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Abstract—At present, Solid-State Fermentation (SSF) is mainly
controlled by artificial experience, and the product quality and
yield are not stable. Therefore, predicting the quality and yield of
SSF is of great significance for improving the utility of SSF. In this
works, we propose a Deep Learning Utility Prediction (DLUP)
scheme for the SSF in the Industrial Internet of Things (IIoT),
including parameters collection and utility prediction of the SSF
process. Furthermore, we propose a novel Edge-rewritable Petri
net to model the parameters collection and utility prediction of
the SSF process and further verify their soundness. More impor-
tantly, DLUP combines the generating ability of Least Squares
Generative Adversarial Network (LSGAN) with the predicting
ability of Fully Connected Neural Network (FCNN) to realize the
utility prediction (usually use the alcohol concentration) of SSF.
Experiments show that the proposed method predicts the alcohol
concentration more accurately than the other joint prediction
methods. In addition, the method in our paper provides evidences
for setting the ratio of raw materials and proper temperature
through numerical analysis.

Index Terms—Solid-State Fermentation, utility prediction,
Petri net, Least Squares Generative Adversarial Network, Fully
Connected Neural Network

I. INTRODUCTION

SOLID-STATE Fermentation (SSF) has been defined as the
fermentation process which involves solid matrix and is

carried out in absence or near absence of free water [1]. The
purpose of SSF is to accumulate the target metabolites. SSF
takes a certain proportion of raw materials and an appropriate
cellar-entry temperature as the main preconditions for cellar-
entry fermentation [2]. Once the raw material is sent into
the fermentation cellar, no operation can be applied to the
fermentation cellar until the end of fermentation. The yield
and quality of SSF are always unstable through traditional
method which depends on artificial expertise to control the
proportion of raw materials. Relationship among raw material
parameters should be analyzed to ensure the quality and yield
of SSF. Industrial Internet of Things (IIoT) provides the high
performance computing technology for the industrial mass
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production [3], [4], [5], [6]. Therefore, traditional industry of
SSF should be further enhanced with the technology of IIoT
to realize the intelligent manufacturing.

Now, changing raw materials and adjusting cellar temper-
ature are the two main methods to improve the quality and
yield of SSF. The influence of different raw materials on
the quality is analyzed [7], but the different proportions of
materials on liquor quality is not studied. Microbial is another
factor which affects the quality of SSF. The quality of liquor
with different microbial community leads to different yield [8].
Main microorganisms affecting the quality of rice-liquor are
analyzed, and the optimum temperature of the microorganisms
is studied in [9]. Temperature has a significant impact on
the growth and metabolism of microorganisms, which in turn
affect the yield and quality of SSF. In [10], authors conclude
that SSF temperature curve of high-quality liquor should be
with the trend of rise slowly in the early stage, rise rapidly in
the middle stage and drop slowly in the later stage. In addition,
year of liquor is predicted by the forecasting model based on
the three-dimensional florescence spectra [11], but this method
cannot further improve the quality and yield of liquor.

Nevertheless, different products of SSF have different mi-
crobial communities. The impact of microbes on SSF is an
essential research field. However, research of real-time mon-
itoring and control of the fermentation temperature ignores
that fermentation cellar cannot be opened during the SSF
process. In order to improve the yield and quality of SSF
products without controlling the fermentation process, another
effective method is to control the key preconditions of SSF in
advance, because the proportion of preconditions is a vital
factor affecting the quality and yield of SSF products [10].

It is a technical approach that improves the quality and yield
of SSF by optimizing the key preconditions, so we need to
collect SSF parameters to analysis the relationships among
parameters. IIoT provides the methods for collecting data and
analyzing data relationships. Parameters collection and utility
prediction of SSF process based on IIoT is shown in Fig.
1. SSF equipments include controllers, sensors, cameras and
fermentation tanks. The equipment data is collected by the
sensing and monitoring technology through perceive layer.
High performance computing layer provides the computing
resources for analyzing the collected data [12], [13]. Collected
data will be analyzed by the deep learning methods such
as data generation algorithm of Least Squares Generative
Adversarial Network (LSGAN) and prediction algorithm Fully
Connected Neural Network (FCNN). In addition, the liveness,
soundness and other properties of the system logic can be
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analyzed. Analysis results will be sent to equipment through
the interactive layer.

