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Event-Triggered State Estimation for Markovian
Jumping Neural Networks: On Mode-Dependent
Delays and Uncertain Transition Probabilities

Hua Yang, Zidong Wang, Yuxuan Shen, Fuad E. Alsaadi and Fawaz E. Alsaadi

Abstract—This paper is concerned with the event-triggered is nearly impossible to obtain the full/exact state information.
state estimation (ETSE) problem for a class of discrete-time Therefore, an alternative way is to estimate the neuron states
Markovian jumping neural networks with mode-dependent time- 1, ,ing available (usually partial) network measurements, and

delays and uncertain transition probabilities. The parameters of h tat timati bl h ved t
the neural networks experience switches that are characterized such a neuron state e§ Imation problem has receivead a grea
by a Markovian chain whose transition probabilities are allowed deal of research attention, see e.g. [3], [12], [22], [24], [29],

to be uncertain. The event-triggered mechanism is introduced in [30], [32].
the sensor-to-estimator channel to reduce the frequency of signal Time-delays serve as an inevitable phenomenon in the
communication. The aim of this paper is to develop an ETSE anNs due to parallel signal transmissions among the neurons

scheme such that the estimation error dynamics is exponentially hich illati di f the ANN
ultimately bounded in the mean square. To achieve the aim, two which may cause oscillation or even divergence of the S.
sufficient conditions are proposed with the first one guaranteeing UP to now, numerous research results have been devoted to the

the existence of the required state estimator, and the second oneproblem of state estimation for ANNs with time delays [13],
giving the algorithm for designing the corresponding estimator [15], [18], [33], [45]. For example, for static neural networks
gain by solving some matrix inequalities. In the end, the validity *\ith time-varying delays, a delay-dependent sufficient con-
of the Iproposed estimation scheme is illustrated by a numerical dition has been proposed to meet the desired state estimation
exampie. o o performance requirement [45]. In [15], the event-triggefed
Index Terms—Avtificial neural networks, Markovian jumping — giate estimation problem has been studied for ANNs with
parameters, uncertain transition probabilities, event-triggered ) . - .
mechanism, mode-dependent time-delays. mixed t|me—de!ays. On the _other hand, in real practice, _the
ANNs may switch among different modes and the switching
| INTRODUCTION can be characterized by a Markovian chain. Recently, many
_ ) i ~ _researchers have begun to focus on the problem of state
Enlightened by the biological neural network, the artificighstimation for ANNs with Markov jump parameters [2], [35],
peural network (ANN)_has attracted much attention sinc[gz]' For example, for Markovian jumping networks with
it was first proposed in the 1940s [17], [41], [43], [44]ime-varying delays, a state estimator has been designed in
With _the continuous development_ of both the theories aTQZ]. For fuzzy neural networks with Markovian jumping
algorithms of ANNS, the application scope of ANNs havgarameters, the mixeff.. and passive filtering problem has
been broadened to include a number of subject areas syghn aqdressed in [35], where a filtering algorithm has been
as crack detection [4], [38] and image processing [1], [11}yon0sed to ensure that the fuzzy neural network is mean-
In some specific applications, the state information of certalyare stable while satisfying a predefined passivity constraint.
primary neurons plays an important role in some tasks suchy, most of the available results concerning the state esti-
as optimization and approximation, and such state informatigihtion problem for Markovian jumping ANNs (MJANNS), an
is thus required to be knowa priori. Unfortunately, due 0 ypicit assumption that has been made is that the transition
the large size of ANNs and the limited resources ava'lable’d];obabilities of the Markovian chain are precisely known.
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resources. Under the ETM, the messages are transmitted ojﬂ?’zl mi; = 1. m; is a known constant and\rw;; is the
when the predetermined trigger condition is satisfied, amghcertainty satisfying

hence the undesired data collisions are largely avoided. By
now, the state estimation problems for various systemsrunde
ETMs have received an ever-increasing research inter@kt [L Consider the following discrete-time-neuron MJANNS
[20], [39]. For example, theH,, state estimation problem with mode-dependent delays:

with event-triggered condition has been investigated fer g n

netic regulatory networks in [14]. For time-delayed comple | z,(h + 1) = a;(s(h))z;(h b2 (s(R)) f;(z; (h
networks with partially accessible nodes, the state esitima () (o)t )+; S (Uit ()

|A7Tij| S Iiij7 Iiij 2 0.

