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1. Introduction 
 
 
1.1 A summary of history 
 
 

The computer program FESTER (Finite Element Simulation of Tunnel Ex-

cavated in Rocks) was originally developed on an SERC/British Coal co-funded 

research project at the Oxford University Computing Laboratory between 1985 

and 1986. Since the end of 1986, it has been continuously developed at the 

Department of Mathematics and Statistics of Brunei University under the sup-          

ort of SERC (current grant is to finish in 1992) and British Coal (finished                   

in 1988). The program structure is based on the linear elastic finite element       

package FINEPACK developed at the Department of Civil Engineering of Uni-    

ersity College of Swansea (Naylor 1977, Hinton & Owen 1977). FESTER is 

developed to model the deformation and stresses in the rock mass surrounding 

underground openings and predict the failure behaviour of rock masses. It uses   

elasto-viscoplastic theory for the nonlinear analysis. The detailed theory and              

features including a user's guide can be found in a previous report (Reed and 

Lavender 1989). Some of the work involved in the development of the program     

were also reported in several published papers by the main developer (Reed        

1986a, 1986b, 1988a, 1988b). Since 1989, the program has been further de-        

eloped to incorporate a few other features based on the co-operative research         

work at the Rock Mechanics Research Group of Imperial College (Pan 1988,           

Pan and Hudson 1988, Pan et al 1989). 

 
 
1.2   What FESTER can do 
 
 

Program FESTER is an elasto-viscoplastic 2-D (or axisymmetric) finite 

element model for analysis of rock and rock masses behaviour.   The features 



 

and the analysis it can provide are as follows: 

 

Element types: 

 

 FESTER is focused on the use of 

 

a. the isoparametric 8-noded quadrilateral element for representing the rock       

masses, 

b. the 5-noded mapped infinite element for representing far field boundary,            

and 

c. the 6-noded joint element for discontinuities. 

 

 

Nonlinear techniques: 

 
Incremental (tangent stiffness) approach with implicit (0 < ө ≤ 1) or       

explicit (6 — 0) time integration algorithm. Use of  non-symmetric frontal solver. 

Options for large deformation  analysis  with Updated Lagrangian formulation.        

 

 

Rock mass models: 

 

Orthotropic elasticity; elastic joint interface; brittle/strain softening fail-               

re or yield with Mohr-Coulomb, Drucker-Prager or Hoek-Brown 3-D surface; 

nonassociated flow rule with Drucker-Prager or the extended Hoek-Brown flow 

function. Options for other two failure modes: tensile crack and fracture along 

bedding planes. 

 

 

Types of loading: 

 
Point loads; distributed edge loads, body forces; gravity and other in situ   stress 

field; incremental loading; two ways of simulating excavation (opposite



nodal forces or reduction of  stress and stiffness). 
 
 
 
Boundary conditions: 
 
 

Infinite elements to model far field boundary condition; prescribed 
values of displacement or pressure at the boundary element sides. 
 
 
1.3 Further development 
 
 

The package is currently under development to extend the 2-D version 
straightforwardly to a 3-D version. This requires more sophisticated 3-D graphi-        
al input and output techniques for communication with the main analysis. The     
project is expected to finish in 1992. 



2 Package description 
 
 

Full details of the FESTER package and the underlying theory are available   

in Reed & Lavender (1988). Only brief summary will be given here. 

 

 

2.1 Preprocessor 
 
 

The separate preprocessor suite of programs runs on an IBM PC (or com-    

patible machine), and includes graphical programs using Halo graphics software.        

It enables interactive preparation of data files for large problems, using mesh 

refinement. The user inputs nodal co- ordinates, boundary conditions, etc. for              

a coarse mesh containing just sufficient 'macro elements' to define the basic    

geometry of the problem. Loading is also applied to the coarse mesh (point           

loads may be added after refinement). Mesh refinement is performed by sim-              

ly specifying the subdivision required along an edge of a macro-lement. The 

preprocessor automatically carries this refinement through the mesh of macro-

elements, and moreover it automatically assigns the appropriate boundary con-   

itions, material properties and loading to the elements of the refined mesh. 

