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Di Zhao, Zidong Wang, Guoliang Weiand Fuad E. Alsaadi

Abstract

In this paper, the design problem 6f-¢., proportional-integral observer (P1O) is investigated for a class of
discrete-time systems with mixed time-delays. The mixed time-delays comprise both the discrete time-varying delays
and infinitely distributed delays. The Round-Robin protocol (RRP) is employed to schedule the data transmissions
from the sensors to the observer so as to mitigate the communication burden and prevent the data collisions. A
novel PIO is developed whose observer gain is dependent on the data transmission order as a reflection of the
effects induced by the RRP scheduling. By resorting to the token-dependent Lyapunov functional and the matrix
inequality technique, the desired PIO is designed with exponentially stable error dynamics of the state estimation
and guaranteed,-/., disturbance attenuation/resistance capacity. Finally, a simulation example is exploited to
verify the validity of the proposed observer design method.

Index Terms

Proportional-integral observer, Round-Robin protocol, mixed time-delays,, performance.

I. INTRODUCTION

OR SEVERAL decades, thg-/,, state estimation method has attracted persistent research attention
F since its inception in [8], [36] because of its great potential in assuring the disturbance rejection
property of complex dynamic systems [38]. So far, th€ ., estimation/control problems have found wide
applications in various areas such as aerospace, maneuvering target tracking, industrial process control
and so on [37]. Generally speaking, the/., state estimation problem aims to develop a state estimator
with which the/;-¢, (energy-to-peak) gain from the disturbance input to the estimation error is less than
a prespecified level. From a technical perspective, there are essentially two methods for designing the
l5-l, state estimators, namely, the Riccati difference/differential equation method and the linear matrix
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inequality method. So far, a large number of important tsduhve appeared on tlig /., state estimation
problems for various systems such as time-delay systemsplea networks, nonlinear systems, neural
networks and sensor networks, see e.g. [12], [26], [27]], [BB] and the references therein.

It is well recognized that, in classical control systems thtegral actions are able to eliminate the
steady-state error of the controlled systems and enhaedeghnsitivity to parameter changes and system
noises [1], [2], [28], [41], [42]. Similarly, by introductnan additional integral term of the output estimation
error, the so-called proportional-integral observer (Fh@s been developed in order to achieve the desired
accuracy and robustness [3]. In particular, the integraht@ PIO can be regarded as an extension of the
integral action in the traditional proportional-integ@ntroller, which provides certain extra degree of
freedom for the observer design. So far, the PIOs have begselyv@pplied in reaching adequate tradeoff
between the performance indices of robustness, distuebegjection and loop recurrence for a range
of complex dynamic systems [16], [32]. For instance, the RH3 been designed in [6] for a class of
multiple-input-multiple-output linear systems in theargst of simultaneously estimating the system states
and the unknown inputs, and the PIO design problem has beestigated in [39] for Takagi-Sugeno
fuzzy system with hope to estimate the actuator and senstis fa

As is well known, the phenomenon of time-delays appearsuéstiy in practical engineering systems
because of a variety of reasons such as equipment aging amghtission lags [20], [38]. Time-delays
serve as one of the major sources for performance deteonratd system instability. Consequently, time-
delay systems have been attracting an ever-increasingrobsmterest and abundant theoretical/empirical
literature has been available on examining the impact oéitelays on the dynamical behaviors of the
underlying systems [14], [43]. According to the patternsyttbehave, the time-delays can be roughly
categorized into discrete-time delays and distributecetdalays [29]. It should be mentioned that it is
guite common for modern industrial systems to exhibit nplattypes of time-delays (also known as mixed
delays) due to the complexity and large scale of their stinest Accordingly, much research attention
has recently been devoted to the analysis and synthesikprsiior systems with mixed time-delays, see
[18], [22], [25] for some representative work. Up to dateg O design problem in presence of mixed
time-delays has not been fully investigated owing mainlyhe lack of appropriate methodologies, and
such a situation inspires our current investigation in ptdebridge the gap.

Networked systems (NSs) are well known for their outstagdiapability in sharing resources and
improving system diagnosability as well as maintainapiland have therefore been successfully ap-
plied in key areas ranging from intelligent transportatiarrospace, industrial control, telemedicine to
robotic teleoperation [4], [5], [10], [11]. In NSs, all theystem components (e.g. sensors, actuators,
controllers/filters) act as network nodes that are condeci® shared communication networks, and the
data is transmitted by using network-based communicatchrtology [13], [15], [17], [21], [40], [45].