Since the parameters of SSF process are obtained by regular
or irregular collection, which is a typical dynamic discrete
event, and the collection time for parameters is dynamic.
Hence, the parameters collection of SSF process is dynam-
ically reconstructed. Petri net is a graphic modeling tool
with a strict mathematical definition and is well applied to
describe the process such as discrete, synchronous, asyn-
chronous, and concurrent processes [14]. Moreover, rewritable
Petri nets [15] are proposed to solve the formal description
and modeling in dynamic system reconstruction. Rewritable
Petri nets provide the better analysis and verification method
for dynamic discrete systems with structural reconstruction.
Therefore, rewritable Petri nets can be well applied to model
and verify the system framework of the parameters collection
and analysis of SSF process. To predict the quality and
yield of SSF, we use deep learning to analysis the hidden
relationship between parameters. Deep learning is a tool for
data analysis and mining [16], which needs numerous data for
neural network training. The more sufficient data, the more
accurate the data relationship is mined.

In this work, our contributions are as follows: 1) Establish a
system framework of parameters collection and utility predic-
tion of SSF process. 2) Propose an Edge-rewritable Petri net to
model and verify the soundness of the system framework. 3)
Design a joint prediction model by combining the generating
ability of LSGAN and the predicting ability of FCNN.

The rest of this work is arranged as follows: related works
are introduced in Section II. Section III introduces the system
framework of parameters collection and utility prediction of
SSF process, and builds an Edge-rewritable Petri net model
of the system framework to verify the soundness of the
model. Section IV describes the DLUP scheme. Comparison
of performance analysis is in Section V. The last Section
summarizes the work of the paper and future work.

II. RELATED WORK

The main raw material of SSF is grain. In 2019, the
consumption of grain in the liquor industry by SSF reached
30 million tons. The sauce, vinegar and other products in our
daily life are all the products of SSF. According to statistics,
about 10%-15% of grain is converted into food through SSF.
This year, the impact of COVID-19 gives high priority to food
shortage, which leads to the global food crisis. Therefore, it is
of great significance to predict the quality and yield to avoid
the failure of SSF.

In order to enhance the yield and quality of SSF, we apply
the IIoT to SSF. Billions of smart devices are connected to
create actual massive IoT, and the smart devices mutually
interact and share data without any human assistances [3].
The process of parameters collection and utility prediction of
SSF is a workflow. It is necessary to model the workflow to
ensure the correctness of the workflow. Traditional workflow
models include Event-Condition-Action (ECA), Business Pro-
cess Execution Language (BPEL) and Yet Another Workflow
Language (YAWL) and so on. These modeling approaches

Fig. 1: Parameters collection and utility prediction of SSF
process based on IIoT.

describe business process as a set of activities executed by
a fixed control flow. In [17], authors propose an ECA based
structure to control intelligent manufacturing systems, which
is to divide the manufacturing system into three parts: event,
condition and action. In addition, using YAWL to analyze the
properties of the model requires constructing the model with
YAWL and using the YAWL engine [18]. In [19], the serverless
application workflow is defined as a weighted directed graph.
The performance and cost of the serverless application can
be predicted through the analysis of the workflow model.
However, these models do not scale well and have some limi-
tations when modeling dynamic systems. Petri net is a model
developed to describe distributed system. In [20], authors use
the Petri net to model the applications over the heterogeneous
clouds to ensure the reliability of cloud applications. Authors
propose a place rewritable Petri net which is used to model
the reconfiguration systems in [15]. According to the process
of collecting the parameters of SSF process, we propose an
Edge-rewritable Petri net to model the SSF process system.

Due to the insufficient data in SSF, we need to generate
more effective data for analyzing. Data generated from the
process of SSF is in one-dimensional format. Generative
Adversarial Network (GAN) was proposed by Goodfellow
in 2014 [21], which generates effective data by using few-
shot data. GAN is not relay on any prior assumptions in
data generation. The data generated by GAN conforms to
the distribution of actual data through the max min game
between Generator (G) and Discriminator (D). Now, GAN is
widely applied in image data generation, voice data generation,
text data generation and so on. For example, the image data
augmentation method of pedestrians of small scale or in heavy
occlusions is proposed in [22], image generated in this paper
holds good visual quality as well as attributes. The aging image
is repaired by GAN and high-quality image is generated [23].
In [24], Classification Enhancement GAN (CEGAN) is pro-
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posed to solve the problem of data imbalance in classification,
which enhances the accuracy of target prediction in the case of
data imbalance. Wasserstein Generative Adversarial Network
(WGAN) is used to repair broken teeth [26]. LSGAN adopts
the least squares loss in G and D. The image quality generated
by LSGAN is higher than that of GAN, and the learning
process is also more stable [25]. In view of the successful
application of LSGAN in image data generation, we adopt
LSGAN to generate one-dimensional data.

