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Abstract: In this paper, a novel device identification method is proposed to improve the security
of Visible Light Communication (VLC) in 5G networks. This method extracts the fingerprints of
Light-Emitting Diodes (LEDs) to identify the devices accessing the 5G network. The extraction and
identification mechanisms have been investigated from the theoretical perspective as well as verified
experimentally. Moreover, a demonstration in a practical indoor VLC-based 5G network has been
carried out to evaluate the feasibility and accuracy of this approach. The fingerprints of four identical
white LEDs were extracted successfully from the received 5G NR (New Radio) signals. To perform
identification, four types of machine-learning-based classifiers were employed and the resulting
accuracy was up to 97.1%.

Keywords: visible light communication; LED fingerprint; 5G networks; security

1. Introduction

With the enormous growth of wireless devices and the deep integration of information
technology into a number of industrial applications [1], the 5G network is expected to
support massive user connections and exponentially increase wireless services. In addition,
due to a tremendous number of Internet-of-Things (IoT) devices featured by the massive
Machine-Type Communication (mMTC) extensive applications in the 5G network, high
data rates, high connection density and ultra-reliable low latency communication (URLLC)
should be provided. Moreover, security must be urgently assured by the future 5G net-
work [2]. Hence, traditional radio frequency (RF) networks, which are already crowded,
are arduous to satisfy these high demands [3]. One of the new communication technologies
that has been proposed as an auspicious solution for the 5G and beyond is Visible Light
Communication (VLC) [4]. VLC provides the nomadic access in hundreds of terahertz
(THz) of unlicensed optical spectrum, immunity to electromagnetic interference, safety and
security, simple implementation, and deployment of systems [5–7]. These exciting assets
generate considerable research and industrial interests for the indoor VLC, especially with
the approval of the IEEE 802.15.7 standard [8]. The research in this topic is conducted in
the European H2020 project Internet of Radio Light (IoRL), which was the first to propose a
hybrid indoor optical-radio network in convergence with the 5G Era [9–11]. The advantage
of the VLC compared to radio [4] and its applications scenarios [12,13] has been widely
discussed in the VLC literature. Due to the line-of-sight light propagation and the imperme-
ability for non-transparent objects, the VLC channel exhibits higher security in a single-user
or private-room scenario. However, in public areas such as classrooms, libraries, hallways,
or planes, the security of the transmitted signal cannot be guaranteed [14].
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Device fingerprinting, the process of gathering device information to generate device-
specific signatures and using them to identify individual devices, has emerged as a potential
solution for the 5G network to reduce the vulnerability of wireless networks to node forgery
or insider attacks [15,16]. Its low-complexity and difficult or impossible to forge property
could be perfectly matched with the security requirements of the 5G network. Notably,
wireless device identification via Radio Frequency (RF) fingerprint becomes a widely
concerned physical-layer security mechanism [17] and has been investigated in Wi-Fi, LTE
(Long Term Evolution) and ZigBee systems. It provides an opportunity to accomplish
the authentication and the target device identification in the physical layer. Recently,
a RF fingerprint-based device identification method successfully demonstrated 92.29%
identification accuracy on a set of seven 2.4 GHz commercial ZigBee devices [18]. It must
be noted that device fingerprinting schemes can also be applied in the same spirit to VLC
systems. However, the distinctive transmission protocols and modulation schemes of
VLC systems such as intensity-modulation direct detection (IM/DD), direct-current (DC)
biased optical orthogonal frequency-division multiplexing (DCO-OFDM) [19] necessitate
the development of new device fingerprinting methods specific to VLC systems [20].

Currently, little research on VLC device identification exists. However, drawing on
lessons from the successful implementations of device identification via RF fingerprint
provides the possibility to propose the appropriate and efficient device identification
method also for VLC systems. The concept of RF fingerprinting was firstly proposed by
Hall et al. in 2003 [21]. This device identification method is featured by the detection of
the transient signal emitted by the transmitter. Kennedy et al. was the first to introduce
the device identification method based on the steady-state signal [22]. Afterwards, a
large body of literature is dedicated to the general issues of design, implementation and
identification algorithm relevant to many kinds of RF identification systems [23–26]. A
comprehensive overview of high-level issues in the context of device identification method
via RF fingerprint is summarized by Xu et al. [15].