problem has been investigated in [9]. The distributed event n

triggered H, filtering problem has been dealt with in [8] +Zbgj(g(h))gj(a:j(h—Tj(h,c(h)))) 1)
over sensor networks. Unfortunately, when it comes to the j=1

MJANNS, the ETM-based state estimation issue has receive +di(s(h)wi(h), i=1,2,....n

very little research attention despite its theoretical ant@nce 2i(s) = ¢i(s), s € [=7ar,0)]

and the practical significance, not to mention the case teat t
transition probabilities are uncertain. As such, we areivapt Wherez;(h) € R is the state of théth neuron andu;(<(h)) is
ed to further study the event-triggered state estimatiais@) the state feedback coefficienfi.(-) andg;(-) are the activation
problem for MJANNS with uncertain transition probabilitie functions of thejth neuron’y; (c(h)) andb};(<(h)) represent
In summary, this paper investigates the ETSE problem ffh)e connection weight and the delayed c;onnection vyeight of
MJANNs with uncertain transition probabilities and modeth€ jth neuron on theth neuron, respectivelyl;(s(h)) is a
dependent time-delays. Our aim is to develop a state estimdf10Wn constantand; (h) is a zero mean Gaussian white noise
to guarantee that the estimation error dynamics is expon&focess WithE{w(h)} = 1. The positive integer; (h,< (1))
tially ultimately bounded (EUB) in the mean squarhe denotes the mode-dependent time-varying delays ofjthe
major contributions are highlighted as follows: 1) for thehuron satisfyings, < 7;(h,<(h)) < 7, and it is assumed
first time, the ETSE problem is studied for MJANNs with1at7;(0,<(0)) = 7ar. ¢i(s) is the given initial condition.
uncertain transition probabilities: 2) important factothat  1he MJANNs (1) can be rewritten in a compact form as
complicate the ANNs (e.g. Markovian jumping parameter ,”0""55

mode-dependent time-delays, uncertain transition prdiieis x(h+1)= A(c(h))z(h) + B(s(h))f(xz(h))

and ETMs) are simultaneously considered in a unified frame- + Ba(s(h))g(z(h — 7(h,s(R))))

work; and 3) a sufficient condition is derived that guarastee (2)
+ D(s(h))w(h),

the exponentially ultimate boundedness in the mean sqaare f
the estimation error dynamics. x(s) = ¢(s), s€[-Tu,0]

This paper is structured as follows. In Section II, the Mwhere
JANNSs with uncertain transition probabilities is presehtine

A

ETM is introduced, and the ETM-based estimator is proposed. w(h) = veen {xi(h)},
The main results (including Theorem 1 and Theorem 2) are f(x(h)) £ vecy { fi(zi(h))},
presented in Section Ill. A simulation study is conducted in g(x(h)) & vec, {gi(xi(h — 7i(h,s(h))))},
Section IV to show the effectiveness of our estimator design A(s(R)) 2 diag, {ai(s(h))}
algorithm. Finally, the conclusion is drawn in Section V. N R Bn 1ilS ’

Notation M7 denotes the transpose of the matflik. |e| B(s(h)) £ [b3(<(M)] ., »
represents the Euclidean norm of a vectoFor a symmetric Ba(s(h)) & [bL(s(h))] 7
matrix A, A, (A) (\ar(A)) refers to the minimum (maximum) n nn
eigenvalue ofA. diag, {2;} denotesliag{z1, z2,--- , z,} and D(s(h)) = diag, {di(s(h))},
vec,{z;} stands for[z! 21, ... 27T, E{z} means the w(h) £ vec, {wi(h)},
expectation ofr. P{a} indicates the occurrence probability B(s) 2 vecy {¢(s)} .

