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ABSTRACT 

Distributed Simulation has still to be adopted significantly by the wider simulation community. Reasons for 

this might be that distributed simulation applications are difficult to develop and access to multiple computing 

resources are required. Cloud computing offers low-cost on-demand computing resources. Developing 

applications that can use cloud computing can be also complex, particularly those that can run on different 

clouds. Cloud-based Distributed Simulation (CBDS) is potentially attractive as it may solve the computing 

resources issue as well as other cloud benefits, such as convenient network access. However, as possibly 

shown by the lack of sustainable approaches in the literature, the combination of cloud and distributed 

simulation may be far too complex to develop a general approach. E-Infrastructures have emerged as large-

scale distributed systems that support high-performance computing in various scientific fields. Workflow 

Management Systems (WMS) have been created to simplify the use of these e-Infrastructures. There are 

many examples of where both technologies have been extended to use cloud computing. This article therefore 

presents our investigation into the potential of using these technologies for CBDS in the above context and 

the WORkflow architecture for cLoud-based Distributed Simulation (WORLDS), our contribution to CBDS. 

We present an implementation of WORLDS using the CloudSME Simulation Platform that combines the 

WS-PGRADE/gUSE WMS with the CloudBroker Platform as a Service. The approach is demonstrated with 

a case study using an agent-based distributed simulation of an Emergency Medical Service in REPAST and 

the Portico HLA RTI on the Amazon EC2 cloud.  
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1 INTRODUCTION 

Distributed simulation techniques can link and interoperate models over a network to build larger models, 

share the processing demands of simulation execution across multiple computers, and potentially speed up 

simulation execution [1, 2]. Apart from defense applications, the field has yet to be adopted by the 

mainstream simulation community. Reasons for this might be that distributed simulation applications are 

difficult and complex to develop. Access to multiple computing resources is also needed to run these 

applications. Cloud computing offers convenient access to rapidly provisioned, on-demand computing 

resources [3]. Cloud computing support for distributed simulation, or Cloud-based Distributed Simulation 

(CBDS), is attractive as it would eliminate the need for local computing resources and facilitate remotely 



accessible deployment. However, multiple clouds with different APIs and characteristics, different 

middleware and service models mean that developing cloud-based applications can be difficult and complex. 

The development of a generalized approach to CBDS may be significantly challenging. 

There has been large-scale investment in the development of distributed systems for science (or e-

Science). These e-Infrastructures (cyberinfrastructures) are widely used by many scientific communities and 

make use of a range of Distributed Computing Infrastructures (DCIs) including computational grids, high-

performance computing and, more recently, clouds. Application development for e-Infrastructures is also 

complex. Workflow Management Systems (WMS) have been created to simplify the use of these systems 

for end-users. Workflows consisting of a network of tasks are developed in dedicated programming languages 

or via graphical user interfaces. These tasks are translated into jobs that are run on specified computing 

infrastructures. This approach to the simplification of complex technologies has been highly successful as 

shown by the widespread adoption in some scientific communities [4]. 

Given the success of e-Infrastructures and WMS, we wanted to investigate if CBDS could benefit from 

this approach. This paper reports on the results of this investigation and the development of our WORkflow 

architecture for cLoud-based Distributed Simulation (WORLDS).  

The paper is structured as follows. A review of distributed simulation, cloud computing and related CBDS 

work is presented in Section 2. The limitations of CBDS systems and applications as well as the issues 

involved in creating a general approach are discussed. Section 3 introduces e-Infrastructures and WMS and 

considers how these could be used for CBDS. This section then presents our WORLDS architecture. In 

Section 4, we give a proof of concept implementation of WORLDS. This implementation is demonstrated in 

Section 5 with a case study using an agent-based distributed simulation of an Emergency Medical Service in 

REPAST and the Portico RTI on the Amazon EC2 cloud. Section 6 discusses the limitations and potential of 

WORLDS and concludes the paper with future work. 

2 BACKGROUND 

This section presents the background to the main concepts in this paper by first introducing distributed 

simulation and cloud computing. Related work in CBDS is then presented. The limitations of these 

approaches and how the state-of-the-art could be extended to developing a generalized architecture for CBDS 

are then discussed. 

2.1 Distributed Simulation 

Distributed simulation can be defined as "the distribution of the execution of a simulation program across 

multiple processors" [2]. Using distributed simulation techniques, it is possible to simulate a single model by 

dividing it across several processors or to simulate multiple models by joining together the different 

processors on which they run. A significant reason for the reluctance to adopt distributed simulation is the 

high degree of technical expertise necessary for implementing applications. A long-term goal in this field has 

been to simplify the development of these applications [5]. Standardizing distributed simulation practices 

might help to overcome this obstacle to formalize simulation protocols and improve reusability and 

interoperability of components [6]. Different standards for distributed simulation have been established, 

including Distributed Interactive Simulation (DIS) [7] and the High Level Architecture (HLA) [8]. Both were 

developed by the US Department of Defense with the initial objective of supporting military training 

simulations. These simulations could involve thousands of objects (representing soldiers, vehicles, aircraft, 

etc.) that need to be connected together for the exchange of information. The standard continues to be updated 

with the last version released in 2010 [9]. As shown in Figure 1, in the HLA an object or collection of objects 

is termed federate and the collection of federates is termed the federation. Federates are able to interact with 

each other via middleware called the Run-Time Infrastructure (RTI). This implements the HLA’s Federate 

Interface Specification and interacts with federates via RTI and Federate Ambassador implementations. The 



Object Model Template (OMT) allows information exchange to be defined. The Simulation Object Model 

(SOM) defines this for a federate and the Federation Object Model (FOM) defines this for the entire 

federation. Other forms of distributed simulation exist [10]. However, we shall restrict our discussions to 

HLA-based distributed simulation in this paper. 

