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0.  Abstract

A family of two-step multiderivative methods based on Pade approximants 

to the exponential function is developed.  The methods are analysed 

and periodicity intervals in PECE mode are calculated. 

 
Two of the methods are tested on two problems from the literature and 

one predictor-corrector combination is  tested on two further problems. 
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1.   Development of the methods 
 
Consider the second order initial  value problem 
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Equation (2) arises in the numerical solution of the simple wave 

equation  when the space derivative is approximated 2222 x/ut/u ∂∂=∂∂

by a finite difference replacement such as 
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where h is the increment in x arising from the space discretization. 

This leads to a system of ordinary differential equations of the form 

(2) in which the diagonalizable matrix A has real,  negative eigenvalues, 

and  when the boundary conditions are zero. ~~ 0B ≡

 
I t  is therefore appropriate to consider the single test equation 
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where λ ,  y RI∈ ,  whose general solution 
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is periodic with period 2  for all  a,  b other than the trivial case π/λ

a = b = 0. 

 
The general solution (5) may be written in the alternate form 
 
 1it),λi(exp bt)λi( expa(t)u −+=−+=     (6) 
 
which becomes 
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when the initial conditions in (4) are introduced. 
 
It  may now be shown that y(t) given in (7) satisfies the recurrence 

relation 

 
 ,0)(ty(t)y})λi(exp)λi(exp{)(ty =−+−+−+ llll     (8) 
 
where l  is a convenient increment in t .   This recurrence relation may 

be used for t  = t0  + ,   tl 0  + 2 l , . . .   ;  for t  = t0  the initial conditions 

give y(t0) =  but the value y(t.y'
0 0,+ l ) remains to be determined in terms 

of  and  Equation (8) leads to a family of multiderivative methods 0y .'
0y

for the solution of (1),  the higher derivatives being easy to calculate 

because of the periodic properties of the problem. 

 
Any numerical solution of (8) will determine y(t) explicitly or implicitly 

depending on the approximations to exp ( ).i λ± l  Using the (m,k) Padé 

approximent to exp  of the form ( λli )
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where Pk ,  Qm  are polynomials of degree k,m respectively, defined by 
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With p1>p2>……>pk>0 and  depending on the chosen padé   0q.....qq m21 >>>>

a p p r o x i m a n t ,  e q u a t i o n  ( 8 )  t a k e s  t h e  f o r m  
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On substituting for the polynomials P,k ,Qm  in (12), odd  powers of 

 vanish and the recurrence relation takes the form λil
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where the aj . ,  b j  clearly depend on the Padé  approximant being used 

and s  = [
2
1 (m+k)].  

 
For a single equation of the form (1),  equation (13) yields the two- 

step multiderivative formula 
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n = 1,2,. . . ,  which is explicit  of m = 0 and implicit  if  m ≠   0.   It  is 

assumed that y(t) is sufficiently often differentiable.  In (14), 

yj  ≡  y(t j)   =  y(t0+j ),  where j  = 0,1,2,. . .   .  l

 
The non-zero coefficients of (14) for the algorithms yielded by the 

first sixteen entries of the Padé  table are given in [7] and are reproduced 

in the Appendix. 
 
Initial value problems for which )~y',~y(t,~f~f =  may clearly be written in 

the form of a first  order system  )~v,~u,(t~f~v',~v'~u == where   .~y'~v,~y~u ==

Multiderivative methods for first  order systems were discussed by the 

authors in [9].  
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2.   Analyses 
 
With the multiderivative method (14) may be associated with the linear 

difference operator L defined by 
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Expanding y  (t+ ) and y (t- ) and their derivatives as Taylor series l l

about t ,  and gathering terms, gives 

 
....(t)"y2

2C(t)'y1C(t)y0C];(t)L[y +++= lll     (16) 

 
where the Cj are constants.   The operator L and the associated 

multiderivative method (14) are of order p if ,  in (16), C0 = C1 = . . .  

 and  0.2pc ≠+01pc =+=

 
The term Cp + 2 is the error constant of the multiderivative method (14); 

the error constants for the first  16 methods of the family are contained 

in the Appendix. The multiderivative method (14) is consistent with 

the differential equation if p ≥  1; clearly the methods based on the 

(0,1) and (1,0) Padé approximants are inconsistent whilst  all  others 

are consistent.  