After obtaining sufficient data, the relationship among dif-
ferent attributes needs to be analyzed. There are many predic-
tion models such as Markov model (MM) and Pairwise Trust
Prediction through Matrix Factorisation (PTP-MF). However,
these methods mainly depend on the latest state to predict the
target value and the important characteristics of many state
nodes are ignored, resulting in low accuracy of prediction.
FCNN is a computational model that imitates biological neural
network [27]. FCNN is a deep learning technology that is
widely used in the field of classification, prediction and so on.
Long Short-Term Memory (LSTM) is proposed to simulate the
variation of PM2.5 pollution and then use FCNN to predict the
air quality [28]. The alternating current arc faults are predicted
by FCNN in [29] and the heartbeats can be classified correctly
by FCNN to detect the abnormal heartbeats [30]. Based on
these researches about the FCNN, it is concluded that FCNN
can be well applied in analyzing and predicting data, so we
adopt the FCNN to predict the quality and yield of SSF.

III. EDGE-REWRITABLE PETRI NET MODEL OF THE
SYSTEM FRAMEWORK

System framework of DLUP for SSF is modeled by Edge-
rewritable Petri net in this section, and the soundness of the
system framework is also verified.

A. System Framework

System framework includes parameters collection of SSF
process and analysis of parametric relations to predict the
quality and yield. The main parameters in SSF of liquor
include acidity, starch content, humidity, maternal draff, daqu,
bran shell, original cellar temperature and ground temperature.
These parameters affect the quality and yield of liquor. These
factors of acidity, starch content, humidity, maternal draff,
daqu, bran shell affect each other in pairs. In order to obtain the
mathematical relationship among these parameters and realize
the intellectualization of SSF industry, we apply the deep
learning to the SSF industry to realize the utility prediction of
SSF process. The system framework of parameters collection
and utility prediction of SSF process is shown in Fig. 2.

Step1: Parameters will be collected several times by the
sensors.

Step2: The relationship among parameters will be studied
by deep learning algorithms.

Step3: The utility prediction model of SSF is obtained.

B. Edge-rewritable Petri net

Petri net is a workflow modeling and analysis tool. Since
the parameters of SSF process need to be collected by several

Fig. 2: The system framework of parameters collection and
utility prediction of SSF process.

times, the Edge-rewritable Petri net is proposed to model the
framework. More details are given in [32].

Definition 1 (Edge-rewritable Petri net). A 7-tuple EN=(P,
T, F, W, K, M, Wv) is an Edge-rewritable Petri net, where (P,
T, F) is a basic Petri net [14]:

(1) P is a set of places. Token is contained in the places.
(2) T is a finite set of transition. P∩T=∅.
(3) F⊆(P×T)∪(T× P) is a set of arcs.
(4) W: F→{0, 1, 2, ...} is a weight function, K: P→{0, 1,

2, ...} is a capacity function, M: P→{0, 1, 2, ...} is a marking
function of EN and meets the condition of ∀p∈P: M(p)≤K(p).

(5) ∃f∈F is a rewritable edge, when ti∈ T and ti is a
vertex of f, #(ti/σ)=Wv→F = F-{f}. Wv∈ N∗ is the rewritable
restriction of f. σ is a sequence of transitions, #(ti/σ) denotes
the number of ti occurrence in σ. The rewritable edges are
represented by dashed lines.

(6) The firing rule of transition t in EN is the same as the
general weighted Petri net [14].

C. Edge-rewritable Petri net modelling the system framework

The system framework of parameters collection and utility
prediction of SSF process is a workflow. We use the Edge-
rewritable Petri net to model the system framework to verify
the soundness of the system framework. The place P denotes
parameters and relation model of parameters, meanwhile, the
transition T denotes the operation of collecting and studying
the parameters relationships. The rewritable edges realize the
multiple random collection of parameters.

According to the system framework, we use the Edge-
rewritable Petri net to model the system framework of param-
eters collection and utility prediction of SSF. Capital letters
are used to indicate the parameters of liquor SSF. M: master
grains, S: starch content, D: daqu, H: humidity, A: acidity, B:
bran shell, C: cellar temperature, G: ground temperature, ALC:
alcohol concentration. The Edge-rewritable Petri net model of
the system framework is shown in Fig. 3. The meanings of all
the elements in Fig. 3 are shown in Table I and Table II.

