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Abstract—The precise location of insulators in infrared images 

is of great significance for insulator condition monitoring and 

fault diagnosis. Due to the characteristics of insulators themselves 

and the use of handheld infrared cameras, insulators usually 

appear in infrared images with different aspect ratios and main 

axis orientations. Therefore, it is very important and necessary to 

make full use of the prior knowledge of the insulator itself to 

accurately locate it. However, most of the existing methods use 

axial horizontal detection boxes to detect insulators, which cannot 

take into account the characteristics of the insulator well. When 

there are large overlapping areas of two horizontal detection 

boxes, the non-maximum suppression algorithm may lead to 

missed detection of the object. In order to further improve the 

accuracy of the detection algorithm, this paper makes full use of 

the prior features carried by the insulator itself, and optimizes 

Faster R-CNN from five aspects: rectangular box representation, 

feature extraction, candidate box generation, anchor design, and 

feature alignment. An oriented detection model for infrared 

images of insulators is constructed. Comparative experiments 

with a variety of mainstream detection methods were carried out 

on the constructed infrared dataset. The results show that the 

proposed method is superior to other models in detection 

accuracy. When the intersection and union ratio is 0.5, the 

average precision reaches 95.08%. In addition, it can also 

effectively predict the shape and angle information of insulators in 

complex scenes, laying a beneficial foundation for subsequent 

diagnosis automation tasks.  

Index Terms—Convolutional Neural Network, Orientation 

detection, Infrared image, Insulator, prior knowledge 

I. INTRODUCTION

ITH the development of power system, the number of 

transmission lines and substations is increased, and the 
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corresponding number of insulators is also increased rapidly. 

Considered as one of the power equipment that plays the 

function of electrical insulation and mechanical support, the 

insulator plays an important part in the safe operation of the 

power system [1]-[3]. The failure of the insulator will cause 

short circuits between conductors. It can also severely damage 

electrical equipment and cause unplanned power outages of the 

power grids. According to a large number of experiments 

available in the literature, the main cause of insulator failure is 

attributed to abnormal temperature. Therefore, monitoring the 

thermal condition of insulators is often the focus of electrical 

power engineers in regular inspection tasks. Infrared 

thermography (IRT) has the advantages of large detection range, 

fast detection speed, non-contact, no electromagnetic 

interference, etc., and is widely used in the detection of the 

thermal state of insulators [4]. However, the massive infrared 

images obtained through infrared cameras still require a large 

number of engineers to carry out analysis and judgement. This 

procedure is not only time-consuming but also inefficient 

[5]-[7]. In recent years, inspection robots equipped with 

infrared cameras have begun to be adopted by power 

companies, which has improved the automation level of power 

inspections [8]-[9]. The automatic detection technology based 

on computer vision can greatly reduce the discrimination time 

and effectively improved the inspection efficiency, which has 

become a research hotspot in the field of insulator inspection. 

Among them, detection method based on deep learning is an 

end-to-end learning method. It can learn complex advanced 

feature representations from large amounts of original data 

through multi-layer network stacking [10]. As AlexNet won the 

ImageNet image classification competition, researchers around 

the world began to apply deep learning techniques to other 

areas of computer vision, such as image retrieval and image 

segmentation. At the same time, a large number of general 

detectors based on deep learning, such as R-CNN [11] and Fast 

R-CNN [12], are designed in the field of target detection.

Because the universal detector has strong generalization ability

and adaptability, researchers engaged in power engineering

vision have carried out researches on the automatic detection of

insulators based on the universal detector, and achieved many

satisfactory results.

However, many current insulator detection methods are just 

simple migration applications of general object detectors in the 

power field. General object detectors are mature and accurate 

enough to detect the most common objects, such as people or 

cars. However, when detecting elongated objects with different 

orientations, such as insulators, it is difficult to take into 

account the orientation and shape characteristics of the object. 
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When there are complicated situations such as tilt and mutual 

occlusion, the detection accuracy and effect are not satisfactory. 

In addition, the detection box output by the general detector is a 

horizontal rectangular box, and its location and identification of 

the insulator may also cause unnecessary background noise and 

object overlap. In order to solve the above problems, this study 

makes full use of the prior knowledges carried by the insulator 

itself, and proposes a high-precision oriented detection method 

for infrared insulators. 

The main contributions of this paper are as follows: 

1) A high-precision oriented detection method for infrared

images of insulators based on deep learning is proposed. 

Combining the rotating detection box with the deep learning 

method effectively solves the defect so that the output detection 

box of the non-oriented detection method is easily deleted by 

the non-maximum value suppression algorithm and reduces the 

detection accuracy. 

2) The improved residual network and feature pyramid are

embedded in the proposed model. These two modules can not 

only make full use of feature information and reduce the 

amount of calculation, but also can effectively improve the 

multi-scale detection capability of the model. 

3) The rotation region proposal network (RRPN) is

embedded in the proposed model. This module enables the 

model to generate high-quality rotatiing candidate regions 

containing potential targets. 

