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Abstract 
Evolutionary algorithm (EA) incorporating with k-means local search 
operator represents an important approach for cluster analysis. In the existing 
EA approach, however, the k-means operators are usually directly employed 20 
on the individuals and generally applied with fixed intensity as well as 
frequency during evolution, which could significantly limit their performance. 
In this paper, we first introduce a hybrid EA based clustering framework such 
that the frequency and intensity of k-means operator could be arbitrarily 
configured during evolution. Then, an adaptive strategy is devised to 25 
dynamically set its frequency and intensity according to the feedback of 
evolution. Further, we develop an opposite search strategy to implement the 
proposed adaptive k-means operation, thus appropriately exploring the search 
space. By incorporating the above two strategies, a memetic algorithm with 
adaptive and opposite k-means operation is finally proposed for data 30 
clustering. The performance of the proposed method has been evaluated on a 
series of data sets and compared with relevant algorithms. Experimental 
results indicate that our proposed algorithm is generally able to deliver 
superior performance and outperform related methods. 
Keywords: Data clustering, memetic algorithm, adaptive local search, 35 
opposite local search, k-means 
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1. Introduction 

Data clustering, as an important branch of data mining, has been deemed 40 
as a critical task in unsupervised learning. For a given data set, clustering 
attempts to divide it into groups/clusters such that data objects in the same 
group/cluster are similar with each other while dissimilar with the data 
objects from other groups/clusters. A number of methods have been 
developed for clustering, which can be generally categorized as partitional 45 
approach and hierarchical approach [1]. For partitional methods, they can be 
classified as hard approach, in which each object is assigned to one cluster 
only, and fuzzy approach [2], in which each object belongs every cluster 
with a certain membership. In this work, we focus on the hard partitional 
approach. 50 

To implement the hard partitional clustering, the task is generally achieved 
via optimizing certain clustering functions [1, 3, 4]. Among the various 
clustering functions proposed in literature [5], the SSE (i.e., sum of squared 
errors) has been widely employed. However, optimizing SSE to deliver 
appropriate clusters is known to be a NP-hard problem [6]. Traditional 55 
methods [7-10] typically employ alternating optimization schemes (such as 
k-means algorithm) to optimize SSE, which could be easily trapped into local 
optima. 

Evolutionary algorithms (EAs), which aim to identify optimal or 
near-optimal solutions of optimization problems, have been widely employed 60 
to optimize SSE for obtaining appropriate clusters [11, 12]. Typically, it 
could be time-consuming to employ traditional EAs for clustering a dataset 
with non-trivial size. To improve the time efficiency, hybrid EAs, also called 
memetic algorithms (MAs), whose idea is to incorporate k-means based local 
search procedure into traditional EAs for clustering, have been proposed in 65 
literature [13-16]. These works indicate that the search efficiency of 
traditional EA-based data clustering could be greatly improved by 
incorporating them with k-means operation. This is because traditional 
EA-based clustering methods are not good at fine-tuning the solutions while 
the k-means based procedure can significantly enhance this capability. 70 
Despite its success in improving the performance of EA-based clustering [25], 
[33], [36], the k-means operation in existing methods is usually employed 
with fixed intensity (i.e., a fixed number of iterations of the algorithm) and 
fixed frequency (i.e., applied at each generation) during evolution [30], [33], 
[34]. As the evolutionary search of EA is a dynamical procedure, this could 75 
significantly reduce the performance of existing EA-based clustering 
methods. Moreover, the k-means operation in these methods is generally 
applied directly on the individual without considering the global information 
of population, which therefore renders the performance further. 

This work intends to address the issue of appropriately employing the 80 
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k-means local search procedure in EA-based clustering. To this end, a 
generalized framework, which supports the arbitrary setting of the intensity 
as well as frequency of k-means operator during evolution, is first introduced. 
Specifically, it is realized by employing two parameters to control the 
k-means operation’s intensity as well as frequency in the evolutionary 85 
process. Then, an adaptive strategy is devised to set these two parameters, 
which could dynamically control the k-means operation’s intensity and 
frequency during evolution. Further, an opposite search mechanism has been 
proposed to implement the adaptive k-means operation. The main idea of this 
mechanism is to sample points along the opposite direction of individuals 90 
attracted and replace them with the sampling points with better fitness, thus 
appropriately exploring the search space. By integrating the above two 
strategies, an adaptive and opposite k-means operation based memetic 
algorithm is finally presented for data clustering. In experiments, we 
evaluate the proposed algorithm by using both simulated and real data sets. 95 
The results clearly show the significance of the adaptive k-means operation 
and opposite search strategies for evolutionary data clustering. Experimental 
results also reveal that our proposed method can outperform related methods 
implemented for comparison. 

It should be mentioned that this work represents a significant extension of 100 
our previous conference publication [17] that briefly describes an adaptive 
k-means operation based MA for data clustering and its initial results. This 
paper extends the previous work by, firstly, providing a detailed description 
of the devised adaptive k-means operation strategy along with extensive 
experimental studies to analyze its effectiveness. Moreover, an opposite 105 
search mechanism used to implement the adaptive k-means operation is also 
designed and incorporated into the proposed method in [17]. Therefore, the 
major contribution of the current work is to develop an adaptive and 
opposite k-means operation based MA for effective and efficient data 
clustering. 110 