That is why, in this paper, a device identification method is proposed based on the
IoRL framework which is a typical indoor solution that integrates VLC-based communica-
tion, positioning and illumination systems within the 5G network [27,28]. This proposal
aims to improve the security for the VLC-based 5G network under the public areas and
broadcasting scenario as mentioned above. In this approach, fingerprints are extracted
from the signal emitted by Light-Emitting Diodes (LEDs). These fingerprints are unique for
every LED even if they are of the same type. Moreover, by employing a machine-learning-
based classifier, the system is able to distinguish these fingerprints, thereby identifying
with which device it is communicating. This fundamentally eliminates the threat of rouge
base-station. It replaces the traditional encryption by a real-time and OTP (One Time Pad)
encryption, which strengthens the overall security of the 5G networks. Moreover, the only
prerequisites of this method are the received analog signal and some software modules,
which means that this mechanism can be integrated into an existing 5G network physical
layer. Considering the above, the main contributions of this paper can be summarized as
follows:

• We introduce the LED fingerprint model based on the characteristics of the LED equiva-
lent circuit and design the LED fingerprint extraction and identification mechanisms—by
fitting the power spectrum. The parameters which represent the LED’s inherent and
stable nature are chosen to constitute the LED feature vector. The feature vector of
each LED forms its fingerprint. A multi-SVM (Support Vector Machine) classifier is
investigated theoretically to illustrate the process of the fingerprint identification.

• We illustrate the conceptual design of a typical 5G VLC multi-access scenario using
the proposed security solution. We present how LED fingerprinting could be used in
real-life systems. To detail the process, we choose the IoRL project as an exemplary
test system.

• We demonstrate the feasibility and accuracy of this method in a practical indoor VLC-
based 5G network. During experimental evaluation, four identical LEDs were used
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to extract their fingerprints from the emitted 5G NR signals. Four machine-learning-
based classifiers, i.e., decision tree, Naïve Bayes, SVM (Support Vector Machine), and
KNN (K-Nearest-Neighbor) were employed to identify the extracted LED fingerprints.
It turned out that the best results were achieved for the SVM classifier, which reached
the accuracy of 97.1%.

The rest of this paper is organized as follows. Section 2 describes the proposed LED
fingerprinting method in detail. Then, the experimental methodology and obtained results
are detailed in Section 3. Finally, Section 4 concludes our work and outlines potential future
directions.

2. LED Fingerprint Verification Mechanism
2.1. LED Fingerprint Model

It is noteworthy that there is little difference between the components of a VLC system
except for the LEDs. The nonlinearity and saturation characteristic support the possibility
to distinguish LEDs, even those from the same batch [26]. Thus, the LED fingerprint model
has been established to characterize the distinctive feature of each device. A small-signal
equivalent circuit model of the LED in the VLC system is illustrated in Figure 1 According
to the equivalent circuit, psignal is the power of the input signal, and pout is the power of
the output optical signal. Rs and Ls are the parasitic resistance and parasitic inductance. Cd
and Cb represent the diffusion and the barrier capacitance of the LED, respectively. η is the
photoelectric conversion efficiency and rd is the small-signal diode resistance of an LED.
The equations defining these elements using SPICE parameters are the following [29,30]:

Poptical = ηPelectric (1)

gd =
1
rd

=
dId
dVd

=
qIs

NkT
eqVD/NkT ≈ ID

NVth
(2)

Cd = TT·gd (3)

Cb =


CJ0

(1−VD/VB)
M VD < FC·VB

CJ0

(1−FC)1+M

[
1− FC(1 + M) + MVD

VB

]
VD ≥ FC·VB

(4)

C = Cb + Cd (5)

λ = [C, η] (6)
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Figure 1. A Small-Signal Equivalent Circuit Model of an LED in the VLC System.

