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Abstract 
 
LP models are usually constructed using index sets and data tables which are closely related 
to the attributes and relations of relational database (RDB) systems. We extend the syntax 
of MPL, an existing LP modelling language, in order to connect it to a given RDB system. 
This approach reuses existing modelling and database software, provides a rich modelling 
environment and achieves model and data independence. This integrated software enables 
Mathematical Programming to be widely used as a decision support tool by unlocking the 
data residing in corporate databases. 
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1. Introduction 
 
 

In the last four decades, Linear Programming (LP) techniques have played an important role 

in solving numerous problems of decision-making in a variety of industrial applications. 

During the last decade, rapid growth in the capability and availability of optimization 

software has enabled large problems to be solved in a realistic time scale on an affordable 

computer. Consequently, computer support for the formulation and analysis of LP problems 

has received increasing attention. 

 

Many modelling systems exist today which enable the user to specify the model in a 

modelling language which is concise, descriptive, self documenting and comprehensible. For 

example, AMPL (Fourer, Gay & Kernighan, 1987), GAMS (Brooke, Kendrick & Meeraus, 

1988), LPL (Harlimann, 1992), LP-MODEL (Dash Associates, 1992), MathPro (MathPro, 

1992), MPL (Kristjansson, 1993), MODLER (Greenberg, 1992), SML (Geoffrion, 1991) 

and there are many others. Thus the arduous task of representing the problem in an 

appropriate input form for the solver is fully automated within these systems. For a review 

of these see (Sharda, 1992), (Greenberg, 1991). The specification of a model makes use of 

index sets which define the dimensions of the variables, data tables and constraints. Most 

modelling languages employ data tables which are either constructed within the model or are 

created externally (separate from the model) by means of ascii files. Usually within a 

modelling language, altering the dimensions of a problem invalidates the given data and 

model instance and requires changes to be made manually to the data. This is not altogether 

desirable and a more flexible approach to the data definition is required. 
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In an organizational setting, the problem owner's view of his or her problem relates directly 

to the corporate information system (see diagram 1). The analyst's model and its solution 

provides the problem owner with the necessary decisions which may be operational, strategic 

or long term. 

 
For the purposes of investigation or as a result of changes in the decision making 

environment, the data within the corporate information system may be regularly revised. It 

is therefore desirable that the decision making system should automatically update the model 

when such changes are made. 

 

 
 
 

Diagram 1 
 
 
 
This perspective is consistent with the view put forward by Hurlimann who argues that 

despite recent developments, Mathematical Programming is still not fully exploited in 

practice, as much work is needed to get the model set up and data defined (Hurlimann, 1991, 
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p3). It is standard practice in industry to utilise databases for information storage and 

retrieval and much of the data needed for the problem is already present within the database. 

Thus, in order to gain better acceptance of Mathematical Programming as a modelling tool 

within corporate decision support studies, a unified approach which integrates an LP 

modelling language with a relational database is necessary. This will provide a more 

powerful tool for constructing models which are truly data driven. 

 

By our approach it is possible to connect corporate databases with a modelling system, MPL 

(Kristjansson,1993), which possesses a rich environment for model creation and 

documentation. This is achieved by incorporating RDB structures into the syntax of MPL, 

thus reusing the existing database and modelling software. 

 

This paper is intended for the LP modelling and information systems specialists and therefore 

provides overviews of both modelling and relational database systems. Thus the paper is 

organised as follows: the basic structure and syntax of MPL is introduced in section two 

and some well known but necessary background to relational data models is described in 

section three. An illustrative example is provided in section four demonstrating the need for 

new constructs to be introduced in modelling languages such as MPL to permit the 

integration of relational and LP models. MPL is then extended in section five to incorporate 

such constructs and some brief discussion draws this work to a conclusion. 
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2. The Structure of an LP Modelling Language: MPL 
 
 
The modelling of LP problems involves three logical steps. In step one, the subscripts and 

their ranges, are specified: these are essentially the sets and dimensions of the model. In step 

two, the data tables and model variables are defined in terms of these subscripts. In step 

three, the model constraints are specified in a row-wise fashion connecting the previously 

defined items. (Lucas & Mitra, 1988, p365). 

 
 
MPL (or Mathematical Programming Language) is a modelling system which enables 

problems to be formulated in a declarative form and an input file for an optimiser (eg MPS 

file) to be generated. The key features of MPL are described in the MPL Users Guide 

(Kristjansson, 1991, p1.2 -1.4). 

 
 
The structure of MPL reflects this modelling methodology and a problem expressed in MPL 

is divided into sections by the use of keywords and has the following format: 

 
 
TITLE    The problem name. 

INDEX  Index sets which define the dimensions of the problem. 
DATA   Scalars, datavectors, datafiles. 
DECISION  Vector decision variables. 
MACRO  Macros for repetitive parts. 

 
MODEL 

MAX (or MIN) The objective function. 
SUBJECT TO  The constraints. 
BOUNDS  Simple upper and lower bounds. 
FREE   Free variables. 
INTEGER  Integer variables. 
BINARY  Binary (0/1) variables. 

END 
 
 
 
Apart from the objective function (distinguished by the keyword MAX   or MIN) and the 
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constraints (identified by the keywords subject to), all sections are optional. 