2. Related Work 

2.1. Hybrid EA-based partitional clustering 

EAs have been widely employed for partitional data clustering [18-24], 
which is known to be NP-hard. These methods could require extensive 
computational time to achieve convergence for data sets with non-trivial sizes. 115 
To improve the time efficiency, hybrid EAs, which incorporate the k-means 
operator into EAs for fine-tuning the solutions, have also been developed and 
widely used for data clustering [13-15, 25-37]. For example, in [25], Xiao et 
al. applied one iteration of the k-means algorithm on each individual to 
improve initial solutions in the population before the evolutionary search. 120 
Beg et al. [26-28] tried to generate a high-quality initial population by 
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running k-means on each individual until convergence. In [29], the best 
solution identified by the GA is fine-tuned by k-means to obtain a final 
solution. Apart from improving the initial or final solutions using the k-means 
operation, it has typically been used to fine-tune solutions during the 125 
evolutionary clustering. In [13] and [15], one iteration of k-means is used as a 
replacement of the crossover operation in EA for improving the offspring 
solutions during evolutionary clustering. Badyopadhyay et al. [30], Kivijarvi 
et al. [14], Sheng et al. [31, 32], He et al. [34] and Laszlo et al. [33] applied 
one or two iterations of the k-means algorithm to fine-tune the offspring 130 
generated by genetic operator. While, in [35-37], the k-means is designed to 
run on each offspring until converge during evolution. Among various 
alternatives, hybrid EAs, which apply the k-means operator to fine-tune 
solutions during evolution, has appeared to be the most successful one. 
However, in existing work, the k-means operation is usually employed with 135 
fixed intensity (i.e., a fixed number of iterations) and fixed frequency (i.e., 
applied at each generation). Since the evolution is a dynamic procedure, the 
performance of these methods could be significantly limited by employing 
the k-means operator in a fixed manner. Moreover, in these methods, the 
k-means based operator is usually employed directly to improve the 140 
individual and ignores the global information of population. This could 
reduce the performance further. 

2.2. MA and adaptive local search 

The hybrid evolutionary clustering algorithms mentioned above are 
closely related to memetic computation (MC), which is defined as a 145 
paradigm that combines population-based heuristics with individual learning 
or local search procedures for the sake of problem solving [38]. In the 
literature concerned with MC, an individual learning or local search 
procedure, which is usually referred to as a meme, has been used to enhance 
the capability of population-based heuristics. The integration of memes has 150 
been established as an extension of canonical EAs, by the name of MA. In 
this work, since the k-means operation is a domain-specific local search and 
plays a significant role in the proposed algorithm, the term MA is adopted.  

In the literature on MA, it has been widely recognized that appropriate 
usage the local search (LS) is crucial for the success of MAs [42]. To tackle 155 
this issue, many efforts have been carried out aiming at controlling the LS’s 
intensity and/or frequency during evolution. The resulting methods have been 
applied to address problems in context other than the clustering that we 
considered here. For example, in [39], Hart et al. proposed two schemes, i.e., 
fitness-based scheme and distribution-based scheme, to adaptively apply the 160 
LS to individuals, where the fitness-based scheme tried to bias the LS 
towards solutions in the population with higher fitness, while the 
distribution-based scheme tended to avoid unnecessary LS operation based 
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on redundancy information in the population. In [40], Lozano et al. suggested 
a simple method to apply a LS such that the offspring are subject to the LS if 165 
their fitness are better than the worst individual in the population, otherwise a 
fixed probability of 0.0625 would be applied. In [41], Molina et al. divided 
individuals of the population into three groups (i.e., most promising, median 
and less promising) and assigned different probabilities and intensities of LS 
to the individuals in different groups. Specifically, for offspring whose fitness 170 
are better than the best fitness in current population (i.e., most promising 
group), a maximum probability and intensity of LS would be assigned. For 
the individuals in median group (i.e., the offspring whose fitness are between 
the worst and best one in the population), they are subject to a low 
probability and median intensity of LS. While, for the individuals in less 175 
promising group, no LS would be employed. In [42], Nguyen et al. derived a 
theoretical bound for the intensity of LS and developed a probabilistic 
memetic framework to govern the intensity of LS. In this work, a theoretical 
upper bound and expected intensity of LS to be applied are estimated based 
on the distribution of individuals. In [43], Nobahari et al. proposed to employ 180 
the concentration information of high-quality solutions in the population to 
adapt the intensity of LS as well as the ratio of local-global search. In this 
method, a population with a more concentration of high-quality solutions 
would be assigned with a higher intensity of LS and lower ratio of 
local-global search, and vice versa. In [44], Noman et al. devised a 185 
Lamarckian LS that adaptively determines the intensity of LS by taking into 
account of feedback (i.e., fitness improvement) from the evolution. In [45], 
Liu et al. presented an adaptive strategy, which adjusts the intensity of LS 
based on the performance of global search and LS during evolutionary search. 
The performance of global search and LS is measured in terms of average 190 
fitness improvement (AFI) dynamically calculated at each generation. The 
method increases the intensity of LS at next generation when the AFI of 
global search is outperformed by that of LS, otherwise decreases it. In [46], 
Bambha et al. devised a method to control the intensity of parameterized 
local search algorithms (PLSA) used in EAs via a simulated heating 195 
framework. This method tries to gradually allocate more time to each PLSA 
along with the advance of evolution. In [47], Ma et al. proposed an adaptive 
strategy to adaptively determine the capability level of Gaussian local 
search [48] for different individuals in the population according to a 
probability model. The model is calculated based on the information of 200 
individuals’ fitness increment in the process of local search. While, in [49], 
Shahidi et al. encoded the parameters (i.e., step size and memory term) of 
conjugate gradient method into the chromosome, thereby dynamically 
controlling the intensity and direction of LS. 

 205 
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2.3 Motivations 

In this work, we proposed a memetic algorithm with an adaptive and 
opposite k-means operation for data clustering. The motivations of the 
adaptive k-means operation and opposite search mechanism in the proposed 
method are as follows. 210 

Motivation behind the adaptive k-means operation: In the MA based 
clustering methods, the k-means operators are usually employed with a fixed 
intensity and frequency. It has now been established that the 
intensity/frequency of local search in a MA should be appropriately 
controlled in order to have a good performance. This is due to an excessive 215 
intensity and/or frequency of local search could easily lead the population to 
premature convergence without properly exploring the search space. While, 
an insufficient intensity and/or frequency of local search could hinder the 
efficiency of evolutionary search. Moreover, the appropriate 
intensity/frequency depends on the problem instances at hand as well as the 220 
stages of EA evolution. It is therefore desirable to enhance the performance of 
MA based clustering by adaptively adjusting the intensity as well as 
frequency of k-means operator during evolution. 