4) Aiming at the geometric characteristics of insulators, an

adaptive method of anchor combining improved clustering 

algorithm and statistical analysis is proposed. This method 

allows the model to distinguish between targets with similar 

backgrounds well. 

5) The rotation region of interest (RRoI) pooling layer is

introduced into the proposed model. This module can 

effectively match the candidate region with the feature matrix, 

retain features that are beneficial to the detection task, suppress 

features that are not helpful to the task. 

The remainder of this paper is organized as follows. Section 

II analyzes the research background and related work of this 

study, and reveals the deficiencies of non-oriented detection 

methods through an example. Section III gives a detailed 

introduction and explanation of the proposed model and its 

various improvement modules. In Section IV, we describe the 

experimental process and evaluate and analyze the results. 

Finally, conclusions and prospects are presented in Section V. 

II. RELATED WORK

In the past ten years, many scholars have carried out work on 

automatic detection methods for insulators and have achieved 

some results. According to the different feature extraction 

methods, the detection methods of power equipment can be 

divided into artificial design features and deep learning 

methods[13]. Table I summarizes some of the latest research 

results in the application of the above two types of methods in 

the field of power equipment automation in recent years. The 

content mainly includes the detection accuracy and speed 

evaluation of their methods. Among them, the artificial design 

feature methods are mainly realized through the combination of 

manual features and traditional machine learning. 

Reference [14] proposed an insulator detection method 

combining the original convex energy function and the active 

contour. However, this method requires a large amount of 

calculation, and the hyperparameters in the energy function 

need to be manually set. In [15], an insulator detection method 

combining Sobel operator and accelerated robust feature 

operator was proposed. However, this method has a 

cumbersome detection process. Zhao et al. [16] combined 

orientation angle detection and binary shape features to locate 

and identify insulators. But this method is only suitable for 

overhanging insulators with a larger size, and the detection time 

is longer. Reference [17] proposed a feature operator that 

combines rotation invariance and local orientation mode to 

represent the insulator, and uses the feature vector constructed 

by the operator to train the SVM for completing the insulator 

identification and location process. The above-mentioned 

feature extraction methods are manually designed according to 

specific objects, and are limited to low-level feature 

representation. They do not have the learning ability to improve 

the recognition accuracy as the number of samples increases. In 

addition, their effectiveness and reliability are suppressed by 

the shooting angle and distance. 

With the continuous development of deep learning in the 

field of computer vision, image recognition technology based 

on deep learning can greatly reduce the detection time for 

power equipment, and effectively improve the accuracy and 

efficiency of equipment condition detection. Wang et al. [18] 

proposed a lightweight CNN to identify ice-coated insulators 

on edge intelligent terminals. This method uses MobileNetv3 as 

the feature extraction network, and SSD [19] as the 

identification network for insulator ice thickness measurement. 

It requires small memory, fast calculation speed, and strong 

adaptability to edge computing terminals with limited 

computing resources. In [20], a new type of deep CNN with a 

cascade structure is used to solve the two-level problem of 

insulator location and defect detection. It can successfully 

detect insulator defects under various conditions and meet the 

robustness and accuracy requirements of insulator defect 

detection, but the data-driven detection method lacks 

generalization in insulator defect detection in aerial images. 

Reference [21] improved the region generation network and 

NMS method of Faster R-CNN [22] to detect insulators. The 

improved method significantly improves the detection effect of 

insulators with different aspect ratios and different scales, and 

can also effectively detect insulators that are shielded from each 

other. However, the detection speed as an important evaluation 

index has not been compared and tested. Reference [2] 

proposed an improved FSSD detection model for infrared 

images of substation insulators. However, this model cannot 

improve the detection accuracy of the model while maintaining 

a high detection speed. Liu et al. [23] proposed an automatic 

location identification and diagnosis method for external power 

insulation equipment based on YOLOv3. However, the original 

YOLOv3 model has poor detection performance for large and 

medium-scale objects, and has no obvious advantages in the 

location and recognition of power equipment. 
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The above deep learning detection methods are referred to as 

a non-oriented detection method in this paper. They all use the 

horizontal detection bounding box to detect objects, and have 

good detection effects when detecting general objects in natural 

scenes. However, the task of insulator detection is different 

from general object detection. Due to the shooting angle, the 

characteristics of the insulator itself, and the voltage level, the 

insulator will appear in the infrared image in different overhead 

modes. When insulators with different orientations are cross 

occlusion or erected in a parallel connection manner, two 

horizontal detection boxes surrounding different insulator 

strings will overlap and cause an excessively large overlap area. 

At this time, if the existing non-oriented detection algorithm is 

used to detect these inclined insulators, the output horizontal 

detection box can easily be suppressed and deleted by NMS, 

which leads to missed detection of the insulator and reduces the 

detection accuracy. The test results are shown in Fig. 1. It can 

be seen that due to NMS, the insulator strings A, C, and F in 

Test 1 are not detected, and the blocked insulator string A in 

Test 2 is deleted. Therefore, the non-oriented detection method 

is not the best method for detecting objects with arbitrary 

orientations, relatively large width and height, such as insulator 

strings. 

