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ABSTRACT 

We   disprove  a  conjecture  of  Harris   [5]  by   showing   that   if    ∧ 
is   a  symmetric  m-linecr  form  on  an         space  and   p

μL ∧̂  is   the 
associated  polynomial     then 
 

                                       ||ˆ||
m!

m/pm
|||| ∧≤∧  

 

for     1  ≤  p   ≤  m'   .     In  general  this   inequality   cannot  be   improved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Notation

Throughout  this  paper    K    denotes  either  the  field  of  complex  numbers 

¢     or  the  field  of  real  numbers     .        If   the  field  is  not   specified RI

the  results  are  valid  in  both  cases,     K  =     and    K  =  ¢  . RI

If     1   ≤  p  ≤ ∞  ,  we  denote  the  conjugate  exponent  by    p'   .       Thus 

                                                 .1
P'
1

P
1

=+  

If     (X,   A,  m)     is  a  measure  space  we  shall  write        for  the  Banach p
μL

space   of   all   A-measurable  functions     f:   X  →  K    for  which    ||f ||p     < ∞  
where 

                          )p1(p/1)( d|f|||f|| p

x
p ∞<≤μ= ∫

 
and    ||f ||∞      is  the  infimum  of  those  non-negative  numbers    M    such  that 

{x ∈  X  :   |f(x)|    >  M} 

is     μ-null  set. 

If     μ     is  the  counting  measure  on  a  set    X  ,   we  denote  the  corresponding 
p
μL  -space  by    ℓp    if    X    is  countable.      An  element  of   ℓp   may  be 

regarded  as  a  complex  sequence    x  =   (ξn  )   ,     and 

                                        .1/pp|nξ|
1n

p||x||
⎭
⎬
⎫

⎩
⎨
⎧
∑
∞

=
=  

 
If     A    is  a  Banach  space  a  function  f:   X →  A    is   strongly  measurable 
if   it   is   Borel   measurable   and   has  a   separable  range.     (The   range  of   f 
is   the   subset    f(X)     of    A  ).       Of  course,   a   simple   function   is   strongly 
measurable   if  and   only   if   it   is   Borel   measurable. 

A    function    f:  X  → A    is   integrable   (or   Bochner   integrable)   if  it  is 

strongly   measurable   and   the  function     x  → || f (x) || A    is   integrable. 

By        (A)   =  Lp
μL P(X,   dμ;  A)   we  denote  the  space  of  all   strongly  measurable 

functions    f     such  that 

            ∞<μ∫ )x(d||)x(f|| A
x
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where     1  ≤  p   <  ∞ ,  We  denote  by    (A)   -  L∞
μL ∞  (X,   dμ ;   A)      the 

completion   in   the   sup-norm  of   all   simple  functions 

                              Aia,(x)Eχia
n

1i
s(x)

i
∈∑

=
=

where          is  the  characteristic  function  of   the  set    E
i

EX i   . 

The  completion   in         (A)    of   the  functions   of  the  above  norm  with ∞
μL

m(Ei)   < ∞    for  every     i  =   l , . . . , n      is   denoted  by     ,∞
μL  0 (A)   . 
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1.        INTRODUCTION

Let     E     and     F     be  vector   spaces  over     K  .     We  write    Em     for   the 
product     E   ×  E   ×   . . . ×   E     with    m     factors.        An  m-linear  mapping 
Λ :   E m   →  F     is   said  to  be   symmetric   if 

Λ   (x1   ,...,   x m )   = Λ  (xσ (1)      .,...,   x σ (m) ) 

for  any     x1   ,. . . ,xm     ∈  E   and  any  permutation  σ  of   the  first  m 
natural  numbers. 

Let   ℒm (E,F)  (ℒ s (E,F))     denote  the  space  of  all   (symmetric)  m-linear m
mappings   Λ   :   Em    →  F     and  define 

Λ̂   (x)   =  ∧(x,. .. ,X)   . 

A  mapping    P : E→ F  is   said  to  be  a  homogeneous  polynomial  of   degree 
m  if  P  = Λ   for   some ∈  ℒˆ Λ m  (E,F) ,   and   it   is   said  to  be  a  polynomial 
of  degree  m  if 

                                         0P,PP mi

m

0i

≠= ∑
=

where    Pi   :   E  →  F     is   a  homogeneous  polynomial  of  degree  i  for 
i    =  l,...,m    and     P0     :   E  →  F     is   a   constant   mapping. 