 

 

To illustrate the basic syntax of the language consider this small planning example. A 

company which manufactures three products (product) needs to decide on a monthly basis 

what quantities of each product it should produce (Production [product, month]), what 

quantities it should store (inventory[product,month]) and what quantities it should sell 

(sales [ product, month]) in order to maximize profit. Profit is simply considered to be the 

Revenues from sales minus the Totalcost (total production cost + total storage cost). In 

addition there are various restrictions: there is a limit to the amount that can be stored each 

month; the amount produced each month cannot exceed the production capacity; the 

quantities sold should not exceed the demand for these products (shown in bounds section). 

Finally, a balancing constraint specifies that the amount in storage in any particular month 

must be equal to the amount that was in storage the previous month plus the amount 

produced   minus   the  amount  Sold,   that  is   (InventoryBalance[product ,month] ).   This 

planning model is stated in MPL as follows: 

 
 
 

{         Planning. mpl         } 
{         Aggregate production planning for 12 months         } 

TITLE 
Production_Planning; 

INDEX 
Product    =   1. .3; 
month      = (January, February, March, April, May, June, July, 

        August, September, October, November, December); 
DATA 

price[product]    : =     (105.09, 234.00, 800.00); 
Demand[month, product]  : =     DATAFILE(Demand.dat) ; 
ProductionCapacity[product)  : =     1000 (10, 42, 14) ; 
ProductionCost [product]  : =     (64.30, 188.10, 653.20); 
InventoryCost     : =     ?; 
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DECISION 

Inventory [product, month]  ->     Invt 
Production [product, month]  ->     Prod 
Sales [product, month]   ->     Sale 

 
MACRO 

Revenues : =   SUM (product, month: price * Sales); 
Total Cost  : =   SUM (product, month: Production Cost * Production 

+ Inventory Cost * Inventory); 
MODEL 
 

MAX Profit  =  Revenues – TotalCost; 
 
SUBJECT TO 

Inventory Balance [product, month]   ->  IBal : 
Inventory   =  Inventory[month-1] + Production - Sales; 

 
BOUNDS 

Sales  <   Demand ; 
Production  <   Production Capacity  ; 
Inventory [month<December] <     90000 ; 
Inventory [month=December]  =     20000 ; 

END 
(op. cit., p 6-3) 

Throughout the MPL model meaningful names of any length may be used to aid 

documentation. There are two index sets in this model, namely product (which may take 

values 1,2 or 3) and month. All subsequent vectors are defined in terms of these index sets. 

The data for this problem may be entered in the model definition file, as in the data table 

price [product], or may be stored in an external file and referred to by the keyword 

DATAFILE,  as in the two-dimensional data table Demand [month, product]. Data constants 

may also be entered at runtime, hence the question mark in the scalar Inventory Cost. 

 

The two-dimensional decision variables are provided with stubs (for example "-> Invt") 

which are abbreviations to enable distinct variable names as required by the MPS naming 

convention: an input file format necessary for the optimiser. The macro section defines two 

quantities which are used in the objective function. This enhances the readability of the model               

and encourages meaningful documentation. The keyword sum defines a summation to be 

carried out over the indices specified in the ensuing brackets. The four mathematical 
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operators, addition, subtraction, multiplication and division are represented by the usual      

symbols: + .-.*, /, respectively. 

 

The constraint inventory Balance [product, month] defines 36 constraints (one for each 

combination of product and month). The index month-1 is used to reference the previous 

month. Thus this constraint states that for any particular product and month, the inventory 

must be equal to the previous month's inventory, plus the amount produced this month, 

minus the amount sold this month of this product. 

 

Having defined the model in this manner using MPL's editor, the analyst selects a pulldown 

menu to optimize the model. This provides only a brief overview of the structure and syntax 

of MPL. For more detailed information see the user guide (Kristjansson, 1991). 
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3. Relational Data Models 
 

In a relational data model there is only one construct visible to the user: the relation or 

table. These relations (or tables) represent the basic entities of a system. The basic properties 

or characteristics of these entities are known as attributes and these form the columns of the 

table. For example, consider a power station. This entity may have several attributes such 

as the station name, the type of fuel it requires, the (heat) energy required, minimum or 

maximum accepted levels for sulphur, chlorine and ash, an indicator flue gas desulphurisation 

(FGD) unit. The table PowStat provides this information for several power stations. 
 
PowStat (Power Station) 
Station 
Name

Fuel Type 
Required

Heat 
Requirement 

FGD Presence Min Sulphur Max Chlorine Min Ash 

Stat1 1 270 1 0.2 0.2 0.3 
Stat2 2 240 0.5 0.1 0.09 0.2 
Stat3 1 350 0 0.1 0.1 0.1 

. . . . . . . 

. . . . . . . 

. . . . . . . 
Stat9 2 100 0.5 0.2 0.08 0.3 

Stat10 1 600 1 0.1 0.1 0.25 
 

This table provides information about power stations. The columns  of this table are the 

attributes of this relation and the rows are known as tuples. Thus, each tuple represents an 

entity, namely a power station and the attributes of this table represent a relationship between 

these entities (hence "relation" being synonymous with "table" in this context). Accordingly, 

a relation may be defined as a set of tuples. 

Each attribute has an associated domain from which values may be drawn for this attribute. 

In the above example, suppose that there are only four types of fuel available (1,2,3 and 4). 

