
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2021.3134625, IEEE
Transactions on Semiconductor Manufacturing

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. XX, NO. X, X 2021 1

An Improved Capsule Network (WaferCaps) for
Wafer Bin Map Classification Based on DCGAN

Data Upsampling
Abd Al Rahman M. Abu Ebayyeh, Sebelan Danishvar, and Alireza Mousavi, Senior Member, IEEE

Abstract—Wafer bin maps contain vital information that helps
semiconductor manufacturers to identify the root causes and
defect pattern failures in wafers. Conventional manual inspection
techniques in inspecting these failures are labour intensive and
cause prolonged production cycle time. Therefore, automatic
inspection techniques can solve this problem. This paper proposes
a deep learning approach based on deep convolutional generative
adversarial network (DCGAN) and a new Capsule Network
(WaferCaps). DCGAN was used to upsample the original dataset
and therefore increase the data used for training and balance
the classes at the same time. While WaferCaps was proposed
to classify the defect patterns according to eight classes. The
performance of our proposed DCGAN and WaferCaps was
compared with different deep learning models such as the original
Capsule Network (CapsNet), CNN, and MLP. In all of our
experiment, WM-811K dataset was used for the data upsampling
and training. The proposed approach has shown an effective
performance in generating new synthetic data and classify them
with training accuracy of 99.59%, validation accuracy of 97.53%
and test accuracy of 91.4%.

Index Terms—Capsule network, data augmentation, deep
learning, defect detection, generative adversarial network (GAN),
pattern recognition, semiconductor manufacturing, wafer bin
map (WBM).

I. INTRODUCTION

ADVANCES in semiconductor technology and design have
been the driving forces behind the successful progress of

microelectronic and optoelectronic devices. The majority of
these devices are manufactured using semiconductor wafers
that consist of several hundreds of integrated circuits (ICs)
(also called dies) [1], [2]. However, the fabrication process
for the semiconductor wafers is complex and consist of many
stages that should take place in a clean room environment,
such as oxidation, photolithography, etching, ion implementa-
tion, and metallization, which requires monitoring many key
process parameters. The complexity of these steps makes the
wafer prone to many kinds of defects and failures; therefore,
wafer testing is an essential step in order to provide necessary
information on specific manufacturing problems, which can
then reduce products’ flaws and lead to early prevention [3].
One of the testing methods used in inspecting the wafer is

Manuscript received July 14, 2021; revised September 23, 2021. This work
has been carried out in the framework of the IQONIC Project, which received
funding from the European Union’s Horizon 2020 Research and Innovation
Program under Grant agreement No. 820677.

The authors are with the Department of Electronic and Computer Engi-
neering, Brunel University London, Uxbridge UB8 3PH, U.K. Corresponding
author: Abd Al Rahman M. Abu Ebayyeh

(email: abdalrahman.abuebayyeh@brunel.ac.uk)

called circuit probe in which each die in the wafer is tested
using an electrical probe to form a binary map image called
‘Wafer Bin Map’ (WBM). In WBM, the defective dies are
represented with logic ‘1’ and the normal dies with logic ‘0’.

Defective dies in the wafer tend to form a spatial pattern [4].
Figure 1 shows common inspected defect patterns in WBMs.
An experienced inspector can identify the cause of defect
depending on the WBM’s pattern.

(a) Center (b) Donut (c) Edge-Loc (d) Edge-Ring

(e) Loc (f) Near-full (g) Random (h) Scratch

Fig. 1. Different WBM patterns (yellow dots indicate defective dies)

The process of manually inspecting these defects is time
consuming and may be affected by the fatigue’s level of the
inspector, especially because modern semiconductors manu-
facturers produce several thousands of wafers every week [5],
[6]. Therefore, many semiconductor manufacturing are inves-
tigating this problem using machine learning and computer
vision techniques to perform automatic defect detection [3].

In this paper, we use deep learning models to solve the
WBM classification problem automatically. We investigated
WM-811K dataset that consists of 811,457 WBMs. In total,
21.3% of the WBMs in the dataset have labels while the rest do
not have. Among labeled WBMs, 3.1% have failure patterns
while 18.2% do not have patterns. Figure 2(a) summarizes the
distribution of data for WM-811k dataset. In this article, we
considered labelled and patterned data that account for 3.1% of
the total. It is clear that the labeled and patterned WBMs data
considered are highly imbalanced as shown in Figure 2(b).
Furthermore, the number of images of near-full class is very
low compared with other classes. Data imbalance problem
plays negative role in the overall classification performance
as it will be biased towards the majority class of the data [7],
[8].

Motivated by the previous reasons, we used Deep Convolu-
tional Generative Adversarial Network (DCGAN) to balance



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2021.3134625, IEEE
Transactions on Semiconductor Manufacturing

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. XX, NO. X, X 2021 2

78.7%

18.2%

3.1%

No label

Label & no pattern

Label & pattern

(a) Data distribution

0 5 10 15 20 25 30 35

Center

Donut

Edge-Loc

Edge-Ring

Loc

Near-full

Random

Scratch

17.85

2.38

21.36

35.51

14.32

0.64

3.63

4.31

% of WBMs with label & pattern

(b) Data with label & pattern.

Fig. 2. WM-811k data availability

the dataset and increase them at the same time. Then we used
a newly proposed Wafer Capsule Network (WaferCaps) for
classification and compared the accuracy with different deep
learning models. To the best of our knowledge, this is the first
paper that uses capsule network for WBM classification. In
summary, this paper is organized as follows. In Section II,
we will discuss the related work to our research. In Section
III, we will discuss the methodology in analyzing the dataset,
DCGAN upsampling process and we will introduce our pro-
posed WaferCaps. In Sections IV and V, we will present
our results, discuss them, and compare our main algorithm
with different deep learning models. Our article will finally
conclude in Section VI.

II. RELATED WORK

In recent years, many research articles conducted machine
learning techniques (both supervised and unsupervised) to
identify WBM defect patterns [9]. Most of the unsupervised
techniques such as clustering were used to identify and catego-
rize the defect patterns into new categories. While supervised
techniques such as Support Vector Machines (SVM), Decision
Trees (DT) were mainly used for detection and classification.

In regards to unsupervised learning methods, Yuan and
Kuo in [10], [11] used model-based clustering techniques
where they combined spatial non-homogeneous Poisson distri-
bution, binary normal distribution, and principal curve model
for further identification of various amorphous/linear and
curvilinear WBM defect patterns. However, their approach is
mainly based on simulated results and lacks the capability
to detect commonly investigated WBM patterns in literature
[1]. Wang in [12] used Support Vector Clustering (SVC) to
identify different types of mixed WBM defect patterns such
as multiple zones, multiple scratches, multiple rings and ring-
zone. However, their algorithm is computationally expensive
due to the large number of clusters chosen [1]. Jin et al. in [4]
proposed a clustering-based algorithm namely density-based
spatial clustering of applications with noise (DBSCAN); the
proposed approach was used for outlier detection and defect
cluster pattern extraction. With this procedure, arbitrarily
shaped cluster patterns can be detected without specifying the
number of clusters in advance. Park et al. in [13] proposed
a class label reconstruction method based on clustering for
subdividing a defect class with various patterns into several
groups, creating a new class for defect samples that cannot be
categorized into known classes and detecting unknown defects.

However, experimental results demonstrated that the number
of clusters was too large compared to the number of classes.