If     Λ     is  a  2-linear      ¢-valued  mapping  on     ¢m  ,     m  ∈  N   ,   then  there 
exists   an    m  ×  m    matrix    A     such  that    Λ  (x,y  =  xAyt       for   all 

x  =   (x1...,xm  )   ∈  ¢m       and  all  y  =   (y1. . . ,ym)   ∈   ¢ m   . 

.jyixija
m

1ji,
y)(x,then

mj1
mi1)ij(aAIf ∑

=
=Λ

≤≤
≤≤=  

 

Hence  any  ¢—valued  homogeneous  polynomial     P     of  degree     2   , 

P   :  ¢m  → ¢  has   the  well  known  form 

 

                                   .jxixija
m

1ji,
x)(x,P(x) ∑

=
=Λ=  

This  explains  the   terminology .
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If    X,Y    are normed  linear  spaces over    K    we define 

|| ||    =  sup{| |  (x) | |      :      ||X||  ≤  1} Λ̂ Λ̂

|| ||    -  sup{| |  (xΛ Λ l  ,....   xm)||   :  ||x j | |  ≤  l     (j  =  l  , . . , m ) }  

for    ∈ ℒ   (X,Y)   . Λ s
m

Martin  [8]  proved  that 

                                  ||ˆ||
m!

mm
||||||ˆ|| Λ≤Λ≤Λ                                                                       (1) 

 

thus  answering  a  question  of  Mazur  and  Orlicz  in  the  Scottish  Book  [9]. 

Harris  [5]  has  proved  that  if    X    is  an        space  with    1  ≤  p  ≤  ∞ p
μL

and  m is a  power  of  2,   then 

                           ||ˆ||p
|2p|

m!

mm|||| Λ

−

≤Λ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
                                                                       

(2) 
for  all    ∈ℒ     (X, ¢)   .  Harris  also  conjectured  that   (2)   holds  for  all Λ s

m
positive  integers    m    and  that  the  constant  given  is  best  possible  when  l≤p≤2. 

If  p=1   then   the   constant   
m!

mm
  is the  best  possible   [4]  .   In   fact 

there  exists Λ∈ℒ   (ls
m

1, ¢)  such   that  

                        ||ˆ||
m!

mm
|||| Λ=Λ   . 

If     p  =  2     inequality   (2)  gives    ||Λ || =  || Λ̂ ||    for  every  Λ∈ ℒ s   ( ,¢). m
2
μL

This  is   in  fact  a  result  of     S.   Banach,       Banach  [1]  showed  in 
1938   that   if    H    is  a   real   Hilbert   space  and    F    a  real   Banach  space 
then    || ||   =   ||  ||  for  every    ∈ ℒ   (H,F)   ,      For  expositions   see Λ Λ̂ Λ s

m
[3]     and    [5]  or   [4],        Banach's   result  also  holds  if    H     is  a  complex 
Hilbert  space  and       F     a  complex  Banach  space.       Dineen  [4]   states 
incorrectly    that   the   problem   for   complex   Hilbert   spaces  is  open.       In 
fact   the   proof   he  gives   for   real   Hilbert   spaces   works   just   as   well  for 
complex    Hilbert   spaces.       Harris   [5]    proved   that  if    p  =  ∞     then 
                                                                                         (3) 

for  every      ∈ ℒ    (   , ¢)   . Λ s
m

∞
μL

A.   Tonge  [10]  has  given  another  proof  of  this  result  and  in  the  case 



m  = 2  he has  examples  which  show  that  the  result  cannot  be  much 

improved.       In  this  paper  we   prove  that  the  constant  given  in  (2) 

is  not  the  best  possible  when    1  ≤  p  ≤  2    and  we  give  the  best  possible 

constant  when    1  ≤  p ≤  m'   .      Our  first  result  is  an  inequality  due  to 

L.  Williams  [11].      We  shall  give  a  simpler  proof  using  an  extension of 

the   Riesz-Thorin   interpolation   theorem. 

The  n-th  Rademacher  function    rn  (t)     is  defined  on  [0,1]  by 

r n (t)  =  sign  sin 2 n πt .      The  Rademacher  functions    {rn  }    form  an 

orthonormal   set  in    L2([0,1],  dt)    where    dt    denotes   Lebesgue  measure 

on  [0,1].       The   classical   Clarkson   inequality,   which    is   a   generalization 

of  the  Hilbert  space  parallelogram  law,  asserts  that  if    f 1 ,  f2  є  
p
μL  

for    1  <  p  ≤  2    then 

                                [ ] /pp'p
p||2f||p

p||1f||2p'
p||2f1f||p'

p||2f1f|| +≤−++  

Theorem  1.   (A   generalized   Clarkson   inequality   for 1 <  p  ≤  2). 

