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Abstract: As the acquisition, transmission, storage and conversion of images become more efficient,
image data are increasing explosively. At the same time, the limitations of conventional computa-
tional processing systems based on the Von Neumann architecture continue to emerge, and thus,
improving the efficiency of image processing has become a key issue that has bothered scholars
working on images for a long time. Memristors with non-volatile, synapse-like, as well as integrated
storage-and-computation properties can be used to build intelligent processing systems that are
closer to the structure and function of biological brains. They are also of great significance when
constructing new intelligent image processing systems with non-Von Neumann architecture and for
achieving the integrated storage and computation of image data. Based on this, this paper analyses
the mathematical models of memristors and discusses their applications in conventional image
processing based on memristive systems as well as image processing based on memristive neural
networks, to investigate the potential of memristive systems in image processing. In addition, recent
advances and implications of memristive system-based image processing are presented comprehen-
sively, and its development opportunities and challenges in different major areas are explored as well.
By establishing a complete spectrum of image processing technologies based on memristive systems,
this review attempts to provide a reference for future studies in the field, and it is hoped that scholars
can promote its development through interdisciplinary academic exchanges and cooperation.

Keywords: memristors; memristive systems; integrated storage and computation; image processing

1. Introduction

With the advent of the Internet of Things, cloud computing, and the big data era, there
has been explosive growth in the scale of information. However, the physical separation
among perception, computation, and storage in the conventional computing architecture
requires frequent data shuttling among the units, thereby causing significant system
consumption and speed loss and making it difficult to meet the requirements of information
analysis and processing [1–3]. Therefore, developing new electronic components for
intelligent processing systems that are closer to the structure and function of biological
brains has become a hot research topic in the fields of modern electronic circuits and
image processing [4–6].

Image processing technology, which aims to automatically acquire high-level and
abstract information from images, after which it simulates how human eyes work with
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such information, has become increasingly useful in human life and social production.
Exploring the basic structure of human brains, simulating their working mechanisms, and
establishing neural network models that integrate perception, storage, and computation as
a whole have gradually become research hotspots in the fields of image processing and
cognitive computing [7]. The current mainstream neural network models can simulate
the reasoning and learning functions of human brains to a certain extent, and they have
shown some potential in image processing [8]. However, they are confined to certain types
and structures with limited processing capabilities. Additionally, the existing ones lack
the process of information perception, transmission, and storage prior to the processing
stage. Furthermore, the hardware for neural networks is essential to truly realize the con-
version from theoretical studies of brain cognition to new technologies of brain-computer
intelligence. Nevertheless, most of the current research focuses on the theoretical analysis
of the network structures and algorithms, and the research on implementation schemes
for neural network hardware is still in its infancy [9–11]. Influenced by factors, such as
device size, energy consumption, and integrability, conventional implementation schemes
for image processing cannot well trade-off the relationship between speed, accuracy, and
system consumption [12–14]. We schematically compare the traditional image processing
systems and memristor-based image processing system as shown in Figure 1. From the
perspective of the device, leakage currents become a problem when the channel length and
the gate dielectric thickness of a transistor get closer to the scaling limit [3]. With respect
to the architecture, the data transfer between processors and memory units significantly
reduces both speed and energy efficiency (referred to as the ‘von Neumann bottleneck’).
Furthermore, the performance mismatch between the memory and processing units leads
to great latency (also called the ‘memory wall’).

Figure 1. The comparation between the traditional image processing systems and memristor-based
image processing system.

The successful preparation of memristors provides a fresh perspective on the hardware
implementation of artificial neural networks. It was proposed by Leon Chua, a scientist
at the University of California, Berkeley [15] and discovered by Hewlett-Packard (HP)
laboratories in 2008 as the fourth fundamental electronic component after the resistor,
capacitor, and inductor [16]. Experiments have shown that the memristor has properties,
such as non-volatility, variable resistance, nanoscale size, threshold characteristics, low
power consumption, and synapse-like structure [17–19]. In particular, by taking full
advantage of being synapse-like, the memristor can be used as an “electronic synapse”
or an “artificial synapse” in the hardware design of neural networks [20]. Further, after
choosing a proper memristor model to simulate the weight of the neural network, a more
integrated architecture for hardware implementation can be constructed and applied to
different image processing tasks [21,22]. Compared with conventional artificial neural
networks, the memristive ones incorporate powerful perception ability, massive storage
capacity, and intelligent processing mechanisms to enable deeper analysis and exploration,
which are expected to solve slow training speed and insufficient online processing capability
in image processing [23–25].
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By collating relevant research on memristive system-based image processing technol-
ogy (including relevant mathematical models and their applications), this paper compre-
hensively elaborates on the fusion mechanism of memristive systems and image processing
from three aspects, namely the mathematical models of memristive systems, the conven-
tional image processing based on memristive systems, and the image processing based
on memristive neural networks. Furthermore, the study summarizes the main directions,
progresses, and problems in this field, analyses its development law, and strives to establish
a complete spectrum for the reference of researchers in various fields.

2. Mathematical Models

The memristor is a two-terminal non-linear passive circuit element in nanometre and
with memory characteristics, whose resistance is variable and controlled by the intensity,
polarity, and duration of power supply. By applying an external voltage to the memristor,
the conductive properties of its internal functional layer can be changed from a high
resistance state (HRS) to a low resistance state (LRS). In particular, three types of theory,
i.e., ionic migration, quantum tunnelling, and charge trapping/de-trapping, dominate the
study of memristors’ internal physical mechanisms and dynamic characteristics, and they
explain most of the observed memristive phenomena [26].