Regarding supervised learning methods, Liao et al. in [14]
proposed a WBM defect pattern classification method based on
morphology similarity approach and SVM. Morphology simi-
larity was first used to generate single and mixed type patterns
with certain degrees of similarity, as compared to the objective
target WBMs. SVM classifier is then conducted to classify the
generated patterns according to the class being specified. The
proposed method showed that an overall catching rate of 95%
with only 5% false-alarm rate had been achieved. However,
their approach showed low performance in detecting donut and
repeated scratches patterns, where 72% and 73% catching rates
were achieved for detecting these patterns, respectively. Piao et
al. in [15] proposed DT ensemble-based WBM failure pattern
recognition method based on the radon transform features. The
radon transform were used as a mean to extract four features
to be used as classifier’s input. The DT classifier classified the
defect pattern according to eight failure patterns. The accuracy
of the classifier achieved 90.5% classification accuracy for all
the selected patterns; however, the proposed method failed to
recognize several pattern types efficiently.

More recently, deep learning has been widely used for
machine vision, pattern recognition and automatic visual in-
spection problems. Deep learning is applied by using three
or more hidden layers in artificial neural network (ANN)
structure. Convolutional Neural Networks (CNNs) and Au-
toencoders are common deep learning algorithms used in
literature. These networks are specialized in machine vision
problems due to their image handling properties in extracting
image features and classify the images according to certain
categories (classes) [1]. Kyeong and Kim in [16], proposed
CNN algorithm to classify mixed defects in WBM. They
used four individual CNNs for each defect pattern, such that
each CNN apply binary classification to determine whether a
corresponding pattern exists when several defect patterns are
mixed over a wafer. However, to detect a mixed pattern defect,
the output of each individual classifier must be obtained.
Yu in [2] proposed an enhanced stacked denoising autoen-
coder (ESDAE) algorithm to detect WBM defects. They have
also used manifold regularization in the learning procedure,
which improves the algorithm’s performance effectively due
to the preservation of intrinsic information in the data. The
overall detection accuracy of the proposed method reached
89.6%. A similar approach was also used in [17] where they
combined SDAE and CNN to form a new deep learning
model called stacked convolutional sparse denoising auto-
encoder (SCSDAE). The new combined model was able to
learn effective features and accumulate the robustness layer by
layer, which adopts SDAE as the feature extractor and stacks
well- designed fully connected SDAE in a convolutional way
to obtain much robust feature representations. However, the
previous two studies faced two major problems; the lack of
enough data for training and data imbalance. For instance, in
[17], the accuracy of identifying near-full class was 87.5%
only based on 54 images used in training.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2021.3134625, IEEE
Transactions on Semiconductor Manufacturing

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. XX, NO. X, X 2021 3

III. METHODOLOGY

Our proposed method consists of two main algorithms;
DCGAN for generating new WBM samples and CapsuleNet
for classifying the total WBM samples. Since the WBMs
that we are dealing with have only three intensity values;
background, logic 1 (represent defective dies) and logic 0
(represent normal dies), there is no need to deal with RGB
images and it will be sufficient to process the images in
grayscale. Therefore, all WBMs are converted into grayscale
before supplying them to DCGAN. All the WBM images in
this paper were unified to a size of 64× 64.

A. Data Upsampling Using DCGAN

As can be seen from Figure 2(b), the WM-811K dataset with
pattern and label is considered highly imbalanced, for instance,
the Edge-Ring class has 8268 sample images, whereas the
number of samples in the Near-full class is 148 images only.
Accordingly, some of the classes do not have sufficient dataset
for the training process and will make the accuracy biased to-
wards the dominant class. Therefore, upsampling is necessary
to optimize the classification results and to ensure that the total
accuracy is not biased to any class more than the other. In this
paper, Deep Convolutional Generative Adversarial Network
(DCGAN) were used for upsampling the dataset and for
increasing the training data for better accuracy.

GAN was first introduced in 2014 by Goodfellow et al.
[18]. It consists of two neural networks, namely, generator and
discriminator. The original paper suggested that both generator
and discriminator are multilayer perceptron networks (MLP).
The generator is responsible for producing synthetic images
that look like the training dataset and supply these produced
images for the discriminator. The discriminator is responsible
for making the decision whether the produced images from
the generator look similar to the real data or not using binary
classification scheme. This framework can be used to generate
realistic new images that are almost identical to pre-existing
training dataset by training the generator and discriminator
simultaneously using adversarial process.

DCGAN proposed in 2016 by Radford et al. [19] and is
considered an extension of the original GAN proposed by
Goodfellow et al. in [18]. The architecture of DCGAN is
almost the same in the original GAN except that convolutional
(conv) and conv transpose (deconv) layers are used in dis-
criminator and generator networks respectively instead of the
MLP structure. In our DCGAN, the generator network receives
a one-dimensional random Gaussian vector of size 100 as
an input. Multiple deconv layers are then applied to upscale
the vector into 64×64 random noise image. All the deconv
layers are followed by ReLU activation function and batch
normalization was used in these layers in order to stabilize the
learning process. The final layer will have the same size as the
target image (64×64), which will be a noise image in the first
epoch of training that will evolve in each epoch to produce the
wanted synthetic image. The layers of the generator network
are explained in table I.

The discriminator in DCGAN is simply a CNN that does
binary classification; it receives the training wafer maps and

TABLE I
GENERATOR NETWORK

Layer Type Input
size

Kernel
Size/
Stride

Activa-
tion

Batch
Normal-
ization

Output
size

1 FC [100,] 3/1 - No [16,16,128]

2 Deconv [16,16,128] 3/2 ReLU Yes [32,32,64]

3 Deconv [32,32,64] 3/1 ReLU Yes [32,32,32]

4 Deconv [32,32,32] 3/2 ReLU No [64,64,1]

label them real (class 1), while the output generated from the
generator is labeled as fake (class 0). Each conv block in the
discriminator is followed by LeakyReLU activation function
with α = 0.2. Dropout and batch normalization has been used
in the first three conv layers to stabilize the learning process.
The output layer in the discriminator uses a Sigmoid function
for the classification process (Real or Fake). The layers of the
discriminator network are explained in table II.

TABLE II
DISCRIMINATOR NETWORK

Layer Type Input
size

Kernel
Size/
Stride

Activa-
tion

Batch
Normal-
ization/
Dropout

Output
size

1 Conv [64,64,1] 3/2 L.ReLU Dropout [32,32,32]

2 Conv [32,32,32] 3/2 L.ReLU Batch N. [16,16,64]

3 Conv [16,16,64] 3/2 L.ReLU Batch N. [8,8,128]

4 FC [8,8,128] - - - [8192,]

5 FC [8192,] - Sigmoid - [1,]

During training, the generator progressively becomes better
at creating images that look real, while the discriminator
becomes better at distinguishing real from synthetic images.
The process reaches equilibrium when the discriminator can no
longer distinguish between real and synthetic images. In this
paper, we used the minimax concept suggested by Goodfellow
et al. [18] to fulfill this objective, which is given by Equation
1. Equation 1 indicates that the discriminator is trained to
maximize the probability log (D(x)) of assigning the correct
label to both the generated synthetic data probability and real
training data using while the generator is trained to minimize
log (1− (G(z))).

min
G

max
D

V (D,G) = Ex∼pdata(x) [log (D(x))]

+ Ez∼pz(z) [log (1− (G(z)))]
(1)

where D(x) is the probability that x belong to the original
data distribution, G(z) is the generator function that maps to
the data space, Ex∼pdata(x) is the expected value over all real
samples, Ez∼pz(z) is the expected value over all fake samples
[20].

