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ℓ2-ℓ∞ Proportional-Integral Observer Design for

Systems with Mixed Time-Delays under

Round-Robin Protocol
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Abstract

In this paper, the design problem ofℓ2-ℓ∞ proportional-integral observer (PIO) is investigated for a class of

discrete-time systems with mixed time-delays. The mixed time-delays comprise both the discrete time-varying delays

and infinitely distributed delays. The Round-Robin protocol (RRP) is employed to schedule the data transmissions

from the sensors to the observer so as to mitigate the communication burden and prevent the data collisions. A

novel PIO is developed whose observer gain is dependent on the data transmission order as a reflection of the

effects induced by the RRP scheduling. By resorting to the token-dependent Lyapunov functional and the matrix

inequality technique, the desired PIO is designed with exponentially stable error dynamics of the state estimation

and guaranteedℓ2-ℓ∞ disturbance attenuation/resistance capacity. Finally, a simulation example is exploited to

verify the validity of the proposed observer design method.

Index Terms

Proportional-integral observer, Round-Robin protocol, mixed time-delays,ℓ2-ℓ∞ performance.

I. INTRODUCTION

FOR SEVERAL decades, theℓ2-ℓ∞ state estimation method has attracted persistent research attention
since its inception in [8], [36] because of its great potential in assuring the disturbance rejection

property of complex dynamic systems [38]. So far, theℓ2-ℓ∞ estimation/control problems have found wide

applications in various areas such as aerospace, maneuvering target tracking, industrial process control,
and so on [37]. Generally speaking, theℓ2-ℓ∞ state estimation problem aims to develop a state estimator

with which theℓ2-ℓ∞ (energy-to-peak) gain from the disturbance input to the estimation error is less than

a prespecified level. From a technical perspective, there are essentially two methods for designing the
ℓ2-ℓ∞ state estimators, namely, the Riccati difference/differential equation method and the linear matrix

The Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia funded this project under grant no. (FP-21-

42). This work was also supported by the National Natural Science Foundation of China under Grants 61933007, 61873148 and 61873169,

and the Alexander von Humboldt Foundation of Germany.
D. Zhao is with the College of Science, the Biomedical Engineering Postdoctoral Mobile Station, University of Shanghai for Science and

Technology, Shanghai 200093, China. (Email:zhaodi0907520@163.com)

Z. Wang is with the Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom.
(Email: Zidong.Wang@brunel.ac.uk)

G. Wei is with the College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China. (Email:
guoliang.wei@usst.edu.cn)

F. E. Alsaadi is with the Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah

21589, Saudi Arabia.
∗ Corresponding author.

This is the peer reviewed version of the following article: ℓ<inf>2</inf>–ℓ<inf>∞</inf> proportional–integral observer design for 
systems with mixed time-delays under round–robin protocol, which has been published in final form at https://doi.org/10.1002/
rnc.5328. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.



FINAL 2

inequality method. So far, a large number of important results have appeared on theℓ2-ℓ∞ state estimation

problems for various systems such as time-delay systems, complex networks, nonlinear systems, neural

networks and sensor networks, see e.g. [12], [26], [27], [31], [38] and the references therein.
It is well recognized that, in classical control systems, the integral actions are able to eliminate the

steady-state error of the controlled systems and enhance the insensitivity to parameter changes and system

noises [1], [2], [28], [41], [42]. Similarly, by introducing an additional integral term of the output estimation
error, the so-called proportional-integral observer (PIO) has been developed in order to achieve the desired

accuracy and robustness [3]. In particular, the integral term in PIO can be regarded as an extension of the

integral action in the traditional proportional-integralcontroller, which provides certain extra degree of

freedom for the observer design. So far, the PIOs have been widely applied in reaching adequate tradeoff
between the performance indices of robustness, disturbance rejection and loop recurrence for a range

of complex dynamic systems [16], [32]. For instance, the PIOhas been designed in [6] for a class of

multiple-input-multiple-output linear systems in the interest of simultaneously estimating the system states
and the unknown inputs, and the PIO design problem has been investigated in [39] for Takagi-Sugeno

fuzzy system with hope to estimate the actuator and sensor faults.

As is well known, the phenomenon of time-delays appears frequently in practical engineering systems
because of a variety of reasons such as equipment aging and transmission lags [20], [38]. Time-delays

serve as one of the major sources for performance deterioration and system instability. Consequently, time-

delay systems have been attracting an ever-increasing research interest and abundant theoretical/empirical
literature has been available on examining the impact of time-delays on the dynamical behaviors of the

underlying systems [14], [43]. According to the patterns they behave, the time-delays can be roughly

categorized into discrete-time delays and distributed time-delays [29]. It should be mentioned that it is
quite common for modern industrial systems to exhibit multiple types of time-delays (also known as mixed

delays) due to the complexity and large scale of their structures. Accordingly, much research attention

has recently been devoted to the analysis and synthesis problems for systems with mixed time-delays, see
[18], [22], [25] for some representative work. Up to date, the PIO design problem in presence of mixed

time-delays has not been fully investigated owing mainly tothe lack of appropriate methodologies, and

such a situation inspires our current investigation in order to bridge the gap.
Networked systems (NSs) are well known for their outstanding capability in sharing resources and

improving system diagnosability as well as maintainability, and have therefore been successfully ap-

plied in key areas ranging from intelligent transportation, aerospace, industrial control, telemedicine to
robotic teleoperation [4], [5], [10], [11]. In NSs, all the system components (e.g. sensors, actuators,

controllers/filters) act as network nodes that are connected via shared communication networks, and the

data is transmitted by using network-based communication technology [13], [15], [17], [21], [40], [45].
In engineering practice, the data collision is often unavoidable due mainly to the limited bandwidth

and service capacity of the network, and the resulting network-induced phenomena have placed great

challenges on the control/filtering problems of NSs. An effective way of avoiding/mitigating data collision

is to deploy the communication protocols to regulate the transmission orders among the network nodes,
and some typical communication protocols are Round-Robin protocol (RRP), Try-Once-Discard protocol