2.2 Cloud Computing 

The term "cloud" refers to the provisioning of services that are highly elastic in terms of networking scope, 

computing power, storage facilities or application range. The US National Institute of Standards and 

Technology (NIST) proposed a definition which is widely accepted, "Cloud computing is a model for 

enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing 

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and 

released with minimal management effort or service provider interaction" [3]. Resource demand is matched 

rapidly at any specific time by using fast provisioning facilities to operate those resources. This “elasticity” 

means that cloud computing can scale resources to meet the user demands in terms of both computational 

resources and storage [11].  Resources are usually fixed at the point of use although new approaches are 

being developed to auto-scale cloud resources according to some performance metric [12]. Billing is applied 

using a pay-per-use policy. Cloud therefore reduces costs by “hiring” computational resources rather than 

having local computing facilities. However, cloud can have additional costs such as data transfer. There are 

well-known service models. Software as a Service (SaaS) involves the software applications running on the 

cloud infrastructure accessed via thin clients, web browsers or program interface. Platform as a Service 

(PaaS) facilitates the deployment and execution of software applications and the management of cloud 

infrastructure. Infrastructure as a Service (IaaS) provides services to provision cloud resources, operating 

systems, firewalls, etc. There are also several cloud types including private (single organization use), 

community (multiple organizations use), public (open use) and hybrid (multiple clouds presented as a single 

cloud). The service paradigm has roots in Service-Oriented Architecture (SOA) and has led to many variants 

(e.g., “everything” as a service (XaaS)) [13]. Most applications developed as services tend to be deployed to 

single clouds (e.g., Amazon, Azure, etc.) and can be prone to “vendor lock-in” as different clouds have 

different APIs. Given the growth in the number of cloud providers, locked-in services cannot easily take 

advantage of competitive pricing of an emerging cloud market without potentially costly redevelopment. 

Also, national data protection laws and government/corporate policies can restrict the choice of cloud.  

2.3 Distributed Simulation Architectures 

The late 1990s and early 2000s saw three technological advances: the original architecture for grid computing 

(the pre-cursor to e-Infrastructures) along with the Globus grid computing toolkit (GT) [14], SOA and web 

services, and the HLA. Research into developing service-oriented services for distributed simulation or 

 

Fig. 1. The High Level Architecture. 



service-oriented simulation arguably began in the early 2000s with the Extensible Modeling and Simulation 

Framework (XMSF) that proposed the extension of the HLA with web service technologies to support 

simulation development and interoperability [15]. At the same time, approaches to service-oriented grid 

computing were being developed that resulted in the Open Grid Service Architecture (OGSA) and grid 

services [16]. The use of these in the context of XMSF was discussed by Pullen, et al. [17]. Xie, et al. [18] 

implemented these in the HLAGrid prototype that investigated the feasibility of using GT3 grid services to 

run HLA-based distributed simulation. Theodoropoulos, et al. [19] extended this to support agent-based 

simulation using REPAST [20]. HLAGrid was further developed using GT4 resulting in the SOAr-DSGrid 

to support general distributed simulation [21]. This research continued with the Decoupled Federate 

Architecture that added fault tolerance and simulation cloning functionality [22]. Building on experiences 

with SOAr-DSGrid led to the more comprehensive Service-Oriented HLA RTI framework (SOHR) that 

added more HLA services [23]. This was used to investigate optimistic protocols running over networks of 

virtual machines [24]. Feng, et al. [25] and Zhang, et al. [26] presented early examples of how an RTI with 

GT4 services could be realized as a PaaS.   

2.4 Related Work: Cloud-based Distributed Simulation 

With the emergence of cloud computing and cloud service models, researchers began to investigate how 

distributed simulation could take advantage of this technology. He, et al. [27] proposed a secure cloud-based 

HLA RTI that could run on a cloud using on-demand computing resources. It demonstrated several key 

features of a cloud-based RTI using a local cluster. Vanmechelen, De Munck, and Broeckhove [28] 

developed a conservative distributed simulation using Amazon EC2 services using a manager-worker 

approach to scale the simulation over the resources of a single image. Performance results were reported that 

compared different variants of their conservative protocol. Guan, De Grande and Boukerche [29] proposed a 

cloud architecture to enable HLA-based distributed simulations on cloud that used virtual resource 

management to use cloud computing resources if local computing resources were not sufficient. A 

comparison between a local grid computing implementation versus a cloud implementation demonstrated 

lower energy consumption for cloud and comparable performance (Portico RTI, 15 physical hosts versus 15 

virtual ones). It appears that a single cloud instance was used (actual cloud not specified).  This work was 

further developed into a multi-layered elastic cloud simulation scheme supporting the capability of automatic 

deployment, reduction of energy consumption, and local to cloud resource scaling using a deployment 

management scheme [30]. It argued that this approach could support multiple clouds by using an 

architecturally layered approach. Experiments were performed for several distributed simulation protocols 

including the HLA and again compared local grid to cloud resources (a single Amazon EC2 instance mapping 

several virtual CPUs). The paper reported acceptable comparative performance results (slower due to 

virtualization overheads) on cloud balanced with low costs, energy consumption, etc. D-Mason is the 

distributed version of the agent-based modelling library MASON [31]. The simulation is partitioned into 

cells which are mapped onto logical processes (LPs). Each LP synchronizes with its neighbors using a 

publish/subscribe mechanism. The cloud-based version of D-Mason was conceptualized as a simulation as a 

service environment where a D-MASON simulation is mapped to Amazon EC2 cloud resources using 

StarCluster [32]. GridSpice was a simulation platform for the distributed agent-based simulation of smart 

power grids consisting of a transmission network, distribution networks and power generators. These 

elements are mapped onto the Amazon EC2 cloud using StarCluster. The simulation was implemented in 

REPAST and used its time synchronization features to synchronize time across the distributed simulation. 

The Scalable Electro-Mobility Simulation (SEMSim) platform was developed to study the impact of large 

scale electromobility schemes on a city’s infrastructure [33]. The SEMSim Cloud Service consisted of a 

distributed simulation with two parts: an agent-based traffic simulation and a discrete-event power system 

simulation. A Dispatch Server managed simulation experiment submission to cloud. The service was 



deployed on the Google Compute Engine and reported good performance with respect to dedicated HPC. 

Megaffic was another distributed agent-based simulation that simulated traffic networks [34]. It used Bulk 

Synchronous Processing to synchronize between the elements of the distributed simulation. Checkpoints 

were used to rebalance processing load. The simulator was implemented using the Google Compute Engine 

cloud. Zaheer, et al. [35] demonstrated how locality-aware logical process placement could reduce network 

overheads in busy cloud data centers. General concerns of data security, service reliability, and slower 

execution due to potential sharing of instances on physical machines with other users have also been 

discussed in this area [36, 37]. Simulation partitioning and load balancing difficulties involved in using on-

demand multi-instance multi-core systems such as cloud can also be encountered [38].  

