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Abstract—This paper addresses the Bayesian estimation of parameters
in the Dirichlet process of the Beta-Liouville distribution (i.e., an infinite
Beta-Liouville mixture model (InBLMM)), which has recently gained
considerable attentions due to its modeling capability for proportional
data. By applying the conventional variational inference (VI) framework,
we cannot derive an analytically tractable solution since the variational
objective function cannot be explicitly calculated. Therefore, this paper
adopts the recently proposed extended VI (EVI) framework to derive a
closed-form solution by further lower bounding the original variational
objective function in the VI framework. This method is capable of
simultaneously determining the model’s complexity and estimating the
models parameters. Moreover, due to the nature of Bayesian nonpara-
metric approaches, it can also avoid the problems of underfitting and
overfitting. Extensive experiments were conducted on both synthetic
and real data, generated from two real-world challenging applications
namely object detection and text categorization, to evaluate superior
performance and effectiveness of the proposed method.

Index Terms—Infinite mixture model, Dirichlet process, Beta-Liouville
distribution, extended variational inference, Bayesian estimation, object
detection, text categorization.

1 INTRODUCTION

S Tatistical modeling is an important problem in an
wide range of research domains, such as artificial

intelligence, machine learning, pattern recognition, data
mining [1]–[3], and so forth. There exists a myriad of
statistical modeling approaches. Among these methods,
the finite mixture modeling technique [2] is perhaps the
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most widely acknowledged and applied statistical mod-
eling approach, which is capable of flexible and pow-
erful probabilistic building tools to describe multimodal
distributions of observed data from science, scholarship
and daily life. Recently finite mixture models have been
applied in a wide variety of real-world applications,
such as skin detection [4], speaker identification [5],
vehicles detection [6], text categorization [7], and image
segmentation [8], [9].

One key and challenging problem in finite mixture
modeling is the selection of the probability density
functions (PDFs) of components, which depends on
the nature of data, and determines the flexibility and
robustness of mixture models. Much of early work [5],
[10]–[13] adopted the Gaussian distribution as the com-
ponent density mainly due to its simplicity and maturity.
However, the Gaussian distributed assumption is not
realistic, since the observations that we would like to
model may be non-Gaussian distributed. Such typical
non-Gaussian data includes heavy-tailed data [14], [15],
skewed data [16], [17], proportional data [18], positive
data [19]–[21] and axially symmetric data [22], [23].
Recent research outcomes showed that non-Gaussian
mixture models, such as finite Waston mixture model
(WMM) [22], finite von Mises-Fisher mixture model
(vMFMM) [24], finite Beta mixture model (BMM) [25],
finite Dirichlet mixture model (DMM) [4], [26], [27],
finite Beta-Liouville mixture model (BLMM) [28], fi-
nite generalized Gamma mixture model (GGMM) [21]
and finite generalized inverted Dirichlet mixture model
(GIDMM) [3], performed better than the finite Gaussian
mixture model (GMM) in many applications involving
non-Gaussian data. For example, the WMM and the
vMFMM have demonstrated their advantages in mod-
eling axially symmetric data. The DMM and the BLMM
have been proved to be more efficient in proportional
data modeling.

Another important and challenging problem in finite
mixture modeling is to select the appropriate number
of components (NoC) in the mixture models (i.e., model
selection) [2]. If the NoC is not appropriately selected,
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the model tends to underfit or overfit the observed
data. Numerous approaches have been developed to
tackle this problems, which can be broadly divided into
two types, namely deterministic and Bayesian methods.
The deterministic methods is pervasively implemented
by combining the maximization likelihood estimation
(MLE) with penalized log-likelihood criteria such as
Bayesian information criterion (BIC) [10] or minimum
message length (MML) [29], within the conventional ex-
pectation maximization (EM) framework [30]. However,
the EM algorithms for non-Gaussian mixture models
have three main shortcomings: 1) it is particularly sen-
sitive to the initialization of the model; 2) it is prone to
overfitting and converging to local maxima, due to its
greedy nature; and 3) the iterative numerical calculation
in the maximization step (e.g., with the Newton-Raphson
method) incurs prohibitive computational costs. On the
other hand, the Bayesian methods allow us to approxi-
mate a full Bayesian posterior by means of incorporating
prior knowledge about parameters into the models and
then marginalizing over parameter uncertainty [31], [32],
which avoid the shortcomings related to deterministic
techniques. Nevertheless, most of these two types of
methods are computationally expensive since they need
the evaluation of a given selection criterion for several
NoCs, which limits their usages to small-scale problems
in practice.

Bayesian non-parametric (BNP) methods [33], [34] are
excellent alternatives to the aforementioned methods to
deal with the model selection problem in parametric
finite mixture modeling, which can be well adapted to
depict complex and realistic datasets, and automatically
infer the optimal NoC from the data. Among all the BNP
methods, the Dirichlet process mixture (DPM) model-
s [23], [35]–[37] attracted the most attentions, which are
widely applied to build probability models with flexible
latent structures and complexities. A prominent and
well-studied example is the infinite mixture modeling,
which assumes that the observed data are governed
by an infinite NoC, but only a finite NoC does truly
generates the data. The majority of early research work
with respect to infinite mixture modeling were interested
in the infinite Gaussian mixture model (InGMM) [38]. N-
evertheless, recent work has shown that DPM with non-
Gaussian components, such as infinite Watson mixture
model [23] (InWMM), infinite inverted Dirichlet mixture
model (InIDMM) [20], infinite Beta-Liouville mixture
model (InBLMM) [39], and infinite Beta mixture model
(InBMM) [40], are able to provide better modeling ability
than the InGMM in the case of non-Gaussian distributed
data.

An essential problem in the BNP modeling is to
infer the posterior distributions of the latent variables.
However, it is infeasible to evaluate the posterior dis-
tribution, due to the coupling among these variables.
To address this problem, practitioners need to resort to
approximation inference methods, which can be broadly
divided into types, namely stochastic and deterministic

techniques. The stochastic techniques are mathemati-
cal solutions that rely on repeated random numerical
sampling to obtain their results. Markov chain Monte
Carlo (MCMC) [41] approaches are the most extensively
applied stochastic technique. Nonetheless, the MCMC
methods are prone to suffer from bad performance, as
two shortcomings exist: 1) it is difficult to diagnose their
convergences, especially when working with large-scale
data; and 2) the sampling procedure is time-consuming
and computationally expensive, such that they cannot
be extended to fit large datasets and high model com-
plexities. On the other hand, the deterministic techniques
applied a computationally tractable parametric distribu-
tion to approximate the actual posterior. The VI is the
most widespread deterministic method as a result of its
excellent generalization performance and computational
simplicity in a variety of applications, including finite
mixture models learning [10], [20]–[22], [24], [26], which
can provide an excellent alternative to the MCMC-based
sampling algorithms. The main idea of the VI is to utilize
a simple family of distributions to approximate the
analytically intractable true posterior and then discover
a member from this family which is as close as the
actual posterior. The Kullback-Leibler (KL) divergence
from the approximated posterior to the actual posterior
is applied to measure the closeness. Minimizing the KL
divergence is then turned into an optimization problem
of the evidence likelihood bound (ELBO) [3], [42].

