
 1

An Adaptive and Opposite K-means Operation based

Memetic Algorithm for Data Clustering

Xi Wanga, Zidong Wangb, Mengmeng Shengc,d, Qi Lia, Weiguo

Shenga,1 5

aDepartment of Computer Science, Hangzhou Normal University,
Hangzhou 311121, PR China

bDepartment of Computer Science, Brunel University, Uxbridge,
Middlesex, UB8 3PH, UK 10

cSchool of Computer Science and Technology, Zhejiang University of
Technology, Hangzhou 310023, PR China

dZhejiang Police College, 310053, PR China

 15

Abstract
Evolutionary algorithm (EA) incorporating with k-means local search
operator represents an important approach for cluster analysis. In the existing
EA approach, however, the k-means operators are usually directly employed 20
on the individuals and generally applied with fixed intensity as well as
frequency during evolution, which could significantly limit their performance.
In this paper, we first introduce a hybrid EA based clustering framework such
that the frequency and intensity of k-means operator could be arbitrarily
configured during evolution. Then, an adaptive strategy is devised to 25
dynamically set its frequency and intensity according to the feedback of
evolution. Further, we develop an opposite search strategy to implement the
proposed adaptive k-means operation, thus appropriately exploring the search
space. By incorporating the above two strategies, a memetic algorithm with
adaptive and opposite k-means operation is finally proposed for data 30
clustering. The performance of the proposed method has been evaluated on a
series of data sets and compared with relevant algorithms. Experimental
results indicate that our proposed algorithm is generally able to deliver
superior performance and outperform related methods.
Keywords: Data clustering, memetic algorithm, adaptive local search, 35
opposite local search, k-means

1 Corresponding author: Weiguo Sheng

Email address: w.sheng@ieee.org (Weiguo Sheng)

 2

1. Introduction

Data clustering, as an important branch of data mining, has been deemed 40
as a critical task in unsupervised learning. For a given data set, clustering
attempts to divide it into groups/clusters such that data objects in the same
group/cluster are similar with each other while dissimilar with the data
objects from other groups/clusters. A number of methods have been
developed for clustering, which can be generally categorized as partitional 45
approach and hierarchical approach [1]. For partitional methods, they can be
classified as hard approach, in which each object is assigned to one cluster
only, and fuzzy approach [2], in which each object belongs every cluster
with a certain membership. In this work, we focus on the hard partitional
approach. 50

To implement the hard partitional clustering, the task is generally achieved
via optimizing certain clustering functions [1, 3, 4]. Among the various
clustering functions proposed in literature [5], the SSE (i.e., sum of squared
errors) has been widely employed. However, optimizing SSE to deliver
appropriate clusters is known to be a NP-hard problem [6]. Traditional 55
methods [7-10] typically employ alternating optimization schemes (such as
k-means algorithm) to optimize SSE, which could be easily trapped into local
optima.

Evolutionary algorithms (EAs), which aim to identify optimal or
near-optimal solutions of optimization problems, have been widely employed 60
to optimize SSE for obtaining appropriate clusters [11, 12]. Typically, it
could be time-consuming to employ traditional EAs for clustering a dataset
with non-trivial size. To improve the time efficiency, hybrid EAs, also called
memetic algorithms (MAs), whose idea is to incorporate k-means based local
search procedure into traditional EAs for clustering, have been proposed in 65
literature [13-16]. These works indicate that the search efficiency of
traditional EA-based data clustering could be greatly improved by
incorporating them with k-means operation. This is because traditional
EA-based clustering methods are not good at fine-tuning the solutions while
the k-means based procedure can significantly enhance this capability. 70
Despite its success in improving the performance of EA-based clustering [25],
[33], [36], the k-means operation in existing methods is usually employed
with fixed intensity (i.e., a fixed number of iterations of the algorithm) and
fixed frequency (i.e., applied at each generation) during evolution [30], [33],
[34]. As the evolutionary search of EA is a dynamical procedure, this could 75
significantly reduce the performance of existing EA-based clustering
methods. Moreover, the k-means operation in these methods is generally
applied directly on the individual without considering the global information
of population, which therefore renders the performance further.

This work intends to address the issue of appropriately employing the 80

 3

k-means local search procedure in EA-based clustering. To this end, a
generalized framework, which supports the arbitrary setting of the intensity
as well as frequency of k-means operator during evolution, is first introduced.
Specifically, it is realized by employing two parameters to control the
k-means operation’s intensity as well as frequency in the evolutionary 85
process. Then, an adaptive strategy is devised to set these two parameters,
which could dynamically control the k-means operation’s intensity and
frequency during evolution. Further, an opposite search mechanism has been
proposed to implement the adaptive k-means operation. The main idea of this
mechanism is to sample points along the opposite direction of individuals 90
attracted and replace them with the sampling points with better fitness, thus
appropriately exploring the search space. By integrating the above two
strategies, an adaptive and opposite k-means operation based memetic
algorithm is finally presented for data clustering. In experiments, we
evaluate the proposed algorithm by using both simulated and real data sets. 95
The results clearly show the significance of the adaptive k-means operation
and opposite search strategies for evolutionary data clustering. Experimental
results also reveal that our proposed method can outperform related methods
implemented for comparison.

It should be mentioned that this work represents a significant extension of 100
our previous conference publication [17] that briefly describes an adaptive
k-means operation based MA for data clustering and its initial results. This
paper extends the previous work by, firstly, providing a detailed description
of the devised adaptive k-means operation strategy along with extensive
experimental studies to analyze its effectiveness. Moreover, an opposite 105
search mechanism used to implement the adaptive k-means operation is also
designed and incorporated into the proposed method in [17]. Therefore, the
major contribution of the current work is to develop an adaptive and
opposite k-means operation based MA for effective and efficient data
clustering. 110

2. Related Work

2.1. Hybrid EA-based partitional clustering

EAs have been widely employed for partitional data clustering [18-24],
which is known to be NP-hard. These methods could require extensive
computational time to achieve convergence for data sets with non-trivial sizes. 115
To improve the time efficiency, hybrid EAs, which incorporate the k-means
operator into EAs for fine-tuning the solutions, have also been developed and
widely used for data clustering [13-15, 25-37]. For example, in [25], Xiao et
al. applied one iteration of the k-means algorithm on each individual to
improve initial solutions in the population before the evolutionary search. 120
Beg et al. [26-28] tried to generate a high-quality initial population by

 4

running k-means on each individual until convergence. In [29], the best
solution identified by the GA is fine-tuned by k-means to obtain a final
solution. Apart from improving the initial or final solutions using the k-means
operation, it has typically been used to fine-tune solutions during the 125
evolutionary clustering. In [13] and [15], one iteration of k-means is used as a
replacement of the crossover operation in EA for improving the offspring
solutions during evolutionary clustering. Badyopadhyay et al. [30], Kivijarvi
et al. [14], Sheng et al. [31, 32], He et al. [34] and Laszlo et al. [33] applied
one or two iterations of the k-means algorithm to fine-tune the offspring 130
generated by genetic operator. While, in [35-37], the k-means is designed to
run on each offspring until converge during evolution. Among various
alternatives, hybrid EAs, which apply the k-means operator to fine-tune
solutions during evolution, has appeared to be the most successful one.
However, in existing work, the k-means operation is usually employed with 135
fixed intensity (i.e., a fixed number of iterations) and fixed frequency (i.e.,
applied at each generation). Since the evolution is a dynamic procedure, the
performance of these methods could be significantly limited by employing
the k-means operator in a fixed manner. Moreover, in these methods, the
k-means based operator is usually employed directly to improve the 140
individual and ignores the global information of population. This could
reduce the performance further.