In this model, Pstart is a start place with a token, transition
t0 denotes the operation of taking materials into the cellar.
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Fig. 3: The Edge-rewritable Petri net model of the system
framework.

Firstly, t0 can be fired and these parameters places of PB, PA,
PM, PS, PH, PD, PC, PG, PALC will obtain a token. Now, the
collected transitions t1, t2, t3, t4, t5, t6, t7, t8, t9 can be fired.
If t1 is fired, then the collected parameters place PB1 will get a
token which means the parameter of B is obtained, meanwhile,
PB also gets a token and transition t1 will be fired again. t1 will
be fired several times, which is a loop structure that represents
the process of collecting data several times. When the number
of times that t1 is fired is equal to Wv1, the rewritable edge
f =(t1, PB) will disappear. Naturally, when transition t2 is fired,
the acidity collecting parameters places of PA1 and PA2 will get
a token respectively at the same time. In addition, the acidity
parameter place PA also gets a token and transition t2 will be
fired again. When the times that t2 is fired is equal to Wv2,
the rewritable edge f =(t2, PA) will disappear. If the number of
tokens in PB1 and PA1 is equal to weight function W1 and W2

respectively, the study transition t10 will be fired. Next, the
place PBA of relation model for parameter B and parameter A
will get a token. Similarly, the study transition t11, t12, t13 and
t14 are fired in the same way. Finally, we acquire the prediction
model of liquor quality and yield. At this time, the workflow
model of the system framewok is completed. In addition, we
add an adjust transition t16 and the edges (P1, t16) and (t16,
Pstart) to form an extended network which is used to readjust
the precondition parameters B, A, M and so on.

D. The soundness of the system framework

The soundness of the system framework guarantees the logic
correctness of the parameters collection and utility prediction
of SSF process. If a Petri net is soundness, it will meet the
following definitions.

TABLE I: The meaning of each place in Fig. 3.

Places Meaning
Pstart Start
PB, PA, PM , PS The parameters of Bran shell quality, Acidity,

Maternal draff quality and Starch content respec-
tively.

PH , PD, PC, PG,
PALC

The parameters of Humidity, Daqu quality, the
Cellar-temperature, Ground temperature, ALCohol
concentration respectively.

PB1, PC1, PG1,
PALC1

The collected parameters of Bran shell quality,
the original Cellar-temperature, Ground temperature,
ALCohol concentration respectively.

PA1, PA2 The collected parameter of Acidity
PM1, PM2 The collected parameter of Maternal draff
PS1, PS2 The collected parameter of Starch content
PH1, PH2 The collected parameter of Humidity
PBA The relational model of Bran shell quality and

Acidity
PAM The relational model of Acidity and Maternal draff

quality
PMS The relational model of Maternal draff quality and

Starch content
PSH The relational model of Starch content and Humidity
PHD The relational model of Humidity and Daqu quality
P1 The relationship model of quality and yield of

ALCohol concentration

TABLE II: The meaning of each transition and weight function
in Fig. 3.

T Meaning W Meaning
t0 Into the

cellar
Wv1− Wv9 The weight function of

rewritable edge
t1− t9 Collect W1− W10 The weight function
t10− t15 Study
t16 Adjust

Definition 2 (Soundness). EN=(P, T, F, K, W, M, Wv) is
soundness [14] if the following conditions are all satisfied.

(1) For each marking M which is reached by the start
marking M0 has transition sequences σ1 and σ2 to the end
marking Mend, that is ∀M: M0[σ1〉M→M[σ1〉Mend.

(2) The end marking Mend (the end place pend contains
token) is reachable from M. Mend is the only one end marking,
that is ∀M: (M0[σ〉M∩M≥Mend)→(M=Mend).

(3) There is no dead marking in EN, that is ∀t∈T, ∃M and
M′ have M0[σ〉M[t〉M′.

Theorem 1: The Edge-rewritable Petri net EN is soundness
if the extended workflow [31] of EN is liveness and bound-
edness [14].

Reachability graph is a main tool to analyse the property
of Petri net [19]. Each point is a marking in the reachability
graph. We use the analysis software of Petri net to build the
reachability graph for the Edge-rewritable Petri net of the
system framework. The result is that the reachability graph
includes 1866 reachability status and 8750 arcs. More details
are given in [32]. However, this reachability graph is too huge
to show visually. Naturally, the reachability graph needs to be
compressed, which meets the principle that the paths will not
lost. The compressed reachability graph is shown in Fig. 4.