Motivated by the powerful modeling capabilities of
the DPM and the excellent performance of the VI frame-
work, this work focuses on Bayesian estimation of the
DPM of the Beta-Liouville distributions (i.e., InBLM-
M) with the VI framework. Unfortunately, applying
the traditional VI framework cannot derive an ana-
lytically tractable solution for the Bayesian estimation
of the InBLMM, since the calculation of the ELBO re-
quires intractable moment computations. The EVI frame-
work [20], [27] is a good alternative to the VI frame-
work, which has proved to be efficient in non-Gaussian
mixtures learning [20], [25], [27], [43], [44]. Following
the principles of the EVI, lower-bound approximations,
which are subject to certain constraints [27], are intro-
duced to the ELBO in the traditional VI framework.
With these auxiliary functions-based lower-bound ap-
proximations in hand, we can easily derive a closed-
form solution for the InBLMM. Our major contributions
of this article are summarized into three aspects. First,
the BLMM has been extended to the InBLMM via the
stick-breaking representation, which provides an elegant
way to simultaneously carry out parameter estimation
and model selection. Second, a closed-form solution for
Bayesian estimation of the InBLMM is derived through
employing the EVI framework. This method is capable
of guaranteing theoretical convergence and providing
better approximations. Third, the proposed method has
been applied for object detection and text categorization.
The experimental results upon both artificial and realis-
tic datasets demonstrate the better performance of the
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proposed method than the referred methods.
This paper is organized as follows. We first briefly

review the BLMM and the DPM model, and extend the
BLMM into the infinite case in Section 2. Then, we detail
a complete EVI framework for learning the InBLMM in
Section 3. The experimental results and comparisons are
given in Section 4. Finally, we draw some conclusions
and future works in Section 5

2 MODEL SPECIFICATION

2.1 Finite Beta-Liouville Mixture Model (BLMM)
Let x = [x1, · · · , xD]

T be a D-dimensional random pro-
portional vector, where 0 < xd < 1 for d = 1, · · · , D,
and

∑D
d=1 xd < 1. We can apply a Beta-Liouville (BL)

distribution to model its underlying distribution. Several
researches have validated the advantages of choosing the
BL distribution in modeling proportional vectors [39],
[45], [46]. The probability density function (PDF) of a BL
distribution is given by [47]

BL(x|θ) =
Γ(
∑D

d=1 αd)Γ(u+ v)

Γ(u)Γ(v)

D∏
d=1

xαd-1
d

Γ(αd)

×

(
D∑

d=1

xd

)u−
∑D

d=1 αd(
1−

D∑
d=1

xd

)v−1

,

(1)

where θ = [α1, · · · , αD, u, v]
T is the parameter vector that

consists of only positive real values, and Γ(·) denotes
the Gamma function. Note that the Dirichlet distribu-
tion [26], [27] is a special case of the BL distribution. To
flexibly model the proportional data with multimodal
distributions, a mixture modeling technique [48] is used
to build a BLMM. With M mixture components, the PDF
of the BLMM is defined as [18]

p(x|Π,θ) =
M∑

m=1

πmBL(x|θm), (2)

where Π = [π1, · · · , πM ]
T are the mixing proportions and

satisfy the constraints as

πm ≥ 0, and
M∑

m=1

πm = 1. (3)

In addition, θ = [θ1, · · · ,θM ] is the parameter matric. For
proportional data from many real-world applications,
the BLMM, among others, has been extensively used
for the purpose of clustering and classification of such
data [18], [28].

2.2 Infinite BL Mixture Model with Stick Breaking
The Dirichlet process (DP) [49] is a famous stochastic
process that is extensively applied in BNP models of
data, particularly in DPM models. To avoid problems
related to model selection, we extend the BLMM to a
case with infinite NoC through applying the framework
of the DPM model, and construct the DPM model of

the BL distributions (which we refer to as the InBLMM)
via the following stick-breaking representation [50]–[52].
Let G be DP distributed as G ∼ DP (ϕ,H), where ϕ is a
positive scaling parameter and H is a base distribution.
The stick-breaking representation of G is as

G =

∞∑
m=1

πmδΩm , (4)

πm = λm

m−1∏
j=1

(1− λj), λm ∼ Beta(1, ϕ),

Ωm ∼ H,

where δΩm denotes the Dirac measure with unit mass at
Ωm. πm are the non-negative mixing weights that sum
to one and can imaginarily be given by breaking a stick
of unit length into a countably infinite number of pieces.

Let X = [x1, · · · ,xN ] be a sample of N observations,
which are independently drawn from an InBLMM. For
each observation xn, we have a corresponding hidden
component indicator vector variable zn = {zn1, zn2, · · · },
which is defined as znm ∈ {0, 1},

∑∞
m=1 znm = 1, and

znm = 1 given that xn comes from the mth component
and 0 otherwise. Therefore, the conditional distribution
of dataset X given the hidden variables Z = [z1, · · · , zN ]
is given by

p(X|Z,θ) =
N∏

n=1

∞∏
m=1

BL(xn|θm)
znm . (5)

The prior distribution of the latent variables Z given the
mixing weights Π is given by

p(Z|Π) =
N∏

n=1

∞∏
m=1

πznm
m . (6)

Because Π is a function of λ = {λ1, λ2, · · · } as shown in
(4), we can rewrite p(Z) as

p(Z|λ) =
N∏

n=1

∞∏
m=1

λm

m−1∏
j=1

(1− λm)

znm

. (7)

The variable λ in (4) has a specific Beta distribution as

p(λ|η) =
∞∏

m=1

Beta(λm|1, ηm) =
∞∏

m=1

ηm(1− λm)
ηm−1

,

(8)
where η = {η1, η2, · · · } are hyperparameters.