In engineering practice, the data collision is often undable due mainly to the limited bandwidth
and service capacity of the network, and the resulting ne¢waluced phenomena have placed great
challenges on the control/filtering problems of NSs. Andffe way of avoiding/mitigating data collision
is to deploy the communication protocols to regulate thasmaission orders among the network nodes,
and some typical communication protocols are Round-Robatopol (RRP), Try-Once-Discard protocol
and stochastic communication protocol [7], [19], [33], 4% should be noted that the adoption of
communication protocols in NSs gives rise to essentialadilfies in analyzing/synthesizing NSs, for
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example, the establishment of an appropriate mathematiodlel to depict the scheduling mechanism
of communication protocols and the development of a thexmletramework for revealing the impact of
scheduling behavior on the control/filtering performance.

In recent years, the RRP (also known as the token ring prhtbes been utilized extensively in the
fields of communication and signal processing [30], [43]e RRP refers to a static scheduling protocol
in which the nodes are assigned the access to transmissiordar to a preset circular order. To be more
specific, under the scheduling of the RRP, the node thatmbthie access token at current transmission
instant will pass the “token” to the next node at next trarssioin instant. When the data transmission of
the last node is completed, the access token will be handedtowvthe first node. Up to date, the state
estimation problems under RRP have begun to stir some ods@aerest and preliminary results have
been available in the literature [9], [35]. For instances #tate estimation problem under RRP has been
studied for complex networks [43], genetic regulatory rets [34], and neural networks [31]. In fact,
most of the existing results on the RRP-based state estimiasues have focused on the design of Kalman
filters or Luenberger observers. When it comes to the RRBebB$O design problem, the corresponding
results have been very few (if not none) due mainly to thegased complexity and computation burden
caused by the “periodic” nature of the RRP. With this in mimet aim to deal with the PIO design
problem for a class of discrete-time systems with mixed tdakays under RRP.

Based on the above discussions, it can be summarized th#te¥)-/.,, state estimation approach
serves as a powerful means in improving robustness of theerayand restraining the effect from the
energy-bounded disturbance input on the estimation earut; 2) the PIO design problem under RRP is
of both practical importance and theoretical significariceziew of this, we endeavor to design &/
PIO for systems with mixed time-delays under RRP, which issarerging research topic that exhibits
substantial difficulties in dealing with the complexity imbedding the RRP in the PIO design procedure
as well as in analyzing the stability ade¢-/., performance of the estimation error dynamics.

The main contributions of this paper are highlighted asofed: 1) a PIO design problem is, for the
first time, proposed for a class of systems with mixed tinkeydaunder the RRP; 2) a token-dependent
PIO is designed to cope with the effects of the RRP schedoéhgvior on the estimation performance;
and 3) a novel Lyapunov functional, which is dependent orotber of data transmission, is constructed
to facilitate the analysis of the exponential stability atte /,-/,, performance of the estimation error
dynamics The remainder of this paper is arranged as follows. Settimnmulates the PIO design problem
for systems with mixed time-delays and presents the mattieshadescription of the RRP. In Section I,
sufficient conditions are derived for the analysis of theomential stability, the/,-/,, performance of
the systems as well as the existence of the desired PI1O,atasge Section IV provides a simulation
example and Section V gives the conclusion of this paper.

Notation. The notation in this paper is standard except where otherstated.Z~ denotes the set
of all nonpositive integers and represents the set of all nonnegative integers, respgctiiee symbol
d(m,n) denotes the Kronecker delta function that equa(svhenm = n) and equal®) (whenm # n),
and the function mod:, v) means the unique non-negative remainder on division ofritegeru by the
positive integer. In particular, we denotét = {1, 2, ..., n}.
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[I. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following discrete-time system with mixedehselays:

v(k+1) =Az(k) + B ax(k — d) + Mv(k)
d=1
+ Dz (k — ¢(k)) (1)

z(k) =Hx(k)

x(j) =¢(j), VjeZ"
wherex(k) € R is the state vector;(k) € R": is the output vector to be estimated, amd:) € R
is the exogenous disturbance input belongindg,t6, +o0c). ¢(j) is a given initial condition sequencd,
B, D, M and H are known real constant matrices with appropriate dimeissio

Assumption 1:The positive integet (k) satisfies

§m<§(k’)<§M, keN

whereg,, andg,,; are known positive integers.

Assumption 2:The constantg, > 0 (d =1, 2, ...) satisfy the following convergence condition:
Z 04 < Z dog < +00. (2)
d=1 d=1

Remark 1:In the considered system (1), the positive integét) represents the discrete time-varying
delay and the tern} 7, o4z(k — d) describes the infinitely distributed delay in the form ofadéte-time
case. The convergence condition in Assumption 2 is providegluarantee the convergence of both the
term B )", osx(k — d) and the Lyapunov functional presented later.