2.2. MA and adaptive local search

The hybrid evolutionary clustering algorithms mentioned above are
closely related to memetic computation (MC), which is defined as a 145
paradigm that combines population-based heuristics with individual learning
or local search procedures for the sake of problem solving [38]. In the
literature concerned with MC, an individual learning or local search
procedure, which is usually referred to as a meme, has been used to enhance
the capability of population-based heuristics. The integration of memes has 150
been established as an extension of canonical EAs, by the name of MA. In
this work, since the k-means operation is a domain-specific local search and
plays a significant role in the proposed algorithm, the term MA is adopted.

In the literature on MA, it has been widely recognized that appropriate
usage the local search (LS) is crucial for the success of MAs [42]. To tackle 155
this issue, many efforts have been carried out aiming at controlling the LS’s
intensity and/or frequency during evolution. The resulting methods have been
applied to address problems in context other than the clustering that we
considered here. For example, in [39], Hart et al. proposed two schemes, i.e.,
fitness-based scheme and distribution-based scheme, to adaptively apply the 160
LS to individuals, where the fitness-based scheme tried to bias the LS
towards solutions in the population with higher fitness, while the
distribution-based scheme tended to avoid unnecessary LS operation based

 5

on redundancy information in the population. In [40], Lozano et al. suggested
a simple method to apply a LS such that the offspring are subject to the LS if 165
their fitness are better than the worst individual in the population, otherwise a
fixed probability of 0.0625 would be applied. In [41], Molina et al. divided
individuals of the population into three groups (i.e., most promising, median
and less promising) and assigned different probabilities and intensities of LS
to the individuals in different groups. Specifically, for offspring whose fitness 170
are better than the best fitness in current population (i.e., most promising
group), a maximum probability and intensity of LS would be assigned. For
the individuals in median group (i.e., the offspring whose fitness are between
the worst and best one in the population), they are subject to a low
probability and median intensity of LS. While, for the individuals in less 175
promising group, no LS would be employed. In [42], Nguyen et al. derived a
theoretical bound for the intensity of LS and developed a probabilistic
memetic framework to govern the intensity of LS. In this work, a theoretical
upper bound and expected intensity of LS to be applied are estimated based
on the distribution of individuals. In [43], Nobahari et al. proposed to employ 180
the concentration information of high-quality solutions in the population to
adapt the intensity of LS as well as the ratio of local-global search. In this
method, a population with a more concentration of high-quality solutions
would be assigned with a higher intensity of LS and lower ratio of
local-global search, and vice versa. In [44], Noman et al. devised a 185
Lamarckian LS that adaptively determines the intensity of LS by taking into
account of feedback (i.e., fitness improvement) from the evolution. In [45],
Liu et al. presented an adaptive strategy, which adjusts the intensity of LS
based on the performance of global search and LS during evolutionary search.
The performance of global search and LS is measured in terms of average 190
fitness improvement (AFI) dynamically calculated at each generation. The
method increases the intensity of LS at next generation when the AFI of
global search is outperformed by that of LS, otherwise decreases it. In [46],
Bambha et al. devised a method to control the intensity of parameterized
local search algorithms (PLSA) used in EAs via a simulated heating 195
framework. This method tries to gradually allocate more time to each PLSA
along with the advance of evolution. In [47], Ma et al. proposed an adaptive
strategy to adaptively determine the capability level of Gaussian local
search [48] for different individuals in the population according to a
probability model. The model is calculated based on the information of 200
individuals’ fitness increment in the process of local search. While, in [49],
Shahidi et al. encoded the parameters (i.e., step size and memory term) of
conjugate gradient method into the chromosome, thereby dynamically
controlling the intensity and direction of LS.

 205

 6

2.3 Motivations

In this work, we proposed a memetic algorithm with an adaptive and
opposite k-means operation for data clustering. The motivations of the
adaptive k-means operation and opposite search mechanism in the proposed
method are as follows. 210

Motivation behind the adaptive k-means operation: In the MA based
clustering methods, the k-means operators are usually employed with a fixed
intensity and frequency. It has now been established that the
intensity/frequency of local search in a MA should be appropriately
controlled in order to have a good performance. This is due to an excessive 215
intensity and/or frequency of local search could easily lead the population to
premature convergence without properly exploring the search space. While,
an insufficient intensity and/or frequency of local search could hinder the
efficiency of evolutionary search. Moreover, the appropriate
intensity/frequency depends on the problem instances at hand as well as the 220
stages of EA evolution. It is therefore desirable to enhance the performance of
MA based clustering by adaptively adjusting the intensity as well as
frequency of k-means operator during evolution.

Motivation behind the opposite search: In MA literature, the local search is
generally designed to apply directly on the individual without considering the 225
exploration aspect of population. In this case, although the local search is able
to greatly improve the algorithm's efficiency, it could also significantly
accelerate the speed of premature convergence, for which the traditional EAs
are generally suffered from. To alleviate such an issue, a promising option is
perhaps to consider the exploration aspect of the population to perform the 230
local search, thus enhancing its global search capability. This, therefore,
motivates us to propose an opposite search mechanism to implement the
adaptive k-means operation.

3. Proposed Algorithm

In this section, we propose a memetic algorithm with adaptive and 235
opposite k-means operation (MAAOK) for data clustering. In the proposed
method, apart from standard genetic operators, the solutions are evolved via
an adaptive k-means operation (AKO) implemented based on an opposite
search (OS) mechanism. The evolution will be terminated when the best
individual in population does not change for Tg consecutive generations. 240
Algorithm 1 shows a general procedure of the algorithm.

In the following sections, we shall give a brief description of the
representation, genetic operation and fitness criterion used in the algorithm
as well as the algorithm’s complexity. The details of proposed adaptive
k-means operation and opposite search mechanism will be presented in 245

 7

Sections 4 and 5, respectively.
To initialize the solutions, a real-value based representation [6] is adopted

to denote the values of cluster centers. For instance, to cluster a data set with
three features, a solution can be represented as (0.65, 0,43, 0.32, 0.81, 0.72, 250
0.16), which encodes 2 clusters centered at (0.65, 0,43, 0.32) and (0.81, 0.72,
0.16), respectively. The initial values of solutions are randomly assigned
according to the range of attributes. During the evolution, the roulette wheel
strategy [50] is employed to select parent pairs for recombination. The
selected parents then undergo the arithmetic crossover scheme [51] with a 255
probability of Pc to generate intermediate offspring. Subsequently, the
generated offspring is subject to Gaussian mutation [50] with a probability
Pm.

The solution’s fitness is measured according to the SSE function, which
is calculated as: 260

 (1)

where

 (2)

Here, xi is the ith object in data set, n is the size of data set, k denotes the

åå
= Î

-=
k

j Cx
j

j

mxSSE
1

2

å
Î

=
jCxj

j x
C

m 1

Step 1. Generate an initial population with n individual solutions using real-value

representation.

Step 2. Calculate the fitness of each solution in the initial population according to

the SSE criterion.

Step 3. Select pairing parents using the roulette wheel strategy. This process is

repeated until n/2 parent pairs are selected.

Step 4. Crossover the parent pairs to generate intermediate offspring and then

apply mutation operation on the offspring.

Step 5. Perform an opposite search (see Section 5) based adaptive k-means

operation (see Section 4) to improve the offspring.

Step 6. Calculate the fitness value of offspring if they are not calculated at step 5.

Step 7. Create a new population of size n from the offspring with elite strategy if it

is not created at step 5.

Step 8. Terminate the evolution if the stopping condition is met, otherwise go to

Step 2.

Step 9. Output the best solution in the terminal population.

Algorithm 1. An adaptive and opposite k-means operation based memetic algorithm for

data clustering.