Let    f1,...,  fm   ∈      for    1  <  p  ≤  2.   Then p
μL

                                       (4) p/1p
pi

m

1i

p/1'p
pmm11

1

0
||f||dt||f)t(r...f)t(r

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++ ∑∫

=

 

where    ri(t)   ,  i  =  l , . . . ,m    is  the  i-th  Rademacher  function. 

Observe  that  when    m  =  2    we  recover  Clarkson's  original  inequality 
in  a  slightly  disguised   form.      The   second   topic  of  this  paper  involves 
a  polarization formula. 

Theorem  2.       (Polarization  formula) 

If    X    and    Y    are  vector  spaces  over    K  ,  Λ   ∈ ℒ   (X,Y)  and s
m

x1.,. , xm    ∈  X    then 

     dt)mx(t)mr...1x(t)1(rˆ(t)mt...(t)1r
1
0m!

1
)mx,...,(x ++Λ=Λ ∫               

(5)
where    ri(t)   ,  i  =  l , . . . ,m    is  the  i-th  Rademacher  function.
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The  main  result  of   this  paper   is  the  following  theorem. 

Theorem  3

Let    X    be an         space with    1  ≤ p  ≤ m'·       Then p
μL

                                          ||ˆ||
m!

m/pm
|||| Λ≤Λ                                                                   (6) 

 

for all    ∈ ℒ   (X,K)   . Λ s
m

The  following  example  shows  that   the  constant  given  in   (6)   cannot 
be  improved.        It  is  based  on  an  argument   in  Dineen's  book  [4]. 

Example

Consider  the  real  or  complex  sequence  space     ℓp     where  the  norm  of 
x  =  (xi)     is  given  by 

                                  .1/pp|ix|
1i

p||x|| ∞<∑
∞

=
=

⎭
⎬
⎫

⎩
⎨
⎧

 

 Let     Λ   ∈ ℒ s    (ℓm
p ,   K)     be  defined  by 

                       σ(m)
mx...σ(1)

1
x

m
Sσm!

1)mx,...,1(x ∑
∈

=Λ                                             

(7) 

where xi  =      ( )∞=1n
i
nx  for   i   = 1  , . . . , m   and   Sm   is  the   set   of  permulations 

of   the   first  m  natural   number  ,   If  ei     ( )∞=δ 1k
i
k   ,      i   = 1  , . . . , m  where    

                                                   
otherwise

ki,0
,1i

kδ ==
⎩
⎨
⎧

then     e i   є  ℓ p     and 

.
m!
1

||||soand

m!
1

)me,...,1(e

≥Λ

=Λ
 

 



    

 

{ } familiartheby

m/p

m

p|mx|...p|1x|m/p1/mp|mx|...p|1x|( ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≤>=

|mx...1x||x),...,(x||(x)ˆ|handothertheon =Λ=Λ
 

inequality  between  the   arithmetic   and   geometric  means   of     m     positive 
numbers. 

.m/pm

1
1

p
||x||

|(x)|sup||ˆ||so ≤
≤

Λ=Λ  

Thus   for   the   symmetric  m-linear  form     A     defined  by   (7)   we  have 

                                         ||ˆ||
m!

m/pm
|||| Λ≤Λ   . 

2.        THE    PROOFS

Proof   of   theorem  1

We    shall  write            for  the  vector  space  of  all     m-tuples p
ml

x  =   (x1...,xm)       equipped    with    the  norm 

||x||p = ( | x l | p  + . . . + | x m | p ) 1 / p       (1 ≤p < ∞) . 

consider   the  linear   operator   T  :     defined   by )2
μ(L2

dtL)2
μ(L2

m →l

T   :   f   =   ( f 1 , . . . f m )→  r 1  ( t )  f 1  + . . . +   rm (t)fm     (*) 
where     fi    є   ,   i   =   1,. . . ,m     and     r2

μ
L i ( t)    ,   i   =   1,. . . ,m     is   the  i-th 

Rademacher  function. 