Several authors have also explored Modelling & Simulation as a Service (MSaaS). For example, Liu, et 

al. [39] (Simulation as a Service (SIM as a service) as well as Modelling as a Service (MaaS), Execution as 

a Service (EaaS), Analysis as a Service (AaaS), and Simulation Resource as a Service (SRaaS)) and Zehe, et 

al. [40] (Simulation Software as a Service (SSaaS)). Siegfried, et al. [41], Cayirci [42], Taylor, et al. [43] and 

Kiss, et al. [44] have proposed forms of MSaaS. While useful in advancing the discussion of what cloud-

based simulation services could achieve, these contributions tend to be conceptual in nature, discussing the 

potential of some form of simulation-related service, or focus on one issue (e.g., theoretical architecture, 

security, business models, grand challenges, etc.) 

2.5 Discussion 

There have been several attempts at developing CBDS. A range of cloud resource management schemes have 

been investigated. Those that use multiple cloud instances tend to demonstrate results using a local cluster 

and not cloud. Examples that provision actual cloud instances appear to focus on single instance use and not 

multiple instances. Some have discussed how multiple instances could be used but have not implemented 

this feature. This may be due to the costs involved as, although cloud computing is cheaper than purchasing 

equivalent distributed computing systems, extensive investigation using multiple cloud instances might be 

prohibitively costly to researchers. Several works have investigated how HLA federations can be run on 

cloud and several have focused on other variants of distributed simulation. There is evidence of a small 

number of approaches continue to be developed. Only one of these approaches could be considered to be 

generalizable (for HLA-based distributed simulation). The others focus on a specific technique (distributed 

agent-based simulation) or domain (power systems, electromobility). Work on MSaaS and associated 

concepts have explored issues in this area but are conceptual in nature.  

To summarize our observations, distributed simulation applications are difficult and complex to develop. 

Federates may need to run on their own “computer” and therefore accessing multiple computing resources is 

desirable. This need is especially true if multiple experiments are to be carried out that could run multiple 

federations with different parameters in parallel. Cloud computing is a possible approach to multiple 

computing resource provision. It also has the benefit of remote network access. Application development 

with cloud computing is also complex. However, it is possible that once a cloud-based application has been 

developed, end users can easily and repeatedly access and run it remotely with computing resources being 

provisioned automatically. End users might also be able to choose which cloud they would prefer to use. 

Currently, although we cannot claim that our review is exhaustive (e.g., advances made by vendors), apart 

from a small number of domain-specific examples, there does not appear to be a generalizable approach to 

CBDS.  

To summarize the above limitations, current approaches to CBDS have the following issues: 

• Demonstrations/performance tests are conducted on a local cluster and not an actual cloud; 

• Demonstrations/performance tests are conducted with a single instance and not multiple 

instances; 

• There are many approaches to CBDS with, currently, no single approach emerging; 



• Some approaches to CBDS investigate how HLA federations can run on cloud; 

• Most approaches focus on a specific type of simulation technique and domain of application;  

• MSaaS has been considered in terms of CBDS but is mostly conceptual in nature with no real 

demonstrations; 

• These approaches to CBDS are highly complex and require advanced computing skills to develop 

and implement – they also develop technologies that are unique to the article/project with little 

evidence of reusing existing technologies (apart from RTIs, for example);  

• No evidence of a supporting community (apart from specific simulation technologies (e.g., 

MASON, Portico, etc.); 

• Most approaches are tied to one cloud (i.e., no “multi-cloud” approach); 

• There is little or no research into a generic CBDS approach that can support a range of simulation 

techniques and domains; 

In the next section we present an approach that has had some success with cloud-based application 

development and discuss how this approach could be used for CBDS.  

3 A WORKFLOW ARCHITECTURE FOR CLOUD-BASED 

DISTRIBUTED SIMULATION 

The previous section discussed cloud-based approaches to distributed simulation. Pre-cloud research 

investigated how grid services could be used as the basis for some form of distributed simulation service. 

Arguably, cloud took researchers in a different direction. However, work on grid computing continued and 

matured into e-Infrastructures (sometimes called digital research infrastructures, e-Science infrastructures or 

cyberinfrastructures).  These have been developed to support the needs of different research communities to 

share common data, simulations, software and computing resources across organizations [45]. An e-

Infrastructure brings these together as a virtual organization and provides single sign-on access (e.g., through 

eduGAIN [46]). Computing resources are managed as DCIs and can include clusters, networks of PCs, cloud 

and high-performance computing facilities [47]. Users submit and manage jobs across these DCIs via grid 

computing job submission systems such as HTCondor [48]. e-Infrastructures have benefitted from over 

twenty years development and there is a large worldwide community. Scientific Workflow Management 

Systems (WMS) have emerged as a means to process workflows and organize data sets for many scientific 

computing scenarios [49, 70]. Examples include Askalon [50], Chiron [51], Galaxy [52], Kepler [53], 

Pegasus [54], Swift [55], Taverna [56], Triana [57], and WS-PGRADE/gUSE [58] and are used extensively 

in fields such as astronomy, biology, computational engineering, and Modeling & Simulation (M&S) [4]. 

There are examples of where e-Infrastructures and WMS/Science Gateways have been extended to 

incorporate cloud (e.g., Pegasus and Amazon EC2 [59], Taverna and multiple clouds (Amazon EC2, Azure, 

Rackspace, clouds running OpenStack) [60], Galaxy and multiple clouds (Amazon EC2, clouds running 

OpenStack/OpenNebula) [61], the Distributed Application Runtime Environment (DARE) science gateway 

framework and multiple clouds (Amazon EC2, Eucalyptus and Nimbus) [62] and WS-PGRADE/gUSE (via 

CloudBroker integration to multiple clouds (Amazon EC2, Azure, CloudSIGMA clouds running 

OpenStack/OpenNebula, and HPC Center resources deployed as clouds) [63]. Could these technologies be 

used to create distributed simulation applications? 

WMS and supporting architectures introduced above, generally have elements of workflow management, 

job management and cloud deployment. Figure 2 shows our Workflow Architecture for Cloud-based 

Distributed Simulation (WORLDS) based on a generalized workflow architecture. Users create the workflow 

in the User Interface Portal Layer. A workflow takes the form of a Directed Acyclic Graph (DAG) consisting 

of an array of nodes in which each node represents a specific task. An edge represents input and output (i.e., 

file transfer or external parameters). Once defined, workflows can be configured with application/platform 

specific information for each task (e.g., the specific algorithm (script), input data, method of communicating 



outputs, cloud infrastructure, etc.) Ideally, users could also choose which cloud and resources to use for their 

federation (e.g., using one cloud instance with multiple CPUs, multiple cloud instances with single CPUs, 

etc.) Once a workflow is configured, it can be submitted to the Distributed Simulation (DS) Platform layer. 