(1) Ionic migration: This memristor type usually has the active metal (e.g., Ag) as the
top electrode and the inert metal (e.g., Pt) as the bottom electrode. By applying a
positive voltage to the top electrode, the active metal will be electrolyzed into metal
cations. They will move toward the bottom electrode under the external electric field
and then return to metal atoms, the accumulation of which form a metal filament
conductive channel for the memristor to transit from the HRS to the LRS. Conversely,
by applying a positive voltage to the bottom electrode, the formed conductive channel
will gradually break, and the memristor will switch from the LRS to the HRS.

(2) Quantum tunnelling: The internal functional layer of this type of memristor is mainly
a metal oxide (e.g., TiOx). The Schottky barrier between the metal electrode and the
functional layer is adjusted by applying an external voltage to switch the resistive
state of the memristor. It disappears when the memristor is in the LRS, whereas it
reappears when the memristor is in the HRS.

(3) Charge trapping/de-trapping: For a memristor whose functional layer is the metal
oxide film, there exists an empty state in the film. When a positive voltage is applied
to the top electrode, the empty state traps the injected electrons and stores them,
and when the empty state is filled, a conductive channel is formed, after which the
memristor switches from the HRS to the LRS. By contrast, when a positive voltage
is applied to the bottom electrode, the electrons in the empty state are released, the
formed conductive channel is broken, and the memristor changes from the LRS to
the HRS.
During the memristor fabrication process, a small parameter variation may lead

to huge differences between devices, and even significantly affect circuit performance.
Meanwhile the unstable performance between memristor cells and the cells themselves
makes the integration of the device challenging.

As a result, most applied research on memristors always using their mathematical
models. As the fourth circuit element, the memristor represents the interrelationship
between the magnetic flux ϕ and the charge q, as shown in Figure 2.
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Figure 2. The four fundamental two-terminal circuit elements.

The memristors can be divided into two categories, i.e., being charge-controlled and
being flux-controlled. For the charge-controlled ones, their flux ϕ is a single-valued function
of the charge q, which is expressed as follows:

ϕ = f (q) (1)

Taking the time t derivative of both sides of Equation (1) gives us the following:

dϕ

dt
=

dϕ(q)
dq

· dq
dt

(2)

Further, based on the voltage v = dϕ/dt and the current i = dq/dt, the relation between
volt and ampere for the memristors can be obtained as follows:

v = M(q) · i (3)

where the function M(q), which represents the memristance, satisfies the following mathe-
matical expression:

M(q) ≡ dϕ(q)
dq

(4)

For the flux-controlled memristors, their charge q is a single-valued function of the
flux ϕ, which is expressed as follows:

q = f (ϕ) (5)

Taking the time t derivative of both sides of Equation (5) gives us the following:

dq
dt

=
dq(ϕ)

dϕ
· dϕ

dt
(6)

Based on the voltage v = dϕ/dt and the current i = dq/dt, the relation between voltage
v and current i for the two sides of the memristors can be derived as follows:

i = G(ϕ) · v (7)

where the function G(q), which represents the memristance, satisfies the following
mathematical expression:

G(ϕ) ≡ dq(ϕ)

dϕ
(8)

In 2008, a simple linear memristor model based on the ionic migration theory was
proposed by D. Strukov’s research team [16], and its structure is shown in Figure 3.
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Figure 3. Schematic diagram of HP memristor.

Let us assume that the total thickness of the titanium dioxide functional layer is D, and
the one of the doped layer is W. Ron denotes the minimal resistance of the memristor, while
Roff represents the maximum. The resistance M(t) of the HP memristor is expressed as:

M(t) = RL · x(t) + RH · [1− x(t)] (9)

dx
dt

= ki(t), k =
µvRL

D2 (10)

where x represents the internal state variable of the memristor, µv represents the average
ionic mobility, i represents the current passing through the memristor, and the constant k is
the ratio of the rate of change to the current.

On this basis, a nonlinear memristive model with window functions was constructed
in the literature [27] to better describe the boundary effect and nonlinear drift of memristors.
In a study conducted by [28] a Simmons tunnelling barrier model was proposed based on
the quantum tunnelling theory. It accurately presented the properties of memristive devices,
but its mathematical model was more complex, and showed no direct explicit relationship
between voltage and current, thereby being unconducive to the subsequent research and
applications. Additionally, in 2013, S. Kvatinsky’s research team at the Technion-Israel
Institute of Technology [29] put forward a more simplified mathematical version, which was
named the ThrEshold Adaptive Memristor (TEAM) model. Two years later, the team [30]
further designed the corresponding Voltage ThrEshold Adaptive Memristor (VTEAM)
model, with a simple structure as well as certain generality to simulate the threshold
characteristics of voltage-controlled memristive devices. In 2017, Fang Liang’s team from
the National University of Defense Technology, China [31] brought forward a general
TiOx memristive model by combining the nonlinear drift, ionic migration and negative
differential resistance (NDR) effect of memristors. In addition, using traditional analogue
circuit components, some researchers [32–34] realized the memristive circuit simulation
based on Chua’s theory as a way to simulate the basic memristive characteristics. In this
paper, the abovementioned mathematical models, which are summarized in Table 1 and
compared in Table 2, manifest the fundamental features of memristors to some extent.
However, their correlation with the physical realization of memristors is not strong enough,
and it cannot fully characterize the electrochemical properties of memristive devices.
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Table 1. Mathematical models of memristors.

