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To achieve the national carbon-peak and carbon-neutral strategic development goals, it is
necessary to build power systems dominated by renewable and sustainable energy. The
future power system with a high proportion of renewable and sustainable energy is
required to have large-scale, low-cost, flexible, and adjustable resources. To this end, this
article aggregates user-side distributed energy storage and electric vehicles into a virtual
power plant, considering the uncertainty of wind power fluctuations and the uncertainty of
electric vehicle charging and discharging to establish a day-ahead and intra-day peak
regulation model for combined peak regulation of virtual and thermal power plants. The
bounding algorithm seeks the optimal strategy for the two-stage model of joint peak
regulation and obtains the day-ahead and intra-day two-stage optimal peak regulation
strategy. The simulation example shows that the virtual power plant and its day-ahead and
intra-day optimal peak regulation strategy can reduce the peak regulation cost of the
power system, as compared with the deep peak regulation of thermal power plants with a
special supporting energy storage power station. This work provides a global perspective
for virtual power plants to participate in the formulation of power system peak
regulation rules.
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1 INTRODUCTION

In recent years, carbon-peak and carbon-neutral has gradually become a heated term. Carbon-peak
and carbon-neutral refers to China’s efforts to reach the peak of carbon dioxide emissions by 2030
and strive to achieve neutralization by 2060. To achieve the carbon-peak and carbon-neutral strategic
development goals in China, it is necessary to build power systems dominated by renewable and
sustainable energy (Wiryadinata et al., 2019; Zhao and You, 2020; Zhang Y. et al., 2021). The future
power system with a high proportion of renewable and sustainable energy is required to have large-
scale, low-cost, flexible, and adjustable resources (Li et al., 2020; Zou et al., 2021). To enlarge the
regulation capacity of the power system, some thermal power plants have a specially built energy
storage system for peak regulation. However, building energy storage systems specifically on the side
of thermal power plants has a relatively high investment cost (Lai et al., 2021).

With the deepening of power market reform in China, the price gap between peaks and valleys has
gradually increased, and user-side energy storage used for peak and valley arbitrage has continued to
increase; at the same time, electric vehicles will also usher in large-scale development to reduce
carbon emissions and reduce fuel consumption (Gammon and Sallah, 2021; Xing et al., 2021; Xue
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et al., 2021). User-side distributed energy storage and electric
vehicles are both flexible and adjustable resources with good
performance (Vithayasrichareon et al., 2016; Mou et al., 2019).
These existing flexible and adjustable resources are used to
participate in the regulation of the power system so that the
originally distributed energy storage can further improve its
utilization efficiency. On the premise of meeting its traffic
needs, electric vehicles act as a regulating resource for the
power system, which is more economical than the
construction of a supporting energy storage system in thermal
power plants. Moreover, the energy storage system sitting in
thermal power plants can only participate in the peak and
frequency modulation services of the power system and
cannot provide localized power supply reliability guarantees
for various power supply areas. However, a single demand-
side resource has problems such as small capacity, scattered
geographical location, and intermittent output and cannot
accept grid dispatch. The emergence of virtual power plants
provides new ideas for solving this problem. The virtual power
plant is composed of controllable units, uncontrollable units,
energy storage, electric vehicles, and other resources and further
consider factors such as demand response and uncertainty
through information communication with the control center,
cloud center, power trading center, etc., to achieve energy
interaction with the grid. Therefore, the distributed energy
storage and existing electric vehicle resources that have been
invested on the user side for peak shifting, and valley filling and
the existing electric vehicle resources are aggregated into a virtual
power plant through advanced communication methods,
enabling these two types of high-quality distributed resources
to respond to grid dispatching, and it can provide effective help
for the construction of a new power system approach with
renewable and sustainable energy as the main body.

Scholars have researched the participation of virtual power
plants in peak regulation. The work of Ya et al. (2019) based on
the response characteristics of distributed energy and using deep
learning algorithms proposed an optimal scheduling method for
virtual power plants to participate in peak regulation auxiliary
services. The work of Cui et al. (2021) refers to the operating
rules of the Shanghai peak regulation auxiliary service market
and proposes a multitime scale clearing model in which virtual
power plants participate in peak regulation auxiliary services.
Zhang H. et al. (2021) established an optimal dispatch model for
virtual power plants to participate in the peak regulation
auxiliary service market in northeast China. Guili et al.
(2021) considered the multiple uncertainties of virtual power
plants participating in deep peak regulation bidding and
established a two-stage optimal scheduling model for virtual
power plants to maximize their own benefits. Yang et al. (2021)
built a virtual power plant for electric vehicles and built an
operational decision model for the virtual power plant to assist
thermal power plants with deep peak regulation. Guo et al.
(2021) clarified the structure and market transaction
mechanism of the electrothermal coupling virtual power
plant and proposed an optimal scheduling method for the
electrothermal coupling virtual power plant to participate in
market transactions. Li J. et al. (2021) compared and analyzed

the construction of the market mechanism of peak regulation
and frequency modulation service by virtual power plants in
different provinces and cities from the four perspectives of
market composition, market access, quotation clearance, and
settlement. Wang et al. (2020) proposed the optimal bidding
strategy for virtual power plants to participate in energy, reserve,
and flexible peak regulation markets and established a joint
clearing model for virtual power plants to participate in the
main and auxiliary markets. Zhao et al. (2020) designed the peak
regulation auxiliary service market mechanism that considers
the participation of virtual power plants and gives the day-ahead
and real-time clearing models of the deep peak regulation
market. The aforementioned research mostly considered the
virtual power plant’s participation in the peak regulation
auxiliary service market and did not consider the possibility
of virtual power plant participating in the peak regulation from
the perspective of demand response. To this end, the work of
Yun et al. (2019) aggregates wind power, photovoltaic, and
electric vehicles into a virtual power plant to accept grid
dispatch, establishes a virtual power plant optimal dispatch
model, and obtains the optimal operation strategy of the
virtual power plant’s internal resources. Xiuyun et al. (2019)
constructed three models of virtual power plants accepting
single dispatch, coordinated dispatch, and jointly optimized
dispatch and established a virtual power plant-grid company
distribution plan based on cooperative game theory. The work
of Yao et al. (2017) aggregates wind power, photovoltaics, gas
turbines, and energy storage into a virtual power plant and
establishes an optimal scheduling model for the virtual power
plant after considering demand response.