and stochastic communication protocol [7], [19], [33], [44]. It should be noted that the adoption of

communication protocols in NSs gives rise to essential difficulties in analyzing/synthesizing NSs, for
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example, the establishment of an appropriate mathematicalmodel to depict the scheduling mechanism

of communication protocols and the development of a theoretical framework for revealing the impact of

scheduling behavior on the control/filtering performance.
In recent years, the RRP (also known as the token ring protocol) has been utilized extensively in the

fields of communication and signal processing [30], [43]. The RRP refers to a static scheduling protocol

in which the nodes are assigned the access to transmission according to a preset circular order. To be more
specific, under the scheduling of the RRP, the node that obtains the access token at current transmission

instant will pass the “token” to the next node at next transmission instant. When the data transmission of

the last node is completed, the access token will be handed over to the first node. Up to date, the state

estimation problems under RRP have begun to stir some research interest and preliminary results have
been available in the literature [9], [35]. For instance, the state estimation problem under RRP has been

studied for complex networks [43], genetic regulatory networks [34], and neural networks [31]. In fact,

most of the existing results on the RRP-based state estimation issues have focused on the design of Kalman
filters or Luenberger observers. When it comes to the RRP-based PIO design problem, the corresponding

results have been very few (if not none) due mainly to the increased complexity and computation burden

caused by the “periodic” nature of the RRP. With this in mind,we aim to deal with the PIO design
problem for a class of discrete-time systems with mixed time-delays under RRP.

Based on the above discussions, it can be summarized that: 1)the ℓ2-ℓ∞ state estimation approach

serves as a powerful means in improving robustness of the system and restraining the effect from the
energy-bounded disturbance input on the estimation error;and 2) the PIO design problem under RRP is

of both practical importance and theoretical significance.In view of this, we endeavor to design anℓ2-ℓ∞
PIO for systems with mixed time-delays under RRP, which is anemerging research topic that exhibits
substantial difficulties in dealing with the complexity in embedding the RRP in the PIO design procedure

as well as in analyzing the stability andℓ2-ℓ∞ performance of the estimation error dynamics.

The main contributions of this paper are highlighted as follows: 1) a PIO design problem is, for the

first time, proposed for a class of systems with mixed time-delays under the RRP; 2) a token-dependent

PIO is designed to cope with the effects of the RRP schedulingbehavior on the estimation performance;

and 3) a novel Lyapunov functional, which is dependent on theorder of data transmission, is constructed

to facilitate the analysis of the exponential stability andthe ℓ2-ℓ∞ performance of the estimation error

dynamics. The remainder of this paper is arranged as follows. SectionII formulates the PIO design problem

for systems with mixed time-delays and presents the mathematical description of the RRP. In Section III,
sufficient conditions are derived for the analysis of the exponential stability, theℓ2-ℓ∞ performance of

the systems as well as the existence of the desired PIO, respectively. Section IV provides a simulation

example and Section V gives the conclusion of this paper.
Notation. The notation in this paper is standard except where otherwise stated.Z− denotes the set

of all nonpositive integers andN represents the set of all nonnegative integers, respectively. The symbol

δ(m,n) denotes the Kronecker delta function that equals1 (whenm = n) and equals0 (whenm 6= n),

and the function mod(u, v) means the unique non-negative remainder on division of the integeru by the
positive integerv. In particular, we denoteN , {1, 2, . . . , n}.
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II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following discrete-time system with mixed time-delays:


































x(k + 1) =Ax(k) +B
∞
∑

d=1

̺dx(k − d) +Mv(k)

+Dx
(

k − ς(k)
)

z(k) =Hx(k)

x(j) =ϕ(j), ∀j ∈ Z
−

(1)

wherex(k) ∈ R
nx is the state vector,z(k) ∈ R

nz is the output vector to be estimated, andv(k) ∈ R
nv

is the exogenous disturbance input belonging toℓ2[0,+∞). ϕ(j) is a given initial condition sequence.A,

B, D, M andH are known real constant matrices with appropriate dimensions.
Assumption 1:The positive integerς(k) satisfies

ςm 6 ς(k) 6 ςM , k ∈ N

whereςm and ςM are known positive integers.

Assumption 2:The constants̺ d > 0 (d = 1, 2, . . .) satisfy the following convergence condition:

¯̺ :=

∞
∑

d=1

̺d 6

∞
∑

d=1

d̺d < +∞. (2)

Remark 1: In the considered system (1), the positive integerς(k) represents the discrete time-varying

delay and the term
∑

∞

d=1 ̺dx(k− d) describes the infinitely distributed delay in the form of discrete-time
case. The convergence condition in Assumption 2 is providedto guarantee the convergence of both the

termB
∑

∞

d=1 ̺dx(k − d) and the Lyapunov functional presented later.

A. Communication Network

It is assumed that the system information is collected byn sensors and the corresponding measurement
on sensori is

yi(k) = Cix(k) + Fiw(k), i ∈ N (3)

where yi(k) ∈ R
ny and w(k) ∈ R

nw belonging toℓ2[0,+∞) are the measurement output and the

measurement noise, respectively.Ci andFi (i ∈ N) are known real constant matrices with appropriate
dimensions.

For presentation clarity, we denote

y(k) ,
[

yT1 (k) yT2 (k) · · · yTn (k)
]T

C ,
[

CT
1 CT

2 · · · CT
n

]T

F ,
[

F T
1 F T

2 · · · F T
n

]T

.

Then, the measurement outputs of system (1) can be rewrittenas the following compact form:

y(k) = Cx(k) + Fw(k). (4)
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Fig. 1: State estimation under Round-Robin protocol.

As shown in Fig. 1, there aren sensors to transmit their measurements to the state observer via
the communication network. However, due to the limited communication capacity of the network, data

collision might occur in case of simultaneous transmissions of large amount of data which, in turn, leads

to many adverse network-induced phenomena (e.g. fading measurements, data disorder and dropouts). In
view of this, a periodical scheduling scheme, namely, the RRP, is adopted here to orchestrate the data

transmissions.