Once the refinement is complete, the elements must be re-numbered so that       

the solution of the global stiffness equation in the main program – performed             

by the frontal method - will be performed efficiently; that is, the frontwidth of          

the assembled system must be reduced. This frontwidth reduction is performed          

by the preprocessor without further user input. 

 
Figure 2.1 shows the options available when the preprocessor is run. 



List of the data files  
User’s menu 
with the 
choices from 
1 to 9 

1

2

3

4
9     8    7    6     5 

Displaying mesh on screen 

Input node number and coordinates of 
coarse mesh 

Refinement of the coarse mesh 

Frontal reduction with rearrangement of 
element number connections 

Specify material properties 
(use default values if not known) 

Specify boundary conditions 

Prepare data file * fes for main program 
input 

Print mesh or data file if necessary 

Figure 2.1 Preprocessor window options. 



 
2.2 Analysis 
 
 

An outline of the main FESTER program has been given above, with each 

element is associated one of the following material models: 

 
1 Linear elastic structure (no in situ stress in gravity loading). 

2 Isotropic linear elastic rocks. 

3 Orthotropic linear elastic rocks. 

4 Isotropic elastic-plastic rocks with Mohr-Coulomb failure surface. 

5 Isotropic elastic-plastic rocks with Hoek-Brown failure surface. 

6 Orthotropic elastic-plastic rocks with Mohr-Coulomb failure surface. 

7 Orthotropic elastic-plastic rocks with Hoek-Brown failure surface. 

8 Isotropic elastic-plastic rocks with Drucker-Prager failure surface. 

9 Elastic joint interface in rocks. 

The material property parameters required with these models are listed      

below: 



 
Component No. Symbol Description Used in mat, models 

1 E 

E1 

k1

Young’s Modulus 

Orthotropic Young’s Modulus 

Normal joint stiffness 

1; 2; 4; 5; 8; 9 

3; 6; 7 

9 

2 v 

v1

k2

Poisson’s ratio 

Orthotropic Poisson’s ratio 

1; 2; 4; 5; 8; 9 

3; 6; 7; 

9 Tangential joint stiffness 

E2 Orthotropic Young’s modulus 3; 6; 7 3 

v2 Orthotropic Poisson’s ratio 3; 6; 7 4 

G Orthotropic shear modulus 3; 6; 7 5 

Β Angle of cross orthotropy 3; 6; 7 6 

7 σc Intact rock strength 4; 5; 6; 7; 8 

8 k 

m 

Initial triaxial stress factor 

Hoek-Brown empirical parameter 

4; 6; 8 

5; 7 

S Initial strength parameter 4; 5; 6; 7; 8 9 

10 α Dilation parameter 4; 5; 6; 7; 8 

11 k1 

m1 

Residual traiaxial stress factor 

Residual Hoek-Brown parameter 

4; 6; 8 

5; 7 

s1 Residual strength parameter 4; 5; 6; 7; 8 12 

γ Fluidity parameter 4; 5; 6; 7; 8 13 

14 φ j Frictional angle of ‘beddings’ 6; 7 

cj Cohesion of ‘beddings’ 6; 7 15 

jψ  Dilation parameter of ‘beddings’ 6; 7 16 

γj Fluidity parameter of ‘beddings’ 6; 7 17 

σten Tensile strength 4; 5; 6; 7; 8 18 

σ1
ten19 Residual tensile strength 4; 5; 6; 7; 8 

 
 

Table 2.1   Material property parameters used in FESTER. 



A novel feature of the elasto-viscoplastic models in finite element analyses       

is the distinction between an initial yield surface (at which plastic behaviour           

first occurs) and a residual surface to which the stress state moves after yield.             

A low-tension criterion - again with initial and residual tensile strengths – is            

also available, and with orthotropic materials a plane-of-weakness ('beddings')        

may also be defined; no tension is allowed normal to this plane, and a Coulomb 

friction law operates parallel to the plane. The flow rules for the various criteria        

are combined as in the multilaminate model (Zinkiewicz and Pande 1977). 

 

There are thus three independent modes in which plastic deformation may   

arise: through the yield criterion of the rock mass (Mohr-Coulomb or Hoek-        

Brown), by tensile cracking, and by sliding/cracking along a plane of weakness          

for orthotropic materials. 