With the further research of scholars, the virtual power plant
began to combine peak regulation with other adjustable
resources. Li et al. (2019) combined the power generation side
and demand side peak regulation resources and established a
nuclear-fire-virtual power plant three-stage joint peak regulation
model. Niu et al. (2019) built a two-tier optimal scheduling model
for virtual power plants and energy-efficient power plants to
achieve peak regulation and valley-filling of load curves and
improve the system’s ability to absorb random power. The
work of Yuan et al. (2020) aimed to maximize the expected
economic benefits of virtual power plants and establishes a
stochastic optimal scheduling model of virtual power plants
based on real-time electricity prices through bilateral joint
optimization. The work of Xudong Li, (2019) combines the
power generation side and demand side peak regulation
resources and establishes a multiresource joint peak regulation
optimization model that considers the carbon trading
mechanism. The comparison of references is shown in
Table 1. 1 represents the document considered the content,
and 0 represents the document did not consider the content.
Most of the abovementioned research started from the
perspective of the highest individual adjustment benefits of
virtual power plants and did not consider the fast peak
regulation characteristics of virtual power plants. The fast peak
regulation characteristics of the virtual power plant means that
the virtual power plant has a faster second-level adjustment
response capability than the thermal power plant, and it can
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also jointly peak regulate with thermal power plants in the day-
ahead and intra-day two phases, which can minimize the overall
peak regulation cost of the power system. To this end, this paper
proposes to aggregate two types of user-side high-quality
adjustable resources of distributed energy storage and electric
vehicles into a virtual power plant and studies the optimization
strategy of the virtual and thermal power plants’ joint
participation in day-ahead and intra-day peak regulation.

The key contributions of this work are listed as follows:

1) We proposed a framework for joint peak regulation of the
virtual and thermal power plant based on the perspective of
response dispatch, which considers the fast peak regulation
characteristics of the virtual power plant.

2) We proposed an intra-day dispatch strategy for the virtual and
thermal power plant combined peak regulation. It is
considered that the virtual power plant has a fast peak
regulation capability based on the work of Yang et al.
(2021). With this strategy, the thermal power plant does
not need to perform deep peak regulation.

3) We conducted case studies in a power system scenario with
renewable and sustainable energy as the mainstay in a certain
area to verify the effectiveness of the proposed model and
strategy and compared the economics and environmental
protection of the virtual and thermal power plant peak
regulation through calculation examples.

This study is organized as follows: Section 2 first introduces
the rules of China’s peak regulation market, then proposes the
mechanism of joint peak regulation of the virtual and thermal
power plant in this paper, and finally proposes the handling of
uncertain factors in the peak regulation process. Section 3
proposes a day-ahead and intra-day peak regulation model for
combined peak regulation of the virtual and thermal power plant.
Section 4 proposed a day-ahead and intra-day peak regulation
strategy for the virtual and thermal power plant. Section 5
describes the feasibility of joint peak regulation of the virtual

and thermal power plant based on the proposed strategy. Section
6 summarizes the contributions of this article.

2 JOINT PEAK REGULATION PROCESS
AND UNCERTAINTY TREATMENT OF
VIRTUAL AND THERMAL POWER PLANT
In order to help achieve a carbon-peak and be carbon-neutral, it is
imperative to build a power system dominated by renewable and
sustainable energy. However, the large amount of renewable and
sustainable energy connected to the grid will lead to antipeak
regulation, which puts the system security to the test. Virtual
power plants can aggregate multiple types of high-quality peak
regulation resources and participate in system peak regulation.
This section first introduces China’s peak regulation market
mechanism and proposes methods to deal with the uncertain
factors in the peak regulation process to lay the foundation for
follow-up research.

2.1 Day-Ahead and Intra-Day Peak
Regulation Process
In this paper, the virtual power plant adopts a centralized control
method. Through the control and coordination center, the virtual
power plant can fully grasp and control all the information of the
internal energy storage and electric vehicles. Through the
centralized control method, the virtual power plant can simply
solve the optimization problem of each distributed unit to meet
the peak regulation demand.

The joint optimization of peak regulation of virtual and
thermal power plants refers to the behavior of virtual and
thermal power plant to optimize their own power curve or
output curve according to the change in the load curve. At
present, North China and Shanghai have clarified that virtual
power plants can participate in the local peak regulation market
as a third-party independent entity, and have issued

TABLE 1 | Reference comparison table.

Literature Peak regulation
market

Response scheduling Multiple time
scales

Consider uncertainty Joint peak
regulation

Lowest total
peak regulation

cost

Ya et al. (2019) 1 0 0 0 0 0
Cui et al. (2021) 1 0 1 1 0 1
Zhang et al. (2021a) 1 0 0 1 0 0
Guili, Yuan et al. (2021) 1 0 0 1 1 0
Yang et al. (2021) 1 0 0 1 0 0
Guo et al. (2021) 1 0 1 1 1 0
Xuanyuan et al. (2020) 1 0 0 1 0 0
Zhao et al. (2020) 1 0 1 0 0 0
Yun et al. (2019) 0 1 0 1 0 0
Xiuyun et al. (2019) 0 1 0 1 1 0
Yao et al. (2017) 0 1 0 1 0 0
Li et al. (2019) 0 0 0 1 1 0
Niu et al. (2019) 0 1 0 1 1 0
Yuan et al. (2020) 0 1 0 1 1 0
Xudong, (2019) 1 0 0 1 1 0
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corresponding rules and documents detailing the organization
process of virtual power plants participating in peak regulation
auxiliary services (Li Z. et al., 2021). The document stipulates that
in the day-ahead phase, the dispatch agency completed the
preparation of the 96-point power generation preplanning of
the provincial network throughout the day in accordance with the
provincial network market rules, and formed the charge and
discharge curves of each third-party independent entity and the
third-party independent aggregate entity. In the intra-day phase,
the provincial network determines the peak regulation resources
that each resource can provide every 15 min based on the intra-
day power generation plan of each resource, and issues peak
regulation instructions for the next 2 h. In summary, based on the
rules of the domestic peak regulation market, this article proposes
a joint peak regulation mechanism for virtual and thermal power
plants.

1) Day-ahead peak regulation plan: taking a day as a cycle and
15 min as a time scale, we determine the start-stop and output
status of 96 points of the thermal power plant and the output
status of 96 points of various resources inside the virtual
power plant

2) Intra-day peak regulation plan: taking 2 h as a cycle and
15 min as the time scale, the output of 96 points of various
resources in the virtual power plant is rolling optimization

The day-ahead and intra-day peak regulation timeline is
shown in Figure 1.

The day-ahead and intra-day peak regulation process is shown
in Figure 2.

2.2 Uncertainty Treatment of Joint Peak
Regulation
The uncertainty of the joint peak regulation of the virtual and the
thermal power plant mainly comes from the volatility of wind
power and the uncertainty of the electric vehicle charging and
discharging inside the virtual power plant. When dealing with the
aforementioned uncertain issues, this paper first uses Monte
Carlo simulation to sample the wind power prediction error
and the start time of electric vehicle charging to generate a large
number of uncertainty scenarios. Similar scenarios are further
reduced by comparing the probability distances between the
various scenarios (Minghao, 2021), and finally, the CvaR risk

FIGURE 1 | Day-ahead and intra-day peak regulation timeline chart.