To complete the Bayesian formulation of the InBLMM,
proper conjugate priors need to be imposed over the
parameters θm of the BL distributions. Motivated by [25],
we define these parameters to be Gamma distributed as

p(Λ) = G(Λ;S,T) =
∞∏

m=1

D∏
d=1

tsmd

md

Γ(smd)
e−smdαmd , (9)

p(U) = G(U;G,H) =
∞∏

m=1

hgm
m

Γ(gm)
e−gmum , (10)
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p(V) = G(V;P,Q) =
∞∏

m=1

qpm
m

Γ(pm)
e−pmvm , (11)

where the hyperparameters Λ = {αmd}, U = {um}, and
V = {vm} denote the random variable sets. Moreover,
the hyperparameters S = {smd}, T = {tmd}, G = {gm},
H = {hm}, P = {pm}, and Q = {qm} are strictly positive.
The joint density function of all random variables in the
InBLMM is then given by Fig. 1.
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Fig. 1: Graphical model representation of the InBLM-
M. Circles represent random variables, boxes represent
hyperparameters, and the arrows show the conditional
dependence between variables.

The joint distribution of all the random variables can
be obtained by applying Bayes’ theorem and combin-
ing (5) and (6)-(11) as

p(X,Θ) = p(X|Z,θ)p(Z|λ)p(λ|η)p(Λ)p(U)p(V)

=

N∏
n=1

∞∏
m=1

λm

m−1∏
j=1

(1− λm)
Γ(
∑D

d=1 αmd)∏D
d=1 Γ(αmd)

× Γ(um + vm)

Γ(um)Γ(vm)

D∏
d=1

xαmd-1
nd

(
1−

D∑
d=1

xnd

)vm−1

×

(
D∑

d=1

xnd

)um−
∑D

d=1 αmd
znm

∞∏
m=1

D∏
d=1

tsmd

md

Γ(smd)

× αsmd−1
md e−tmdαmd

∞∏
m=1

[
ηm(1− λm)

ηm−1 hgm
m

Γ(gm)

×ugm−1
m e−hmum

qpm
m

Γ(pm)
vpm−1
m e−qmvm

]
,

(12)

where we have defined Θ = {Z,Λ,U,V} to simplify the
notations. In the next section, we will propose a novel
variational approximation scheme for InBLMM, which
can simultaneously handle the issue of estimating model
parameters and choosing the optimal number of mixture
components.

3 MODEL LEARNING

In this section, we develop a Bayesian estimation ap-
proach for the InBLMM based upon the EVI frame-
work [20], [44], [53], which is a variant of the convention-
al VI framework [3]. The VI treatment of the InBLMM is
conducted through introducing an arbitrary distribution
q(Θ) = q(Z,Λ,U,V) to approximate the actual posterior

distribution p(Θ|X), and considering the well-known
equality for the log-marginal likelihood (log evidence)
ln p(X) as

ln p(X)=L(q)+KL(q||p), (13)

where we have defined

L(q) = −
∫
Θ

q(Θ) ln
p(X,Θ)

q(Θ)
dΘ. (14)

In (14), KL(q||p) stands for the Kullback-Leibler (KL)
divergence between the approximated posterior q(Θ)
and the actual posterior q(X|Θ), which is given by

KL(q||p) = −
∫
Θ

q(Θ) ln
p(Θ|X)

q(Θ)
dΘ. (15)

Because the KL divergence is nonnegative and is zero
when q(Θ) = p(Θ|X), L(q) is a rigorous lower bound
of the log evidence, i.e., ln p(X) ≥ L(q). Minimization
of the KL divergence is equivalent to maximization of
the lower bound. Nevertheless, it is infeasible to solve
q(Θ) through minimizing KL(q||p), because q(X|Θ) is
unknown. Hence, optimization of the lower bound is
extensively applied in the conventional VI framework to
reach an excellent approximation distribution. The lower
bound L(q) in (14) is also known as the variational object
function and can be further rewritten as

L(q) = EΘ[ln p(X,Θ)]− EΘ[ln q(Θ)]. (16)

Unfortunately, for most of the non-Gaussian infinite
mixture models, such as the InDMM, the InBMM, and
the InBLMM, the object function L(q) is untractable to
compute in a closed-form expression, since the evalua-
tion of L(q) needs intractable moment computations in
EΘ[ln p(X,Θ)]. Consequently, directly maximizing L(q)
to solve q(Θ) is unfeasible and then the VI frame-
work cannot work on non-Gaussian mixtures. The EVI
framework [20], [44] can be applied to tackle this issue
elegantly. The main idea behind the EVI method is that,
if a help function p̃(X,Θ) that satisfies

EΘ[p(X,Θ)] ≥ EΘ[p̃(X,Θ)] (17)

can be found, then the maximum value of L(q) can
be asymptotically reached by means of maximizing the
lower-bound of L(q) rather than maximizing L(q) itself.
With the aid of (17), we obtain a lower bound of L(q) as

L̃(q) = EΘ[ln p̃(X,Θ)]− EΘ[ln q(Θ)]. (18)

To obtain a tractable expression for L̃(q), we further
adopt the mean-field approximation supposition [3], [10]
that the variational distribution q(Θ) can be factorized
over the latent variables in Θ. Moreover, a truncated
stick-breaking construction technique [52] is adopted to
truncate q(Θ) through fixing a value M and letting
q(λM = 1) = 1, which implies q(znm)=0 for m > M .
Consequently, the variational distribution q(Θ) can be
written as

q(Θ) =
N∏

n=1

M∏
m=1

q(znm)
M∏

m=1

D∏
d=1

q(αmd)q(βmd)
M∏

m=1

q(λm).

(19)
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Note that the hidden variables in Θ generally have
different variational parameters and no restriction is
placed upon individual variational factors [3].

With the assumption of the factorization formulation,
the optimal solution to each variational factor can be
obtained via maximization of L̃(q) in (19). The optimal
solution for a specified factor qj(Θj) within the EVI
framework is then given by

ln qj(Θj) = ⟨ln p̃(X,Θ)⟩s̸=j + Con., (20)

where ⟨·⟩s̸=j indicates an expectation regarding all the
factors qs(Θs) except for s = j. “Con.” denotes a constant
that is independent of Θj and is employed to normalize
the corresponding factor. Note that EVI represents a
factor using knowledge about other factors; therefore,
it is essentially iterative.