Let y̌i(k) denote the measurement of theith sensor after transmission with a zero-order holder (ZOH)
strategy. The updating of̌yi(k) under RRP can be written as

y̌i(k) =

{

yi(k), if i = τ(k)

y̌i(k − 1), otherwise
(5)

whereτ(k) , mod(k − 1, n) + 1 (τ(k) ∈ N) represents the selected sensor at time instantk.

Denotingy̌(k) =
[

y̌T1 (k) y̌T2 (k) · · · y̌Tn (k)
]T

, we can further express the actually received measure-

ment y̌(k) as

y̌(k) = Ψτ(k)y(k) + (I −Ψτ(k))y̌(k − 1) (6)

whereΨi , diag{δ(i, 1), δ(i, 2), · · · , δ(i, n)} andδ(·, ·) ∈ {0, 1} is the Kronecker delta function.

Remark 2:The so-called RRP has been widely deployed in industry owingto its distinct merits in

improving the network utilization and reducing the communication burden [9], [30], [35]. Nevertheless,
the RRP is also a potential factor contributing to the deterioration of system performance due to the

orchestration of the data transmission order and the changeof the update rule. According to the scheduling

scheme of RRP, at each transmission instant, only one sensorgains access to the communication network
and sends corresponding measurement data to the observer. In view of this, a ZOH strategy is adopted in

this paper with hope to make the best utilization of the received measurements.
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Letting η(k) ,
[

xT (k) y̌T (k − 1)
]T

andϑ(k) ,
[

vT (k) wT (k)
]T

, the system (1) with the RRP can

be reformulated as follows:














































η(k + 1) =Aτ(k)η(k) + B

∞
∑

d=1

̺dη(k − d)

+ Dη
(

k − ς(k)
)

+ Mτ(k)ϑ(k)

y̌(k) =Cτ(k)η(k) + Fτ(k)ϑ(k)

z(k) =H η(k)

η(j) =ϕ̆(j), ∀j ∈ Z
−

(7)

whereϕ̆(j) ,
[

ϕT (j) 01×nny

]T

and

Aτ(k) ,

[

A 0nx×nny

Ψτ(k)C I −Ψτ(k)

]

Mτ(k) ,

[

M 0nx×nw

0nny×nv
Ψτ(k)F

]

Cτ(k) ,
[

Ψτ(k)C I −Ψτ(k)

]

Fτ(k) ,
[

0nny×nv
Ψτ(k)F

]

B ,

[

B 0nx×nny

0nny×nx
0nny×nny

]

D ,

[

D 0nx×nny

0nny×nx
0nny×nny

]

H ,
[

H 0nz×nny

]

.

B. The proportional-integral observer

For the purpose of estimating the states of the system (7), weconstruct a token-dependent PIO of the

following form:


























































η̂(k + 1) =Aτ(k)η̂(k) + B

∞
∑

d=1

̺dη̂(k − d)

+ D η̂
(

k − ς(k)
)

+ LI
τ(k)ζ(k)

+ LP
τ(k)

(

y̌(k)− Cτ(k)η̂(k)
)

ζ(k + 1) =ζ(k) +Kτ(k)

(

y̌(k)− Cτ(k)η̂(k)
)

ẑ(k) =H η̂(k)

η̂(j) =0, ∀j ∈ Z
−

(8)

where η̂(k) ∈ R
nη with nη = nx + nny is the estimate ofη(k), ẑ(k) ∈ R

nz is the estimate ofz(k), and

ζ(k) ∈ R
nζ is a vector representing the integral of the weighted outputestimation error.LP

τ(k), L
I
τ(k) and

Kτ(k) are the observer gain matrices to be designed.
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Remark 3: It should be emphasized that, different from the conventional Luenberger observer, PIO can

not onlyutilize the current information in the proportional termbut alsoexploit the historical information

in the integral term. In addition, the PIO presented in (8), whose gains are related to the order of data
transmission, is accomplished to cope with the impact from the protocol-induced periodic nature on the

observer design. More specifically, the periodic scheduling behavior of the RRP is reflected in the observer

structure by the token-dependent matricesLP
τ(k), L

I
τ(k) andKτ(k), which can be obtained by solving a set

of linear matrix inequalities (LMIs) relating to the periodic scheduling signalτ(k).
Letting η̃(k) , η(k)− η̂(k) and z̃(k) , z(k)− ẑ(k), we obtain the estimation error dynamics from (7)

and (8) as follows:














































η̃(k + 1) =
(

Aτ(k) − LP
τ(k)Cτ(k)

)

η̃(k)− LI
τ(k)ζ(k)

+ B

∞
∑

d=1

̺dη̃(k − d) + D η̃
(

k − ς(k)
)

+
(

Mτ(k) − LP
τ(k)Fτ(k)

)

ϑ(k)

z̃(k) =H η̃(k)

η̃(j) =ϕ̆(j), ∀j ∈ Z
−.

(9)

Then, by settingξ(k) ,
[

η̃T (k) ζT (k)
]T

, we have the following augmented system:


































ξ(k + 1) =Aτ(k)ξ(k) + B

∞
∑

d=1

̺dξ(k − d)

+Dξ
(

k − ς(k)
)

+Mτ(k)ϑ(k)

z̃(k) =Hξ(k)

ξ(j) =ψ(j), ∀j ∈ Z
−

(10)

where

Aτ(k) ,

[

Aτ(k) − LP
τ(k)Cτ(k) −LI

τ(k)

Kτ(k)Cτ(k) I

]

Mτ(k) ,

[

Mτ(k) − LP
τ(k)Fτ(k)

Kτ(k)Fτ(k)

]

B ,

[

B 0nη×nζ

0nζ×nη
0nζ×nζ

]

, ψ(j) ,

[

ϕ̆(j)

0nζ×1

]

D ,

[

D 0nη×nζ

0nζ×nη
0nζ×nζ

]

, H ,
[

H 0nz×nζ

]

.