The values of the diffusion capacitance Cd, the barrier capacitance Cb and the pho-
toelectric conversion efficiency η are the inherent and stable values of an LED. Once the
fabrication of an LED is accomplished and the quiescent operation point was set, these
values are fixed. Due to the industrialized and standardized production of LEDs, the
dissimilarity of parasitic resistance and inductance values are too subtle to distinguish
between different LEDs. Therefore, the values of η and C constitute a two-dimensional
feature vector λ. It can represent the inherent characteristics of the LED and, as a result, we
are able to define the feature vector of the LED and thus its fingerprint.
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2.2. Extraction and Identification Mechanisms

In this section, introduced LED fingerprint extraction and identification will be ex-
plained. The extraction and identification mechanisms are illustrated in Figure 2.
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The example of the LED fingerprint extraction of the i-th device will be described
below in order to illustrate the proposed method’s functioning. The signal transmitted
from the i-th device will be sampled by performing a Fast Fourier Transform (FFT) to
calculate the power spectrum at the receiver. By fitting this measured power spectrum
with its theoretical function, the feature vector becomes the LED’s fingerprint.

Before the identification, the registration of the authorized devices should be pro-
cessed first. The feature vector of each authorized device will be extracted and put into
a machine-learning-based classifier to train an identification model. Once the model has
been established, it will be stored into a database which is integrated on the judgment
module.

When a device k requests accessing, its feature vector λk will be extracted by the
receiver. Meanwhile, the classification module will invoke the model stored in the database
and perform identification. As the device has been recognized, the judgment module will
decide if it permits it to access, based on the demands of the user.

2.3. Implementation of Features for Extraction and Identification

As described above, the signal transmitted by a device will pass through an optical
wireless channel and be captured at the receiver. The power spectrum of this received signal
will be fitted with its theoretical function to extract the feature vector as its fingerprint. The
theoretical power spectrum function at the receiver pRx(jω) is derived as follows:

PRx(jω) = HLED ∗ Hchannel ∗ GPD ∗ Gcircuit ∗ Pinput(jω) (7)

ω = [2π f1, 2π f2, 2π f3, . . . , 2π fn] (8)

HLED(jω) =
ηrdZin

((jωrdC + 1)(Rs + Zin + jωL) + rd)
2 (9)

Hchannel =
Adet(m + 1)cosm(φ)

2πD2 (10)

where HLED is the power transfer function of the LED. It can be derived from the proposed
LED equivalent circuit model. Hchannel is the power-loss function of the wireless optical
channel [17]. GPD and Gcircuit are the power gain of the photodiode and the VLC front-
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end circuits, respectively. In this paper, the lights from the transmitter are considered to
propagate only through line-of-sight (LOS), the non-line-of-sight (NLOS) propagation of
lights is ignored. Based on the theoretical power spectrum function PRx and the practical
measurement Prx, optimization can be employed to fit the feature vector λ as defined by
(11):

min
λ

2π fn

∑
ω=2π f1

[PRx(jω)− Prx(jω)] (11)

Afterwards, all the feature vectors of devices from 1 to n will be extracted by the
proposed method. The extraction result will be put into a model to train an identification
classifier. Here, a multi-SVM classifier [31] is introduced as an example to solve the
identification problem of M devices. We supposed that there are N training samples:
{λ1, LED1}, . . . , {λN , LEDN}. Here, λi is the extracted fingerprint and LEDi is the label
that represents the feature vectors extracted from each LED. Subsequently, a one-against-all
approach constructs M binary SVM classifiers, each of which separates one LED fingerprint
from all the rest. Mathematically, ith SVM solves Equation (12) to yield the decision
function (13):  arg minL

(
ω, ξ i

j

)
= 1

2‖ωi‖2 + C
N
∑

l=1
ξ i

j

yj
(
ωT

i φ
(
λj
)
+ bi

)
≥ 1− ξ i

j, ξ i
j ≥ 0

(12)

fi(λ) = ωT
i φ
(
λj
)
+ bi (13)

where ξ i
j denotes slack variables that are related to the soft margin, and C is the tuning

parameter used to balance the margin and the training error. φ
(
λj
)

is the nonlinear
mapping of λj. It maps the λj to a much higher dimensional space in which the optimal
hyperplane is found. During the classification phase, an unidentified feature vector λ is
classified as LEDk which decision function produces the largest value (14).

fi(λ) = ωT
i φk = arg max

i=1,...,M
fi(λ) = arg max

i=1,...,M
ωT

i φ(λ) + bi
(
λj
)
+ bi (14)