Applying (19) yields optimal variational posteriors as
(proofs are shown in Appendix A):

q(Z) =
N∏

n=1

M∏
m=1

rznm
nm , (21)

q(λ) =
M∏

m=1

Beta(λm|a∗m, b∗m), (22)

q(U) =

M∏
m=1

G(um|g∗m, h∗
m), (23)

q(V) =

M∏
m=1

G(vm|p∗m, q∗m), (24)

q(Λ) =
M∏

m=1

D∏
d=1

G(αmd|s∗md, t
∗
md). (25)

In (21)-(25), the hyperparameters are obtained through
maximization and determination of the density involved
in q(Θ). The estimates of rnm in (21) is given by

rnm =
ρnm∑N
n=1 ρnm

, (26)

where

ln ρnm =R̃m + F̃m + ⟨lnλm⟩+
m−1∑
j=1

⟨ln(1− λj)⟩

+

D∑
d=1

(ᾱmd − 1) ln xnd + (v̄m − 1) ln(1−
D∑

d=1

xnd)

+ (ūm −
D∑

d=1

ᾱmd) ln(
D∑

d=1

xnd).

(27)

In (27), R̃m and F̃m are defined in (38) and (39), respec-
tively. The estimates of a∗m and b∗m at the new steps are
given by

a∗m = 1 +

N∑
n=1

⟨znm⟩, b∗m = ηm +

N∑
n=1

M∑
j=m+1

⟨znj⟩. (28)

The estimates of s∗md and t∗md are given by

s∗md = smd +
N∑

n=1

⟨znm⟩

[
Ψ(

D∑
d=1

ᾱmd)−Ψ(ᾱmd)

]
ᾱmd,

(29)

t∗md = tmd −
N∑

n=1

⟨znm⟩

[
ln xnd − ln(

D∑
d=1

ln xnd)

]
. (30)

The estimates of g∗m and h∗
m are given by

g∗m = gm +
N∑

n=1

⟨znm⟩ [Ψ(ūm + v̄m)−Ψ(ūm)]ūm, (31)

h∗
m = hm −

N∑
n=1

⟨znm⟩ ln(
D∑

d=1

xnd). (32)

The estimates of p∗m and q∗m are given by

p∗m = pm +
N∑

n=1

⟨znm⟩ [Ψ(ūm + v̄m)−Ψ(v̄m)]v̄m, (33)

q∗m = qm −
N∑

n=1

⟨znm⟩ ln(1−
D∑

d=1

xnd). (34)

The proofs of the expected values ⟨·⟩ included in the
above formulas are provided in Appendix B.

From the equations for the variational factors in (21)
to (25), the lower bound L̃(q) can be evaluated as

L̃(q) =⟨ln p̃(X,Θ)⟩ − ⟨ln q(Z)⟩ − ⟨ln q(λ)⟩
− ⟨ln q(Λ)⟩ − ⟨ln q(U)⟩ − ⟨ln q(V)⟩,

(35)

where the analytical expressions of the terms ⟨·⟩ are
evaluated regarding all the variables in its argument and
are provided in the Appendix C. A complete outline of
the developed algorithm of Bayesian estimation of the
InBLMM with the EVI is presented in Algorithm 1, and
its convergence can be assessed through checking the
lower bound L̃(q) in (35).

Algorithm 1 Bayesian estimation of the InBLMM with
the EVI.

1: Set the initial truncation level M .
2: Initiate the prior distribution parameters smd, tmd,

gm, hm, pm, qm and ηm.
3: Initialize rnm via K-means algorithm.
4: repeat
5: The variational E-step: Update the expectations

in (51)-(52).
6: The variational M-step: Update the variational

posteriors via (21)-(25).
7: until Stop criteria are reached.
8: Calculate ⟨λm⟩ = a∗m/(a∗m + b∗m) and substitute them

back into (4) to calculate πm.
9: Detect the optimal M via discarding the components

which have very small weights (≤ 10−5).



6

4 EXPERIMENTAL RESULTS

Extensive experiments were conducted to assess the
effectiveness of the Bayesian estimation method derived
in Section 3 on simulated along with real datasets.
The simulated data validation aims at evaluating the
performance of the Bayesian InBLMM with single lower
bound (SLB) approximation (proposed in this paper and
referred to as InBLMMSLB) and comparing it with the
Bayesian InBLMM with multiple lower bound (MLB)
approximation [39] (namely InBLMMMLB). For the de-
tails of these two approximation technologies, please
refer to [20], [27], [44]. The validations with realistic data
are based on two real-life challenging applications, i.e.,
object detection and text categorization. The aim of real
data evaluation is to compare InBLMMSLB with some
recently proposed statistical models, which are all built
for modeling proportional vectors. These models in-
clude the above InBLMMMLB, the Bayesian InBMM using
the SLB approximation (InBMMSLB) [54], the Bayesian
InBMM using the MLB approximation (InBMMMLB) [52],
the Bayesian InDMM using the SLB approximation
(InDMMSLB) [28], [55], and the Bayesian InDMM using
the MLB approximation (InDMMMLB) [28]. Moreover, the
variational InGMM and SVM were also evaluated and
compared with the proposed InBLMMSLB.

At the initialization phase, the truncation level M
and the hyperparameters η of the Beta prior are set as
equal to M = 15 and η = 1, respectively. Moreover,
the hyperparameters smd, gm, pm, ηm, tmd, hm, qm of the
Gamma priors are set as smd = gm = pm = ηm = 1 and
tmd = hm = qm = 0.1. The prior distributions are thus
noninformative. Note that these specific choices were
based upon our experimental experiences and also found
convenient in our experiments.

4.1 Simulated Data Validation
Firstly, the performance of the proposed InBLMMSLB
on learning the InBLMM is evaluated upon simulated
datasets, which were drawn from four known BLMMs.
Table 1 and 2 shows the actual parameters for the four
BLMMs, and the mean estimated parameters of each
dataset applying the InBLMMSLB and the InBLMMMLB
for each dataset over 20 runs of simulation, respectively.
There is obvious evidence that both learning methods
are capable to correctly estimate the parameters of the
InBLMM, but the InBLMSSLB always gives more correct
results. There exists two methods to estimate the optimal
NoC [55]. The first method applies the ELBO as a
model selection score, i.e., the variational optimization is
implemented upon a fixed truncation level M without
updating the mixing proportions and the correct NoC
is then selected when the ELBO reaches its maximum
value. To validate this approach, we run InBLMSSLB with
M ranging from 1 to 15, and the results are reported
in Fig. 2. It is obvious that the ELBO invariantly reach
its maximum value at the correct NoC, indicating that
discovering the ELOB’s global maximum can yield the

correct NoC. The second method determines the correct
NoC through eliminating the components with tiny mix-
ing proportions after convergence. The estimated mix-
ing proportions of each components for each simulated
datasets after convergence are illustrated in Fig. 3. It can
be observed that the values of mixing proportions of
some components approach zero, which indicates that
they are redundant and can be removed. To trace the
optimization process of the InBLMSSLB, the value of the
ELBO during iterative process is illustrated in Fig. 4. We
can clearly see that the ELBO increases by small amounts
at each iteration when all mixing proportions are large,
and rather quickly when one proportion approaches
zero.