Model Type Current-Voltage Relationship Dynamic Equation of State Variable

HP Memristive Model [16] v(t) =
(

RL
x(t)
D + RH

(
1− x(t)

D

))
i(t) dx

dt = ki(t), k =
µv RL

D2

Nonlinear Memristive Model [27] i(t) = wn(t)βsinh(αv(t)) + x[exp(γv(t))− 1] dw(t)
dt = avm(t) f (w)

Simmons Memristive Model [28] i(t) = Ã
(

x, vg
)
φ1
(
vg, x

)
exp

(
−B
(
vg, x

)
· φ1
(
vg, x

)1/2
)
−

Ã
(

x, vg
)
(φ1(vz, x) + e|vz|)× exp

(
−B
(
vg, x

)
·
(
φ1
(
vg, x

)
+ evε

)1/2
)

vg = v− i(t)Rs

dx(t)
dx =

 Ce f tsinh
(

i
io f f

)
exp

[
− exp

(
x−aa f f

wc
− |i|b

)
− x

wc

]
, i > 0

Consinh
(

i
ion

)
exp

[
− exp

(
− x−aon

wc
− |i|b

)
− x

wc

]
, i < 0

TEAM Memristive Model [29] v(t) =
[

RL + RH−RL
xo f f−xon

(x− xon)
]
· i(t)

v(t) = RL exp
(

λ
xo f i−xon

(x− xon)
)
· i(t)

dx(t)
dt =


ko f f

(
i(t)
io f f
− 1
)αd f
· fo f f (x) 0 < io f f < i

0 ian < i < io f

kon

(
i(t)
ion
− 1
)αon
· fon(x) i < ion < 0

VTEAM Memristive Model [30] i(t) =
[

RL + RH−RL
xH−xL

· (x− xL)
]−1
· v(t)

i(t) = e
− λ

xH−xL
·(x−xL )

RL
· v(t)

dx
dt =


koff

(
v(t)
vth 1
− 1
)αof

foff (x), 0 < vth1 ≤ v

0, vth2 < v < vth1

kon

(
v(t)
vth2
− 1
)αon

fon (x), v ≤ vth2 < 0

General TiOx Memristive Model [31] i(t) =

{
xn1 kon1 sinh v

von1
+ (1− xn1 )kr

(
ev/vr − 1

)
, v(t) ≥ 0

xn2 kon2 sinh v
von2

+ (1− xn2 )koffsinh v
voff

, v(0) < 0
dx
dt =

{
α1sinhβ1v− γx, v > 0
α2sinhβ2v− γx, v < 0

Table 2. Comparative information of different memristive models.

HP Memristive
Model [16]

Nonlinear Memristive
Model [27]

Simmons Memristive
Model [28]

TEAM Memristive
Model [29]

VTEAM Memristive
Model [30]

General TiOx
Memristive Model [31]

Physical Support Yes No Yes No No No
Physical Mechanism Ionic Migration Ionic Migration Quantum Tunneling No No Ionic Migration
Model Complexity Simple Simple Complex Moderate Moderate Moderate

Applied Range Wider Wider Narrower Wider Wider Wider
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3. Traditional Image Processing Based on Memristive Systems

The memristor can perform logic calculations directly on the device, making it pos-
sible to achieve a true integration of storage and computing. Therefore, it brings new
opportunities for the development of traditional image processing technologies.

3.1. Image Storage Based on Memristive Systems

Image processing is a type of memory access-intensive application, which places high
demands on memory, requiring both enough capacities to store large-scale image data
and fast access speed to ensure processing performance. Currently, non-volatile memories
contain the flash memory (NAND), resistive random-access memory (RRAM), phase-
change memory (PCM), spin-transfer torque magnetic random-access memory (STT-RAM),
and ferroelectric random-access memory (FeRAM). This paper compares the characteristics
of various types of new volatile and non-volatile memory devices in terms of capacity, size,
read/write performance, lifetime, power consumption, and current technical bottlenecks,
etc., with the specific information summarized in Table 3. It is found that memristor-based
RRAM has a series of outstanding advantages, such as small size, non-volatility, low power
consumption, high density, fast erasure, and compatibility with CMOS processes, making
it one of the most promising memory devices.

Table 3. Comparative information of different memory devices.