 
Rearranging (14).in the form 
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where v = max(m,s) (clearly for m > k, ,0b...b v1s ===+  and for
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m < k, 0),va..1ma ===+  i t  is seen that the multiderivative methods 

are generated by the characteristic polynomials 

 

jajb2rja(r)jσ,12r2r(r)ρ −+−=+−=      (18) 

 
for j  = 1,. . . ,  v.   The quadratic polynomial equation ρ(r)  =  0 has a 

double zero at  r = + 1 and the family of multiderivative methods is zero- 

stable; all  except the methods based on the (0,1) and (1,0) Padé 

approximants are thus convergent.  

 

It  is easy to see from (14) and (17) that,  for m less than, equal to, 

or greater than k, every member of the family of multiderivative methods 

is symmetric with even stepnumber (two-steps) and even order p.   The 

findings of Lambert and Watson [4] on the periodicity of linear multistep 

method then carry over to multiderivative methods, as does the theory of 

weak stability (Lambert [3, p.202]).  

 

Writing H = ℓ λ ,   equation (13) becomes 
 

m
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The solution of (19) involves the nt h   power of the zeros r1  and r2  of  

the periodicity polynomial 

 
 2}r2mHmam1)(...4H1a2H1a{1)2HΩ(r, −+−+−=  

}r2sHsbs1)(...4H2b2H1b{2 −+−+−−  

   + ,}2mHmam1)(...4H2a2H1a{1 −+−+−  

iH)}r(k(iH)PmQ(iH)kiH)P(m{Q2(iH)rmiH)Q(mQ −+−−−=  

    ( ) ( ).iHmQiHmQ −+      (20) 



6. 

 
 
The interval of periodicity of the multiderivative method (14) is 

determined by computing the values of H2 for which the zeros of the 

periodicity equation 

 0       (21) )2HΩ(r, =

Satisfy 

,)iθθ(He2r,)iθθ(He1r
−==       (22)

  
where θ(H) ∈  R ;   the multiderivative method is then orbitally stable. 

For each member of the family of multiderivative methods, the periodicity 

equation may be written down in terms of the associated Padé approximant. 

Those multiderivative methods which have interval of periodicity 

( )∞∈ ,0H2  are said to be P-stable (Lambert and Watson [4, p.199]).   The 

intervals of periodicity for the consistent multiderivative methods based 

on the first  16 entries of the Padé table are contained in the Appendix 

(those interval bounds occurring as integers or improper fractions are 

exact, those occurring with one decimal place have been rounded up or down 

depending on whether the number is a lower or upper bound of the interval). 

The consistent multiderivative formulas based on those (m,k) Padé 

approximants for which m ≥  k are seen to be P-stable. 

 

In computing the solution at t ime t = l  the formula 
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 (Twizell [8]) may be used  in solving problems which are known  to have 

outward-spiralling theoretical  solutions. Otherwise, Taylor 's series 
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may be used to give y1 to the necessary accuracy. 
 
 
3.      Numerical examples
 
Two of the family of multiderivative methods developed in section 1 

were tested on two problems well known in the literature. 

 
Problem 1
 
This is the almost periodic problem introduced by Stiefel and Bettis 

[6] and considered by Lambert and Watson [4] and Cash [1].  It  is 

given by 

 
  C.z0.9995i,(0)'z,1z(0);ite0.001z"z ∈==+−=
 
The theoretical solution satisfies 

 
u (t)  = cos t  +  0.0005 t  sin t ,    RIu∈   , 

v(t) = sin t    -  0.0005 t   cos t ,     RIv∈  

z (t) = u (t)   +  i  v (t) 

 
and represents the motion of the point  z(t) on a perturbation of a 

circular orbit .   The distance of this point from the centre of the orbit  

at  t ime t is given by 

γ (t)  =    [ u2  (t)    +   v2  (t) ] 2
1

   =    [ 1 +  (0.0005 t)2] 2
1

 

so that the point spirals slowly outwards as time increases. 