The DS Platform Layer provides services to manage and execute the workflow. To do this, the layer consists 

of five services. The Workflow Management Service (WMS) converts the workflow task to jobs. It composes 

jobs by adding specified software from a repository (the Software Deployment Service (SDS)) and converting 

associated shellscripts, parameters and input/output communication requirements. It then manages the 

execution of these jobs following the dependencies defined in the workflow. The Job Submission Service 

(JSS) takes these individual jobs and their cloud requirements and submits these to the appropriate cloud 

resources. It takes any application specific deployment images (e.g., virtual machines, containers, etc.) 

specified in the task from the SDS. The service maintains status information for each job and, when 

completed, downloads the outputs from the cloud infrastructure. It also has some fault tolerance functionality 

(e.g., when jobs fail and require resubmission). The Distributed Simulation Service (DSS) deploys and runs 

the DS Manager on cloud.  This is called by the DSS task in the workflow and directly runs the Central RTI 

Component (CRC) on cloud (via images and software from the Software Deployment Service). This must be 

directly deployed and executed as the federates require the IP address of the CRC to connect and join the 

federation. Once deployed, the DSS provides this IP address as an input parameter to the federate composition 

tasks of the workflow. Additionally, many simulation applications are used to perform experiments. These 

experiments typically simulate the same model with different parameters. To reflect this a Parameter Study 

Service would require dedicated workflow tasks that generate the experiments and collect the results. The 

generator task would also be capable of specifying the maximum number of resources to be used to process 

the experiments in parallel. This allows users to easily translate experimentation specifications into the 

workflow. This is not shown in the example distributed simulation workflow but could be used to generate 

multiple federations running in parallel. Finally, the Cloud Resources Layer (Cld) contains the resources 

from different clouds. 

Figure 3 shows a federation and a possible workflow. The federation is composed of several federates and 

an RTI. The aim of the workflow is to automate federation deployment and execution and could be composed 

of several steps [10]: Initialize (set up each federate with its model and data), Compose (to bring the 

federation together with the RTI/DS Manager and map these to DCI resources), Execute (to run the federation 

on the DCI, possibly running many federations in parallel), and Collect (of the results of multiple federations 

 

Fig. 2. Workflow Architecture for Cloud-based Distributed Simulation (WORLDS). 

 



that have run in parallel).  Figures 4 and 5 show how WORLDS would process this workflow. The workflow 

(WF) tasks are identified by labels.   

Initialize: The task and data Init(Names, FedData) is sent to the WMS. Names consists of the names of 

the federates and FedData consists of the data, parameters, models, etc. that will be used to update the 

federate software stored in the SDS. The WMS splits this into two messages.  Init(Names) is passed to the 

DSS to begin the initialization of the DS software.  On receipt the DSS instructs the cloud management 

software to commission a cloud resource that will host the CRC (InitCRCRes) and to pass back the IP address 

of this resource (CRCIP).  The DSS also validates the Names of the federates and passes this and the CRCIP 

back to the WMS (DSData). The WMS then instructs SDS via Init(DSData, FedData) and instructs it to 

update the relevant federations (InitFeds).  When this is complete the WMS returns the new DSData back to 

the WMS completing this task. 

Compose: This task consists of two activities: the composition of the CRC and the composition of the 

Federates.  This is shown as a parallel task as these can potentially be done in parallel if the WMS allows 

this.  Both follow a similar pattern.  The WF sends Names and CRCIP to the WMS. The WMS forwards this 

to the DSS and instructs it to begin the composition of the CRC software.  Relevant installation scripts, etc. 

and the CRC are then passed as CRCSw to the JSS and onto Cloud to execute and return the composed 

CRCComp software to the DSS.  The DSS informs the WMS with the message Ready.  The Federates are 

composed in a similar manner with the SDS instead of the DSS.  When the process has finished, the WMS 

will return Done to note the end of the task. 

Execute: The WMS first instructs the DSS to start the CRC with ExecCRC. The DSS sends the composed 

CRC software with the instruction to deploy and start the CRC to the JSS via CRCCompExec.  The JSS then 

manages the deployment and execution of this on Cloud (CRCRun).  The WMS then instructs the SDS to 

send each Federate software for deployment and execution (ExecFed).  The SDS sends the composed 

federates to the JSS with their own instruction to deploy and run to the JSS (FedExec). The JSS also then 

manages the deployment and execution of these on Cloud. The Federate software when executed will register 

 

Fig. 3. A Federation and Possible Distributed Simulation Workflow. 



with the CRC, synchronize (Fed*Synch) and begin execution (DSRun). When complete (DSTermination) the 

CRC and Federates will return DSTermination to the DSS to note the end of the DS. 

Results: Once the Federates have finished their simulations they return their results back to the WMS via 

the JSS. The JSS can then decommission cloud resources, etc.    

 It should be noted that the above could be represented as a general WMS architecture with a management 

layer containing a dedicated distributed simulation service. However, we wanted to present our 

conceptualization to emphasize the use of contemporary workflow technologies in the context of distributed 

simulation. This is similar to previous works that have taken existing architectures and applied them to 

distributed simulation (e.g., [15, 19, 23]). We have also presented our architecture with general features 

common to virtually all WMS.  All WMS have some method to create, configure and submit workflows, 

either by a GUI (i.e., a science gateway) or by some dedicated WMS language. Workflow management, job 

submission and software deployment services are common to all.  Only WS-PGRADE [58] has a dedicated 
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parametric study service – other WMS rely on external experimentation management to perform parameter 

sweep experimentation.  It appears that no dedicated DS Service has been created for any WMS to date. 

Comparing our architecture to other works in CBDS, [27] and [29] (extended in [30]) propose 

comprehensive architectures with services similar to ours in terms of distributed simulation experimentation 

management, job submission to cloud, job management on cloud and cloud resource management. However, 

neither use any form of workflow or indeed the ability to choose which cloud or cloud resources to use.  [31-

35] use variants of manager-worker schemes where distributed simulations are submitted to a manager for 

distribution to cloud workers mapped onto one or more cloud instances. These are essentially the same as the 

job submission/management elements of the CBDS architecture of ours and the above works. All examples 

of CBDS use either single cloud (or cluster-based) instances with multiple CPUs or multiple single instances 

with a single CPU.  We could not identify a similar CBDS approach to ours that facilitates distributed 

simulation deployment using different cloud resource schemes via workflow. 

