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Abstract

The spectrum overcrowding is one of the prime issues faced by wireless telecommunication based applications.
The network blockage causing the disconnection or call drops is another important concern. These problems, are
needed to be addressed for implementing the 5G and beyond technologies. Therefore, to tackle the issues of spec-
trum overcrowding and network blockage simultaneously a Cognitive Radio (CR) technology based relay network is
proposed in this work. The accurate detection of the primary user’s signal by the cognitive radio users is the most
integral functioning of the cognitive radio networks. The existing spectrum sensing using Deep Neural Network (DNN)
and Convolutional Neural Network (CNN) techniques have their limitations concerned with accurate prediction and
classification of vacant spectrum due to their tendency of getting jammed to the local optima. In this paper, we firstly
propose a novel mutated Modified Whale Optimization Algorithm (MWOA) trained Spiking Neural Network (SNN) based
spectrum sensing technique for the efficient detection of spectrum holes. Here, the weights of the SNN are trained by
means of MWOA for efficiently predicting the spectrum holes. The proposed scheme exploits underlying structural
information of the sensed signals via continuous wavelet transforms. The proposed scheme does not require any priori
information about the channel state and is shown to achieve state of the art performance in the detection of spectrum
holes. The simulation results have inferred that the proposed CR based relay model with the MWOA trained SNN based
spectrum sensing has significantly improved the performance of the User Equipment (UE) in the network blockage area
in terms of higher opportunistic throughput and lower BER. The MWOA has proved to be an efficient training algorithm
for SNN with the validation accuracy of 98%.

Index Terms

Spectrum Sensing, Cognitive Radio, Modified Whale Optimization Algorithm, Spiking Neural Network.

1 INTRODUCTION

The wireless IoT based applications in the present scenario play a pivotal role in enhancing the wellness of a
population. But the network capacity of wireless telecommunication is reaching its maximum capacity [1].
In addition to that, Millimeter Wave (mmWave) frequency has high attenuation [61]. Such a scenario results
in a network blockage condition. Therefore, the important concern to be addressed in the area of the 5G and
beyond based communication technology is the network blockage resulting in the network disconnection
due to the limited penetration ability of the radio waves. The inefficient usage of the radio spectrum
by wireless communication technologies is another major concern in wireless communication services
resulting in spectrum congestion. Therefore, in this paper, novel MWOA trained SNN based efficient
spectrum sensing is employed for the CR relay network. The simulation results depicts the effectiveness of
the proposed scheme with which it is possible to overcome the problems of wireless network blockage and
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spectrum congestion.

Efforts are made to overcome above mentioned problems via employing techniques like carrier ag-
gregation and Multiple Input Multiple Output (MIMO) antenna scheme [1]. In [2-4], authors employed
space time block coding and Turbo coding schemes to improve the channel capacity via multipath wireless
communication. These plans couldn’t take care of the issue of network capacity, as channel limit cannot be
expanded vastly by numerous antennae, which further results in extra costs.

A relay based wireless system in which UE act as a relay to another UE symbolizing Device to
Device (D2D) communication is studied in [5]. The prime advantage of the D2D communication is the
improvement in the network connection of the UE which is experiencing network blockage. Furthermore,
it does not incur additional costs to the wireless operators for setting up the relay BS establishment [21]
[57]. One of the drawbacks associated with UE and UE based relay networks is that the UE relays are
not stationary and there are possibilities of UE relays themselves getting stuck to some network blockage
condition. Moreover, the increasing demands in the D2D based application can further escalate the network
congestion and spectrum scarcity problems which can cause reduced data rate and enhanced latency [22]
[23].

To tackle such issues, a CR based relay system is proposed to establish a link from UE to its Base Station
(BS) and vice versa. In this work, MWOA is employed in training the SNN for efficiently classifying the
channel based on the presence and the absence of the licensed users and detecting the spectrum holes
even at low SNR values. The reason for choosing SNN over DNN or CNN is because the SNN exactly
mimic the human brain [32]. For 5G spectrum sensing it is important to process spatial and temporal data
and SNN has proven ability to process spatial and temporal data efficiently [38] [65]. Moreover, in this
paper, the proposed scheme employs real time spectrum sensing using USRPs. For real-time USRP based
spectrum sensing it is important to consider different factors that contribute in its performance. From [67]
[68], it is infered that the influence of the modelling errors, calibration, device’s disturbance and choice of
filtering techniques have impact on the efficiency of USRP based real time spectrum sensing. In this work,
the real time issues associated with the device is considered while modelling the proposed MWOA-SNN
based spectrum sensing via USRPs. To avoid the inaccuracies associated with USRPs proper terminations
of transmit and receive ports are performed. Calibration errors of the USRPS are rectified by handling
the mother board with anti static methods and avoiding voltage spikes [72]. Also, to mitigate the non
linear distortion in the receiver, the Finite Impulse Response Filter (FIR) with adaptive filter coefficients
is implemented [73]. Another important factor considered in this work is the employmnet of the soft
computing scheme. While incorporating a metaheuristic trained Artificial Intelligence (AI) scheme for a
real time applications it is important to consider that the complexity associated with the Al scheme does
not cause latency issue. Specifically when the Al scheme is employed for 5G techniques with multi users,
latency is an important factor to be considered. Therefore, the complexity and the associated latency are
crucial limitations associated with Al schemes applied for real applications for 5G technology. To solve
this problem, this work carries out MWOA-SNN training in the offline mode and the trained MWOA-SNN
is then applied for the real time spectrum hole detection. Hence, the complexity and the latency associated
with the training of the SNN is limited only to the training phase and it does not impact the complexity
during the working phase on the spectrum sensing efficiency [66]. Throughout the paper, the base station
corresponding to the UE is denoted as BS and the base station corresponding to the Licensed User (LU)
is denoted as LUpg. The CR based relay network can potentially prove as effective in overcoming the
fading problem in D2D communication by providing high channel capacity with low cost [22] [23]. In the
previous work [57], relay based cognitive radio network was developed employing a weighted cooperative
spectrum sensing (CSS) scheme with MWOA optimization. In this paper effort is made to develop a novel
MWOA trained SNN for spectrum hole detection for a relay based cognitive radio network.

The organization of this paper is as follows: Related works that have been surveyed are mentioned in Section
2. The proposed work’s design, how the study is carried and data were analyzed are discussed in Section 3
System Modelling. The existing SNN, drawbacks associated with it and the objective function for training
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the SNN are discussed in Section 4. Section 5 discusses about mathematical modelling corresponding to
the opportunistic throughput and CWT. In Section 6 proposed MWOA is discussed. A detailed description
of the proposed MWOA training of SNN is carried out in Section 7. Simulation results and its discussions
are detailed in Sections 8 and 9, followed by the conclusion in Section 10.