 
Following Lambert and Watson [4] the differential equation is written 

in the form of the real l inear system 

,0)0(u,1)0(u;tcos001.0u"u ' ==+−=  
     (25) ,9995.0)0(v,0)0(v;tsin001.0v"v ' ==+−=
 

from which the higher derivatives, for use with the multiderivative methods 

developed in section 1, are easily determined. 
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The numerical solution U(t) , V(t) of the real system (25) were computed at 

t = 40  for  = π l π /4, /5, /6, π π π /9, π /12,  using the multiderivative 

methods based on the (2,2),(3,3) Pad e′  approximants. The corresponding 

computed values Z(t), (t) of z(t), Γ γ (t) were then computed using 

z (t)  = U(t)  + iv(t)    ,   Γ (t)  = [U2(t)  + V2(t)] 2
1

.  
 
The error moduli in the computed values Z(t), Γ (t) given by 

E(z) ≡  |z  (t) - Z(t)| = [{u(t) - U(t)}2 + {v(t) - V(t)}2] 2
1

 

E( γ )  |≡ γ (t) - (t)| = |{uΓ 2(t)+ v2(t)} 2
1

 - {U2(t) + V2(t)} 2
1

| 

were also calculated. The values of Γ (t) ,  E(z),  E( γ ) are given in 

Table 1. 

 
 
It can be seen that for both methods tested, the path of the point z(t) 

is an outward spiral for all steplengths, which is in keeping with the 

theoretical solution. The numerical solution obtained using the fourth 

order method based on the (2,2) Pad e′  approximant was found to be closer 

to the theoretical value γ (40π ) than the method due to Cash [1], which 

is of comparable order, except for l  = π /4 when the error molulus was 

0.002339 compared to 0.002146 obtained by Cash. 

 
The computed solution obtained using the sixth order multiderivative 

method based on the (3,3) Pad e′  approximant was found to be closer to 

the theoretical solution γ (40 π ) than the sixth order methods of 

Lambert and Watson [4] or Cash [l]for all  values of .  Moreover, l

convergence to six decimal places was attained for higher values of 

    l  using the (3,3) multiderivative method. 

 

It  is noted that the approximate formulas (22), (23) were used with the 

(2,2),  (3,3) Pad  methods, respectively, whereas Cash [1] used the e′

theoretical solution. 
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Problem 2

This example was used by Lambert and Watson [4] and Cash [l] and is 

given by 

(o)'φ(o)'
1y,φ(o)a(o)1y;φ(t)2w(t)"φ1y2w"

1y =+=++−=  

(o)'φwa(o)'
2y,(o)φ(o)2y;φ(t)2w(t)"φ2y2w"

2y +==++−=   . 

The theoretical solution of the problem is given by 
 

y1(t) = a cos wt + φ (t) 

y1(t) = a sinwt + φ (t) 

and, following Lambert and Watson [4] and Cash [1], φ (t) is taken to 

be e - 0 . 0 5 t  The parameter   a  was given the value zero,  corresponding 

to the case when high frequency oscillations are not present in the 

theoretical solution. The results at t = 20 π  for w = 5(5)40 and 

= /32, /8, /2, π  are given in Table 2. π π πl

 
Comparing Table 2 with Table 2 in Cash [1],  i t  is seen that,  except 

in the isolated case w = 5,  = l π /8 , the fourth order multiderivative 

method tested in the present paper gives better results than the 

fourth order method of Cash; the sixth order method tested in the present 

paper always gives superior results to the sixth order method in [1] 

when applied to Problem 2. 

 

As with Problem 1, formulas (22), (23) were used to compute y( ).  l
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4.    Use in PECE mode

In common with texts and other papers, the convention of associating 

an asterisk with a predictor formula will  be adopted. Using the 

general (0,k*) Pad  approximant as predictor and the general (m,k) Pade′ e′  

approximant as corrector,  the resulting predictor-corrector combination 

will  be denoted by (0,k*); (m, k).  

 
It is not necessary to choose a predictor formula for which k* = max (m,  k) 

and the existing theory relating to the order of the local truncation 

error of linear multistep methods used in PECE mode carries over to 

multiderivative methods used in PECE mode. In particular,  if  the order 

of  the  predictor  is  a t  least  the  order  of  the  corrector ,  than the error  

constant of the predictor-corrector combination is that of the corrector 

alone. In addition, if  the predictor and the corrector have the same 

order p   ,  then Milne's device 
 

]2pC*
2p[C/](p)

1ny(c)
1n[y2pC +−++−++     (26) 

 
may be used to estimate the error constant of the predictor-corrector 

combination in PECE mode (provided C ≠+
*

2p C ). In (26) the p + 2

superscripts (P) and (C) refer to the predictor and corrector, respectively. 