A. Communication Network

It is assumed that the system information is collectedilsensors and the corresponding measurement
on sensor is

yi(k) = Cix(k) + Fw(k), i € N (3)

where y;(k) € R™ and w(k) € R"™ belonging to/;[0,+o0c) are the measurement output and the
measurement noise, respectively. and F; (i € 9t) are known real constant matrices with appropriate
dimensions.

For presentation clarity, we denote

r T
y(k) 2 |yT (k) oF (k) - yl(k)]
r T
caler or ... cﬂ
Falpr pro... FT}T
1 2 n .

Then, the measurement outputs of system (1) can be rewattg¢he following compact form:

y(k) = Cx(k) + Fw(k). (4)
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Fig. 1: State estimation under Round-Robin protocol.

As shown in Fig. 1, there are sensors to transmit their measurements to the state obsée/e
the communication network. However, due to the limited camiation capacity of the network, data
collision might occur in case of simultaneous transmissiohlarge amount of data which, in turn, leads
to many adverse network-induced phenomena (e.g. fadingurgaents, data disorder and dropouts). In
view of this, a periodical scheduling scheme, namely, thé®>RR adopted here to orchestrate the data
transmissions.

Let 3;(k) denote the measurement of tith sensor after transmission with a zero-order holder (ZOH)
strategy. The updating af;(k) under RRP can be written as

§ yi(k), if i =71(k)
gi(k) = § : (5)
y;(k — 1), otherwise
wherer(k) £ modk — 1,n) + 1 (7(k) € M) represents the selected sensor at time ingtant
T
Denotingy (k) = [ng(k) gl (k) - gfl(k:)} , we can further express the actually received measure-
menty (k) as
y(k) = Vrgy(k) + (I = Wrgn)g(k — 1) (6)

whereV; = diag{d(i, 1),6(4,2),---,(i,n)} andd(-,-) € {0, 1} is the Kronecker delta function.

Remark 2: The so-called RRP has been widely deployed in industry owings distinct merits in
improving the network utilization and reducing the comnuaion burden [9], [30], [35]. Nevertheless,
the RRP is also a potential factor contributing to the detation of system performance due to the
orchestration of the data transmission order and the chaine update rule. According to the scheduling
scheme of RRP, at each transmission instant, only one sgast access to the communication network
and sends corresponding measurement data to the observew of this, a ZOH strategy is adopted in
this paper with hope to make the best utilization of the resgtimeasurements.
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Letting n(k) = [xT(k:) yT(k — 1)} and (k) £ [ T(k) wT(k)]T, the system (1) with the RRP can

be reformulated as follows:
4

n(k+ 1) =g (k) + B _ oan(k — d)

(7)

Where@(])é SOT<j) lenny and

5
=
[[>
b
(=)
3
8
X
3
S
<

_Onnyxnu \I]’T(k‘)F
Gty 2 [UrgnC 1= Urge]

= Onnyxnv \:[]T(k)Fi|

5
I

% é B Onz XNny

_Onny XNy Onny Xnny |

9 Iy D Onzxnny
Onnyxnx Onnyxnny
NG
H = |H Onzxrmy .

B. The proportional-integral observer

For the purpose of estimating the states of the system (7;omstruct a token-dependent PIO of the

following form: )

Ak + 1) =gy +%ngnk‘ )

+ 71(k — (k:)) + LIy C(k)
+ L (5(k) — Gy (k) 8)
C(k+1) =C(k) + Ky (9(k) — Cryii(K))
2(k) =A1(k)
L 70) =0, VjeZ"

where7(k) € R" with n, = n, + nn, is the estimate ofy(k), 2(k) € R+ is the estimate of(k), and
C(k) € R is a vector representing the integral of the weighted ougistimation errorL” (k) Li(k) and
K. are the observer gain matrices to be designed.
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Remark 3:It should be emphasized that, different from the convemtidimenberger observer, PIO can
not onlyutilize the current information in the proportional tebut alsoexploit the historical information
in the integral term. In addition, the PIO presented in (8)oge gains are related to the order of data
transmission, is accomplished to cope with the impact fromprotocol-induced periodic nature on the
observer design. More specifically, the periodic schequﬁehavior of the RRP is reflected in the observer
structure by the token-dependent matruté’& andK ), Which can be obtained by solving a set
of linear matrix inequalities (LMIs) relating to the perlodscheduling signat(k).