To solve the problem that non-oriented detection methods 

cannot effectively detect multi-oriented objects and improve 

the detection accuracy of detection algorithms, experts in 

different fields have proposed oriented detection methods 

based on rotating rectangular boxes [24-25]. Inspired by the 

above oriented detection ideas, researchers have also carried 

out work on the oriented detection methods for power 

equipment. Li et al. [26] proposed an insulator orientation 

recognition method based on improved SSD. This method can 

well complete the detection of inclined insulators, but the 

Fig. 1. (a) Ground truth box. (b) Detection result. 

TABLE I 

LITERATURE REVIEW OF RELATED WORK 

Detection 

methods 
Detection accuracy Detection speed 

location 

strategy 

[14] 

It can effectively segment insulators with uneven texture 

from aerial images. The missed detection rate in 100 aerial 

test images is only 0.05, and the detection accuracy is high 

This method requires a lot of calculations, and it takes 

51s to detect a picture on average, which cannot be 

applied to field detection 

Segmentation 

[15] 
It can accurately identify the insulators of the railway 

catenary from the target image 

This method has a small amount of calculation, and the 

detection time in the sample test picture is only 0.08s 

Feature point 
matching + 

horizontal box 

[16] 
It can accurately locate multiple insulators in different 

orientations in complex aerial images 

This method has a small amount of calculation. The 
average detection time in the sample testing for a picture 

is 2.66s, and the detection speed needs to be further 

improved 

Rotating box 

[17] 
It can effectively separate defective insulators from normal 
insulators 

- 

Texture 

matching + 

horizontal box 

[18] 
The recognition accuracy is higher than most other deep 
learning methods on the self-built dataset, and the mAP is as 

high as 0.75 

This method requires small memory, fast calculation 

speed, up to 30 fps, and has strong adaptability under 

edge computing terminals with limited computing 

resources. 

Horizontal box 

[20] 

The detection accuracy and recall rate are as high as 0.91 and 

0.96 on the self-built dataset, which meets the detection 
accuracy requirements of related scenes 

The detection speed is 0.36s per picture, which can be 

applied to on-site detection requirements where real-time 
requirements are not strong 

Horizontal box 

[21] 

Compared with the original model, the detection accuracy on 

the self-built dataset has been greatly improved, and its 
average accuracy index has reached 0.82 

Two-stage detection method, the detection speed is slow Horizontal box 

[2] 

In the self-built dataset, the detection accuracy is slightly 

higher than the original model, and the average accuracy is 
increased by 0.72 

The detection speed is faster, with a fps of 23.81, which 

is slightly slower than the original model, and basically 
meets the requirements of real-time detection 

Horizontal box 

[23] 
On the self-constructed dataset, its average precision average 

index is as high as 0.89 

The detection speed is very fast, the fps is up to 55, which 

meets the real-time detection requirements 
Horizontal box 

[26] 
On the self-built insulator visible light dataset, its average 

accuracy reached 0.82 
- Rotating box 

[27] 
The average accuracy of the self-built power equipment 
infrared dataset is as high as 0.94 

The FPS is 20, and the detection speed is slower than the 
original model 

Rotating box 

[28] 
On the self-built power equipment infrared dataset, its 

average accuracy is as high as 0.93 

Need to train two independent networks separately, the 

detection process is complicated and cumbersome, and 
the detection speed is very slow 

Rotating box 
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detection accuracy of this method is low, and there are a large 

number of falsely detected insulator string samples. 

Reference [27] proposed a single-stage oriented detection 

method for infrared images of power equipment. However, this 

method can only detect the equipment components in the same 

orientation in the infrared image, and cannot complete the 

detection task of the insulator orientations arranged in any main 

axis orientation in the actual scene. To further improve the 

detection accuracy of the orientation detection algorithm, Lin et 

al. [28] proposed a combination of space transformer network 

and Faster R-CNN infrared image orientation detection method 

for power equipment. This method achieves better detection 

accuracy in the detection of four types of power equipment 

components, but two independent networks need to be trained 

separately. The detection process is complicated and 

cumbersome, requiring repeated debugging and parameter 

adjustment. 

Therefore, in order to achieve effective oriented detection of 

insulators in infrared images, the proposed method in this paper 

combines the prior information carried by the insulator itself, 

which effectively solves the defects of non-oriented detection 

methods, while ensuring accuracy, it can further increase the 

recall and reduce the number of missed inspections. 

III. THE PROPOSED METHOD

A. Overall Framework

We present the details of the detection pipeline of the method

proposed in this paper, which is illustrated in Fig. 2. 