 8

number of clusters in the solutions, mj represents the center of cluster Cj and 265
|Cj| denotes the number of data objects within cluster Cj.

Based on the calculated SSE value of each individual, we then calculate
its fitness as f = 1/SSE, and thus higher fitness means better solutions. It
should be noted that empty clusters could be existed in certain solutions. To

punish these solutions, we rewrite the function as f=1/SSE¢, where SSE¢= 270
SSE + (ce/ct)*SSE. Here, ce and ct denote the number of empty clusters and
total clusters, respectively, in the solution.

During the run of the proposed method, the main computational load at
each generation is the fitness evaluation as well as the implementation of
adaptive and opposite k-means operation. Calculating a given solution’s 275
fitness takes O(nkd2) time, where n and d is the size and dimension of data set,
respectively, and k denotes the number of clusters of the data set. The
adaptive and opposite k-means operation for a given individual requires
O(σnkd2+kd) time, where σ denotes the number of iterations of k-means
operation. The proposed method, therefore, has an overall time complexity of 280
O(σnkd2gnp), where np is the population size and g is the number of
generations.

4. Adaptive K-means Operation

It has been well established that incorporation of the k-means operator can
greatly enhance the EA-based clustering. Nevertheless, the k-means operator 285
in existing methods is usually employed with fixed intensity and frequency,
which may significantly limit the performance. Here, we try to address the
issue by firstly presenting a generalized framework such that the frequency
and intensity of k-means operator could be arbitrarily configured. Then, we
devise an adaptive strategy to dynamically control its frequency and intensity 290
during evolutionary clustering.

Step 1. Before EA’s evolution:

i. Initialize the frequency counter (curF) as curF = 1.

ii. Specify the frequency (τ) and intensity (σ) of k-means operation.

Step 2. During the evolution, if curF = τ, then:

i. Apply σ iterations of k-means on each offspring generated by the

recombination operation of EA.

ii. Specify a new value for τ and σ, if necessary.

iii. Reset curF = 0.

Step 3. After each generation of evolution, increase the curF by 1 (i.e., curF = curF

+ 1).

Algorithm 2. The procedure of a generalized k-means usage framework.

 9

 295

4.1. A Generalized K-means Usage Framework

To allow for variable frequency and intensity of k-means employment
during EA evolution, a generalized k-means usage framework (GKUF),
shown in Algorithm 2, has been devised. Essentially, in the framework, the
frequency and intensity of k-means operator is controlled by introducing two 300
free parameters τ and σ. Specifically, σ iterations of k-means will be
performed on the offspring after each τ generations of EA evolution. By
setting different values for τ and σ, we are therefore able to arbitrarily set the
frequency and intensity of k-means operator during evolution. Two instances
of GKUF are shown in Fig. 1. Fig. 1(a) gives an example of GKUF with fixed 305
σ and τ respectively equaling to 1 and 2, which means that one iteration of
k-means will be used to improve the individuals after each two consecutive
generations of EA evolution. Clearly, the fixed k-means operation, as adopted

(a)

(b)

Fig. 1. Two instances of GKUF with (a) fixed and (b) dynamic values of τ and σ.

Step 1. Before EA’s evolution:

i. Initialize the frequency counter (curF), frequency (τ) and intensity (σ) of

k-means operation as curF = 1, τ = 1 and σ = 1, respectively.

ii. Record the fitness information of initial population.

Step 2. During the evolution, if curF = τ, then:

i. Apply σ iterations of k-means on each offspring generated by the

recombination operation of EA.

ii. Calculate the fitness value for each of the offspring.

iii. Create a new population of size n from the offspring with elite strategy.

iv. Record the diversity information of current population.

v. Update the values of τ and σ according to equation (3) and (4),

respectively.

vi. Reset curF = 0.

Step 3. After each generation of evolution, increase the curF by 1 (i.e., curF = curF

+ 1).

Algorithm 3. The procedure of adaptive k-means operation.

 10

in most of the existing EA-based clustering algorithms, could be considered
as special cases of the proposed framework. Fig. 1(b) shows another example 310
of GKUF, in which the values of τ and σ are dynamically changed along the
evolution.

4.2. Adaptive Strategy

Although the above framework can enable us to dynamically vary the
frequency and intensity of k-means operator, how to specify appropriate 315
values of τ and σ is not a trivial task. It is due to that, for τ and σ, the selection
of their values is usually problem-specific and also their values may vary
during the execution of EAs. In the following subsection, we propose a
mechanism called adaptive k-means operation (AKO), which seeks to
automatically adjust the frequency and intensity of k-means operator based 320
on the feedback information of evolution.

Among the various feedback information of evolution, the diversity of
population is perhaps the most critical one. It is therefore natural to achieve
the adaptation via monitoring this information during evolutionary clustering.
A number of indexes have been designed to measure the diversity of 325
population [52-54]. Here, we adopt an index, which is based on the idea
proposed in [55], to measure the population diversity. Specifically, the
diversity is measured in terms of the difference between the maximum ()

and average () fitness of the population. The rational is that the difference

tends to be larger for a population with scattered solutions than that with 330
converged ones. By employing an index based on such an idea, an AKO
strategy is then proposed, the procedure of which is shown in Algorithm 3. In
this strategy, initial values of the intensity and frequency of k-means operator
are set as 1 (i.e., τ=σ=1) and the diversity information (i.e.,) of

initial population is recorded. At the initial generation, one iteration of 335
k-means will therefore be used to improve the offspring produced by
recombination operation. Following the initial stage, we calculate the
population diversity at each generation (i.e.,) after the k-means

operation is evoked and compare it with that at previous generation. When a
reduced diversity is recorded (i.e., <), the frequency of 340

k-means operator will be adjusted as:

 (3)

and the intensity will be kept as 1. The , and here denote the

minimum, maximum and average fitness of the population at current
generation while c1 denotes a constant value. The difference of in 345

the equation is utilized for normalization purpose. Based on this formula, the
k-means operator will therefore be applied with a lower frequency for a more
converged population. While, if the comparison indicates an increased
diversity (i.e., ≥), the intensity of k-means operator will be

maxf

f

ff -max

ff ¢-¢max

ff ¢-¢max ff -max

τ = c1 ⋅
ʹf − ʹf min
ʹf max − ʹf min

⎡

⎣
⎢

⎤

⎦
⎥

minf ¢ maxf ¢ f ¢

minmax ff ¢-¢

ff ¢-¢max ff -max

 11

calculated as: 350

 (4)

and the frequency will be kept as 1. Here, c2 is a constant value. Accordingly,
based on this formula, the k-means operator will be more intensely used to
improve the solutions during evolution when the population has a higher
diversity. By jointly employing the above formulas, the proposed AKO 355
strategy therefore aims to appropriately adjust the frequency and intensity of
k-means local search based on the information of population diversity during
evolution.

 360

5. Opposite Search Mechanism

It has been widely agreed that local searches are able to improve
exploitation capability of EAs, thus making them efficient. However, at the
same time, local searches could also accelerate the speed of genetic drift in a
population, which leads to premature convergence. This is due to that local 365
searches in existing MAs are typically implemented directly on the individual
without considering the exploration aspect of population. As a result, under
the search mechanism of EAs along with local searches, the individuals will

σ = c2 ⋅
ʹf max − ʹf
ʹf max − ʹf min

⎡

⎣
⎢

⎤

⎦
⎥

Fig. 2. Illustration of opposite search mechanism on one-dimensional maximum optimisation

problem.

Step 1. For each individual p to be improved, determine an attraction point p1 with a

higher fitness value than p using the roulette wheel strategy.

Step 2. Apply k-means operation (whose intensity is determined by the AKO

mechanism) on the individual p.