Letting 7j(k) = n(k) —n(k) and2(k) £ z(k) — 2(k), we obtain the estimation error dynamics from (7)
and (8) as follows:
(fi(k+ 1) =(g) — LE 3y Crwy) (k) — L (k)

—h@ﬁi&ﬂk—d}+@ﬂk—g%n

d=1
9)
+ (M) = Ly T o) O(k)
(k) =A1(k)
n(j) =¢(j), VjezZ”
T
Then, by setting (k) = [~T(k:) gT(k:)} we have the following augmented system:
( [ee}
E(k +1) =Awé(k) + B Y 0tk —d)
d=1
+DE(k — (k) + Mod(k) (10)
Z(k) =H¢(k)
[ S0)=v(), VjeZ”
where
i P I
Af(k) 2 Q{T(k) - LT(k)CgT(k) —LT(k»)
Koy Gy 1
Moy — LE T
Mgy 2 |0~ Fran <k>]
i (k) F 7 (k)
% On,xn . 2(7
B2 S T Rt
_On<><n7, Ongxng_ Ongxl
DA 9 O,y ., H=2E [% Onzxng} .
_On< XMy On< XnC_

For facilitating the subsequent analysis, the definitioexponential stability is given as follows.

Definition 1: The augmented system (10) wittik) = 0 is said to be exponentially stable if there exist
constants > 0 ande € (0,1) such that

(k) 1? < e sup [p(H)I*, Yk € N. (11)
JEL-
The aim of this paper is to design/a-/., PIO for discrete-time system with mixed time-delays and
RRP scheduling effects such that the following requirememe satisfied simultaneously:
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1) the augmented system (10) wittik) = 0 is exponentially stable;
2) for a given scalaryy > 0 representing disturbance attenuation level and all noo-2€k), under the
zero-initial condition, the augmented system (10) sasdfiee following/s-/., performance constraint:

(F)I[?. (12)

. M AIN RESULTS

In this section, we first analyze the exponential stabilitythe augmented system (10). Then, a sufficient
condition is established to meet thie-¢,, performance constraint (12). Finally, the desired PIO gain
matrices are obtained by solving the token-dependent LMIs.

The following lemma is useful for further technical deveiognt.

Lemma 1: [29] Let x; € R™ with n, = n, + n¢, scalar constantsy, > 0 (I = 1,2, ...) and
Z € R"*" pe a positive semi-definite matrix. The following inequakways holds:

o T o0 o0 o
(z szz) z (z szz) < (zml> Sl Zy.
=1 =1 =1 =1

A. Exponential Stability Analysis

In this subsection, a sufficient condition on the exponéstiability of the augmented system (10) is
presented by constructing the token-dependent Lyapunustitinal.
Theorem 1:Let the PIO gain matrices?, L! and K; (i € M) be given. The augmented system (10)

2

is exponentially stable witl#(k) = 0 if there exist positive-definite matrice’, (7 and R such that

_ = %
=i = [EZm :22] <0 (13)

2

where
Ei” édiag{Pi, —Q, —E_R}
0

Eflé[Ai B D]

—22 -1
B =-P

P2 — P+ oR+ (spr —sm +1)Q

>

with P, = P, for all i € M.
Proof: In order to examine the exponential stability of the augreérgystem (10), we choose the
following token-dependent Lyapunov functional candidate
4

Vit (k) = Vi (k) + Y Vi(k) (14)

Jj=2

where

Vi (k) 2E7(K) Prn & (k)
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Along the trajectory of the system (10) with(k
follows:

~—

= 0, the difference ofV; . (k) is calculated as

AVi k()
=V (k+ 1) = Vi (k)
="k + 1) Py §(k +1) — &7 (k) P& (k)

:(AT(k)g(k:) + BZ 0aé(k — d) + DE(k — g<k>)>T

X Prit1) (AT(k)f(k) +B Z 0a(k —d) +D

X €(k = 5(k)) ) — €7 (k) Pra& ()
=" (k) (AZWPTMAT(@ — Pray )& (k) + 2¢7 (k)

X AL 4 Pre ) (Z 04§ (k — d)) + 267 (k) AT,
X Prit1yDE (I (Z 048 (k — d) ) B'
T
X Prp41)B (Z 0a§(k — d) ) +2 (Z 0§ (k — d))
d=1 1

x BT Pr ity f k‘ + ¢ (k — (k))DTPT(kH)
x DE(k k:)) (15)
Furthermore, we also have

AVy(k)
=Va(k +1) — Va(k)

k k—1

= > @) - D] (5)Qk(s)
s=k—q¢(k+1)+1 s=k—q(k)
=¢" (k)QE(k) — &7 (k — <(k)) Q& (k — (k)

k-1

LY Fees - Y )R

s=k—c¢(k+1)+1 s=k—q(k)+1
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=" (k)QE(k) — " (k — < (k) Q€ (K — <(k))