Parameter DRAM NAND STT-RAM RRAM FeRAM PCM

Capacity ~16 Gb ~1 Tb ~64 Mb ~1 TB ~64 MB ~8 Gb
Technology level ~20 nm ~16 nm ~32 nm ~11 nm ~65 nm ~5 nm

Feature Size 6–10 F2 4–11 F2 16–60 F2 4–14 F2 15–34 F2 4–8 F2
Read Operation Time <10 ns 10–50 us 2–20 ns 10–50 ns 20–80 ns 10–100 ns
Write Operation Time <10 ns 0.1–1 ms 5–35 ns 10–50 ns 10–5 ns 20–120 ns

Lifetime >1015 104–106 1012–1015 108–1010 1012–1014 108–1012
Data Retention Refresh 10 Years >10 Years 10 Years 10 Years >10 Years

Write Power 0.1
~0.1 nJ/b 0.1–1 nJ/b 1.6–5 nJ/b ~0.1 nJ/b <1 nJ/b <1 nJ/b

Idle Power High Low Low Low Low Low
Non-volatile Volatile Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile

Destructive Read Destructive Non-destructive Non-destructive Non-destructive Destructive Non-destructive

Major Technical
Bottlenecks

Memory refresh,
volatility, limited
memory process

Limited lifetime
performance,
low storage

density

Small capacity,
high write

power
consumption,
poor stability

Unclear material
storage

mechanism

Small capacity,
destructive read,

low storage
density

Small capacity,
narrow range of

material
operable

temperature

In 2011, Hu et al. proposed a memristor crossbar array that could be applied to image
processing (see Figure 4a) [35]. Together with the peripheral control circuit, the random
storage of binary, grey scale and colour images could be successfully realized. When
storing binary images, the image information was mapped into pulse sequences of varying
amplitudes using a voltage converter as the input of the memristor crossbar array, as shown
in Figure 4b. As for the grey scale and colour images, the image information was mapped
into pulse sequences of varying widths using the voltage converter, which were then used
as the input to the memristor crossbar array. It is worth noting that voltage pulses of
different widths were obtained by controlling the timing of write operation, which finally
enabled the storage of images, as illustrated in Figure 4c,d.

In the literature [35], a memristor-based resistive random access memory (MRRAM)
was mentioned. Through improvement, it stored binary and multi-valued input informa-
tion with different memristances. The effectiveness of storing ASCII characters and images
was verified through simulation experiments, and a new scheme for storing grey scale
images was discussed as well. In Tan et al.’s study [36], ITO/CeO2−x/AlOy/Al structured
memristors were prepared to realize the perception and non-volatile storage of different
multispectral images. Wang constructed a storage circuit based on the 2T2M structured
memristive synapse to achieve the storage and recovery of binary images [37]. Compared
with conventional storage technology, this circuit effectively reduced the storage space and
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improved the storage efficiency. In 2017, the research team of Prof. Duan [38] at Southwest
University, China, successfully prepared a memristor with silver chalcogenide as the func-
tional layer and constructed a memristive synapse with spike rate- and timing-dependent
plasticity by analysing its electrochemical properties. Based on this, an improved mem-
ristor crossbar array was designed to realize the storage of grey scale images. One year
later, Chen et al. designed a vision system on the basis of combining the optical sensor
with the memristor, in which the former was used to detect UV light and convert it into
voltage pulses of corresponding intensity, and the latter was adopted to store the converted
voltage signal, which realized the perception and storage of UV images [32]. In 2020, Wang
Xiaoping and her team members from Huazhong University of Science and Technology
raised a memristor-CMOS hybrid storage circuit, where the memristor was utilized to store
the bit information of images, while CMOS was applied to conduct control, isolation, and
logic operations [39]. A series of simulations confirmed that this memory circuit could
achieve improved performance in UHF image storage applications. In summary, most
of the studies on memristor-based image storage use memristive synapses for crossbar
arrays to keep image information, which reduces the storage density to a certain extent.
However, the stability of image memory devices is affected by the issue of current leakage
in crossbar arrays. Therefore, avoiding or reducing the leakage is one of the problems of
memristor-based image storage technology that must be addressed urgently.

Figure 4. Application of memristor crossbar array in image storage. (a) memristor crossbar array;
(b) memristor crossbar array used to store binary images; (c) memristor crossbar array used to store
grey scale images; (d) memristor crossbar array used to store color images.

3.2. Image Compression Based on Memristive Systems

With the rapid development of sensor technology, the sizes of image data are also
expanding rapidly. Meanwhile, higher requirements are put forward on the clarity and
transmission rate of images. Applying memristors to image compression can effectively re-
duce their storage space and improve their transmission speed at the same time. Therefore,
the corresponding circuit implementation scheme has been widely studied by scholars in
the related fields.

Li et al. constructed a 128 × 64 memristor crossbar array based on the prepared
Ta/HfO2/Pd memristor, and its circuit structure is presented in Figure 5 [40].
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Figure 5. Application of crossbar array based on Ta/HfO2/Pd memristor in image processing.
(a) memristor hardware structure; (b) memristor crossbar array; (c) memristor crossbar array to
achieve image compression.

Taking advantage of the high parallelism, non-volatility, low power consumption and
small size of memristors, this circuit took a single memristor to store image information
at the 6-bit precision, which further achieved functions, such as image compression, con-
volution and filtering. Additionally, a memristor-based image compression framework
is presented in Figure 6 [41], considering the loss of two-dimensional discrete wavelet
transform. The framework consisted of three memristor crossbar arrays, where the com-
putational one was used to conduct the data multiplication and addition operations, the
intermediate array stored the coefficients of row-column transformation, and the final
one was used to keep the compressed data of the original image. The image compression
could be achieved by taking the generated pulses through a multilayer voltage sensor as
input, mapping the image pixels into memristive conductance through the computational
array, and then storing them in the other two crossbar arrays. The research conducted
by Berco et al. in 2020 proposed a programmable photoelectronic memristor gate circuit,
which could perform state switching between optical and electrical signals, to realize in-situ
image compression [42]. A research team from Dalian University of Technology [43] de-
signed the simplest fractional-order chaotic memory circuit that identified pseudo-random
sequences in image compression through phase diagrams, Lyapunov exponential spectra,
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and bifurcation diagrams, which achieved image compression for the second time and
reduced the storage costs significantly.