2 LITERATURE SURVEY

A CR network can adapt and allocate dynamically different spectrum resources to the cognitive radio users/
secondary users via efficient spectrum sensing and sharing [6]. The CR network forms an important part
of the digital transformation in this pandemic situation and does an impact on all fields [71]. In addition
to that it can also change its working variables like power, modulation scheme, carrier frequency to adapt
to the learning environment [69]. In [23], implemented the CR for relay networks via conventional energy
detection technique for spectrum sensing. The conventional energy detection techniques for spectrum
sensing is the least complex but suffers at low SNR [6]. The soft computing techniques like ANN, Fuzzy
Logic, DNN and CNN are very popular because of their abilities to efficiently recognize or classify the
data set [29], [30], [62], [63], [64]. But the existing neural network scheme with back propagation is
based on gradient decent method which has the drawback of getting stuck to the local optima [31]. The
fuzzy logic proves to be an efficient soft computing scheme in finding the stability of controller systems
[70]. But the accuracy of the fuzzy logic is compromised as the system operates on inaccurate data and
inputs [70]. The metaheuristic trained ANN has constrained computational performance because of the
limitations associated with its metaheuristic approaches [61]. The developed ANN is said to mimic the
functionality of the brain but still, it is in its initial state of exactly mimicking the brain functionality [32].
The computational ability of the brain is based on its distributed network of neurons linked to each other via
synaptic connections. The SNN is based on the spikes generated between neurons connected via synapses.
It has the potential to mimic the computational and intelligence ability much closer to a brain’s intelligence
[32]. Therefore SNN is more effective in classification problems as compared to conventional ANN and
CNN [32].

The conventional SNN is based on fixed connection weights and networks [33]. As per Hebbian
theory, a brain operates with optimal networking between co-active cells [34]. Therefore, an optimal weight
connection is desirable and it is an important research problem. The issue associated with the deployment of
the dynamic synapse is optimizing the synaptic parameter. Genetic algorithm and evolutionary algorithms
have been employed for solving this issue. The idea for the swarm based training for the SNN is inspired by
the work in [38]. The SNN training using swarm intelligence was successfully implemented in [38]. But the
employed optimization algorithm is the conventional PSO, which has the drawback of getting converged to
the local optima [12]. Therefore, in this work, a new and improved MWOA is employed for better training
of the SNN.

The proposed scheme is compared with the existing Particle Swarm Optimization (PSO), Particle
Swarm Optimization Gravitational Search Algorithm (PSOGSA), Advanced Squirrel Algorithm (ASA)
and Gravitational Search Algorithm (GSA) based CR network. The PSO, GSA, and its modified version
(PSOGSA) are extensively employed for spectrum sensing [24] [25] [26] [27]. The prime drawback
associated with these algorithms is that they are capable of finding a very good solution but they converge
before obtaining a global optimum solution [28] [61]. For spectrum sensing, it is very important that the
algorithm does not converge to the near global solution but should obtain a global optimum solution to
avoid interference with the PU and to carry out the remaining process of a CR network i.e opportunistic
data transmission, spectrum sharing, spectrum mobility more effectively [58].

3 SYSTEM MODELING

Figure 1 infers that when a UE is in the network blockage region or technically termed as the ”dead zones”
(Areas where mobile phone signal strength is measured in dBm is very low and the mobile phones are
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Fig. 1: Flow diagram of the proposed model

unable to establish link with nearby cellphone site, base station or repeater). Which causes the disruption in
the link between UE and BS. A disruption in the link can affect the network performance. But the presence
of deployed Cognitive Radio-Fusion Center (CR-FC) as the relay between UE and BS, UE and UE can
remarkably enhance the network performance. The CR-FC is assisted with the Cognitive Radio Sensors
(CRs) in a cooperative manner as shown in Figure 16. The detailed working on how CRs assists CR-FC
via performing cooperative spectrum sensing is explained in section V(A). In the proposed scheme it is
considered that a BS has the prior information about the nearby CR-FC in a specific geological area. The
CR-FC can set up an appropriate connection with the BS in an opportunistic manner via vacant spectrum
holes. On account of network blockage during downlink, the BS conveys to CR-FC via licensed spectrum.
The CR-FC with the help of CRs performs spectrum detection to identify the active and the inactive state
of the other nearby Licensed Users (LUs) in a specific topographical area. Once the vacant spectrum is
detected, then the data is transmitted to the UE by craftily accessing the spectrum holes. In this way,
via CR-FC the link is established between BS and UE. Only CR-Fc is accessing the licensed spectrum
opportunistically, i.e. via detected spectrum holes as shown by dashed red line in Figure 1. One of the LUs
considered in this work is the TV broadcast system and the role of CR-FC is to efficiently detect the vacant
spectrum/TV white spaces. It is also considered that the UEs have the information of the nearby CR-FC
and possesses the ability of transmitting data to the CR-FC via licensed spectrum. The CR-FC then again
performs spectrum sensing and detect spectrum holes for opportunistically accessing the licensed spectrum
and transmits data to the BS. Thus establishing UE-BS link. Similarly, a CR-FC based relay can act as a
link for transmission and reception of data between different user equipment pertaining to the same region
where network is blocked. The CR-FC can also communicate with other CR-FCs deployed in the specified
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region to have better network coverage.

The efficient spectrum sensing for the proposed relay based CR network is designed using MWOA trained
SNN. For training MWOA SNN, real time data is firstly obtained via USRP based spectrum sensing. These
data carries the information about the presence and the absence of the PU. On these spectrum sensed
signals, CWET is applied to obtain the wavelet coefficients. These wavelet coefficients are converted to
scalograms and then into image of size 224x224x3. The convolutional MWOA SNN is trained to classify
the images based on the presence and absence of PUs. The efficiency of conventional SNN is improved
by incorporating the mutated MWOA during the training process. Its detailed description is presented
in the section 4.3. In the working phase, i.e for the real time efficient spectrum sensing, the pre-trained
convolutional MWOA-SNN is employed. The MWOA-SNN predicts the labels by feeding on the scalogram
images. The data is analyzed via continuous wavelet analysis to classify the PU signals via trained MWOA
SNN. Figures 24-27 show the accuracy and error deviation of each applied algorithm during the training
phase of SNN. The Table 1 showcases the prime symbols and their notations involved in this work.

TABLE 1: Symbol Notations

Symbols Description

CR-FC Cognitive Radio-Fusion Center

UE User Equipment

M No of orthogonal subcarriers

w Bandwidth of each subcarrier

CRs Cognitive radio sensors

hf ,‘ﬁRF C The channel gain between BS and CR-FC over k'"
subcarrier at time slot ¢

higfc’UE The channel gain between CR-FC and jth UE over
k" subcarrier at time slot ¢

Pwp]].B kgRF € The BS to CR-FC transmission power

CR, The transmission power of CR-FC

CR, The CR-FC power received at UE

Ga The CR-FC antenna gain

prtos The LoS probability between CR-FC and UE

pypNLes The NLoS probability between CR-FC and UE

Logg LoS The path loss in dB for the LoS

Logg NLoS The path loss in dB for the NLoS

3.1 Major Contributions

The prime research objectives achieved in this paper is discussed as below:

1. Proposed and developed CR based relay network with efficient spectrum sensing via SNN
trained with MWOA to simultaneously tackle problems of spectrum overcrowding and network
blockage in a wireless communication network.