Specifically, it contains two main stages, one to complete the 

rough regression of the rotating prior box and the other to 

complete the refinement of the proposals. In this first stage, We 

use the improved residual network (ResNet) and feature 

pyramid network (FPN) structures [29]-[30] to get the feature 

maps of three feature levels, namely {P3, P4, P5}. Given the 

multiscale feature maps, the RRPN completes the first 

regression through back propagation and generates the rotated 

proposals on the original image that may contain insulator 

target. In the second stage, the RRoI pooling layer performs 

uniform scaling for each rotated proposal of different sizes. 

Then, these feature matrices will be sent to the fully connected 

neural network for another regression, and the final detection 

box close to the insulator target is generated. 

B. Improved ResNet Architecture

The residual network based on the residual architecture is a 

feature extraction network widely used in deep learning [29]. A 

residual backbone consists of an input stem C1 and four 

consecutive residual stages C2-C5, which is illustrated in Fig. 2. 

Among them, a stage module includes a down-sampling block 

and several identity mapping blocks. In the original version of 

Caffe implementation, the input stem consists of a convolution 

kernel with a size of 7 × 7 and a pooling layer with a size of 

3 × 3. In the residual block of each stage, 1 × 1 convolution 

with a stride of 2 completes the downsampling of the feature 

map, as shown in Fig. 3(a). However, there are two drawbacks 

in the original implementation. First of all, 7 × 7 convolution 

requires more parameters and higher computational cost. Then, 

the 1 × 1 convolution with a stride of 2 in path B of the residual 

block loses a large amount of feature map information, which 

results in a decrease in the detection performance of the model. 

Based on the above analysis, we make two improvements to 

the original version of the residual network. First, we switch the 

size of the stride of the first two convolutions in path A of the 

down-sampling block. Second, we replace the 7 × 7 

convolution in the input stem with three consecutive 3 × 3 

convolutions. The modified result is shown in Fig. 3(b). 

Fig. 3.  Comparison of two residual network structures (a) original version. (b) 

improved version.
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Fig. 2.  Detection pipeline of the proposed method.
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C. Orientation Detection Box Representation

Non-oriented detection tasks are usually marked with 

axis-aligned horizontal detection boxes. These boxes are 

usually uniquely determined by the coordinates of the upper left 

corner and the lower right corner. To meet the needs of 

detection task, the above parameters usually need to be 

converted into the four tuples, namely (xc, yc, w, h). Among 

them, (xc, yc) represent the coordinates of the center point, w 

denotes the width of the box, and h denotes the height of the 

box. The labeling parameters are shown in Fig. 4(a) 

In the orientation detection method adopted in this paper, we 

need to add a parameter that records the angle information to 

label the insulator target in any orientation. Specifically, we add 

the angle parameter theta based on the 4 parameters of the 

original horizontal box to determine an orientation detection 

box (xc, yc, w, h, θ). The parameter θ represents the inclination 

angle of the insulators, which is defined as the angle between 

the boundary detection box and the positive half axis of the 

x-axis. In addition, we specify that the anti-clockwise rotation

of the angle is positive, and the angle range is [0,180
o
). The

labeling parameters are shown in Fig. 4(b).

Fig. 4.  Comparison of parameters used in horizontal and orientation detection 

boxes. (a) Definition of a horizontal bounding box. (b) Definition of a rotated 

bounding box. 

D. Rotation Region Proposal Network

Different from the region proposal network (RPN) of the 

Faster R-CNN, rotation region proposal network (RRPN) is a 

kind of convolutional neural network that can generate the 

rotating proposals that may contain insulator regions through 

learning. The entire network architecture is depicted in Fig. 5. 

Among them, the cls layer is the classification layer, which is 

used to predict whether the object is a background or an 

insulator; the reg layer is a regression layer, which is used to 

predict the location area of the insulator. As described in the 

figure, the network firstly extracts deeper features from the 

feature maps obtained from the feature pyramid network 

Fig. 5.  Diagram of the rotation region proposal network. 

through a 3×3 convolution and generates k rotated prior boxes 

at each position of the map. Then, the extracted 

high-dimensional vectors are sent into the cls layer and the reg 

layer through two 1×1 convolutions, and the rotated region of 

interest is obtained by learning the classification and location 

regression of the object. 

E. Rotation Anchor Generation

The traditional RPN in Faster R-CNN uses anchors that only 

use scale factor and aspect ratio parameters to generate prior 

boxes for subsequent network training. This axis-aligned 

anchor strategy cannot cover all shapes of strip-like insulators 

in different orientations. As earlier discussed, it is difficult to 

solve the defect detection problem of insulators. To better 

improve the detection accuracy of the insulator string and fit the 

insulator contour, we adjust the rotation prior box according to 

the true shape of the insulator target. The anchor selection 

strategy is shown in Fig. 6. First, an angle parameter is added 

based on the first two parameters to control the orientation of a 

prior box, which is set as {0
o
, 30

o
, 60

o
, 90

o
, 120

o
, 150

o
} and is 

shown in Fig. 6(a). Second, the aspect ratio is modified 

according to the actual distribution of the insulator target, 

which is shown in Fig. 6(b). Besides, the scale of the rotate box 

is set as {8, 16, 32}, which is shown in Fig. 6(c). The selection 

strategy will be explained in more detail in Section IV. D. 