2.4. Envisioned Applications for the IoRL Security Framework

The threat that we would like to mitigate with the proposed LED fingerprinting
method is as follows. The rogue device is a device placed by the attacker, which due to, e.g.,
a stronger signal, can lure users to connect to it and intercept valuable, confidential data
send by the tricked users. Further in this paragraph we present how LED fingerprinting
could be used in real-life systems. As an exemplary test system, we choose IoRL project [32].
The main subsystems of the IoRL system are optical RAN, UEs (User Equipment) and Intel-
ligent Home IP Gateway (IHIPG). In the IHIPG, there is an OpenStack environment with
SDN (Software Defined Network) which hosts various VNFs (Virtual Network Functions),
for example, for security purposes. An example of the device that can be susceptible to such
kind of attack is a LED device in the IoRL system. In effect, UE (User Equipment) receives
data from the attacker’s LED, which, for example, could lead to installation of malware
on it. Thus, the security system should detect such a situation and react accordingly. As
already mentioned in the previous section, in this scenario we assume that during the
registration phase before installation each new LED is tested in the laboratory environment.
Its fingerprint is extracted to create a sort of “signature” of the LED for further use in the
next phases and stored in the security system’s database enriched with the information
where a given LED is physically installed.

Then, during the rogue LED detection phase, the security system periodically polls UE
(using specialized software/firmware at UE) to establish the LED characteristics (i.e., LED
fingerprint). The extracted LED fingerprints are sent to the security system for evaluation.
Using these fingerprints and localization information security system verifies whether the
extracted fingerprint is consistent with the fingerprint registered. In the case when the
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attacker placed a rogue LED device, the extracted fingerprint should be inconsistent with
the fingerprint of the LED placed in the security system database during the registration
phase. As a result, if the attack is detected, the security system can block the traffic directed
towards/outgoing from the LED (so exfiltration of the confidential data obtained by the
attacker is possible), and the administrators can be notified about this incident.

Figure 3 presents the main components used during the detection of rogue LED
attacks. The main steps of the proposed detection mechanism are as follows:

• Step 0: Register LED fingerprint and their localization database (this information is
established and inserted to the database before LED installation)—the database is
located at the security system.

• Step 1: A heartbeat-like protocol (UE <-> security subsystem) with which the security
subsystem would be able to periodically poll the UE to initiate the LED fingerprint ex-
traction process and securely transmit the determined fingerprint back to the security
subsystem.

• Step 2: The measurement-based protocol (UE <-> LED) that would operate between
the selected UE and the LED which would allow to determine the fingerprint of the
LED under investigation.

• Step 3: The mechanism at the security subsystem that would compare the fingerprint
of the chosen LED and its location with the corresponding data stored in the database.

• Step 4: In the case of a detected security breach, the security system can install rules
on the SDN controller to block incoming/outgoing traffic to the LED and notify the
administrators.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 12 
 

 

Equipment) receives data from the attacker’s LED, which, for example, could lead to in-
stallation of malware on it. Thus, the security system should detect such a situation and 
react accordingly. As already mentioned in the previous section, in this scenario we as-
sume that during the registration phase before installation each new LED is tested in the 
laboratory environment. Its fingerprint is extracted to create a sort of “signature” of the 
LED for further use in the next phases and stored in the security system’s database en-
riched with the information where a given LED is physically installed. 

Then, during the rogue LED detection phase, the security system periodically polls 
UE (using specialized software/firmware at UE) to establish the LED characteristics (i.e., 
LED fingerprint). The extracted LED fingerprints are sent to the security system for eval-
uation. Using these fingerprints and localization information security system verifies 
whether the extracted fingerprint is consistent with the fingerprint registered. In the case 
when the attacker placed a rogue LED device, the extracted fingerprint should be incon-
sistent with the fingerprint of the LED placed in the security system database during the 
registration phase. As a result, if the attack is detected, the security system can block the 
traffic directed towards/outgoing from the LED (so exfiltration of the confidential data 
obtained by the attacker is possible), and the administrators can be notified about this 
incident. 

Figure 3 presents the main components used during the detection of rogue LED at-
tacks. The main steps of the proposed detection mechanism are as follows: 
• Step 0: Register LED fingerprint and their localization database (this information is 

established and inserted to the database before LED installation)—the database is lo-
cated at the security system. 

