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ABSTRACT Neural networks traditionally produce a scalar value for an activated neuron. Capsules,
on the other hand, produce a vector of values, which has been shown to correspond to a single, composite
feature wherein the values of the components of the vectors indicate properties of the feature such as
transformation or contrast. We present a new way of parameterizing and training capsules that we refer to as
homogeneous vector capsules (HVCs). We demonstrate, experimentally, that altering a convolutional neural
network (CNN) to use HVCs can achieve superior classification accuracy without increasing the number
of parameters or operations in its architecture as compared to a CNN using a single final fully connected
layer. Additionally, the introduction of HVCs enables the use of adaptive gradient descent, reducing the
dependence a model’s achievable accuracy has on the finely tuned hyperparameters of a non-adaptive
optimizer. We demonstrate our method and results using two neural network architectures. For the CNN
architecture referred to as Inception v3, replacing the fully connected layers with HVCs increased the test
accuracy by an average of 1.32% across all experiments conducted. For a simple monolithic CNN, we show
HVCs improve test accuracy by an average of 19.16%.

INDEX TERMS Adaptive gradient descent, capsule, convolutional neural network (CNN), homogeneous
vector capsules (HVCs), Inception.

I. INTRODUCTION
In [1], the authors argued that standard convolutional neural
networks are ‘‘misguided’’ in their usage of neurons that are
composed of singular scalars to summarize their activation.
The authors proposed (a) the concept of a ‘‘capsule’’, which is
comprised of multiple scalar values and (b) posited that these
capsules would be capable of recognizing a ‘‘visual entity
over a limited domain of viewing conditions and deforma-
tions’’ and that the capsule’s members would include both
the probability that the entity is present as well as a set
of ‘‘instantiation parameters’’ that ‘‘may include the precise
pose, lighting and deformation relative to the canonical ver-
sion of that entity’’. In their work, they (c) demonstrated that
capsules could learn the x and y coordinates of a visual entity
and (d) made a convincing case that capsules could learn to
identify ‘‘any property of an image that we can manipulate in
a known way’’.

Research into capsules did not progress much until a pair
of papers were pre-published on arXiv in late 2017. The first
of these two papers ( [2]) received an especially significant
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amount of attention, due to the fact that it published results on
par with the state-of-the-art for both the standard MNIST [3]
and smallNORB [4] datasets using a relatively shallow net-
work in combination with capsules. Additionally, the network
described in the first paper was shown to be highly effective
at segmenting highly overlapped digits from theMNIST data.
Both papers utilized an iterative routing mechanism between
layers of capsules. They referred to the method in the first
paper as ‘‘Dynamic Routing’’ and used a different method
in the second paper based on the Expectation-Maximization
algorithm [5]. The architecture described in the second paper (
[6]) improved upon the state-of-the-art classification accu-
racy for smallNORB by 45%.

The architectures described in both papers used two layers
of capsules in order to make the final classification and used
matrix multiplication between them. In both papers, in addi-
tion to learning the weights used in the matrix multiplications
using backpropagation, a routing algorithm was employed to
iteratively ‘‘refine’’ the weights of the matrices. The authors
interpret the first set of capsules as ‘‘parts’’ and the second
set as ‘‘wholes’’ and the routing algorithm as a method for
finding agreement about which whole is best described by
the particular set of parts.
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Both papers published results on relatively small data
sets. In both cases this was due to the high computational
cost associated with using a routing algorithm. Additionally,
the architecture from the first paper requires a large number
of parameters per output class (147,456) just for the weights
between capsule layers, making datasets with a large num-
ber of output classes (like the 1,000 classes in ImageNet)
intractable.

Another important thread of neural network research is
choosing the best optimization algorithm and its hyperparam-
eters. Stochastic Gradient Descent (SGD) with momentum is
simple and effective but requires careful tuning of both the
learning rate η and the schedule for decaying that learning
rate as training progresses. Though guidance has emerged in
the form of rules-of-thumb [7], it is none-the-less true that
the choice of the learning rate and rate decay scheme remain
a matter of trial-and-error and heavily dependent on the data
being trained on. As such, alleviating the need to carefully
tune a single learning rate has emerged as an important
research area.