Step 3. Sample an opposite point p¢ for the individual p using the equation (5).

Step 4. Apply the same k-means operation on the individual p¢.

Step 5. Calculate the fitness of individuals p and p¢. If the fitness of p¢ is better than

that of p, then replace the individual p with p¢ as the offspring.

Algorithm 4. The procedure of opposite search based adaptive k-means operation.

 12

have a high tendency to move towards the best solution in population, before
the search space being appropriately explored. To address such an issue, an 370
opposite search (OS) mechanism has been further introduced in this section to
implement the AKO.

Compared to the direct application of local search operator, the OS
mechanism based local search is able to enhance the exploration capacity of a
population. An illustration of this is shown in Fig. 2 on a one-dimensional 375
maximum optimization problem. Supposing there are two individual
solutions A and B in the population, generally the solution B will be attracted
towards the solution A which has a better fitness value under the mechanism
of EA. Assume that an offspring C, produced by genetic operators, is the next
point of inquiry of solution B. Once the solution B is replaced by the solution 380
C under the replacement strategy of EA, the segment CB will unlikely be
searched again. As a result, the segment CB may not be appropriately
explored. At the same time, as the solution B tends to be attracted towards the
solution A, premature convergence may occur. On the other hand, if the
solution B is replaced by the solution D, which is located at the opposite 385
direction of the search along the solution B, then the segment CB will still get
a chance to be searched and meanwhile the solutions tend to be diversified.
Consequently, the exploration capability of solutions A and B could be
significantly enhanced.

The proposed OS mechanism uses the population information along 390
opposite direction of the individual attracted to performing the AKO.
Specifically, for an individual p to be improved, the mechanism first
determines an attraction point for the individual by choosing an individual p1
with a higher fitness value than p from the population. Then, the k-means
operation (whose intensity is determined by the AKO mechanism) is 395

performed to improve the individual p. Subsequently, an opposite point p¢ is
sampled using the following equation:

 . (5)

This equation is obtained as follows. Let and denote the Euclidean

distances from p1 to p and p¢, respectively. Then, the relationship between 400

and

can be written as:

 , (6)

where λ is a constant value greater than 1. The position of sampling point p¢
can be subsequently derived as:
 405

 (7)

() ppp ×+×-=¢ ll 11

pp1 pp ¢1

pp1 pp ¢1

l111 =¢pppp

() () l111 =-¢-Û pppp

 13

 . (8)

According to the above equation, the position of sampling point p¢ is
determined by the value of λ. A large value of λ will lead p¢ sampled far
away from p, while a small value will make p¢ close to p. To ensure a good 410
performance of OS mechanism, the value of λ should be set appropriately. A
too small value of λ will lead to excessiveness of exploitation and rapidly
result in convergence to local optima. Conversely, a too large value of λ
could critically slow down the convergence rate. Thus, to balance the search,
a value of 1.8 has been empirically identified and used in our experiments. 415

After obtaining the opposite point p¢, the same k-means operation as
applied on the individual p is employed to improve it. Finally, replace the

individual p with p¢ if it has a better fitness, otherwise keep the p as the
offspring. The procedure of the mechanism is shown in Algorithm 4.

6. Experiments 420

In this section, we first describe the experimental data and parameter
configurations of our proposed method. Then, the performance of devised
mechanisms is evaluated. After that, we compare our algorithm with related
work. All experiments were performed on a workstation with an Intel (R)
CoreTM i7-3630QM CPU at 2.40GHz and 8 GB RAM running WindowsTM 7. 425
The results reported here were averaged over 100 trials of the methods, unless
stated otherwise.

6.1. Data Sets and Parameter Settings

A series of data sets, as listed in Table I, including artificial as well as real 430
data have been used for evaluation purpose. The artificial data (i.e., Art_9,
Art_15 and Art_20 as shown in Fig. 3) are generated with various levels of

() ppp ×+×-=¢Û ll 11

Table I: A List of Data Sets Used in the Experiments

Data sets
No. of data

points
No. of attributes No. of clusters

Art_9 3300 2 9

Art_15 4400 2 15

Art_20 4000 2 20

Car 1728 6 4

Musk 476 166 2

Landsat 4435 36 6

Turkiye 5820 32 5

MFCCs 7195 22 10

Subcellcycle 387 17 5

Yeast2945 2945 15 30

 14

difficulty for partitioning. The Art_9 is relatively simple. There are four dense
and sparse clusters, respectively, in the data set along with one highly sparse
cluster located at the middle of Fig. 3(a). In Art_15, the clusters are generated 435
with rather different volumes and sizes while many of them are overlapped.
In Art_20, there are sixteen clusters in the middle along with four isolated
clusters, which makes the problem even difficult to be solved.

For real data, we consider the Car, Musk, Landsat, Turkiye and MFCCs 440
data sets, which are available at UCI Repository [56]. The Car data consist of
1728 data objects with 6 attributes (i.e., buying, doors, maint, lug_boot,
persons, and safety). This data set will be grouped into 4 clusters
corresponding to 4 types of car evaluation results. The Musk data contain
476 instances of 166 attributes, which are used to describe the molecules 445
depending upon the exact shape or conformation of molecule. These
molecules are judged to be either musks or non-musks. Therefore, there are
2 clusters in the data. The Landsat data contain multi-spectral values of
pixels in 3*3 neighborhoods in a satellite image. This data has 4435
instances of 36 attributes and will be clustered into 6 groups corresponding 450
to 6 classes of land types. The Turkiye data contain a total 5820 evaluation

(a) (b)

(c)

Fig. 3. Artificial data sets (a) Art_9, (b) Art_15 and (c) Art_20.

 15

scores with 32 attributes collected from the students at Gazi University.
These data are expected to be grouped into 5 clusters. The MFCCs consist
of 22 attributes of syllables of anuran (frogs) calls. There is a total of 7195
records with 3 labels (i.e., family, genus and species). Based on the label of 455
species, there are 10 clusters in this data.

Additionally, gene expression data including the Subcellcycle and
Yeast2945 have also been considered in the experiments. Both data sets are
part of the yeast cell-cycle data and have been widely used for bioinformatics
study [57]. The Subcellcycle contains expression information of 384 genes, 460
which corresponds to five phases (i.e., S, M, G2, early and late G1) during the
cell-cycle. Correspondingly, 5 clusters are existed in this data. The Yeast2945
data, given by Tavazoie et al. [58], have expression information of 2945
genes. As in [58], we also partition the data into 30 clusters. All the data
mentioned above are normalized via the Z-score method such that each 465
variable has a mean value of 0 with standard deviation of 1. For real data,
principal component analysis has also been employed to reduce the
dimension by selecting the top principal components, which account for
over 95% of the variance.