FIGURE 2 | Day-ahead and intra-day peak regulation flowchart.
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theory is used to quantitatively evaluate the possible risks. On this
basis, the joint peak regulation optimization of the virtual and
thermal power plant is carried out to minimize the peak
regulation cost while reducing the system risk as much as
possible.

3 JOINT PEAK REGULATION MODEL OF
VIRTUAL AND THERMAL POWER PLANT

Based on the foregoing, the uncertainty of wind power output and
the uncertainty of electric vehicle charging and discharging will
affect the joint peak regulation optimization problem of virtual
and thermal power plants, which also turns the joint peak
regulation optimization problem of virtual and thermal power
plants into risk management problem. In summary, this paper
establishes a day-ahead and intra-day two-stage virtual and
thermal power plant joint peak regulation optimization model
considering CvaR.

3.1 Day-Ahead Joint Peak RegulationModel
The main objectives are to obtain the highest overall reliability
and lowest total cost of the virtual power plant combined with
thermal power plants participating in peak regulation. The
day-ahead peak regulation model needs to consider the power
upregulation and downregulation characteristics of the virtual
power plant and its adjustment cost, and arrange the day-
ahead peak regulation plan for the virtual and thermal power
plant in advance, so as to reliably meet the demand of load
changes (Zhao et al., 2021). Based on the equation of the
relationship between the output power of thermal power
plants, the output power of virtual power plants, the actual
output power of wind turbines, the load value; the load
prediction curve is used as the input while the planned
output power of 96 points of adjustable resources and the
actual output power of wind turbines are the output. The day-
ahead joint peak regulation model of the virtual and thermal
power plants is

∑NG

n�1
Pgn,t + PVPP,t + Pwind,t � Pload,t, (1)

PVPP,t � ∑NESS

k�1
PESS,k,t + ∑NEV

l�1
PEV,l,t. (2)

In these equations, PVPP,t represents the output power of the
virtual power plant at time t, Pgn,t represents the output power of
the thermal power plant at time t. NG represents the number of
thermal power plants, NESS represents the number of energy
storage devices, and NEV represents the number of electric
vehicles. PESS,k,t represents the output power of energy storage
device k at time t, and PEV,l,t represents the output power of
electric vehicle l at time t. Pwind,t represents the actual output
power of wind turbines at time t. Pload,t represents the actual
power value of the load at time t.

3.2 Intra-Day Joint Peak Regulation Model
The objectives of the virtual power plant combined with thermal
power plants are to obtain the fastest peak regulation response,
the highest reliability, and the lowest adjustment cost. The intra-
day peak regulation model needs to consider the power regulation
characteristics and regulation costs of virtual and thermal power
plants, and adjust the output of virtual and thermal power plants
to reliably compensate for load errors. The model uses an
equation to describe the relationship between the output
power of thermal power plants, the output power of the
virtual power plant, and the predicted error value, where the
predicted error is the input and the planned regulated output
power of 96 points of adjustable resources is the output. The
intra-day joint peak regulation model of the virtual and thermal
power plants is shown as follows:

PID
load,t − PID

wind,t � ∑NESS

k�1
ΔPESS,k,t + ∑NEV

l�1
ΔPEV,l,t +∑NG

n�1
ΔPgn,n,t +∑NG

n�1
Pgn,t

+ PVPP,t.

(3)
In this equation, PID

load,t represents the value of the load at time
t in the intra-day. PID

wind,t represents the value of the wind power at
time t in the intra-day. ΔPESS,k,t represents the regulated power of
energy storage device k at time t, ΔPEV,l,t represents the regulated
power of electric vehicle l at time t, and ΔPgn,n,t represents the
regulated power of thermal power plant n at time t.

4 JOINTLY OPTIMIZED PEAKREGULATION
STRATEGY OF VIRTUAL AND THERMAL
POWER PLANT
Based on the day-ahead and intra-day peak regulation model of
the virtual and thermal power plants established in section 1, the
model can be solved with reasonable objective function and
constraint conditions, and finally its day-ahead and intra-day
peak regulation optimization strategy is obtained.

4.1 The Day-Ahead Joint Peak Regulation
Phase
In the day-ahead phase, it is necessary to determine the start-stop
plan of thermal power plants, the output of 96 points of various
peak regulation resources, and the amount of abandoned wind
power. Under the day-ahead joint peak regulation phase, the
objective is to minimize the cost of adjustable resource peak
regulation:

minF1 � ∑Nw

w�1
πw(Fgn + FVPP + FDA

wind,Loss + FDA
EV,Loss + FDA

CVaR), (4)

Fgn � ∑NG

n�1
∑T
t�1
(anP2

gn,t + bnPgn,t + cn) +∑NG

n�1
∑T
t�1
(Cu

gugn,t + Cv
gvgn,t),

(5)
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FVPP � ∑NESS

k�1
∑T
t�1
CES(Pin

ESS,k,t + Pout
ESS,k,t) + ∑NEV

t�1
∑T
t�1
CEV(Pin

EV,l,t + Pout
EV,l,t),

(6)
FDA
wind,Loss � ∑T

t�1
λwind,t,lossΔPDA

wind,t,loss, (7)

FDA
EV,Loss � ∑NEV

l�1
λEV,l,lossΔEDA

EV,l,loss, (8)

FDA
CVaR�μDA(ζ− 1

Nw(1−β))∑
Nw

w�1
zw). (9)

In these equations, Fgn, FVPP, FDA
wind,Loss, F

DA
EV,Loss and FDA

CVaR
represents the peak regulation cost of thermal power plants, the
peak regulation cost of virtual power plants, wind curtailment
penalty cost, electric vehicles charging capacity deviation penalty
cost, and CVaR risk cost in the day-ahead phase, respectively. T
represents the cycle of joint peak regulation in the day-ahead
phase. Nw represents the total number of scenes. πw represents
the probability of each scene. an, bn, and cn represent the cost
coefficient of conventional peak regulation thermal power plants.
Cu
g and Cv

g represent the start and stop costs of thermal power
plants, respectively. ugn,t and vgn,t represent the startup and
shutdown state variables of thermal power plants, respectively,
which are 0–1 variables. CES represents the cost coefficient of
charge and discharge power of the energy storage device. Pin

ESS,k,t
and Pout

ESS,k,t represents the charge and discharge power of energy
storage, respectively. CEV represents the cost coefficient of charge
and discharge power of electric vehicles. Pin

EV,l,t and Pout
EV,l,t

represents the charge and discharge power of electric vehicles,
respectively. λwind,t,loss represents the abandonment penalty
coefficient. ΔPDA

wind,t,loss represents the power of abandoned
wind in the day-ahead phase. λEV,l,loss represents the penalty
cost coefficient of electric vehicles charging capacity deviation.
ΔEDA

EV,l,loss represents the capacity deviation value at the end of
electric vehicles charging in the day-ahead phase. μDA represents
the risk preference coefficient of the day-ahead phase. β
represents confidence level. ζ and zw both represent auxiliary
variables.