 

The main analysis produces output giving the stress state at each sampling point 

and displacement at each node, for each time step; this may be restricted,                   

to save paper, to stress points where yield has occurred, and nodes on the      

excavation boundary, at the start and end of each loa4 increment. The full            

output data is also available in a file for input to the post-processor for graphical 

display. The system is summarised in Figure 2.2. 

 

2.3 Post-processor 

 

Graphical output for selected portions of the mesh may be obtained, show-      

ing principal stresses and displacements; examples are given in the results below.       

It is possible to distinguish the failure modes which have become active at each    

stress point. The system is summarised in Figure 2.3. 



 
 

 
Input data file 
prepared by the 
preprocessor 

 
FESTER main 
program run on 
mainframe 
computer 

Data files 
prepared for 
graphic output 
on PC or 
mainframe 

 
 

4

16

Scratch 
files used 
during 
analysis 

 

17

19

18

Input data file 
prepared by the 
preprocessor 

Figure 2.2 FESTER main program system. 



 

 
Plot data file 
prepared by 
FESTER 

 
FESTER 
plotting 
program 

User's 
interactive 
input to control 
the plot items 
and plot 
facilities 

 

5

Mish; stresses; 
displacements; 
failure mode, 
etc. 

Figure 2.3 Post-processor system.



3 Descriptions of some new features 

 

This chapter describes briefly some of the new features which were not 

mentioned in the previous report (Reed and Lavender 1989). 

 

3.1 The large deformation analysis 

 

For the large deformation analysis (option NLAPS=2) in the program, the  

strain-displacement relation is defined as: 
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Where  are the shear components in x,y plane and u,xy,y,x ∈∈∈ n,vn are the 

displacements at time tn. 

 

The incremental equilibrium equation is 

 

    (3.2) 0fdBdB nn
nl

nT =Δ−Ωσ+ΩσΔ ∫∫ ΩΩ

 

and the global stiffness matrix is 

 

   (3.3) +Ω+Ω=+= ∫∫ ΩΩ
GdMGBdD̂BKKK nTTn

ll
n

l
n

 

where M is a matrix involving the current state of stresses and G is a matrix   

involving shape function derivatives similar to B (Pan 1988). With the above 

formulations, nodal co-ordinates are updated in the time stepping iterations and        

the load should be applied in small incremental steps. A problem of a cantilever 

undergoing large deformation as shown lay Pan (1988) has been tested using   

FESTER and results are satisfactory. 



 

3.2 Axisymmetric analysis 

 

With the original program structure, the axisymmetric formulations have      

been implemented in FESTER. In accordance with the plane strain analysis,            

the stress and strain vector are arranged as 

 
 { },,rz,z,r θσσσσ=σ      (3.4) 
 
and 
 
 { }θ∈∈∈∈∈= ,rx,x,r      (3.5) 
 
where r, z,θ  are radial, axial and tangential co- ordinates respectively, he re-          

lated matrix such as D,B,G in equation (3.3) have to be arranged in the same      

fashion. Several circular tunnel problems have been tested using the axisym-          

metric analysis against the plane strain solution and the results proved to be    

identical. 

 

3.3 A new way of simulating excavation 

 

In the original FESTER, the excavation process was numerically simulated     

by applying the equivalent nodal forces in opposite directions on the tunnel   

boundary. Apart from the lack of realistic physical meaning, it is also very        

difficult to use this method to simulate progressive excavations of different areas. 

 
A new method called 'stress and stiffness reduction method' (Pan 1988,          

Pan et al 1989) has been adopted in FESTER. In the method, all the elements           

to be excavated will be kept in the analysis (acting as 'ghost elements' after 

excavation). Excavation starts with reduction of stresses in the excavated el-       

ements, which is closer to the real excavation process. This will disturb the 

established equilibrium at the time step tn and gives an out-of-balance force as         

 
    (3.6) ∫Ω ≠+Ω=Γ 0nn

exv
Tn fdσB



 
Where  and nn

vxe ασ=σ α  is an excavation factor. The excavation induced 

displacements are therefore calculated as 

 

 [ ] 11 −−

Ω
ΓΩ= ∫ BdDBd n

vxe
Tnδ     (3.7) 

 
where  nn

vxe DD α= is the reduced stress-strain matrix for the excavated ele-            

ents and a is the same excavation factor. 