TABLE 1: Parameters for generating four simulated
datasets: D1 (N = 500), D2 (N = 1000), D3 (N = 1000),
D4 (N = 1000). Nm denotes the number of elements in
cluster m.

Dataset m Nm αm1 αm2 αm3 um vm πm

D1 1 300 24.00 8.00 12.00 24.00 4.00 0.600
2 200 8.00 12.00 5.00 4.00 8.00 0.400

D2 1 200 14.00 6.00 18.00 20.00 14.00 0.200
2 300 18.00 21.00 15.00 14.00 28.00 0.300
3 500 15.00 32.00 10.00 14.00 8.00 0.500

D3 1 150 2.00 6.00 24.00 12.00 28.00 0.150
2 200 8.00 36.00 15.00 4.00 18.00 0.200
3 300 48.00 18.00 14.00 18.00 28.00 0.300
4 350 18.00 24.00 12.00 16.00 8.00 0.350

D4 1 150 12.00 16.00 44.00 32.00 16.00 0.150
2 200 32.00 48.00 12.00 18.00 12.00 0.200
3 250 24.00 8.00 34.00 6.00 18.00 0.250
4 300 12.00 60.00 16.00 25.00 18.00 0.300
5 100 28.00 12.00 6.00 24.00 8.00 0.100

Secondly, we further compare the InBLMMSLB with the
InBLMMMLB for each simulated dataset to find the better
approximation in terms of the ELBO, the KL divergence
1, the convergence time, and the number of iterations
before convergence. From these comparisons in Table 3,
we can note the following observations: 1) the mean
values of the ELBO obtained by the InBLMMSLB are
larger than those obtained by the InBLMMSLB, indicating
that the InBLMMSLB is tighter than the InBLMMMLB;
2) the InBLMMSLB converges in fewer iterations and
takes shorter computational time than the InBLMMMLB;
and 3) InBLMMSLB can yield smaller KL divergence
than the InBLMMMLB for each simulated dataset, in-
dicating that the InBLMMSLB is capable of discovering
a more excellent approximation than the InBLMMMLB
does. Moreover, for the goal of further stability checks,
we draw box plots for the distributions of the ELBO
and the runtime. Comparisons between the two methods
are shown in Fig. 5 and 6. It can be clearly observed
that the InBLMMSLB has more compact lower-bound

1. Here, we calculate the KL divergence KL(p(X|Θ)||p(X|Θ̃)) via
a sampling approach. Θ̃ denotes the parameter estimates in the
InBLMM.
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TABLE 2: Mean estimated parameters for the simulated datasets over 20 runs of InBLMMSLB and InBLMMMLB.

InBLMMSLB InBLMMMLB

Dataset m Nm α̂m1 α̂m2 α̂m3 ûm v̂m ûm α̃m1 α̃m2 α̃m3 ũm ṽm π̃m

D1 1 200 8.15 12.37 5.06 4.01 8.09 0.400 8.24 12.47 5.09 4.05 8.11 0.401
2 300 23.53 7.78 11.84 24.21 4.04 0.600 23.36 7.79 11.78 24.42 4.07 0.599

D2 1 200 14.02 6.04 17.99 20.21 14.03 0.200 13.91 5.89 17.88 21.12 13.91 0.200
2 300 18.08 21.21 15.07 13.72 27.89 0.300 18.17 21.34 15.13 13.79 27.39 0.300
3 500 15.09 32.08 9.98 14.31 8.14 0.500 15.12 32.18 9.98 14.39 8.18 0.500

D3 1 150 1.99 6.01 23.91 11.75 27.42 0.15 1.97 6.06 24.14 11.69 27.29 0.150
2 200 8.08 36.43 15.17 4.01 18.05 0.200 8.21 36.88 15.26 3.98 17.89 0.200
3 300 47.26 17.69 13.77 17.95 28.09 0.300 46.75 17.49 13.62 17.66 27.57 0.300
4 350 17.81 23.73 11.88 16.08 8.03 0.350 17.74 23.71 11.81 16.29 8.37 0.350

D4 1 150 11.74 15.78 42.74 30.58 15.24 0.150 11.63 15.64 42.37 30.52 15.21 0.150
2 200 29.99 46.18 11.73 18.00 12.00 0.200 29.92 45.33 11.36 18.17 12.16 0.200
3 250 23.42 7.81 33.18 6.11 18.41 0.250 23.35 7.78 33.05 6.18 18.61 0.2500
4 300 11.82 58.91 15.73 25.39 18.17 0.300 11.65 58.13 15.52 25.26 18.18 0.300
5 100 28.13 12.18 6.16 23.61 7.78 0.100 27.86 11.78 6.24 23.42 7.64 0.100

and runtime range and larger median. These results
illustrate that the InBLMMSLB performs better than the
InBLMMMLB.
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Fig. 2: ELBO as a function of the fixed supposed NoC
for different simulated datasets. (a) D1. (b) D2. (c) D3.
(d) D4.

4.2 Real Data Evaluation

4.2.1 Object Detection
Object detection refers to the process of discovering in-
stances of objects from the given categories (such as cars,
faces, motorbikes, and airplanes) in some given images
or videos. A lot of computer vision (CV) researches [56],
[57] have focused on object detection during the few past
years, since it has widespread its applications includ-
ing intelligent traffic management [58], video surveil-
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Fig. 3: Mixing proportions of mixture components found
for each simulated datasets after convergence. (a) D1. (b)
D2. (c) D3. (d) D4.

lance [59], medical image analysis [60], and human-
computer interfaces [61]. Since pose and illumination
changes, scale variations, and occlusions and intra-class
variability are prone to yield highly variable images,
this task is still difficult and critical in the CV. There
exists two categories of insightful approaches to tackling
these issues. One concentrates on developing excellent
image descriptors [62], [63], and the other one focuses
on developing powerful and robust classifiers [64], [65].

A key step for achieving high object detection accuracy
is to extract robust descriptors which can be applied for
the effective representation of these images. Recently, CV
researchers have proposed a variety of valuable global
and local visual descriptors. Among all the descriptors,
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TABLE 3: The mean ELBO, KL divergence, convergence time, and number of iterations (NoI.) for different simulated
datasets of InBLMMSLB and InBLMMMLB.