For facilitating the subsequent analysis, the definition ofexponential stability is given as follows.
Definition 1: The augmented system (10) withϑ(k) = 0 is said to be exponentially stable if there exist

constantsι > 0 and ǫ ∈ (0, 1) such that

‖ξ(k)‖2 6 ιǫk sup
j∈Z−

‖ψ(j)‖2, ∀k ∈ N. (11)

The aim of this paper is to design aℓ2-ℓ∞ PIO for discrete-time system with mixed time-delays and

RRP scheduling effects such that the following requirements are satisfied simultaneously:
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1) the augmented system (10) withϑ(k) = 0 is exponentially stable;

2) for a given scalarγ > 0 representing disturbance attenuation level and all non-zero ϑ(k), under the

zero-initial condition, the augmented system (10) satisfies the followingℓ2-ℓ∞ performance constraint:

sup
k

√

z̃T (k)z̃(k) < γ

√

√

√

√

∞
∑

k=0

||ϑ(k)||2. (12)

III. M AIN RESULTS

In this section, we first analyze the exponential stability for the augmented system (10). Then, a sufficient

condition is established to meet theℓ2-ℓ∞ performance constraint (12). Finally, the desired PIO gain
matrices are obtained by solving the token-dependent LMIs.

The following lemma is useful for further technical development.

Lemma 1: [29] Let χl ∈ R
nξ with nξ = nη + nζ , scalar constantsml > 0 (l = 1, 2, . . .) and

Z ∈ R
nξ×nξ be a positive semi-definite matrix. The following inequality always holds:

(

∞
∑

l=1

mlχl

)T

Z

(

∞
∑

l=1

mlχl

)

6

(

∞
∑

l=1

ml

)

∞
∑

l=1

mlχ
T
l Zχl.

A. Exponential Stability Analysis

In this subsection, a sufficient condition on the exponential stability of the augmented system (10) is

presented by constructing the token-dependent Lyapunov functional.

Theorem 1:Let the PIO gain matricesLP
i , LI

i andKi (i ∈ N) be given. The augmented system (10)
is exponentially stable withϑ(k) = 0 if there exist positive-definite matricesPi, Q andR such that

Ξi =

[

Ξ11
i ∗

Ξ21
i Ξ22

i

]

< 0 (13)

where

Ξ11
i ,diag{Pi, −Q, −

1

¯̺
R}

Ξ21
i ,

[

Ai B D
]

Ξ22
i ,− P−1

i+1

Pi ,− Pi + ¯̺R + (ςM − ςm + 1)Q

with Pn+1 = P1 for all i ∈ N.

Proof: In order to examine the exponential stability of the augmented system (10), we choose the
following token-dependent Lyapunov functional candidate:

Vτ(k)(k) = V1,τ(k)(k) +
4
∑

j=2

Vj(k) (14)

where

V1,τ(k)(k) ,ξ
T (k)Pτ(k)ξ(k)
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V2(k) ,
k−1
∑

s=k−ς(k)

ξT (s)Qξ(s)

V3(k) ,

k−ςm
∑

t=k−ςM+1

k−1
∑

s=t

ξT (s)Qξ(s)

V4(k) ,

∞
∑

d=1

̺d

k−1
∑

r=k−d

ξT (r)Rξ(r).

Along the trajectory of the system (10) withϑ(k) = 0, the difference ofV1,τ(k)(k) is calculated as

follows:

∆V1,τ(k)(k)

=V1,τ(k+1)(k + 1)− V1,τ(k)(k)

=ξT (k + 1)Pτ(k+1)ξ(k + 1)− ξT (k)Pτ(k)ξ(k)

=
(

Aτ(k)ξ(k) + B

∞
∑

d=1

̺dξ(k − d) +Dξ
(

k − ς(k)
)

)T

× Pτ(k+1)

(

Aτ(k)ξ(k) + B
∞
∑

d=1

̺dξ(k − d) +D

× ξ
(

k − ς(k)
)

)

− ξT (k)Pτ(k)ξ(k)

=ξT (k)
(

AT
τ(k)Pτ(k+1)Aτ(k) − Pτ(k)

)

ξ(k) + 2ξT (k)

×AT
τ(k)Pτ(k+1)B

(

∞
∑

d=1

̺dξ(k − d)

)

+ 2ξT (k)AT
τ(k)

× Pτ(k+1)Dξ
(

k − ς(k)
)

+

(

∞
∑

d=1

̺dξ(k − d)

)T

BT

× Pτ(k+1)B

(

∞
∑

d=1

̺dξ(k − d)

)

+ 2

(

∞
∑

d=1

̺dξ(k − d)

)T

× BTPτ(k+1)Dξ
(

k − ς(k)
)

+ ξT (k − ς(k)
)

DTPτ(k+1)

×Dξ(k − ς(k)
)

. (15)

Furthermore, we also have

∆V2(k)

=V2(k + 1)− V2(k)

=
k
∑

s=k−ς(k+1)+1

ξT (s)Qξ(s)−
k−1
∑

s=k−ς(k)

ξT (s)Qξ(s)

=ξT (k)Qξ(k)− ξT
(

k − ς(k)
)

Qξ
(

k − ς(k)
)

+
k−1
∑

s=k−ς(k+1)+1

ξT (s)Qξ(s)−
k−1
∑

s=k−ς(k)+1

ξT (s)Qξ(s)
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=ξT (k)Qξ(k)− ξT
(

k − ς(k)
)

Qξ
(

k − ς(k)
)

+

k−1
∑

s=k−ςm+1

ξT (s)Qξ(s) +

k−ςm
∑

s=k−ς(k+1)+1

ξT (s)Qξ(s)

−

k−1
∑

s=k−ς(k)+1

ξT (s)Qξ(s)

6ξT (k)Qξ(k)− ξT
(

k − ς(k)
)

Qξ
(

k − ς(k)
)

+

k−ςm
∑

s=k−ςM+1

ξT (s)Qξ(s) (16)

∆V3(k)

=V3(k + 1)− V3(k)