 

The above excavation simulation procedure has been proved effective and 

convenient. An example of its application is shown in the next chapter (example      

3). 



 

4 Application examples 

 

 Three examples showing the capabilities of FESTER are described in this 

chapter..... 

 

4.1 Roadway problem in a deep level coal mine 

 

a. Roadway convergence analysis 

 

In longwall coal mining, special gate roads are constructed to service a     

mining face (Figure 4.1). One of the aims of mining engineering is to protect            

the roadway opening, that is, to support it in such a way that displacements are       

kept within operational acceptable limits in a certain period. Thus, an effective    

means of predicting the distribution of stresses and displacements of the strata    

around roadway is required. 

 

However, the factors that determine the magnitude of roadway deforma-       

ion at depth are complex. They include: the in situ stress and the stress    

redistribution; the strength of roof and floor strata and their .failure mode;                 

the geological structure (e.g. discontinuity, anisotropy of bedding planes); the      

method of excavation and the support method, etc. Currently available finite     

element packages generally fail to model some of these factors. The program 

FESTER has been specially developed for such types of complex problem. 

 

b. Numerical modeling 

 

Figure 4.2 shows the 2-D finite element mesh representing the problem.       

The mesh consists of 115 quadrilateral elements including 15 infinite elements.          

A symmetric condition along the y-axis has been assumed for simplicity. Three    

types of rock masses are considered in the model. 

 

 

 

 



 

 

 
 Figure 4.1 A cross section of gate roadways in coal mine.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure 4.2 Finite element mesh used for the roadway analysis 



 

Isotropic analysis: In the first case, the rock mass properties are assumed       

isotropic with brittle plastic yield according to the Hoek-Brown strength crite-              

rion. Both Drucker- Prager and Hoek-Brown floe rule have been tested with           

dilation varying from large (close to associated flow) to zero. Applied in situ              

stress ratio ( )nv0 /k σσ=  is in a range of 0.8 to 1.2. The material parameters are 

chosen from data provided by British Coal. The data are then correlated to the            

empirical strength parameters using the updated Hoek-Brown criterion (Hoek         

and Brown 1988). In the model, the 'undisturbed' rock mass parameters m, s             

are used as peak strength parameter and the 'disturbed' rock mass parameters            

m', s' are used as residual strength parameter. A typical set of rock param-             

eters used in the analysis are shown in Table 4.1. An implicit time stepping 

algorithm is used with θ=0.667. the excavation of the roadway is 

modeled by applying opposite nodal forces at the tunnel boundary in 4 

steps. In this isotropic analysis, the influence of in situ stress, the rock mass 

strength and their post failure behaviour on the roadway deformation are 

investigated. 

Orthotropic analysis:  the model is then changed to take account of the 

influence of anisotropic behaviour and weak bedding planes. The elastic Young's 

modulus in the vertical direction is assumed to be only half of the horizontal 

one. A representative set of parameters used for the anisotropic analysis 

(laminated rock mass with different strength at bedding planes) is shown in 

Table 4.2. it is noted from the table that other rock mass properties are 

chosen identical to that of Table 4.1. Therefore, the influence of the bedding 

plane strength and the orthotropy on the stress and deformation is 

investigated. 

 

Computing results 

 
A series of analyses have been carried out in which the finite element mesh 

was kept the same while the material properties and in situ stress field were 

varied. Only a limited number of results are chosen here to illustrate the 

pro-gram capabilities. 

 



Parameters 
 

Rock Type 1 
(Sandstone & 
Siltstone) 

Rock Type 2 
(Coal seam) 

Rock Type 3 
(Mudstone)  

E 10000 MPa 3500 MPa 9000 MPa 

V 0.25 0.30 0.25 

cσ  40 MPa 25 MPa 30 MPa 

M 8.78 2.865 2.40 

S 0.189 0.0205 0.015 

m' 5.14 0.0821 0.70 

S' 0.082 0.00293 0.0025 

α  0.015 0.015 0.015 

1α  0.1 MPa 0.06 MPa 0.06 MPa 

Table 4.1 Material parameters (isotropic) used in one of the simulations. 