Then the attribute Fuel Type Required may only take values 1, 2, 3 or 4. Thus a domain is 

a valid set of values for an attribute in a table. Further, "each occurrence of an attribute must 
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contain a single value, and cannot contain repeating groups or any other nested data 

structures." (Butler et al, 1990, p120) 

 

Within a relational table there is often one attribute (or a combination of attributes) which 

can be used to uniquely identify the tuples (rows) of that table. These are called keys. These 

reflect the functional dependencies of the relation: that is, each attribute value depends on 

the value of the key attribute. As there may be more than one possible candidate or 

candidates for the key of a relation, it is common to designate one key or combination of 

keys as the primary key. If a key consists of more than one attribute it is known as a 

composite key. 

 

In addition to these basic data structures, the relational data model has three associated rules 

for maintaining data integrity. Firstly the entity integrity rule requires that there exists a 

unique method of identifying each tuple. This is normally achieved by the definition of a 

primary key where no component may be null (Date, 1981, p89). The second rule is 

concerned with domain integrity. This stipulates that all attributes may only take legitimate 

values from the declared domain. Thirdly,  the rule of referential integrity which ensures 

that if a relation references another via a particular set of attributes then all values of this 

attribute must exist in the relation being referred to. An attribute which is the primary key 

of another relation is known as a foreign key. Such keys represent references which enable 

tables to be combined with each other usually by joins (discussed later). 

 

Software that enables a user to use and modify information stored in a database is called the 

database management system. This system allows the user to view the data in abstract terms 
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rather than look at how the data is actually stored. The end user has a language at his or her 

disposal which includes a data sublanguage. This subset of the language is concerned with 

both database objects and operations and therefore can be viewed as two languages: a data 

definition language which enables the construction of the database objects (tables) and a 

query language or data manipulation language which supports die manipulation and 

processing of these objects enabling queries to be formulated. One of the most widely 

accepted of these query languages is SQL (Structured Query Language) which has become 

the industrial standard query language for many database systems. SQL is both a data 

definition language and a query language. It combines both the algebraic type of query 

language, where queries are expressed by applying specialized operators to relations, and the 

predicate calculus type of language where queries describe a desired set of tuples by 

specifying a predicate that the tuples must satisfy (Ullman, 1982, pl51). 

 

As there are many RDB systems which are implemented to acceptable industrial standards, 

there is no advantage in recreating another query language. In order to integrate LP 

modelling languages with such relational databases it is necessary to use some of the basic 

operations defined in relational algebra, that is, the mathematical set theory operators and the 

relational operators. The traditional mathematical operators (union, intersection, difference, 

cartesian product) are well known and apply to the relational model because the relation is 

defined to be a set of tuples. Consequently, set operators are used whenever relations are 

processed. The relational operators (selection, projection and join) are illustrated below. 

 

The select operator "selects" a horizontal subset of the tuples in a relation. For example, in 

order to obtain all power stations which required fuel type 1 from the relation PowStat, a 
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selection of all tuples (rows) for which the attribute Fuel Type Required has value 1 must 
be carried out. This results in the table StFuell. 
StFuell (Stations with Fuel Type 1) 

Station 

Name

Fuel 

Type 

Required

Heat 

Requireme

nt 

FGD 

Presence 

Min 

Sulphur 

Max 

Chlorine 

Min 

Ash 

Stat1 1 300 1 0.2 0.1 0.3 

Stat3 1 350 0 0.1 0.1 0.1 

. . . . . . . 

. . . . . . . 

. . . . . . . 

Stat10 1 600 1 0.1 0.1 0.25 

 

The select operator is unary and therefore cannot be used to choose tuples from more than 

one relation. The degree of the relation resulting from a select operation is the same as that 

of the original relation since it has the same attributes. Selections are commutative so a 

sequence of selections may be carried out in any order. 

 

The projection operator, on the other hand, makes a vertical selection of a relation, choosing 

some attributes (columns) and eliminating others. If it were necessary to use only certain 

attributes of a relation, the project operator is used to "project" the relation over these 

attributes. For example consider the table PoStOwn. This has the attributes company and 

station name and represents the power stations that are owned by particular companies. 

 

PoStOwn (Power Stations owned by companies) 
Station 

Name 

Company 

Stat1 IndepCo 

Stat2 IndepCo 

Stat3 IndepCo 

. . 

. . 

. . 

Stat10 PublicCo 
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Suppose it is required to obtain a set of all the companies that own a station, then a project 

operation over the attribute company would achieve this resulting in the table Comp in 

which all duplicates have been eliminated. 

 

Comp (Company) 
Company 

IndepCo 

PublicCo 

 

This ensures that the result of a project operation is also a relation (ie. a set of tuples). The 

project operator is also unary and has degree equal to the number of attributes specified in 

the projection list. If some attributes projected are non-key attributes then it is possible that 

some duplication will occur and will therefore have to be eliminated. The number of tuples 

in a relation resulting from a projection is less than or equal to the number of tuples in the 

original relation. If the projection list includes the key of the relation, then the resulting table 

will have the same number of tuples as the original. Projections are not commutative. 

 

The join operator is used to combine related tuples from two relations into one relation. For 

example, consider the table FeasRout. 

 

FeasRout (Feasible Routes) 

 
Route 

Number

Fuel 

Site 

Name 

Station Name Route Cost 

1 1 start1 100 

2 1 start3 150 

. . . . 

. . . . 

. . . . 

18 7 start2 120 

19 7 start5 250 

20 7 Start1 350 
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This table shows the feasible routes from fuel sites to power stations and the unit cost of 

transporting fuel along these routes. If it were necessary to know which companies owned 

which routes, a join of FeasRout with PoStOwn would be required such that the Station 

Name in the FeasRout relation matched the Station Name in the PowStat table. This would 

result in the wider table CoFeRo (company feasible routes). 