Fig. 6.  The generation strategy of rotating anchor. 

F. Rotating Intersection-over-Union Computation of Rotated

Box

The Intersection-over-Union (IoU) is a similarity index 

commonly used in the research field of target detection, which 

is widely used in the selection of positive samples in the 

training stage and selection of the final detection results in the 

testing phase. In the classical non-oriented detection task, the 

intersection and union of two horizontal rectangular boxes can 

be obtained by the simple four calculation of the area of the 

horizontal rectangular box, as shown in Fig. 7(a). However, in 

the orientation detection task with angle parameters, the 

classical calculation method of IoU is not applicable. This is 

because the rotation rectangle box can be generated in any 

orientation and the intersection of the two boxes is a convex 

polygon. Rotating Intersection-over-Union (RIoU) calculation 

method for the rotating box was designed to solve this problem. 

The geometric principle of the method is shown in Fig. 7(b). It 

can be seen from the figure that the basic idea of this method is 

to decompose a convex polygon into several triangles. By 

calculating the area of each triangle, the intersection of convex  
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Fig. 7.  Geometric principle of IoU and RIoU. 

polygons can be obtained by adding the area of the multiple 

triangles. For IoU and RIoU, the corresponding definitions are 

as follows： 

( )

( ) +

ANGM

ABCD EFGH ANGM

I
SArea ABCD EFGH

Area
U

ABCD EFGH S S S
o


==

 −
(1) 

( )

( ) +

NBM NMH

ABCD EFGH NBM NMH

Area ABCD EFGH S S

Area ABCD EFGH S S S
RIoU

S

 +
= =

 − −
(2) 

Among them, SANGM, SABCD, SEFGH, SNBM, and SNMH represent the 

area of each polygon in Fig. 7. 

G. Training strategy of RRPN

The generated rotated prior boxes were divided into positive 

samples and negative samples to train the RRPN. This was 

done following the calculation result of RIoU and the constraint 

of the angle between the rotating anchor. The rotation anchor 

that complies with the following principles is determined as a 

positive sample: 1) the highest RIoU overlap with some real 

labeled boxes and 2) the RIoU overlap with any real labeled 

boxes greater than 0.7 and their angle error is less than 15 

degrees. The negative samples are characterized by the 

following: 1) the RIoU overlap with all real labeled boxes less 

than 0.3 or 2) the RIoU overlaps with any real labeled boxes 

larger than 0.7 but their angle error is larger than 15 degrees. 

Rotating prior boxes that are neither positive nor negative 

samples are not used as training samples of RRPN. 

Based on the above sampling strategy, we use a multi-task 

loss function to train RRPN, which is defined as: 

RRPN cls regL L bL= +  (3) 

where Lcls is classification loss and Lreg is regression loss of the 

rotated anchor. b represents the category label. When it is equal 

to 1, the detected object is the foreground, and when it is equal 

to 0, the object is the background. λ represents the balance 

coefficient, which is used to adjust the weight of the two tasks 

in the total task. 

For Lcls, the cross-entropy loss is adopted and is defined as: 

( ) ( )1 0( , ) log (1 ) log
N N

cls

i Pos i Neg

L p b b p b p
 

= −  − −   (4) 

where b is a two-category label, equal to 0 or 1. p1 represents 

the probability that the object in the detection box belongs to 

the insulator string and p0 represents the probability of being 

the background. 

For Lreg, the rotating prior boxes identified as the negative 

sample was ignored. The smoothL1 loss function to carry out 

regression training for the rotating anchor identified as positive 

samples was used. It is defined as: 

( )
1

* *

{ , , , , }

( , )
c c

N

reg L i

i Pos i x y w h

iL t t smo th to t
 

= −      (5) 

where (xc, yc, w, h, θ) denotes the center coordinate, width, 

height, and rotation angle, respectively. t=(tx, ty, th, tw, tθ ) 

denotes the error tuple of the regression prediction boxes and 

the rotated prior boxes. t*=(tx
*, ty

*, th
*, tw

*, tθ
* ) represents the 

error tuple of the ground truth boxes and the rotated prior 

boxes. 

Furthermore, Loss smoothL1(x) represents the smoothed loss 

based on the L1 norm, which is defined as follows: 

1

20.5  if | | 1
( )

| | 0.5  otherwise 
Ls xmooth

x x

x

 
= 

−
         (6) 

The elements contained in the tuple are defined as follows: 

,

log , log

,

a a

a a

h w

a

y

a

a

xt
x x y y

w h

h w
t t

h w

t k k

t

Z   





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


− −
= =

= =

= − + 

   (7) 
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      (8) 

where x, xa, and x* denote the x-coordinates in the regression 

output result, rotating prior detection box, and ground truth box, 

respectively. The remaining few elements are similar to the 

aforementioned x and will not be described in detail. The range 

of parameters tθ and tθ
* should always comply with the angle 

constraint in the range of [0, 180
o
). 