The most successful strategy for alleviating the need to
carefully tune the learning rate has been to maintain separate
learning rates for every trainable parameter and to learn each
of these learning rates based on the magnitude of previous
gradient updates to those parameters. This method in general
is referred to as adaptive gradient descent. Research into this
began in earnest with AdaGrad [8] and has continued to be
an active area of research up to the present, with the most
popular adaptive method currently being Adam [9]. Adaptive
methods of gradient descent are popular for several reasons.
First, because they adapt a learning rate for every parameter,
they are able to learn sparse, yet highly informative features
differently than more dense information that may be less
predictive. Second, they reduce the need for careful tuning
of the learning rate and learning rate decay by allowing the
learning rate to be ‘‘learned’’ from the data. And third, they
tend to approach a convergence much earlier in the training
scheme compared to non-adaptive methods for the same data
and network.

Unfortunately, adaptive gradient descent methods have
some weaknesses. First, sparsely occurring features that are
not highly informative have overweight influence relative to
less sparsely occurring features. And second, empirically,
they are prone to overfitting and creating a generalization gap
between the in-sample and out-of-sample predictions. This
has led some researchers to state that the generalization gap
of adaptive gradient descent methods is an open problem [10]
and has led other researchers to recommend not using adap-
tive methods at all [7]. Indeed, the best performing convolu-
tional neural networks (CNNs) of the past few years have all
used non-adaptive gradient descent methods and hand-tuned
learning rate decay schemes [11], [12] [13], [14] [15], [16].

Our contribution is as follows:
1) We present a new way of parameterizing and training

a pair of capsule layers which we call homogeneous
vector capsules (HVCs). This method, as compared to

other prevailing capsule methods (see [2], [6], [17],
and [18]), uses drastically fewer parameters and avoids
expensive iterative routing procedures, instead relying
solely on weights learned during backpropagation.

2) We demonstrate experimentally that classifying with
HVCs, rather than classifying with fully connected
layers, achieves massively superior results in a simple
monolithic CNN and quantifiably superior results in a
more advanced CNN architecture (Inception v3).

3) We show that the practice of using large values of ε
in popular adaptive gradient descent methods has the
effect of muting their adaptability.

4) We demonstrate experimentally that when usingHVCs,
training with adaptive gradient descent methods using
the intended small value of ε restores the adaptability of
the methods and achieves superior classification accu-
racy relative to finely-tuned learning rates and decay
schedules. In so doing, we solve an open problem in
convolutional neural network research.

II. RELATED WORK
Morzhakov and Redozubov [19], inspired by the work of
Hubel & Wiesel [20], put forth a neural network architecture
similar to that used by [2] in that it utilized vector neurons,
rather than scalar neurons, which shared common inputs and
outputs. As their work was inspired by the physiology of pri-
mate brains, they characterized the structure as minicolumns,
the term used for the analogous structure in primate brains.
It is noteworthy that their architecture did not use any analog
to the routing mechanism employed by [2] and [6]. While
performing comparably with traditional CNNs on theMNIST
dataset, it performed worse than the architecture employed
by [2].

Roy et al. [21], compared the effects of various forms
of image degradation (additive white Gaussian noise, salt
and pepper noise, etc.) on MobileNet [22], VGG16 &
VGG19 [11], Inception v3 [13], and CapsNet [2] and found
that CapsNet was far more robust against the degradation
methods they tested than any of the others. They hypothesize
that this is not only due to the presence of the capsule neurons
and/or dynamic routing, but also due to the shallower nature
of CapsNet, having gone through fewer layers of convolu-
tions.

In addition to MNIST and smallNORB, researchers ( [23],
[24], [25], [26]) have ventured to apply capsules tomarginally
more complex datasets such as Fashion MNIST [27],
SVHN [28], CIFAR-10, and CIFAR-100 [29]. smallNORB
notwithstanding, these datasets consist of images that are no
more than 32 × 32 pixels, with smallNORB having images
of resolution 96× 96. In our experiments, we chose datasets (
[30] and [31]) with images of much larger dimensions that we
scaled down to 299× 299 before feeding into our networks.
In their experimentation, Nair et al. [23], concluded that

the CapsNet architecture is ‘‘unlikely to work on other clas-
sification tasks, let alone machine learning tasks in general’’.
They also concluded that the design was ‘‘not making full use
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of routing to encode’’ the spatial relationships between the
components of the objects the network was classifying. They
hypothesized that a neural network, as opposed to a routing
algorithm, would better accomplish the goal of reweighting
the coefficients used to determine the agreement between
capsule layers. This method was experimented with by [32],
though they were unable to produce any significant results,
whereas Hahn et al. [24] were able to use neural network
routing to achieve comparable results to [2] but requiring far
less computation.