 

CoFeRo (Company Feasible Routes) 
Route 

Number

Fuel 

Site 

Name 

Station Name Route Cost Station 

Name 

Company 

1 1 start1 100 start1 IndepCo 

2 1 start3 150 start3 IndepCo 

. . . . . . 

. . . . . . 

. . . . . . 

18 7 start2 120 start2 IndepCo 

19 7 start5 250 start5 IndepCo 

20 7 Start10 350 Start10 PublicCo 

 

Thus this join operation is equivalent to performing a cartesian product of the tuples of the 

relation FeasRout with the tuples of the relation PoStOwn but only when the combination 

satisfies the join condition. When the join condition involves, as in this case, an equality 

comparison the join operator is known as an equijoin. The attributes used in the join are 

known as join attributes. Note that there is repetition of the attributes station name as these 

were the join attributes. As one of these is superfluous, a join operator which removes the 

second attribute in an equijoin condition is used. This is called a natural join. To perform 

a natural join it is required that the join attributes have the same name. 

 

These three relational operators (selection, projection and natural join) play a fundamental role 

in the manipulation of information stored in a database. There are other operators such as 
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insert, delete and update. These are necessary for maintaining a database, but are operations 

which should be performed by the user who has overall control of the database system and 

such operations are not required for the LP modeller. The structure of the database however 

is important. In particular the normalisation of the database which ensures that attributes are 

associated with the correct table (Date, 1981, p237f). Throughout the examples provided in 

this paper it is assumed that the data is normalised. 

 

4.  Illustrative Example 

 

4.1 Problem Definition 

 

Consider the problem faced by power companies allocating fuel to power stations where the 

objective is to minimize the total cost of fuel allocation subject to certain restrictions imposed 

on the power companies and the power stations. For example, suppose there are two 

companies (called IndepCo and PublicCo) each owning several power stations which require 

various types of fuel from seven accessible fuel sites. Diagram 4.1 depicts the fuel sites, 

power stations, companies which own the power stations and the viable routes between sites 

and stations. 

 

The problem is to decide how much fuel must be shipped along each viable route so as to 

minimize the total cost. There are of course constraints which must also be satisfied: firstly, 

each power station has certain energy (heat) requirements and restrictions for sulphur, 

chlorine and ash levels; secondly there are environmental regulations concerning SO2 levels 

which restrict the maximum output levels for SO2 for each company. In addition each power 

company is restricted to take (if any) a minimum quantity of each fuel type (these are 

measures imposed by the various fuel  companies); there are also capacity limits on the 
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available fuel supply at each site. 
 

 
 

 
 
 
4.2 Data Model 
 
The information required for this model is stored in an existing database which consists of 

six relations. These relations may be divided up into four main groups: concerning the power 

companies, the power stations, the fuel sources (sites) and the routes. This is reflected in the 

respective relation (or table) names "PoCo..", "PoSt..", "FuelSrc" and "Routes". The 
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following tables illustrate the relations and provide typical attribute values. The attributes 

underlined are the primary keys. The domains of all the attributes are real numbers or 

integers and in order to keep the description of this example simple, units have been omitted. 

 

The relation PoCoSO2 contains the attributes Company and Max SO2. Max SO2 is dependent 

on the company which is the key for this table. The tuples represent the maximum SO2 

output level permitted for the company. The second power company relation PoCoTak has 

attributes Company, Fuel Type and Min Take. MinTake is dependent on Company and Fuel 

Type so these attributes form a composite key for this relation. The tuples here represent the 

minimum order quantity of each company for the different fuel types. 

 

The relation PoStOwn contains the attributes Company and Station Name where tuples 

indicate the owner (company) of a particular power stations. In this relation Company is 

dependent on the attribute Station Name and thus the attribute Station Name is the key. The 

remaining information regarding the power stations are contained in the relation PowStat. 

This has attributes: Station Name, Fuel Type Required, Heat Requirement, FGD Measure, 

Min Sulphur, Max Chlorine, Min Ash. Each power station has a requirement for a particular 

fuel type (or types). In addition there is a heat requirement for each power station as well 

as minimum or maximum accepted levels for sulphur, chlorine and ash. All these attributes 

are dependent upon the Station Name which provides the key. The FGD Presence indicates 

the reduction in SO2 output due to the existence of a flue gas desulphurisation unit. 

 

The unit heat generated from a certain fuel is calculated from the calorific percent values of 

each fuel type which are held in the table FuelSrc. Similarly   the percentages of sulphur, 
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chlorine and ash for fuel taken from a given site are contained in FuelSrc. This relation has 

the attributes Fuel Site Name, Fuel Type Available, Price, Calorific Percent, Capacity, 

Sulphur Percent, Chlorine Percent and Ash Percent representing: the fuel site names, the type           

of fuel available at these sites, the unit price for the fuel, the various levels previously 

mentioned and the capacity of each site. This capacity is a maximum limit on the amount 

that can be shipped from this site. The key therefore in this relation is the Fuel Site Name 

as all attributes depend on the site. 

 

The final relation Route indicate routes that are available from a fuel site to a power station. 

It shows the unit cost (Route Cost) of transporting fuel along each route as well as the 

maximum and minimum capacities of these routes (Minimum Capacity on Route and 

Maximum Capacity on Route). These attributes are all dependent upon the particular route, 

ie., Route Number. There are also some columns contained in this relation whose data is 

refreshed after optimisation. These are for the amount shipped along each route and 

consequently the cost of that shipment. The values of these attributes are at present unknown, 

but will become available after the optimization takes place. 
 