H. Rotated Region of Interest Pooling layer

The suggested method in this paper needs to use the full 

connection layer to realize the final classification and 

regression of objects. As a result, the multi-scale rotated feature 

maps derived from the map of the rotated region of interest 

(RRoI) generated by RRPN must be normalized before they are 

input to the layers. RoI Pooling is a basic pooling operation in 

Faster R-CNN, which can extract fixed-size feature matrix 

from the region of interest of different sizes. It plays an 

important part in non-oriented detection tasks based on axis 

align horizontal rectangular boxes. However, it cannot comply 

with the task of refinement detection of insulators with the 

complicated background interference, which leads the poor 

performance in the subsequent classification and location task. 

Therefore, the RRoI Pooling Layer is adopted to better handle 

the RRoI extracted from the first stage of RRPN. The operation 

diagram is shown in Fig. 8. First, the feature map corresponding 
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Fig. 8.  RRoI Pooling Layer. 

to the rotation candidate area will be divided into many cells 

with the same area according to the input parameters. Each bin 

has the same orientation as that of the proposal. Then, each 

rotation sub-region is traversed, and the maximum pooling is 

carried out for each rotating region. Compared with the 

RoI-Pooling layer, RRoI Pooling performs uniform scaling for 

each rotated proposal of different sizes, aspect ratios, and 

angles. 

IV. EXPERIMENTS

A. Dataset

Due to the particularity of data security in the power industry, 

there is currently no public power equipment infrared image 

dataset for research and comparison. Therefore, in order to 

evaluate the proposed method, it is necessary to construct an 

infrared image dataset of insulators. The dataset consists of data 

that is expanded and preprocessed from the original infrared 

images. Among them, the original infrared images are obtained 

by electric power inspectors from multiple substations of 

different voltage levels using infrared cameras to take pictures 

of the insulators on site. Specifically, the inspectors use the 

T640 and T660 infrared cameras developed by FLIR to collect 

on-site images. The average distance between the camera and 

the insulator is about 2~4 m, and the shooting scene includes 

110 kV and 220 kV multiple substations. After deleting some 

unclear and low-contrast images, the original data for infrared 

image of the insulator in this paper is obtained. Among them, 

the dataset contains a total of 2760 infrared images of insulators, 

and a total of 8410 insulator strings are marked. Both the 

training set and the test set are randomly shuffled, with a ratio 

of 8:2. 

B. Experimental Setup

The proposed method in this paper was implemented using

the deep learning framework based on the Pytorch 1.1.0. 

Among them, the hardware environment in this study is based 

on the Ubuntu 16.04 server platform with an Intel Xeon W-214 

CPU and an Nvidia GeForce RTX 2080Ti with 12 GB of 

memory. In the pre-processing stage, the dimensions of all 

original images were uniformly scaled to 640×640 to adapt to 

the network input and the insulators in all images were labeled 

with rlabelImg software. Then, 80% of the images were 

randomly selected in the constructed dataset for training and the 

remaining images as the test set. To avoid overfitting and 

improve the recognition ability of the network, we randomly 

flipped the images of the training set horizontally and 

transformed the hue, saturation, and exposure with a 

probability of 50%. The improved ResNet50 was utilized as the 

backbone of the oriented detection task. The initial weight of 

the network adopted the pretraining weights downloaded from 

Github for ImageNet classification. The chosen optimizer was 

the SGD optimizer with a momentum of 0.9. The network is 

trained for 15k iterations in total, and 4 pictures are passed in 

each cycle. In the first 11,000 cycles, we set the learning rate to 

0.01. Then, in the next 2500 cycles and the remaining 1500 

cycles, the learning rate is adjusted with a decay of 10%. 

C. Evaluation Metrics

In order to quantitatively evaluate the detection effect of the 

method in this paper, we introduced four indicators: precision, 

recall, F-score, and average precision to reflect the performance 

of the network. 

1) Recall and precision

The precision rate represents the ratio of the output results by

the detection network that are truly treated as positive samples. 

The recall rate represents the ratio of the detection results 

output by the detection network and the real labeled boxes that 

are correctly matched. Both indicators can be calculated from 

the true-positive (TP), false-positive (FP), and false-negative 

(FN), which are defined respectively as follows: 

TP

TP FP
Precision =

+
  (9) 

     TP

TP FN
Recall =

+
      (10) 

where TP denotes the number of insulator targets judged by the 

model as positive samples, FP represents the number that the 

model judges the background as the insulator target and FN 

represents the number of targets missed by the model. 

2) Average precision (AP)

In the object detection task, the AP reflects the average

precision rate in the case of different recall rates. This indicator 

can be obtained by calculating the area enclosed by the P-R 

curve, horizontal axis, and vertical axis. AP50 is one of the 

commonly used metrics, which denotes the AP value when the 

IoU threshold is 50%. We use AP50 to evaluate the detection 

performance of our method in this paper. 