Indeed, the routing procedure of CapsNet and subsequent
capsule networks has become a topic of debate. Experimen-
tation performed by Gu and Tresp [26] shows that the routing
procedure of CapsNet contributes neither to the network’s
ability to generalize nor to its robustness to novel affine
deformations. Paik et al. [25] analyzed five different routing
algorithms (including [2] and [6]) and concluded that routing
procedures can produce results that are worse than assigning
connection strengths uniformly or randomly and that in most
cases the routing procedures do not change the classification
result but rather simply polarize the strengths of the connec-
tions between the capsules. With HVCs, we use no special
routing procedure, and instead rely solely onweights between
capsule layers that are learned during back-propagation.

One of the best performing CNNs to be published in the
past several years is Inception v3 [13], which achieves near
state of the art accuracy on the full ILSVRC 2012 Ima-
geNet relative to the modest number of parameters it
uses (∼24.5M). To train their architecture, they used the
RMSProp1 optimizer, which is indeed designed to be an
adaptive gradient descent method. RMSProp adapts each
parameter in the model using Equation 1:

1√
E[g2]+ ε

(1)

E[g2] is the exponential moving average of the past
squared gradients for the parameter and the intended purpose
of the ε parameter is to provide numeric stability by mitigat-
ing the danger of division by zero, and thus implementations
default this value to 1 × 10−10, which would create a range
of possible values for the per-parameter adaptive term of 0 to
1× 106. By using a value of 1.0 when training Inception v3,
they limit this range to 0 to 1, thus setting an upper bound five
orders of magnitude less than intended for this term. While
still technically adapting each parameter, the range of adap-
tation is so dampened that we would characterize RMSProp
with a 1.0 ε as quasi-adaptive at best. As such, we agree with
Chen and Gu [10] that effectively utilizing (truly) adaptive
gradient descent methods with convolutional neural networks
remains an open problem relative to Inception v3.

The Adam optimizer [9] has an analogous per-parameter
adaptive term for each of the past squared gradients shown in

1RMSProp is an unpublished, adaptive learning rate method introduced by
Geoffrey Hinton in Lecture 6e of a now no longer available Coursera course.
See: http://www.cs.toronto.edu/∼ tijmen/csc321/slides/lecture_slides
_lec6pdf

Equation 2 (in addition to another term not relevant to this dis-
cussion for past gradients that gives Adam a momentum-like
behavior):

1√
v̂t + ε

(2)

v̂t is the bias corrected exponential moving average of
the past squared gradients for the parameter. Here again,
the Adam optimizer employs the use of an ε that implemen-
tations default to (1× 10−10. Since in Adam, the ε is moved
out from underneath the radical, Adam is able to adapt each
parameter by five orders of magnitude more than RMSProp
(with a range of 0 to 1× 1010.

III. CAPSULE LAYERS CONFIGURATION
Sabour et al. [2] proposed two final layers of capsules. The
first of which has 8 dimensions shaped as a vector and the sec-
ond of which has 16 dimensions, also shaped as a vector.
The transformation between the two layers of capsules is a
typical matrix multiplication, wherein every pair of capsules
has an associated 16×8 matrix of trainable parameters and is
multiplied by each of the 8-dimensional vector capsules and
summed to form the input into the 16-dimensional capsule.
In Equation 3, an equivalent transformation simplified to two
and four dimensions for clarity is presented.

a b
c d
e f
g h

 · [x1x2
]
=


ax1 + bx2
cx1 + dx2
ex1 + fx2
gx1 + hx2

 (3)

In this equation, as well as in Equation 4 and Equation 5,
the variables a through h represent learned weights that
are being applied in the transformation, and the variables
x1 through x2 (in Equation 3) and x4 (in Equation 4 and
Equation 5) represent the values computed from the previous
operation in the network. In each case, the second matrix on
the left hand side of the equation is the first capsule and the
matrix on the right hand side is the second capsule.

A problem with this transformation in Equation 3 becomes
apparent when viewing it as an overdetermined system of lin-
ear equations in matrix form: every dimension in the second
layer of capsules, beyond the dimensions in the first layer,
are at best redundant and more probably, due to the random
initialization of the weights, a challenge to the optimization
algorithm used during backpropagation to reconcile multiple
differing losses derived from each activation in the previous
layer.

Also, it should be noted that each dimension of the second
layer of capsules is a linear combination of all dimensions
of the first layer of capsules. This is a desirable property in
a fully connected layer in a neural network. However, with
the interpretation and empirical verification in the work of
Sabour et al. [2] of the dimensions of a capsule as being
distinct features of a given sample, it is our hypothesis that
this entangling of distinct features from one layer into all
features in the next layer is an undesirable property.