Definition 3 (Homogenous sequence). σ1 and σ2 are two
transition sequences, if M σ1−→ M′, M σ2−→ M′, ∀t∈σ1 ∧ t∈σ2:
#(t/σ1)=#(t/σ2), then σ1 and σ2 are the homogenous sequence.
We use (σ1) or (σ2) to represent homogenous sequence.
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Fig. 4: The compressed reachability graph of the Edge-
rewritable Petri net model of system framework.

#(t/σ1) and #(t/σ2) denote the number of transition t in σ1

and σ2 respectively.
Property 1: According to Definition 3, two homogeneous

sequences start from the same marking M and reach to another
equal marking M′ through different transition sequences. We
compress the paths between M and M′, and the reachability
[14] of the original reachability graph remains unchanged after
compression.

We compress the reachability graph of Fig. 3 according to
the principle of homogeneous sequence. Transitions t1, t2, t3,
t4, t5, t6, t7, t8, t9 will be fired many times according to the
collection times in Fig. 3. ti∗ denotes the transition sequence
titi...ti that ti has been fired many times continuously. Mean-
while, transition sequences t7∗, t8∗, t9∗ are compressed as σ
in Fig. 4. Each arc of the reachable graph has a transition
sequence, and the marking is transformed into another marking
by the transition sequence on the arc. For example, marking
M27 is transformed into Mx through the transition sequence
t6∗t14. The transition sequences among the markings in Fig.
4 are shown in Table III.

The original workflow becomes an extended workflow when
adding a new transition t16 in Fig. 3. If t16 is fired, the
end marking will be transformed to the initial marking M0.
Since ∀t∈T and ∀M∈R(M0) are all ∃M′∈R(M), M′[t〉, the
extended workflow with t16 is liveness [14]. The rewritable
edges, such as (t1, PB), (t2, PA), (t3, PM) and so on, will
disappear when the collection times are equal to the edge
weight, which guarantees the boundedness of the places in
the Edge-rewritable Petri net model of system framework.

In summary, the extended work flow is liveness and bound-
edness through the analysis. Therefore, the system framework
is soundness.

IV. OUR PROPOSED DLUP SCHEME

In this section, we introduce the DLUP scheme for predict-
ing the ACL. DLUP combines the generating ability of the
LSGAN with the predicting ability of FCNN.

A. Motivations

The main component of maternal draff is starch. Daqu
is mainly composed of microorganisms. Bran shell provides

TABLE III: Transition sequences among the markings

Markings Transition sequences Markings Transition sequences

M1 → M2 (t1
∗t2

∗)t10 M12 → M16 t5
∗t13

M1 → M3 (t2
∗t3

∗)t11 M12 → M17 (t5
∗t6

∗)t14
M1 → M4 (t3

∗t4
∗)t12 M12 → M18 (σ)

M1 → M5 (t4
∗t5

∗)t13 M13 → M16 t12

M1 → M6 (t5
∗t6

∗)t14 M13 → M19 t6
∗t14

M1 → M7 (σ) M13 → M20 (σ)

M2 → M8 t3
∗t11 M14 → M17 t12

M2 → M9 (t3
∗t4

∗)t12 M14 → M21 t5
∗t13

M2 → M10 (t4
∗t5

∗)t13 M14 → M22 (σ)

M2 → M11 (t5
∗t6

∗)t14 M15 → M23 t4
∗t12

M8 → M12 t4
∗t12 M15 → M24 (t4

∗t5
∗)t13

M8 → M13 (t4
∗t5

∗)t13 M15 → M25 (t5
∗t6

∗)t14
M8 → M14 (t5

∗t6
∗)t14 M16 → M26 t6

∗t14
M8 → M15 (σ) M16 → M27 (σ)

M17 → M26 t13 M24 → M39 t12

M17 → M28 (σ) M24 → M40 t6
∗t14

M18 → M29 t5
∗t13 M25 → M41 t12

M18 → M30 t6
∗t14 M25 → M42 t5

∗t13
M19 → M26 t12 M21 → M34 (σ)

M19 → M31 (σ) M22 → M35 t12

M20 → M32 t12 M22 → M36 t5
∗t13

M20 → M33 t6
∗t14 M23 → M37 t5

∗t13
M21 → M26 t12 M23 → M38 (t5

∗t6
∗)t14

more aerobic breathing space for microbial metabolism. Cellar
temperature is a necessary environment condition for SSF and
microbial metabolism. As a result, the main parameters of SSF
process are H, S, A and C. These four parameters affect the
quality and yield of ALC.