2. Developed a novel training for the SNN via employing MWOA optimization for the weights of
the SNN: This work involves improving the efficacy of the conventional Spiking Neural Network
(SNN) by employing Modified Whale Optimization Algorithm (MWOA). As the conventional
SNN lacks the proper tuning of the weights of the synapses [38]. So, the MWOA based weight
optimization for SNN is implemented in this paper. From the best of authors’ knowledge, till
now no works have been carried out for training an SNN using MWOA and employing it for CR
spectrum sensing. This work is novel and also tested for real time scenario via USRPs. Therefore,
the proposed scheme can be effectively employed in real time applications.

3. Implemented modification to the conventional whale optimization algorithm via mutation and
also by maintaining an expert balance between its exploration and exploitation ability This
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novel work involves the modification via mutation scheme to improve the conventional WOA, as it
has the tendency of getting stuck to the local optima [12] [61].

4. Implemented MWOA trained SNN for efficient real time spectrum senisng via USRPs: With
the proposed mutated MWOA, there is less possibility of it getting stuck to the local optima solution.
Therefore, it is possible to achieve rapid and accurate classification of wireless channel occupancy
via efficient optimization of weights for SNN using MWOA. Moreover, the proposed scheme is
implemented for the popular wireless communication paradigm i.e spectrum sensing in cognitive
radio network in a real time scenario. And this is the first of its kind work which has implemented
MWOA trained SNN for spectrum sensing in cognitive radio network via USRPs. The proposed
scheme has efficiently worked for the applied scenario as compared to its counter part as indicated
in the simulation results.

4 THE SPIKING NEURAL NETWORK

The SNN is the class of neural network that employs a more efficient way for denoting biological neural
networks for activating the neurons as compared to ANN (Feedforward Neural Network and Recurrent
Neural Network) [35]. The architecture of the SNN closely relates to the biological neural network model
[32] [35]. The SNN is an efficient way for the classification of the images. But it lacks optimal weight
connection for efficient classification [33]. In this paper, MWOA is employed in finding the optimal weight
links between the neurons of the SNN to enhance its efficiency. The proposed SNN is employed for
classifying the images generated from the spectrogram, and the continuous wavelet transform is employed
for this purpose. The Continuous Wavelet Transform (CWT) is employed on PU signals and is converted in
the time-frequency domain known as scalograms. The precomputing scheme of the CWT filter bank is used
for obtaining the CWT of the PU signals. The detailed working of the wavelet transform for classifying the
PU signals is explained in section V Mathematical Modeling.

Hyper-parameters of SNN:

Y, 2, and x — Synaptic resource fraction in the active,
inactive and recovered state.

t*P — Time for presynaptic spike reaching synapse
USP — Synaptic Efficiency

7™ — Time coonstant for membrane

7"¢¢ — Time span for synaptic recovery

I7Y" — The synaptic efficiency in receiving current
ASE — Absolute synaptic efficiency

R™ — Membrane potential

w¥ — The weight associated with each synaptic terminal
Y:, — Unweighted contribution of each spike

4.1 Related works in SNN

SNNs are employed in different successful applications [39] [40]. The use of SNN becomes more influential
when the training data is continuous and varying in time [38]. The reason is that in SNN the information
is encoded in time i.e. Spike Time Dependent Plasticity (STDP), dynamic synapse model [41]. The
STDP employs synaptic weight varying with respect to time correlation between spikes of the pre and
the postsynaptic neuron. The STDP is based on Hebbian unsupervised learning approach, in which its
dynamic parameters are kept fixed and weight is altered [38]. One of the prime drawback associated with
STDP is that it is flexible with only one tunable parameter. To overcome this issue, genetic algorithm
and evolutionary algorithm based strategies are used in [41] [42] [43]. In [41], authors employed SNN
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for classifying static data. The initial progress in supervised training technique was based on gradient
descent for SNN was developed in [44], popularly known as SpkieProp. The SpikeProp was successful
in overcoming the issues associated with the conventional SNN. But the drawback associated with the
SpikeProp is that its neuron are allowed to fire once. Therefore, SpikeProp could not become feasible for
training patterns comprising multiple spikes [41]. In [45], the probabilistic gradient descent approach was
considered which comprised biological window for learning. As this approach also uses single spikes so it
is not feasible for training patterns comprising multiple spikes.

An optimization algorithm to be employed for training SNN should be capable of updating weights based
on the error deviation in the correlation between firings of the post and the presynaptic neurons [47].
Therefore, in this work, SNN weighted links are optimized to have minimized error deviation between its
classified and target values.

4.2 The Basic functioning of SNN based on its neuron and synapse

The brain functioning is based on the magnitude change of the postsynaptic neuron with respect to the
firing pattern of the presynaptic neuron.

Dynamic synaptic models utilizing the phenomenon of the brain are proposed in [48] [49] [50] resulted
in the development of SNN. The use dependency for generating the postsynaptic potentials (PSP) depends
on the available resource’s amount [32] [51]. The model utilizing the PSP generation based on the available
resources was briefly described in [50]. A portion of the available resources is utilized whenever a
presynaptic spike reaches synapse. The model in [50] considered finite resources for the neurons. The
presynaptic spike reaching synapse at time ¢+ will be utilizing U°* amount of synaptic efficiency [50]
and it quickly inactivate within the time span of 7" and recovers back within 77°“. The kinetic equation
involved in this model can be written as [50]:

dx 2z

— = —USF§(t — 57 1

dt  Tree ( ) S

dy Y SE sp

==L S(t—t 2

b L USEs( - t7) @
dz R 3)

dt — m e
Here, y, 2z , and x represents synaptic resource fraction in the active, inactive and recovered state respec-
tively.
The synaptic efficiency in receiving current from synapse ¢ to the postsynaptic neuron can be written as
[32]:

IV = APy, (t) 4)

here, ASE: Absolute synaptic efficiency (Resembles when all of the resources are activated).
The popular firing model considered in this paper is Leaky Integrate and Fire (LIF). The LIF is modeled as

below [36]: 5
v

mZ- RinIsyn 5
™o v+ 5)

here, R™: Membrane Potential
7™: Membrane time constant. The Figure 2 and 3 show the LIF generated for the step and the sinusoidal
input current. The python based Brian2 platform is employed for generating the LIF model in figures 1 and

2.
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4.3 Objective Function for Training the SNN

In this paper, MWOA is employed for training the SNN by optimizing its weight values. The SNN weights
get updated based on the error deviation between target spike sequence and the input spike sequence.
MWOA is employed to minimize this error deviation and improve the correlation between target spike
sequence and the input spike sequence. The minimized error deviation between the spike sequence of the
target and the input spike train is highly desirable.