D1 D2 D3 D4
InBLMMSLB InBLMMMLB InBLMMS InBLMMMLB InBLMMSLB InBLMMSLB InBLMMSLB InBLMMSLB

ELBO 2.009 × 103 1.984 × 103 4.231 × 103 4.209 × 103 4.796 × 103 4.776 × 103 4.358 × 103 4.337 × 103

p-values 7.11 × 10-3 0.197 0.112 2.35 × 10-4

KL 4.12 × 10-5 7.59 × 10-5 2.66 × 10-4 3.95 × 10-4 6.17 × 10-6 9.01 × 10-6 1.06 × 10-4 4.08 × 10-4

p-values 1.88 × 10-4 4.19 × 10-3 2.68 × 10-6 8.56 × 10-8

Time (s) 0.47 0.61 0.75 0.99 0.79 0.86 0.93 1.17
NoI. 161 182 270 294 288 313 363 396
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Fig. 4: ELBO for each iteration of each simulated dataset.
The initial NoC is 15. Vertical lines indicate cancellation
of components. (a) D1. (b) D2. (c) D3. (d) D4.

histogram of oriented gradient (HOG) [66] descriptor has
been one of the most popular ones for object detection,
due to its promising results in many real-world ap-
plications [66]–[69]. Here, a rectangular HOG (R-HOG)
descriptor [70] is applied, which is an improved version
of the HOG. By considering 3 windows and 9 histogram
bins for the R-HOG, we can represent each image with
an 81-dimensional vector of features.

Experiments were conducted on four public available
Caltech datasets2 to evaluate our model for detecting
some complex objects. These datasets are Caltech air-
planes (1074 images), Caltech faces (450 images), Caltech
car-sides (1155 images) and Caltech motorbikes (826 im-
ages) datasets. For non-object images, the Caltech back-
ground dataset (451 images) was also applied. Sample
images from these datasets are displayed in Fig. 7. To
avoid the randomness effects, each of the object datasets
and the non-object dataset were randomly split into two

2. http://www.vision.caltech.edu/html-files/archive.html.
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Fig. 5: Box plots for comparisons of the ELBOs’ distri-
butions for the InBLMMSLB and the InBLMMMLB with
different simulated datasets. (a) D1. (b) D2. (c) D3. (d)
D4.

halves, one for training and the other for testing. During
the evaluation, we trained one detector for each object
class. These procedure has been conducted 20 times.

With the above setting, the detection process in our
case can be summarized as follows. First, the R-HOG
descriptors were extracted from each image that is then
represented as a positive feature vector. Second, the
obtained feature vectors were normalized by dividing
them by their l1 norm, each image was thus finally
represented as a proportional vector. Third, these pro-
portional vectors were applied to train the classifiers for
each object class, and each class was thus represented
as an InBLMM. Finally, the test images were assigned to
the group which had the highest posterior probability ac-
cording to the Bayes’s rule. For comparison, we have also
applied four referred approaches for the object detection,
including InBLMMMLB, InDMMSLB [71], InDMMMLB [53],
and infinite Gaussian mixture learned in variational way
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Fig. 6: Box plots for comparisons of the convergence
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Fig. 7: Example images from the Caltech datasets. (a)
Airplane. (b) Face. (c) Car-side. (d) Motorbike. (e) Back-
ground.

(InGMM) [52]. It is noteworthy that the main motivation
is to evaluate the methods in the object detection through
considering comparable mixture-based methods. Hence,
comparing our results to other non-mixture model-based
methods is out of the scope of this paper. The average
detection accuracies with the standard deviations for
the aforementioned datasets are reported in Table 4. It
is clearly presented that the SLB approximation (i.e.,
InBLMMSLB and InDMMSLB) performs better than the
MLB approximations (i.e., InBLMMMLB and InDMMMLB),
which is consistent with the previous study [27]. Fig. 8
shows the distributions of the detection accuracies.

4.2.2 Text Categorization
With the rapid development of information technology
and popularization of the Internet, the number of the text
documents increases exponentially. If the text documents
are manually organized and managed only, it not only
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Fig. 8: The boxplots of the detection accuracies in the
Caltech datasets. The central red mark is the median, the
blue edges of the box are the 25th and 75th percentiles,
respectively. (a) Airplane. (b) Face. (c) Car-side. (d) Mo-
torbike.

consumes much manpower and time, but also is hard to
be achieved. As automatic text categorization (TC) has
the realistic significance for efficient management and
effective utilization of text information, it has become an
active research topic in a variety of domains such as in-
formation retrieval, data mining, and statistical learning.
During the past few years, a great number of statistical
and machine learning methods have been proposed to
address this problem [72].

In this section, the proposed InBLMMSLB is applied as
a classifier for the TC task and the experimental results
are reported on two publicly available datasets namely
WebKB and 20Newsgroups. The WebKB is composed
of 4199 web pages from four categorizations namely
course, faculty, project, and student. The 20Newsgroups
contains 13, 998 newsgroup documents, which are cat-
egorized into 20 different newsgroups. Each of these
datasets was 20 times randomly split into two separate
halves, one for training and the other one for testing.
Following the work in [73], the Porters stemming [74]
was used to reduce the words to their base forms.
In the pre-processing stage, words occurring less than
3 times or shorter than 2 in length were eliminated,
such that each document was represented by a positive
vector. Then, these feature vectors are normalized into
proportional vectors before employing the InBLMMSLB.
After this stage, each category in the training set was
represented by an InBLMMSLB. Finally, in the testing
stage each test vector was assigned to a given category
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TABLE 4: Object detection accuracies on the Caletch datasets. The standard deviations are in the brackets. The p-
values of the student’s t-test with the null hypothesis that InBLMMSLB and the referred methods have equal means
but unknown variances are listed.