Motivation behind the opposite search: In MA literature, the local search is 
generally designed to apply directly on the individual without considering the 225 
exploration aspect of population. In this case, although the local search is able 
to greatly improve the algorithm's efficiency, it could also significantly 
accelerate the speed of premature convergence, for which the traditional EAs 
are generally suffered from. To alleviate such an issue, a promising option is 
perhaps to consider the exploration aspect of the population to perform the 230 
local search, thus enhancing its global search capability. This, therefore, 
motivates us to propose an opposite search mechanism to implement the 
adaptive k-means operation. 

3. Proposed Algorithm 

In this section, we propose a memetic algorithm with adaptive and 235 
opposite k-means operation (MAAOK) for data clustering. In the proposed 
method, apart from standard genetic operators, the solutions are evolved via 
an adaptive k-means operation (AKO) implemented based on an opposite 
search (OS) mechanism. The evolution will be terminated when the best 
individual in population does not change for Tg consecutive generations. 240 
Algorithm 1 shows a general procedure of the algorithm. 

In the following sections, we shall give a brief description of the 
representation, genetic operation and fitness criterion used in the algorithm 
as well as the algorithm’s complexity. The details of proposed adaptive 
k-means operation and opposite search mechanism will be presented in 245 
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Sections 4 and 5, respectively. 
To initialize the solutions, a real-value based representation [6] is adopted 

to denote the values of cluster centers. For instance, to cluster a data set with 
three features, a solution can be represented as (0.65, 0,43, 0.32, 0.81, 0.72, 250 
0.16), which encodes 2 clusters centered at (0.65, 0,43, 0.32) and (0.81, 0.72, 
0.16), respectively. The initial values of solutions are randomly assigned 
according to the range of attributes. During the evolution, the roulette wheel 
strategy [50] is employed to select parent pairs for recombination. The 
selected parents then undergo the arithmetic crossover scheme [51] with a 255 
probability of Pc to generate intermediate offspring. Subsequently, the 
generated offspring is subject to Gaussian mutation [50] with a probability 
Pm. 

The solution’s fitness is measured according to the SSE function, which 
is calculated as: 260 

                     (1) 

where  

                        (2) 

Here, xi is the ith object in data set, n is the size of data set, k denotes the 
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Step 1. Generate an initial population with n individual solutions using real-value 

representation. 

Step 2. Calculate the fitness of each solution in the initial population according to 

the SSE criterion. 

Step 3. Select pairing parents using the roulette wheel strategy. This process is 

repeated until n/2 parent pairs are selected. 

Step 4. Crossover the parent pairs to generate intermediate offspring and then 

apply mutation operation on the offspring. 

Step 5. Perform an opposite search (see Section 5) based adaptive k-means 

operation (see Section 4) to improve the offspring.  

Step 6. Calculate the fitness value of offspring if they are not calculated at step 5. 

Step 7. Create a new population of size n from the offspring with elite strategy if it 

is not created at step 5. 

Step 8. Terminate the evolution if the stopping condition is met, otherwise go to 

Step 2. 

Step 9. Output the best solution in the terminal population. 

 
Algorithm 1.  An adaptive and opposite k-means operation based memetic algorithm for 

data clustering. 
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number of clusters in the solutions, mj represents the center of cluster Cj and 265 
|Cj| denotes the number of data objects within cluster Cj. 

Based on the calculated SSE value of each individual, we then calculate 
its fitness as f = 1/SSE, and thus higher fitness means better solutions. It 
should be noted that empty clusters could be existed in certain solutions. To 

punish these solutions, we rewrite the function as f=1/SSE¢, where SSE¢= 270 
SSE + (ce/ct)*SSE. Here, ce and ct denote the number of empty clusters and 
total clusters, respectively, in the solution. 

During the run of the proposed method, the main computational load at 
each generation is the fitness evaluation as well as the implementation of 
adaptive and opposite k-means operation. Calculating a given solution’s 275 
fitness takes O(nkd2) time, where n and d is the size and dimension of data set, 
respectively, and k denotes the number of clusters of the data set. The 
adaptive and opposite k-means operation for a given individual requires 
O(σnkd2+kd) time, where σ denotes the number of iterations of k-means 
operation. The proposed method, therefore, has an overall time complexity of 280 
O(σnkd2gnp), where np is the population size and g is the number of 
generations. 

4. Adaptive K-means Operation 

It has been well established that incorporation of the k-means operator can 
greatly enhance the EA-based clustering. Nevertheless, the k-means operator 285 
in existing methods is usually employed with fixed intensity and frequency, 
which may significantly limit the performance. Here, we try to address the 
issue by firstly presenting a generalized framework such that the frequency 
and intensity of k-means operator could be arbitrarily configured. Then, we 
devise an adaptive strategy to dynamically control its frequency and intensity 290 
during evolutionary clustering. 

 

Step 1. Before EA’s evolution:  

i. Initialize the frequency counter (curF) as curF = 1.  

ii. Specify the frequency (τ) and intensity (σ) of k-means operation. 

Step 2. During the evolution, if curF = τ, then: 

i. Apply σ iterations of k-means on each offspring generated by the 

recombination operation of EA. 

ii. Specify a new value for τ and σ, if necessary. 

iii. Reset curF = 0. 

Step 3. After each generation of evolution, increase the curF by 1 (i.e., curF = curF 

+ 1). 