Since discriminator is performing binary classification (real
or fake), binary cross entropy (BCE) loss function (given by



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2021.3134625, IEEE
Transactions on Semiconductor Manufacturing

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. XX, NO. X, X 2021 4

Noise Vector

FC

Classification

(32, 32, 32)
conv1

(16, 16, 64)
conv2

(8, 8, 128)
conv3

(16, 16, 128)
Dconv1

(32, 32, 64)
Dconv2

(32, 32, 32)
Dconv3

1

2

3

100

1

2

3

8192

Real

Fake

D-Loss

G-Loss

Real Images

Fake Image

Generator Network

Discriminator Network

Fig. 3. Architecture of the proposed DCGAN for generating synthetic WBMs.

equation 2) was used for the discriminator to penalize itself
for misclassifying real and fake images.

Jq(w) = −
1

N

N∑
n=1

yn · log (q(yn))+(1− yn) · log (1− q(yn)))

(2)
where yn is the label for training example n (1 for real samples
and 0 for fake), q(y) is the predicted probability of the point
being real for all N points. The architecture of DCGAN used
in this research can be summarized in Figure 3.

A post-processing step using Pearson correlation coeffi-
cients (PCC) is employed to determine whether to accept the
DCGAN generated images or dismiss them. Pearson’s method
is widely used in statistical analysis, pattern recognition and
applications that require matching and comparing two images
as described in equation 3 [21].

r1 =

∑
i(xi − xm) · (yi − ym)√∑

i (xi − xm)
2 ·
√∑

i (yi − ym)
2

(3)

where xi is the intensity of the ith pixel in image A, yi is the
intensity of the ith pixel in image B. xm is the mean intensity
of image A, and ym is the mean intensity of image B. The
absolute values of PCC are between 0 and 1. They show how
much two images are similar. The closer the coefficient to
1, the more the two images are similar to each other. Based
on piratical experiment, a threshold of 0.92 were used for
comparison, where the output of the DCGAN networks is
compared with all the database images of the class using
Pearson’s method. If the similarity of the DCGAN generated
image is higher than this threshold, the image will be con-
sidered; otherwise, it will be ignored. Experiments show that
considering this threshold, almost 50% of DCGANs output
are accepted and added to the database. The accepted dataset
are then used as training set for our proposed WaferCaps to
perform classification.

Using this method, we were able to generate the required
synthetic images for training our proposed WaferCaps. How-
ever, our DCGAN could not generate synthetic WBMs for the
scratch defect pattern. Therefore, we used different approach
for upsampling the WBMs of this class. Our approach pro-
posed isolating the scratch pattern from each WBM and apply
rotation operations of the pattern on the WBM without the

pattern. Figure 4 demonstrates applying this approach on one
of the WBM samples that contain scratch defect pattern.

(a) Original (b) Only scratch (c) Background (d) New Sample

Fig. 4. Image upsampling procedure for Scratch class.

B. WaferCaps

CNNs have been long a popular deep learning tool in
dealing with machine vision problems [22]. Despite their
remarkable performance in image classification tasks, CNNs
have several drawbacks. For instance, the pooling layers in
the CNN can decrease the number of features extracted by
the network and therefore valuable information in the image
will be lost. Furthermore, CNNs are not very good at detecting
the spatial location of the features in the image [23]. CapsNet
is a newly proposed neural network that can overcome the
previous problems. It was originally proposed by Sabour
et al. in 2017 [24] to classify MNIST handwritten digits.
Two key aspects distinguish CapsNets from CNNs, which
are layer-based squashing and dynamic routing [25]. CapsNet
replaces the scalar-output feature detectors of CNNs with
vector-output capsules and replaces pooling with routing-by-
agreement. Each neuron in the capsule represents various
features in particular parts of an image. In this way, the whole
entity of the image can be recognized by considering each
part [26]. The architecture of the original CapsNet proposed
in Sabour et al. paper [24] is shown in Figure 5. As we can
see in Figure 5, the original network is made up of four major
layers [27]:
• Conv layer, which is a standard conv layer as the one

found in CNNs. The input image size for this layer is
28 × 28. 265 kernels were used along with stride of 1
and ReLU activation function and to generate the feature
maps and each kernel has a size of 9× 9. The resulting
feature map output after applying the layer has a size of
20× 20× 265.

• PrimaryCaps. In this layer, the feature maps resulted from
the conv layer were split into 32 capsules where conv
operations are performed. The kernel’s size in this layer
is again 9 × 9 and a stride of 2. This will produce an
output size of 6× 6× 8 for each capsule.

• DigitCaps. This layer has 16 capsules per digit class and
each of these capsules receives input from all the capsules
in the previous layer.

• Fully connected layer for classification. The input image
size was 28× 28 to match the size of MNIST data used
for evaluating the network.

Else than the first layer that shares some similarities with CNN
in the feature extraction process, the other layers behave in
a different manner. In the second layer (PrimaryCaps), each
capsule i from the 32 has an activity vector ui to encode



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2021.3134625, IEEE
Transactions on Semiconductor Manufacturing

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. XX, NO. X, X 2021 5

DigitCaps

Classification

(20, 20, 256)

conv1

Caps1 (6,6,8)

PrimaryCaps

Caps2 (6,6,8)

Caps32 (6,6,8)

d
(1)
1

d
(1)
2

d
(1)
3

d
(1)
10

d
(2)
1 d

(3)
1 d

(16)
1

d
(16)
10

Zero

One

Nine

(28, 28, 1)

Input Image

Fig. 5. Originally proposed CapsNet for MNIST handwritten digit classifi-
cation [24]

the spatial information in the form of instantiation parameters.
Then the output of ui is fed to the next layer (DigitCaps), such
that each capsule j from the 16 per digit class will receive ui

and multiply with the weight matrix Wij . This will result
in the prediction vector ûj|i, which indicates the amount of
contribution for capsule i in the PrimaryCaps on capsule j in
the DigitCaps as given by equation 4.

ûj|i = Wijui (4)

The predictions are then multiplied by a coefficient called
coupling coefficient c that represents the agreement between
capsules. Hence, coefficient c is updated based on iterative
process to form what so called “Dynamic Routing”. This
process can be determined by routing softmax function whose
initial logits bij are the log prior probabilities that capsule
i in the PrimaryCaps should be coupled to capsule j in the
DigitCaps. This operation can be demonstrated by equations
5-8.

aij = sj · ûj|i (5)

bij = bij + aij (6)

cij =
exp (bij)∑
k exp (bij)

(7)

sj =
∑
i

cijûj|i (8)

where sj is weighted sum that is calculated to obtain the can-
didates for a squashing function vj . The squashing operation is
responsible for creating a normalized vector from the multiple
neurons contained in the capsule. The activation function used
in this step is given by equation 9.

vj =
‖sj‖2

1 + ‖sj‖2
· sj
‖sj‖

(9)

A margin loss function was defined to assist the classifi-
cation process. The function evaluates the loss term coming
from the output vector of DigitCaps. This will help in deciding
whether the selected digit capsule matches the real target value
of class k. The formula of the margin loss function is given
by equation 10.

Lk = Tk max
(
0,m+ − ‖vk‖

)2
+ λ (1− Tk)max

(
0, ‖vk‖ −m−

)2 (10)

Where Tk is a label (0 or 1) indicating whether a class k
is present “1” or not “0”. Terms m+ , m−, and λ are the

WBMCaps

Classification

(50, 50, 256)

conv1

(36, 36, 512)

conv2

(22, 22, 1024)

conv3

Caps1 (4,4,8)

Primary Caps

Caps2 (4,4,8)

Caps128 (4,4,8)

d
(1)
1

d
(1)
2

d
(1)
3

d
(1)
8

d
(2)
1 d

(3)
1 d

(16)
1

d
(16)
8

Centre

Donut

Scratch

(64, 64, 1)

Input Image

Fig. 6. Our proposed WaferCaps architecture.

hyperparameters of the model such that m+ = 0.9, m− = 0.1
and λ = 0.5.