The Figure 4 shows the schematic diagram of the two neurons ¢ and j having K synaptic terminals between
them. The input neuron 4 receives spike train at time instant ¢*. The neuron j fires only when the membrane
voltage level crosses the threshold. The effective weighted contribution of spikes between neuron ¢ and j
can be modeled as [54]:

K
() =) Yiwd 6)
m=1

where, w¥ is the weight associated with each synaptic terminal between 4 and j, Y! is the unweighted
contribution of each spike. The Y! can be written as [54]:

YL, =U(t—t; —dy) (7

where, d,,: Delay between i and j nodes at the m' synaptic terminal. Further, ¥(¢) is calculated as
Timel*%m. Here, 7™ is the time constant associated with membrane potential decay.
The SNN considered in this paper for predicting the presence and the absence of the PU comprises of an
input layer for spectrogram images of size 224x224x3. The CWT is employed to the real time spectrum
sensing results obtained via USRP N210 and B210 to obtain the spectrogram images as shown in Figure 6.
The architecture for the proposed convolutional SNN is shown in Figure 5.

The proposed scheme’s working model is as shown in Figure 6. For simplicity the images were rescaled

to 28x28 with anti-aliasing effect. Therefore the input network has 784 neurons. The input network neurons



Draft Version

Sinusoidal input current
1le-8

0 5 50 50 100 125 1500 175 200

Input current [A]
min: -4.9999999%99%9599-10

max: 4. 5000000000300001e-09
=

]

=

E

B -
822 === firing threshold
By —45 -

uER

=

& EE

a

E -50-

E

0 25 50 75 100 125 150 175 200
t [ms]

Fig. 3: LIF for the sinusoidal input current

Fig. 4: LIF for the sinusoidal input current

are connected to hidden layer neurons via 12 convolutional kernels, each sized 5x5. The weighted synaptic
connection between hidden convolutional layer and the output layer is trained/optimized via proposed

MWOA. The input layer also comprises the spike train generated based on the scalogram images of the PU
signal.

The steps involved in the SNN training is discussed below:
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1. Scalegram based dataset is prepared for the scenario concerning the presence and the absence of

7 mV, reset voltage = 0.05 mV).

the PU.
2. Generate the spike train sequence based on the firing rate proportional to each pixel value.
3. Randomly initialize weight values for the 1st epoch.
4. Initialize values for the parameters (Decay time constant= 10 ms, threshold membrane potential =
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5. Considering the input layer as 7, hidden layer as j and the number of output layers as o. The neurons
count in each layer is indicated as p', q', and o respectively.

6. Push the spike train into the network. Calculate the effective weighted contribution of the spikes
between input and the hidden layer neurons at hidden layer neurons:

K
2 (t) = Z Z Yi w (&)

i m=1

7. Similarly calculate the effective weighted spike contribution between hidden layer and output layer

at the output layer neurons:
K
() =) Y Yhul ©

j m=l1
8.  Objective Function: Calculating the error in the time difference between the actual and the desired

spike timing is done as: € = % >o_ (t2 —t9). This error deviation also termed as loss in this paper
is the objective function for the optimization problem solved via proposed MWOA.
9. Based on the similarity error/loss move the MWOA search agents in the mathematical search space

of the ¢ for the change in weights.

10. Perform spiral and encircling mechanisms as discussed in section VI to obtain the optimal value of
the weight change.

11. Feed the optimized weights to the SNN and calculate the value of .

12. Repeat the steps 9 to 11 until the minimized value of ¢ is reached.

To have better insight about the working of the proposed SNN, the internal working figures of the SNN
is plotted and shown in figures 7-14. The figures 7 to 9 shows the rate of population of Xe, Ae, and Ai. The
rate of population basically indicates the instantaneous firing rate averaged across the neurons with respect
to the time step of the source clock. Here Xe is the input neurons. The Ae and Ai are the hiddenlayer neuron
groups with 400 neurons each. The brian 2 simulator [59] is employed for generating the plots figures 7-14.
The Figure 10 and 12 show the spikes recorded from the neuron groups Ae and Ai respectively.

The weight connections in figures 12, 13, and 14 show the weighted connections between Ae-Ai, Ai-Ae,
adn Xe-Ae respectively.

5 MATHEMATICAL MODELING FOR THE OPPORTUNISTIC THROUGHPUT AND CON-
TINUOUS WAVELET TRANSFORM

The calculation of the opportunistic throughput considers transmission of data from BS to CR-FC, and
from CR-FC to UE.

Considering j* UE facing the problem of network blockage in a 3D plane as shown in the Figure 15. The
orthogonal subcarrier is represented as k = 1,2, 3... M, each of bandwidth = W. The subcarriers are em-
ployed for resource allocation in CR-FC and BS. The proposed model comprises CRsas ! = 1,2, 3, ....C'R,.
The data from each CRs is fed to the fusion center CR-FC for the final decison on the vacant spectrum. The
CR-FC and CRs combinedly form the relay for assisting data transmission between BS to UE and UE to
BS. For the data transmission to the j** UE, which is in network blockage, the channel gain represented as
h? ,;CtRF “ is the channel gain for the data transmission from the BS to CR-FC via subcarrier & and time slot

t. The channel for the data transmission from CR-FC to UE J 1s denoted as hf,ff “UP The BS to CR-FC

transmission power can be written as Pwpf,;(’;RFc. The transmission power of the CR-FC is fixed to C'R,,.
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The BS power received at CR-FC can be estimated as Eq.10 [13]:

B,CRFC,r porre  [Anfd,\ T2
Pwpjiy 7 = Pwp;; X {T} X dgg (10)
here, f. is the licensed carrier frequency associated with the BS, d, is a reference distance, dpg is the
distance between BS and the CR-FC calculated as \/(zps — 2CRFC)2 + (ypg — yORFC)2 + (hpg — h)2,
(xBs,yps, hps) is the coordinates associated with the BS location, n’ is the path loss exponent. The
transmission power C'R,, of CR-FC at some height i as shown in Figure 15 is different from the CR-FC
power received at UE C'R}. The coordinates of UE j € £ is (z;,y;) and the coordinates of CR-FC is
(zCRFC yCREC ). For the communication link between CR-FC and UEs, the CR-FC with directional
antenna with half beamwidth ¢y,,,. The CR-FC antenna gain can be denoted as [13]:

ngB —902hbw S w S 9%%
9970 guolt)  otherwise

(11)

here 1 is the sector angle, g3¢¥ ~ i%ﬂ, ©npe in degree is the gain of the main lobe [14], g.,(¢) is the

. . . hb .. . . . .
gain outside the main lobe. Because of the uncertainity associated with the UE location, height and the
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obstacles, it is important to consider the randomness in the link between CR-FC and UE and also vice
versa. Therefore, the link between CR-FC and UE can be of Line of Sight (LoS) and Non Line of Sight
(NLoS) with certain probabilities [16].