 
Algorithm 2.  The procedure of a generalized k-means usage framework. 
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4.1. A Generalized K-means Usage Framework 

To allow for variable frequency and intensity of k-means employment 
during EA evolution, a generalized k-means usage framework (GKUF), 
shown in Algorithm 2, has been devised. Essentially, in the framework, the 
frequency and intensity of k-means operator is controlled by introducing two 300 
free parameters τ and σ. Specifically, σ iterations of k-means will be 
performed on the offspring after each τ generations of EA evolution. By 
setting different values for τ and σ, we are therefore able to arbitrarily set the 
frequency and intensity of k-means operator during evolution. Two instances 
of GKUF are shown in Fig. 1. Fig. 1(a) gives an example of GKUF with fixed 305 
σ and τ respectively equaling to 1 and 2, which means that one iteration of 
k-means will be used to improve the individuals after each two consecutive 
generations of EA evolution. Clearly, the fixed k-means operation, as adopted 

 

(a) 

 

(b) 

 

Fig. 1.  Two instances of GKUF with (a) fixed and (b) dynamic values of τ and σ. 

Step 1. Before EA’s evolution:  

i. Initialize the frequency counter (curF), frequency (τ) and intensity (σ) of 

k-means operation as curF = 1, τ = 1 and σ = 1, respectively.  

ii. Record the fitness information of initial population. 

Step 2. During the evolution, if curF = τ, then: 

i. Apply σ iterations of k-means on each offspring generated by the 

recombination operation of EA. 

ii. Calculate the fitness value for each of the offspring. 

iii. Create a new population of size n from the offspring with elite strategy. 

iv. Record the diversity information of current population. 

v. Update the values of τ and σ according to equation (3) and (4), 

respectively. 

vi. Reset curF = 0. 

Step 3. After each generation of evolution, increase the curF by 1 (i.e., curF = curF 

+ 1). 

 
Algorithm 3.  The procedure of adaptive k-means operation. 
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in most of the existing EA-based clustering algorithms, could be considered 
as special cases of the proposed framework. Fig. 1(b) shows another example 310 
of GKUF, in which the values of τ and σ are dynamically changed along the 
evolution. 

4.2. Adaptive Strategy 

Although the above framework can enable us to dynamically vary the 
frequency and intensity of k-means operator, how to specify appropriate 315 
values of τ and σ is not a trivial task. It is due to that, for τ and σ, the selection 
of their values is usually problem-specific and also their values may vary 
during the execution of EAs. In the following subsection, we propose a 
mechanism called adaptive k-means operation (AKO), which seeks to 
automatically adjust the frequency and intensity of k-means operator based 320 
on the feedback information of evolution. 

Among the various feedback information of evolution, the diversity of 
population is perhaps the most critical one. It is therefore natural to achieve 
the adaptation via monitoring this information during evolutionary clustering. 
A number of indexes have been designed to measure the diversity of 325 
population [52-54]. Here, we adopt an index, which is based on the idea 
proposed in [55], to measure the population diversity. Specifically, the 
diversity is measured in terms of the difference between the maximum ( ) 

and average ( ) fitness of the population. The rational is that the difference 

tends to be larger for a population with scattered solutions than that with 330 
converged ones. By employing an index based on such an idea, an AKO 
strategy is then proposed, the procedure of which is shown in Algorithm 3. In 
this strategy, initial values of the intensity and frequency of k-means operator 
are set as 1 (i.e., τ=σ=1) and the diversity information (i.e., ) of 

initial population is recorded. At the initial generation, one iteration of 335 
k-means will therefore be used to improve the offspring produced by 
recombination operation. Following the initial stage, we calculate the 
population diversity at each generation (i.e., ) after the k-means 

operation is evoked and compare it with that at previous generation. When a 
reduced diversity is recorded (i.e., < ), the frequency of 340 

k-means operator will be adjusted as: 

                          (3) 

and the intensity will be kept as 1. The ,  and  here denote the 

minimum, maximum and average fitness of the population at current 
generation while c1 denotes a constant value. The difference of  in 345 

the equation is utilized for normalization purpose. Based on this formula, the 
k-means operator will therefore be applied with a lower frequency for a more 
converged population. While, if the comparison indicates an increased 
diversity (i.e., ≥ ), the intensity of k-means operator will be 

maxf

f

ff -max

ff ¢-¢max

ff ¢-¢max ff -max

τ = c1 ⋅
ʹf − ʹf min
ʹf max − ʹf min

⎡

⎣
⎢

⎤

⎦
⎥

minf ¢ maxf ¢ f ¢

minmax ff ¢-¢

ff ¢-¢max ff -max
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calculated as: 350 

                          (4) 

and the frequency will be kept as 1. Here, c2 is a constant value. Accordingly, 
based on this formula, the k-means operator will be more intensely used to 
improve the solutions during evolution when the population has a higher 
diversity. By jointly employing the above formulas, the proposed AKO 355 
strategy therefore aims to appropriately adjust the frequency and intensity of 
k-means local search based on the information of population diversity during 
evolution. 

 360 

5. Opposite Search Mechanism 

It has been widely agreed that local searches are able to improve 
exploitation capability of EAs, thus making them efficient. However, at the 
same time, local searches could also accelerate the speed of genetic drift in a 
population, which leads to premature convergence. This is due to that local 365 
searches in existing MAs are typically implemented directly on the individual 
without considering the exploration aspect of population. As a result, under 
the search mechanism of EAs along with local searches, the individuals will 

σ = c2 ⋅
ʹf max − ʹf
ʹf max − ʹf min

⎡

⎣
⎢

⎤

⎦
⎥

 

 

 

Fig. 2. Illustration of opposite search mechanism on one-dimensional maximum optimisation 

problem. 

  

Step 1. For each individual p to be improved, determine an attraction point p1 with a 

higher fitness value than p using the roulette wheel strategy. 

Step 2. Apply k-means operation (whose intensity is determined by the AKO 

mechanism) on the individual p. 

Step 3. Sample an opposite point p¢ for the individual p using the equation (5). 