• Step 1: A heartbeat-like protocol (UE <-> security subsystem) with which the security 
subsystem would be able to periodically poll the UE to initiate the LED fingerprint 
extraction process and securely transmit the determined fingerprint back to the secu-
rity subsystem. 

• Step 2: The measurement-based protocol (UE <-> LED) that would operate between 
the selected UE and the LED which would allow to determine the fingerprint of the 
LED under investigation. 

• Step 3: The mechanism at the security subsystem that would compare the fingerprint 
of the chosen LED and its location with the corresponding data stored in the database. 

• Step 4: In the case of a detected security breach, the security system can install rules 
on the SDN controller to block incoming/outgoing traffic to the LED and notify the 
administrators. 

 
Figure 3. A block diagram of a typical 5G VLC multi-access scenario using the proposed security 
solution. 
Figure 3. A block diagram of a typical 5G VLC multi-access scenario using the proposed security
solution.

3. Demonstration and Evaluation

In this section, the feasibility and accuracy of the proposed method was evaluated by
a demonstration implemented in a practical indoor environment.

3.1. Demonstration Setup

A flow chart of the demonstration and its realistic scenario are shown in Figure 4a,b.
A server (Dell R740) acts as the 5G NR transmitter-generated 5G baseband signal. It
modulates the user data with different modulation schemes which include QPSK, 16-QAM,
64-QAM and 256-QAM. As the modulated symbols were assigned to the 5G NR frame
shown in Figure 4c, inverse Fast Fourier Transform (IFFT) processing and IQ modulation
were applied to convert the OFDM frame to the time domain and guarantee the signal well
matched with the IM/DD VLC system. Subsequently, a digital-analog (D/A) converter
(USRP 2944R) and a DC bias transformed this digital signal to analog signal with an
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appropriate DC component. This signal is sent to four LEDs (LUXEN 5050). Through an
optical wireless channel, the signal from each LED is captured by a commercial receiver
(HAM C5331-11) in sequence and digitized by an analog-digital (A/D) converter (USRP
2944R). Finally, the received signal is transferred back to the server to extract fingerprints.
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A 3D coordinate system was established to demonstrate the feasibility and accuracy
of the proposed method for various distances and environments. According to Figure 4b,
four LEDs were fixed on the ceiling in a known location. The receiver kept 1.042 m height
and moved on a plane parallel to the ground. The distribution of the EVM (Error Vector
Magnitude) of each LED in the whole area was tested to describe the optical wireless
channel. Subsequently, signal samples from each LED were collected 10 times by the
receiver at 24 different points. By using the proposed method, 960 LED fingerprints were
extracted from all the samples and were randomly divided into training set and testing set
in a ratio of 6:4. Several types of classifiers were employed to verify the accuracy of the
extracted LED fingerprints.

3.2. Results and Analysis

Figure 5 illustrates 4 LEDs’ distribution of the EVM in the whole area. According
to the results, LED-A and LED-C had the largest and the second-largest coverage of
the high-quality communication environment. On the contrary, the channel of the LED-
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B and LED-D had limited quality. The phenomenon that the same type of four LEDs
has different communication performance was caused by the non-linearity of the optical
wireless channel.
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Based on this environment, the total of 960 samples were captured by the receiver
and, based on them, the LED fingerprints shown in Figure 6a were extracted. The ex-
traction results were put into selected machine-learning algorithms, i.e., Decision Tree,
Naive Bayes, SVM and KNN classifiers, respectively. The comparison of the verification
accuracy is presented in Figure 6b. According to the obtained results, it is clearly visible
that the proposed extraction method successfully extracted the LED fingerprints of four
LEDs. Meanwhile, four machine-learning-based classifiers are able to distinguish these
fingerprints appropriately.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 12 
 

 

Based on this environment, the total of 960 samples were captured by the receiver 
and, based on them, the LED fingerprints shown in Figure 6a were extracted. The extrac-
tion results were put into selected machine-learning algorithms, i.e., Decision Tree, Naive 
Bayes, SVM and KNN classifiers, respectively. The comparison of the verification accu-
racy is presented in Figure 6b. According to the obtained results, it is clearly visible that 
the proposed extraction method successfully extracted the LED fingerprints of four LEDs. 
Meanwhile, four machine-learning-based classifiers are able to distinguish these finger-
prints appropriately. 