In the day-ahead joint peak regulation phase, the constraint
conditions are as follows:

1) The power system must meet the requirements of power
balance during peak regulation of the virtual and thermal
power plants, so the system’s active power balance
constraint is

∑NG

n�1
Pgn,t + ∑NESS

k�1
PESS,k,t + ∑NEV

l�1
PEV,l,t + Pwind,t � Pload,t. (10)

2) When thermal power plants participate in peak regulation, the
upper and lower limits of their power are restrained, the
working state cannot change rapidly and the climbing speed is
limited, so thermal power plants are restricted as follows:

ugn,tPgn,min ≤Pgn,t ≤ ugn,tPgn,max, (11)

−vgn,dn ≤Pgn,t − Pgn,t−1 ≤ vgn,un, (12)
ugn,t + vgn,t ≤ 1, (13)

⎧⎪⎪⎨⎪⎪⎩
TD
t − (It − It−1)TD ≥ 0

TD
t � ∑t−1

k�t−TD

(1 − Ik) ,

⎧⎪⎪⎨⎪⎪⎩
TU
t − (It−1 − It)TU ≥ 0

TU
t � ∑t−1

k�t−TU

Ik
.

(14)

In these equations, Equation 11 represents the upper and
lower limits of the thermal power plant output. Equation 12
represents the climbing constraint of the thermal power plant.
Equation 13 represents the constraint of the charge and discharge
state variables of the thermal power plant. Equation 14 represents
the minimum startup and shutdown time constraints of the
thermal power plant. vgn,un and vgn,dn represents maximum
upward and downward climb rates of the thermal power plant
n. TD and TU represent minimum continuous operating time and
minimum continuous shutdown time of the thermal power plant
n. It represents the state variable of thermal power plants at time
t. Pgn,max and Pgn,min represent the maximum and minimum
output power limits of the thermal power plant n.

3) When the virtual power plant participates in peak regulation,
the upper and lower limits of the energy storage capacity are
limited, the charging and discharging power is limited, the
working state cannot change rapidly, and there is a certain
relationship between the state of charge at the time before and
after, so energy storage devices constraints are

SESSoc,k,t+1 �
(ηinESSPin

ESS,k,t −
Pout
ESS,k,t

ηout
ESS

)Δt
CCap

ESS

+ SESSoc,k,t(1 − δESS), (15)

SESSoc,k,min ≤ S
ESS
oc,k,t+1 ≤ S

ESS
oc,k,max, (16)

δinESSP
in
ESS,k,min ≤P

in
ESS,k,t ≤ δinESSP

in
ESS,k,max, (17)

δoutESSP
out
ESS,k,min ≤P

out
ESS,k,t ≤ δoutESSP

out
ESS,k,max, (18)

δinESS + δoutESS ≤ 1. (19)
In these equations, Equation 15 represents the SOC state

constraint of energy storage. Equation 16 represents the upper
and lower limits of SOC for energy storage. Equations 17, 18
represent the charge and discharge power constraints of energy
storage. Equation 19 represents the state variable constraints of
the charge and discharge of energy storage. Pin

ESS,k,max and
Pin
ESS,k,min represent upper and lower limits of charging power

of the energy storage device k. Pout
ESS,k,max and Pout

ESS,k,min represent
upper and lower limits of discharging power of the energy storage
device k. SESSoc,k,t+1 and S

ESS
oc,k,t represent the state of charge at time t +

1 and time t of energy storage devices, respectively. ηinESS and ηoutESS
represent the charging and discharging efficiency of energy
storage devices, respectively. CCap

ESS represents the capacity of
energy storage devices. δESS represents the selfdischarge rate of
energy storage devices. SESSoc,k,min and SESSoc,k,max represent energy
storage devices’ minimum and maximum limits of the state of
charge, respectively. δinESS and δoutESS represent the variable of the
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charge and discharge state of the electric vehicle, respectively,
which is a variable of 0–1, when δinESS is equal to 1, it represents
electric vehicles charging, when δoutESS is equal to 1, it represents
electric vehicles discharging.

4) This paper divides electric vehicles into three categories
according to their needs. The first type of electric vehicle
has always been charged at the rated power, which
corresponds to the actual demand for a full charge at
the fastest speed, and the corresponding charging costs are
relatively high. The second type of electric vehicle allows
the charging power to be less than the rated power, but
cannot be discharged, and must be fully charged within
4 h. The charging cost is relatively low and it is not urgent
to correspond to the actual use of the car. It is hoped that
the demand for charging costs can be reduced. The third
type of electric vehicle allows the charging power to be
lower than the rated power and is allowed to discharge, but
the charging must be completed within 6 h, and the
charging cost is the lowest. It corresponds to the
requirement that there is plenty of time for charging in
practice, and it is hoped that the charging cost can be
minimized (Zhang et al., 2021). The constraints that
distinguish the first type of electric vehicle from other
electric vehicles are as follows:

Pin
EV,l,t � Prated, (20)

SEVoc,l,t+1 � SEVoc,l,t(1 − δEV) + Pin
EV,l,tη

in
EVΔt

CCap
EV

. (21)

In these equations, Equation 20 represents the charging power
constraint of the first type of electric vehicle. Equation 21
represents the SOC state constraint of the first type of electric
vehicle and Prated represents the rated power of the charging pile.
SEVoc,l,t+1 and SEVoc,l,t represent the state of charge at time t + 1 and
time t of electric vehicles, respectively. δEV represents the
selfdischarge rate of electric vehicles. CCap

EV represents the
capacity of electric vehicles. ηinEV represents the charge
efficiency of electric vehicles.

The constraints that distinguish the second type of electric
vehicle from other electric vehicles are as follows:

0≤Pin
EV,l,t ≤Prated, (22)

SEVoc,l,t+1 � SEVoc,l,t(1 − δEV) + Pin
EV,l,tη

in
EVΔt

CCap
EV

, (23)

SEVoc,l,T0+4 ≥ S
EV
oc,l,need. (24)

In these equations, Equation 22 represents the charging power
constraint of the second type of electric vehicle. Equation 23
represents the SOC state constraint of the second type of electric
vehicles. Equation 24 represents the SOC value constraint at the
end of the second type of electric vehicle charging. SEVoc,l,T0+4
represents the SOC value of the electric vehicle after 4 h of
charging. SEVoc,l,need represents the SOC value required by the
user when using the car. T0 represents the time when the
electric vehicle starts to charge.