 
The periodicity polynomial ΕΡΕΩ C (r,H2) of the (0,k*);(m,k) combination 

in PECE mode may be shown to take the form 
 

∑
=

−+∑
=

−−−=
s

1j

j2jΗjb
j

1)(2jΗjaj
m

1j
1)(22[2r)2Η(r,PECEΩ  

1r]2wHw*bw*δ

1w
1)(2jHj

m

1j
aj1)( +∑

=
−∑

=
−+   (27) 



(11) 
 
The interval of periodicity of the (0,k*);(m,k) predictor-corrector 

combination is determined by computing the values of H for which the 

zeros of the periodicity equation 

0)2Η(r,PECEΩ =       (28) 

satisfy (22). 

 

I t  was found that  the  (0 ,2) ; (1 ,2)  combinat ion,  with  error  constant  

C4  = -
36
1  and per iodici ty  interval  H2  ∈  (0 ,9)  ,  has  the smal les t  

modulus  error  constant  and the greatest  interval  of  per iodici ty  of  

the second order  combinat ions.  
 

Of  the fourth  order  combinat ions,  i t  was found that  the (0 ,4) ; (2 ,2)  

combination, for which C6 = 
360
1  and H2 ∈  (0,15.89), is to be preferred 

to any other fourth order combination when solving non-linear problems, 

because it  requires no more than the second derivative of  )~
y,(t~f .

For linear problems the (0,4);(1,3) combination which has C6 =
2880

7−  

and H2∈  (0,4.88), may be used with small values of   if  higher l

accuracy is needed. 
 

For non-linear problems of the form (1) the maximum steplength which 

may be used at any time t of the calculation, has the value H*/Λ  ( t) ,  

where H2  (0,H*∈ 2)  is  the periodicity interval of the predictor-  

corrector combination being used, and Λ2(t)  is the largest modulus 

real part of the eigenvalues of the Jacobian ~y/~f ∂∂  at  t ime  t    .  

The (0,4);(2,2) method was tested on the following problem which was 

discussed in Shampine and Gordon [5] and Jain et al [2]: 

Problem 3 

x" ,0(0)'x1,x(0);3r
x

===  

y" ,1)0(y,0)0(y;
r
y '
3 ==−=  
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where r = (x2+y2) 2
1

.  These equations are Newton's equations of motion 

for the two body problem and the initial conditions are such that the 

motion is circular.   Clearly x"(0) = -1, y"(0) = 0 and, by successively 

different ia t ing the expressions for  x"  and y" ,  i t  i s  easy to  ver i fy  that  

x(t) and its derivatives take the values 1,0,-1,0 cyclically at t  = 0, 

and that y(t) and its derivatives take the values 0,1,0,-1 cyclically 

a t  t  =0.  Taylors  ser ies ,  wi th  suff ic ient ly  smal l  s tepsizes ,  provides  

starting values for the following strategy where, for 

n = 1,2,…,  :Τ])y(n,)(n[xT]ny,n[xn~w ll==

    P :    is calculated using, as predictor,  the multiderivative ~
P

1nw
⎟
⎠
⎞⎜

⎝
⎛

+

method based on the (0,4) Pad e′  approximant; 

    E : (a)  is evaluated using '
1n~w + ∑

=
++∇=+

⎟
⎠
⎞⎜

⎝
⎛6

1m
,)60(m/

P
1n~w

1'
1n~w l

l
 

     where  is the usual backward difference operator,  ∇

 (b) "
1n~w +  is evaluated using (P)

1n~w +  in the system of 

       differential equations,  

(c)  (iv)
1n~w +  is evaluated from the analytical expressions for 

                         which are easily determined (these contain (iv)
1ny,(iv)

1nx ++

                          ; '
1ny,'

1nx ++

C:     is calculated using, as corrector,  the multiderivative )C(
1n~w +

        method based on the (2,2) Pad e′  approximant; 