of the event“a”. ) o o
The following assumption is first made on the activation

functions f;(-) and g;(-).
Il. PROBLEM FORMULATION AND PRELIMINARIES Assumption 1For 1 < i < n, the activation functiong;(-)

~andg,(-) satisfy the following conditions:
Letg(h) € S & {1,2,...,N} (h > 0) be a Markov chain

whose transition probability matrix is given by = [7;;] n x - a- < fi(s1) = fi(s2) <at, 1,8 €R,
Moreover, the transition probability of the Markov chaifh) t 51— 52 -
is 5 < gi(s1) — gi(s2) < g+
i = <B, sus2€R
P{c(h+1)=jls(h) =i} =7y, Vi,j€S 1o

wherea; , o, 8; and ;" are known constants.

2

where 7;; £ mi; + Amy; represents the uncertain transition Remark 1:It should be noted that Assumption 1 has been
probability from modei to modej satisfying#;; > 0 and discussed in [39] where the constan{s, o', 3; andg;" are
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allowed to be set as zero, positive and negative. Therefore, [1l. M AIN RESULTS

activation functions under this assumption can be nonmono—I hi ) i he ETSE blem for MJANN

tonic and is more general than the widely used sigmoid and n this section, we discuss the probiem for v S

Lipschitz-type functions. with mode-dependent delays and uncertain transition fmibba
The measurement of the sensor is modeled as ities. First, we present sufficient conditions under whibk t

estimation error system (6) is EUB in the mean square, and
y(h) = C(s(h))x(h) + L(<(h))v(h) ®)

then we will characterize the desired estimator gain.
: In the following, for presentation convenience, we denote
wherey(h) € R™ is the measurement outpufi(¢(h)) and . i
L(s(h)) are known matrices, and(h) € R? is the bounded the matrix M(c(t)) as M;, the scalam(s(t)) asm; or m’,
disturbance satisfyingy(h)[? < o. and the functiorp(-, s(¢)) as o(+,17) fqr sit)y=i(ie S)..
In this paper, we consider the scenario that the transmissig | "€0rem 1iLet the estimator gaing(; (i € .5) be given.

of measurements from sensors to state estimator is imp_Té]-e estimation error system (6) is EUB in the mean square

mented over a network with limited bandwidth. To economiié there exist a _set of _ppsmve o_Ief|n|te matricés > 0
on the communication resources, an ETM is enforced in the € 5). @ positive definite n:atr?Q > 0, three sets of
sensor-to-estimator channel as defined by d!agonial EnatrlceiAi = dlag{ﬁv%zv”ﬂg} > Oi’ I =
. diag{vi, ¥4, -+ , 74} > 0, X; £ diag{o},0k,---,04} >0
p (h)p(h) —0 >0 and positive scalars;, 5 such that
p