        The Company Database 
 
PoCoSO2 (Power Company SO2)

Company Name Max SO2

IndepCo 1 000

PublicCo 2 000
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PoCoTak (Power Company Take) 
Company Name Fuel type Min Take 

IndepCo 1 50 000 

IndepCo 2 100 000 

IndepCo 3 20 000 

IndepCo 4 10 000 

PublicCo 1 75 000 

PublicCo 2 200 000 

PublicCo 3 20 000 

PublicCo 4 100 000 

 

 

PoStOwn (Power Station Owners-) 
Company 

Name 

Station 

Name

IndepCo start1 

IndepCo start2 

IndepCo start3 

. . 

. . 

. . 

PublicCo start8 

PublicCo start9 

PublicCo Start1 

 

PowStat (Power Station) 
Station 

Name

Fuel Type 

Required 

Heat 

Requirement 

FGD Presence Min Sulpher Max Chlorine Min Ash 

start1 1 270 1 0.2 0.2 0.3 

start2 2 240 0.5 0.1 0.09 0.2 

start3 1 350 0 0.1 0.1 0.1 

. . . . . . . 

. . . . . . . 

. . . . . . . 

start9 2 100 0.5 0.2 0.08 0.3 

start10 1 600 1 0.1 0.1 0.25 
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FuelSrc (Fuel Source) 



Fuel Site 

Name

Fuel Type 

Available 

Price Calorific 

Percent 

Capacity Sulphur 

Percent 

Chlorine 

Percent 

Ash 

Percent 

1 2 20 0.67 1 000 00 0.1 0.32 0.1 

2 2 30 0.89 250 000 0.2 0.45 0.5 

3 1 35 0.75 350 000 0.25 0.6 0.23 

4 3 25 0.50 500 000 0.4 0.26 0.5 

5 4 20 0.70 600 000 0.62 0.32 0.61 

6 3 35 0.60 1 000 

000 

0.35 0.45 0.41 

7 1 30 0.85 1 250 

000 

0.05 0.25 0.21 

 

Routes 
Route 

Number

Fuel 

Site 

Name 

Station Name Route Cost Minimum 

Capacity on 

route 

Minimum 

Capacity on 

route 

Amount 

Shipped 

Total 

Route cost 

1 1 start1 100 1 000 5 000   

2 1 star3 150 2 000 10 000   

. . . . . .   

. . . . . .   

. . . . . .   

18 7 start2 120 3 500 7 500   

19 7 star5 250 1 000 5 000   

20 7 star10 350 2 800 10 000   

 

4.3 LP Model 

The algebraic representation of this LP model first involves defining sets and subsets. For 

example, let company denote the set of power companies in this example and station 

the set of power stations and let i ∈  company and j ∈  station be the indices that are used to 

reference the elements of these sets. A subset J; may be defined to represent the stations that 

belong to a particular company i. The union of all these sets defines a set, J which represents 

all the owned power stations. This is represented in MPL by a two-dimensional set 

stat ionowners [company, stat ion]. This structure is discussed further in section five. This 
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definition allows us to use the corresponding relational data table PoStOwn. Having defined 

all such sets and subsets the required data for this model is declared as tables. Decision 

variables are defined in terms of these sets and subsets. The objective function and the 

constraints are in turn stated as summations using the data tables and decision variables: this 

follows the progressive (logical) steps for constructing the model (see section two). 

 

The model objective is to minimise the total cost. The cost along a particular route is derived 

from the cost of the fuel on this route plus the route cost, which is then multiplied by the 

amount shipped along the route. Therefore the total cost is the summation of costs for the 

feasible routes, that is, 
Minimise ( fuelprice( )  +  routecost( l ) ) * amntship( l ) ∑

∈ feasroutl

l

where feasrout is the set of all feasible routes, amntship( l ) are the decision variables denoting the 

amount of fuel to be shipped on each feasible route, fuelprice( l ) and routecost( ) are data 
table entries representing the costs. 

l

 

A typical constraint in this model is the limit on the maximum emissions of SO2 for each 

company. This may be written as: 
∑∑

∈∈ StRoutekPostOwnj
Sulphurconst (1 - station-fgd-percent(j)) * fuel-sul-percent(k) 

* amntship(k) 

 

≤  Max   SO2(i)    i ∈  company 

 

This defines sulphur constraints for each power company. Sulphurconst is a standard 

conversion constant that applies to all power stations; station_fgd_percent(j) indicates the 

presence of flue gas desulphurisation units for each power station j (j ∈  PoStOwn - the set 
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of power stations owned by company i); fuel_sul_percent(k) is the sulphur percentage of fuel 

shipped on route k(k ∈  StRoute which is the subset of all routes which end at power station 

j); the Max SO2(i) is the maximum SO2 output imposed on company i. Therefore, these 

constraints are constructed by summing over the routes ending at all the power stations which 

are owned by that particular company. 

 

The full algebraic representation of this model is expressed in MPL and presented in the 

Appendix together with the new constructs introduced in the following section. 