( ) 2
1

(x)du)2|(x)mf|...2|(x)
1

f|
x

therems'Fubiniby

2
1

(x)ddt2|(x)mf(t)mr...(x)1f(t)1r|
1
0

x

2
1

dt(x)du2|(x)mf(t)mr...(x)1f(t)1r|x
1
0

2
1

dt2
2

||mf(t)mr...
1

f(t)
1
r||

1
0||Tf||Then

⎩⎨
⎧ ++∫=

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛ ++∫=

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛ ++∫=

⎟
⎠
⎞

⎜
⎝
⎛ ++=

∫

∫

∫

u  
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by   the   orthonormality  of   the   Rademacher   functions 
 

      

( ) 2
1

2
2||if||

m

1i0M2
1

dt2
2||mf(t)mr...1f(t)1r||1

0so

.2
1

2
2||if||

m

1i

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

∑
=

=++∫

∑
=

=
 

where     M 0    =   1   .        Now  we   consider   the   linear   operator 
 

                                   )1
μ(L,0dtL)1

μ(L1
m:T ∞→l  

defined  as   in     (*)   where     fi   ∈        . 1
μL

{ }

1||if||
m

1i
1M1||m(t)fmr...1f(t)1r||

t
supso

.1||if||
m

1i
1||mf|||(t)mr|...1||1f|||(t)1r|

t
sup

1||mf(t)mr...1f(t)1r||
t

sup||Tf||Then

∑
=

≤++

∑
=

=++≤

++=

 

where   M1 =  1. 

Thus   from  theorems  4.1.2,   5.1.1,   and  5.1.2  of   [2]  we  conclude  that 

.(4)implieswhich||f||||Tf||.e.i1t
1Mt1

0MM

normhas)p
μ(Lp'

dtL)p
μ(Lp

m:Toperatorlinearthelyconsequent

.'pr,psqthen1t0,
2

t1
t

2
t1

p
1

ifHence

.1t0for
1
t

2
t1

s
1

,
2

t1
r
1

,
1
t

2
t1

q
1

,
1
t

2
t1

p
1

where

)s
μ(Lr

dtL)q
μ(Lp

m:T

≤=−≤

→

===<<
+

=+
−

=

<<+
−

=
−

=

+
−

=+
−

=

→

l

l

 

 

dt)m x (t) m r ... 
m

1 x (t) 1 r,... ,m x (t) m r... 1 x (t) 1 (r (t) m r . . . (t) 1 r 
1 
0 

dt )m x(t) m r... 1x (t) 1 (r Λ̂(t) m r . .. (t) 1 r 1 
0 

have we 

+ + + + Λ

+ + 

∫ 

∫ 

4444 34444 21

 

Proof   of  theorem  2
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    m
1i}i{ktheallunlesszeroisdt(t)mk

mr
...(t)2k

2r
1k

1r
since .(t)

1

0 =∫
are  even,   in  which  case  the  integral  is    1   ,  we  have 

 

             

.)
m

x,...,
1

(m!

)
m

x,...,
1

((t)2
m

r...(t)2
1
r

1
0

m!

dt)
1

x(t)
1
r,...,

1-m
x(t)

1-m
r,mx(t)m((t)mr...(t)

1
r

1
0

...dt)mx(t)mr,...,
2

x(t)
2

r,
1

x(t)
1

(r(t)mr...(t)
1
r

1
0

dt)mx(t)mr...
1

x(t)
1

(rˆ(t)mr...(t)
1
r

1
0

x

dtx

r

Λ=

Λ=

Λ+

+Λ=

++Λ

∫

∫

∫

∫

 

We  have  used  the  fact  that  the  m-linear  mapping    Λ     is  symmetric. 

Proof  of  theorem  3 

For  Λ  ∈   ℒ   (X,K)   theorem   2  gives s
m

                  Λ (x1  , . . . ,xm )   =     (t)1r
1
0m!

1
∫ . . . rm (t) Λ̂      (r1 (t)  x1  +   . . .  + rm (t) xm )   dt   .    

Since   X   is   an      space   we    have p
μL

              |  (xΛ 1  , . . . ,xm )  |  1(t)x1r(ˆ|
1
0m!

1
Λ∫  +  …  +   rm  (t) xm |   dt 

                ≤   dtm
p||mx)t(mr...1(t)x1r||

1
0

||ˆ||
m!
1

++Λ ∫                                                                            (8) 

for   x1  , . . . ,xm   ∈     .  But   m’  ≤   2   since   m  ≥  2   and   so   fort   1 <  p ≤  m’ p
μL

(4)  holds   .    
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Now    1  <  p  ≤ m’     implies    p’   ≥  m    and  thus  Holder's  inequality  gives 

              (9) m/p'dtp'
p||mx(t)mr...1x(t)1r||dtm

p||mx(t)mr...1x(t)1r||
1

0

1

0 ⎭
⎬
⎫

⎩
⎨
⎧

++≤++ ∫∫
Now  applying (4) we have from (8) and  (9) that 

                            m/pp
p||ix||

m

1i
||Λ̂||

m!
1

|)mx,...,1(xΛ| ⎟
⎠
⎞

⎜
⎝
⎛
∑
=

≤  

This  inequality  proves   (6). 
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