=

k−ςm+1
∑

t=k−ςM+2

k
∑

s=t

ξT (s)Qξ(s)−

k−ςm
∑

t=k−ςM+1

k
∑

s=t

ξT (s)Qξ(s)

=
k−ςm
∑

t=k−ςM+1

(

ξT (k)Qξ(k)− ξT (t)Qξ(t)
)

=(ςM − ςm)ξ
T (k)Qξ(k)−

k−ςm
∑

s=k−ςM+1

ξT (s)Qξ(s). (17)

In addition, based on Lemma 1, it is obtained that

∆V4(k)

=V4(k + 1)− V4(k)

=

∞
∑

d=1

̺d

k
∑

r=k−d+1

ξT (r)Rξ(r)−

∞
∑

d=1

̺d

k−1
∑

r=k−d

ξT (r)Rξ(r)

=¯̺ξT (k)Rξ(k)−
∞
∑

d=1

̺dξ
T (k − d)Rξ(k − d)

6 ¯̺ξT (k)Rξ(k)−
1

¯̺

(

∞
∑

d=1

̺dξ(k − d)

)T

R

(

∞
∑

d=1

̺dξ(k − d)

)

. (18)

By taking (15)-(18) into account, one has

∆Vτ(k)(k)

=∆V1,τ(k)(k) + ∆V2(k) + ∆V3(k) + ∆V4(k)

6ξT (k)
(

AT
τ(k)Pτ(k+1)Aτ(k) + (ςM − ςm + 1)Q+ ¯̺R

− Pτ(k)

)

ξ(k) + ξT (k − ς(k)
)

(

DTPτ(k+1)D −Q
)

× ξ(k − ς(k)
)

+

(

∞
∑

d=1

̺dξ(k − d)

)T
(

BTPτ(k+1)
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× B −
1

¯̺
R
)

(

∞
∑

d=1

̺dξ(k − d)

)

+ 2ξT
(

k − ς(k)
)

DT

× Pτ(k+1)Aτ(k)ξ(k) + 2

(

∞
∑

d=1

̺dξ(k − d)

)T

BT

× Pτ(k+1)Aτ(k)ξ(k) + 2

(

∞
∑

d=1

̺dξ(k − d)

)T

BT

× Pτ(k+1)Dξ
(

k − ς(k)
)

. (19)

For notational convenience, we denote

ℵ1(k) ,







ξ(k)

ξ
(

k − ς(k)
)

∑

∞

d=1 ̺dξ(k − d)






.

Accordingly, it is readily inferred that

∆Vτ(k)(k) 6 ℵT
1 (k)Πτ(k)ℵ1(k). (20)

where

Πτ(k) ,







Π11
τ(k) ∗ ∗

Π21
τ(k) Π22

τ(k) ∗

Π31
τ(k) Π32

τ(k) Π33
τ(k)







Π11
τ(k) ,− Pτ(k) +AT

τ(k)Pτ(k+1)Aτ(k)

+ ¯̺R + (ςM − ςm + 1)Q

Π21
τ(k) ,DTPτ(k+1)Aτ(k)

Π22
τ(k) ,−Q+DTPτ(k+1)D

Π31
τ(k) ,BTPτ(k+1)Aτ(k)

Π32
τ(k) ,BTPτ(k+1)D

Π33
τ(k) ,−

1

¯̺
R + BTPτ(k+1)B.

In the light of Schur Complement Lemma, we conclude from (13)thatΠτ(k) < 0, which further indicates

∆Vτ(k)(k) 6 −λmin(−Πτ(k))‖ξ(k)‖
2. (21)

In what follows, we shall proceed to analyze the exponentialstability of the augmented system (10).
According to the definition ofVτ(k)(k) and (2), we know that

Vτ(k)(k) 6 η1‖ξ(k)‖
2 + η2

k−1
∑

t=k−ςM

‖ξ(t)‖2 + η3 sup
j∈Z−

‖ψ(j)‖2 (22)

where

η1 , λmax(Pτ(k)), η2 , (~̄− ~+ 1)λmax(Q)

η3 , ̺λmax(R), ̺ ,

∞
∑

d=1

d̺d.
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Furthermore, for anyρ > 1, it follows from (21) that

ρk+1Vτ(k+1)(k + 1)− ρkVτ(k)(k)

=ρk+1∆Vτ(k)(k) + ρk+1Vτ(k)(k)− ρkVτ(k)(k)

6ρk+1
(

− λmin(−Πτ(k))‖ξ(k)‖
2
)

+ ρk(ρ− 1)Vτ(k)(k)

6α1(ρ)ρ
k‖ξ(k)‖2 + η3 sup

j∈Z−

‖ψ(j)‖2 + α2(ρ)
k−1
∑

t=k−ςM

ρk‖ξ(t)‖2. (23)

where

α1(ρ) ,− λmin(−Πτ(k))ρ+ (ρ− 1)η1

α2(ρ) ,(ρ− 1)η2.

For any integerθ > 1, taking summation on both sides of (23) from0 to θ− 1 with respect tok yields

ρθVτ(θ)(θ)− Vτ(0)(0)

6α1(ρ)

θ−1
∑

k=0

ρk‖ξ(k)‖2 + η3 sup
j∈Z−

‖ψ(j)‖2

+ α2(ρ)

θ−1
∑

k=0

k−1
∑

t=k−ςM

ρk‖ξ(t)‖2. (24)

Additionally, the last item in (24) can be computed as

θ−1
∑

k=0

k−1
∑

t=k−ςM

ρk‖ξ(t)‖2

6

(

−1
∑

t=−ςM

t+ςM
∑

k=0

+

θ−ςM−1
∑

t=0

t+ςM
∑

k=t+1

+
θ−1
∑

t=θ−ςM

θ−1
∑

k=t+1

)

ρk‖ξ(t)‖2

6
ρςM − 1

ρ− 1

−1
∑

t=−ςM

‖ξ(t)‖2 +
ρ(ρςM − 1)