 

 

5. Sets and New Database Constructs within MPL 

 

Set operations such as union, intersection and difference have been introduced in MPL. For 

example, the following index sets may be defined explicitly in MPL: 

 

INDEX 

Plants   :=   (London, Paris, NewYork, Chicago, Madrid); 

Open Plants   := (London, NewYork, Madrid); 

European Plants [plants]  := (London, Paris Madrid); 

 

Further indices may be specified as follows: 

    ClosedPlants [plants]  := plants - OpenPlants; 

    EuropeanOrOpen [plants] := EuropeanPlants OR Open Plants; 

    EuropeanAndOpen[plants] := EuropeanPlants AND Open Plants; 

 

The set "ClosedPlants" uses the difference operator to obtain the resulting set containing             

Paris and Chicago. The index "EuropeanOrOpentplants]" utilizes the operator OR and            

performs the union of the two sets "EuropeanPlants" and "OpenPlants". Thus, this               

represents the set {London,NewYork,Madrid,Paris}. The final index 
"EuropeanAndOpen[plants]" employs the AND operator to carry out the intersection of two

sets to obtain the smaller set containing London and Madrid. 
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In order to make use of the RDB structure, MPL is extended to incorporate the other              

operators described in section three.  Thus new constructs are introduced to enable: 

(i) the specification of keys as index sets in the model; 

(ii) the specification of subsets (multi-dimensional sets); 

(iii) data to be imported from a database into MPL; 

(iv) the specification of selection, projection and joins in defining index sets, data tables              

and constraints. 

The syntax and use of these constructs are demonstrated by considering the Power Model 

example. For the rest of this section all references to MPL denote "extended MPL". 

 

Index sets may be also derived from the keys of a database table and the syntax for defining 

index sets incorporates the keyword "Database": 

 

INDEX 

Set_name   :=  Database (" database_table_name",   "key"); 

 

For example, the following defines the index set "company" in MPL which is the key to the 

table "PoCoSO2" in the database: 

INDEX 

company : = Database ("PoCoSO2",      "Company Name"); 

 

The index section, defines the index set "company" which corresponds to the key "Company 

Name" taken from the relation "PoCoSO2". Subsequently, "company", rather than 

"Company Name" can be used in the model, even in defining new indices. This avoids any 

unnecessary repetition of long names and provides good documentation on how the index sets 

of the model correspond to the database keys. 
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Subsets, as stated in section 4.3, are represented in MPL by two (or more) dimensional sets, 
that is sets of sets. The syntax for these multi-dimensional sets is as follows: 

INDEX 
 set_name[setl,set2...] := Database ("database_table_name", setl, set2...); 
where setl, set2,... are previously defined index sets. For example, the subset J described 
earlier is defined as follows: 
 
 INDEX 
  StationOwners[company,station]:= 
 Database("PoStOwn", company, station); 
 
This defines a projection of "Company Name" and "Station Name" taken from the relation 
"PoStOwn". This index is a multi-dimensional set or, in relational terms, a multi-attribute 
(or composite) key for the data tables and constraints which are as yet to be defined. 
 StationOwners 

Company Station
IndepCo stat1 
IndepCo stat2 
IndepCo stat3 
IndepCo stat4 
IndepCo stat5 
IndepCo stat6 
IndepCo stat7 
PublicCo stat8 
PublicCo stat9 
PublicCo stat10 

 
It is easier to think of this subset as the relational table above rather than as a set of power 
stations which are owned by company i, say. Another example is as follows: 
INDEX 
 Station  := Database("PowStat", "Station Name"); 
 route  := Database("Routes", "Route Number"); 

 StationRoutes[station,route] := 
 Database ("Routes", station, route); 
 
This multi-dimensional set StationRoutes is defined as a projection of "Station Name" and 
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"Route Number" taken from "Routes". 

 

Multi-dimensional sets can also be derived from more than one table or subset. This is 

achieved intoducing the keywords WHERE and IN: 

INDEX 
 set_name[setl ,set2.. .]  WHERE FORSOME(set3  IN subset1[set1,set3.. .]) 
              = (set3  IN subset2[set3,set2.. .]);  

(As set1, set2, set3,..., subset1 and subset2 are previously defined index sets, it is not 

necessary to repeat the index sets of the subsets as shown above. They are, however, 

included here for clarity.) For example, 

 INDEX 
 CompanyRoutes[company,route] WHERE 
 FORSOME(station IN StationOwners[company,station] = 
 station IN StationRoutes [station, route]); 
 

This is equivalent to performing a (natural) join followed by a projection. The resulting 

multi-dimensional table is CompanyRoutes. The keyword "WHERE FORSOME" indicates 

that a join condition is about to be specified and the IN operator checks for entries in a 

relation. For example "station IN StationOwners" selects all values of the attribute station 

which occur in the relation StationOwners. This "IN" operator is again utilised in the data 

and constraint sections of the model. 

 CompanyRoutes 

company route 

IndepCo 1 

. . 

. . 

. . 

PublicCo 16 

PublicCo 5 

PublicCo 11 

PublicCo 6 

PublicCo 20 
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Data may be imported from a database by using the keyword "IMPORT". That is,  
 
IMPORT 
 Database ("database_table_name" INDEX set1 , set2 , . . 
 DATA data_table[set1,set2...] = "attribute_name" 
 data_table[set1 ,set2,..] = "attribute_name" 
 . 
 . 
 .    ); 
Again setl,set2,.. are previously defined index sets. For example, a one-dimensional data 
table extracted from a database may be defined as follows 
 IMPORT 
 Database("PowStat" INDEX station 
 DATA Fgdpercent[station] = "FGD Presence"); 

This is equivalent to a projection from the table "PowStat" of the attribute "FGD Presence".  
 