The constraints that distinguish the third type of electric
vehicles from other electric vehicles are as follows:

0≤Pin
EV,l,t ≤ δ

in
EVPrated, (25)

0≤Pout
EV,l,t ≤ δ

out
EVPrated, (26)

SEVoc,l,t+1 � SEVoc,l,t(1 − δEV) +
(Pin

EV,l,tη
in
EV − Pout

EV,l,t

ηoutEV
)Δt

CCap
EV

, (27)

SEVoc,l,T0+6 ≥ S
EV
oc,l,need. (28)

In these equations, Equations 25, 26 represent the charge
and discharge power constraints of the third type of electric
vehicles. Equation 27 represents the SOC state constraint of the
third type of electric vehicles. Equation 28 represents the SOC
value constraint at the end of the third type of electric vehicle
charging. ηoutEV represents the discharge efficiency of electric
vehicles. δinEV and δoutEV represent the variable of the charge
and discharge state of the electric vehicle, which is a variable
of 0–1, when δinEV is equal to 1, it represents electric vehicles
charging, when δoutEV is equal to 1, it represents electric vehicles
discharging.

The three types of electric vehicles have common
constraints, such as SOC value upper and lower limit
constraints, charge and discharge state variable constraints,
and the capacity deviation constraints that exist at the end of
electric vehicle charging.

SEVoc,l,min ≤ S
EV
oc,l,t ≤ S

EV
oc,l,max, (29)

δinEV + δoutEV ≤ 1, (30)
ΔEDA

EV,l,loss ≤EEV,l,rated − EEV,l,need. (31)
In these equations, Equation 29 represents the upper and

lower limits of the SOC value of electric vehicles. Equation 30
represents the constraint of the charge and discharge state
variables of electric vehicles. Equation 31 represents the
capacity deviation constraint at the end of electric vehicle
charging. SEVoc,l,min and SEVoc,l,max represent electric vehicles’
minimum and maximum limits of the state of charge,
respectively. EEV,l,rated represents the rated capacity of electric
vehicles. EEV,l,need represents the capacity value required by the
user when using the car.

5) There are related constraints on auxiliary variables in CVaR
cost:

zw ≥ 0, (32)
zw ≥ ζ − (Fgn + FESS + FEV + FDA

wind,Loss + FDA
EV,Loss). (33)

Equations 32, 33 represent the related constraints of auxiliary
variables zw and ζ .

6) The constraints of wind power are

0≤Pwind,t ≤Pwind,max. (34)
Equation 34 represents wind power constraint. Pwind,max

represents the maximum power of the wind turbine at time t.
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4.2 The Intra-Day Joint Peak Regulation
Phase
Under the intra-day phase, the goal is to minimize the total cost of
the adjustable resource adjustment output power of the power
system based on the planned output power of the day-ahead
phase. The objective function is as follows:

minF2 � ∑Nw

w�1
πw(ΔFESS + ΔFEV + ΔFgn + FID

wind,Loss + FID
EV,Loss

+ FID
CVaR),

(35)

ΔFESS � ∑T
t�1

∑NESS

k�1
δESS,kΔPESS,k,tΔt, (36)

ΔFEV � ∑T
t�1

∑NEV

l�1
δEV,lΔPEV,l,tΔt, (37)

ΔFgn � ∑T
t�1

∑NG

n�1
δgnΔPgn,n,tΔt, (38)

FID
wind,Loss � ∑T

t�1
λwind,t,lossΔPID

wind,t,loss, (39)

FID
EV,Loss � ∑NEV

t�1
λEV,l,lossΔEID

EV,l,loss, (40)

FID
CVaR � μID⎛⎝ε − 1

Nw(1 − β) ∑Nw

w�1
ρw⎞⎠. (41)

In these equations, ΔFESS, ΔFEV, ΔFgn, FID
wind,Loss, F

ID
EV,Loss,

FID
CVaR represent the adjustment cost of energy storage, the

adjustment cost of electric vehicles, the adjustment cost of
thermal power plants, the penalty cost of abandonment of
wind power, the penalty cost of electric vehicle charging
capacity deviation, and the cost of CVaR in the intra-day
phase, respectively. δESS,k represents the cost of unit
compensation for adjustment output power of the energy
storage device k. ΔPESS,k,t represents the regulated power of
output power of the energy storage device k at time t. δEV,l

represents the cost of unit compensation for adjustment
output power of the electric vehicle l. ΔPEV,l,t represents
the regulated power of output power of the electric vehicle
l at time t. δgn represents the cost of unit compensation for
adjustment output power of the thermal power plant n.
ΔPgn,n,t represents the regulated power of output power of
the thermal power plant n. ΔPID

wind,t,loss represents the power of
abandoned wind in the intra-day phase. ΔEID

EV,l,loss represents
the deviation of electric vehicles charging capacity in the
intra-day phase. μID represents the risk preference coefficient
of the intra-day phase. ε and ρw both represent
auxiliary variables. Δt represents the interval of scheduling
time, the interval of scheduling time in this article represents
15 min.

In the intra-day joint peak regulation phase, the constraint
conditions are as follows:

1) When it comes to adjusting the output power of various
resources during the intra-day phase, the power system
must meet the requirements of power balance, so the
power balance constraint is

∑NG

n�1
Pgn,t + ∑NESS

k�1
PESS,k,t + ∑NEV

l�1
PEV,l,t + ∑NESS

k�1
ΔPESS,k,t + ∑NEV

t�1
ΔPEV,l,t

+∑NG

n�1
ΔPgn,n,t � PID

load,t − PID
wind,t. (42)

2) When the virtual power plant combined with thermal
power plants participates in intra-day peak regulation,
the output power adjustment range of its internal energy
storage devices is limited, the charging and discharging
power is limited, and the working state change is
restricted. And there is a certain relationship between
the state of charge at the time before and after.
Therefore, the output power regulation capacity of
energy storage devices is restricted as

0≤ΔPup
ESS,k,t ≤ δ

up
ESS,k,t(Pout

ESS,k,max − PESS,k,t), (43)
0≤ΔPdown

ESS,k,t ≤ δ
down
ESS,k,t(PESS,k,t − Pin

ESS,k,min), (44)
ΔPESS,k,t � ΔPup

ESS,k,t − ΔPdown
ESS,k,t, (45)

SESSoc,k,t+1 �
(ηinESSΔPdown

ESS,k,t −
ΔPup

ESS,k,t

ηout
ESS

)Δt
Ccap

ESS

+ SESSoc,k,t(1 − δESS), (46)

δupESS,k,t + δdownESS,k,t ≤ 1. (47)
In these equations, Equations 43, 44 represent the positive
and negative spinning reserve capacity constraints of energy
storage. Equation 46 represents the SOC state constraint of
energy storage. Equation 47 represents the positive and
negative rotation state variable constraints of energy
storage. ΔPup

ESS,k,t and ΔPdown
ESS,k,t represent the upregulated

output power and the downregulated output power of the
energy storage k at time t, respectively. δupESS,k,t and δdownESS,k,t are
the state variable of upregulated output and the state variable
of downregulated output at time t of energy storage k,
respectively.

3) When the virtual power plant combined with the thermal
power plant participates in the peak regulation in the intra-
day phase, all three types of electric vehicles have the state
of charge constraints, the state variable constraints of
charge and discharge, and the constraints of the
allowable deviation of the capacity at the end of the
charge (Zhao et al., 2019).