ρ− 1

θ−1
∑

t=0

ρt‖ξ(t)‖2

+
ρ(ρςM − 1)

ρ− 1

θ−1
∑

t=0

ρt‖ξ(t)‖2. (25)

Then, it follows from (24) and (25) that

ρθVτ(θ)(θ)− Vτ(0)(0)

6α1(ρ)
θ−1
∑

k=0

ρk‖ξ(k)‖2 + η3 sup
j∈Z−

‖ψ(j)‖2 + α2(ρ)

(

ρςM − 1

ρ− 1

−1
∑

t=−ςM

‖ξ(t)‖2

+
ρ(ρςM − 1)

ρ− 1

θ−1
∑

t=0

ρt‖ξ(t)‖2 +
ρ(ρςM − 1)

ρ− 1

θ−1
∑

t=0

ρt‖ξ(t)‖2

)

6β1(ρ)

θ−1
∑

k=0

ρk‖ξ(k)‖2 + β2(ρ) sup
j∈Z−

‖ψ(j)‖2 (26)
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where

β1(ρ) ,α1(ρ) + α2(ρ)
2ρςM+1 − 2ρ

ρ− 1

β2(ρ) ,α2(ρ)ςM
ρςM − 1

ρ− 1
+ η3.

Sinceβ1(1) = −λmin(−Πτ(k)) < 0 and limρ→∞ β1(ρ) = +∞, we can infer that there exists a scalar
γ > 1 such thatβ1(γ) = 0, which implies that

γθVτ(θ)(θ)− Vτ(0)(0) 6 β2(γ) sup
j∈Z−

‖ψ(j)‖2. (27)

Noting

Vτ(0)(0) 6 η̄ sup
j∈Z−

‖ψ(j)‖2 (28)

with

η̄ ,(ςM + 2)max{η1, η2, η3},

and

γθVτ(θ)(θ) > λmin(Pτ(θ))γ
θ‖ξ(θ)‖2, (29)

we obtain

‖ξ(θ)‖2 6
η̄ + β2(γ)

λmin(Pτ(θ))γθ
sup
j∈Z−

‖ψ(j)‖2

=λπθ sup
j∈Z−

‖ψ(j)‖2 (30)

with

λ ,
η̄ + β2(γ)

λmin(Pτ(θ))
, π ,

1

γ
.

Consequently, according to Definition 1, it is easy to conclude that the augmented system (10) is

exponentially stable, which completes the proof.

B. ℓ2-ℓ∞ Performance Analysis

In this subsection, we shall give a sufficient condition to analyze theℓ2-ℓ∞ performance of the system

(10) under the zero initial condition.

Theorem 2:Let the PIO gain matricesLP
i , LI

i , Ki (i ∈ N) and the disturbance attenuation levelγ > 0

be given. The system (10) is exponentially stable and satisfies theℓ2-ℓ∞ performance constraint (12) for

all non-zeroϑ(k) under the zero-initial condition if there exist positive-definite matricesPi, Q andR such

that






















Θi =

[

Θ11
i ∗

Θ21
i Ξ22

i

]

< 0 (31a)

Φi =

[

−Pi ∗

H −I

]

< 0 (31b)
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where

Θ11
i ,diag{Pi, −Q, −

1

¯̺
R, −γ2I}

Θ21
i ,

[

Ai B D Mi

]

with Pn+1 = P1 for all i ∈ N.

Proof: It is obvious thatΘi < 0 impliesΞi < 0, hence it follows from Theorem 1 that the augmented
system (10) is exponentially stable.

Next, let us analyze theℓ2-ℓ∞ performance of the augmented system (10) with any non-zeroϑ(k). For

this purpose, define the following index functional:

J (k) = Vτ(k)(k)− γ2
k−1
∑

s=0

ϑ(s)Tϑ(s). (32)

Under the initial conditionξ(0) = 0, we can easily haveV (0) = 0, which results in

J (k) =Vτ(k)(k)− γ2
k−1
∑

s=0

ϑT (s)ϑ(s)

=

k−1
∑

s=0

(

∆Vτ(s)(s)− γ2ϑT (s)ϑ(s)
)

+ V (0)

6

k−1
∑

s=0

(

ℵT
1 (s)Πτ(s)ℵ1(s) + 2ξT (s)AT

τ(s)Pτ(s+1)

×Mτ(s)ϑ(s) + 2

(

∞
∑

d=1

̺dξ(s− d)

)T

BT

× Pτ(s+1)Mτ(s)ϑ(s) + 2ξT
(

k − ς(s)
)

DT

× Pτ(s+1)Mτ(s)ϑ(s) + ϑT (s)MT
τ(s)Pτ(s+1)

×Mτ(s)ϑ(s)− γ2ϑT (s)ϑ(s)
)

=
k−1
∑

s=0

ℵT
2 (s)Υτ(s)ℵ2(s) (33)

where

ℵ2(k) ,











ξ(k)

ξ
(

k − ς(k)
)

∑

∞

d=1 ̺dξ(k − d)

ϑ(k)











Υτ(k) ,











Π11
τ(k) ∗ ∗ ∗

Π21
τ(k) Π22

τ(k) ∗ ∗

Π31
τ(k) Π32

τ(k) Π33
τ(k) ∗

Υ41
τ(k) Υ42

τ(k) Υ43
τ(k) Υ44

τ(k)











Υ41
τ(k) ,MT

τ(k)Pτ(k+1)Aτ(k)

Υ42
τ(k) ,MT

τ(k)Pτ(k+1)D



FINAL 15

Υ43
τ(k) ,MT

τ(k)Pτ(k+1)B

Υ44
τ(k) ,MT

τ(k)Pτ(k+1)Mτ(k) − γ2I.