Despite the effciency of the original CapsNet in dealing
with MNIST handwritten digits classification [18], original
architecture of CapsNet has some drawbacks that we must
modify to fit our dataset. The original architecture employs two
conv layers to extract image features, which is not proper for
complex images. Furthermore, the size of the conv kernels in
the original CapsNet is 9×9 that compatible with the MNIST
dataset (28×28). For datasets with big images size, this kernel
produces a large number of training parameters. In this paper,
we propose a new Wafer Capsule Network (WaferCaps) to
overcome the limitations of the original CapsNet. To intensify
the capability of conv layers to extract image features, we
add two more conv layers and establish a dropout layer to
avoid overfitting after each layer. The input size of the network
has also been modified to 64× 64 to match our WBMs size.
The architecture of the WaferCaps we propose is shown in
Figure 6. Also, Table III provides the layers details used in
the architecture. As Figure 6 shows, conv1, conv2 and conv3
have 256, 512 and 1024 depth layers, respectively. All conv
layers have 15×15 convolution kernels with a stride of 1 and
ReLU activation. These layers transform pixel intensities to
local feature detectors’ activities fed as inputs to the primary
capsules. The PrimaryCaps layer is a conv capsule layer
with 128 channels of conv capsules. Each primary capsule
comprises eight conv units with a 9× 9 kernel and a stride of
2.

TABLE III
LAYERS OF THE PRPOSED WAFERCAPS

Layer Type Input size Kernel
Size/
Stride

Activa-
tion

Dropout Output
size

1 conv1 [64,64,1] 15/1 ReLU Yes [50,50,256]

2 conv2 [50,50,256] 15/1 ReLU Yes [36,36,512]

3 conv3 [36,36,512] 15/1 ReLU Yes [22,22,1024]

4 PrimCaps [22,22,1024] 9/2 ReLU No [4,4,8,128]

5 WBMCaps [4,4,8,128] - Squash No [16,8]

6 FC [16,8] - Softmax No [8,]

IV. EXPERIMENTAL RESULTS

In this section, we implemented different sets of experi-
ments to study the evaluate the performance of our proposed
WaferCaps & DCGAN method. This study adopts accuracy,



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2021.3134625, IEEE
Transactions on Semiconductor Manufacturing

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. XX, NO. X, X 2021 6

recall, precision and F1-score metrics to evaluate the per-
formances of these methods. The accuracy of the algorithm
predicts the number of images is classified correctly. The
precision measures the exact efficiency of the algorithm for
predicting the positive samples. The recall is the measure to
calculate the true positive, and the mean harmonic of the recall
and precision is determined with F1 score. For calculating the
four performance measurements, according to the confusion
matrix, the values of true positive (TP), true negative (TN),
false negative (FN) and false positive (FP) can be achieved. By
calculating the above four values, accuracy, precision, recall,
and F1 score are obtained based on equations 11-14.

Accuracy =
TN + TP

TN + TP + FN + FP
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 =
2(Precision×Recall)
Precision+Recall

(14)

A. DCGAN

The training of DCGAN is performed over two steps. First
step is training the discriminator alone on fake and real data,
such that the discriminator can classify them efficiently. In
this step, the generator is standby and is not being trained
yet. The discriminator loss penalizes the discriminator for
misclassifying a real sample as fake or a fake sample as real
while updating the weights via backpropagation. The second
step involves training the generator to create synthetic images
such that the generator’s loss penalizes the generator for
producing a sample that the discriminator network classifies
as fake. In our study, we used DCGAN on each class of the
eight to generate synthetic data.

We upsampled all the classes such that each class will
contain 10,000 samples (including original samples). The
training for each class procedure involved 2,000 epochs. We
started to get acceptable results after epoch 100 approximately
and we got almost identical results after epoch 1,000. Figure 7
shows how the results are improved as the number of epochs
is increasing for the donut class.

B. Experimental Data

The dimension of each WBM in the sample data is 64×64,
and consists of eight labels: center, donut, edge-loc, edge-ring,
loc, near-full, random, and scratch (shown in Figure 1). We
divided the WBM data into two sets in order to verify and
compare our methods; the first set is the original labelled and
patterned data in WM-811K dataset, we called this dataset
original dataset. The total WBMs used for training are 17,804,
for validation 4,333 and for testing 2,165. The second set is
a combination of the original data and the DCGAN generated
WBMs, we called this dataset mixed dataset. We made sure
in both groups that the WBMs used for testing are the same
and are all of the original dataset. The total WBMs used for

(a) Epoch 1 (b) Epoch 10 (c) Epoch 20 (d) Epoch 30

(e) Epoch 40 (f) Epoch 50 (g) Epoch 60 (h) Epoch 70

(i) Epoch 80 (j) Epoch 90 (k) Epoch 100 (l) Epoch 2000

Fig. 7. Generated synthetic WBMs for DCGAN over multiple epochs.

training are 63,200 and for validation are 15,600. Using these
groups will allow us to explore the influence of using DCGAN
generated data on the testing accuracy.

C. Ablation Study: Parameter Impact on CapsNet

Multiple parameters in deep learning models can present
a significance difference in the model’s performance. We
varied all the possible parameters of the original CapsNet
in order to observe the effect of that and come up with our
proposed WaferCaps. Some of these parameters had minor
noticeable effect on our model while varying others such as
image size, dropout, number of conv layers, and kernel size
demonstrated significant improvement on the model’s overall
accuracy. Therefore, in this study, we present those parameters
that highly affected our model in accordance with the test
accuracy and chose an optimal configuration that can meet
the best test accuracy.

1) The Impact of Image Size: Similar to CNNs, capsule
neural networks receive one fixed size of an image for all the
samples supplied for training. The larger the fixed size, the
less shrinking required and therefore the less deformation of
features and patterns inside the image [28]. In this section we
will investigate the originally proposed CapsNet by Sabour
et al. [24] for WBM of size 28 × 28 (similar to the size of
MNIST handwritten digits data they used) and compare the
performance of this size with WBM of size 64 × 64. The
comparison shows that by considering a size of 28 × 28, we
get a test accuracy of 80.6%, while using an image size of
64× 64 improved the test accuracy to be 82.9%. Figures 8(a)
and 9(a) represent the confusion matrices for test data upon
using image sizes of 28 × 28 and 64 × 64 respectively on
original proposed CapsNet [24].

2) The Impact of Dropout: Dropout is widely conducted
in the training of deep learning models as an effective reg-
ularization and implicit model ensemble technique [29]. In
this section, we will choose the best CapsNet from Section
IV-C1 (image size 64 × 64) and investigate the effect of
applying dropout on the test accuracy. Hence, the dropout will



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2021.3134625, IEEE
Transactions on Semiconductor Manufacturing