In experiments, several parameters in our proposed algorithm need to be 470
specified, which involve the rates of mutation and crossover, population size,
termination criterion, scaling parameters c1 and c2 in AKO and control
constant λ in OS mechanism. Specifically, the mutation rate and crossover
rate are set to be 0.03 and 0.7, respectively. These values are determined
experimentally on the aforementioned data sets. Three trials of the proposed 475
method are performed on various mutation and crossover rates while the rest
parameter values are kept fixed. Generally, we find that a mutation
probability value ranging from 0.02 to 0.05 along with a crossover probability
value ranging from 0.6 to 0.85 could offer the best results. A size of 30 is used
for population initialization, and the proposed method will be terminated 480
when there is no improvement detected for the best individual in Tg=20
consecutive generations. A larger population size or value Tg may result in a
more expensive algorithm with no significant improvement of performance.
The values of scaling constants c1 and c2 in AKO are both set to be 8. For the
scaling constants, there is a trade-off between computational efficiency and 485
solution quality. A larger value of scaling constants will generally lead to a
more efficient algorithm, but it will be more susceptible to less promising
solutions. Our experiments indicate that a value between 7 to 10 could give an
adequate trade-off between the efficiency and solution quality across the
experimental data sets. For the λ in OS mechanism, a value of 1.8 is used. 490

 16

6.2. Results

Firstly, we evaluate the impact of AKO and OS mechanisms in our
proposed method. To this end, we examine and compare our method,
MAAOK, with its variants: MAAOK without the OS mechanism to 495
implement the AKO (denoted as MAAOK_1), which were proposed in our

Table II: Comparing the Results Delivered by Our Proposed Method and its Two Variants

Data Sets
Evaluation

Indexes

Methods

MAAOK MAAOK_1 MAAOK_2

Art_9
SSE 518.271 518.668 518.092

Runtime (s) 0.90165 0.58299 0.86062

Art_15
SSE 330.178 330.35 330.388

Runtime (s) 2.19899 1.39015 2.02118

Art_20
SSE 208.878 209.278 210.028

Runtime (s) 3.16697 2.19005 3.04961

Car
SSE 7542.93 7549.98 7546.31

Runtime (s) 0.4908 0.38356 0.44614

Musk
SSE 53379.4 53379.4 53379.4

Runtime (s) 0.14471 0.1083 0.17627

Landsat
SSE 26985.4 26986 26985.3

Runtime (s) 1.62432 1.22219 1.93652

Turkiye
SSE 49999.2 49999.3 49999.2

Runtime (s) 3.09903 2.30424 4.02371

MFCCs
SSE 44651.1 44708.8 44705

Runtime (s) 8.60205 7.03384 11.1001

Subcellcycle
SSE 1646.2 1653.43 1651.43

Runtime (s) 0.09735 0.07045 0.08927

Yeast2945
SSE 18382.8 18410.3 18439.8

Runtime (s) 25.2307 19.3308 18.1835

 (a) (b)

Fig. 4. Typical results of SSE values over runtime corresponding to the MAAOK, MAAOK_1 and MAAOK_2 on (a) Car and (b) Yeast2945 data set.

 17

previous conference work [17] and MAAOK with neither AKO nor OS
mechanism (i.e., only one iteration of k-means is incorporated to improve
each offspring individual at every generation), which is denoted as
MAAOK_2. These variants are run with the same setting of parameters as in 500
MAAOK. Their performance in terms of average SSE and runtime are shown
in Table II.

Comparing the MAAOK_1 and MAAOK_2, it can be found that, by
incorporating the AKO mechanism, the MAAOK_1 is more efficient than
MAAOK_2 on all data sets used in the experiments. For instance, on Art_20, 505
MAAOK_2 needs 3.04961s to give solutions with an average SSE value of
210.028. By contrast, MAAOK_1 takes only 2.19005s on average to provide
solutions with an even better average SSE value of 209.278. On Musk data
set, the MAAOK_2 and MAAOK_1 require 0.17627s and 0.1083s,
respectively, to deliver solutions with same average SSE value of 53379.4. 510
Looking at the MAAOK_1 and MAAOK, it can be observed that the OS
mechanism is generally able to improve the quality of solutions. For example,
on the MFCCs data, by incorporating the OS mechanism to implement the
AKO, the average SSE value delivered by MAAOK is 44651.1, which is
better than the one delivered by MAAOK_1. This is due to that the OS 515
mechanism can be used to maintain an appropriate balance between the
exploitation and exploration of evolutionary search. To clearly show the
results, typical convergence curves of the three algorithms on two
representative data sets have also been shown in Fig. 4. From the above
results, we can conclude that the AKO mechanism is able to improve the 520
efficiency of evolution while the OS mechanism helps to locate promising
solutions. By incorporating the two mechanisms, the resulting algorithm is
therefore able to efficiently and effectively search the space to deliver high
quality solutions.

Next, experiments are carried out to examine the performance of our 525
method by comparing it with related methods, listed below. These methods
are either classical or recently proposed EA based methods, which is used to
optimize SSE for data clustering.

• GKA [13], devised for clustering, is a variant of GA. In this method, the
crossover operation is removed while one iteration of k-means is 530
incorporated for improving the offspring solutions during evolutionary
clustering.

• EPSONS [59] is based on a particle swarm optimisation (PSO)
algorithm. In this method, a neighborhood search strategy along with a
diversity strategy is applied to improve the evolutionary clustering. 535

• MEQPSO [60] is based on a variant of quantum-behaved PSO. This
method also adopts one iteration of k-means as a local search procedure

 18

in order to fine-tune clustering solutions during evolution, which has
been applied for clustering gene expression data.

• HABC [61] is based on an artificial bee colony (ABC) algorithm, in 540
which the information exchange among bees is enhanced by a newly
designed crossover operation.

• CGABC [62] is a hybrid ABC algorithm, in which two local search
paradigms (i.e., chaotic local search and gradient search) are
incorporated to improve the convergence rate of the algorithm. These 545
two local procedures are applied to fine-tune the best individual at each
generation.

To ensure a fair comparison, we implement all the methods based on the same
termination condition (i.e., the best individual in the population does not
change in 20 consecutive generations). The values of rest parameters in GKA, 550
EPSONS, MEQPSO, HABC and CGABC remain the same as specified in
the original work.

To evaluate the quality of clustering solutions, two additional metrics, the
Entropy [63] index and Calinski-Harabasz (CH) [64] index, have also been
used to report the results. The Entropy is an external index, which can be 555
used to measure the purity of clusters with respect to given class labels of
the data. For a given class distribution of the data, the entropy of jth cluster
in the solution is computed as

 (9)

where pij is the probability that a member of jth cluster belongs to ith cluster 560
and k is the cluster number. Then, the total entropy of all clusters is
calculated as:

 (10)

where nj and n are the size of jth cluster and the entire data set, respectively.
A lower value of E indicates a higher correctness of the solutions. The CH is 565
an internal index, which evaluates the validity of clusters based on the
average within- and between-cluster sum of squares. Given a data set of n
objects with k clusters, this index is computed as:

 (11)

where m and mi are the centers of data set and cluster Ci, respectively, while 570
ni denotes the number of objects belonging to cluster Ci. A larger value of
CH corresponds to a better clustering solution.

å =
-=

k

i ijijj ppE
1

)log(

å
=

=
k

j
j

j E
n
n

E
1

å å
å
= =

=

-

-
×

-
-

= k

i

n

j ij

k

i ii

i mx

mmn

k
knCH

1 1

2
1

2

1

 19

Table III: Comparing Results Delivered by the Six Methods on Experimental Data Sets