Dataset Method InBLMMSLB InBLMMMLB InDMMSLB InDMMMLB InGMM
Airplane Accuracy (in %) 97.82(0.62) 96.77(0.89) 96.29(0.75) 95.87(0.15) 94.21(0.61)

p-values N/A 6.78 × 10-11 3.12 × 10-12 1.49 × 10-8 2.41 × 10-15

Face Accuracy (in %) 93.89(0.88) 93.08(0.91) 92.75(0.23) 92.06(1.09) 89.04(1.19)
p-values N/A 2.06 × 10-3 5.79 × 10-16 2.42 × 10-12 3.13 × 10-11

Car-side Accuracy (in %) 98.38(0.67) 97.91(0.41) 97.64(0.83) 96.72(0.77) 95.61(0.85)
p-values N/A 8.11 × 10-9 6.06 × 10-7 4.37 × 10-14 9.32 × 10-7

Motorbike Accuracy (in %) 94.92(0.92) 94.14(0.58) 93.55(1.31) 93.09(0.85) 91.86(1.17)
p-values N/A 4.16 × 10-21 8.34 × 10-15 1.73 × 10-15 7.03 × 10-11

according to the Bayes’s rule. With the same procedure
mentioned above, four other statistical model, i.e., the
InBLMMMLB, the InDMMSLB, the InDMMMLB and the
InGMM, were also applied. Table 5 summarizes the the
average classification accuracy rates. Fig. 9 shows the
distributions of the categorization accuracies. According
to these results, it can be observed that the InBLMMSLB
provides the best categorization accuracies compared to
three other methods, which further demonstrates the
advantage of the SLB approximation over the MLB
approximation.
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Fig. 9: The boxplots of the categorization accuracies in
the two datasets. (a) WebKB. (b) 20Newsgroups.

5 CONCLUSIONS
In this paper, a variational Bayesian inference method
was proposed for the InBLMM which is the cornerstone
of non-parametric Bayesian statistics. Due to the nature
of Bayesian non-parametric approaches, the InBLMM
overcame the limitations of model selection existing in
the BLMM. Meanwhile, through the Bayesian estimation,
the InBLMM mitigated the overfitting and underfitting
problems. To make the estimation feasible, the truncat-
ed representation of the DP and the EVI framework
were further applied such that an analytically tractable
solution can be derived. Experimental results on both
synthetic and real datasets demonstrate that the pro-
posed method achieved superior performance than the
referred methods. Furthermore, the way of extending the
proposed method is to be investigated, e.g., considering
the inclusion of a feature selection component within the
EVI framework.
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APPENDIX A
The expectation of the logarithm of the joint distribution
in (12) can be written as

⟨ln p(X,Θ)⟩

=

N∑
n=1

∞∑
m=1

⟨znm⟩

⟨lnλm⟩+
m−1∑
j=1

⟨ln(1− λm)⟩

+
D∑

d=1

(⟨αmd⟩ − 1) ln xnd + (⟨um⟩ −
D∑

d=1

⟨αmd⟩)

× ln(

D∑
d=1

xnd) + (⟨vm⟩ − 1)(1−
D∑

d=1

xnd) +Rm + Fm

}

+
M∑

m=1

[(ηm − 1)⟨ln(1− λm)⟩] +
M∑

m=1

[(gm − 1)⟨lnum⟩

−hm⟨um⟩+ (pm − 1)⟨ln vm⟩ − qm⟨vm⟩]

+

M∑
m=1

D∑
d=1

[(smd − 1)⟨lnαmd⟩ − tmd⟨αmd⟩] + Con.,

(36)

where we define

Rm =

⟨
ln

Γ(um + vm)

Γ(um)Γ(vm)

⟩
,Fm =

⟨
ln

Γ(
∏D

d=1 αmd)∏D
d=1 Γ(αmd)

⟩
.

(37)
Unfortunately, with the mathematical expression in (36)
and by using the standard VI, it is infeasible to devel-
op an analytically tractable solution to the variational
posterior distribution. This is due to the fact that both
Rm and Fm cannot be computed in a closed form. The
EVI framework introduced in the previous section can
be adopted to deal with this problem in an elegant way.

By following the principles of the EVI, we have to
find two auxiliary functions which satisfy constraints as
R̃m ≤ Rm and F̃m ≤ Fm. In fact, we can select R̃m and
F̃m as

R̃m = ln
Γ(ūm + v̄m)

Γ(ūm)Γ(v̄m)
+ [Ψ(ūm + v̄m)−Ψ(ūm)]

× (⟨lnum⟩ − ln ūm)ūm + [Ψ(ūm + v̄m)−Ψ(v̄m)]

× (⟨ln vm⟩ − ln v̄m)v̄m,
(38)
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TABLE 5: Text categorization accuracies on the three datasets. The standard deviations are in the brackets. The p-
values of the student’s t-test with the nullhypothesis that InBLMMSLB and the referred methods have equal means
but unknown variances are listed.

Dataset Method InBLMMSLB InBLMMMLB InDMMSLB InDMMMLB InGMM
WebKB Accuracy (in %) 92.58(0.79) 91.64(0.13) 90.63(0.17) 89.93(0.25) 88.06(0.93)

p-values N/A 4.65 × 10-6 7.18 × 10-9 1.39 × 10-4 5.74 × 10-11

20Newsgroups Accuracy (in %) 81.51(0.52) 80.67(0.66) 79.46(0.48) 79.11(0.53) 76.83(0.47)
p-values N/A 4.86 × 10-9 3.72 × 10-4 5.28 × 10-7 6.64 × 10-6

F̃m = ln
Γ(
∑D

d=1 ᾱmd)∏D
d=1 Γ(ᾱmd)

+
D∑

d=1

[
Ψ(

D∑
k=1

ᾱmk)−Ψ(ᾱmd)

]
× [⟨lnαmd⟩ − ln ᾱmd] ᾱmd.

(39)

For more additional derivation details for R̃m and F̃m,
please refer to [27]. In (38) and (39), Ψ(·) is the digamma
function that is defined as Ψ(a) = ∂ ln Γ(a)/∂a .

By substituting (38) and (39) back into (36), we obtain
a lower bound to ⟨ln p(X,Θ)⟩ as

⟨ln p̃(X,Θ)⟩

=

N∑
n=1

∞∑
m=1

⟨znm⟩

⟨lnλm⟩+
m−1∑
j=1

⟨ln(1− λm)⟩

+
D∑

d=1

(⟨αmd⟩ − 1) ln xnd + (⟨um⟩ −
D∑

d=1

⟨αmd⟩)

× ln(

D∑
d=1

xnd) + (⟨vm⟩ − 1)(1−
D∑

d=1

xnd) + R̃m + F̃m

}

+
M∑

m=1

[(ηm − 1)⟨ln(1− λm)⟩] +
M∑

m=1

[(gm − 1)⟨lnum⟩

−hm⟨um⟩+ (pm − 1)⟨ln vm⟩ − qm⟨vm⟩]

+

M∑
m=1

D∑
d=1

[(smd − 1)⟨lnαmd⟩ − tmd⟨αmd⟩] + Con..

(40)

Applying (20) and with the joint distribution ⟨ln p̃(X,Θ)⟩
in (40), it is straightforward to develop analytically
tractable solutions to the optimal posterior distributions.
It is worth to note that in the following VI process, the
stick-breaking representation for the InBMM is truncated
at a level of M . The details with respect to the derivation
of the updating equations for the hyperparamters are
given as follows.