Step 4. Apply the same k-means operation on the individual p¢. 

Step 5. Calculate the fitness of individuals p and p¢. If the fitness of p¢ is better than 

that of p, then replace the individual p with p¢ as the offspring. 

 
Algorithm 4.  The procedure of opposite search based adaptive k-means operation. 
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have a high tendency to move towards the best solution in population, before 
the search space being appropriately explored. To address such an issue, an 370 
opposite search (OS) mechanism has been further introduced in this section to 
implement the AKO.  

Compared to the direct application of local search operator, the OS 
mechanism based local search is able to enhance the exploration capacity of a 
population. An illustration of this is shown in Fig. 2 on a one-dimensional 375 
maximum optimization problem. Supposing there are two individual 
solutions A and B in the population, generally the solution B will be attracted 
towards the solution A which has a better fitness value under the mechanism 
of EA. Assume that an offspring C, produced by genetic operators, is the next 
point of inquiry of solution B. Once the solution B is replaced by the solution 380 
C under the replacement strategy of EA, the segment CB will unlikely be 
searched again. As a result, the segment CB may not be appropriately 
explored. At the same time, as the solution B tends to be attracted towards the 
solution A, premature convergence may occur. On the other hand, if the 
solution B is replaced by the solution D, which is located at the opposite 385 
direction of the search along the solution B, then the segment CB will still get 
a chance to be searched and meanwhile the solutions tend to be diversified. 
Consequently, the exploration capability of solutions A and B could be 
significantly enhanced. 

The proposed OS mechanism uses the population information along 390 
opposite direction of the individual attracted to performing the AKO. 
Specifically, for an individual p to be improved, the mechanism first 
determines an attraction point for the individual by choosing an individual p1 
with a higher fitness value than p from the population. Then, the k-means 
operation (whose intensity is determined by the AKO mechanism) is 395 

performed to improve the individual p. Subsequently, an opposite point p¢ is 
sampled using the following equation: 

 .                         (5) 

This equation is obtained as follows. Let and denote the Euclidean 

distances from p1 to p and p¢, respectively. Then, the relationship between 400 

 
and 

 
can be written as: 

 ,                         (6) 

where λ is a constant value greater than 1. The position of sampling point p¢ 
can be subsequently derived as: 
 405 

                       (7) 

( ) ppp ×+×-=¢ ll 11

pp1 pp ¢1

pp1 pp ¢1

l111 =¢pppp

( ) ( ) l111 =-¢-Û pppp
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 .                     (8) 

According to the above equation, the position of sampling point p¢ is 
determined by the value of λ. A large value of λ will lead p¢ sampled far 
away from p, while a small value will make p¢ close to p. To ensure a good 410 
performance of OS mechanism, the value of λ should be set appropriately. A 
too small value of λ will lead to excessiveness of exploitation and rapidly 
result in convergence to local optima. Conversely, a too large value of λ 
could critically slow down the convergence rate. Thus, to balance the search, 
a value of 1.8 has been empirically identified and used in our experiments. 415 

After obtaining the opposite point p¢, the same k-means operation as 
applied on the individual p is employed to improve it. Finally, replace the 

individual p with p¢ if it has a better fitness, otherwise keep the p as the 
offspring. The procedure of the mechanism is shown in Algorithm 4. 

6.  Experiments 420 

In this section, we first describe the experimental data and parameter 
configurations of our proposed method. Then, the performance of devised 
mechanisms is evaluated. After that, we compare our algorithm with related 
work. All experiments were performed on a workstation with an Intel (R) 
CoreTM i7-3630QM CPU at 2.40GHz and 8 GB RAM running WindowsTM 7. 425 
The results reported here were averaged over 100 trials of the methods, unless 
stated otherwise. 

 

6.1. Data Sets and Parameter Settings 

A series of data sets, as listed in Table I, including artificial as well as real 430 
data have been used for evaluation purpose. The artificial data (i.e., Art_9, 
Art_15 and Art_20 as shown in Fig. 3) are generated with various levels of 

( ) ppp ×+×-=¢Û ll 11

Table I: A List of Data Sets Used in the Experiments 

Data sets 
No. of data 

points 
No. of attributes No. of clusters 

Art_9 3300 2 9 

Art_15 4400 2 15 

Art_20 4000 2 20 

Car 1728 6 4 

Musk 476 166 2 

Landsat 4435 36 6 

Turkiye 5820 32 5 

MFCCs 7195 22 10 

Subcellcycle 387 17 5 

Yeast2945 2945 15 30 
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difficulty for partitioning. The Art_9 is relatively simple. There are four dense 
and sparse clusters, respectively, in the data set along with one highly sparse 
cluster located at the middle of Fig. 3(a). In Art_15, the clusters are generated 435 
with rather different volumes and sizes while many of them are overlapped. 
In Art_20, there are sixteen clusters in the middle along with four isolated 
clusters, which makes the problem even difficult to be solved.  

 

For real data, we consider the Car, Musk, Landsat, Turkiye and MFCCs 440 
data sets, which are available at UCI Repository [56]. The Car data consist of 
1728 data objects with 6 attributes (i.e., buying, doors, maint, lug_boot, 
persons, and safety). This data set will be grouped into 4 clusters 
corresponding to 4 types of car evaluation results. The Musk data contain 
476 instances of 166 attributes, which are used to describe the molecules 445 
depending upon the exact shape or conformation of molecule. These 
molecules are judged to be either musks or non-musks. Therefore, there are 
2 clusters in the data. The Landsat data contain multi-spectral values of 
pixels in 3*3 neighborhoods in a satellite image. This data has 4435 
instances of 36 attributes and will be clustered into 6 groups corresponding 450 
to 6 classes of land types. The Turkiye data contain a total 5820 evaluation 

 

(a)                                 (b) 

 

(c) 

 

Fig. 3.  Artificial data sets (a) Art_9, (b) Art_15 and (c) Art_20. 
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scores with 32 attributes collected from the students at Gazi University. 
These data are expected to be grouped into 5 clusters. The MFCCs consist 
of 22 attributes of syllables of anuran (frogs) calls. There is a total of 7195 
records with 3 labels (i.e., family, genus and species). Based on the label of 455 
species, there are 10 clusters in this data. 