SEVoc,l,t+1 �
(ηinEVΔPdown

EV,l,t −
ΔPup

EV,l,t

ηoutEV
)Δt

Ccap
EV

+ SEVoc,l,t(1 − δEV), (48)

ΔPEV,l,t � ΔPup
EV,l,t − ΔPdown

EV,l,t, (49)
EEV,l,rated − EEV,l,need ≥ΔEID

EV,l,loss, (50)
δdownEV,l,t + δupEV,l,t ≤ 1. (51)
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In these equations, Equation 48 represents the SOC state
constraint of electric vehicles. Equation 50 represents the
capacity deviation constraint at the end of electric vehicle
charging. Equation 51 represents the constraints of the
positive and negative rotation state variables of the electric
vehicle. δupEV,l,t and δdownEV,l,t are the state variable of upregulated
output and the state variable of downregulated output at time t of
electric vehicle l, respectively.

The first type of electric vehicle can only be charged at rated
power, so there is no regulation capacity constraint, only the
second and third types of electric vehicles have regulation
capacity constraints.

The second category of electric vehicles adds the following
constraints to the common constraints:

0≤ΔPup
EV,l,t ≤ δ

up
EV,l,tP

in
EV,l,t, (52)

0≤ΔPdown
EV,l,t ≤ δ

down
EV,l,t(Prated − Pin

EV,l,t). (53)
Equations 52, 53 represent the positive and negative spinning

reserve capacity constraints of the second type of electric vehicle.
The third category of electric vehicles adds the following

constraints to the common constraints:

0≤ΔPup
EV,l,t ≤ δ

up
EV,l,t(Prated − PEV,l,t), (54)

0≤ΔPdown
EV,l,t ≤ δ

down
EV,l,t(PEV,l,t + Prated). (55)

Equations 54, 55 represent the positive and negative spinning
reserve capacity constraints of the third type of electric vehicles.

4) When thermal power plants participate in peak regulation,
their output power adjustment range is limited, the output
power range is limited, and the climbing speed is limited. And

there are restrictions on the change of working status, which
are the problems that thermal power plants face when
adjusting the output. Therefore, the positive and negative
spinning reserve capacity of thermal power plants is
restricted as

0≤Pu,n,t ≤ (Pgn,max − Pgn,t)δupgn,t, (56)
0≤Pd,n,t ≤ (Pgn,t − Pgn,min)δdowngn,t , (57)

ΔPgn,n,t � Pu,n,t − Pd,n,t, (58)
δupgn,t + δdowngn,t ≤ 1, (59)

−vgn,dn ≤Pu,n,t − Pu,n,t−1 ≤ vgn,un, (60)
−vgn,dn ≤Pd,n,t − Pd,n,t−1 ≤ vgn,un. (61)

In these equations, Equations 56, 57 represent the positive
and negative spinning reserve capacity constraints of thermal
power plants. Equation 59 represents the positive and negative
rotation state variable constraints of the thermal power plant.
Equations 60, 61 represent the climbing constraint that exists
when adjusting the output of the thermal power plant. Pu,n,t and
Pd,n,t represents the upregulated and downregulated power of
the thermal power plant, respectively. δupgn,t and δupgn,t represent
the upward rotating state variables and the downward rotating
state variables of the thermal power plant n at time t,
respectively.

5) There are related constraints on auxiliary variables in CVaR
cost:

ρw ≥ 0, (62)
ρw ≥ ε − (ΔFESS + ΔFEV + ΔFgn + FID

wind,Loss + FID
EV,Loss). (63)

FIGURE 3 | Flowchart of branch and bound algorithm.
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Equations 62, 63 represent the related constraints of auxiliary
variables ρw and ε

6) The constraints of wind power are

0≤Pwind,t ≤Pwind,max. (64)
Equation 64 represents wind power constraint. Pwind,max

represents the maximum power of the wind turbine at time t.

4.3 Jointly Optimized Peak Regulation
Strategy for Day-Ahead and Intra-Day
Compared with other algorithms, the branch and bound
algorithm have the advantages of occupying less memory and
reusing the parent node information and it is more suitable for
two-stage optimization strategy solving (Li J. et al., 2021).
Therefore, the day-ahead and intra-day joint peak regulation
model can be solved and the optimal strategy for joint peak
regulation can be obtained by using the branch and bound
algorithm. The specific algorithm flow is shown in Figure 3.

5 CASE STUDY

To prove the effectiveness of the strategy proposed in this article,
a calculation example of a virtual power plant combined with a
thermal power plant participating in peak regulation is designed
for a power system with renewable and sustainable energy as the
main part in a certain area. This area includes a thermal power
plant with a capacity of 600 MW, five wind farms with a capacity
of 100 MW, a total installed wind power capacity of 500 MW, a
total load of 650 MW, and distributed energy storage capacities of
15, 25, 20 and 20 MW for access nodes. The virtual power plant
aggregates 1,000 electric vehicles with a total capacity of 50 MW.

In this article, the capacity of the three types of electric vehicles is
allocated according to 1:3:6. The power network structure in this
area is shown in Figure 4. Node 1 serves as the connection
location of the thermal power plant, and nodes 13, 26, 23, 11, and
18 serve as the connection location of the wind farm. Energy
storage aggregators 1, 2, 3, and 4 are connected at nodes 8, 21, 29,
and 30, respectively. The first type of electric vehicle aggregator is
connected at node 19. The second type of electric vehicle
aggregator is connected at node 7. The third type of electric
vehicle aggregator is connected at node 15. The wind power
forecast error and the start time of electric vehicle charging
generally obey a normal distribution with a mean value of 0.
However, considering the actual situation, the first type of electric
vehicle corresponds to the situation where the owner’s demand
for the car is relatively urgent, so the charging start time of the
first type of electric vehicle is set between 7:00–21:00. The
charging start time of the second type of electric vehicle is
between 1:00–23:00. The charging start time of the third type
of electric vehicle is at any time throughout the day. Considering
the volatility of wind power and the randomness of the start time
of electric vehicle charging, this article first generates ten classic
scenarios of wind power output prediction errors according to the
steps described in section 1.2, and by sampling and clustering, the
charging start time of electric vehicles, the charging start times for
the three types of electric vehicles are 15:00, 17:00 and 21:00,
respectively. The randomly generated wind output curve is shown
in Figure 5. After considering the uncertainty, this article
considers two scenarios, namely, a virtual power plant
combined with thermal power unit peak regulation and a
thermal power plant side building energy storage system for
peak regulation. The total cost of peak regulation at different
stages can be obtained with the profits at different stages of the
virtual power plant, and the profits at different stages of energy
storage on the side of the thermal power plant under each
scenario, conduct a comparative analysis, and analyze the

FIGURE 4 | Node diagram of regional power network.
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impact of different risk preference coefficients and wind power
forecast errors on the results.