Average rock mass density = 0.025 MN/m3
. 

in situ stress ratio: k=0.8 --1.2. 



 
 
Parameters 

 
Rock Type 1  
(Sandstone & 
Siltstone)  

 
Rock Type 2 

(Coal seam) 

 
Rock Type 3 

(Mudstone) 

E1 10000 MPa 3500 MPa 9000 MPa 

v1
0.25 0.25 0.25 

cσ  40.0 MPa 25 MPa 30 MPa 

5000 MPa 1750 MPa 4500 MPa E2

0.30 0.30 0.30 V2

3500 MPa 1250 MPa 3200 MPa G 

8.78 2.865 2.40 M 

0.189 0.0205 0.015 S 

5.14 0.0821 0.70 M '

s' 0.082 0.00293 0.0025 

0.015 0.015 0.015 α  
0.01 0.01 0.01 γ  
20.0 20.0 20.0 

jφ  
2.0 2.0 2.0 

jC  
0.015 0.015 0.015 

jψ  
0.001 0.001 0.001 

jγ  
0.1 MPa 0.06 MPa 0.06 MPa 

1σ  
 

Average rock mass density = 0.025 MN/m3
. 

in situ stress ratio: k=1.2. 

 
 

Table 4.2 Anisotropic material parameters used in one of the simulations. 
 
  



Stresses and failure zones: Figure 4.3 is a computer plot of the calcu-

lated principal stresses and failure zone using the material properties shown in 

Table 4.1. The in Situ stress ratio in this case is k0 = 0.8. The brittle failure 

zone (indicated by circled stress points) occurs only in the coal seam and floor 

stratum due to the relatively high strength of the roof stratum and the arch- 

shape roof. The failure mode and the stress distribution along three sections 

inside the roof, floor and sidewall are shown in Figure 4.4. This prediction is in 

agreement with the observation of general roadway deformation in British Coal 

mines where most of the roadway closure is due to the floor lift. Figure 4.5 is 

plot with the same input data as in Table 4.1 except that the in situ stress 

ratio is chosen as 1.2. This means that the horizontal stress field is increased 

whereas the vertical stress field remains the same. The predicted failure mode 

and its stress distribution are highlighted in Figure 4.6. 

 

It is possible that in some particular area, the strengths of the various rock 

masses around the roadway may be very similar. Figure 4.7 shows results that 

have been calculated using the coal seam strength parameters for all the rock 

masses. In that case, the brittle yielding and tensile crack zones are extended 

into the roof strata, as shown in Figure 4.8. 

If orthotropic rock masses are considered, the computed results using the 

parameters in Table 4.2 are shown in Figure 4.9. There is no failure nor tensile 

crack in the roof strata although the applied load and other rock properties 

are identical to the example shown in Figure 4.5 and 4.6. Instead, large shear 

fracture zones in the roof and floor are predicted. The occurrence of these 

shear fractures along the horizontal plane of weakness are thought to have 

released the stress concentration which paused the brittle failure zones in 

comparison with that of Figure 4.6. If the joint strength is increased lrom20M 

Pa, (cohesion cj = 2.0) to 25MPa (cj = 3.0MPa) the failure mode will be 

changed significantly to that shown in Figure 4.11. This reveals that the 

magnitude of the bedding plane strength has a great influence on the 

roadway stability. 
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Brittle yield zone 

Tensile crack zone 
(combined with 
yielding) 

Figure 4.4 Illustration of predicted roadway failure behaviour and stress 
 distributions (stress ratio k=0.8).  
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Brittle yield zone 

Tensile crack zone 
(combined with 
yielding) 

Figure 4.6 Illustration of predicted roadway failure behaviour and stress 
 distributions (stress ratio k=1.2).  
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Brittle yield zone 

Tensile crack zone 
(combined with 
yielding) 

Figure 4.8 The failure zones under weak roof condition (the roof stratum having  
      the same properties as the seam).   
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Brittle yield zone 

Tensile crack zone 
(combined with 
yielding) 

Horizontal shear 
fracture zone 

 

 
Figure 4.10  Failure zones under anisotropic strata condition (using data  
         of Table 2).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Brittle yield zone 

Tensile crack zone 
(combined with 
yielding) 

Horizontal shear 
fracture zone 

 

 
Figure 4.11   Failure zones under anisotropic strata condition with increased 

horizontal bedding plane strength. 



