-10. The numerical results are shown in Table VL

As shown in Table VI, the mAP improvement of the
proposed method is 8.2% against MHN, 15.3% against CBN,
12.3% against P2-Net, 14.4% against SPRelD, 21.3% against
PIE, and 18.2% against AVA-reID. Compared to deep metric
learning methods, the mAP improvement of the proposed
method is 15.4% against MVP, 6.4% against CL, 6.4% against
pyramidal, and 28.6% against SVDNet. Compared to graph-
based methods, the mAP improvement of the proposed method
is 19.0% against Group-shuffling, 17.2% against SGGNN, and
4.1% against CACE-Net.

In comparison with deep metric learning methods, i.e.,
MVP, CL, pyramidal, and SVDNet, the proposed method uses
F-Graphs to allow more abundant relations of data to be
considered. Otherwise, the relations in triplets or quadruplets
are constrained in taking the whole feature embedding space
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into account. In comparison with graph-based methods, the
proposed method utilizes RE-GCNs to strengthen the node
feature channels with discriminative information. Besides, a
shared HA-Net is designed to assist the RE-GCNs to infer
similarities, where NFA model for attention mechanism and
NFE model for feature enhancing are both used.

2) Comparison on Face Clustering Task: The proposed
approach is compared to other methods on IJB-B and IJB-
C datasets introduced as follows.

K-Means [59] clusters samples based on the distance be-
tween them with the known number of clusters. DBSCAN
[60] is a clustering method based on density. It assumes that
the density of samples that have the same labels is small. So
the samples with small density can be classified into the same
class. EnSC [61] is a subspace clustering method. Spectral
[62] is a subspace clustering method. ARO [63] achieved the
desired scalability and accuracy with a Rank-Order cluster-
ing algorithm. GCN [64] is a GCN-based method for face
clustering. The feature embeddings extracted by ResNet-50
are utilized for all methods. The results on 1JB-B dataset are
shown in Table VII and Fig. 9. The results on IJB-C dataset
are shown in Table VIII and Fig. 10.

TABLE VII
METHOD COMPARISON ON THREE SUBSETS OF IJB-B

Methods NMI
1JB-B-512 1JB-B-1024 1JB-B-1845
K-Means [59] 0.7193 0.6784 0.6392
DBSCAN [60] 0.5058 0.5123 0.5120
EnSC [61] 0.6462 0.6008 0.5572
Spectral [62] 0.7840 0.7920 0.7850
ARO [63] 0.8299 0.8312 0.8379
GCN [64] 0.7594 0.7770 0.7853
proposed 0.8552 0.8666 0.8721
TABLE VIII

METHOD COMPARISON ON THREE SUBSETS OF [JB-C

Methods M1
1JB-C-1021 1JB-C-1839 1JB-C-3531

K-Means [59] 0.7683 0.7708 0.7932
DBSCAN [60] 0.5511 0.5352 0.5153
EnSC [61] 0.6318 0.5681 0.5029
ARO [63] 0.8503 0.8533 0.8543
GCN [64] 0.7650 0.7831 0.7932
proposed 0.8943 0.8996 0.8995

From Fig. 9 and Fig. 10, it can be seen that the proposed
method achieves the best performance compared to other
methods. ARO and K-Means perform well on both datasets,
but the NMI performance of DBSCAN and EnSC is relatively
low.
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Fig. 9. Comparison results on IJB-B dataset

As shown in Table VII, on the subset that contains 512
subjects, the NMI improvement of the proposed approach is
13.59% against K-Means, 34.94% against DBSCAN, 20.90%
against EnSC, 7.12% against Spectral, 0.12% against AP,
2.53% against ARO, and 9.58% against GCN. On the subset
that contains 1024 subjects, the NMI improvement of the pro-
posed approach is 18.82% against K-Means, 35.43% against
DBSCAN, 26.58% against EnSC, 7.46% against Spectral,
0.26% against AP, 3.54% against ARO, and 8.96% against
GCN. On the subset that contains 1845 subjects, the NMI
improvement of the proposed approach is 23.29% against
K-Means, 36.01% against DBSCAN, 31.49% against EnSC,
8.71% against Spectral, 0.31% against AP, 3.42% against
ARO, and 8.68% against GCN.

As shown in Table VIII, similar results are achieved. For
example, on the subset that contains 1021 subjects, the NMI
improvement of the proposed approach is 12.60% against
K-Means, 34.32% against DBSCAN, 26.25% against EnSC,
4.40% against ARO, and 12.93% against GCN.

There are three reasons for the better performance of the
proposed approach.

First of all, the proposed method is equipped with the
NFA and NFE models to extract more discriminative features.
With the NFA model, the important channels can get more
responses while with the NFE model, the features can be more
discriminative. Then, the features from the second residual
block to the fourth residual block are concatenated with
both detail and semantic information. Secondly, we use F-
Graphs to represent correlation of samples. With the adjacency
aggregation process of RE-GCNs, the node similarities in F-
Graphs could be inferred. Finally, the feature learning and
graph similarity inference process are unified in an end-to-
end multi-task learning framework. Therefore, the features
could be adjusted according to the feedback of graph similarity
inference with back-propagation mechanism of network error.

V. CONCLUSION

In this paper, we propose a new method of hierarchical deep
multi-task learning with attention mechanism for similarity
learning. Firstly, F-Graphs are constructed to consider the
abundant and underlying similarity relationships of data. Then,
a shared HA-Net is designed to extract the hierarchical feature
embeddings for similarity learning and classification tasks.

IJB-C-1021
17B-C-1839
IJB-C-3531

K-Means DBSCAN EnSC ARO GCN Proposed

Fig. 10. Comparison results on IJB-C dataset

Within it, attention mechanism and NFA model are added to
gradually enhance the salient feature channels. In addition, we
use NFE model to further capture discriminative common and
differential information in these channels. In the main task, the
RE-GCNs are developed to perform strong similarity inference
by strengthening the channels with important relations and
adjacent aggregation. For evaluation, we conduct extensive
experiments for person re-identification and face clustering
applications. The experimental results on four datasets clearly
show that the proposed network is competitive over state-
of-the-art methods. For future work, an effective way of
exploiting rich structural information can be explored. For
example, we can mix feature embeddings of neighbors at
various distances. In this way, the receptive field of GCNs will
become wider, which may be beneficial to similarity learning.
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