Data Sets Evaluation Indexes
Methods

GKA EPSONS MEQPSO HABC CGABC MAAOK

Art_9

SSE 524.412 553.788 530.582 534.859 547.517 518.271

CH 4737.26 4501.1 4690 4674.45 4562.16 4827.33

Entropy 0.601457 0.659249 0.603306 0.604496 0.650066 0.496718

Runtime (s) 0.92464 19.0842 1.27685 27.6927 0.48518 0.90165

Art_15

SSE 331.42 365.482 384.753 345.371 362.812 330.178

CH 7923.12 7227.27 6873.65 7677.42 7315.74 8034.64

Entropy 0.514951 0.624709 0.697198 0.560497 0.610993 0.510835

Runtime (s) 1.52056 43.8815 1.62543 65.0253 0.97377 2.19899

Art_20

SSE 240.42 243.048 368.258 232.273 240.387 208.878

CH 6754.68 6753.74 4541.29 7035.86 6848.34 7813.33

Entropy 0.539778 0.541177 0.776882 0.508279 0.501505 0.415091

Runtime (s) 2.45264 76.7496 1.27463 75.3534 1.23082 3.16697

Car

SSE 7550.1 7575.11 7561.21 7579.47 7585.86 7542.93

CH 214.482 211.825 213.329 211.429 210.775 215.231

Entropy 1.03924 1.08199 1.05919 1.08073 1.06695 1.03538

Runtime (s) 0.31136 12.3635 0.36169 18.5743 0.27474 0.4908

Musk

SSE 53379.4 53686.7 53379.4 53555.6 55335 53379.4

CH 192.612 184.875 192.612 189.907 172.73 192.612

Entropy 0.973769 0.986263 0.973769 0.982761 0.97756 0.973769

Runtime (s) 0.14245 33.4754 0.11345 13.7734 0.17705 0.14471

Landsat

SSE 26987.2 29707.4 26988 30116.1 30074.3 26985.4

CH 4105.29 3580.51 4117.36 3624.42 3643.21 4119.31

Entropy 0.943224 1.06594 0.940967 1.09427 1.06457 0.940038

Runtime (s) 1.23431 129.715 2.26149 70.9661 0.93727 1.62432

Turkiye

SSE 51419.1 56388.8 49999.8 56482.9 52867.6 49999.2

CH 3523.57 3021.07 3690.9 3023.84 3421.51 3692.46

Entropy 1.02102 1.2133 0.993195 1.22424 1.08775 0.9929

Runtime (s) 3.67825 369.109 2.76554 168.024 2.34858 3.09903

MFCCs

SSE 45216.2 54268.7 45453 60259.6 49445.7 44651.1

CH 1862.85 1355.88 1857.56 1140.7 1659.34 1907.04

Entropy 0.707044 0.82942 0.724194 0.986066 0.807823 0.670661

Runtime (s) 5.26716 742.619 8.19415 319.909 4.60402 8.60205

Subcellcycle

SSE 1662.59 1704.89 1659.6 1675.33 1684.6 1646.2

CH 259.456 243.574 259.112 256.829 254.951 262.982

Entropy N/A N/A N/A N/A N/A N/A

Runtime (s) 0.10638 9.31111 0.10562 4.44142 0.06226 0.09735

Yeast2945

SSE 18412.7 19873.7 18599.2 21576.2 18608.2 18382.2

CH 129.583 110.376 127.236 90.3643 127.183 129.979

Entropy N/A N/A N/A N/A N/A N/A

Runtime (s) 13.2146 913.153 11.0537 384.341 5.93786 25.2307

 20

The comparison results in terms of SSE, Entropy, CH values and running
time are reported in Table III. Additionally, typical convergence curves of 575
the six methods on several representative data sets have been shown in Fig.
5. The results reveal that, compared with the five related algorithms, our
proposed method can generally deliver better clustering solutions. For
example, on Car, the GKA, EPSONS, MEQPSO, HABC and CGABC give
solutions with average SSE values of 7550.1, 7575.11, 7561.21, 7579.47 and 580
7585.86, respectively, while the solutions delivered by MAAOK
achieve7542.93. Further, the results indicate that the MAAOK could be
particularly useful for clustering problems involving large search spaces. For
instance, on Art_20, the GKA, EPSONS, MEQPSO, HABC and CGABC
provide solutions with average SSE values of 240.42, 243.048, 368.258, 585
232.273 and 240.387, respectively. By contrast, our method reaches 208.878.
Similar results can also be observed in terms of Entropy and CH index. For
example, in terms of Entropy, the GKA, EPSONS, MEQPSO, HABC and
CGABC deliver solutions with average Entropy of 0.707044, 0.82942,
0.724194, 0.986066 and 0.807823, respectively, on the MFCCs. By contrast, 590
the solutions delivered by the MAAOK have an average Entropy value of

 (a) (b)

(c) (d)

Fig. 5. Typical results of SSE values over runtime corresponding to the six algorithms on (a) Art_20, (b) Car, (c) Subcellcycle and (d) Yeast2945 data set.

 21

0.670661. Our method can therefore be used to identify more accurate
clustering results. In terms of the internal index of CH on the same data set,
the solutions provided by the above five methods as well as our proposed
method have the average values of 1862.85, 1355.88, 1857.56, 1140.7, 595
1659.34 and 1907.04, respectively. This could further confirm that our
proposed can be used to identify better clustering solutions than other
compared methods. It is not surprising that the performances of the EPSONS,
HABC and CGABC are worse since they do not use local search operation or
use it to improve the best solution only during evolution, thus limiting their 600
performance. By employing k-means to fine-tune the solutions during
evolution, the GKA and MEQPSO can have a better performance. However,
they still perform worse than MAAOK. The better performance of MAAOK
is largely contributed by the AKO and OS mechanisms. Rather than
employing the k-means operator in a fixed manner, the AKO mechanism can 605
appropriately adjust its frequency and intensity depending on the problem
instances to be solved as well as the stages of evolution, which therefore
makes the algorithm effective. While, the OS mechanism considers the
exploration aspect of population to perform the k-means operation, rather
than applying it directly on the individual. Such a mechanism is able to 610
alleviate the tendency of population to converge prematurely and enhance its
global search capability. This is particularly important for the clustering
problem with complex search space.

Regarding to efficiency, the results reveal that our proposed algorithm is
generally faster or comparable than EPSONS, HABC, GKA and MEQPSO, 615
but outperformed by CGABC. For example, on Landsat data, the GKA,
EPSONS, MEQPSO, HABC and CGABC need 1.23431s, 129.715s,
2.26149s, 70.9661s and 0.93727s, respectively, while the MAAOK takes
1.62432s on average to converge. Although the CGABC is efficient, it could
be easily trapped into less promising local optima, which leads to much worse 620
solution quality than our proposed algorithm.

7. Conclusions

In this work, we have investigated the issue of appropriately employing the
k-means local search operator in EA-based clustering. For this purpose, a
generalized framework, which supports the arbitrary setting of the frequency 625
and intensity of k-means operator during evolutionary clustering, has been
first introduced. Then, we have proposed an adaptive strategy to dynamically
control the frequency and intensity of k-means operator during evolution.
Further, an opposite search mechanism has been devised to implement the
adaptive k-means operation, thus appropriately exploring the search space. 630
Our results have shown that the AKO mechanism can improve the efficiency
of evolution while the OS mechanism is able to enhance the exploration

 22

capacity of population, thus avoiding less promising optima. By
incorporating the two mechanisms, our proposed algorithm is therefore
capable of efficiently and effectively delivering high quality solutions, and 635
outperforms the compared methods.

The work proposed in this paper can be extended further in several
directions. Firstly, designing and/or employing control mechanisms [65], [66]
to dynamically set the frequency and intensity of k-means operator could be
an interesting direction. Their influence on the algorithm’s performance can 640
then be studied. Second, it would be desirable to develop a method to
automatically determine the attraction point in the OS mechanism.
Additionally, while the effectiveness of AKO and OS mechanism has been
demonstrated for EA-based data clustering, they are sufficiently robust and
flexible to be incorporated into other metaheuristic algorithms, such as 645
particle swarm optimization [67], [68] to deal with clustering and its related
applications, such as image segmentation [69-71]. These can also be
investigated in the future.

Acknowledgments

This work was supported in part by the National Natural Science 650
Foundation of China under Grant No. 61873082, Grant 62003121 and
Zhejiang Provincial Natural Science Foundation of China under Grant
LQ20F030014.

References

[1] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recognit. Lett., vol. 31, no. 655
8, pp. 651-666, 2010.

[2] J. C. Bezdek and N. R. Pal, “Some new indexes of cluster validity,” IEEE Trans. Syst., Man,

Cybern. B, Cybern., vol. 28, no. 3, pp. 301-315, 1998.