P Y e ST )
s=h—omt1 s—k—c(k+1)+1

- £7(5)Q¢(s)

<ETRNAE) €7 — 1)) QE s — <)
S o)

AV

—Vg(k+1) Vg(k‘)

- Z (5T<k>@£<k> - £T<t>@g<t>)

~(our — )€ (R)QE(K) — :ff”HgT(s)@g(s)

In addition, based on Lemma 1, it is obtained that

AV, (k)
=Vi(k+1) = Vi(k)

00 k-1
—ng Z " RE() = 0 " (r)RE(r)
d= r=k—d+1 d=1 r=k—d
=o¢" (k)R ngsT k— d)RE(k — d)

d=1

<o¢" (k) ——<ng§k d) R(nggk d).

By taking (15)-(18) into account, one has

AV (k)
=AVi 0 (k) + AVa(k) + AVs(k) + AVy(k)

<€T(k) (Az“(k)PT(kH)AT(k) +(r — sm + 1)Q + 8R
— Prgo JE(R) + €7 (k = (k) (D" Pry D - Q)

x &k — (k) + (Z 0a§(k — d)) (BTPT(k+1)

10

(16)

(17)

(18)
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x B — %R) (i 0a€(k — d)) +2¢" (k — (k) D"

- T
X Prr1)Arané(k) + 2 (Z 0§ (k — d)) B"

d=1

- T
X Pre1)Araé(k) + 2 <Z 0§ (k — d)) B"
=1

x Prgo)DE(k — o(k)). (19)
For notational convenience, we denote
(k)
Ny(k) 2 | &(k— (k)
2?;1 ng(k - d)
Accordingly, it is readily inferred that

AV, (k) < RT (k)L Ry (k). (20)
where
Gl 5
Hrw = HT(k) HT(k) *

L L My
I = = Priey + AT Prks ) Ar)
+oR+ (s —sm +1)Q
124y 2D Pr sy Ar i)
% 2 = Q+ D" Py)D
k) 2B" Prkrny Argey
Hg%k) 2B P, 11D

1
I = — ER + BT Py B.
In the light of Schur Complement Lemma, we conclude from ¢h&j11, ) < 0, which further indicates

AV () < ~Ain(~ T IECR) 2 (21)

In what follows, we shall proceed to analyze the exponemstiability of the augmented system (10).
According to the definition o¥/ (k) and (2), we know that

k—1
Vo (B) S mllE®)P +m2 D 16N+ ns sup ()12 (22)
t=k—cnr JEET

where

M= Amax(Pr)s - M2 2 (B = B4 1) Anax(Q)
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Furthermore, for any > 1, it follows from (21) that

pk+1VT(k+1)(k‘ +1)— kV (k)(
= T AV oy (k) + 0 Vo (K) = p" Ve (F)
< (= Muin (Tl [€CR)I2) + (0 = 1) Voo ()

k—1

ar(p)PF IR + 13 sup [0 (7)1 +az(p) Y PFlE@IP (23)

JEL~

k)

t=k—cnr
where
ai(p) = — Amin(=Irgy)p + (p — 1)m
as(p) é(ﬂ — D).
For any integef > 1, taking summation on both sides of (23) frahto 6 — 1 with respect tat yields

P'Vo)(0) — Vo0 (0)
-1

<ai(p) ) PIEE)I* + ns sup [0 ()]
k=0 jer”

+ as(p) A0l (24)

0—-1 k-1
> PHlIEDI
k=0 t=k—cps
—1  t+smr O—cpr—1 t+sar 0—1 6—1
< YIS >pk||5<t>||2
t=—s¢p k=0 t=0 k=t+1 t=0—cp k=t+1
pM—1 2 o —1) & 2
< = 2 t
p— t;MHs( I+ S0 3 el
plo™ —1) = 2
t—— ZP €@ (25)
P t=0
Then, it follows from (24) and (25) that
P"Veo)(0) = V) (0)
0—1
o /))Zp"CHS(k)H2 + 1 sup [ (5)[|* + az(p < )
JEeL” t=—cum
Zp le@)|1” + Zp 1€(2) ||2>
P t=0
0—1
PEIERN? + Ba(p) sup [[9()]I? (26)

kO JELT
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where
2pMF1 — 9
Bulp) 2au(p) + as(p) L——F
A SM 1
Ba(p) =aa(p)snr + 13-
p—1
Since 31(1) = —Amin(—Il;x)) < 0 andlim,_. f1(p) = +o0, we can infer that there exists a scalar
~ > 1 such thatg;(y) = 0, which implies that
YV 0)(0) = Vi) (0) < Ba(7) sup (I (27)
JEZ-
Noting
Vo(0)(0) < 77 sup [[oo(5)]1? (28)
JEL™
with
77 é(gM + 2) max{m, 2, 773}7
and
79]@(9)(9) 2 )‘min(PT(G))'VeHg(@)HZa (29)
we obtain
N+ Ba2(7) N
SO <55 sup 40
€@ <5 5 sup oGl
=" sup [[¢(5)| (30)
JEL™
with
\ 2 1+ B2(7) Con2 l
)\min(PT(B)) 7
Consequently, according to Definition 1, it is easy to codeluhat the augmented system (10) is
exponentially stable, which completes the proof. [ ]