Deformations: A typical mesh deformation plot is shown in Figure 4.12 

which corresponds to the analysis of Figure 4.7. The various simulations pre- 

dict different deformation behaviour. Figure 4.13 illustrates the displacements 

of roof and floor against the excavation factors (simulating the roadway face 

advance). In this diagram, all the results have been obtained using identical 

rock strength properties but with different in situ stress ratio. Thus the effect 

of the in situ stress field, the material properties of the rock and the geological 

structure on the roadway deformations are clear. 

 

       The extent of the roadway deformation appears not as much as that ob- 

served in the field. This is because the effects of the longwall face excavation, 

which is usually the major cause of the roadway closure, is not modelled in this 

analysis. However, the rock mass behaviour and deformation patterns have           

been successfully investigated through this model. 

 

4.2 Shallow discharge tunnel stability analysis 
        

      In this section, the application of FESTER as a design tool for reservoir 

engineering is described. 

 

a. Discharge tunnel problem 

 

     In reservoir engineering, discharge tunnels are often excavated for discharge 

the reservoir when it is necessary. Figure 4.14 shows two perpendicular cross 

sections of a discharge tunnel problem in Italy. Because the reservoir project 

is still in a design stage, there have not been any detailed rock or rock mass 

property data obtained from laboratory or in Situ tests. Geological site inves- 

tigations reported that the rock mass in the area should be classified as class 

iii according to Bieniawski's classification (RMR = 44). The tasks facing the 

design engineers and their consultants are to give an estimation of the require- 
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   Excavation simulation factor 

 

 

 □ Simulation 1: k0= 1.2 

 ● Simulation 2: k0= 0.8 

 ○ Simulation 3: k0= 0.8 (an- 
          Sotropic rock). 

  Floor lift (see point ○) 

  Roof displacement (point q) 

 

Figure 4.13 Roof and floor displacement vs. excavation simulation factor. 

 

  

 

 

 

 

 

 

 

 



 

Reservior full condition 

Rock mass 
classification 
parameter: 
RMR = 23-44 

Reservior 
Inclined shaft

Reservior drained
condition 

Discharge tunnel at
D-D section 
(Tunnel reinforcement 
design is required) 

Figure 4.14 A dischage tunnel problem: a) a simplified plane strain section
at position D-D; b) A cross section parralel to the tunnel axis. 



ments of reinforcement and make an initial tunnel construction design. An 

elastic analysis is not of much use for the problem. Program FESTER has been 

used and proved to be an efficient tool for this purpose. 

 

Finite element model 
     

            Since no symmetric condition can be considered in this problem, Figure 

 4.15 shows the finite element mesh representing the whole tunnel and its sur- 

rounding rock masses. The 2-D mesh is established according to the D-D section 

shown in Figure 4.14b (plane strain analysis). 118 elements including 14 infinite 

elements with 543 nodal points are used in the model. According to the geologi- 

cal survey and design requirements, the boundary conditions of the problem are 

specified as shown in Figure 4.16. With this mesh, the influence of the shaft at 

other locations as indicated by Figure 4.14b (3-D effect) can be approximately 

analysed by excavating the related areas (reducing the stress and stiffness of 

some elements ) in progressive analyses. 

 

 Because of the lack of information on the rock mass properties, empirical 

parameters for the Hoek-Brown criterion are chosen according to the rock mass 

classification as suggested by Hoek and Brown (1988). The advantage of using 

the updated Hoek-Brown criterion in FESTER for general rock engineering is 

well demonstrated by this analysis. 

 

The updated Hoek-Brown criterion gives the empirical parameters for the 

class iii rock mass (RMR = 44) as: 

m = 0.947, s = 0.00198 (for undisturbed rock masses) 

m' = 0.128, s' = 0.00009 (for disturbed rock masses) 

 

      In this analysis, the undisturbed strength parameters m and s are used for 

the peak strength criterion and the disturbed parameters m' and s' are used 

for the residual yield criterion. A uniaxial compressive strength σc = 30MPa 

for an intact rock sample is assumed in the analysis. The rock mass density is’ 
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Linearly distributed 
load 
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condition.
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Constrained 
horizontally 

Constrained vertically at bottom.