There are only 34 real data samples. Real sample data is
sparse. The depth of FCNN is the key to the accuracy of
prediction. With the increasing depth of FCNN, the accuracy
degradation is caused by overfitting. Based on these problems,
we propose a supervised Learning with few-shot learning. This
method expands the training data set by generating more data
which is similar to the real data distribution, then we train the
generated data by FCNN with 5 layers, so that FCNN has a
stronger perception of data distribution.

Firstly, we use the LSGAN to generate more data. Through
the continuous max min game between D and G, the data
generated by G will become more consistent with the real
data distribution. Secondly, we fix the learning parameters
of G when the performance of G is no longer improved,
then input latent code z into G to generate more data. Latent
code z is sampled from the standard Gaussian distribution.
G perceives the feature of Gaussian distribution by sampling
from the Gaussian distribution continuously, and synthesizes
the generated data with Gaussian characteristics based on the
prior knowledge in the game between D and G. The data with
Gaussian characteristics are not all the valid data, so we define
a filter to ensure the validity of the generated data. The filter
is that the generated data is valid if the Root Mean Squared
Error (RMSE) of the generated data and real data is less than
a threshold. We obtain the final effective generated data by the
filter. Finally, these effective generated data will be trained by
FCNN to predict ALC.
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Fig. 5: The framework of LSGAN to generate one-dimensional
data based on few-shot.

B. The data generation model of LSGAN

We generate more data of H, S, A, C and ALC for the
prediction model. Due to the lack of data features, we use
FCNN in G and D. z∼Pz is the latent code which is input to
G. θg is the trainable parameter of G network. G (z, θg) is a
multilayer perception which learns to map the latent code z
to the data space Rn×5, then G will generate the data that id
closer to the real distribution. The input of D is real data or
the fake data. x∼Px is the input data of D, θd is the trainable
parameter of D network. D (x, θd) is another perception which
discriminates whether the input data x is real data. The value
of D is from 0 to 1 which indicates the real probability of the
input data. G generates new data and D determines whether
the generated data is getting closer to the real data. The data
generated by G will become closer to the real data through
the game between the D and G. The framework of LSGAN
to generate one-dimensional data based on few-shot is shown
in Fig. 5. The loss function of the LSGAN is as follows:

argmin
G

max
D

= Ex∼Px[D(x)]2 + Ez∼Pz [1−D(G(z))]2 (1)

C. Joint prediction model of FCNN and LSGAN

Training the prediction model FCNN with the few-shot
real data will lead to overfitting. Therefore, we combine the
LSGAN with FCNN to predict the ALC. We use the trained
G in LSGAN to generate more data, the framework of the
joint prediction model DLUP is shown in Fig. 6. Similarly, G
(z, θg) maps the latent code z to the real data space Rn×5 to
generate more data. In order to reduce the difference between
the generated data and the real data, we make the RMSE
between the generated data and the real data. The generated
data whose RMSE is less than the threshold will be preserved
and the other generated data will be deleted. The amount of
generated data is different because of the random latent code z.
Therefore, we set a buffer to hold the generated data to ensure
the stability of FCNN. δ is the size of buffer and γ is the batch
size of FCNN. We set δ to be greater than γ. If the amount of
data in the buffer is less than δ, then the generated data will be
put into the buffer until the buffer is full. The data in buffer
will be replaced by the generated data randomly when the
buffer is full. The DLUP algorithm is shown in Algorithm 1.
Time complexity of Algorithm 1 is O(mn2). DLUP algorithm
includes three steps.

Step 1: We use the trained G of LSGAN to generate data
with latent code, then make the RMSE between the generated
data and real data. If the RMSE is less than a threshold
µ1, then the generated data will be added into the array
select data.

Step 2: Data in the select data will be put into the buffer if
the length of buffer is less than the buffer size δ. In addition,
data in the buffer will be replaced randomly by the data in
the select data according to the index of the buffer when the
buffer is full.