Figure 6. Application of crossbar array based on memristor in image compression. (a) memristor
crossbar array; (b) image compression framework; (c) image compression result.

3.3. Image Reconstruction Based on Memristive Systems

High-resolution image information is a prerequisite for the subsequent image pro-
cessing and analysis. Therefore, effectively and quickly achieving high-resolution image
reconstruction has become an urgent problem to be solved in this field. The image re-
construction algorithm based on memristive systems has certain advantages in terms of
reconstruction quality and algorithm operation efficiency.

In 2017, Patrick et al. constructed a hardware-implemented sparse coding system
using a 32 × 32 memristor crossbar array, as shown in Figure 7. The system input image
information as sparsely coded pulses into the array and performed high-resolution recon-
struction of the input through online learning. The experimental results demonstrated that
the system has the advantage of low power consumption and high speed when performing
data-intensive tasks (e.g., real-time video-based reconstruction) [44].

Additionally, a study designed a metal-oxide-based memristive synaptic circuit that
enabled “negative (−)”, “zero (0)”, and “positive (+)” synaptic weights [45]. Based on
this, the corresponding neuronal circuit was built to realize the on-chip cyclic learning
algorithm, and the super-resolution reconstruction of a single frame was completed, as
depicted in Figure 8.
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Figure 7. Memristor crossbar array-based computing hardware system.

Figure 8. Single frame image super-resolution reconstruction based on memristive synapses.

A memristor-based compressive sampling encoder that could be integrated with an
image sensor to achieve super-resolution reconstruction was put forward by Wang et al. [39].
A series of simulations demonstrated the superior performance of the encoder, with low
power consumption and low hardware overhead. In addition, Dong et al. [46] designed
a multi-channel pulse coupled neural network based on the nanoscale memristor, which
effectively solved the problem of parameter estimation in neural networks by simulating
the dynamic changes of connection coefficients. The model was further applied to the
task of the super-resolution reconstruction of multi-frame images, and its correctness and
effectiveness were experimentally demonstrated.

3.4. Others

With the ease of 3D stacking, the memristive system can efficiently complete matrix
multiplication and realize the integration of storage and computation. By adjusting the
variable parameters and connection methods of the system, and by adding peripheral
control circuits, different nonlinear mapping functions are obtained to realize other image
processing techniques (e.g., image interpolation, edge detection, image filtering, and
image encryption).

Based on the mathematical model of the spintronic memristive device, Dong et al. [47]
analysed its electrical characteristics and resistance variation through mathematical deriva-
tion and circuit simulation. Additionally, a memristor crossbar array was made by integrat-
ing functions, such as image storage and interpolation (as shown in Figure 9).
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Figure 9. Image interpolation based on memristive system.

A study conducted by Yang et al. [38] showed an improved memristive cell neural
network as well as an adaptive thresholding algorithm based on spatial distribution, and
they achieved the edge extraction of colour images. The paper [48] discussed a memristive
mask circuit based on the computation-in-memory (CIM) architecture, which is shown
in Figure 10. The core of this mask circuit was a multi-bit analogue adder based on the
memristor crossbar array, which selects the memristive cells to be accessed through the
row-column switches. Each of the cells stored 8 bits of data according to the change of
memristance, which were defined as pixel values in image processing. By controlling the
multi-bit adder, integrator, and input module, the circuit could update the memristance
with little dependence on the higher-level computing unit. Additionally, operations, such
as image denoising, edge detection, and feature extraction were achieved by constructing
different mask operators. The research [49] on the memristor-based 2D convolutional circuit
implemented the image colour transformation and compression, while the reference [50]
to the structure of the human retina achieved functions, such as image smoothing and
edge detection.

Figure 10. The application of mask circuit based on memristor crossbar array in edge extraction.
(a) memristor crossbar array; (b) image edge extraction results.
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A memristor-CMOS-based general logic circuit was studied by Yang et al. [51], and
furthermore, a new memristor-based full adder circuit and a binary image encryption
circuit were designed. Moreover, two available encryption methods were proposed to
improve the reliability of encryption results. For Wang et al. [52], they studied a new
memristive chaotic circuit to implement image encryption. Through a series of computer
simulations, it was proven that the image encryption algorithm based on the new circuit
has higher security and better decoding capability compared to the conventional one.

3.5. Summary

Currently, memristive system-based conventional image processing is in a rapid
development stage, and some progress has been made in the same field. However, there
still exist many problems that must be solved:

(1) The instability and variability of memristive devices have an impact on the accuracy
of image processing. Therefore, it will be a significant study to explore the internal
physical mechanism of memristive devices and to study their electrochemical proper-
ties under the influence of different external factors, to build a mathematical model
that can accurately describe their behaviour.

(2) Conventional image processing circuits do not consider the possible faults of mem-
ristive circuits in practice. Nevertheless, research on fault diagnosis can effectively
help reduce the circuit overhead as well as improve algorithm operation efficiency
and image processing accuracy while increasing the robustness and anti-interference
capability of the circuit.