VOLUME 9, 2021 48521

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


A. Byerly, T. Kalganova: HVCs Enable Adaptive Gradient Descent in CNNs

In their follow-up work, Hinton et al. [6] switched to using
an equivalent number of dimensions in neighboring capsule
layers, though they did not cite their motivation for doing
so as to alleviate the problem of an overdetermined system.
Additionally, they shaped their capsules as matrices rather
than vectors. The authors noted that this reshaping had the
effect of reducing the number of trainable parameters (for
every pair of capsules) from being the product of the dimen-
sions of the two layers of capsules to being only the number
of dimensions of a single layer of capsules. This method of
matrix capsules requires that the number of dimensions in
neighboring layers be both equivalent and a perfect square.
In Equation 4, an equivalent transformation simplified to four
dimensions is presented:[

a b
c d

]
·

[
x1 x2
x3 x4

]
=

[
ax1 + bx3 ax2 + bx4
cx1 + dx3 cx2 + dx4

]
(4)

In addition to alleviating the problem of an overdetermined
system and significantly reducing the number of trainable
parameters, this formulation results in only the square root of
the total number of features in the first layer being entangled
with each feature in the second layer.

We propose a new method for the transformation from one
layer of capsules to the next. Rather than using the typical
transformation matrix, the proposed method involves using
a transformation vector and rather than using the typical
matrix multiplication, the proposed method involves using
the Hadamard product (element-wise multiplication). This
method is shown in Equation 5, simplified to four dimensions
for clarity: 

a
b
c
d

�

x1
x2
x3
x4

 =

ax1
bx2
cx3
dx4

 (5)

This method goes back to using vectors for the shape of the
capsules and requires that the neighboring layers of capsules
be of equivalent dimension, thus we call these Homogeneous
Vector Capsules. With the constraint of requiring equivalent
dimensions in the capsule layers, this method comes with the
following benefits:

1) Because this method uses the Hadamard product rather
than typical matrix multiplication, the drawback of
using the more intuitive vector shape for a capsule is
removed, as the number of trainable parameters per pair
of capsules stays equal to the number of dimensions
in the capsules (as in Hinton et al. [6]), rather than
being that number of dimensions squared (as in Sabour
et al. [2]).

2) By the nature of the Hadamard product, this method
cannot suffer from the problem of an overdetermined
system. This is due to the fact that any valid expres-
sion of element-wise multiplication requires the same
number of dimensions be present in both operands,
where the one operand represents the coefficients and

FIGURE 1. The standard approach to transforming the final convolutional
layer into class predictions.

FIGURE 2. Using homogeneous vector capsules to transform the final
convolutional layer into class predictions.

the other the variables (see Equation 5 contra Equa-
tion 3 which has a greater number of coefficients than
variables).

3) This fully disentangles features from the dimensions
in the first layer of capsules from differing dimen-
sions in the subsequent layer of capsules.i.e., each
dimension in the first layer maps to one and only one
dimension in the second layer.

4) This eliminates all of the addition operations used in
matrix multiplication for a modest reduction in com-
putational cost.

5) Whereas the number of dimensions in [6] must be a per-
fect square, HVCs can be composed of any number of
dimensions that evenly divides the number of neurons
being input into them.

IV. EXPERIMENTAL SETUP AND RESULTS
We designed our experiments to compare (a) baseline neu-
ral network architectures that use the standard approach of
transforming the final convolutional layer in the network as
in Figure 1with (b) reshaping the final set of featuremaps into
j n-dimensional vector capsules, where j·n is the total number
of weights coming out of the final set of feature maps. When
doing this, the final classification is done, rather than with
scalar output neurons, with y n-dimensional vector capsules
as in Figure 2, that are reduced to predictions by computing
the Euclidian norm of the vectors.

We conducted our experiments using two convolutional
neural network architectures. The first network is a typical
simple monolithic CNN featuring a series of 3 × 3 convolu-
tions interspersed with max pooling operations (see Table 1).
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TABLE 1. The stem of the simple monolithic CNN. The baseline experiments were classified through a fully connected layer after flattening the final set of
feature maps as in Figure 1. All other experiments used HVCs as in Figure 2.

TABLE 2. Optimizers used for all experiments.