3) F-Score

The F-score is a comprehensive evaluation index in object

detection. It combines two metrics of precision and recall rate 

into a single measurement index, which is defined as: 

2 Precision Recall

Precision Recall
F

+

 
= (11)

D. Selection Strategy of Rotation Anchor Parameters

The nine anchors are generated based on three sizes {128, 

256, 512} and three ratios {1:1, 1:2, 2:1} in RPN of the Faster 

R-CNN. The image size and target size in PASCAL VOC [31]

are relatively large, the original anchor size is suitable for the

dataset, and good experimental results can be obtained.

However, the insulators vary in angle and appearance in our

dataset, the original parameter configuration of anchor in RPN

did not satisfy our dataset requirements. Thus, it is necessary to

modify it to better fit the contour of the target and improve the
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Fig. 9.  Histogram of the statistical distribution of target attributes in the dataset. 
(a) distribution of long side w. (b) distribution of aspect ratio w/h. (c) 

distribution of area. (d) distribution of angle. 

detection accuracy of the insulator string. 

The insulator features in the dataset were analyzed and the 

main feature distribution of the detection target was plotted in 

Fig. 9. As can be seen in subfigure (a), the main distribution 

range of the long side w is about [125,275]. The maximum is 

about 460 pixels and the mean length is 213. In subfigure (b), 

the aspect ratio is mainly distributed between 3 and 8. In 

subfigure (c), the area is distributed mostly between 3600 and 

14000. And in subfigure (d), the inclination angle of the sample 

is distributed at various angles in a form that approximately 

satisfies the normal distribution. 

After a detailed analysis of the sample attributes in the 

dataset, we modified the horizontal anchor to a rotating anchor, 

and performed K-means++ clustering on the dataset labels. The 

conversion equation of K-means++ is as follows: 

( , ) 1 ( , )d gt k IOU gt k= − (12)

where IOU is the intersection over union of ground truth and 

cluster center rectangular box, k represents cluster center 

rectangular box, gt represents the ground truth. The results are 

shown in Table II. The anchor parameters required by the 

algorithm are obtained through equal area conversion and 

feature map mapping: the aspect ratio is set to {1:3, 1:5, 1:8}, 

the anchor size is set to {8, 16, 32}, and the orientation angle 

parameter is set as {0
o
, 30

o
, 60

o
, 90

o
, 120

o
, 150

o
}.  

TABLE Ⅱ 

K-MEANS++ CLUSTERING RESULT

Small object (100, 31) (143, 36) (178, 38) 

Medium object (206, 38) (235, 38) (268, 42) 

Large object (306, 49) (364, 51) (424, 69) 

E. Ablation Study

To evaluate the role played by different modules in the entire 

detection task, we conducted some ablation experiments on 

them. 

1) Effect of network improvement

We evaluate the original version and the improved version of

ResNet50 described in Section ⅡI. The experimental results of 

different backbone networks are presented in Table III. Among 

them, Res50_a and Res50_b represent the original version and 

improved version of the residual network with fifty layers, 

respectively. As can be observed from the table that the 

detection performance of the improved version is slightly better 

than the original version. It improves F-score by around 0.8% 

compared to the original implementation. The improvement of 

detection performance benefits from the maximum utilization 

of feature map information. 
TABLE III 

COMPARISON OF DIFFERENT RESIDUAL NETWORKS 

Model Precision(%) Recall(%) F(%)

Res50_a 94.23 97.78 95.97 

Res50_b 95.56 98.00 96.76 

2) Effect of the RRoI Pooling

To evaluate the performance of the RRoI Pooling method in

the orientation detection task, we conducted an ablative study, 

and the experimental results are given in Table IV. As expected, 

using the RoI Pooling operation in our model has poor 

performance. This pooling operation will introduce background 

interference in the mapped feature matrix, which is contrary to 

the purpose of oriented detection. Comparing with RoI Pooling, 

the detection performance of our model with the RRoI Pooling 

achieve the recall of 98.00%, precision of 95.56%, and F-score 

of 96.76% with the RRoI Pooling procedure. 

TABLE IV 
COMPARISON OF DIFFERENT POOLING METHODS 

Module Precision(%) Recall(%) F(%)

RoI Pooling 71.35 89.20 79.28 

RRoI Pooling 95.56 98.00 96.76 

3) Effect of the FPN

The experimental results are shown in Table V. Among them,

Res50_b represents the improved version of the residual 

network with fifty layers. Compared with our method using 

only an improved residual network, the addition of FPN brings 

a performance improvement in terms of detection metrics. The 

FPN merges shallow features and deep features through 

bottom-up and horizontal connections, enriches the information 

of the target's features, and improves the multi-scale detection 

ability of the model. 