(3) On the one hand, the design of the peripheral circuits in some image processing
applications is too complex, which increases the power consumption of the system
operation. On the other hand, the one with a simple structure and high compatibility
can result in enhanced efficiency for complex conventional image processing tasks.

4. Image Processing Based on Memristive Neural Networks

The successful preparation of memristors brings new ideas for simulating the cog-
nitive functions of artificial synapses. By applying memristive synapses to the hardware
implementation of neural networks, a new type of neural network with high integration
can be built. It possesses powerful image processing capabilities and plays an important
role in fields with high computational complexity, such as image recognition, classification,
and segmentation.

4.1. Image Recognition Based on Memristive Neural Networks

In the literature [53], an impulsive neural network based on memristors was con-
structed in which the memristive synapses used STDP rules to update the weights, and
the memristive neurons adopted the “winner-take-all” strategy to complete the task of
handwriting recognition. It was found that its recognition accuracy could reach 83%. A
study conducted by Yakopcic et al. [54] presented a memristor-based convolutional neural
network to perform convolutional operations using memristor crossbar arrays, and the
accuracy of its handwritten digit recognition reached 94%. Furthermore, a transformation
method for neural network models was brought forward [40], as shown in Figure 11.
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Figure 11. Handwriting recognition based on the ReRAM array.

Specifically, the method of sparsity was taken to divide the original neural network
into appropriately sized sub-networks. The limited hardware accuracy was solved by
quantizing the input data and somewhat improved to approximately 99.8% from the
software side. In the study [55], a 1M structured memristive synapse was introduced to the
memristor-based multilayer neural network, and an adaptive backpropagation algorithm
was applied to train the neural networks, thereby achieving character recognition. Kang
Jinfeng’s team at Peking University [56] reported a memristor-based binary neural network.
It was trained online, its weight update was achieved using the 2T2R structure of the
memristive synapse, and its correctness and effectiveness were verified on the MNIST
dataset with a recognition accuracy of 97.4%. In addition, Hu et al. [22] used 2 phase-change
memories to construct artificial synapses, based on which a 3-layer perceptron network was
built, and they proved its correctness on the MNIST dataset with a recognition accuracy
of 82.2%. For Wang et al. [57], they constructed a memristor-based convolutional neural
network, which was significantly improved in terms of array area and energy efficiency
compared with previous ones for the handwriting recognition task. In 2020, a research
team from Tsinghua University [58] designed a memristor-based convolutional neural
network (see Figure 12). Meanwhile, a hybrid training method was suggested to enhance
the robustness of the network, and the handwriting recognition task realized an accuracy
of over 96%.
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Figure 12. Five-layer mCNN with memristor convolver.

In addition, memristor-based neural networks have been applied to other image
recognition tasks. For instance, Professor Wu Huaqiang and his team members from
Tsinghua University constructed a multilayer perceptron neural network based on 1T1R
memristive synapses [59], as shown in Figure 13. The network achieved grey scale face
image recognition from the Yale Face Database through online learning, and the recognition
rate could reach 88.08% for 9000 test images with noise added. Other researchers [60]
investigated a hierarchical temporal memory (HTM) network based on memristors, which
applied sparse distributed representations to obtain spatial information of input signals,
after which they used parallel learning to adjust the network weights and finally verified
the correctness and effectiveness of the network through face recognition tasks. As for the
memristor-based probabilistic neural network [61], it carried out product multiplication
using memristor crossbar arrays as well as normalization operations on weights to reduce
the complexity of the circuit. The network was validated on the Iris Flower dataset with
a recognition accuracy of 98%. Furthermore, the multilayer perceptron neural network
studied by Yu et al. [62] showed increased adaptive capability by introducing nonlinear
features in the learning process and superior performance on general datasets, such as
MNIST, Iris, and Car Evaluation.

4.2. Image Classification Based on Memristive Neural Networks

In 2013, Alibart et al. [63] successfully prepared a TiO2−x-based memristor, after
which they developed a single-layer perceptron (SLP) neural network based on the TiO2−x
memristor crossbar array to achieve image classification. Its circuit structure is displayed
in Figure 14.

Another (SLP) neural network was made based on 2M memristive synapses [10], and
its circuit structure is presented in Figure 15. The network, which was trained using delta
rules, achieved the classification of 3× 3-pixel black-and-white images. Professor Strukov’s
team at the University of California, Santa Barbara [64] prepared a 20 × 20 memristor
crossbar array, as depicted in Figure 16. The array adopted TiO2−x and Al2O3 as the func-
tional and stacked layers, respectively, after which it was interconnected with traditional
CMOS peripheral circuits, thereby constructing an SLP neural network to achieve the
image classification with an accuracy of more than 97%.
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Figure 13. Face recognition task is realized in 1T1R array.

Figure 14. Single-layer perceptron network memristor circuit.

Figure 15. Single layer perceptron implemented using 10 × 6 memristor crossbar array.
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Figure 16. Three-layer fully connected perceptron network realized though Pt/Al2O3/TiO2−x/Ti/Pt
memristor arrays.

Wang et al. [65] prepared a three-dimensional structured memristor and applied it
to image classification, which improved the operational efficiency of the algorithm and
opened a new path for the in-depth integration of computer vision and novel nanodevices.
Additionally, a memory computing framework based on memristors was proposed by
Zhang et al. in 2021 [66], which used a greedy search algorithm to improve the robustness
and anti-interference capability of the system, and its accuracy reached 92.3% on the
classification tasks involving the CIFAR-10 dataset.