The motivation behind this design was to examine the effect
of capsules on a simple, widely understood and easily imple-
mented architecture with a low number of parameters (in
this case ∼ 1.6M to ∼ 22.1M, depending on the number of
output classes and the capsule configuration). We used no
drop-out or L2 (or any other form) of regularization with
this architecture. The second network is the popular Inception
v3 architecture [13]. This network was chosen due to its good
performance given the relatively low number of parameters it
uses (∼ 23.2M to ∼ 156.1M, depending on the number of
output classes and the capsule configuration).

We conducted our experiments using three datasets of
increasing difficulty:
• The full-sized Imagenette [30], a subset of ImageNet
consisting of 10 easily classified classes: tench, English
springer, cassette player, chain saw, church, French horn,
garbage truck, gas pump, golf ball, and parachute.

• The full-sized Imagewoof [30], a subset of ImageNet
consisting of 10 more closely related classes, all of
which are dog breeds: Australian terrier, Border terrier,
Samoyed, Beagle, Shih-Tzu, English foxhound, Rhode-
sian ridgeback, Dingo, Golden retriever, andOld English
sheepdog.

• Food-101 [31], a challenging and noisy dataset consist-
ing of 101 classes of images retrieved from the now
defunct foodspotting.com.

We conducted our experiments using four different opti-
mization strategies. RMSProp has been a popular choice for
optimizing convolutional neural networks since [13]. This
strategy which we have denoted O1 (see Table 2) is the
strategy used in [13] whereas the strategy we have denoted
O2 is the strategy employed by the official TensorFlow

implementation of Inception v3 published on github.com2

which results in slightly higher accuracy. In addition,
we experimentedwith two other optimization strategies. O3 is
the Adam optimizer with the defaults suggested in [9], and
O4 is the Adam optimizer with a slowly decaying base learn-
ing rate.

Additional experimental parameters are as follows:

• All activations were ReLU preceded by batch normal-
ization [33].

• Loss for the Inception v3 experiments was computed
using the label-smoothing regularization method as
in [13], whereas categorical cross-entropy was used for
the simple monolithic CNN experiments.

• All experiments ran for 100 epochs.
• Evaluations were performed using the exponential mov-
ing average of past weights as in [34], with a decay factor
of 0.999.

• A batch size of 32 was used for Imagenette and Image-
woof. A batch size of 96 was used for Food-101 for
models S1-S8 and I1-I6 and a batch size of 68 for
models I7 and I8 (see Table 3 and Table 4). These batch
sizes were dictated by the constraints of the available
hardware.

• We used an image size of 299×299 for all images in
all datasets, in all cases augmented using the strategy
employed by the official TensorFlow implementation of
Inception v3 published on github.com.3

2https://github.com/tensorflow/models/blob/master/research/
slim/train_image_classifier.py

3https://github.com/tensorflow/models/blob/master/research/
slim/preprocessing/inception_preprocessing.py
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TABLE 3. Models used for the experiments conducted using a simple monolithic CNN.

TABLE 4. Models used for the experiments conducted using the Inception v3 architecture.

FIGURE 3. Methods of converting a set of four 3 × 3 filter maps into a set of capsules.

In our experiments, we explored 3 different methods of
transforming the final set of feature maps into capsules.
The first method creates multiple capsules for each distinct
x and y coordinate of the feature maps (see 3a). The sec-
ond method creates a single capsule for each distinct x and
y coordinate of the feature maps (see 3b). The intuition
behind these two methods is that each position in the feature
map represents a meaningful feature and that using cap-
sules to ‘‘group’’ these together from multiple filter maps

encourages the feature maps to cooperate. The difference
being that in the multiple capsule case, multiple disparate
groups are allowed, wherein the single capsule case, only
one such group is allowed. The third method creates a single
capsule for each distinct feature map (see 3c). The intu-
ition behind this method is the standard interpretation of
a feature map (i.e. it represents a single feature per map).
However, rather than allowing each dimension of the fea-
ture map to learn independently through a fully connected
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FIGURE 4. Classification accuracy on 4 simple CNN models, 3 different datasets, and 4 different optimization strategies. Each chart is
cross-referenced in Table 7.

layer, we use capsules to maintain the cohesion among the
dimensions.

We conducted experiments on eight variations of the sim-
ple monolithic CNN architecture (see Table 3). The first such
variation, denoted S1, is the baseline model that flattens the
final set of feature maps and then classifies through a layer
of fully connected neurons. Variations S2 through S6 reshape
the final set of feature maps as in 3a. Variation S7 reshapes
the final set of featuremaps as in 3b. Variation S8 reshapes the
final set of feature maps as in 3c. In variations S2 through
S8, after the first layer of capsules are shaped, they are then
classified through the second set of capsules that form the
HVC pairs.