The next section discusses how WORLDS can be implemented using an existing WMS/e-

Infrastructure/Cloud technology stack. 

4 WORLDS PROOF OF CONCEPT 

To give a proof of concept of how the WORLDS architecture could be implemented, we needed an e-

Infrastructure that could access cloud as a DCI and a WMS, ideally one with some form of Science Gateway. 

As discussed in the previous section, there are several candidate systems. WS-PGRADE/gUSE is a well-

known WMS [64]. Previous research had investigated how multi-cloud functionality could be added to WS-

PGRADE/gUSE via the integration of the CloudBroker Platform [65]. This work was significantly extended 

for commercial applications to create the CloudSME Simulation Platform (CSSP) [63]. This has been used 

by over thirty European SMEs to develop cloud-based simulation applications and is a core technology in 

several large European projects. It has also been used to develop web-based cloud portals for agent-based 
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simulation (REPAST) and discrete-event simulation (JaamSIM) [66]. We chose the CSSP as the vehicle to 

demonstrate WORLDS partly due to the platform having all the components we needed but also our 

familiarity with it. We now briefly describe the relevant aspects of the CSSP.  

The CSSP is shown in Figure 6 with its mapping to WORLDS. WS-PGRADE/gUSE consists of three 

tiers: a presentation tier consisting of WS-PGRADE that enables users to create and populate workflows 

using a graphical editor for applications to run on DCIs, a middle tier of gUSE services to save, deploy, and 

manage workflows, and an architectural tier that uses the DCI Bridge job submission service and allows 

gUSE to submit and monitor jobs on a DCI. WS-PGRADE has a graphical editor which can be used to build 

workflows and specify job configurations using typical directed acyclic graph semantics. gUSE has services 

to support workflow management and execution (e.g., file storage, workflow repository and workflow 

interpreter to manage the execution of workflows). The DCI Bridge has various plug-ins to manage job 

submission as specified in the workflow using the OGSA Basic Execution Service interface. Workflows are 

created in WS-PGRADE and managed in gUSE. gUSE creates jobs which are submitted and executed on a 

DCI through the DCI Bridge. The CloudBroker Platform is a PaaS that allows developers to implement, 

manage and bill applications on different clouds. It is a web-based store for applications that deploy and 

execute compute-intensive applications on a cloud. It is suitable for any kind of batch-oriented command line 

software, both Linux- and Windows-based, and either serial or parallel processing. It provides several 

development options including web browser deployment and/or various APIs (REST, Java, etc.) Access to 

different clouds is provided by various cloud adaptors. CloudBroker stores SaaS application patterns 

(typically application code and any associated installation/launch scripts), instantiates these on demand and 

launches/manages these through the cloud adaptors on different cloud resources. CloudBroker also deals with 

fault-tolerance, errors and exception handling through its Scalability and Fault Tolerance Handler module. 

The CSSP also has an App Center – this was not used in this work as there was no requirement for billing 

and user management over and above the services available in WS-PGRADE.  

The CSSP has been used to create SaaS M&S applications. To run on cloud, the executable part of the 

application needs to be able to run headless and take command line parameters as it needs to be remotely 

executed. This is stored as an application pattern with deployment and runtime scripts on CloudBroker. 

Specific implementations need to be created for single/multi-core cloud instances. A workflow is then 

created/reused in WS-PGRADE. Versions of the workflow are then parameterized for the different 

 

Fig. 6. WORLDS Demonstration with the CloudSME Simulation Platform. 

 



simulation application patterns and different clouds/instances. The workflow can be executed directly or 

called by the simulation application deployed as a desktop or web-based application via the WS-PGRADE 

REST API. When executed WS-PGRADE calls gUSE to run the different tasks of the workflow. gUSE 

instructs CloudBroker via the DCI Bridge to instantiate the relevant application pattern for each task. 

CloudBroker then deploys the application to cloud via the appropriate Cloud Adaptor to whatever cloud and 

instance type have been selected and then runs it. The CloudBroker Platform and WS-PGRADE/gUSE then 

monitor the execution of the application, coordinate the return of the results and the transfer of data/files 

between the tasks until the workflow is complete.  

The Workflow Management Service maps to WS-PGRADE, the Job Submission Service to gUSE and the 

Software Deployment Service to CloudBroker. The DS Manager and Federate application patterns are first 

stored on CloudBroker for each cloud and instance type needed by the end user. These are the deployments 

of the RTI CRC and supporting application software respectively (see Section 5 for further details). When 

called, CloudBroker would request a specific cloud/resource type via a cloud-specific adaptor. It would then 

deploy these images via this cloud adaptor to the resource and initialize them. WS-PGRADE supports the 

Parametric Study Service by providing dedicated workflow tasks (generator/collector). The Distributed 

Simulation Service is split between WS-PGRADE and CloudBroker. In WS-PGRADE this would be ideally 

implemented in a similar manner to the Parametric Study Service. To demonstrate how WORLDS could be 

realized, the DS Manager was split into two parts. The DS Manager patterns were stored on CloudBroker as 

noted above. Prior to running the workflow, CloudBroker would be used manually to boot the specific cloud 

resource so that the external IP address could be obtained. This is then manually entered in the workflow. 

The specific workflow DS Manager task would still instruct CloudBroker to deploy the CRC software on the 

dedicated cloud resource.   

As part of this demonstration, as shown in Figure 7, three workflows were developed to show how 

different cloud resource types could be used. These are: 

 

• Single Instance, Single CPU (SISC) – cloud resource with one CPU (the federation runs on a single 

core instance); 

• Single Instance, Multiple CPU (SIMC) – cloud resource with many CPUs (all federates run on their 

own CPUs within a single instance); 

• Multiple Instances, Single CPU (MISC) – multiple cloud resources with one CPU each (the 

federates run on separate single core instances and communicate via a TCP/IP network on cloud). 

 

 

Fig. 7. Demonstration Workflows. 

 



The SI workflows require four stages: initialize, compose, execute and collect. The initialize task takes as 

input the list of federates in the distributed simulation, validates it and passes it to the next task. This task 

could do more depending on the application (such as updating probability distributions, lookup tables, etc. 

used in the simulation). There is one compose task for each federate and one for the DS Manager. These 

bring together the model files, federate names, supporting software/scripts, data, etc. for each federate. The 

DS Manager task brings together the RTI software, federate names and any other supporting software/scripts. 