By virtue of Schur Complement Lemma, it is concluded from (31a) thatJ (k) < 0, which further

indicates that

ξT (k)Pτ(k)ξ(k) = V1,τ(k)(k)

<Vτ(k)(k) < γ2
k−1
∑

s=0

ϑT (s)ϑ(s). (34)

Furthermore, (31b) implies

z̃T (k)z̃(k) = ξT (k)HTHξ(k) < ξT (k)Pτ(k)ξ(k). (35)

Combining with (34), it is easy to see that

z̃T (k)z̃(k) < γ2
k−1
∑

s=0

ϑT (s)ϑ(s). (36)

Taking both the supremum of̃zT (k)z̃(k) over k and the limit of
∑k−1

s=0 ϑ
T (s)ϑ(s) with k → ∞, we

obtain

sup
k

z̃T (k)z̃(k) < γ2
∞
∑

s=0

ϑT (s)ϑ(s) (37)

and thus

sup
k

√

z̃T (k)z̃(k) < γ

√

∑∞

k=0
||ϑ(k)||2 (38)

for all non-zeroϑ(k), which completes the proof.

C. PIO Design

In this subsection, a sufficient condition is given for the existence of the desired PIO that is capable of
ensuring both the exponential stability and theℓ2-ℓ∞ performance.

Theorem 3:Let the disturbance attenuation levelγ > 0 be given. The system (10) is exponentially

stable and satisfies theℓ2-ℓ∞ performance constraint (12) for all non-zeroϑ(k) under the zero-initial

condition if there exist positive-definite matriceśPi, P̀i (i ∈ N), Q́, Q̀, Ŕ, R̀ and matriceśLP
i , ĹI

i , K̀i

(i ∈ N) such that






















Θ́i =

[

Θ́11
i ∗

Θ́21
i Θ́22

i

]

< 0 (39a)

Φi =

[

−Pi ∗

H −I

]

< 0 (39b)

where

Θ́11
i ,diag{P̌i, −Q, −

1

¯̺
R, −γ2I}
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Θ́21
i ,

[

Ái B́i D́i Ḿi

]

Θ́22
i ,diag{−Ṕi+1, −P̀i+1}

Ái ,

[

Ṕi+1Ai − ĹP
i Ci −ĹI

i

K̀iCi P̀i+1

]

Ḿi ,

[

Ṕi+1Mi − ĹP
i Fi

K̀iFi

]

B́i ,

[

Ṕi+1B 0nη×nζ

0nζ×nη
0nζ×nζ

]

D́i ,

[

Ṕi+1D 0nη×nζ

0nζ×nη
0nζ×nζ

]

Pi ,diag{Ṕi, P̀i}, Q , diag{Q́, Q̀}

R ,diag{Ŕ, R̀}, P̌i , diag{Ṕi, P̀i}

Ṕi ,− Ṕi + ¯̺Ŕ + (ςM − ςm + 1)Q́

P̀i ,− P̀i + ¯̺R̀ + (ςM − ςm + 1)Q̀

with Ṕn+1 = Ṕ1 and P̀n+1 = P̀1 for all i ∈ N. In addition, the desired PIO gains are determined by

LP
i =Ṕ−1

i+1Ĺ
P
i

LI
i =Ṕ

−1
i+1Ĺ

I
i

Ki =P̀
−1
i+1K̀i, (i ∈ N). (40)

Proof: Performing the congruence transformation to the inequality (31a) by diag{I, I, I, I, Ṕi+1, P̀i+1},

we have

Θ̀i =

[

Θ11
i ∗

Θ̀21
i Θ́22

i

]

< 0 (41)

where

Θ̀21
i ,

[

Ṕi+1Ai − Ṕi+1L
P
i Ci −Ṕi+1L

I
i Ṕi+1B

P̀i+1KiCi P̀i+1 0

0 Ṕi+1D 0 Mi − Ṕi+1L
P
i Fi

0 0 0 P̀i+1KiFi






.

Utilizing the variable substitution

ĹP
i =Ṕi+1L

P
i

ĹI
i =Ṕi+1L

I
i

K̀i =P̀i+1Ki, (i ∈ N) (42)

we conclude that (41) is ensured by (39a). Thereafter, it is verified that the desired PIO gains are obtained

by (40), which completes the proof.
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Remark 4: In this paper, aℓ2-ℓ∞ PIO has been first proposed to handle the state estimation issue for a

class of mixed time-delay systems under RRP. By constructing a token-dependent Lyapunov functional,

sufficient conditions have been derived in Theorems 1-2 to guarantee the exponential stability andℓ2-ℓ∞
performance of the estimation error system. In addition, the gains of the desired PIO has been obtained

in Theorem 3 by solving a set of token-dependent LMIs.

Remark 5:Note that, the PIO design scheme provided is in form of LMI techniques. As is well
known, the algorithm based on the standard LMI system has a polynomial-time complexity. That is, the

numberS(ε) of flops needed to compute anε-accurate solution is bounded byO(ST 3 log(V/ε)), where

S is the total row size of the LMI system,T is the total number of scalar decision variables,V is a

data-dependent scaling factor, andε is the relative accuracy set for algorithm [43]. For the investigated
discrete-time system (1) with the RRP (5), the variable dimensions can be seen fromx(k) ∈ R

nx, y(k) ∈

R
nny , z(k) ∈ R

nz and ζ(k) ∈ R
nζ . From Theorem 3, we haveS = 4nx + 4nny + 4nζ + nz and

T = 2n2
x+4nynx+3(nny)

2+(nnζ+n)nny+3n2
ζ+(nx+ny)nζ+1. Therefore, the computational complexity

of the LMIs-based PIO design algorithm with regard to the RRPcan be represented asO(n7
x+n

7n7
y+n

7
ζ),

which depends polynomially on the number of sensors and the variable dimensions.

Remark 6:Our main results are distinguished from some existing ones by the following features: 1)
the problem investigated in this paper is novel in the sense that the PIO is, for the first time, designed for

a class of mixed time-delay systems under RRP; and 2) the token-dependent PIO is novel, which reflects

the protocol-induced periodic nature in the observer structure, and thus reduces the conservatism in the
design procedure.

IV. NUMERICAL SIMULATION

0 10 20 30 40 50 60 70 80 90 100
Time(k)
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0

0.5

1
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2

Fig. 2: Trajectories of statex1(k) and its estimation.