TABLE V 

COMPARISON OF DIFFERENT FUSION METHODS 

Model Precision(%) Recall(%) F(%) 

 Res50_b 89.08 93.27 91.13 

Res50_b+FPN 95.56 98.00 96.76 

F. Experiment Results and Evaluation

1) Qualitative comparison with Faster R-CNN

Based on the improved ResNet50 architecture, we conducted

a qualitative comparative experiment on Faster R-CNN [22]. 

The detection results obtained are demonstrated in Fig. 10. 

From the previous discussion in Section II, the Faster R-CNN 

cannot effectively separate the tilted double insulator string and 

the mutually occluded insulator string. Interestingly, the 
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Fig. 10.  The detection result on constructed infrared dataset. (a) Faster R-CNN. 

(b) our method.
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Fig. 11. The detection result on constructed infrared dataset. (a) SSD. (b) our

method. 

Fig. 12.  P-R curves of different detection methods. 

TABLE VI 

PERFORMANCE COMPARISON OF DIFFERENT DETECTION METHODS 

Model(backbone) Precision(%) Recall(%) F(%) AP50(%) FPS 

SSD(VGG16) 60.25 96.63 74.22 87.71 39.7 

FRCNN(Res50_b) 78.28 90.11 83.78 88.35 9.3 

FRCFPN(Res50_b) 94.17 91.20 92.66 92.13 8.9 

Ours(Res50_b) 95.56 98.00 96.76 95.08 6.3 

method proposed in this paper considers the tilt and occlusion 

problem caused by the mechanical properties of insulators and 

complex filming sites. The detection results are rotating 

detection boxes, which can minimize background interference 

and improve the signal-noise ratio. Last but not least, the 

rotating detection box of its output can effectively separate the 

contour of the insulator string, which lays a solid foundation for 

subsequent diagnosis automation task. 

2) Comparison experiment with other detection methods

We also carry out a qualitative comparison experiment with

SSD [19] model, and the test results are shown in Fig. 11. It can 

be seen from Fig. 11 that the SSD has a good detection effect in 

single insulator strings, but the detection effect is not so good in 

the detection of an inclined twin insulator strings. As shown in 

Fig. 11, the insulators B and D of the twin insulator string in 

Test1 were not detected. In addition, due to background 

interference, insulators B in Test2 was not detected. Compared 

with the SSD, the method proposed in this paper reflects the 

actual shape of insulators and greatly reduces background 

interference. It can not only separate densely distributed 

insulator strings, but also detect insulator strings shielded by an 

angle iron (B in Test2). 

Table VI summarizes and evaluates the detection 

performance of four different methods. Among them, FRCFPN 

represents the traditional non-oriented detection method that 

combines Faster R-CNN and feature pyramid network. It can 

be seen that our method exceeds the traditional non-oriented 

detection methods in terms of precision, recall, and average 

precision. Specifically, the recall rate and precision reached 

95.56% and 98.00%, respectively. The AP50 achieves 95.08% 

and the F-score was 96.76%. Fig. 12 shows the P-R curves of 

different methods. As we can see, P-R curve of our method is 

higher than those of Faster R-CNN, and SSD. The performance 

improvement is mainly attributed to the collaborative work of 

the multiple modules in the oriented detection task. Table VI 

also comparatively lists the detection time required by different 

detection methods. Since our method will generate more prior 

boxes than Faster R-CNN in the test phase, these candidate 

regions will take a long time when NMS is used. This will 

result in the final detection speed slightly lower than the 

traditional target detection algorithm. 

V. CONCLUSION

This paper proposes a high-precision oriented detection 

method for insulator infrared images based on improved faster 

R-CNN. The original network model has been improved in five

aspects: rectangular box representation, feature extraction,

candidate box generation, anchor design, and feature alignment.

In terms of rectangular box representation, the oriented

detection rectangular box with an angle can effectively reflect

the shape information and angle information of the object, and

at the same time reduce the risk of missed detection caused by

NMS deleting the detection box; in terms of feature extraction,

the feature extraction network that combines the improved

ResNet and FPN can make full use of feature information,

reduce network calculations, and better complete the fusion of

multi-scale feature information; in terms of candidate box

generation, RRPN can generate high-quality rotating candidate

regions containing potential objects; in terms of anchor design,

the design strategy combining K-means++ and histogram

statistics can not only generate anchors that are closer to ground

truth box, but also the model can better distinguish objects with
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similar background; in terms of feature alignment, the rotating 

interest pooling can more effectively match the candidate 

region with the feature matrix, retain the features that are useful 

for the detection task, and suppress the background and features 

that are not helpful to the task. The ablation experiment on the 

constructed insulator dataset verifies the effectiveness of the 

improved scheme. Subsequently, comparative experiments 

with a variety of mainstream detection methods further prove 

the advantages of the method can effectively solve the defects 

of the horizontal box detection method. 

However, because the model needs to generate a large 

number of prior boxes, it will take more time and cost, so the 

proposed high-precision detection method is not suitable for 

real-time detection. Because of this, one of our future tasks will 

combine the proposed method with the temperature 

information of the infrared images to realize the refined fault 

diagnosis of insulators. 
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