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. XX, NO. X, X 2021 7

Centre
118
79%

0
0%

0
0%

0
0%

13
9%

3
2%

4
3%

0
0%

Centre

Donut

0
0%

149
99%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

Donut

E-Loc

11
7%

0
0%

121
81%

0
0%

44
29%

23
15%

40
27%

0
0%

E-Loc

E-Ring

0
0%

0
0%

0
0%

150
100%

1
1%

1
1%

0
0%

0
0%

E-Ring

Loc

17
11%

0
0%

28
19%

0
0%

91
61%

2
1%

18
12%

0
0%

Loc

Near-full

1
1%

0
0%

0
0%

0
0%

0
0%

104
69%

0
0%

0
0%

Near-full

Random

3
2%

1
1%

1
1%

0
0%

1
1%

15
10%

84
56%

0
0%

Random

Scratch

0
0%

0
0%

0
0%

0
0%

0
0%

2
1%

4
3%

150
100%

Scratch

A
ct
u
al

C
la
ss

Predicted Class

(a) Mixed Data CapsNet

Centre
131
87%

0
0%

0
0%

0
0%

10
7%

0
0%

3
2%

5
3%

Centre

Donut

0
0%

141
94%

0
0%

0
0%

0
0%

1
2%

2
1%

0
0%

Donut

E-Loc

3
2%

1
1%

132
88%

1
1%

29
19%

1
2%

10
7%

56
37%

E-Loc

E-Ring

0
0%

0
0%

1
1%

149
99%

0
0%

0
0%

1
1%

1
1%

E-Ring

Loc

9
6%

7
5%

15
10%

0
0%

103
69%

0
0%

5
3%

83
55%

Loc

Near-full

1
1%

0
0%

0
0%

0
0%

0
0%

29
45%

3
2%

0
0%

Near-full

Random

3
2%

1
1%

0
0%

0
0%

0
0%

34
52%

125
83%

0
0%

Random

Scratch

3
2%

0
0%

2
1%

0
0%

8
5%

0
0%

1
1%

5
3%

Scratch

A
ct
u
al

C
la
ss

Predicted Class

(b) Original Data CapsNet

Fig. 8. Confusion matrix for test data according to original CapsNet [24]
(image size of 28× 28).

be applied on the conv layer before the PrimaryCaps with a
percentage of 50%. Figure 9(b) show the confusion matrix
for the test data with applying dropout. We can observe from
Figure 9(b) that the test accuracy achieved was 84.5% when
dropout was used, which is better by 1.6% compared with no
dropout.

3) The Impact of Number of Layers: Having successive
conv networks in deep learning model will contribute to the
learning process of the model in identifying complex and
important features. Therefore, the number of layers will highly
affect the outcomes of classification. As stated in Section III-B,
the original CapNet has only one conv layer. In this section,
we will modify the best CapsNet from Section IV-C2 (with
dropout) and alternate the number of conv layers to be two
and three layers. We noticed from the experiments that the test
accuracy for two and three conv layers were 85.8% and 88.4%
respectively. Figures 9(c) and 9(d) demonstrate the confusion
matrices after applying these updates. Therefore, we concluded
that using three conv layer resulted in better test accuracy.

4) The Impact of Kernel Size: Due to the working principle
of conv layers, all the kernels are sliding on the image.
Depending on kernel size, each successive layer will have
different feature map size and depth according to equation
15.

nout =

(
nin + 2p− k

s

)
+ 1 (15)

Where nout is the resulting size of feature map, nin is the
input feature map to the layer, p is pooling size, k is the kernel
size and s is the stride. Large kernel size will result in deeper
conv layers and vice-versa. The original kernel size proposed
by Sabour et al. [24] is 9 × 9 as explained in Section III-B.
In this section, we will use the best CapsNet from Section
IV-C3 and alternate the kernel size into other suitable sizes
such as 7×7 and 15×15. Our experiments showed that using
a kernel size of 7×7 resulted in a test accuracy of 87% which
is less than using a kernel size of 9× 9 as shown in previous
section. However, using a kernel size of 15×15 improved the
test accuracy to 91.4%. Figures 9(e) and 10(a) demonstrate
confusion matrices of the test data after changing the kernel
size to 7× 7 and 15× 15 respectively.

Kernel size is the last parameter we varied in this study,
and by applying it we reach to our proposed WaferCaps that
is described in Figure 6 and Table III.

5) The Impact of Data Size: In this section, we present
the influence of the training dataset size on our proposed
WaferCaps. We considered the original and mixed datasets
for this comparison to investigate the effect of using the
synthetic WBMs generated by DCGAN on the test accuracy
of our proposed WaferCaps. By using original dataset only
for training, the test accuracy drops dramatically to 78.2%
from 91.4% with using mixed dataset. Figure 10 show the
confusion matrices of test data for using mixed and original
dataset. This result proves the necessity of using DCGAN for
data upsampling to get better test results. Tables IV and V
also effect of changing the training dataset on the training and
validation accuracies.

D. Comparison with Other Deep Learning Models

A series of experiments are conducted on both original and
mixed dataset to compare our proposed WaferCaps method
with several deep learning models, such as the original Cap-
sNet [24], which we had to resize the WBM to a size of 28×28
to match the architecture of the CapsNet used. We have also
used the CNN described in Figure 13, and the MLP described
in Figure 14 for comparison. In CNN, the WBM images used
for training are fed to the network in the same way as in
CapNet and WaferCaps. However, in MLP, the training images
were flattened, such that the input image of size 64 × 64 is
transformed into a vector of size 4, 096 × 1 to be used in
the input layer as shown in Figure 14. In this section, we
have also demonstrated that all deep learning models perform
better when they are trained with the mixed dataset rather
than training them using original dataset only (see Tables IV
and V). Figures 8, 10, 11 and 12 represent the confusion
matrices of the test data for applying CapsNet [24], proposed
WaferCaps, CNN and MLP respectively.

TABLE IV
OVERALL TRAINING, VALIDATION AND TEST ACCURACIES USING MIXED

DATASET

Model Training Validation Test
Accuracy Accuracy Accuracy

WaferCaps (proposed) 99.59% 97.53% 91.4%

CapsNet [24] 99.9% 95.48% 80.6%

CNN 93% 92.7% 82.1%

MLP 96.8% 92.2% 76%

TABLE V
OVERALL TRAINING, VALIDATION AND TEST ACCURACIES USING

ORIGINAL DATASET

Model Training Validation Test
Accuracy Accuracy Accuracy

WaferCaps (proposed) 99.89% 88.92% 78.2%

CapsNet [24] 97.84% 81.12% 73.1%

CNN 90% 89.7% 78.8%

MLP 91.72% 75.17% 60.9%



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2021.3134625, IEEE
Transactions on Semiconductor Manufacturing