In this section, we shall propose a simulation example for the sake of illustrating the validity and

superiority of the designed PIO.
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Fig. 3: Trajectories of statex2(k) and its estimation.
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Fig. 4: Trajectories of the state estimation errorη̃(k) with PIO.

Consider a target system given by (1) with corresponding parameters chosen as follows:

A =

[

0.59 0.42

0.31 0.34

]

, B =

[

0.42 0.53

0.04 0.21

]

D =

[

0.18 0.11

−0.02 0.1

]

, M =

[

0.12

−0.08

]

, H =

[

1.41

2.82

]T

.

In addition, we assume thatn = 2 and the output measurements are modeled by the following parameters:

C1 =
[

0.97 4.1
]

, F1 = 0.25
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Fig. 5: Trajectories of the state estimation errorη̃(k) with Luenberger observer.
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Fig. 6: Trajectory of the output estimation errorz̃(k).

C2 =
[

2.49 1.41
]

, F2 = 0.41.

In the simulation, the external disturbance and the measurement noise are set to bev(k) = 0.5e−0.2k cos(k)

andw(k) = 4 sin(k)
k+1

, respectively. The initial conditions are taken asx(j) =
[

−0.4 0.4
]T

(j ∈ Z
−). The

constant̺ d = 2−(d+3), it can be easily verified that̺̄ =
∑

∞

d=1 ̺d = 2−4 <
∑

∞

d=1 d̺d = (24 ln 2)−1 < ∞,

which means that the convergence condition (2) is met. The time-varying delay is chosen asς(k) =

2 + cos(kπ), from which we can easily check thatςm 6 ς(k) 6 ςM with ςm = 1 and ςM = 3.

With the aid of MATLAB software (with the YALMIP 3.0), the solutions to LMIs (39a) and (39b) can
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be obtained immediately as follows:

Ṕ1 =











3.2962 0.2347 0.5623 0.2718

0.2347 9.2982 1.5477 0.9262

0.5623 1.5477 6.3123 1.5146

0.2718 0.9262 1.5146 3.6667











, P̀1 = 8.1585

Ṕ2 =











1.8418 1.2401 0.2896 0.3634

1.2401 8.0955 0.7533 0.8671

0.2896 0.7533 5.1256 1.8656

0.3634 0.8671 1.8656 5.8449











, P̀2 = 2.9232

Q́ =











0.7263 1.0394 0.0607 0.0511

1.0394 2.4875 0.2151 0.2238

0.0607 0.2151 1.5083 0.4884

0.0511 0.2238 0.4884 1.1913











, Q̀ = 0.5950

Ŕ =











0.4197 0.1376 0.0095 0.0099

0.1376 0.6690 0.0032 0.0044

0.0095 0.0032 0.4370 0.0020

0.0099 0.0044 0.0020 0.4349











, R̀ = 0.4298.

By virtue of the above solutions, the desired PIO gains can becalculated as follows:

LP
1 =











0.2226 −0.0043

0.1388 −0.0021

0.9986 2.7676

−0.0002 1.0001











, LI
1 =











−0.0047

−0.0025

−0.0141

−0.0011











LP
2 =











−0.0057 0.2450

−0.0058 0.1421

1.0002 1.9382

−0.0037 0.9988











, LI
2 =











−0.0042

−1.4034

−4.7197

−0.0085











K1 =
[

0.05962 0.2539
]

, K2 =
[

0.1562 0.0118
]

.

TABLE I: Minimal disturbance attenuation level for

utilizing Luenberger observer and PIO

PIO Luenberger observer

γ̄ 1.0638 1.3534

Note that the disturbance attenuation levelγ is predetermined in Theorems 2-3. In fact,γ can be

optimized by replacingγ2 with γ̂ in Theorems 2-3, provided that it is not predetermined. Denote the
optimizedγ as γ̄. Then, the minimal disturbance attenuation level for utilizing Luenberger observer and

PIO are provided in Table I. It can be concluded from Table I that a smaller disturbance attenuation
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level can be achieved by utilizing PIO, which implies that PIO has stronger robustness than Luenberger

observer.

In order to showcase the advantage of PIO, we design a Luenberger observer for the same system and
the gains of Luenberger observer are calculated as follows:

L1 =











0.2825 1.5060

0.1694 1.6548

1.0023 2.1018

−5.8446 1.0009











, L2 =











−4.0438 0.2406

−4.1599 0.1414

1.0043 4.7097

2.0904 1.0036











.

For the sake of further verifying our theoretical results, the numerical simulation results are presented

in Figs. 2-6. The state trajectories and their estimates aredepicted in Figs. 2-3. Fig. 4 and Fig. 5 plot

the state estimation error with PIO and Luenberger observer, respectively. It is easy to observe that the
PIO proposed in this paper outperforms Luenberger observeradopted in most literature for estimation

performance. Moreover, the output estimation error is described in Fig. 6. From the above simulation

results, we can confirm that the desired PIO performs extremely well.

V. CONCLUSION

In this paper, we have dealt with theℓ2-ℓ∞ PIO design problem for a kind of linear discrete-time systems
with mixed time-delays and RRP scheduling effects. The RRP has been employed to orchestrate the signal

transmission in the measurement channel (sensor-to-observer) with hope to prevent data transmission

conflicts availably and allocate communication resources reasonably. A novel PIO has been developed

whose gains depend on the data transmission order regulatedby the RRP. By constructing a token-
dependent Lyapunov functional, sufficient conditions havebeen established for analyzing the exponential

stability and ℓ2-ℓ∞ performance of the estimation error dynamics. The desired PIO gains have been

obtained in terms of the solutions to LMIs. In the end, the validity of the proposed PIO design approach
has been illustrated via a simulation example. Future research topics would be the extension of the main

results in this paper to 1) more complicated NSs under different communication protocols [9], [30], [33];

2) the investigation on how the number of integrators in PIO affects the estimation performance and 3)
the improvement of the state estimation performance by using some latest optimization algorithms [23],

[24].
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