Each task outputs a zipped file to the execute task. The execute task unzips each file (DS Manager first and 

then in the order of the federate names) and runs each associated process (the RTI CRC and then each federate 

in order). The SISC execute task would do this on a single CPU. The SIMC execute task would require some 

method of allocating the DS Manager and the federates to specific CPUs. When the DS Manager runs, a 

synchronization point labelled "ReadyToRun" is registered with the Register Federation Synchronization 

Point service. As a federate registers with the DS Manager, it invokes the RTI Announce Synchronization 

Point service to inform the federate of a new synchronization point "ReadyToRun". Federates then set a 

corresponding synchronization point and inform the DS Manager through the RTI Synchronization Point 

Achieved service. Once the DS Manager records that all federates have invoked this service, it then invokes 

the Synchronization Point "ReadyToRun" Achieved service and the federates will begin to execute their 

models. Once execution has finished, the federates zip their results to be passed on to the final task. Collect 

receives all result zips, brings them together and outputs the final results. This task could also do some form 

of analysis of the results.  

The MISC workflow is similar but does not have the execute task as its function is merged with the 

distributed compose tasks. The IP address of the CRC is added to the list of inputs of the initialize task to be 

passed on each compose task. These prepare the zip file for execution with a different scriptfile to the SI 

workflows. This script actually runs the DS Manager and federates once they have been booted on their cloud 

instance. The DS Manager would be done first on the specified IP address followed by each federate (which 

has the IP address of the DS Manager). A multiple instances, multiple CPUs (MIMC) workflow is possible, 

if a “hierarchical” mapping of federates to instances and CPUs is needed, by combining the MISC and SIMC 

workflows. 

5 EXPERIMENTS AND RESULTS 

5.1 Motivation for the Experiments and Case Study 

To demonstrate the CSSP implementation of the WORLDS architecture we used the agent-based Emergency 

Medical Service (EMS) distributed simulation developed in previous work [67, 68]. The motivation behind 

the case study selection was the scaling flexibility of the EMS in terms of federation size. We ran experiments 

for all workflow configurations in order to investigate the performance and scalability. This section briefly 

describes the EMS and the associated workflows for SISC, SIMC and MISC. Results are then presented from 

running these on the Amazon EC2 cloud. 

5.2 Case Study 

Figure 8 shows the concept of the EMS distributed simulation. It was originally developed to show how 

distributed simulation could be used to develop large-scale models of city-wide emergency services. The 

federation consists of one ambulance model and several Accident & Emergency (A&E) (Emergency Room) 

models. The EMS was implemented using REPAST [20] and the Portico RTI [69]. The distributed simulation 

advances time at regular intervals. Essentially, at each “tick” each A&E federate updates its patient capacity 

and sends an interaction to the Ambulance federate to specify the number of patients it can take. The 

Ambulance federate updates the current state of the emergency, the demand for ambulances and the current 

ambulance loading. On receipt of the patient number interactions, it decides where to place patients. 



Interactions are then sent to the A&E federates to update their patient numbers (i.e., the patients have arrived 

at A&E) and the details of those patients (currently one patient per interaction). These are derived from the 

hourly emergency call distribution and the percentage of these requiring ambulance services. In this case 

study, time in the EMS was fixed to advance hourly, one interaction is sent by each A&E federate to the 

Ambulance federate and approximately 14 interactions are sent from the ambulance to the A&E federates 

(random distribution). 

5.3 Experimental Setup 

Two types of experiments were carried out. The first to show how each federation performed over time and 

the second to show the scalability when increasing the number of federates. The aim of both is to show 

indicative results and should be considered as the first steps in a larger study. All experiments were repeated 

five times and we use the average of these runs in our results. 

We used the Amazon EC2 cloud. The configuration of the resources that we used in our experiments are 

shown in Table 1. All cloud instances installed the 64-bit Ubuntu Server 16.04 LTS Operating System. 

Initialize and Collect tasks run on a single CPU with 1 GB RAM in all three workflows. In all SI workflows, 

the Compose tasks ran on a single CPU with 1 GB RAM. The Execute task requires a larger instance in the 

SI workflows as it has to run the federation and requires adequate memory and compute resources. We 

therefore ran the SIMC on different instance types with 2, 4, 8, and 16 CPUs with 3.75, 7.5, 15 and 30 GB 

RAM, respectively (i.e., the DS Manager and the EMS federates are allocated to specific CPUs). In MISC, 

Compose is merged with Execute. The DS Manager and each of the EMS federates in the MISC workflow 

run on instances with 1 CPU with 2 GB RAM. The SISC and SIMC workflows are shown in Figure 9 and 

the MISC in Figure 10 as they appear in the WS-PGRADE graphical editor. The amber squares indicate the 

workflow nodes. Attached to the nodes are the input ports (small green squares) and the output ports (small 

gray squares). The arrows indicate the dataflow between nodes. Table 2 shows the inputs, outputs and scripts 

used in our workflows. For example, the Initialize node in the SI workflows takes as input a text file that lists 

all federates (0: federateslist.txt in Table 2). The file is transferred via the Initialize output port (1: 

 

Fig. 8. Agent-based Emergency Medical Service Distributed Simulation [67, 68]. 

 

Table 1: Configuration of Amazon EC2 cloud resources for each workflow task 

Task Workflow CPU Specification CPUs RAM 

Initialize SISC, SIMC, MISC Intel(R) Xeon(R) E5-2650 2.00 GHz 1 1 GB 

DS Manager 
 

SISC, SIMC (compose) Intel(R) Xeon(R) E5-2650 2.00 GHz 1 1 GB 

MISC (compose and execute) Intel(R) Xeon(R) E5-2650 2.00 GHz 1 2 GB 

EMS Federates  

 

SISC, SIMC (compose) Intel(R) Xeon(R) E5-2650 2.00 GHz 1 1 GB 

MISC (compose and execute) Intel(R) Xeon(R) E5-2650 2.00 GHz 1 2 GB 

Execute 

 

SISC Intel(R) Xeon(R) E5-2650 2.00 GHz 1 2 GB 

SIMC Intel(R) Xeon(R) E5-2666 V3 2.9GHz 2 3.75 GB 

Intel(R) Xeon(R) E5-2666 V3 2.9GHz 4 7.5 GB 

Intel(R) Xeon(R) E5-2666 V3 2.9GHz 8 15 GB 

Intel(R) Xeon(R) E5-2666 V3 2.9GHz 16 30 GB 

Collect SISC, SIMC, MISC Intel(R) Xeon(R) E5-2650 2.00 GHz 1 1GB 

 



federateslist.txt in Table 2) to the Manager node’s input port (0: federateslist.txt in Table 2). The Initialize 

node when executes runs the initialize.sh script. The SI and MI workflows and their dependencies are openly 

available1. 