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. XX, NO. X, X 2021 8

Centre
124
83%

0
0%

2
1%

0
0%

14
9%

3
2%

5
3%

0
0%

Centre

Donut

1
1%

145
97%

0
0%

0
0%

0
0%

0
0%

1
1%

0
0%

Donut

E-Loc

7
5%

1
1%

107
71%

0
0%

41
27%

20
13%

25
17%

0
0%

E-Loc

E-Ring

0
0%

0
0%

2
1%

150
100%

0
0%

1
1%

0
0%

0
0%

E-Ring

Loc

14
9%

3
2%

39
26%

0
0%

95
62%

1
1%

19
13%

0
0%

Loc

Near-full

1
1%

0
0%

0
0%

0
0%

0
0%

113
75%

0
0%

0
0%

Near-full

Random

3
2%

1
1%

0
0%

0
0%

4
3%

8
5%

89
59%

0
0%

Random

Scratch

0
0%

0
0%

0
0%

0
0%

0
0%

4
3%

11
7%

150
100%

Scratch

A
ct
u
al

C
la
ss

Predicted Class

(a) Original CapsNet [24] with image
size 64× 64

Centre
119
79%

0
0%

0
0%

0
0%

11
7%

3
2%

4
3%

0
0%

Centre

Donut

2
1%

148
99%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

Donut

E-Loc

7
5%

0
0%

123
82%

0
0%

28
19%

20
13%

13
9%

0
0%

E-Loc

E-Ring

0
0%

0
0%

0
0%

150
100%

0
0%

1
1%

0
0%

0
0%

E-Ring

Loc

19
13%

1
1%

26
17%

0
0%

107
71%

0
0%

19
13%

0
0%

Loc

Near-full

0
0%

0
0%

0
0%

0
0%

0
0%

107
71%

0
0%

0
0%

Near-full

Random

3
2%

1
1%

1
1%

0
0%

4
3%

13
9%

110
73%

0
0%

Random

Scratch

0
0%

0
0%

0
0%

0
0%

0
0%

6
4%

4
3%

150
100%

Scratch

A
ct
u
al

C
la
ss

Predicted Class

(b) Effect of using dropout

Centre
131
87%

0
0%

2
1%

0
0%

19
13%

2
1%

3
2%

0
0%

Centre

Donut

0
0%

145
97%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

Donut

E-Loc

6
4%

0
0%

128
85%

0
0%

42
28%

20
13%

3
2%

0
0%

E-Loc

E-Ring

0
0%

0
0%

0
0%

150
100%

0
0%

0
0%

0
0%

0
0%

E-Ring

Loc

9
6%

4
3%

20
13%

0
0%

88
59%

0
0%

10
7%

0
0%

Loc

Near-full

1
1%

0
0%

0
0%

0
0%

0
0%

103
69%

0
0%

0
0%

Near-full

Random

3
2%

1
1%

0
0%

0
0%

1
1%

25
17%

134
89%

0
0%

Random

Scratch

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

150
100%

Scratch

A
ct
u
al

C
la
ss

Predicted Class

(c) Effect of using two conv layers

Centre
129
86%

0
0%

0
0%

0
0%

14
9%

5
3%

3
2%

0
0%

Centre

Donut

0
0%

146
97%

0
0%

0
0%

0
0%

2
1%

0
0%

0
0%

Donut

E-Loc

3
2%

0
0%

125
83%

0
0%

24
16%

10
7%

1
1%

0
0%

E-Loc

E-Ring

1
1%

0
0%

0
0%

150
100%

1
1%

0
0%

0
0%

0
0%

E-Ring

Loc

12
8%

3
2%

23
15%

0
0%

109
73%

0
0%

6
4%

0
0%

Loc

Near-full

1
1%

0
0%

0
0%

0
0%

0
0%

112
75%

0
0%

0
0%

Near-full

Random

4
3%

1
1%

2
1%

0
0%

2
1%

21
14%

140
93%

0
0%

Random

Scratch

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

150
100%

Scratch

A
ct
u
a
l
C
la
ss

Predicted Class

(d) Effect of using three conv layers

Centre
133
89%

0
0%

1
1%

0
0%

19
13%

2
1%

3
2%

0
0%

Centre

Donut

0
0%

148
99%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

Donut

E-Loc

5
3%

0
0%

115
77%

1
1%

32
21%

13
9%

14
9%

0
0%

E-Loc

E-Ring

0
0%

0
0%

0
0%

149
99%

0
0%

0
0%

0
0%

0
0%

E-Ring

Loc

8
5%

1
1%

33
22%

0
0%

99
66%

0
0%

10
7%

0
0%

Loc

Near-full

1
1%

0
0%

0
0%

0
0%

0
0%

127
85%

0
0%

0
0%

Near-full

Random

3
2%

1
1%

1
1%

0
0%

0
0%

8
5%

123
82%

0
0%

Random

Scratch

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

150
100%

Scratch
A
ct
u
a
l
C
la
ss

Predicted Class

(e) Effect of using a kernel size of 7×7

Fig. 9. Confusion matrices for the test data with different parameter scenarios.

TABLE VI
METRICS FOR EVALUATING THE TEST DATA OF MIXED (DCGAN & ORIGINAL) DATASET FOR DIFFERENT DEEP LEARNING MODELS

Model Metric Center Donut E-Loc E-Ring Loc N-full Random Scratch

WaferCaps Recall 0.887 0.993 0.893 1.0 0.84 0.88 0.82 1.0
(proposed) Precision 0.911 1.0 0.766 0.993 0.792 0.992 0.898 1.0

F1-score 0.899 0.997 0.825 0.997 0.816 0.933 0.857 1.0

CapsNet Recall 0.787 0.993 0.807 1.0 0.607 0.693 0.56 1.0
[24] Precision 0.855 1.0 0.506 0.987 0.583 0.99 0.8 0.962

F1-score 0.819 0.997 0.622 0.993 0.595 0.816 0.659 0.98

CNN Recall 0.933 0.947 0.913 1.0 0.527 0.813 0.487 0.947
Precision 0.660 1.0 0.581 0.943 0.76 0.94 0.973 1.0
F1-score 0.773 0.973 0.71 0.971 0.622 0.871 0.65 0.973

MLP Recall 0.74 0.747 0.847 0.993 0.367 0.84 0.573 0.973
Precision 0.91 1.0 0.614 0.974 0.447 1.0 0.723 0.613
F1-score 0.816 0.855 0.711 0.983 0.403 0.913 0.639 0.753

TABLE VII
METRICES FOR EVALUATING THE TEST DATA OF ORIGINAL ONLY DATASET FOR DIFFERENT DEEP LEARNING MODELS

Model Metric Center Donut E-Loc E-Ring Loc N-full Random Scratch

WaferCaps Recall 0.887 0.907 0.927 1.0 0.773 0.646 0.773 0.267
(proposed) Precision 0.875 1.0 0.698 0.993 0.483 0.875 0.841 0.784

F1-score 0.881 0.951 0.797 0.997 0.595 0.743 0.806 0.398

CapsNet Recall 0.873 0.94 0.88 0.993 0.687 0.446 0.833 0.033
[24] Precision 0.879 0.979 0.567 0.98 0.464 0.879 0.767 0.363

F1-score 0.876 0.959 0.689 0.987 0.554 0.592 0.799 0.059

CNN Recall 0.82 0.827 0.947 1.0 0.733 0.985 0.707 0.4
Precision 0.866 0.976 0.7 0.932 0.482 0.79 0.938 1.0
F1-score 0.842 0.895 0.805 0.965 0.582 0.877 0.806 0.571

MLP Recall 0.767 0.753 0.767 0.993 0.72 0.354 0.373 0
Precision 0.81 0.991 0.385 0.974 0.374 0.821 0.651 0
F1-score 0.788 0.856 0.512 0.983 0.492 0.495 0.475 0



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2021.3134625, IEEE
Transactions on Semiconductor Manufacturing

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. XX, NO. X, X 2021 9

Centre
133
89%

0
0%

0
0%

0
0%

7
5%

2
1%

4
3%

0
0%

Centre

Donut

0
0%

149
99%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

Donut

E-Loc

1
1%

1
1%

134
89%

0
0%

16
11%

7
5%

16
11%

0
0%

E-Loc

E-Ring

1
1%

0
0%

0
0%

150
100%

0
0%

0
0%

0
0%

0
0%

E-Ring

Loc

10
7%

0
0%

16
11%

0
0%

126
84%

0
0%

7
5%

0
0%

Loc

Near-full

1
1%

0
0%

0
0%

0
0%

0
0%

132
88%

0
0%

0
0%

Near-full

Random

4
3%

0
0%

0
0%

0
0%

1
1%

9
6%

123
82%

0
0%

Random

Scratch

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

150
100%

Scratch

A
ct
u
a
l
C
la
ss

Predicted Class

(a) Mixed Data proposed WaferCaps

Centre
137
91%

0
0%

1
1%

0
0%

12
8%

0
0%

4
3%

6
4%

Centre

Donut

0
0%

140
93%

1
1%

0
0%

0
0%

0
0%

0
0%

1
1%

Donut

E-Loc

1
1%

3
2%

136
91%

0
0%

24
16%

1
2%

13
9%

31
21%

E-Loc

E-Ring

1
1%

0
0%

6
4%

150
100%

0
0%

0
0%

8
5%

1
1%

E-Ring

Loc

7
5%

6
4%

4
3%

0
0%

109
73%

0
0%

9
6%

80
53%

Loc

Near-full

1
1%

0
0%

0
0%

0
0%

0
0%

55
85%

4
3%

0
0%

Near-full

Random

2
1%

1
1%

0
0%

0
0%

1
1%

9
14%

111
74%

1
1%

Random

Scratch

1
1%

0
0%

2
1%

0
0%

4
3%

0
0%

1
1%

30
20%

Scratch

A
ct
u
a
l
C
la
ss

Predicted Class

(b) Original Data proposed WaferCaps

Fig. 10. Confusion matrices for the test data with proposed WaferCaps.