As per the 3GPP 3D model of the Urban Macro scenario for the UE of height 1.5m [15], the LoS probability
between CR-FC and UE can be modelled as [16] [18] [20]:

1
P,,,,LOS —
1+ axexp(—F0; — af)

here «, [ are the constants corresponding to carrier frequency and the environment type like rural,
urban, and urban dense, §; = £ x smfl(f), d; is the distance between CR-FC and UE, calculated as
J

(12)

\/(%, — gORFO)2 (y; — yCRFC)2 1 p2,
The probability of NLoS is as in Eq.(13):

priVtos — 1 — prtes (13)

The maximum coverage of a base station antenna with beamwidth (¢, is given as r, = h X tcm(ﬂ‘”‘%) [17].
For the transmission power of C'R,, the received power of CR-FC at j UE for the LoS and NLoS link is
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given as in Eq.(14):

a

ORp + g3dB — LOdUBE,NLoS — ENLOS7 NLoS Link

a

CR =

P

{ CRP + g3dB - LOCI{gLOS - ELoS, LoS Link

14

16
14
12

10

(14)

For a fixed location of CR-FC and varying locations of the UEs the path loss associated with this situation
is to be considered averaged path loss. Therefore, The path loss in dB for the LoS and NLoS is given as
Loiy 1.5 and LoJg \; ¢ respectively. The path loss between CR-FC and UE is calculated as in Eq.(15):

pPriosy, { M} , LoS Link
LolE — { y
PrNLoSTQ{%} . NLoS Link

(15)
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(1R CREC )

Fig. 15: Detailed representation of the proposed model

where, f¢ is the spectrum sensed carrier frequency of the CR-FC, n’ is the path loss exponent, d; is the
distance between CR-FC and UE and c is the speed of light, T, T are the coefficients of the excessive
path loss during LoS and NLoS conditions respectively.

The shadow fading in dB for the LoS and NLoS link is denoted as E;,s and Eyp,s respectively. The E,g
and Fxr,s has the normal distribution as Fr,s ~ N(fir0s,0%.5)s Enzos ~ N(UnLos, 0%1eg) Tespectively.
The pir05, tNLos are the mean. The 0,5, 0nLos (Variance) depends on environmental condition and the
elevation angle as denoted in Egs.(16) and (17) [18]:

Tros = Jrel "0, (16)
ONLos = Grelm¢2%) (17)
where, Ji, Jo, Gy, G5 are the constants depending on environmental constraints. The received j** UE power

at CR-FC is calculated as in Eq.(18). The link between CR-FC and BS can be modeled as in Eq.(19), the
received CR-FC power at BS is estimated as in Eq.(19).

UE,CRFC .
Pwp; 1~ — LOdUBE,LoS — Fros, LoS Link

PwpUE,CRFC,r _ { (18)

o Pupl P — LoYE | s — Enpos, NLoS Link
47 d 2 ’
CR, gs = CR, X { ‘];C 0} X dg¥ (19)

The opportunistic throughput T;TI;B_UE evaluated for CR-FC assisted data transmission between the BS
and the UE denoted as j is as shown in Eq.(20)[5][7]:
)

B.CRFCyr _ 7 B,ORFC . } CRFCUE
(NoW) x (Pwpj i, X hiy A+ CRy < hi

_ 1
T = 5l092{1 + (20)
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The power spectral density of the noise is denoted as Ny. A unit buffer size is assumed for the time index
therefore it is omitted. Hence, Eq.(20) can be re-written as Eq.(21):

B,CRFC, B,CRFC CRFC,UE
Pupji; " x CRy X h}; x hj}, }

’ ’ 21
NoW) x (PwpliC T 5 h5OREC 4 O Ry x hHOUE)

1
h,B—UE _
TM = 5[092{1 + (

The opportunistic throughput for the CR-FC assisted transmission of data between UE and BS is formulated
as in Eq.(22):

UE,CRFC. UE,CRFC CRFC,BS
hUE-B 1l0g {1 L Puwp; 7" X CRy gg % by, x Ry } o)
j k — 51092 UE,CRFC, UE,CRFC CRFC,BS
! 2 (NoW) x (Pwp; "X hyy + CR) g X hy, )
o UE,CRFC . o
where the transmission power denoted as Pwp; , is the power employed for the transmission of data

by the j** UE. The hg,f CREC denotes channel gain between UE j and the CR-FC. The hkCRF @B is the
channel gain between CR-FC and BS.

5.1 CSS Model

This work considers the CSS scheme as show in the Figure 16. The SNN of each CRs is first trained using
the different scalograms for the presence and the absence of the PUs. The training is done in the offline
mode, the trained SNN CRs are then employed in the online mode for the real time classification of the
presence and the absence of the PUs. The prediction is made in terms of 1s and Os for the presence and the
absence of the PUs respectively. The value is fed to CR-FC to make the final decision on the channel state.
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Fig. 16: Cooperative spectrum sensing model
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The mathematical modelling and the calculation for the opportunistic throughput with respect to the
probability of detection and false alarm probability is as explained in our previous work in [27] [46]. The
hypothesis for the employed Spectrum Sensing is as denoted by the Eq.(23) [46]:

Ho @ yi(t) = m(t) {(PU Absent)}

Hy cyi(t) = hus(t) + m(t) {(PU Present)} (23)
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here, ;(t): Sensed sample at the [ CRs for the time instant ¢, here t = 0,1,2..N — 1.
h;: Channel gain at CRs /.
s(t): LU/PU signal.
ny(t): Noise received at CRs [ having zero mean and variance o7,
The test statistics for spectrum sensing at each CRs is calculated as in Eq.(24):

N-1
U= ln)l (24)
t=0

At fusion center: {zl}fﬁs, where z; = U, + b, b; is the control channel noise between [** CRs and CR-FC.
The b; is AWGN with 0 mean and variance v}.
The weighted value at fusion center is estimated as in Eq.(25):

> wz=w'z (25)
=1

where, W = [wy, wo, w3, ... W Rs) T

Z =21, 2,23 ...2CRs)"

[.]”:Matrix Transpose.

The accurate detection probability is estimated as in Eq.(26) [8][9]:

Pi—0 (Q‘l(Pf)\/WTCw — es[h]Tw) 26)
VWDw
where, Q(z) = \/LQ—W [ e /2da, e, = Zf:ol s(t)]%
b= (| Bl o o)
C = 2N x diag*(o) + diag(v),
D = 2N x diag*(o) + diag(v)
+4es x diag(h) + diag(v).
here diag(.) represents diagonal matrix.
o=[02,02 .0k )", v=[v}0v3, . .vip]T.
Similarly the false alarm probability is estimated as Eq.(27):
—1( pdy,/
pf— Q( Q(P?)vVw'Dw ) 27)
VWICw — e [h|Tw

With the help of Eq.(21), the achievable throughput is calculated and employed for simulation shown in
figures 29 and 30. Its estimation for the transmission of data from BS to UE via CR-FC is as in Eq.(28):
ach,B—UE t/—t* h,B-UE
T - PH“(t—f)(l - PNT; (28)
here, the frame duration = #/ ¢* = sensing time and P#° = probability of PU’s inactivity.
Similarly, for UE to BS it is estimated as shown in Eq.(29):
th—t

TP = P (=) (1 = PHT " (29)
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5.2 CWT of the PU Signals to generate its scalogram images

In this paper, the received or spectrum sensed signals are first represented in the time frequency format.
Such time frequency representation of signal is called as scalograms. Figures 17-19 show the scalogram for
the PU. The scalograms are obtained via employing CWT. The absolute value of CWT coefficient is utilized
as scalogram. The CWT filterbank precomputation is performed to generate scalogram. These scalogram
images are then fed to the SNN for the training. The CWT is mathematically represented as [55]:

CWTY(A,B) = ———
P )

V(
The 4 (t) is dependent on A:Scaling parameter(controls the frequency of the wavelet function) and B:

Shifting Parameter and it is represented as 14 5(t) = ¢¥(=2). An ideal ¢(¢) should have mean 0 and its
ends must be decaying quickly [55].