        E:     ,   are re-evaluated as in (a),(b),(c) above '
1n~w +

"
1n~w +

)iv(
1n~w +

                              using the corrected value   where appropriate. )c(
1n~w +

 

The problem was tested using = l π /18, π /15, π /10 and the numerical 

solution at  t ime t  = 12  determined using the (0,4);(2,2) combination π

in  PECE mode .  Us ing  the  theore t ica l  so lu t ion  x( t )  =cos t ,  y ( t )  =  s in t  

t h e  e r r o r  mo d u l i  f o r  t h e  t h r e e  v a l u e s of l  a re  eas i ly  found  and  a re  
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given in Table 3. Results are also tabulated using the (0,4) method 

alone.  Comparison with Table  1  in  Jain e t  a l  [2]  shows that  

multiderivative methods give accurate numerical results for non-linear 

as well as linear problems. 

Problem 4 

 

Changing the initial conditions in Problem 3 to 

 

x(0) = 0.4 , x'(0) = 0 , 

y(0) =0   ,  y'(0) = 2 , 

causes the orbit to become the ellipse (Shampine and Gordon [5:p.245]) 

 

r ≡ (x+0.6)2 + y2/0.64 = 1 

 

and the period of revolution to be 2 π .   The problem was tested with 

l  = /45, /90, /180, /360, π π π π π /720 and the value of r at t ime 

t = 15 , 16  determined using the (0,2);(2,2) combination in PECE mode. π π

The values of x,y,r (theoretical values 0.4,0,1 and -1.6,0,1, 

respectively) are given at t ime t=15 π ,16 π  in Table 4.  It  is again 

clear that the multiderivative predictor-corrector combination used 

gives accurate results.  Unlike the method used and reported in Shampine 

and Gordon [5: p.246], no step size or order changing was required to 

achieve the accuracy obtained using the multiderivative methods. 



(14) 
 
 

 
Table 1 

 
Computed results at t  = 40 π  for Pro blem 1. 

 
062832.0)40(v,1)40(u,001972.1)40(  γ =π π = π = −

 
 

(2,2) method (3,3) method 
l  

Γ  E( γ ) E(z) Γ  E( γ ) E(z) 
π /4 1.004311 0.234(-2) 0.418(-2) 1.001981 0.908(-5) 0.813(-7) 

π /5 1.002845 0.874(-3) 0.710(-3) 1.001974 0.236(-5) 0.567(-8) 

π /6 1.002383 0.411(-3) 0.167(-3) 1.001972 0.792(-6) 0.642(-9) 

π /9 1.002052 0.805(-4) 0.659(-5) 1.001972 0.699(-7) 0.501(-11) 

π /12 1.001997 0.255(-4) 0.664(-6) 1.001972 0.125(-7) 0.159(-12) 
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Table 2 

 

Error modulus in the computed solution at t  = 20Π  for Problem 2. 

 

 

w      l π /32 π /8 π /2 π  

 

(2,2)  multiderivative method 

 

 5 0.402(-15) 0.103(-12) 0.194(-10) 0.200(-9) 

10 0.994(-16) 0.885(-13) 0.139(-11) 0.115(-11) 

15 0.119(-15) 0.101(-14) 0.183(-12) 0.144(-10) 

20 0.879(-16) 0.502(-14) 0.858(-12) 0.359(-11) 

25 0.428(-16) 0.254(-14) 0.522(-12) 0.519(-11) 

30 0.310(-15) 0.752(-15) 0.246(-12) 0.390(-11) 

35 0.502(-15) 0.715(-15) 0.261(-12) 0.265(-11) 

40 0.176(-15) 0.782(-15) 0.251(-13) 0.179(-11) 

     

     

 

(3,3) multiderivative method 

 

 5 0.185(-15) 0.953(-15) 0.340(-11) 0.182(-12) 

10 0.166(-15) 0.116(-14) 0.231(-14) 0.264(-14) 

15 0.118(-15) 0.795(-16) 0.946(-17) 0.576(-15) 

20 0.423(-16) 0.885(-16) 0.380(-16) 0.189(-15) 

25 0.319(-15) 0.480(-17) 0.102(-16) 0.119(-16) 