Centre
140
93%

1
1%

2
1%

0
0%

47
31%

0
0%

20
13%

2
1%

Centre

Donut

0
0%

142
95%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

Donut

E-Loc

2
1%

0
0%

137
91%

0
0%

24
16%

26
17%

43
29%

4
3%

E-Loc

E-Ring

2
1%

0
0%

5
3%

150
100%

0
0%

0
0%

0
0%

2
1%

E-Ring

Loc

5
3%

6
4%

6
4%

0
0%

79
53%

2
1%

6
4%

0
0%

Loc

Near-full

0
0%

0
0%

0
0%

0
0%

0
0%

122
81%

8
5%

0
0%

Near-full

Random

1
1%

1
1%

0
0%

0
0%

0
0%

0
0%

73
49%

0
0%

Random

Scratch

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

142
95%

Scratch

A
ct
u
al

C
la
ss

Predicted Class

(a) Mixed Data CNN

Centre
123
82%

0
0%

0
0%

0
0%

17
11%

0
0%

1
1%

1
1%

Centre

Donut

0
0%

124
83%

0
0%

0
0%

0
0%

0
0%

1
1%

2
1%

Donut

E-Loc

0
0%

4
3%

142
95%

0
0%

21
14%

1
2%

17
11%

18
12%

E-Loc

E-Ring

5
3%

0
0%

6
4%

150
100%

0
0%

0
0%

0
0%

0
0%

E-Ring

Loc

17
11%

21
14%

2
1%

0
0%

110
73%

0
0%

9
6%

69
46%

Loc

Near-full

1
1%

0
0%

0
0%

0
0%

0
0%

64
98%

16
11%

0
0%

Near-full

Random

4
3%

1
1%

0
0%

0
0%

2
1%

0
0%

106
71%

0
0%

Random

Scratch

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

60
40%

Scratch

A
ct
u
al

C
la
ss

Predicted Class

(b) Original Data CNN

Fig. 11. Confusion matrices for the test data with CNN.

Centre
111
74%

0
0%

1
1%

0
0%

7
5%

0
0%

3
2%

0
0%

Centre

Donut

0
0%

112
75%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

Donut

E-Loc

20
13%

1
1%

127
85%

1
1%

50
33%

2
1%

4
3%

2
1%

E-Loc

E-Ring

1
1%

0
0%

3
2%

149
99%

0
0%

0
0%

0
0%

0
0%

E-Ring

Loc

14
9%

36
24%

12
8%

0
0%

55
37%

1
1%

5
3%

0
0%

Loc

Near-full

0
0%

0
0%

0
0%

0
0%

0
0%

126
84%

0
0%

0
0%

Near-full

Random

3
2%

0
0%

2
1%

0
0%

5
3%

21
14%

86
57%

2
1%

Random

Scratch

1
1%

1
1%

5
3%

0
0%

33
22%

0
0%

52
35%

146
97%

Scratch

A
ct
u
al

C
la
ss

Predicted Class

(a) Mixed Data MLP

Centre
115
77%

0
0%

2
1%

0
0%

16
11%

0
0%

4
3%

5
3%

Centre

Donut

0
0%

113
75%

0
0%

0
0%

0
0%

0
0%

1
1%

0
0%

Donut

E-Loc

9
6%

2
1%

115
77%

1
1%

22
15%

14
22%

70
47%

66
44%

E-Loc

E-Ring

0
0%

0
0%

4
3%

149
99%

0
0%

0
0%

0
0%

0
0%

E-Ring

Loc

22
15%

34
23%

29
19%

0
0%

108
72%

2
3%

15
10%

79
53%

Loc

Near-full

1
1%

0
0%

0
0%

0
0%

0
0%

23
35%

4
3%

0
0%

Near-full

Random

3
2%

1
1%

0
0%

0
0%

0
0%

26
40%

56
37%

0
0%

Random

Scratch

0
0%

0
0%

0
0%

0
0%

4
3%

0
0%

0
0%

0
0%

Scratch

A
ct
u
al

C
la
ss

Predicted Class

(b) Original Data MLP

Fig. 12. Confusion matrices for the test data with MLP.

FC
Classification

(62, 62, 64)

conv1

(31, 31, 64)

pool1
(29, 29, 64)

conv2

(14, 14, 64)

pool2
(12, 12, 128)

conv3

(6, 6, 128)

pool3
(4, 4, 128)

conv4
(2, 2, 128)

pool4

1

2

3

512

Centre

Donut

Scratch

(64, 64, 1)

Input Image

Fig. 13. CNN architecture used for comparison.

Input Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output Layer

x1

x2

x3

x4,096

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
128

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
128

h
(3)
1

h
(3)
2

h
(3)
3

h
(3)
128

Centre

Donut

E-Loc

Scratch

Fig. 14. MLP architecture used for comparison.

V. DISCUSSION & FUTURE WORK

We demonstrated the efficiency of using DCGAN for all
the defect pattern in Sections III-A and IV-A. However, our
DCGAN did not perform well when we tried to generate
scratch defect patterns. In order to mitigate this issue we used
the method described in Figure 4. Despite of the efficiency
of this method, we could not generate more than 10,000
samples approximately due to the limitations of the number
of scenarios that we can get. Therefore, we had to match
this number of samples to the other patterns in order to
have balanced data for all the eight classes. In our upcoming
research, we are planning to optimize DCGAN in order to
generate scratch defect patterns so we can generate unlimited
number of data for all the classes and observe the accuracy of
classification according to that.

The results obtained in Section IV showed that our proposed
WaferCaps performed the best in terms of test accuracy when
mixed dataset was used for training instead of the original
dataset only. The same was also observed when other deep
learning models were used such as CapNet [24], CNN, and
MLP.

However, from Table V, we can observe that CNN has
slightly outperformed our proposed WaferCaps when original
dataset used only for training. Table IV also shows that CapNet
[24] performed better than our proposed WaferCaps in terms
of the training accuracy; however, the better result in training
accuracy is due to overfitting as both validation and test
accuracies scored better when WaferCaps was used. Hence,
the Dropout method was used to prevent overfitting.

Noteworthy, in Section IV-C that changing certain parame-
ters such as image size, number of conv layers, and kernel size
can affect the test accuracy when both datasets used (mixed
and original).