wherep(h) £ y(h;) —y(h), @ > 0 is the threshold, ang(h;) i, o I, I, 0 0 0 IIig]
is the measured output at the most recent triggering instant Iy 0 0 T 0 0 0
Based on the event generator function, the sequence of * I 0 0 0 0 IIig
event-triggering instants is determined by o 2| % « I, 0 0 0 0 —0
hisy 2min{h € N|b > by, pT(h)p(h) —0 >0}, (& | * * = = [l H(g 8 Hfiss
* * * * * 66 68
To estimate the state of the ANNs (2), in this paper, the * * * * * x ML, TIig
state estimator is constructed as follows: * * * * * * x I
F(h+1) = A((h)a(h) + B(s(h)f (@ (h) here ®
+ Ba(s(h)g(@(h — 7(h,<(h)))) 5) N
+ K(<(h)) ly(hi) — C(s(h))2(h)] I}y £ = P — Aiéa — Tf,
i(s)= 0, sé€[-mn,0] I3 £ — Ajdo,
wherei(h) is the estimate of:(h) and K (s(h)) is the matrix LA —Tf,
gain of the estimator to be designed. e 2ATP, — CT' KT P,
Denotinge(h) £ x(h)—2(h), the estimation error dynamics N .
is obtained from (2) and (5) as follows: I = = Eiél’
. M. & -5,
e(h+1) = Als(h)e(h) + B(s(h) f(e(h)) L
+ Ba(s(h)g(e(h — 7(h,s(h)))) I,
— K(s(h)p(h) = K(s(h))L(s(h))v(h) ©) w
— K(s(n)C(s(h))e(h) =@ Ts
+ D(s(h))w(h) H155 =- (’_f = mi)Q — X,
e(s)= ¢(s), sé€[-mm,0] 58 éBgiPia
where g = — e,
rs ~ : 2 KZTPH
fle(h)) £f(x(h) — f(z(h), S o
gle(h = 7(h,s(h)))) 2g(z(h — 7(h,s(h)))) o
— gli(h — (b, s())). e
Definition 1:[31] The estimation error system (6) is said to 8 " v
be EUB in the mean square if there exist constantsy < 1, P2 Z(ﬂ—ij + ki) P},
¥ > 0 andvy > 0 such that =
E{le(h)?} < p"0 + (k) and Jim () = . () = £ min {m;i € S},
——+o0
. . o . e2(1+E—x)(ta — ) + 1,
Based on the discussion above, the main objective of this 1
paper is to develop a set of event-triggered-based estimato ot é§ (afa_+alay),
in the form of (5) such that the estimation error system (6) is 1
EUB in the mean square. d & — - (. +al),
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oy 2diag, {o] },
a_ 2diag, {oz;} ,

Bias (816 +678,).
Bat— 5 (BT +T),

ﬂ+ édlagn {ﬂj} )
B_ 2diag,, {B }

b é—-(ﬁiﬂ + 578y ).
322—5 (ﬁ++6€)7
By 21, @ By,

B AL, ® B,

K =max {k;|i € S}.

Proof: Construct a Lyapunov-Krasovskii functional
follows:

V(e(h), h,i)
where

Vi(e(h), h,i) =

Va(e(h), h,i) 2

= Vi(e(h), h, i) + Va(e(h), h,i) + Vs(e(h))

et (h)Pe(h),
h—1
3" (e()Qg(e(s)),

2.

s=h—7(h,i)
T]u 1 h-—1

237 ) §7(e(s)Qalels))

L=Tm s=h—t

with Q & (1 + & — 1)Q.
For notation simplification, in the sequel, we denote

E(h,i) £ [ () eh(h) [r(e(h)) g™ (e(h))

Thi
Fhle(n) pT(h) vT(W)]",
F £ [Az -K,C; 0 B; 0 By -K; —KiLi}
wheree.;(h) = e(h — 7(h,i)) and g,ni(e(h)) = gle(h —
7(h,1))).

Calculating the differences dfi(e(h), h, i), Va(e(h), h, i),
andVs(e(h)), one has
E{Vi(e(h+1),h+1,¢(h+1))[e(h),
= Vi(e(h), h, i)
N
=D @€  (h i) TPk i€(h, )

Jj=1

s(h) =i}

N
+ ) i E{w" (h) D] P;Djw(h)}
=1

— e’ (h)Pe(h)
<§T(h i)F zTPFg(hai)"'n/\max{DiTpiDi}
— e (h)Pie(h),

E{Va(e(h+1),h+1,¢(h+ 1))|le(h),s(h) =i}
— Va(e(h), h,i)