1T t— B
| A|)_£ Y (O 30)

Scalogram

10°

Frequency (Hz)

10*

Time (s) x10™

Fig. 17: Scalogram for PU spectrum

Strongest PU Signal

Fig. 18: The scalogram and the grey scale image obtained for the Strongest PU signal

6 MWOA:THE PROPOSED OPTIMIZATION SCHEME
6.1 The Conventional WOA

Mimicking the hunting behavior of the whales, the WOA was developed in 2016 [10]. The three important
mechanisms involved in WOA are random search phase, spiral position update technique, and encircling
mechanism for finding an optimum solution. The three techniques are explained in brief as below:

Encircling Mechanism: Based on the objective function as discussed in the point 8 under the section IV(C)
and the constraints (Zlcjs w; =1, and 0 < w; < 1), the search agents are first randomly initialized. After
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Fig. 19: PU Scalograms

obtaining the fitness value for each search agents then in the encircling mechanism, the whales/search
agents update their position as in Eq.(31) and Eq.(32) [10] [58]:

D=|C-X:—X, (31)

Xpp1=Xr—A-D (32)

here, D is the distance vector of the new solution from a prey position, C is the coefficient vector and it is
equal to 2 - r, for the current iteration n (n=0, 1, 2...n,,4,) prey’s position vector or the position vector of
the best solution obtained so far is represented as X'. The position vector of the search agent for the next
iteration is represented as Xn—i—l- The A is termed as discrimination weight coefficient and is calculated as
in Eq.(33):

A=2a-7—d| (33)
here @ is varied from 2 to O as a linearly declining vector, 7" is a random vector having values between 0
and 1.
For the p < 0.5 and |A| < 1, the encircling mechanism is initiated. Here p is a random number generated
between 0 and 1 for each iteration.

\\“—i__

(Xf,n: A’.’,n‘a XS,}:.)

I =D

(L i n,)(_’, n,X 3 n)

20

Fig. 20: 3D representation of the Encircling position update of the search agent (Whale) towards the best
solution
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The Figure 20 shows the pictorial representation of the encircling mechanism of the WOA.

Spiral Position Update Technique: The condition for the spiral update scheme is p > 0.5. In this
technique the search agents move in the direction of the prey/best solution as a spiral shape. The Figure
21 shows the 3D representation of the spiral position updates of the whales towards the best solution

(X{,, X5 ,,X3,,) of a3 dimensional problem. The equation governing this technique is as in Eq.(34) and
Eq.(35): . . .

Xpp1=D-e"-cos(2ml) + Xz, 1€ [-1,1] (34)

B — ‘)f; -~ X, (35)

Here, b is a constant for defining the logarithmic spiral shape and [/ is a number varying randomly between
[-1,1].

(X 1, ii,)(?, rr,Xﬂ, rs)
1.5
o
0.5
0
25\5\\
s + Py - = S
1068 et (ij,n : X?,ii ’ Xi,ii) e 20
e < 10
0 103\\ //(/ :
= e -10

¥ -20 -20 .

Fig. 21: 3D representation of the spiral position update of the search agent (Whale) towards the best
solution

Random Search Phase: This mechanism is important for WOA to carry out proper exploration and have
good global search.
The random global search is initiated when the p < 0.5 and |A| > 1. In this phase, emphasis is made
on random solution selection instead of exploiting the local best solution The mathematical equations
governing this search is as shown in Eq.(36) and Eq.(37):

D=|C.Xrmd_ X, (36)

— —

Xpp1 = Xrod A D (37)

6.2 Modifications to implement Expert balance between Exploration and Exploitation of
WOA

A balance between global and local search is very important for the optimization algorithm [12]. The
local search/exploitation is performed well by the WOA, but the global search/exploration is carried out by
randomly assigning search agent position irrespective of its position from the best solution. The drawback
of such a random search is that it might be in the already searched region i.e a local optima. Such drawbacks
associated with the WOA call for the need for its modification [60]. To avoid getting stuck to local best
solution and to enhance the global search ability, in MWOA, a threshold is introduced to select search
agent as a random pick. For enhanced global search it is important that the search agent must explore
the unexplored regions. Therefore, in MWOA the search agents which are not nearby to the current best
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solution are selected for the random search. In this way, the solutions which are in unexplored region is
preferred for initializing the global search.
Modification can be mathematically modeled as in equations (38 to 41):

dy = | X5 = Ky (38)
dy = | X5 — Kbt (39)
where, )?365'52 is the 2nd best solution among all the search agents.
If d; > dy, and p < 0.5 and |A| > 1 then update search agents as:
D=|C. X _ X, (40)
Xpp1 = Xrond _ XD (41)

And if d; < ds, then select the next random search agent, continue this process until the condition d; > d5
is satisfied. The proposed modification via Eqs.(38-41) can be termed as Modified Random Search Phase.

For an optimization algorithm it is important that its search agents reach almost all possible solution
in the search space without slowing down the entire search process [19]. So, in this paper Mutation
and Replacement strategy is applied. In each iteration, the search agents undergoes mutation and the
corresponding solution then replaces the worst solution in the solution set to make sure that the search
agents overcome local optima and progresses towards global best solution. In this way, the entire search
agents would be led towards the global optimum solution in an efficient manner.

After Encircling Mechanism | Spiral Update Mechanism and Modified Random Search Phase, the search
agents undergoes Polynomial Mutation Scheme, in which offspring is generated based on Eq.(42):

Xmt = X, + (XY — X[F)s, (42)

here, )?f{ and X",f are the upper and lower bounds of X,,. The ¢,, is computed via employing polynomial
probability distribution model [45]:

P(r,) = 0.5(0™ + 1)(1 — |r,|") (43)

_ 1
{ 2 1w < 0.5
" l1=2

44
(1— rﬁn)ﬁ, otherwise “

where, ™ is generally ~ 20 and u is random number ranging in [0,1]. Based on fitness of the solutions
the search agents are categorized and the worst solution is replaced by the mutated solution )Z'?T“t. The
proposed MWOA has efficient exploration scheme with which random search agent are selected such a
way as shown in equations (38-41) that it overcomes local optima. With polynomial mutation scheme as
described in equations (42-44) the proposed MWOA has double edge sword of efficient tradeoff between
exploration and exploitation therefore it converge towards the global optimum solution as shown in figures
20 and 21.
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7 PROPOSED MWOA TRAINED SNN