Step 3: In this step, the data in buffer will be trained by
FCNN. Firstly, the length of buffer should be judged. If the
length of buffer is less than the batch size γ, then go back to
the Step 1 to obtain more data for training. Secondly, FCNN
will be trained when the length of buffer is equal to the batch
size γ. Loss function of FCNN is Mean Squared Error (MSE).
If the loss value is greater than the loss threshold value µ2,
then we use the gradient descent function ∆ to refresh the
network weight. Finally, we input any group of H, S, A, C to
FCNN to get the predicted ALC.

V. PERFORMANCE ANALYSIS

In this section, we design several experiments to verify the
effectiveness of DLUP. 1) We joint the GAN and WGAN
with FCNN respectively, and joint the LSGAN with Multiple
Linear Regression (MLR) [33]. We compare these three joint
prediction methods with our method DLUP. 2) We design four
non-joint prediction methods and compare with our method
DLUP.

A. Data preprocessing

All of our experimental data comes from the three wine
cellars with similar environment A1, A2 and A3. We record C,
H, S, A, and ALC every two days and get 11, 11 and 12 groups
of data samples from these wine cellars respectively. Partial
SSF real parameters are shown in Table IV. We can see that
the range of values for each dimension attribute varies greatly.
In order to accelerate the speed of network convergence, we
adopt a min-max method to scale all the original data into
[0,1], the method is described as follows:

X =
X−Min

Max−Min
. (2)

Firstly, we input the real data into LSGAN to train the G
and D until generated data is consistent with the real data.
Next, we input the latent code into the trained G to generate
more data for FCNN to predict. Furthermore, we make the
RMSE between generated data and real data, then we filter the
generated data with RMSE greater than 0.15 through several
experiments. We set the epoch of LSGAN as 20 and set the
epoch of FCNN as 20000.

We also generate data by GAN, WGAN and compare
with our proposed method DLUP. We use Kullback-Leibler
divergence (KLD) to calculate the similarity between the
distribution of real data and generated data. The smaller the
KLD value, the closer the generated data is to the real data.
The KLD of C, H, S, A and ALC are shown in Table V.
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Fig. 6: Framework of the joint prediction model DLUP.

Algorithm 1: DLUP algorithm
Input: random noise z; generated data in G(x); real

data set; random parameters S, A, C and H;
buffer-size δ; batch-size γ; threshold value
µ1, µ2; gradient descent function ∆; network
weights W; learning rate α;

Output: ALC
1 Step 1: filter the generated data;
2 select data[];
3 for data (i) in G(x) do
4 for data (r) in real data set do
5 if RMSE of data (i) and data(r) <µ1 then
6 add the data (i) in the array of select data;
7 end
8 end
9 end

10 Step 2: put the filtered data into buffer;
11 for element in select data do
12 if length (buffer) <δ then
13 put the element into buffer ;
14 else
15 index=range[0, δ-1];
16 replace the data with index in the buffer with

element;
17 end
18 end
19 Step 3: predict ALC;
20 if length (buffer)<γ then
21 jump to Step 1;
22 else
23 while loss=[train(S, A, C, H)-ALC]2 > µ2 do
24 ∆← -g((F(S, A, C, H)-ALC)2);
25 W = W+ α∆;
26 end
27 end
28 ALC=predict (S, A, C, H);
29 return ALC;

Fig. 7: The structure of FCNN.

TABLE IV: The real parameters of SSF.

Cellar Temperature Humidity% Starch content% Acidity%
40 45.31 35.17 1.42

40.5 45.4 34.85 1.55
43 45.4 34.25 1.69
42 45.42 34.12 1.69

The results show that data generated by DLUP has the total
minimum KLD.

TABLE V: The KLD of the three data generation algorithms.

Parameters GAN [21] WGAN [26] DLUP
C 0.0061 0.0061 0.0058
H 0.0056 0.0049 0.0055
S 0.0366 0.0255 0.0335
A 0.0316 0.0320 0.0310

ALC 0.161 0.239 0.153
Total 0.2409 0.3075 0.2288

B. Comparison and analysis of experimental results

We joint FCNN with GAN (GAN-FCNN), WGAN
(WGAN-FCNN) respectively and LSGAN with MLR
(LSGAN-MLR) as well, and compare the prediction results
with our method DLUP. We design a FCNN with five layers
and the structure of FCNN is shown in Fig. 7. The prediction
results are verified by using 34 sets of real data. The results are
shown in Fig. 8. X-axis represents the sample numbers (sample
number is random) of the data sets and Y-axis represents the
ALC. Green line represents the real ALC, and the red line
represents the ALC predicted by the joint prediction models.