B. /3-(, Performance Analysis

In this subsection, we shall give a sufficient condition talgme thels-¢,, performance of the system
(10) under the zero initial condition.

Theorem 2:Let the PIO gain matrices!’, L/, K; (i € 91) and the disturbance attenuation leyel 0
be given. The system (10) is exponentially stable and sadisfie/,-/,, performance constraint (12) for
all non-zerod(k) under the zero-initial condition if there exist positivefihite matrices?;, ) and R such

that

o L
o, — | B | o (31b)
"I




FINAL 14

where
9211 édlag{P“ _Q7 _E_Ra _/721}
0
oF 2|4 B D M,

with P, = P, for all i € M.
Proof: It is obvious that9; < 0 implies=; < 0, hence it follows from Theorem 1 that the augmented
system (10) is exponentially stable.
Next, let us analyze th&-/., performance of the augmented system (10) with any non-2etp For
this purpose, define the following index functional:

T (k) = Ve (k) =+ Zﬁ )10 (s (32)

Under the initial conditior¢(0) = 0, we can easily hav& (0) = 0, which results in
T (k) =V (k) — +* ZﬁT
=3 (AVig(s) = P97 (5)0(5)) + V(0)
N{(S)HT( N1 (s) + 2§T( ) )Pr(s+1)

s) + 2 <Z 046 (s — d)) BT

X PT(s—i-l)MT(s)/l?(S) + 2€T (k‘ — §(S))DT
X Pr(ss1yMa)9(s) + 07 (s)MT 1 Pr(ss1)
X MT(S)ﬁ(s) - 219T(s)19(s))

N
/N

Mw

T s)Na(s) (33)
s=0
where
¢(k)
(k) 2 | <0
Zd:l ng(k - d)
I U(k)
-Hi%k) * * *
21 22
Yoy = Eﬁk) Eg;’“ H:s, i
k) My ek
T T Ty TH

Ty EM L Prieen Ariy
T2 =Ma Pron D

T
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Ti%k) éMme (k1) B
Ti%k) éMmer(mnMr(m - 72['

By virtue of Schur Complement Lemma, it is concluded fromaBthat 7 (k) < 0, which further
indicates that

& (k) Pry(k) = Vir (R)
Ve (k) <7 ) 0" (s)9(s). (34)
Furthermore, (31b) implies
(k)2 (k) = € (kYHHE(R) < € (k) Prigy& (k). (35)
Combining with (34), it is easy to see that
F(k)2(k) <7y 0" ()0(s). (36)

Taking both the supremum of (k)z(k) over k and the limit of ¥ s 9T (s)9(s) with k — oo, we
obtain

sup 27 (k)2(k) < 4> Y07 (s)9(s) (37)
k =
and thus
sup /27 (k)2 (k) < v\/ PRI (38)
for all non-zerod(k), which completes the proof. u
C. PIO Design

In this subsection, a sufficient condition is given for théstence of the desired PIO that is capable of
ensuring both the exponential stability and the/,, performance.

Theorem 3:Let the disturbance attenuation level> 0 be given. The system (10) is exponentially
stable and satisfies thg-/,, performance constraint (12) for all non- zeﬁ(()k) under the zero-initial
condition if there exist positive-definite matricés, P, (i € M), Q, Q, R, R and matrices.”, L!, K;

(i € M) such that

, -@}1 %
o = |5 ] <0 (39b)
H -1

where

, . - 1
G)le édla'g{,])iu _Q7 _ERa _/72]}
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67 2[4 B B M|

i _dm%f4%47—3+ﬂ

Pao— LPE, —LI
K%, P

-Pi+1«///i - Lfyz

(O
no
Do

[I>

=
I>

>

Bzé Pi—i-l% OnanC]

_OHCXn" On<><ng

A Pz’—i-l@ OnanC]