As shown in the syntax above, several attributes may be imported at a time in the following 
way: 
IMPORT 
 Database("FuelSrc" INDEX site,  
 DATA FuelType  = "Fuel Type Available"; 
   FuelPrice  = "Price"; 
   FuelSulphur  = "Sulphur Percent"; 
   FuelCal  = "Calorific Percent"; 
   FuelChl  = "Chlorine Percent"; 
   FuelAsh  = "Ash Percent"; 
   FuelCap  = "Capacity"); 
 
This defines the one-dimensional data tables FuelType, FuelPrice,FuelSulphur etc taken from 
the database relation "FuelSrc". All of these tables are dimensioned by the index set site 
indicated by the key word INDEX. Thus the new keyword "IMPORT" enables the 
definition of several data tables at once. A two or more dimensional table is similarly 
defined. For example: 
IMPORT 
 Database("PoCoTak", INDEX company, fueltype 
 DATA Mintake [company, fueltype] = "Min Take"); 
 
Data tables may also be derived by manipulating pre-defined data tables. This is performed 
using the "IN" operator described earlier.   For example, if SiteRoutes is defined to be a  
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multidimensional set representing the routes which terminate at a particular fuel site, that is, 

INDEX 

 SiteRoutes[site,route] := Database("Routes",site,route); 

and FuelPrice is defined to be a one-dimensional data table: 

IMPORT 

Database("FuelSrc" INDEX site,  

DATA FuelPrice := "Price") ;  

Then a new data table may be defined as: 

DATA 

FuelPriceRoute [route] := FuelPrice(site IN SiteRoutes [site,  route]);  

For each route, the fuelprice for the route is obtained by selecting the site at which this route 

begins (from siteRoutest site,route)) and then selecting the fuel price for this site (from 

FuelPrice [site]). As before, it is not obligatory to specify the indices 

[site,  route] as SiteRoutes is previously defined, but this practice aids clarity. 

 

The "IN" operator may be also used in the constraint section of the MPL model: in defining 

summations. For example: 

 

MinimumFuel [company,fueltype] :  

 SUM(route IN CompanyRoutes [company,route] 

 WHERE (fueltype = fueltype IN FuelRoute[fueltype,route]: 

 AmountShipped [route]) >=CompanyMinTake [company,fueltype]; 

This defines constraints called MinimumFuel: one for each combination of company and fuel 

type. For each company and fueltype, the summation is performed over the index route 

selected from the table (or subset) CompanyRoutes, where the route carries that particular 

fueltype. This latter information is contained in the table FuelRoute so the selection of routes 

which transport this fuel type is defined by the where condition which only chooses routes 

which have the same fueltype as the constraint index. For example, company 2 has routes 

4,5,6,11,16 and 20 (see diagram 4.1) but only routes 11 and 16 accommodate fueltype 3, so 

this constraint for company 2 and fuel type 3 would be: 
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 AmountShipped[routes 11 & 16]  CompanyMinTake[company 2, fueltype 3] 

A full (extended) MPL version of this example is provided in the Appendix. 

≥

 

 

6. Conclusion 

LP models are usually constructed using index sets and data tables. These index sets and data 

tables are closely related to the attributes and relations of RDB constructs. The extensions 

of MPL to connect the modelling language with the RDB system are presented in this paper. 

The obvious advantage of such an approach is that, within an organisational context, the data 

needed for the model is held in a database system which is updated according to the 

organisation's requirements. Consequently, models which are constructed with database 

connections are automatically modified and revised. This model and data independence is 

extremely valuable from an operational point of view. The version of extended MPL in 

operation at BruneL University is connected to Paradox. 

 

Early modelling systems (matrix generators) such as DATAFORM (Ketron, 1975) introduced 

some database features within the modelling language itself. In our view this replication of 

relational constructs which already exist within database systems is not desirable. More 

recently, Choobineh showed how the Structured Query Language (SQL) may be extended 

with additional constructs for the definition of objective functions and constraints to form 

SQLMP (SQL for Mathematical Programming) (Choobineh, 1991). Our approach adopts the 

modeller’s viewpoint and therefore focuses more on the description and documentation of the 

model in a natural algebraic form. 

The MIMI Modelling system (Baker, 1992) has its own internal database and provides  
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external links with an SQL server. Our approach, however, is not to develop another 

database system, but to provide the connection between the modelling language and the 

database; thus reusing the existing database and modelling software. This also allows many 

well established database features, for example, data security and unit checking, to be 

exploited. This also has the advantage of providing safeguards such as data integrity by the 

normalisation of the database. 

 

The database connections introduced in this paper are easily extended to provide highly 

desirable features for model investigation, namely model management, solution and report 

analysis and case management. Thus the link between the modelling language and the 

database system is a two way relationship enabling data to be updated as a result of 

optimising the LP model as well as within the database environment. For example, once 

values for the decision variables have been obtained, it may be desirable to store these values 

in a database table. 
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Appendix - Power Model in MPL 



 
 { Power. mpl }  
 { Fuel allocation model for a power industry. } 
 
TITLE Power; 
 
CONST 
 Total Fuel Types = 4; 
INDEX 

company := Database("PoCoS02", "Company Name"); 
station  := Database("PowStat",  "Station Name"); 
site  := Database("FuelSrc", "Fuel Site Name"); 
route  := Database("Routes", "Route Number"); 
fueltype        := 1..Total Fuel Types; 