From the confusion matrices in Figures 8, 9,11 and 12, we
can observe that most of the defect patterns such as Donut,
Edge-Ring and Scratch were very easy to detect when mixed
dataset are used for training. While we noticed that it becomes
much harder to detect some classes such as Scratch when
original dataset was used in training. This conclusion could
lead to future work, where one could optimize a classification
algorithm for each class in a way that binary classification be
performed separately as one-against-all approach.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSM.2021.3134625, IEEE
Transactions on Semiconductor Manufacturing

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. XX, NO. X, X 2021 10

VI. CONCLUSION

In this study, we proposed a DCGAN and Capsule Network-
based framework (referred to as WaferCaps) to generate syn-
thetic WBM images and classify them according to eight
different defect patterns, namely, Center, Donut, Edge-Loc,
Edge-Ring, Loc, Near-full, Scratch and Random. For this
purpose, labelled and patterned dataset of WM-811k data were
used. DCGAN was utilized first in order to upsample the data
such that each class will be increased into 10,000 samples. A
different method was used to upsample the Scratch class, in
which the defect pattern was isolated and rotated into different
angles to increase the number of defect scenarios.

Two main datasets were then created for our analysis
namely, original and mixed. The original dataset contained
the WBMs available in the WM-811k dataset only, while the
mixed dataset contained synthetic and original WBMs together
with maintaining the test set the same for both of them which
contained original samples. This process was essential in order
to observe the effect of using synthetic WBMs generated by
DCGAN on the test accuracy.

The mixed dataset were then used on the CapsNet with
different parameters and the proposed WaferCaps were ob-
tained according to the best scenario of a specified series of
high impact parameters that lead to the best test accuracy.
The WaferCaps performance was then compared with the
occasion when the original dataset was used for training. Our
experiments showed that the proposed WaferCaps achieved a
training, validation and test accuracies of 99.59%, 97.53% and
91.41% respectively when mixed dataset was used. While it
achieved a training, validation and test accuracies of 99.89%,
88.92% and 78.2% respectively when only original dataset was
used.

Also we compared the performance of our proposed Wafer-
Caps with different deep learning models such as the original
CapsNet proposed by Sabour et al. [24] to classify MNIST
handwritten digits, CNN, and MLP. The experiments show
that our proposed WaferCap outperformed all the other deep
learning models that were compared to when mixed dataset
was used.

In follow-up research, we will focus on how to optimize
DCGAN to generate realistic scratch pattern defects and to
optimize WaferCaps classification performance for each defect
class separately.

REFERENCES

[1] A. M. Abu Ebayyeh and A. Mousavi. A review and analysis of auto-
matic optical inspection and quality monitoring methods in electronics
industry. IEEE Access, 8:183192–183271, 2020.

[2] J. Yu. Enhanced stacked denoising autoencoder-based feature learning
for recognition of wafer map defects. IEEE Trans. Semicond. Manuf.,
32(4):613–624, 2019.

[3] J. Yu and X. Lu. Wafer map defect detection and recognition using joint
local and nonlocal linear discriminant analysis. IEEE Trans. Semicond.
Manuf., 29(1):33–43, 2016.

[4] C. H. Jin, H. J. Na, M. Piao, G. Pok, and K. H. Ryu. A novel dbscan-
based defect pattern detection and classification framework for wafer
bin map. IEEE Trans. Semicond. Manuf., 32(3):286–292, 2019.

[5] M.-J. Wu, J.-S.R. Jang, and J.-L. Chen. Wafer map failure pattern
recognition and similarity ranking for large-scale data sets. IEEE Trans.
Semicond. Manuf., 28(1):1–12, 2015.

[6] H. Kahng and S. B. Kim. Self-supervised representation learning for
wafer bin map defect pattern classification. IEEE Trans. Semicond.
Manuf., 34(1):74–86, 2020.

[7] Haibo He and E.A. Garcia. Learning from imbalanced data. IEEE
Transactions on Knowledge and Data Engineering, 21(9):1263–1284,
2009.

[8] Georgios Douzas, Fernando Bacao, and Felix Last. Improving imbal-
anced learning through a heuristic oversampling method based on k-
means and smote. Information Sciences, 465:1–20, 2018.

[9] J. Yu and J. Liu. Two-dimensional principal component analysis-based
convolutional autoencoder for wafer map defect detection. IEEE Trans.
Ind. Electron., 2021.

[10] T. Yuan and W. Kuo. A model-based clustering approach to the
recognition of the spatial defect patterns produced during semiconductor
fabrication. IIE Transactions, 40(2):93–101, 2007.

[11] T. Yuan and W. Kuo. Spatial defect pattern recognition on semiconductor
wafers using model-based clustering and bayesian inference. European
Journal of Operational Research, 190(1):228–240, 2008.

[12] C.-H. Wang. Separation of composite defect patterns on wafer bin
map using support vector clustering. Expert Systems with Applications,
36(2):2554–2561, 2009.

[13] S. Park, J. Jang, and C.O. Kim. Discriminative feature learning and
cluster-based defect label reconstruction for reducing uncertainty in
wafer bin map labels. Journal of Intelligent Manufacturing, 32(1):251–
263, 2020.

[14] C.-S. Liao, T.-J. Hsieh, Y.-S. Huang, and C.-F. Chien. Similarity
searching for defective wafer bin maps in semiconductor manufacturing.
IEEE Transactions on Automation Science and Engineering, 11(3):953–
960, 2014.

[15] M. Piao, C.H. Jin, J.Y. Lee, and J.-Y. Byun. Decision tree ensemble-
based wafer map failure pattern recognition based on radon transform-
based features. IEEE Trans. Semicond. Manuf., 31(2):250–257, 2018.

[16] K. Kyeong and H. Kim. Classification of mixed-type defect patterns
in wafer bin maps using convolutional neural networks. IEEE Trans.
Semicond. Manuf., 31(3):395–402, 2018.

[17] J. Yu, X. Zheng, and J. Liu. Stacked convolutional sparse denoising
auto-encoder for identification of defect patterns in semiconductor wafer
map. Computers in Industry, 109:121–133, 2019.

[18] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets.
Proceedings of the 27th International Conference on Neural Information
Processing Systems, pages 2672–2680, 2014.

[19] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv,
arXiv:1511.06434, 2015.

[20] S.K. Venu and S. Ravula. Evaluation of deep convolutional generative
adversarial networks for data augmentation of chest x-ray images. Future
Internet, 13(1):8, 2020.

[21] Y. Zhou, Q. Zhang, and V. P. Singh. An adaptive multilevel correlation
analysis: a new algorithm and case study. Hydrological Sciences Journal,
61(15):2718–2728, 2016.

[22] A. Punjabi, J. Schmid, and A.K. Katsaggelos. Examining the benefits
of capsule neural networks. CoRR, abs/2001.10964, 2020.

[23] F. Deng, S. Pu, X. Chen, Y. Shi, T. Yuan, and S. Pu. Hyperspectral
image classification with capsule network using limited training samples.
Sensors, 18(9), 2018.

[24] S. Sabour, N. Frosst, and G.E. Hinton. Dynamic Routing Between
Capsules, pages 3857–3867. 2017.

[25] H. Wang, K. Shao, and X. Huo. An improved capsnet applied to
recognition of 3d vertebral images. Applied Intelligence, 50(10):3276–
3290, 2020.

[26] M.K. Patrick, A.F. Adekoya, A.A. Mighty, and B.Y. Edward. Capsule
networks - a survey. Journal of King Saud University - Computer and
Information Sciences, (1319-1578), 2019.

[27] Z. Zhu, G. Peng, Y. Chen, and H. Gao. A convolutional neural network
based on a capsule network with strong generalization for bearing fault
diagnosis. Neurocomputing, 323:62–75, 2019.

[28] M. Hashemi. Enlarging smaller images before inputting into convolu-
tional neural network: zero-padding vs. interpolation. Journal of Big
Data, 6(1), 2019.

[29] S. Cai, J. Gao, M. Zhang, W. Wang, G. Chen, and B. C. Ooi. Effective
and efficient dropout for deep convolutional neural networks. CoRR,
abs/1904.03392, 2019.