_Oncxnn Oncan
P, &diag{P;, B}, Q£ diag{Q. Q}
R 2diag{ R, R}, P, 2 diag{P;, P;}
P2 — PB4 oR+ (i —sm+1)Q
ﬁié_Pi_‘_@R_l_(gM_gm‘l'l)Q
with P, = P, and P,., = P, for all i € 9. In addition, the desired PIO gains are determined by

LY =p- [P

i+1
Lj =PZiL]
K, =P71K;, (i €M) (40)

Proof: Performing the congruence transformation to the inequéBita) by diag/, 7, I, I, Py, Pz+1},
we have
N o x
O, = [@21 @,22] <0 (42)
where
P — B LP6, —B Ll P B
Pi-i—lKngi Pi-l—l 0
0 P2 0 M~ BLP 7,

N

0 0 0 PLKZ

D21 A
CHIE

Utilizing the variable substitution
LY =P LY
L] =P L}
K, =P K;, (ieM) (42)

we conclude that (41) is ensured by (39a). Thereatfter, ierffied that the desired P1O gains are obtained
by (40), which completes the proof. [ |
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Remark 4:In this paper, &;-/., PIO has been first proposed to handle the state estimatioe fss a
class of mixed time-delay systems under RRP. By consticinoken-dependent Lyapunov functional,
sufficient conditions have been derived in Theorems 1-2 arantee the exponential stability ahd/.,
performance of the estimation error system. In additior, dhins of the desired PIO has been obtained
in Theorem 3 by solving a set of token-dependent LMiIs.

Remark 5:Note that, the PIO design scheme provided is in form of LMIhteques. As is well
known, the algorithm based on the standard LMI system hadya@mial-time complexity. That is, the
numberS(e) of flops needed to compute araccurate solution is bounded Y S731og(V/¢)), where
S is the total row size of the LMI systeny, is the total number of scalar decision variabl®sjs a
data-dependent scaling factor, ands the relative accuracy set for algorithm [43]. For the stigated
discrete-time system (1) with the RRP (5), the variable disiens can be seen fromik) € R, y(k) €
R™v, z(k) € R™ and (k) € R™. From Theorem 3, we havé = 4n, + 4nn, + 4n, + n, and
T = 2n2+4nyn,+3(nn,)’+(nn¢+n)nn, +3nZ+(n,+ny, )nc+1. Therefore, the computational complexity
of the LMIs-based PIO design algorithm with regard to the RRRR be represented éE(n;+n7nZ+nZ),
which depends polynomially on the number of sensors and @n@hle dimensions.

Remark 6:Our main results are distinguished from some existing orethe following features: 1)
the problem investigated in this paper is novel in the sehaethe PIO is, for the first time, designed for
a class of mixed time-delay systems under RRP; and 2) thetd&pendent PIO is novel, which reflects
the protocol-induced periodic nature in the observer stine¢ and thus reduces the conservatism in the
design procedure.

IV. NUMERICAL SIMULATION

Actual state z1(k)
—»— Estimation of z; (k)

15

0.5

P

-0.5

0 10 20 30 40 50 60 70 80 90 100
Time(k)

Fig. 2: Trajectories of state, (k) and its estimation.

In this section, we shall propose a simulation example fer gshke of illustrating the validity and
superiority of the designed PIO.
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Actual state zy(k)
—»— Estimation of (k)

(0 %%

0

50 60 70 80 90

Time(k)
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Fig. 3: Trajectories of state,(k) and its estimation.

0.6

0

0.2

-0.2 H

-0.4

State estimation error 7 (k)
—k— State estimation error 7 (k)

-0.6

0

50 60 70 80 90

Time(k)

10 20 30 40 100

Fig. 4: Trajectories of the state estimation erijok) with PIO.

Consider a target system given by (1) with correspondin@mpaters chosen as follows:

A=

D=

059 0.42 ~[o42 053
0.31 0.34|’ ~10.04 0.21
[ 0.18  0.11 0.12 1.41

e[t -]

—-0.02 0.1 2.82

—0.08

In addition, we assume that= 2 and the output measurements are modeled by the followiranpeters:

Cy = [0.97 4.1} R =025
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State estimation error 7 (k)

—*— State estimation error 7y (k)

-0.5
X

pr

-1.5

0 10 20 30 40 50 60 70 80 90 100
Time(k)

Fig. 5: Trajectories of the state estimation erfiok) with Luenberger observer.

—#— Output estimation error Z(k) ‘

05}

-0.5

€
0 10 20 30 40 50 60 70 80 90 100
Time(k)

-1.5

Fig. 6: Trajectory of the output estimation erra(k).