4.3. Image Segmentation Based on Memristive Neural Networks

As early as 2014, Myonglae et al. [67] proposed a memristor-based visual recognition
system, where the system used a programmable gate array to convert image signals into
pulse signals and performed weight updates based on STDP learning rules. As a result,
the foreground and background segmentation of figure images from “0” to “9” were
achieved. One year later, Chiu and his team members [68] constructed a differential 2R
crossbar array, which applied RRAM as a cache to reduce system energy consumption,
and they verified its correctness and effectiveness using image segmentation tasks. In the
literature [69], a fully convolutional neural network based on memristors was introduced.
It utilized voltage selectors and memristor arrays to construct its max-pooling layers as
well as a sliding window approach to enhance operation efficiency. Moreover, the weight
updates of memristor arrays were implemented through the ex-situ training method, and
the effectiveness of the proposed network was finally verified through image segmentation.
The study [70] designed a memristor-based cell neural network based on the fractional-
order calculus theory, as illustrated in Figure 17.
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Figure 17. Memristor-based cell neural network.

In the process of image edge extraction, it took the fractional-order control method to
increase the high-frequency information and retain more low-texture information. The sim-
ulation results proved that the edge images extracted by this network had more complete
and clear contour information and richer texture detail information. Another example is
the prepared memristor with NbOx as its functional layer [71]. An artificial sensory neuron
was constructed, then in combination with an InGaZnO4 optical sensor (see Figure 18),
which encoded optical information into impulses, image segmentation in complex back-
grounds was achieved by such a pulse-coupled neural network. It is believed that this
study has paved the way for the integration of neuromorphology and bioelectronics. In
2021, Chen et al. [72] proposed an efficient memristor-based fully convolutional neural
network, which adopted a convolutional kernel-first (CKF) algorithm to achieve effec-
tive parameter pruning, thereby significantly reducing circuit power consumption and
demonstrating high accuracy and adaptiveness for medical image segmentation tasks.

Figure 18. Impulse coupled neural network based on memristor.

4.4. Others

Tsai et al. [73] reported a long short-term memory network, which mapped and
programmed the network weights into the phase-change memory devices, as demonstrated
in Figure 19. Compared to other methods, this network realized the software-equivalent
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text prediction as well as a larger improvement in the accuracy of weight mapping and
text prediction.

Figure 19. Realization method of long short-term memory network based on phase-change memory
device unit.

Another long short-term memory network was built on a 128 × 64 1T1R memristor
array [74], as shown in Figure 20. Through utilizing the memristor arrays to store synaptic
weights for different time steps, the network performed the prediction task of the number
of global airline passengers and the recognition task of human gait, and it verified the
feasibility of the memristor-based long short-term memory neural network in performing
tasks, such as linear regression and pattern recognition.

Moreover, Farkhani et al. [75] designed a neuromorphic computing system based
on spintronic memristors, where the read circuit was replaced with a proposed real-time
sensing circuit, and the input signals were turned into the switching of magnetic moments,
thereby substantially reducing circuit energy consumption, providing system operational
efficiency, and achieving the real-time tracking of targets. As for the study [76], the chaotic
trajectories of memristive circuits were included, which combined the homotopy analysis
method (HAM) and multi-objective optimization (MO) to tackle the high computational
complexity and low computational efficiency of traditional analysis methods.

In this paper, the architectural characteristics of several image processing algorithms
based on memristive neural networks are comprehensively summarized, including their in-
put coding patterns, weight representations and the data types of interlayer communication.
The specific comparative information is summarized in Table 4.

The above key research questions will provide references for building the next generation of
novel memristive neural networks with integrated perception-storage-computation architectures.

Table 4. Comparative information of memristive neural network-based image processing.

Reference
Architectural Characteristics of Image Processing Algorithms Based on Memristive Neural Networks

Input Coding Weight Representation Neural Network Communication

[67] Amplitude Encoding/Time Encoding Analogue Signal Differential Amplifier Multi-precision
[69] Amplitude Encoding Analogue Signal Multi-precision MSB
[38] Amplitude Encoding Analogue Signal Differential Amplifier Multi-precision
[40] Amplitude Encoding Analogue Signal Differential Amplifier Multi-precision
[62] Amplitude Encoding Analogue Signal Peripheral Circuit Processing MSB
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Figure 20. LSTM network based on memristor synaptic array.

4.5. Summary

With the expanded research in nanomaterials science and image processing technology,
image processing based on memristive neural networks has become one of the hot issues
in the study on neural network hardware implementation schemes. Currently, there are
the following problems that must be solved timely.

(1) The existing memristive synaptic circuits can only simulate the basic functions and
behavioural characteristics of biological synapses, and they lack enough theoretical
support from computational neuroscience. Therefore, it is crucial to design a fully
functional and simple structured memristive synaptic circuit, which can address
the problems of insufficient portray, unclear mechanism, and single plasticity of the
conventional ones.

(2) There is the accumulation of computational errors in memristor-based neural network
circuits, which is mainly owing to the discrete nature of memristors, and it is difficult
to avoid at the device level. Therefore, designing a newly structured memristor
crossbar array that offsets the accumulated errors can provide a new perspective for
the hardware implementation of neural networks.