[3] R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern classification,” En Broeck the Statistical

Mechanics of Learning Rsity, 2nd ed., 2000. 660
[4] M. Popescu, J. C. Bezdek, T. C. Havens and J. M. Keller, “A cluster validity framework

based on induced partition dissimilarity,” IEEE Trans. on Cybern., vol. 43, no. 1, pp.

308-320, 2013.

[5] Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu and S. Wu, “Understanding and enhancement of

internal clustering validation measures,” IEEE Trans. on Cybern., vol. 43, no. 3, pp. 665
982-994, 2013.

[6] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas and A. C. Ponce Leon F. de Carvalho,

“A survey of evolutionary algorithms for clustering,” IEEE Trans. Syst., Man, Cybern. C,

vol. 39, no. 2, pp. 133-155, 2009.

[7] J. Macqueen, “Some methods for classification and analysis of multivariate observations,” 670
in Proc. of, Berkeley Symposium on Mathematical Statistics and Probability, pp. 281-297,

1967.

 23

[8] R. D. Baruah, P. Angelov, “DEC: Dynamically evolving clustering and its application to

structure identification of evolving fuzzy models,” IEEE Trans. Cybern., vol. 44, no. 9, pp.

1619-1631, 2014. 675
[9] D. Cai and X. Chen, “Large scale spectral clustering via landmark-based sparse

representation,” IEEE Trans. Cybern., vol. 45, no. 8, pp. 1669-1680, 2015.

[10] X. Chang, Q. Wang, Y. Liu and Y. Wang, “Sparse regularization in fuzzy c-means for

high-dimensional data clustering,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2616-2627,

2017. 680
[11] L. O. Hall, I. B. Ozyurt and J. C. Bezdek, “Clustering with a genetically optimized

approach,” IEEE Trans. Evolutionary Computation, vol. 3, no. 2, pp. 103-112, 1999.

[12] U. Maulik and S. Bandyopadhyay, “Genetic algorithm-based clustering technique,”

Pattern Recognition, vol.33, pp.1455-1465, 2000.

[13] K. Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE Trans. Syst., Man, 685
Cybern. B, Cybern., 29(3), pp.433-439, 1999.

[14] J. Kivijärvi, P. Fränti, and O. Nevalainen, “Self-adaptive genetic algorithm for clustering,”

J. Heuristics, vol. 9, no. 2, pp. 13-129, 2003.

[15] Y. Lu, S. Lu, F. Fotouhi, Y. Deng, and S. J. Brown, “Incremental genetic k-means

algorithm and its application in gene expression data analysis,” BMC Bioinformat., vol. 28, 690
no. 172, 2004.

[16] W. Sheng, A. Tucker, X. Liu, “A niching genetic k-means algorithm and its applications to

gene expression data,” Soft Computing, vol. 14, no. 1, pp. 9-19, 2010.

[17] X. Wang and W. Sheng, “Adaptive usage of k-means in evolutionary optimized data

clustering”, International Conference on Machine Learning and Cybernetics, pp. 15-20, 695
2017.

[18] Y. Zhong, A. Ma, Y.S. Ong, Z. Zhu and L. Zhang, “Computational intelligence in optical

remote sensing image processing,” Applied Soft Computing, vol. 64, pp. 75-93, 2018.

[19] A. Ma, Y. Zhong, D. He and L. Zhang, “Multiobjective subpixel land-cover mapping,”

IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 1, pp. 422-435, 2018. 700
[20] E. R. Hruschka and N. F. F. Ebecken, “A genetic algorithm for cluster analysis,” Intelligent

Data Analysis, vol. 7, no. 1, pp. 15-25, 2003.

[21] S. Deng, Z. He, and X. Xu, “G-ANMI: A mutual information based genetic clustering

algorithm for categorical data,” Knowl. Based Syst., vol. 23, no. 2, pp. 144–149, 2010.

[22] U. Maulik and S. Bandyopadhyay, “Non-parametric genetic clustering: Comparison of 705
validity indices,” IEEE Trans. Syst., Man, Cybern. B, vol. 31, no. 1, pp. 120–125, 2001.

[23] A. Sibil, N. Godin, M. R’Mili, E. Maillet, and G. Fantozzi, “Optimization of acoustic

emission data clustering by a genetic algorithm method,” J. Nondestructive Eval., vol. 31,

no. 2, pp. 169–180, 2012.

[24] L. Y. Tseng and S. B. Yang, “A genetic approach to the automatic clustering problem,” 710
Pattern Recognit., vol. 34, no. 2, pp. 415–424, 2001.

[25] J. Xiao, Y. P. Yan, J. Zhang, and Y. Tang, “A quantum-inspired genetic algorithm for

k-means clustering,” Expert Syst. Appl., vol. 37, no. 7, pp. 4966–4973, 2010.

[26] A. H. Beg and M. Z. Islam, “Novel crossover and mutation operation in genetic algorithm

for clustering,” IEEE Congress on Evolutionary Computation, Vancouver, BC, pp. 715
2114-2121, 2016.

 24

[27] A. H. Beg and M. Z. Islam, “Clustering by genetic algorithm- high quality chromosome

selection for initial population,” IEEE Conference on Industrial Electronics and

Applications, Auckland, pp. 129-134, 2015.

[28] A. H. Beg and M. Z. Islam, “Genetic algorithm with novel crossover, selection and health 720
check for clustering,” European Symposium on Artificial Neural Networks, 2016.

[29] M. A. Rahman and M. Z. Islam, “A hybrid clustering technique combining a novel genetic

algorithm with K-Means,” Knowledge-Based Systems, vol. 71, no. 71, pp. 345-365, 2014.

[30] S. Bandyopadhyay and S. Saha, “A point symmetry-based clustering technique for

automatic evolution of clusters,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 11, pp. 725
1441–1457, 2008.

[31] W. Sheng, G. Howells, M. Fairhurst, and F. Deravi, “A memetic fingerprint matching

algorithm,” IEEE Trans. Inf. Forensics Security, vol. 2, no. 3, pp. 402–412, 2007.

[32] W. Sheng, S. Swift, L. Zhang, and X. Liu, “A weighted sum validity function for clustering

with a hybrid niching genetic algorithm,” IEEE Trans. Syst., Man Cybern. B, Cybern., vol. 730
35, no. 6, pp. 1156–1167, 2005.

[33] M. Laszlo and S. Mukherjee, “A genetic algorithm using hyper-quadtrees for

low-dimensional k-means clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no.

4, pp. 533–543, 2006.

[34] H. He and Y. Tan, “A two-stage genetic algorithm for automatic clustering,” 735
Neurocomputing, vol. 81, pp. 49–59, 2012.

[35] P. Scheunders, “A genetic c-means clustering algorithm applied to color image

quantization,” Pattern Recognit., vol. 30, no. 6, pp. 859–866, 1997.

[36] E. R. Hruschka, R. J. G. B. Campello, and L. N. D. Castro, “Evolving clusters in

gene-expression data,” Inf. Sci., vol. 176, no. 13, pp. 1898–1927, 2006. 740
[37] P. Merz and A. Zell, “Clustering gene expression profiles with memetic algorithms,” Lect.

Notes Comput. Sci., pp. 811–820, 2002.

[38] Y. S. Ong, M. H. Lim and X. S. Chen, “Research frontier: Memetic computation-past,

present & future,” IEEE Comput. Intell. Mag., vol. 5, no. 2, pp. 24-36, 2010.

[39] W. E. Hart, “Adaptive global optimization with local search,” Mechanical Engineering, vol. 745
251 no. 7, pp. 269-298, 1994.