Additionally, gene expression data including the Subcellcycle and 
Yeast2945 have also been considered in the experiments. Both data sets are 
part of the yeast cell-cycle data and have been widely used for bioinformatics 
study [57]. The Subcellcycle contains expression information of 384 genes, 460 
which corresponds to five phases (i.e., S, M, G2, early and late G1) during the 
cell-cycle. Correspondingly, 5 clusters are existed in this data. The Yeast2945 
data, given by Tavazoie et al. [58], have expression information of 2945 
genes. As in [58], we also partition the data into 30 clusters. All the data 
mentioned above are normalized via the Z-score method such that each 465 
variable has a mean value of 0 with standard deviation of 1. For real data, 
principal component analysis has also been employed to reduce the 
dimension by selecting the top principal components, which account for 
over 95% of the variance. 

In experiments, several parameters in our proposed algorithm need to be 470 
specified, which involve the rates of mutation and crossover, population size, 
termination criterion, scaling parameters c1 and c2 in AKO and control 
constant λ in OS mechanism. Specifically, the mutation rate and crossover 
rate are set to be 0.03 and 0.7, respectively. These values are determined 
experimentally on the aforementioned data sets. Three trials of the proposed 475 
method are performed on various mutation and crossover rates while the rest 
parameter values are kept fixed. Generally, we find that a mutation 
probability value ranging from 0.02 to 0.05 along with a crossover probability 
value ranging from 0.6 to 0.85 could offer the best results. A size of 30 is used 
for population initialization, and the proposed method will be terminated 480 
when there is no improvement detected for the best individual in Tg=20 
consecutive generations. A larger population size or value Tg may result in a 
more expensive algorithm with no significant improvement of performance. 
The values of scaling constants c1 and c2 in AKO are both set to be 8. For the 
scaling constants, there is a trade-off between computational efficiency and 485 
solution quality. A larger value of scaling constants will generally lead to a 
more efficient algorithm, but it will be more susceptible to less promising 
solutions. Our experiments indicate that a value between 7 to 10 could give an 
adequate trade-off between the efficiency and solution quality across the 
experimental data sets. For the λ in OS mechanism, a value of 1.8 is used. 490 
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6.2. Results 

Firstly, we evaluate the impact of AKO and OS mechanisms in our 
proposed method. To this end, we examine and compare our method, 
MAAOK, with its variants: MAAOK without the OS mechanism to 495 
implement the AKO (denoted as MAAOK_1), which were proposed in our 

Table II: Comparing the Results Delivered by Our Proposed Method and its Two Variants 

Data Sets 
Evaluation 

Indexes 

Methods 

MAAOK MAAOK_1 MAAOK_2 

Art_9 
SSE 518.271 518.668 518.092 

Runtime (s) 0.90165 0.58299 0.86062 

Art_15 
SSE 330.178 330.35 330.388 

Runtime (s) 2.19899 1.39015 2.02118 

Art_20 
SSE 208.878 209.278 210.028 

Runtime (s) 3.16697 2.19005 3.04961 

Car 
SSE 7542.93 7549.98 7546.31 

Runtime (s) 0.4908 0.38356 0.44614 

Musk 
SSE 53379.4 53379.4 53379.4 

Runtime (s) 0.14471 0.1083 0.17627 

Landsat 
SSE 26985.4 26986 26985.3 

Runtime (s) 1.62432 1.22219 1.93652 

Turkiye 
SSE 49999.2 49999.3 49999.2 

Runtime (s) 3.09903 2.30424 4.02371 

MFCCs 
SSE 44651.1 44708.8 44705 

Runtime (s) 8.60205 7.03384 11.1001 

Subcellcycle 
SSE 1646.2 1653.43 1651.43 

Runtime (s) 0.09735 0.07045 0.08927 

Yeast2945 
SSE 18382.8 18410.3 18439.8 

Runtime (s) 25.2307 19.3308 18.1835 

 

 
 (a)                                                            (b)      

Fig. 4.  Typical results of SSE values over runtime corresponding to the MAAOK, MAAOK_1 and MAAOK_2 on (a) Car and (b) Yeast2945 data set. 
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previous conference work [17] and MAAOK with neither AKO nor OS 
mechanism (i.e., only one iteration of k-means is incorporated to improve 
each offspring individual at every generation), which is denoted as 
MAAOK_2. These variants are run with the same setting of parameters as in 500 
MAAOK. Their performance in terms of average SSE and runtime are shown 
in Table II. 

Comparing the MAAOK_1 and MAAOK_2, it can be found that, by 
incorporating the AKO mechanism, the MAAOK_1 is more efficient than 
MAAOK_2 on all data sets used in the experiments. For instance, on Art_20, 505 
MAAOK_2 needs 3.04961s to give solutions with an average SSE value of 
210.028. By contrast, MAAOK_1 takes only 2.19005s on average to provide 
solutions with an even better average SSE value of 209.278. On Musk data 
set, the MAAOK_2 and MAAOK_1 require 0.17627s and 0.1083s, 
respectively, to deliver solutions with same average SSE value of 53379.4. 510 
Looking at the MAAOK_1 and MAAOK, it can be observed that the OS 
mechanism is generally able to improve the quality of solutions. For example, 
on the MFCCs data, by incorporating the OS mechanism to implement the 
AKO, the average SSE value delivered by MAAOK is 44651.1, which is 
better than the one delivered by MAAOK_1. This is due to that the OS 515 
mechanism can be used to maintain an appropriate balance between the 
exploitation and exploration of evolutionary search. To clearly show the 
results, typical convergence curves of the three algorithms on two 
representative data sets have also been shown in Fig. 4. From the above 
results, we can conclude that the AKO mechanism is able to improve the 520 
efficiency of evolution while the OS mechanism helps to locate promising 
solutions. By incorporating the two mechanisms, the resulting algorithm is 
therefore able to efficiently and effectively search the space to deliver high 
quality solutions. 