(3) The current research on image processing based on memristive neural networks is
still stuck in the simulation of existing artificial neural networks. Therefore, the next
research hotspot will involve taking both the advantages of neurocomputing science
and image processing studies, exploring brain-inspired neural network training
algorithms, and building memristive neural networks with brain-like memory.

5. Prospects

As the fourth passive circuit component, the memristor has certain memory proper-
ties, with its resistance value changing dynamically with the flowing charge and its high
similarity with the synapse in the human brain. Using memristors to construct artificial
synapses for neuromorphic computation is of great significance to the new intelligent infor-
mation processing systems and integrated image storage and computation. Memristive
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system-based image processing technology is an interdisciplinary field of research, cover-
ing materials, devices, circuits, architectures, algorithms and integration technologies. We
list major challenges and potential solutions for memristive system-based image processing
technology, as shown in Table 5.

(1) At the device level, the device stability is critical to the computing accuracy, as the drift
of conductance states with time or environmental changes will result in undesired
synaptic weight changes. On the one hand, more reliable and eco-friendly memory
devices and memristive arrays are required. On the other hand, the construction
of scalable and highly stable memristive mathematical models, following the phys-
ical mechanisms of memristor devices and the special properties of memristors, is
one of the future directions to further promote image processing research based on
memristive systems.

(2) At the hardware level, in the short term, memristors will be specially utilized to
accelerate the construction of artificial neural networks. Compared with conventional
computer processors, their analogue signals are processed in a massively parallel man-
ner, which increases the computational speed and fault tolerance simultaneously and
significantly reduces the system power consumption. This parallel computing and
low power consumption feature is well suited for image processing tasks with large
data volumes and high computational complexity. In the long term, artificial synapses
built on memristors will be one of the new approaches for facilitating the hardware
implementation of brain-like neural networks. Nevertheless, the current memristive
synaptic circuits can merely simulate the basic functions and behavioural character-
istics of biological synapses, and they receive insufficient theoretical support from
computational neuroscience. Therefore, the design of the memristive synaptic circuits
with multiple biological synaptic properties can provide a new idea and platform
for exploring a general memristive system-based image processing architecture to
address the problems of insufficient portray, unclear mechanism, single plasticity, etc.
Meanwhile, peripheral circuits control the read/write process in the memristor-based
image processing systems. memristor-based image processing systems are expected
to further improve the performance of online learning and reduce the complexity of
peripheral programming circuits in the future.

(3) At the algorithm level, the learning algorithms of memristor based image process-
ing systems are still under development. The conventional computing system has
the problems of high cost and difficult training when simulating impulsive neural
networks, whereas the unique dynamic memory and reconfigurable characteristics
of memristors can realize not only the diverse biological synaptic plasticity for ar-
tificial synapses but also the natural compatibility of artificial neural networks and
impulsive neural networks. The image processing algorithm based on memristive
systems can learn from deep learning and computational neuroscience to solve the
problems of slow training speed and the insufficient online processing capability of
conventional artificial neural networks in image processing applications. With better
understanding of neuronal communications and functionalities, general learning
algorithms should be designed to promote hardware development as well.
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Table 5. Key challenges and possible strategies of memristive system-based image processing technology on the device,
hardware, and algorithm levels.

Key Challenges Possible Strategies

Device level

Materials
Fabricate standard-process and compatible
new materials and interconnect materials

with high conductance

Use alternative organic materials, 2D, and
functional materials, and develop new

processes for new materials

Models
Less computational complexity and high

physics fidelity for large-scale
system simulation

Build mathematical models of memristors,
combined physical and empirical behavior

of devices

Hardware level

Peripheral circuits Efficient read/write scheme for
digital/analog mode

Use analog circuits, field programmable gate
array (FPGA), and look-up-table (LUT)

connected to the chips and
approximate circuits

Synaptic circuits

The operating mechanism is still obscure,
the cognition function modeling is not good,

and the fault diagnosis system is still
in progress.

Develop the novel memristive synapse
circuit will possess biological

synaptic features

Algorithm level
Operations Develop a general computing system for

data mapping, dot product, and STDP
Experimentally build applications with a

memristive crossbar

Training and
testing accuracies

Develop practical network topology and
learning algorithm

Develop hybrid algorithms, and
brain-inspired systems consist of both

ANNs and SNNs

6. Conclusions

Memristors have been widely studied in image possessing for their synapse-like
properties, low power consumption, high efficiency, integrability, etc. Two of their major
applications are memristive system-based traditional image processing, including image
compression, reconstruction, and edge extraction, and memristive neutral network-based
image processing, including image recognition, classification, and segmentation. In neural
networks, memristors are mainly adopted as synaptic devices to realize the hardware
mapping of synaptic weights under pulse stimulation and to store the synaptic weights in
real time for in-situ computation. The parallel computing capability of the memristor array
improves the operational efficiency of the neural network and reduces the energy consump-
tion of the system. Additionally, it is believed that the image processing technology based on
memristive systems has very promising prospects in terms of its computational speed, com-
putational energy efficiency, and processing accuracy, etc. Therefore, to develop a new type
of energy-efficient memristor-based image processing system, collaborative innovations are
needed in areas, such as mathematical modelling, architecture, and algorithm implementation.
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