[40] M. Lozano, F. Herrera, N. Krasnogor, et al., “Real-coded memetic algorithms with

crossover hill-climbing”, Evolutionary Computation, vol. 12 no. 3, pp. 273-302, 2004.

[41] D. Molina, F. Herrera and M. Lozano, “Adaptive local search parameters for real-coded

memetic algorithms,” IEEE Congress on Evolutionary Computation, Edinburgh, Scotland, 750
pp. 888-895 vol. 1, 2005.

[42] Q. H. Nguyen, Y. S. Ong and M. H. Lim, “A probabilistic memetic framework,” IEEE

Trans. Evolutionary Computation, vol. 13, no. 3, pp. 604-623, 2009.

[43] H. Nobahari and D. Darabi, “A new adaptive real-coded memetic algorithm,” International

Conference on Artificial Intelligence and Computational Intelligence, Shanghai, pp. 755
368-372, 2009.

[44] N. Noman and H. Iba, “Accelerating differential evolution using an adaptive local search,”

IEEE Trans. Evolutionary Computation, vol. 12, no. 1, pp. 107-125, 2008.

 25

[45] C. Liu and B. Li, “Memetic algorithm with adaptive local search depth for large scale

global optimization,” IEEE Congress on Evolutionary Computation, Beijing, pp. 82-88, 760
2014.

[46] N. K. Bambha, S. S. Bhattacharyya, J. Teich and E. Zitzler, “Systematic integration of

parameterized local search into evolutionary algorithms,” IEEE Trans. Evolutionary

Computation, vol. 8, no. 2, pp. 137-155, 2004.

[47] A. Ma, Y. Zhong and L. Zhang, “Adaptive multiobjective memetic fuzzy clustering 765
algorithm for remote sensing imagery,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 53, no. 8, pp. 4202-4217, 2015.

[48] Y. Zhong, A. Ma and L. Zhang, “An adaptive memetic fuzzy clustering algorithm with

spatial information for remote sensing imagery,” IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, vol. 7, no. 4, pp. 1235-1248, 2014. 770
[49] N. Shahidi, H. Esmaeilzadeh, M. Abdollahi, E. Ebrahimi and C. Lucas, “Self-adaptive

memetic algorithm: An adaptive conjugate gradient approach,” IEEE Conference on

Cybernetics and Intelligent Systems, pp. 6-11 vol.1, 2004.

[50] T. Back, Evolutionary algorithms in theory and practice. London, U.K., Oxford Univ.

Press, p. 120, 1996. 775
[51] Z. Michalewicz, Genetic algorithms + data structure = evolution programs, 3rd ed. New

York, NY, USA: Springer, 1996.

[52] E Zitzler, M. Laumanns and L. Thiele, “SPEAII: Improving strength pareto evolutionary

algorithm,” Technical Report 103, Computer Engineering and Networks Laboratory, Swiss

Federation of Technology, Zurich, 2001. 780
[53] X Li, J. Branke, and M. Kirley, “Performance measures and particle swarm methods for

dynamic multiobjective optimization problems,” Genetic and Evolutionary Computation

Conference, D. Thierens, Ed., vol. 1. London, UK: ACM Press, p. 90, 2007.

[54] X. Shen, M. Zhang and T. Li, “A multi-objective optimization evolutionary algorithm

addressing diversity maintenance,” International Joint Conference on Computational 785
Sciences and Optimization, Sanya, Hainan, pp. 524-527, 2009.

[55] M. Srinivas and L. M. Patnaik, “Adaptive probabilities of crossover and mutation in

genetic algorithms,” IEEE Trans. Syst., Man, Cybern., vol. 24, no. 4, pp. 656-667, 1994.

[56] P. M. Murphy and D. W. Aha, “UCI repository for machine learning databases,” Univ.

Calif., Berkeley, CA, USA, Tech. Rep. 1026, 1994 [Online]. Available: 790
http://www.ics.uci.edu/mlearn/MLRepository

[57] R. J. Cho, M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conwaym, L. Wodicka, et al.,

“A genome-wide transcriptional analysis of the mitotic cell cycle”, Molecular Cell, vol. 2,

no. 1, pp. 65-73, 1998.

[58] S. Tavazoie, D. Hughes, J. M. J. Campbell, R. J. Cho, and G. M. Church, “Systematic 795
determination of genetic network architecture,” Nature Genetics, vol. 22, pp. 281-285,

1999.

[59] C. T. Dang, Z. Wu, C. Deng, “An improved approach of particle swarm optimization and

application in data clustering,” Intelligent Data Analysis, vol. 19, no. 5, pp. 1049-1070,

2015. 800

 26

[60] J. Sun, W. Chen, W. Fang, et al., “Gene expression data analysis with the clustering method

based on an improved quantum-behaved Particle Swarm Optimization,” Engineering

Applications of Artificial Intelligence, vol. 25, no. 2, pp. 376-391, 2012.

[61] X. Yan, Y. Zhu, W. Zou, et al., “A new approach for data clustering using hybrid artificial

bee colony algorithm,” Neurocomputing, vol. 97, no. 1, pp. 241-250, 2012. 805
[62] K. K. Bharti, P. K. Singh, “Chaotic gradient artificial bee colony for text clustering,” Soft

Comput, vol. 20, no. 3, pp. 1113-1126, 2016.

[63] H. Xiong, J. Wu and J. Chen, “K-means clustering versus validation measures: A

data-distribution perspective,” IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, vol. 39, no. 2, pp. 318-331, 2009. 810
[64] T. Calinski and J. Harabasz, “A dendrite method for cluster analysis,” Commun. Stat.

Theory Methods, vol. 3, no. 1, pp. 1-27, 1974.

[65] M. Wang, Z. Wang, Y. Chen and W. Sheng, “Observer-based fuzzy output-feedback

control for discrete-time strict-feedback nonlinear systems with stochastic noises,” IEEE

Transactions on Cybernetics, vol. 50, no. 8, pp. 3766-3777, 2020. 815
[66] M. Wang, Z. Wang, Y. Chen and W. Sheng, “Event-based adaptive neural tracking control

for discrete-time stochastic nonlinear systems: a triggering threshold compensation

strategy,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 6, pp.

1968-1981, 2019.

[67] W. Liu, Z. Wang, Y. Yuan, N. Zeng, K. Hone and X. Liu, “A novel sigmoid-function-based 820
adaptive weighted particle swarm optimizer,” IEEE Transactions on Cybernetics, 2019, in

press, DOI: 10.1109/TCYB.2019.2925015.

[68] N. Zeng, Z. Wang, W. Liu, H. Zhang, K. Hone and X. Liu, “A

dynamic-neighborhood-based switching particle swarm optimization algorithm,” IEEE

Transactions on Cybernetics, 2020, in press, DOI: 10.1109/TCYB.2020.3029748. 825
[69] W. Liu, Z. Wang, X. Liu, N. Zeng and D. Bell, “A novel particle swarm optimization

approach for patient clustering from emergency departments,” IEEE Transactions on

Evolutionary Computation, vol. 23, no. 4, pp. 632-644. 2019.

[70] N. Zeng, Z. Wang, H. Zhang, K. E. Kim, Y. Li and X. Liu, “An improved particle filter

with a novel hybrid proposal distribution for quantitative analysis of gold 830
immunochromatographic strips,” IEEE Transactions on Nanotechnology, vol. 18, no. 1, pp.

819-829, 2019.

[71] N. Zeng, H. Li, Z. Wang, W. Liu, S. Liu, F. E. Alsaadi and X. Liu,

“Deep-reinforcement-learning-based images segmentation for quantitative analysis of gold

immunochromatographic strip,” Neurocomputing, 2020, in press, 835
https://doi.org/10.1016/j.neucom.2020.04.001.