We conducted experiments on eight variations of the Incep-
tion v3 architecture (see Table 4). The first such variation,
denoted I1, is the baseline model as described in [13]. Vari-
ations I2 through I6 reshape the final set of feature maps
in both the main and auxiliary branches as in 3a. Variation
I7 reshapes the final set of feature maps in both branches
as in 3b, and Variation I8 reshapes the final set of feature
maps in both branches as in 3c. In variations I2 through I8,
after the first layer of capsules are shaped each branch is then
classified through the second set of capsules that form the
HVC pairs.

Unique to the Inception v3 architecture relative to the
simple monolithic CNN is that, in the baseline model I1 and

models I2 through I6, the final operation before the flattening
operations in both the main and auxiliary outputs reduce the
feature maps to 1×1. In themain branch, this is accomplished
via global average pooling [35] and in the auxiliary branch,
this is accomplished by performing a 5×5 convolution on a
set of 5 × 5 feature maps. Both of these methods effectively
collapse the spatial information present in the preceding oper-
ations into a single scalar value per feature map. Despite
this, these global operations have been empirically shown to
be effective in maintaining models’ ability to achieve good
generalization and accuracy, all while significantly reducing
the number of trainable parameters. Generally, these global
operations precede a final fully connected layer from which
classification is performed. The larger the number of classes
being classified, the more pronounced the reduction in train-
able parameters is. For two of our Inception v3 experiments,
I7 and I8, we removed these global operations, which results
in the final set of feature maps in the main branch being 8×8
and the final set in the auxiliary branch being 5 × 5. This
in turn results in an increasing number of parameters in the
model as the number of output classes increases (see Table 6).

We conducted an additional experiment on the full
ILSVRC 2012 ImageNet, which consists of 1.2M training
images, and thus takes a considerable amount of time to
train for a full 100 epochs. Using the Inception v3 models’
performance on Imagenette as a guide, we chose to use the
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FIGURE 5. Classification accuracy on 8 inception v3 models, 3 different datasets, and 4 different optimization strategies. Each chart is
cross-referenced in Table 8.

TABLE 5. Performance comparison on the full ILSVRC 2012 ImageNet.

HVC configuration from I6 and optimizer O4. Our network
significantly outperformed the only other capsule network
with published full ImageNet results (see Table 5).

V. DISCUSSION
A. THE SIMPLE MONOLITHIC CNN
As can be seen in Table 7 and Figure 4, models S2-S8, which
used HVCs, wildly outperformed the baseline model S1 with
all optimization strategies, on all three datasets tested. The
experiment for the baseline model S1 when using optimiza-
tion strategy O2was not able to learn to a better accuracy than
random guessing on Imagenette and Imagewoof and actually
‘‘learned’’ to achieve an accuracy of 0% on Food-101. The
average accuracy of the experiments of the baseline model
S1 with all optimization strategies, on all three datasets,
excluding those experiments where the model had not learned
to an accuracy better than random guessing, is 64.55%. The
average accuracy of the experiments for models S2-S8 with
all optimization strategies, on all three datasets is 76.92%.
This is a relative improvement of 19.16%. For all three
datasets, the best performing experiments used optimization

strategy O4, which was the Adam optimizer with an appro-
priately small ε resulting in the intended adaptability along
with a slowly decaying base learning rate.

6 out of 12 of the combinations of optimization strategy
and dataset achieved their highest accuracy with model S7,
which used the method that creates a single capsule from
each distinct x and y coordinate of the feature maps. 4 out
of 12 of the combinations achieved their highest accuracy
with model S6, which used the method that creates 2 capsules
from each distinct x and y coordinate of the feature maps.
This suggests that deriving 1 or 2 capsules for each distinct
x and y coordinate of the feature maps is superior to deriving
a higher number of capsules from each such x and y coor-
dinate (models S2-S5) or deriving the capsules from entire,
individual feature maps (model S8).

B. INCEPTION V3
Optimization strategies O1 and O2 are the two optimization
strategies published and used to train Inception v3 on Ima-
geNet [13]. It would be understandable, yet naïve, to assume
that these optimization strategies would be superior choices
in general. But as can be seen in Table 8 and Figure 5, only
occasionally did either strategy O1 or O2 outperform O3,
and only once did O2 outperform O4. This demonstrates that
finely-tuned hyperparameters are finely-tuned, not just to the
network architecture, but also to the data.
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TABLE 6. Trainable parameters used by the models in our experiments by number of classes. The difference between the number of trainable parameters
for otherwise equivalent models using fully connected layers vs. HVCs is negligible. For S1 vs. any of S2 through S8, the former has only 0.16% fewer
parameters. As models get larger the difference lessens and eventually inverts. For example, the difference between I1 and any of I2 through I6 when
classifying 1000 classes is 0.007% fewer parameters for the HVC models.