5.1 Model Parameter Setting
This article regards the wind power in this area as a negative load,
the wind power forecast curve and the load forecast curve are
superimposed to obtain the equivalent load forecast curve. The
current equivalent load forecast curve for this area will be shown
in various resource output power curve diagrams. This article
assumes that the SOC value when the electric vehicle is connected
to the charging station to start charging should be 0.25, The SOC
value at the end of charging needs to be greater than 0.8. The
maximum and minimum output of the thermal power plant is
600 and 300 MW, respectively and the climbing constraint power
is 400 MWh. The three coefficients of coal consumption cost ai is
0.0375 ¥/(MW)2, bi is 20 ¥/(MW)2, and ci is 372.5 ¥/(MW)2, the
compensatory costs for the positive and negative spinning reserve
capacity of the thermal power plants are 230 ¥/MWh,
respectively. The abandonment penalty coefficient is 150 ¥/
(MWh). The parameters of energy storage devices and electric
vehicles inside the virtual power plant are shown in Table 2. The
self-discharge rate of all energy storage devices is 0.005%. The
initial state of charge is 0.3, 0.4, 0.5, 0.6. The charge and discharge
cost of all energy storage devices is 50 ¥/MWh. The compensatory
prices for energy storage devices participating in auxiliary services
are 192, 204, 216, and 216 ¥/MWh, respectively. The self-
discharge rate of electric vehicles is 0.005%. The initial state of
charge is 0.3. The charge and the discharge cost of electric vehicles
is 50 ¥/MWh. The compensatory price for electric vehicles
participating in auxiliary services is 210 ¥/MWh, and the
capacity deviation penalty coefficient at the end of charging is

0.5 ¥/kWh. In this article, the confidence level is 0.95, and the risk
preference coefficient is 0.7.

5.2 Modelling Results
Comparing the sampling results, it is found that the probability of
scene 8 is the largest, so scene 8 is selected as a typical scene for
result analysis. The day-ahead and intra-day peak regulation costs
of the system are shown in Table 3, and the day-ahead adjustable
resource output power curve of the system is shown in Figure 6.

It can be seen from Table 3 that in the day-ahead joint peak
regulation phase, the peak regulation cost of the virtual power
plant accounted for 6.36% of the total cost. The peak regulation
cost of the virtual power plant accounted for 8.05% of the total
cost under the intra-day joint peak regulation phase. This shows
that the virtual power plant plays a vital role in different peak
regulation phases, and shares the peak regulation pressure of the
thermal power plant to a large extent.

It can be seen from Figure 6 that the thermal power plant is
started to meet the system power balance in the day-ahead
phase. During the peak period of equivalent load (4:00–16:00)
and the period of low equivalent load (20:00–24:00), the output
power of the thermal power plant reaches the limit, leading to
the result that the peak regulation demand of the system
cannot be met. At this moment, various resources within
the virtual power plant need to be combined with the
thermal power plant to participate in peak regulation.
Through the comparative analysis of the results, we found
that during the low equivalent load period (0:00–6:00), because
the output of the thermal power plant reaches the limit, and
energy storage and electric vehicles can no longer store energy,
wind abandonment occurs at this time.

In the intra-day phase, the handling of uncertain factors is the
same as the day-ahead method, so this section will not go into
detail. The regulation of the output power of the system in the
intra-day phase is shown in Figure 7. It can be seen from Figure 7
that during the period of 4:00–14:00, the equivalent load
prediction error is relatively large. The first type of electric
vehicle can only be charged with a constant charging power,
so power regulation cannot be performed. At this moment, the
internal energy storage of the virtual power plant and the thermal
power plant simultaneously adjust the output to compensate for
the load error. During 17:00–20:00 and 0:00–2:00, electric
vehicles participate in system peak regulation and adjust
output power together with energy storage to compensate for
load errors with the thermal power plant.

FIGURE 5 | Wind power curve graphs in different scenarios.

TABLE 2 | Parameters of internal resources of the virtual power plant.

The capacity
of ESS/MW

The power
of ESS/MW

Maximum SOC Minimum SOC Charge efficiency Discharge efficiency

ESS 1 15 4/8 0.95 0.25 0.9 0.9
ESS 2 25 4.8/10 0.95 0.25 0.9 0.9
ESS 3 20 6/12 0.95 0.25 0.9 0.9
ESS 4 20 7.2/12.8 0.95 0.25 0.9 0.9
EV 1 5 5 0.95 0.25 0.9 0.9
EV 2 15 3/5 0.95 0.25 0.9 0.9
EV 3 30 3/5 0.95 0.25 0.9 0.9
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In summary, the joint peak regulation of the virtual and
thermal power plant in the day-ahead and intra-day two
phases can not only improve the economics of peak regulation
but also be an effective way to improve the power grid regulation
capability.

5.3 Comparative Analysis
5.3.1 Comparative Analysis 1
To reflect the economy of the joint peak regulation of virtual and
thermal power plants compared with thermal power plants alone,
and to verify the effectiveness of the method proposed in this
article, the model in this paper is compared with the traditional
peak regulation model that only has a thermal power plant and
requires deep peak regulation to meet load changes.

1) Model 1: jointly optimized peak regulation model of the
virtual and thermal power plant in this article.

2) Model 2: the traditional peak regulation model only considers
the thermal power plants participating in peak regulation.
Also, the thermal power plants need to perform deep peak
regulation.

The day-ahead and intra-day output power curves of the
thermal power plant in Model 2 are shown in Figure 8.
Comparing Figure 8 with Figure 6, during the period of 0:
00–4:00, the thermal power plant has entered deep peak
regulation during the day-ahead and intra-day phases.

The day-ahead and intra-day peak regulation costs of different
models are shown in Table 3.

TABLE 3 | System peak regulation cost.

The total
cost of

peak regulation/10,000
¥

Peak regulation
cost of

thermal power/10,000
¥

Peak regulation
cost of

virtual power
plant/10,000 ¥

Wind abandonment
penalty cost/10,000

¥

Capacity deviation
penalty cost/10,000

¥

Mode 1 Day-ahead 173.27 161.07 11.02 0.38 0.80
Intra-day 170.98 156.38 13.76 0 0.84

Mode 2 Day-ahead 221.1 221.1 — 1.61 —

Intra-day 201.0 201.0 — 1.27 —

FIGURE 6 | Day-ahead planned output power curve of adjustable resources.

TABLE 4 | Cost analysis table under different risk preference coefficients.