! Definitions of multidimensional sets 
!  --------------------------------------------- 
!  Power <station> owned by <company>. (station >−  company) 
! ---------------------------------------------------------------------------------- 
 StationOwners [company, station] := 
 Database("PoStOwn", company, station); 
 
!  <fuel type> for power <station>. (fueltype >−  station) 
!  ------------------------------------------------------------------------ 
 FuelStation [station, fuel type] := 
 Database("PowStat",  station, "Fuel Type Required"); 
 
!  <routes> that have power <station> as a source. (route -> station) 
!  ------------------------------------------------------------------------------------ 
 StationRoutes[station, route] := 
 Database ("Routes", station, route); 
 
!  <routes> that have fuel <site> as a sink. (route -> site) 
!    ----------------------------------------------------------------------- 
 SiteRoutes [site,  route] := 
 Database ("Routes", site,  route); 
!  <fueltype> of a <site>. (site -> fuel type) 
!  ---------------------------------------------------------- 
 FuelType Site [site,  fuel type] := 
 Database("FuelSrc", site,  "Fuel Type Available"); 
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! <routes> to a power <station> owned by a <company>.  
!  (routes  station  company) >− >−
! -------------------------------------------------------------------- 
 CompanyRoutes [company, route] WHERE 
 FORSOME (station IN Station Owners [company, station] = 
 station IN StationRoutes [station, route));  
!  <routes> from a <site> that produces <fuel type>.  
!  (routes  site  fuel type) >− >−
! ------------------------------------------------------------ 
 FuelRoute [fuel type, route] WHERE 
 FORSOME (site IN Fuel Type Site [site,  fuel type] = 
 site IN SiteRoutes [site,  route]);  
DATA 
 Sulphur Constant := DATAFILE(suIconst.dat);  
 
IMPORT 
 Database ("PoCoS02", INDEX company 
      DATA MaxS02 = "Max S02"); 
 Database ("PoCoTak", INDEX company, fuel type 
       DATA MinTake = "Min Take"); 
 Database ("PowStat",   INDEX  station 

   DATA   HeatReq  = "Heat Requirement",  
       FgdPercent = "FGD Measure",  
      MinSulphur = "Minimum Sulphur",  
      MaxChlorine = "Maximum Chlorine",  
      MinAsh  = "Minimum Ash"); 

 
 Database("Fuel Src", INDEX site,  

    DATA FuelPrice = "Price", 
      FuelCal     = "Calorific percent",  
      FuelCap  = "Capacity"); 
      FuelSulphur = "Sulphur percent",  
      FuelChl  = "Chlorine percent",  
      FuelAsh  = "Ash percent", 

 
 Database ("Routes", INDEX route, 
 DATA RouteCost = "Route Cost");  
  
 FuelPriceRoute[route] := FuelPrice[site IN Site Routes [site,  route]];  
 FgdRoute [route]  := Sulphurconst*(1 – FgdPercent [station IN 
 StationRoutes [station, route]]);  
 Fuel SulRoute[route] := FuelSulphur[site IN SiteRoutes [site,  route]];  
 
DECISION VARIABLES 
 Amount Shipped [route]; 
 
MODEL 
 MIN costs = SUM (route: (FuelPriceRoute[route] + RouteCost[route]) 

* AmountShipped[route]);  
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SUBJECT TO 
! Maximum emissions of S02 for each <company>. 
!  -------------------------------------------------------------- 

 MaximumS02[company] :  

 SUM(route IN CompanyRoutes[company, route]: 

 FgdRoute[route] * FuelSulRoute[route] * AmountShipped[route])  

 <= Max S02 [company]; 
 
!  Minimum order quantities of a <fuel> for a <company>. 
!  ---------------------------------------------------------------------- 

 MimimumFuel[company, fue1 type] :  

 SUM(route IN Company Routes[company, route] 

 WHERE (fuel = fuel IN FuelRoute[fueltype, route]):   

 AmountShipped[route])  

 >= CompanyMinTake [company, fuel);  
 
!  Individual power <station> heat requirements.  
!  --------------------------------------------------------- 

 HeatRequirement [station] :  

 SUM(route IN StationRoutes[station, route] :  

 FuelCal[site IN SiteRoutes[site,  route]] * Amount Shipped [route])  

 = HeatReq [station]; 

!  Individual power <station> minimum sulphur level.  
!  --------------------------------------------------------------- 

 MinSulhpurLevel[station] :  

 SUM(route IN StationRoutes[station, route] :  

 FuelSulphur[site IN SiteRoutes[site,  route]] * mountShipped[route]  

 - in Sulphur [station] * AmountShipped[route])  M

 >= 0; 
 
!  Individual power <station> maximum chlorine level.  
!  ---------------------------------------------------------------- 

 MaxChlorine Level[station] :  

 SUM(route IN Station Routes[station, route] :  

 FuelChlorine[site IN SiteRoutes[site, route]] * AmountShipped [route] 
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 -  MaxChlorine[station] * AmountShipped[route])  

 <=  0; 

 

Individual power <station> minimum ash level.  

----------------------------------------------------------- 

MinAshLevel[station] :  

 SUM(route IN Station Routes [station, route] :  

 FuelAsh[site IN SiteRoutes[site,  route]] * AmountShipped[route] 

 - Min Ash [station] * Amount Shipped [route])  

 >= 0; 

 Capacity of individual fuel <site>. 

------------------------------------------- 

FuelSiteCapacity[site] :  

 SUM(route IN SiteRoutes[site,  route] :  AmountShipped[route])  

 <= FuelCap[site] ;   

END 
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