Next, experiments are carried out to examine the performance of our 525 
method by comparing it with related methods, listed below. These methods 
are either classical or recently proposed EA based methods, which is used to 
optimize SSE for data clustering.  

• GKA [13], devised for clustering, is a variant of GA. In this method, the 
crossover operation is removed while one iteration of k-means is 530 
incorporated for improving the offspring solutions during evolutionary 
clustering.  

• EPSONS [59] is based on a particle swarm optimisation (PSO) 
algorithm. In this method, a neighborhood search strategy along with a 
diversity strategy is applied to improve the evolutionary clustering.  535 

• MEQPSO [60] is based on a variant of quantum-behaved PSO. This 
method also adopts one iteration of k-means as a local search procedure 
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in order to fine-tune clustering solutions during evolution, which has 
been applied for clustering gene expression data.  

• HABC [61] is based on an artificial bee colony (ABC) algorithm, in 540 
which the information exchange among bees is enhanced by a newly 
designed crossover operation.  

• CGABC [62] is a hybrid ABC algorithm, in which two local search 
paradigms (i.e., chaotic local search and gradient search) are 
incorporated to improve the convergence rate of the algorithm. These 545 
two local procedures are applied to fine-tune the best individual at each 
generation.  

To ensure a fair comparison, we implement all the methods based on the same 
termination condition (i.e., the best individual in the population does not 
change in 20 consecutive generations). The values of rest parameters in GKA, 550 
EPSONS, MEQPSO, HABC and CGABC remain the same as specified in 
the original work.  

To evaluate the quality of clustering solutions, two additional metrics, the 
Entropy [63] index and Calinski-Harabasz (CH) [64] index, have also been 
used to report the results. The Entropy is an external index, which can be 555 
used to measure the purity of clusters with respect to given class labels of 
the data. For a given class distribution of the data, the entropy of jth cluster 
in the solution is computed as 

                      (9) 

where pij is the probability that a member of jth cluster belongs to ith cluster 560 
and k is the cluster number. Then, the total entropy of all clusters is 
calculated as:  

 
    

                   (10) 

where nj and n are the size of jth cluster and the entire data set, respectively. 
A lower value of E indicates a higher correctness of the solutions. The CH is 565 
an internal index, which evaluates the validity of clusters based on the 
average within- and between-cluster sum of squares. Given a data set of n 
objects with k clusters, this index is computed as: 

                 (11) 

where m and mi are the centers of data set and cluster Ci, respectively, while 570 
ni denotes the number of objects belonging to cluster Ci. A larger value of 
CH corresponds to a better clustering solution.  
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Table III: Comparing Results Delivered by the Six Methods on Experimental Data Sets 

Data Sets Evaluation Indexes 
Methods 

GKA EPSONS MEQPSO HABC CGABC MAAOK 

Art_9 

 

SSE 524.412 553.788 530.582 534.859 547.517 518.271 

CH 4737.26 4501.1 4690 4674.45 4562.16 4827.33 

Entropy 0.601457 0.659249 0.603306 0.604496 0.650066 0.496718 

Runtime (s) 0.92464 19.0842 1.27685 27.6927 0.48518 0.90165 

Art_15 

 