Risk preference coefficient Total peak regulation
cost/10,000 ¥

Wind curtailment cost/10,000
¥

Capacity deviation penalty
cost/10,000 ¥

0.4 169.81 0.38 0.80
0.7 173.27 0.48 1.03
1.0 176.84 0.52 1.14
1.5 182.76 0.69 1.27
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Comparing the costs of Model 1 and Model 2 in Table 3, we
find that in the day-ahead phase, Model 1 is more economical
than Model 2, the total system peak regulation cost is reduced by
22.89%, and the wind abandonment cost is reduced by 76.4%. In

the intra-day phase, the trend of the comparison results of the two
models is similar to the day-ahead phase. In summary, the model
proposed in this article can improve the economy of the system at
different peak regulation phases, reduce the peak regulation

FIGURE 8 | The output power curve of the deep peak regulation of the thermal power plant.

FIGURE 7 | Wind power consumption curve.

TABLE 5 | System peak regulation results in different scenarios.

Scenes Total peak
regulation cost/10,000

¥

TP peak
regulation cost/10,000

¥

ESS peak
regulation cost/10,000

¥

Wind abandonment
penalty cost/10,000

¥

Capacity deviation
penalty cost/10,000

¥

Scene 1 162.80 156.38 4.37 0 1.29
Scene 2 186.98 171.64 8.21 0.60 0.61
Scene 3 169.74 158.69 6.84 0.21 1.18
Scene 4 170.81 159.72 7.23 0.22 1.19
Scene 5 188.06 173.92 8.39 0.61 0.61
Scene 6 192.17 176.87 8.64 0.63 0.75
Scene 7 165.31 157.29 5.64 0.08 1.26
Scene 8 173.27 161.07 7.65 0.48 1.03
Scene 9 172.39 160.31 7.52 0.33 1.10
Scene 10 195.63 179.63 8.82 0.68 0.67
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pressure of the thermal power plant, increase the grid connection
of renewable and sustainable energy, and make the system
cleaner.

5.3.2 Comparative Analysis 2
The model in this article is compared with the traditional model
of thermal power plant side energy storage combined with the
thermal power plant to participate in peak regulation.

1) Model 1: jointly optimized peak regulation model of the
virtual and thermal power plant in this article

2) Model 2: the traditional peak regulation model of thermal
power plant side energy storage combined with the thermal
power plant to participate in peak regulation

The output power curve of the thermal power plant and
thermal power plant side energy storage in Model 2 is shown
in Figure 9.

In Model 1, the profit of the virtual power plant in the day-ahead
phasewas 37,000 ¥, and the profit in the intra-day phasewas 97,000 ¥.

the profit of the energy storage at the thermal power plant side in the
day-ahead phase was only 14,000 ¥, and the profit in the intra-day
phase was only 38,000 ¥. A comparative analysis of the profit between
the day-ahead and intra-day phases of Model 1 and Model 2 shows
that the former has the advantage of low original investment costs.
The investment cost of the virtual power plant has been covered by
the revenue from peak regulation and valley filling of distributed
energy storage and the revenue from the participation of electric
vehicles in transportation, but the investment cost of energy storage
on the thermal power plant side needs to be recovered in peak
regulation. Therefore, it can be seen that the daily profit of the energy
storage on the side of the thermal power plant is much lower than the
daily peak regulation profit of the virtual power plant.

5.3.3 Comparative Analysis 3
In order to compare the impact of different risk preference
coefficients on system strategy and cost, Table 4 shows the
relationship between the total peak regulation cost, wind
curtailment cost, and capacity deviation cost of the virtual and
the thermal power plant under different risk preference coefficients.

FIGURE 9 | Peak regulation resource output power curve in Model 2.

FIGURE 10 | EV3 charging power and SOC change diagram under different risk preference coefficients.
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Figure 10 shows the changes in the charging power and SOC value
of the third type of electric vehicle under different risk preference
coefficients.

It can be seen from Table 4 that as the risk preference coefficient
increases, the total peak regulation cost of the system increases
accordingly, and the cost of wind abandonment and the penalty
cost of capacity deviation also increase. This is because the risk
preference coefficient reflects the importance of the peak regulation
strategy to uncertain factors. The greater the risk preference
coefficient, the higher the system’s requirements for safety, and
the more the system peak regulation strategy is biased towards
reducing the risk loss during system peak regulation. According to
Figure 10, as the risk preference coefficient increases, in order to
reduce the influence of system uncertainties, the system peak
regulation depends more on the thermal power plant and energy
storage. Therefore, the greater the risk preference coefficient, the
greater the power involved in peak regulation of the thermal power
plant and energy storage, the smaller the response capacity of electric
vehicles, the smaller the amount of wind power consumption.

5.3.4 Comparative Analysis 4
In order to analyze the impact of different wind power forecast
accuracy on the peak regulation results, Table 5 shows the system
peak regulation results under ten scenarios. It can be seen from
Table 5 that the greater the positive forecast error of wind power, the
greater the total peak regulation cost of the system, which requires
more power from the thermal power plant and energy storage to
participate in peak regulation, and the higher the cost of wind
curtailment and the penalty cost of capacity deviation at this time.
This is because during the low load period, when the positive error of
wind power is greater, and the thermal power reaches the lower limit
of the minimum output, it still cannot meet the peak regulation
demand, and more energy storage is needed to participate in peak
regulation.When neither energy storage nor the thermal power plant
can meet the demand for peak regulation, wind power will generate
more wind abandonment power, and the overall capacity deviation at
the last moment of electric vehicle charging will be smaller.

6 CONCLUSION AND FUTURE WORK

In order to further improve the economy of peak regulation, this
article constructs a day-ahead and intra-day two-stage joint peak
regulation model for virtual and thermal power plants. The
specific contributions are as follows:

1) The joint peak regulation of the virtual and thermal power
plant can significantly reduce the peak regulation cost of the
system, further improve resource utilization efficiency, and at
the same time promote the integration of renewable and
sustainable energy into the grid, making the system cleaner.

2) The virtual power plant combined with the thermal power
plant to participate in peak regulation can relieve part of the
peak regulation pressure of the thermal power plant.

3) The joint peak regulation of the virtual and thermal power
plant can not only improve system economy but also enhance
system regulation ability.

4) The thermal power plant has built a supporting energy
storage system. The energy storage system can participate
in power system peak and frequency modulation. However,
the energy storage system cannot participate in the trade of
multiple power system varieties on the user side, nor can it
provide localized power supply reliability guarantees for
various regions. Its economy is lower than that of the
virtual power plant combined with the thermal power
plant to participate in peak regulation.

Meanwhile, in view of the problems reflected in the research,
this article considers the following aspects to further expand:

1) In this paper, the virtual power plant aggregates energy
storage devices and electric vehicles but does not aggregate
high-quality adjustable resources such as interruptible loads
and shiftable loads.

2) The peak regulation strategy proposed in this paper only
includes two phases, day-ahead, and intra-day, and does
not maximize the ability of fast peak regulation of virtual
power plants. Therefore, this article will further consider real-
time peak regulation in the future.

3) The objects involved in peak regulation in this article are only
virtual and thermal power plants, and other high-quality peak
regulation resources such as pumped storage are not
considered. Therefore, this article will consider a variety of
objects to participate in peak regulation in the future.
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