30 0.290(-15) 0.600(-18) 0.522(17) 0.256(-16) 

35 0.138(-15) 0.491(-18) 0.261(-17) 0.137(-16) 

40 0.271(-16) 0.261(-18) 0.183(-17) 0.309(-17) 
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Table 3 
 

Error moduli at t  = 12 π  for Problem 3 
 

 
 (0,4) ; (2,2) 
 (0,4) method 

Combination 

l  Error moduli Error moduli 

π /18 0.394(-7) 0.665(-8) 

π /15 0.209(-6) 0.298(-7) 

π /10 0.650(-5) 0.120(-5) 
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Table 4 
 

Computed values   of x,y,r  at  t = 15π ,16π   for Problem 4 
 

  x y r 
 

t=15π  
     

π /45 -1.6003845 0.0244339 1.0017020 
π /90 -1.5997948 0.0010838 0.9995914 

π /180 -1.5999258 -0.0001281 0.9998517 

π /360 -1.5999801 -0.0000584 0.9999603 

π /720 -1.5999950 -0.0000163 0.9999899 
 
t  = 16  π
 

π /45 0.3999265 0.0057571 0.9999049 

π /90 0.3995450 0.0252020 1.0000826 

π /180 0.3999516 0.0081528 1.0000070 

π /360 0.3999966 0.0021600 1.0000005 

π /720 0.3999998 0.0005477 1.0000000 
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Appendix 
 
The non-zero constants a j  (j  = l , . . . ,m), bw (w = 1,.  .  . ,  s) for the first  

sixteen entries of the Pad  Table for the exponential function, e′
together with the error constants and the intervals of periodicity. 
 
(0,1) :  All aj = 0 ; all bw  = 0  . 

C2 = 1 (method inconsistent). 
 

(1,1) :    a1 = -
2
1b;

4
1

1 = . 

C4 = .),0(;
6
1 2 ∞∈Η−   

 
(1,0) :  a1 = -1 ; all bw  = 0. 

C2= -1  (method inconsistent). 
 
(0,2):   All aj =  0 ;  b1 = 1 . 

C4 = )4,0(;
12
1 2 ∈Η  ... 

 (1,2) :   al  = 9
7b;

9
1

1 =−  . 

 C4  = )
5

36,0(;
36
1 2∈Η−  .  

 (2,2) :  a1 = .
72
1b,

6
5b;

144
1a,

12
1

212 ===−  

 C6 = .),0(;
360
1 2 ∞∈Η  

(2,1):   a1  = .
9
7;

36
1,

9
1

12 ==− ba  

C4 = .),0(;
36
1 2 ∞∈Η  

(2,0) : a2  = .1b;,
4
1

1 =−  

C4 = .),0(;
12
7 2 ∞∈Η  

 

 (0,3) : All  aj =0 ;  b1 =1 . 

            C4  = .)4,0(;
12
1 2∈Η
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(1,3) : a1 =
48
1b,

8
7b;

16
1

21 ==−  . 

C6 = .)48.5.29(and)5.6,0(H;
2880

7 2 ∈−  

(2,3) :  a1 = .
600
17b,

25
22b,

400
1a;

50
3

212 ===−   

 C6 = .)
7

300.6.14(and)2.8,0(H;
3600

1 2 ∈−  

(3,3) :  a1 = .;
14400

1a,
600
1a;

20
1

32 ==−   

 b1 = .
7200

1b,
330
11b;

10
9

32 ==−   

 c8 = .),0(;
50400

1 2 ∞∈Η−   

(3,2) :   a1 = ;
3600

1a,
400
1a;

50
3

32 ==−   

 b1 = .
600
17b;

25
22

2 =−   

 c6 = .),0(;
3600

1 2 ∞∈Η−   

(3,1) :  a1 = .
48
1b,

8
7b,

576
1a;

16
1

213 ==−=−   

 C6 = .),0(;
2880
17 2 ∞∈Η−   

 (3,0) :  a1 = .1b,
36
1a;

12
1

13 =−=−   

 C4 = .),0(;
12
1 2 ∞∈Η−   

 (0,4)  : All aj = .
12
1b,1b;0 21 ==−   

  C6 = .)12,0(;
360
1 2 ∈Η−   
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