SSE 331.42 365.482 384.753 345.371 362.812 330.178 

CH 7923.12 7227.27 6873.65 7677.42 7315.74 8034.64 

Entropy 0.514951 0.624709 0.697198 0.560497 0.610993 0.510835 

Runtime (s) 1.52056 43.8815 1.62543 65.0253 0.97377 2.19899 

Art_20 

SSE 240.42 243.048 368.258 232.273 240.387 208.878 

CH 6754.68 6753.74 4541.29 7035.86 6848.34 7813.33 

Entropy 0.539778 0.541177 0.776882 0.508279 0.501505 0.415091 

Runtime (s) 2.45264 76.7496 1.27463 75.3534 1.23082 3.16697 

Car 

SSE 7550.1 7575.11 7561.21 7579.47 7585.86 7542.93 

CH 214.482 211.825 213.329 211.429 210.775 215.231 

Entropy 1.03924 1.08199 1.05919 1.08073 1.06695 1.03538 

Runtime (s) 0.31136 12.3635 0.36169 18.5743 0.27474 0.4908 

Musk 

SSE 53379.4 53686.7 53379.4 53555.6 55335 53379.4 

CH 192.612 184.875 192.612 189.907 172.73 192.612 

Entropy 0.973769 0.986263 0.973769 0.982761 0.97756 0.973769 

Runtime (s) 0.14245 33.4754 0.11345 13.7734 0.17705 0.14471 

Landsat 

SSE 26987.2 29707.4 26988 30116.1 30074.3 26985.4 

CH 4105.29 3580.51 4117.36 3624.42 3643.21 4119.31 

Entropy 0.943224 1.06594 0.940967 1.09427 1.06457 0.940038 

Runtime (s) 1.23431 129.715 2.26149 70.9661 0.93727 1.62432 

Turkiye 

SSE 51419.1 56388.8 49999.8 56482.9 52867.6 49999.2 

CH 3523.57 3021.07 3690.9 3023.84 3421.51 3692.46 

Entropy 1.02102 1.2133 0.993195 1.22424 1.08775 0.9929 

Runtime (s) 3.67825 369.109 2.76554 168.024 2.34858 3.09903 

MFCCs 

SSE 45216.2 54268.7 45453 60259.6 49445.7 44651.1 

CH 1862.85 1355.88 1857.56 1140.7 1659.34 1907.04 

Entropy 0.707044 0.82942 0.724194 0.986066 0.807823 0.670661 

Runtime (s) 5.26716 742.619 8.19415 319.909 4.60402 8.60205 

Subcellcycle 

SSE 1662.59 1704.89 1659.6 1675.33 1684.6 1646.2 

CH 259.456 243.574 259.112 256.829 254.951 262.982 

Entropy N/A N/A N/A N/A N/A N/A 

Runtime (s) 0.10638 9.31111 0.10562 4.44142 0.06226 0.09735 

Yeast2945 

SSE 18412.7 19873.7 18599.2 21576.2 18608.2 18382.2 

CH 129.583 110.376 127.236 90.3643 127.183 129.979 

Entropy N/A N/A N/A N/A N/A N/A 

Runtime (s) 13.2146 913.153 11.0537 384.341 5.93786 25.2307 
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The comparison results in terms of SSE, Entropy, CH values and running 
time are reported in Table III. Additionally, typical convergence curves of 575 
the six methods on several representative data sets have been shown in Fig. 
5. The results reveal that, compared with the five related algorithms, our 
proposed method can generally deliver better clustering solutions. For 
example, on Car, the GKA, EPSONS, MEQPSO, HABC and CGABC give 
solutions with average SSE values of 7550.1, 7575.11, 7561.21, 7579.47 and 580 
7585.86, respectively, while the solutions delivered by MAAOK 
achieve7542.93. Further, the results indicate that the MAAOK could be 
particularly useful for clustering problems involving large search spaces. For 
instance, on Art_20, the GKA, EPSONS, MEQPSO, HABC and CGABC 
provide solutions with average SSE values of 240.42, 243.048, 368.258, 585 
232.273 and 240.387, respectively. By contrast, our method reaches 208.878. 
Similar results can also be observed in terms of Entropy and CH index. For 
example, in terms of Entropy, the GKA, EPSONS, MEQPSO, HABC and 
CGABC deliver solutions with average Entropy of 0.707044, 0.82942, 
0.724194, 0.986066 and 0.807823, respectively, on the MFCCs. By contrast, 590 
the solutions delivered by the MAAOK have an average Entropy value of 

   

                                  (a)                                                    (b)    

       

(c)                                                         (d)    

Fig. 5.  Typical results of SSE values over runtime corresponding to the six algorithms on (a) Art_20, (b) Car, (c) Subcellcycle and (d) Yeast2945 data set. 
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0.670661. Our method can therefore be used to identify more accurate 
clustering results. In terms of the internal index of CH on the same data set, 
the solutions provided by the above five methods as well as our proposed 
method have the average values of 1862.85, 1355.88, 1857.56, 1140.7, 595 
1659.34 and 1907.04, respectively. This could further confirm that our 
proposed can be used to identify better clustering solutions than other 
compared methods. It is not surprising that the performances of the EPSONS, 
HABC and CGABC are worse since they do not use local search operation or 
use it to improve the best solution only during evolution, thus limiting their 600 
performance. By employing k-means to fine-tune the solutions during 
evolution, the GKA and MEQPSO can have a better performance. However, 
they still perform worse than MAAOK. The better performance of MAAOK 
is largely contributed by the AKO and OS mechanisms. Rather than 
employing the k-means operator in a fixed manner, the AKO mechanism can 605 
appropriately adjust its frequency and intensity depending on the problem 
instances to be solved as well as the stages of evolution, which therefore 
makes the algorithm effective. While, the OS mechanism considers the 
exploration aspect of population to perform the k-means operation, rather 
than applying it directly on the individual. Such a mechanism is able to 610 
alleviate the tendency of population to converge prematurely and enhance its 
global search capability. This is particularly important for the clustering 
problem with complex search space.  

Regarding to efficiency, the results reveal that our proposed algorithm is 
generally faster or comparable than EPSONS, HABC, GKA and MEQPSO, 615 
but outperformed by CGABC. For example, on Landsat data, the GKA, 
EPSONS, MEQPSO, HABC and CGABC need 1.23431s, 129.715s, 
2.26149s, 70.9661s and 0.93727s, respectively, while the MAAOK takes 
1.62432s on average to converge. Although the CGABC is efficient, it could 
be easily trapped into less promising local optima, which leads to much worse 620 
solution quality than our proposed algorithm. 

7. Conclusions 

In this work, we have investigated the issue of appropriately employing the 
k-means local search operator in EA-based clustering. For this purpose, a 
generalized framework, which supports the arbitrary setting of the frequency 625 
and intensity of k-means operator during evolutionary clustering, has been 
first introduced. Then, we have proposed an adaptive strategy to dynamically 
control the frequency and intensity of k-means operator during evolution. 
Further, an opposite search mechanism has been devised to implement the 
adaptive k-means operation, thus appropriately exploring the search space. 630 
Our results have shown that the AKO mechanism can improve the efficiency 
of evolution while the OS mechanism is able to enhance the exploration 
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capacity of population, thus avoiding less promising optima. By 
incorporating the two mechanisms, our proposed algorithm is therefore 
capable of efficiently and effectively delivering high quality solutions, and 635 
outperforms the compared methods.  

The work proposed in this paper can be extended further in several 
directions. Firstly, designing and/or employing control mechanisms [65], [66] 
to dynamically set the frequency and intensity of k-means operator could be 
an interesting direction. Their influence on the algorithm’s performance can 640 
then be studied. Second, it would be desirable to develop a method to 
automatically determine the attraction point in the OS mechanism. 
Additionally, while the effectiveness of AKO and OS mechanism has been 
demonstrated for EA-based data clustering, they are sufficiently robust and 
flexible to be incorporated into other metaheuristic algorithms, such as 645 
particle swarm optimization [67], [68] to deal with clustering and its related 
applications, such as image segmentation [69-71]. These can also be 
investigated in the future. 
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