A. Proof for (26): Update rnm

By considering znm as the variable and absorbing any
term that is independent of znm into the additional

normalization constant, we have

ln q(znm) = znm
{
R̃m + F̃m + ⟨lnλm⟩ +

m−1∑
j=1

⟨ln(1− λm)⟩

+

D∑
d=1

(⟨αmd⟩ − 1) ln xnd + (⟨um⟩ −
D∑

d=1

⟨αmd⟩)

× ln(
D∑

d=1

xnd) + (⟨vm⟩ − 1) ln(1−
D∑

d=1

xnd)

}
+Con..

(41)

By taking a closer look at (41), it can be visualized
that (41) has the logarithmic form of (7) except for the
normalization constant. Therefore, ln q(Z) can be written
in the form as

ln q(Z) =

N∑
n=1

M∑
m=1

znm ln ρnm + Con., (42)

where ρnm has the form of (27). Taking logarithm on
both sides in (41), we have

q(Z) ∝
N∏

n=1

M∏
m=1

ρznm
nm . (43)

Notice that for each value of n, the quantities znm in (43)
are binary and sum to 1. By normalizing q(Z), we obtain

q(Z) =
N∏

n=1

M∏
m=1

rznm
nm , (44)

which is a categorical distribution with

rnm =
ρnm∑N
n=1 ρnm

, (45)

where rnm are nonnegative and have a unit sum. The
quantities rnm pay the role of responsibilities. For q(Z),
we have ⟨znm⟩ = rnm.

B. Proof for (28): Update a∗m and b∗m

Likewise, any terms that do not depend on λm will be
absorbed into the additive constant, such that we have

ln q(λm) = lnλm

N∑
n=1

⟨znm⟩+ ln(1− λm)

×

 N∑
n=1

M∑
j=m+1

⟨znj⟩+ ηm − 1

+ Con..

(46)
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We recognize this as the log of a Beta distribution, and
so identifying the coefficients of lnλm and ln(1 − λm).
We obtain

q(λ) =
M∏

m=1

Beta(λm|a∗m, b∗m), (47)

with the hyperparameters a∗m and b∗m given by (28).

C. Proof for (29) and (30): Update s∗md and t∗md

Again, using the general result (20), and keeping only
those terms that have a functional dependence on αmd,
we have

ln q(αmd) =

{
N∑

n=1

⟨znm⟩

[
Ψ(

D∑
l=1

ᾱml)−Ψ(αmd)

]
ᾱmd

+smd − 1} lnαmd −

[
tmd −

N∑
n=1

⟨znm⟩ lnxnd)

]
αmd

+Con..
(48)

By taking exponential of both sides of (48), q(Λ) is
recognized to be a Gamma density

q(Λ) =
M∏

m=1

D∏
d=1

G(αmd|s∗md, t
∗
md), (49)

where the optimal solutions to the hyperparameters s∗md

and t∗md are given by (29) and (30), respectively.

D. Proof for (33) and (34): Update g∗m and h∗
m

The variational posterior ln q(um) is found by keeping
terms related to um as

ln q(um) = Con. +

{
N∑

n=1

⟨znm⟩ [Ψ(ūm + v̄m)−Ψ(ūm)] ūm

+gm − 1} lnum −

[
hm −

N∑
n=1

⟨znm⟩ ln(
D∑

d=1

xnd)

]
um.

(50)

It can be shown that (50) has the logarithmic form of
a Gamma distribution as its conjugate prior distribu-
tion (10). By taking the exponential of its both sides, we
then have

q(U) =
M∏

m=1

D∏
d=1

G(um|g∗m, h∗
m), (51)

where the hyperparameters g∗m and h∗
m are given by (33)

and (34), respectively.

E. Proof for (35) and (36): Update p∗m and q∗m
Similar to (50), the logarithm of the variational factor
q(vm) can be calculated as

ln q(vm) = Con. +

{
N∑

n=1

⟨znm⟩ [Ψ(ūm + v̄m)−Ψ(v̄m)] v̄m

+pm − 1} ln vm −

[
qm −

N∑
n=1

⟨znm⟩ ln(1−
D∑

d=1

xnd)

]
vm.

(52)

It is obvious that (52) has the logarithmic form of a Gam-
ma distribution as its conjugate prior distribution (11).
By taking the exponential of its both sides, we obtain

q(V) =
M∏

m=1

D∏
d=1

G(vm|p∗m, q∗m), (53)

where the hyperparameters p∗m and q∗m are given by
(33) and (34), respectively. For further details on the
derivation of variational learning, please refer to [3].

APPENDIX B
The expressions of the posterior expected values ⟨·⟩ are
given by

⟨znm⟩ = rnm, ⟨lnλm⟩ = Ψ(am)−Ψ(am + bm), (54)

⟨ln(1− λm)⟩ = Ψ(bm)−Ψ(am + bm), (55)

⟨αmd⟩ = ᾱmd =
s∗md

t∗md

,⟨lnαmd⟩ = Ψ(s∗md)− ln t∗md, (56)

⟨um⟩ = ūm =
g∗m
h∗
m

, ⟨lnumd⟩ = Ψ(g∗m)− lnh∗
m, (57)

⟨vm⟩ = v̄m =
p∗m
q∗m

⟨ln vmd⟩ = Ψ(p∗m)− ln q∗m. (58)

APPENDIX C
The term ⟨ln p̃(X,Θ)⟩ in L̃(q) is given by (40), and the
other terms ⟨·⟩ are detailed as

⟨ln q(Z)⟩ = rnm ln rnm, (59)

⟨ln q(λ)⟩ =
M∑

m=1

[ln Γ(a∗m + b∗m)− ln Γ(a∗m)− ln Γ(b∗m)

+ (a∗m − 1)⟨lnλm⟩ +(b∗m − 1)⟨ln(1− λm)⟩] ,
(60)

⟨ln q(Λ)⟩ =
M∑

m=1

D∑
d=1

[s∗md ln t
∗
md − ln Γ(s∗md)

+(s∗md − 1)⟨lnαmd⟩ − t∗mdᾱmd] ,

(61)

⟨ln q(U)⟩ =
M∑

m=1

[g∗m lnh∗
m − ln Γ(g∗m) + (g∗m − 1)

×⟨lnum⟩ − h∗
mūm] ,

(62)

⟨ln q(V)⟩ =
M∑

m=1

[p∗m ln q∗m − ln Γ(p∗m) + (p∗m − 1)

×⟨ln vm⟩ − q∗mv̄m] .

(63)
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