Cy — [2.49 1.41} Ry =041,

In the simulation, the external disturbance and the measemenoise are set to bék) = 0.5¢ %% cos(k)

andw(k) = 42‘—1(1’“) respectively. The initial conditions are taken&g) = [—0.4 0.4]T (j€Z7). The
constanty, = 2-(4+% it can be easily verified that = Y7 04 = 27* < 357 doa = (2*In2)~! < o0,
which means that the convergence condition (2) is met. Time-tiarying delay is chosen agk) =
2 + cos(km), from which we can easily check that, < <(k) < ¢y with ¢,, = 1 and¢y, = 3.

With the aid of MATLAB software (with the YALMIP 3.0), the sotions to LMIs (39a) and (39b) can
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be obtained immediately as follows:

P,

By virtue of the above solutions, the desired PIO gains candbeulated as follows:

[ 0.2226  —0.0043 [—0.0047]

I 0.1388  —0.0021 ;_ |—0.0025
! 0.9986  2.7676 | = ! —0.0141
| —0.0002  1.0001 |—0.0011
[—0.0057 0.2450 [—0.0042]
I —0.0058 0.1421 ;| —1.4034
2 1.0002 1.9382| 2 —4.7197
| —0.0037  0.9988 | —0.0085

3.2062
0.2347
0.5623

0.2718

[1.8418
1.2401
0.2896

0.3634

[0.7263
1.0394
0.0607

0.0511

[0.4197
0.1376
0.0095

0.0099

0.2347
9.2982
1.5477
0.9262

1.2401
8.0955
0.7533
0.8671

1.0394
2.4875
0.2151
0.2238

0.1376
0.6690
0.0032
0.0044

0.5623
1.5477
6.3123
1.5146

0.2896
0.7533
5.1256
1.8656

0.0607
0.2151
1.5083
0.4884

0.0095
0.0032
0.4370
0.0020

0.2718]
0.9262
1.5146
3.6667

0.3634]
0.8671

1.8656|
5.8449

0.0511]

0.2238 .
, @ =0.5950
0.4884

1.1913]

0.0099 ]

0.0044 , R =0.4208.
0.0020

0.4349 |

. P, =8.1585

P, = 2.9232

K1:[0.05962 0.2539], Ky = [0.1562 0.0118] .

TABLE I: Minimal disturbance attenuation level for
utilizing Luenberger observer and P1O

PIO Luenberger observer

5 1.0638 1.3534

Note that the disturbance attenuation levyeis predetermined in Theorems 2-3. In fagt,can be
optimized by replacingy? with 4 in Theorems 2-3, provided that it is not predetermined. Deribe
optimized~ as~. Then, the minimal disturbance attenuation level for zitilgy Luenberger observer and
PIO are provided in Table I. It can be concluded from Tabledtth smaller disturbance attenuation
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level can be achieved by utilizing P1O, which implies thaODFias stronger robustness than Luenberger
observer.

In order to showcase the advantage of PIO, we design a Lugsbebserver for the same system and
the gains of Luenberger observer are calculated as follows:

0.2825 1.5060 —4.0438 0.2406
01604 16548 41599 0.1414
10023 210180 P | 1.0043  4.7097

—5.8446 1.0009 2.0904 1.0036

For the sake of further verifying our theoretical resultee humerical simulation results are presented
in Figs. 2-6. The state trajectories and their estimatesdapected in Figs. 2-3. Fig. 4 and Fig. 5 plot
the state estimation error with PIO and Luenberger obserespectively. It is easy to observe that the
PIO proposed in this paper outperforms Luenberger obsexdepted in most literature for estimation
performance. Moreover, the output estimation error is lesd in Fig. 6. From the above simulation
results, we can confirm that the desired PIO performs extsemell.

V. CONCLUSION

In this paper, we have dealt with tlig-/., P1O design problem for a kind of linear discrete-time system
with mixed time-delays and RRP scheduling effects. The R&Pdeen employed to orchestrate the signal
transmission in the measurement channel (sensor-toyx@¥erith hope to prevent data transmission
conflicts availably and allocate communication resour@sonably. A novel PIO has been developed
whose gains depend on the data transmission order reguigteéie RRP. By constructing a token-
dependent Lyapunov functional, sufficient conditions hlagen established for analyzing the exponential
stability and /,-¢,, performance of the estimation error dynamics. The desirn€l dgains have been
obtained in terms of the solutions to LMIs. In the end, thedil of the proposed PIO design approach
has been illustrated via a simulation example. Future rebBgapics would be the extension of the main
results in this paper to 1) more complicated NSs under @iffecommunication protocols [9], [30], [33];
2) the investigation on how the number of integrators in Pffécés the estimation performance and 3)
the improvement of the state estimation performance bygusame latest optimization algorithms [23],
[24].
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