TABLE 7. Classification accuracy on 8 simple monolithic CNN models, 3 different datasets, and 4 different optimization strategies. The first column in
each row is a cross-reference to the charts in Figure 4. The model parentheticals refer to the number of capsule dimensions. For example S2 (8d) refers to
model S2 which uses 8-dimensional capsules.

The only times the baseline model I1 outperformed all
capsule models I2-I8 was for the Food-101 dataset when
using optimization strategies O1 and O2. The best perform-
ing capsule model outperformed the baseline model I1 by
an average of 1.32% across all optimization strategies and
datasets.

3 out of 12 of the combinations of optimization strategy and
dataset achieved their highest accuracy with model I7. This
stands in contrast to the experiments on the simple monolithic
CNN where twice as many combinations were superior for
the analogous model S7. The two architectures are too dis-
similar to draw any firm conclusions, but we hypothesize that
there two factors contributing to this. First, creating a single
capsule for each distinct x and y coordinate of all featuremaps
of the main output for Inception v3 results in 2,048 dimen-
sional capsules (as the final set of feature maps is 2,048 in
number) compared to only 256 dimensions for the capsules
coming out of the final set of feature maps in the simple
monolithic CNN. Second, the presence of the auxiliary output
stem in Inception v3. 5 out of 12 combinations achieved their
highest accuracy with model I6 and 3 out of 12 with I5.

These results are less conclusive than those with the simple
monolithic CNN and permit less firm conclusions. However,
these experiments do suggest that a single capsule to a small
number of capsules for each distinct x and y coordinate of all
feature maps is the superior choice.

C. OPTIMIZATION STRATEGY
For models S1-S8 and for all three datasets tested, optimiza-
tion strategy O4 achieved the highest accuracy. The second
highest accuracy was achieved with strategy O1 twice and
with O2 once. For models I1-I8 and for all three datasets,
optimization strategy O3 achieved the highest accuracy twice
and O4 once.

With the Food-101 dataset, arguably the most difficult of
the three datasets tested, baseline model S1 performed better
with the quasi-adaptive optimization strategy O1 than with
either of the truly adaptive strategies O3 or O4. And yet,
strategy O2 achieved a top accuracy of 0% for this model.
O1 and O2 are the same optimization algorithm, but parame-
terized differently. Further, these parameterizations were not
ad-hoc, but rather parameterizations that are published along
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TABLE 8. Classification accuracy on 8 Inception v3 models, 3 different datasets, and 4 different optimization strategies. The first column in each row is a
cross-reference to the charts in Figure 5. The model parentheticals refer to the number of capsule dimensions. For example I2 (8d) refers to model
I2 which uses 8-dimensional capsules.

with the Inception v3 architecture and perform well on the
ImageNet dataset with that architecture. This underscores just
how important hyperparameter choice can be and how closely
related to both network structure and dataset it truly is. This
in turn underscores the relative utility of an adaptive gradient
descent method that is less reliant on hyperparameter choice.

With adaptive gradient descent methods, there is a base
learning rate η that is the same for all parameters and a
separate per-parameter learning rate that is adapted based on
previous gradient updates to that parameter. The two are mul-
tiplied together to determine each parameter’s actual update.
With the Adam optimizer, the suggested base learning rate η
is 0.001 and the range of possible values for the per-parameter
update are 0 to 1010. After being multiplied together, this
gives a range of possible per-parameter updates of 0 to 107.
This is exactly what optimization strategy O3 uses for each
parameter for the duration of the training. Optimization strat-
egy O4 starts with this range for each parameter, and then
gradually decays the base learning rate η over the epochs
of training such that the resultant per-parameter updates are
eventually constrained to a range of 0 to 104. This is similar
to, but far less extreme (by four orders of magnitude) than the
dampening effect caused by using a large ε in the denomina-
tor of the per-parameter term of an adaptive gradient descent
method (contra its intended purpose), as is the case with opti-
mization strategies O1 and O2. Further, when decaying the
base learning rate in the manner of optimization strategy O4,
the dampening is applied gradually over time as the parameter
values descend the loss landscape, rather than statically for
the duration of training (as in the case of a large ε.
Effectively, by allowing the learning rates of different