In this paper, MWOA is employed for training the SNN. The SNN training using swarm intelligence
was successfully implemented in [38]. But the employed optimization algorithm is the conventional PSO,
which has the drawback of getting converged to the local optima [12]. Therefore in this work new and
improved MWOA is employed for better training of the SNN. The objective functions for the MWOA
based optimization are as mentioned in equations 8 and 9 respectively. The Figure 22 (a and b) shows the
basic idea of the proposed work, in which the weights from the SNN are fed to the MWOA optimization
environment. The MWOA based training of SNN starts by random initialization of search agents of MWOA
and hyper-parameters (U, 7, 77°¢) of SNN. In addition to that, to begin the algorithmic training of
SNN, it is important to consider certain fixed values for the parameter such as Decay time constant= 10
ms, threshold membrane potential = 7 mV, reset voltage = 0.05 mV, population size = 50, iterations =
160, runs = 30 and n™=20. The detailed working of the MWOA training of the SNN is as explained in
points 1-1/2 under the section IV(C). The optimization search space is formed based on the fitness function

e = 1> 0 ,(to—t5) which is inturn dependent on the timing of the spike train. Here the actual and the
desired spike timing is dependent on equations 8 and 9 respectively [54]. The optimization process starts
with the random initialization of the search agents in the search space. At the beginning of the iteration
search agents explore the search space and as the iteration proceeds, the search agents converge towards
the best solution as shown in Figure 22 (a). After each iteration best search agent is selected based on
its fitness value. As the iterations progresses search agents exhibits mutation and expert balance between
its exploration and exploitation ability to exercise a better exploitative search. At the end of maximum
iteration, the best solutions i.e optimized weight values of SNN for minimized value of the fitness function
are retrieved. The pseudocode for the detailed working of the MWOA based optimization of the SNN
weights are discussed in the Algorithm 1.

Algorithm 1 Pseudocode for MWOA

1: Random initialization of the whales/search agents,
X,w “ij'm weight values as in Eq. 6
2: Obtain the values of a, A (via Eq.(26)) and C
Compute finess value of each search agents for the fitness
function:x? (t) =Y, Zm LY wid
Random initialization of p
While n < npas

W

Search agents’ position gets updated based on Eqs.(24) and (25)
elseif p>0.5 and |A| <1

9. Search agents’ position gets updated based on the Eq.(27)
10: end
11: Compute d'l and d'2 as per Eq.(31) and Eq.(32)
12: if dy <dg and p<0.5 and |A] <1
13:  Search agents’ position gets updated based on the Eq.(34)
14: end
15: Perform Mutation and Replacement based on Eqs.(35-37)
16: Check for the boundary of search space and constraints
17: Compute sea/rch agents’ fitness based on the fitness function

ine =130 (t2—1t9)

18: Compute the best solution and update it
19: n=n+1
20: end while
21: Best Solution=X x

A A
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Fig. 22: Working of the proposed MWOA optimization of SNN during convergence

8 SIMULATION RESULTS

In this paper, the objective functions in Eq.(8) and Eq.(9) are optimized to improve the efficiency of SNN.
An efficiently trained neural network is identified by its high accuracy in classification during testing and
training. The training of SNN is carried out in MATLAB 2020(a) based simulation environment. The CWT
of the PU signal obtained via USRPs N210 is performed in the MATLAB 2020(a). To obtain the real time
signals via USRPs the software platforms employed are LabVIEW 2018, GNU Radio Companion 3.7.11
and MATLAB 2020(a) in the Ubuntu 18.04.
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Fig. 23: Working of the proposed MWOA optimization of SNN during initialization

The proposed Mutated MWOA-SNN based spectrum sensing is compared with PSO, PSOGSA, GSA
and ASA. The comparison is made in terms of convergence curve for training accuracy, the oppor-
tunistic throughput and the BER for the relay based scenario. The parameters considered for simulation
are: The number of C'R,=5, 0=[0.08,0.08,0.08,0.08,0.08]7 (noise variance), v (control channel noise
variance)=[0.08, 0.08, 0.08, 0.08, 0.08], Ny = 1 x 1075 W/Hz. Transmission power associated with PU BS
lies in a range 25 dBm to 45 dBm, the power associated with the CR-FC transmission is between 20
dBm and 30 dBm [11]. The power of each UE is considered to be limited to 0.1 W. The channel gains

B,CRFC } CRFC,UE UE,CRFC ; CRFC,B .
ikt Pk and h; yhjk, - are Rayleigh faded channel.
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The channel between LU and CRs is considered to be independent of the channels hf ,;CtRF “ hjc,ff ouE

and KOO RSETOP The a=11.9, =0.14, J;=10.39, /,=0.05, G1=29.06, G>=0.03, d, reference dis-
tance=1 m, Y;=3 dB, T5=23 dB [20]. The population size of search agents/whales/particles = 50. Each
employed optimization scheme is iterated for 30 runs with each run corresponds to the 160 iterations for
training the SNN. The rationale on the choice of the parameters and mentioning only the key parameters
in Table 2 is because of their greater influence on the training of SNN in terms of reaching the optimal
values of the weights. We have experimented with different set of values and the values for which optimum
weights can be achieved are mentioned in Table 2.

TABLE 2: Simulation Parameter values

Parameter Values
« 11.9
B 0.14
Ji 10.39
Ja2 0.05
G1 29.06
G2 0.03
d, reference distance Im
T 3dB
T2 23dB
h 30m
hBs 20m
No. of CR; 5
Threshold Membrane Potential 7 mV
Reset Voltage 0.05 mV
Search agent population size 50
PSO and PSOGSA cognitive and social parameter constants 2
PSO and PSOGSA inertia weight Random number between [0,1]
GSA and PSOGSA gravitational constant 1
Transmitter USRP Ettus N210
Receiver USRP Ettus B210

Figures 24-30 show the training accuracy for the Conventional SNN, GSA trained SNN, PSO trained
SNN, PSOGSA trained SNN, ASA trained SNN and the proposed mutated MWOA trained SNN. Here
blue solid line represent the accuracy and the black dashed line represents the loss obtained during the
training phase. The loss infers the validation accuracy during the training of each algorithm. The reason
for displaying the training accuracy and the loss is to show the training efficiency of each algorithm. The
conventional SNN achieved an accuracy of 52% during the training phase. Whereas PSO trained SNN and
GSA trained SNN has the validation accuracy (represented in black dash line) of 58% and 55% respectively.
The PSOGSA trained SNN achieved an accuracy of about 60%. The ASA trained SNN performed well and
attained the accuracy of 90%. The proposed mutated MWOA because of its efficient ability to overcome
local optima and execute the training of SNN by guiding the weight values towards the global best achieved
the validation accuracy of 96.88%.