5.4 Performance Metrics and Results 

5.4.1 Performance 

The first set of experiments investigated the performance of the federation and the cloud overhead in relation 

to the total cloud runtime. These two metrics are used to calculate the speedup and the speedup / cost ratio of 

the examined workflow configurations. In these experiments the federation was fixed at 15 federates – 1 

ambulance federate and 14 A&E federates. 

5.4.1.1 Total Cloud Execution Time and Speedup 

To examine how the federation ran over time, four experiments were performed – the federation was run 

separately for one to four weeks of simulation time for each of the experimental configurations. Figure 11 

shows the average total workflow execution time on the cloud for all 24 experiments. Taking as point of 

 
1 https://doi.org/10.17633/rd.brunel.14853666 

Table 2: Workflow Configuration of distributed hybrid ABS-DES EMS 

Job Node 
Configuration 

Parameters 
SI Workflows MI Workflow 

Initialize 

Software initialize.sh initialize.sh 

Instance Type See Table 1 See Table 1 

Argument String  IP address of the CRC 

Input Ports 0: federateslist.txt (end-user uploads)  

Output Ports 1: federateslist.txt Output-port 0: CRCIP.txt 

Manager, 

Ambulance, 

AE-1,  

AE-2,  
etc. 

 

Software 
manager.sh for DS Manager 

model.sh for Ambulance, AE-1, AE-2, etc. 

manager.sh for DS Manager 

model.sh for Ambulance, AE-1, AE-2, 
etc. 

Instance Type See Table 1 See Table 1 

Argument String 

Name of the federate, i.e., Ambulance for 

Ambulance job node, AE1 for AE-1 job 
node, and AE2 for AE-2 job node 

 

Input Ports 

0: federateslist.txt 

1: model.tar 
2: batch_params.xml 

3: data.tar (Only in Ambulance) 

0: federateslist.txt 

1: model.tar 
2: batch_params.xml 

3: data.tar (Only in Ambulance) 

Output Ports 

3: fManager.tar for the Manager 
3: AE1.tar for the AE-1, AE2.tar for the 

AE-2, etc. 

4: Ambulance.tar for Ambulance 

3: fManager.tar for the Manager 3: 
AE1.tar for the AE-1, and AE2.tar for 

the AE-2, etc. 

4: Ambulance.tar for Ambulance 

Execute 

Software 
repastmulti.sh (to map federates on to 

different CPUs) 

Does not run on MI 

Instance Type See Table 1 

Input Ports 

0: fManager.tar  

1: Ambulance.tar 

2: AE1.tar  
3: AE2.tar 

Output Ports 4: output.tar 

Collect 

Results 

Software results.sh results.sh 

Instance Type See Table 1 See Table 1 

Input Ports 0: output.tar 

0: fManager.tar  

1: Ambulance.tar 

2: AE1.tar  
3: AE2.tar 

 



reference the SISC workflow, the speedup is calculated for all workflows. Figure 12 depicts the speedup 

gained when running the federation on more than one CPU and for the four examined simulation times. The 

SISC workflow is used as reference and therefore the speedup is one. As expected, the execution time 

increases as the simulation runtime increases. However, the increase in SISC and MISC is significantly larger 

while we observe a very small increase in execution time for all SIMC workflows. This behavior is expected 

since both SISC and MISC run on instances with 2 GB RAM while SIMC experiments use larger single 

instances. This demand on resources comes from the number of patients in the simulation – in the first few 

weeks of the emergency the number of patients grows and the details of each patient needs to be stored in 

the system and transferred via interactions. The performance gets better as larger instances are used. In SISC, 

all 15 federates run on a single instance and the single instance has to handle the processing of the entire 

federation. This performs worse than the other experiments. In MISC, each federate runs on the same instance 

type as SISC. Performance arguably reflects the balance of dividing the processing/memory load of the 

simulation across different instances and the communication overhead of the interactions passed to and from 

 

Fig. 9. Workflow for SISC and SIMC. 

 

 

Fig. 10. Workflow for MISC. 

 



the RTI. Similar behavior is observed in the speedup, as shown in Figure 12. Generally, SIMC workflows 

perform better. The highest speedup is observed in the SIMC (16 CPUs) workflow when the simulation runs 

for four weeks. However, for one-week simulation time, SIMC (4 CPUs) and SIMC (8 CPUs) outperform 

the largest instance. Interestingly, we observe a drop in speedup in the SIMC (2 CPUs) workflow when the 

simulation runs for two weeks. This behavior is due to the high variation in the cloud resources setup time 

for the specific experiment. It is worth mentioning that the cloud resources used were not dedicated and 

therefore it was expected to see wide variability in cloud setup times. Nonetheless, the standard deviation of 

all simulation run times is small and shows that once the cloud resources are created the federation runs 

consistently on this cloud. The data that the performance graphs are based on is openly available2. 

5.4.1.2 Cloud Overhead and Speedup-Cost Relationship 

To examine the extra computing cost of the different workflow configurations, we measured the cloud 

overhead that represents the setup time required to request and commission cloud resources. Figure 13 shows 

the proportion of runtime split into cloud overhead and workflow execution time. The figures were obtained 

through the CSSP’s monitoring system. These are shown again for the on-going execution of the federation. 

As can be seen, as a proportion of total execution time, the cloud overhead for SISC is lowest followed by 

MISC and then the various SIMC configurations. This is expected since the cloud overhead as an absolute 

value is similar for all workflows. However, the actual simulation execution time in the single CPU instances, 

both in SI and MI, is longer than that of the multi-CPU instances and therefore the cloud overhead is more 

significant. All multi-CPU instances have more RAM than the single CPU instances which explains why we 

observe better simulation performance. MISC takes longer than SISC which is because this workflow 

requires different cloud instances to be set up. This behavior reflects the general behavior of shared tenancy 

cloud resources provisioning in which the spin up time can vary depending on general demand. As the 

simulation progresses, the relative proportion of cloud overhead reduces. This would be expected from the 

“one-off” cost of setting up the instances against computation time. Overall, it does appear in this limited 

investigation that the largest multi-CPU instance used in the SIMC workflow produces the best performance 

 
2 https://doi.org/10.17633/rd.brunel.14852466 

 

Fig. 11. Total Average Cloud Execution Time by Workflow/Experiment. 