parameters to change based on what has previously been
learned, an adaptive gradient descent method attempts to
achieve the goals of exploitation and exploration simultane-
ously. Exploration is achieved by decoupling each parameter

from a single learning rate and exploitation is achieved
by the coupling of each parameters’ own learning rate to
what had previously been learned. Using an adaptive gra-
dient descent method with a large ε greatly reduces the
amount of per-parameter exploitation possible. This shoul-
ders the machine learning engineer with the task of choosing
just the right hyperparameters to balance this small amount
of variability in exploitation with the proper amount of
exploration—the very thing adaptive gradient descent meth-
ods are meant to alleviate. This is why, when using a large ε,
we choose to characterize them as quasi-adaptive. By using a
truly adaptive gradient descent method (one with an appro-
priately small ε and then decaying the base learning rate
during training, the simultaneous explore/exploit nature of
the method is preserved early in training and then slowly
shifted to be more exploitative on average, but still allowing
each parameter to have its own still rather large range of
possible explore vs. exploit dispositions.

VI. CONCLUSION
The advent of convolutional layers led to considerable
improvement in the performance of neural networks in
image classification tasks as compared to networks com-
posed entirely of fully connected layers [3]. This is correctly
attributed to the convolutional layers’ ability to extract local-
ized features that are more complicated than a single pixel.
The feature extractors do this by assigning meaning to the
spatial relationships among pixels that are close to each other.
Such meaning is absent when using fully connected layers.
As the term ‘‘fully connected’’ implies, in fully connected
layers every pixel is able to be associated with every other
pixel without regard to their relative positions in the image.
Giving meaning to spatial relationships among the pixels can
be understood as enforcing constraints upon which neurons
are allowed to be associated with each other using trainable
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parameters. Understood in this way, the success of convo-
lutional neural networks can thus be understood as, in part,
resulting from applying constraints on which neurons are
allowed to affect other neurons in the next layer.

We interpret homogeneous vector capsules as performing
a similar function, at the output stage of a convolutional
neural network, as convolutional layers perform at the input
stage. In the traditional design of the classification stage of a
CNN as depicted in Figure 1, every neuron is able to adapt
independently during backpropagation. We hypothesize that
this fact combined with the fact that adaptive gradient descent
methods adapt independent learning rates for every parameter
imparts two orders of adaptability—or stated another way,
‘‘too much’’ ‘‘freedom’’ (to adapt to the training data). This
would indeed result in overfitting and a generalization gap
as has been observed when using adaptive gradient descent
with CNNs. By reshaping the output of the final convolutional
layer into vectors and then connecting those vectors to a
classification layer also composed of vectors, we are con-
straining groups of n-dimensional vectors of neurons to train
together.

Thus, HVCs enable convolutional neural network
researchers to:

1) Use adaptive gradient descent methods when training
CNNs without experiencing a generalization gap.

2) Save time and compute cycles searching for the best
learning rates and learning rate decay schedules to
use to train their network with a non-adaptive gra-
dient descent method and instead use an adaptive
gradient descent method that does not require this
fine-tuning.

In general, we hypothesize that fully connected layers
of scalar valued neurons are indeed ‘‘misguided’’ (as per
Hinton et al. in [1]). Specifically, that using them after the
convolutional layers in a CNN works against the goal of
preserving meaning in spatial relationships within the fea-
tures of an image. The first layer of capsules in a pair of
HVCs, groups outputs from the preceding convolutional layer
together, preserving the spatial relationships that have been
learned as meaningful. By ‘‘routing’’ them to a second layer
of capsules via trainable vectors, groups of capsules (the
first layer of HVCs) that have preserved feature extractions
from the convolutional layers are allowed to learn when they
should be associated with each other to make a classification
prediction (the second layer of HVCs).

In summary, our experimentation demonstrates that:
1) Using HVCs on an advanced neural network architec-

ture like Inception v3 increases the achievable accuracy
by a small but significant margin.

2) Using HVCs on a simple monolithic CNN increases the
achievable accuracy massively.

3) Deriving 1 or 2 capsules from each distinct x and y
coordinate of all feature maps outperforms both deriv-
ing a larger number of capsules in the same manner
and deriving capsules from entire, individual feature
maps.

Future research into HVCs should include:
1) Applications to domains beyond classification.
2) The impact of 3 or more layers of HVCs.
3) Application to a greater variety of network architec-

tures.
The code used for all experiments is publicly available on

GitHub at: https://github.com/AdamByerly/HVCsEnableAGD
Initially published on June 27, 2019.
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