The efficient performance of the proposed MWOA in training SNN 1is because the proposed scheme
is successful in maintaining the efficient balance between its exploration and exploitation abilities. The
MWOA has good approach of avoiding local optima solution by effectively mutating the search agents and
replacing the worst solution. In this way the algorithm move towards the global best solution. The high
training accuracy values so obtained using MWOA-SNN is visible in its performance in efficiently detecting
the spectrum holes and utilizing it for data transmission. Figures 30 and 31 depicts the performance of the
proposed scheme in transferring data between UE and BS (vice-versa) via utilizing the efficiently detected
spectrum holes. The performance is indexed in terms of opportunistic throughput for varying SNR. The
proposed MWOA-SNN has achieved higher opportunistic throughput for the sensing time of 3 ms and
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Fig. 25: Convergence Curve for the Accuracy and the Loss for the Conventional CNN

frame period 50 as compared to ASA-SNN, PSO-SNN, GSA-SNN and PSOGSA-SNN based spectrum
sensing.

The optimized weights obtained via proposed MWOA is employed to train the SNN. The trained SNN
is tested for the real time scenario by performing spectrum sensing using USRPs N210. The test bench
setup is as shown in figures 33 and 34. The USRP 1 act as a primary transmitter transmitting at certain
intervals. The USRP 2 performs spectrum sensing and detects the vacant spectrum based on the MWOA
trained SNN. The spectrum is vacant when PU is not transmitting. Utilizing the spectrum holes the USRP
1 then transfers data to the Receiver USRP (B210).

The testing results so obtained for the trained SNN in the real time scenario is as shown in Figure 35.
The accuracy achieved in testing period/working phase for mutated MWOA-SNN is compared with the
ASA, PSO, PSOGSA, GSA, and conventional SNN.

Figure 35 displays the validation accuracy of each algorithm during the working phase. It can be infered
that with less time computation, mutated MWOA trained SNN is able to correctly distinguish the presence
and the absence of the PU. The Accuracy of MWOA trained SNN based Cognitive radio network is better
as compared to PSO, PSOGSA, GSA, and Conventional SNN. The performance of MWOA in effectively
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PSO TRAINED SNN

Fig. 26: Convergence Curve for the Accuracy and the Loss for the PSO trained SNN

GSA TRAINED SN

Fig. 27: Convergence Curve for the Accuracy and the Loss for the GSA trained SNN

detecting the spectrum holes is justified by the BER performance as shown in Figure 37. The efficient
mutation and expert exploration scheme have efficiently enhanced the performance of the MWOA and as
result the presence and the absence of the PU is correctly detected and data is transmitted with less error.

9 RESULT ANALYSIS

Figures 24 and 25 show the training and validation accuracy achieved via conventional SNN and con-
ventional CNN. It can be seen that the conventional SNN has better training and validation accuracy as
compared to conventional CNN. Thus showing the effectiveness of SNN in classifying the presence and
absence of the PU signal. But still the obtained accuracy is not able to approach 100 percent accuracy. This
shows that both the conventional CNN and SNN are able to classify the signal but are not efficient enough
to be employed for spectrum sensing. Therefore, in this work novel MWOA training scheme is employed
for SNN to enhance its efficiency while training. The effectiveness of the proposed MWOA in training the
SNN to correctly identify the spectrum holes can be inferred via high opportunistic throughput achieved
in figures 31-32 and PU detection and BER performance in figures 36-37. Post weight optimization of
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Fig. 28: Convergence Curve for the Accuracy and the Loss for the PSOGSA trained SNN
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Fig. 29: Convergence Curve for the Accuracy and the Loss for the ASA trained SNN

SNN,The proposed MWOA-SNN is employed in real time spectrum sensing via USRPs. Figures 31 and 32
show that opportunistic throughput achieved for MWOA trained SNN is the highest. The MWOA because
of its novel mutation abilities is capable to optimize the weights of SNN. Therefore, MWOA-SNN is more
capable to correctly identify and classify the vacant channel as compared to conventional SNN and other
metaheuristic trained SNN. The proposed MWOA optimization has efficiently improved the classification
ability of the conventional SNN. Thus, the proposed MWOA-SNN is successfully implemented for efficient
spectrum sensing in CR networks. Tables 3 and 4 show the comparative analysis of the optimization
algorithms employed for training SNN in terms of opportunistic throughput. The mutated MWOA has
clearly outperformed ASA, PSOGSA, PSO and GSA algorithms in efficiently training the SNN to correctly
identify the spectrum holes. Thus, improving the opportunistic throughput. The Table 5 shows that the
proposed MWOA trained SNN is quick enough to obtain the desirable validation accuracy. Thus, making
it a good fit for implementing in the real time scenario.
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Mutated MWOA trained SNN

Fig. 30: Convergence Curve for the Accuracy and the Loss for the proposed mutated MWOA trained SNN
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TABLE 3: Opportunistic Throughput For UE to BS at SNR= 20 dB

\ Optimization Algorithm | Mutated MWOA | ASA | PSOGSA | PSO | GSA | Conventional SNN |

‘ Opportunistic Throughput (bits/Hz) ‘ 3x107 ‘ 1.5x107 ‘ 1x107 ‘ 0.75x107 ‘ 0.65x107 ‘ 0.25x107 ‘

TABLE 4: Opportunistic Throughput For BS to UE at SNR= 20 dB

‘ Optimization Algorithm | Mutated MWOA | ASA | PSOGSA | PSO | GSA | Conventional SNN |

| Opportunistic Throughput (bits/Hz) |~ 4.2x107 | 2.5x107 | 1.62x107 | 1.46x10" | 1.3x107 | 0.5x107 |

TABLE 5: Validation Accuracy achieved during testing period at 0.02 seconds

| Optimization Algorithm | Mutated MWOA | ASA | PSOGSA | PSO | GSA | Conventional SNN |

| Accuracy Percentage | 98 | 96 | 88 | 82 | 82 | 80 |
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Fig. 34: Test bench setup Receiver
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10 CONCLUSION

In this paper, a new training algorithm MWOA is proposed and implemented for SNN based efficient
spectrum sensing in CR relay network. The employed scheme successfully overcomes the issue of network
coverage and spectrum congestion simultaneously by improving the opportunistic throughput and the BER
performance of the CR relay network. The proposed MWOA is effective in enhancing the classification
abilities of the conventional SNN with an 18% improvement in the validation accuracy of MWOA-SNN
compared to conventional SNN during the testing period. The MWOA trained SNN increases the efficiency
of the cognitive radio network. The MWOA trained SNN is implemented for offline spectrum sensing, in
which SNN is first trained using MWOA and the trained network is then employed for detecting the vacant
spectrum. The simulation results show the efficacy of the proposed MWOA in enhancing the classification
ability of the SNN and thus improving the spectrum sensing scheme. The Mutated MWOA training of
SNN achieved the validation accuracy of 98% as compared to the 80%, 82%, 82%, 88%, and 96% for
the Conventional SNN, PSO-SNN, GSA-SNN, PSOGSA-SNN and ASA-SNN respectively. The proposed
MWOA trained SNN is then employed for the real time spectrum sensing for the sensing time of 3 ms and
frame period 50 ms via USRP N210 and B210. The proposed scheme efficiently detected the presence and
the absence of PU transmission at 2.4 GHz.
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