In addition, we generate data by LSGAN and filter the
generated data with RMSE greater than 0.15, then we use
the filtered data to train FCNN. In this method, G trained by
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a. GAN-FCNN b. WGAN-FCNN

c. DLUP d. LSGAN-MLR
Fig. 8: Prediction results of ALC based on the GAN-FCNN,
WGAN-FCNN, DLUP and LSGAN-MLR.

LSGAN does not continue to generate data for FCNN, which
is a non-joint training method. Similarly, we construct the non-
joint model by combining GAN with FCNN and combining
WGAN with FCNN. Moreover, we generate data by LSGAN
and filter the generated data with RMSE greater than 0.15,
then the filtered data will be trained by MLR to predict ALC.
The prediction results are shown in Fig. 9.

We get MSE between the real ALC and the predicted ALC,
and the MSE of each method is shown in Table VI. The smaller
the MSE is, the more accurate the prediction is. Each algorithm
is tested ten times, and the average running time of each
algorithm is shown in Table VI. We can see that our method
DLUP has the minimum MSE 1.0681. However, the running
time of DLUP is higher than the other non-joint prediction
methods.

In summary, our DLUP scheme combines the generating
ability of LSGAN with the predicting ability of FCNN.
DLUP has higher prediction accuracy through the experiments.
However, the running time of DLUP is longer than the other
non-joint prediction methods in this paper.

TABLE VI: MSE and running time of each prediction model.

Prediction models MSE Running time
GAN-FCNN 1.535 4.2h

WGAN-FCNN 1.6618 4.3h
DLUP 1.0681 3.9h

LSGAN-MLR 1.505 3.5h
Non-joint GAN-FCNN [21], [27] 1.579 0.21h

Non-joint WGAN-FCNN [26], [27] 2.043 0.25h
Non-joint DLUP [25], [27] 4.986 0.33h

Non-joint LSGAN-MLR [25], [33] 2.062 0.2h

C. Engineering Application

SSF has a good application in enzyme preparation, or-
ganic acid flavor and other industry fields. SSF puts the pre-
proportion raw materials into the fermentation tanks, and the

a. Non-joint GAN-FCNN b. Non-joint WGAN-FCNN

c. Non-joint DLUP d. Non-joint LSGAN-MLR

Fig. 9: ALC prediction results based on the non-joint GAN-
FCNN [21], [27], non-joint WGAN-FCNN [26], [27], non-
joint DLUP [25], [27], and non-joint LSGAN-MLR [25], [33].

Fig. 10: Data processing of liquor SSF based on IIoT.

fermentation process can not be controlled or changed any
more. The production of liquor mainly relies on SSF. Using
deep learning to predict the quality and yield of SSF can
reduce the failure probability in SSF. Fig. 10 shows the data
processing of liquor SSF.

However, the proportion of raw material depends on the
artificial expertise, which leads to unstable yield and quality.
To improve the utilization in SSF, we predict the quality and
yield in advance according to the proportion of raw materials
before SSF. In Fig. 11, collected data will be analyzed by our
proposed DLUP scheme. Specifically, we use the G of trained
LSGAN to generate more data, then joint the trained G of
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Fig. 11: The application of SSF prediction based on DLUP in
IIoT.

LSGAN with FCNN to predict the yield and quality of SSF.
This method predicts the quality and yield of raw materials in
advance, which reduces the failure probability of SSF.

VI. CONCLUSION AND FUTURE WORK

We design a system framework for collecting parameters
and predicting the quality and yield of liquor SSF in IIoT.
System framework of liquor SSF is modeled by the Edge-
rewritable Petri net and the soundness of the system framework
is proved. Since the real data only has 34 groups, we generate
data by trained G of LSGAN, then these generated data is used
to predict yield and quality by FCNN. Trained G of LSGAN
generates more data that is close to the true distribution. FCNN
is able to analyze the relationship of C, H, S, A and ALC.
Experiments show that the prediction accuracy of the joint
prediction algorithms is higher than that of the other non-joint
prediction algorithms, and DLUP outperformed than the other
joint models GAN-FCNN, WGAN-FCNN and LSGAN-MLR.

We will focus on developing more efficient ways to enhance
the quality and yield for SSF. Influences of C, H, S, A on
ALC are discussed in this paper. However, microorganism is
another factor that affects the quality of SSF. In the future, the
influence of microorganism on SSF will be studied.
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