  
(a) (b) 

Figure 6. (a) Extracted LED fingerprints; (b) Comparison of verification accuracy. 

Note that further investigation leads to the conclusion that the fingerprints of the 
LED-B and LED-D overlapped in some regions, which was the primary reason of the clas-
sifiers’ misjudgment. In this case, the SVM classifier obtained the best performance due to 
its property of maximum classification margin and its ability of producing accurate and 
robust classification results for non-monotone and non-linearly separable input data. 
Moreover, the confusion matrix and parallel coordinate plots of the SVM classifier for the 
extraction and identification results are presented in Figure 7a,b. 

  
(a) (b) 

Figure 7. (a) The confusion matrix of the SVM classifier; (b) The parallel coordinate plots of the 
SVM classifier. 

According to the confusion matrix, almost all the misjudgment is caused by the LED-
B as 8.4% LED fingerprints of LED-B were regarded as the fingerprints of the LED-D. 
Meanwhile, 2.1% fingerprints of the LED-D were misclassified as the fingerprints of the 
LED-B. Additionally, the parallel coordinate plots reflected the distinction of each param-
eter for all the fingerprints. The LED-A, LED-B and LED-C had distinct convergence on 

Figure 6. (a) Extracted LED fingerprints; (b) Comparison of verification accuracy.



Sensors 2021, 21, 1515 9 of 11

Note that further investigation leads to the conclusion that the fingerprints of the
LED-B and LED-D overlapped in some regions, which was the primary reason of the
classifiers’ misjudgment. In this case, the SVM classifier obtained the best performance
due to its property of maximum classification margin and its ability of producing accurate
and robust classification results for non-monotone and non-linearly separable input data.
Moreover, the confusion matrix and parallel coordinate plots of the SVM classifier for the
extraction and identification results are presented in Figure 7a,b.
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According to the confusion matrix, almost all the misjudgment is caused by the LED-
B as 8.4% LED fingerprints of LED-B were regarded as the fingerprints of the LED-D.
Meanwhile, 2.1% fingerprints of the LED-D were misclassified as the fingerprints of the
LED-B. Additionally, the parallel coordinate plots reflected the distinction of each parameter
for all the fingerprints. The LED-A, LED-B and LED-C had distinct convergence on the
parameter C. On the contrary, the LED-D performed more divergently and overlapped
with the LED-B. For the parameter η, all the LEDs were convergent; however, the LED-B,
LED-C and LED-D overlapped in a small interval. This phenomenon can be explained as
follows. First, the identification quality is influenced by the communication environment.
The LED-A has the best EVM and covered almost the whole area, which caused the highest
identification accuracy. On the contrary, the LED-B yielded the worst accuracy due to
its limited EVM coverage. Secondly, the parameter η is sensitive to the communication
environment. According to the theoretical analysis of the extraction, η represents the
photoelectric efficiency. Once there is a large attenuation in the channel, then the η will be
calculated near the boundary value. Consequently, it will lose the ability to describe the
characteristics of the LED.

4. Conclusions and Future Work

In this paper, a novel device identification method was proposed to improve the
security of VLC in the 5G network. This method extracts the unique fingerprints of LEDs
from their emitted signals. By employing a machine-learning-based classifier to distinguish
these LED fingerprints, the devices accessing the 5G network can be reliably identified. The
advantage of the proposed method is that it can work in real time and uses OTP (One Time
Pad) encryption, which fundamentally avoids the threat of pseudo base-station and KI
(Key identifier) disclosure. The feasibility and high accuracy of device identification were
verified by using proof-of-concept implementation in a practical indoor VLC-based 5G
network. In order to establish the optimal tuning of this approach, the comparison of four
types of machine-learning-based classifiers was conducted. The obtained results indicate
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that the SVM classifier yields the best performance as it reaches the maximum accuracy
of 97.1%. Additionally, the analysis of the confusion matrix and the parallel coordinate
plots proved that the identification accuracy relies on the quality of the communication
environment.

Our approach extracted the fingerprints of the transmitter in a VLC system to identify
accessing devices. In future research, a bilateral identification mechanism which consists of
Tx fingerprints and Rx fingerprints will be investigated to enrich the application scenario
and further improve the security of the VLC system in the 5G network.
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