 



in terms of cloud overhead proportion. In order to understand the effectiveness of the studied workflow 

configurations, we examined the speedup-cost relationship too. Table 3 shows the speedup / cloud overhead 

ratio. This analysis shows that the cost-effectiveness differs for the examined simulation times. For example, 

the SIMC (8 CPUs) is the most cost-effective configuration for one week simulation time, while the SIMC 

(4 CPUs) is the most cost-effective configuration for four weeks simulation time. This leads to the conclusion 

that instance type selection should be carefully considered for different federation sizes and experimentation 

setup. It would be interesting to see if better performance could be obtained with a larger instance type used 

in the MISC workflow as well as partitioning the simulation to use larger instances a MIMC workflow (e.g., 

4 instances running 4 federates). 

5.4.2 Scalability 

The second set of experiments investigated the scalability of the federation. For these experiments we used 

federations of different “size” and ran them on all six workflow configurations. Federation size ranged from 

3 to 15 federates (i.e., 1 ambulance with 2, 4, 6, 8, 10, 12, 14 A&E federates). The interactions remained the 

same but were equally split between A&Es (e.g., 7/7 per hour for the 1+2 federation). All 42 experiments ran 

for four weeks EMS simulation time. Figure 14 shows the average execution time of all experiments. The 

execution time for the SISC workflow increases as the number of federates increases. All SIMC experiments 

perform better than the others with the 2 CPU configuration showing a small decrease in performance with 

larger workloads. There is virtually no decrease with the other SIMC configurations. This suggests that the 

4 CPU configuration is the best for this simulation. MISC is similarly unaffected by larger workloads and, 

as noted above, is probably due to sharing the processing/memory load for the simulation. The 

communication overhead appears to have little effect. The standard deviation again is small for all 

experiments. This may give different results if the number of patients increases significantly (again to be 

investigated as part of a larger study). Overall, it appears that using single instances with larger resources 

gives the best performance for these experiments up to a point. Given that cloud instances vary in cost this 

highlights the need to profile federation performance to give the best performance/cost ratio for a particular 

 

Fig. 12. Speedup by Workflow Experiment. 

 



cloud. This is especially true if the distributed simulation will be run many times as part of a simulation study. 

The data that the scalability graphs are based on is openly available3. 

6 CONCLUSIONS 

This paper has investigated a novel approach to CBDS that has attempted to simplify the complexity of using 

distributed simulation on cloud. It has reviewed contemporary approaches to CBDS and identified the 

limitations of these approaches. E-Infrastructures/WMS were then introduced and the general approach used 

to run applications on cloud using workflows. The WORLDS architecture was then presented that essentially 

added a distributed simulation service to e-Infrastructure/WMS. Different workflows reflecting different 

deployment strategies were then presented to illustrate how WORLDS might be used. A possible 

 
3 https://doi.org/10.17633/rd.brunel.14852580 

 

Fig. 13. Average Relative Cloud Overhead by Workflow/Experiment. 

 

Table 3: Speedup / Cloud Overhead ratio by Workflow 

Workflow 1 Week 2 Weeks 3 Weeks 4 Weeks 

SISC 6.37 12.71 17.89 22.81 

SIMC (2 CPUs) 5.56 12.53 19.19 33.42 

SIMC (4 CPUs) 7.83 5.67 18.74 42.22 

SIMC (8 CPUs) 9.63 14.72 17.99 28.51 

SIMC (16 CPUs) 6.29 13.44 18.69 38.88 

MISC 5.04 7.88 11.26 16.53 

 



implementation of WORLDS was then discussed using the CloudSME Simulation Platform. A case study 

demonstrated how this implementation could be used with the different workflows using the Amazon EC2 

cloud and the distributed Emergency Medical Service simulation.  

In this article we have asked two questions: could these technologies be used to create DS applications 

and to what extent does this approach simplified CBDS.  We have shown how DS can be successfully 

implemented by adding a DS Service to a generalized WMS/e-Infrastructure architecture and have then 

demonstrated this using one example of this technology stack, the CloudSME Simulation Platform. As noted 

below, further work needs to be carried out to determine if this approach is generalizable to other WMS 

technologies.  However, as we have attempted to start from a general WMS architecture, we anticipate that 

our approach will be translatable.  

In terms of simplifying CBDS, the main issue with previous work is that while most approaches have 

advanced understanding of what is needed for CBDS, there is little evidence of their continued use. GridSpice 

and SEMSim are exceptions to this as they have been used to study problems in their application domains. 

These do simplify the use of CBDS in their areas. It may be that both are generalizable to other applications. 

Our work has added to these examples by demonstrating that e-Infrastructures/WMS can be used for CBDS. 

This is attractive as these technology stacks are supported by large worldwide communities rather than a 

single research project. Our demonstration is limited to one example of this technology. However, it does 

seem reasonable to assume that our WORLDS architecture and workflow could be implemented using other 

e-Infrastructures/WMS. It must be noted that in our approach distributed simulations still need to be created 

along with deployment packages for cloud installation. However, once this has been done, workflows can be 

used to automate deployment and e-Infrastructures, such as the CloudSME Platform, can simply cloud 

implementation, especially with different clouds.  

Our case study demonstrated how CBDS could be deployed using different workflows and different cloud 

resources. One result of this showed that using larger, more costly, single instances does not necessarily mean 

faster simulations. Work will continue to investigate how federates or LPs can be profiled to ensure the 

optimal selection of resource. We are also interested in multiple, parallel DS experimentation as would be 

done using a Parameter Study Service. Studies have been done using an auto-scaling approach on cloud with 

sequential simulations [12]. Extending this to investigate how CBDS could auto-scale distributed processing 

during parameter studies experimentation would be desirable as it could optimize cloud use and reduce costs. 

 

Fig. 14. Execution Time by Federation Size (1 Ambulance + 2n A&E Federates)/Workflow/Configuration. 

 



Another issue is how CBDS could be run over different clouds.  If simulations lie under different national or 

commercial data protection authorities, then it maybe that federates have to run on specific clouds (e.g., 

within national boundaries).  It would be interesting to see the performance impact of federate mapping on 

to sets of resources from different clouds.  This would certainly be possible using CloudBroker. Finally, we 

are also interested in how workflows could be integrated with proposed extensions to the HLA Distributed 

Simulation Engineering and Execution Process (DSEEP) [68, 71]. 
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