Figure 4.16 The boundary conditions specified in simulating the discharge
tunnel problem. 



 
assumed as 2.6t/m3. There is no in situ stress data available, so only gravity 

is considered. The horizontal stress is calculated according to a stress ratio 

k0 (k0 = 0.5 - 1.0). The effect of the tunnel support is roughly simulated by 

retaining 10% of the pre-excavation stress along the tunnel boundary. 

 

Results and interpretations 
 

        The model predicts that for the 'fair' rock mass (RMR = 44) without any 

support pressure, a failure zone of 6 - 9 meters around the tunnel wall will occur 

(see Figure 4.17, 4.18). The failure zones near the roof and and floor are much 

lower. The failure zone facing the gorge slope is smaller than on the other side. 

The effect of water pressure (modelled by distributed boundary load) appears 

to benefit the stability of the tunnel. For a class iv rock mass (RMR = 23), the 

failure zone is predicted to extend close to the bottom of the spillway, which 

means a collapse of the tunnel would be possible if the tunnel encountered 

some weak zone such as faults. The tunnel deformation is plotted in Figure 

4.20 and a typical stress distribution is shown in Figure 4.21. According to this 

analysis, a rock bolt reinforcement as shown in Figure 4.22 can be suggested to 

the designers. 

 

4.3 Progressive excavation of a circular tunnel 
 

In this section, an axisymmetric model of an advancing tunnel face problem 

using the new excavation simulation method is described. 

 

a. Advancing tunnel problem 
 

  For a practical 3-D tunnel excavation, the stability and convergence of the 

tunnel behind an advancing face are of primary interest to designers. The tun- 

nel convergence behind an advancing face is due to the process of excavation 
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      Figure 4.22 The suggested rock reinforcement design according to the 
   analysis of program FESTER. 



 
 
and the time- dependent behaviour of the rock mass. If a rock mass does not 

behave elastically, a 2-D plane strain analysis may under-predict the conver- 

gence of the tunnel by up to 13 % (Pan and Hudson 1988). This advancing 

tunnel problem and its 2-D analysis section is shown in Figure 4.23. 

 

b. Numerical modelling 
 

      With the existing FESTER, a 3-D circular tunnel advancing problem (un- 

der axisymmetric loading condition) can be modelled. The progressive advance- 

ment of the tunnel face is simulated by reducing the stress and stiffness of the 

elements representing excavated rock masses. Figure 4.24 shows the finite el- 

ement mesh used in the analysis. The mesh consists of 99 elements including 

11 infinite elements (315 nodes). Sixteen elements are excavated in 8 steps to 

model the tunnel face advance. The rock mass is assumed to be an isotropic 

elastic, brittle plastic medium following the Mohr-Coulomb yield criterion. The 

main rock properties used are: 

             σc = 30M P A, k = 3.2, s = 1.0, k' = 1.0, s' = 0.05, α = 0.015 - 0.1 

 

         A plane strain analysis is also conducted for comparison with the above 

model. 

 

Results 
          

        A predicted axisymmetric principal stress distribution (in  σr ,σz  plane) is 

shown in Figure 4.25. It can be seen from the figure that the original in situ 

stress (30 MPa) has been reduced, in 8 steps, to approximately zero in those 

elements representing the excavated tunnel area. A failure zone is also indicated 

in the figure. The tunnel boundary deformation behind the advancing face is 

shown in Figure 4.26 in which a 2-D plane strain prediction is also indicated. A 

discrepancy of the results between the plane strain analysis and axisymmetric 3- 

D simulation is obvious. The factors affecting the magnitude of the discrepancy 

between the plane strain and 3-D analysis are still under investigation using 
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Figure 4.23 Advancing tunnel problem and its plane strain analysis. 
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Figure 4.26  The tunnel convergence against excavation steps (simulating face 
advances). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



the above model. Program FESTER has also proved to be a valuable tool for 

research in this area. 
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