N
Jj=1 s=h—7(h,j)+1

h—1

s=h—7(h,i)
h—1 h—1

_ﬁﬁ[ > - X }QT&iﬁ)Qé&(ﬂ)
s=h—71(h,i)+1  s=h—7(h,)

h)) + Zﬁ'z’j [

i

+3" (e(h)Qqe(

h—1

-

s=h—7(h,i)

<g" (e(h))Qq(e(h))

] 7" (e())Qg(e(s))
— 35i(e(h)Qgrni(e(h))

X (R—Tfii)'i‘

and

E{Vs(e(h +1)) = Vs(e(h))}

Then, it is derived that
E{V(e(h+1),h+1,¢(h+1))|e(h),s(h) =i}
—V(e(h),h,i)
<& (h,i)F | BiF i&(h,i) — e (h) Pie(h)
+ nAmax{ D] P;D;} + €§" (e(h))Qg(e(h))
— (R = i) 35 (e(h) Qg rni(e(h)).

From Assumption 1, it is easily known that
eth) 1" [ a ][ eh)
oy ] 1Y T A <0 @
and

Lt | LT s

which further indicates
T ~ ~
erni(h) } [ B B2 ] [ erni(h) } <
- - 0. (11
{ Grhi(e(h)) 1 grui(e(h)) | = )
Taking into account both the event-triggering conditioh (4

and the constraint on the bounded disturbarég, we obtain
T(h)p(h) —0<0,
T(hyw(h) —v<0.

(10)

(1 [1]

L
=0
A
=7

1
2
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Summarizing the above inequalities, we have
E{V(e(h+1),h+1,¢(h+1))le(h),s(h) =1}
= V(e(h), h,i)
<& (hyi)F { PiF &(h,i) — e" (h)Pie(h)
+ egT(e(h))Qg(e(h)) + n)‘max{DsziDi}

— (R — m)gm-T(e(h))c;ggThi(efh)) — €121 — €259
| et L { Aa Afi{fz | o |
~Ladon ] L2 R iy |
e 1T [Sib Sibe 1] ernilh)

| Grni(e(h)) } { * ¥ ] [ Grhi(e(h)) ]

€7 (hyi) (& + FTPF:) €hyi) + 6,

whered; 2 n\pa {D] P;D;} + 10 + 20 and

—Hﬁl 0 I, I, o0 0 0
* I, 0 0 Iy 0 0
* * Hgg 0 0 0 0
;=% x % IIY)y 0O 0 0
* * * * H§)5 0 0
* * * * * HéG 0

| * * * * * * H%

h—1

>

s=h—7(h,i)
TM — 1 h 1

) D D el

L=Tm s=h—t

<a”¢(a)le(h)]” + a¢1(a) le(s)I?

15 + o (a (12)

where

- a/\min( (I) ) + (CY - 1)/\max(Pi)7
(OZ - 1)hAmax(Q)a

Lo — 1)hAmax(Q).

For any integefl” > 75,4+ 1, summing up both sides of (12)
from 0 to 7" — 1 with respect toh, we have

o"E{V (e(T), T,<(T))[e(T - 1),5(T — 1)}
—E{V(e(0),0,5(0))}

) i o"E {le(h)|*} +
+¢1(a Z Z

h=0 s=h—7(h,s(h))
T—17py—1 h—1

+2(a) Y > D> a"E{le(s)

h=0 t=Tm s=h—t

a(l — aT)g.

11—«
a"E {le(s)]*}

(13)

With the help of the Schur Complement Lemma, it follow&loreover, for the last two terms in (13), one has

from (8) that

& £ &+ F [Pk <0

and, accordingly,
E{V(e(h+1),h+1,5(h+1))|e(h),s(h)

—V(e(h),h,1)

= Amin (= ®)E" (B, 1)E(h, 8) + 6

— Amin (—®i)[e(R)]? + 4.

From Assumption 1 and the definition efh), we know
that there exists a positive constansatisfying

3" (e(h)g(e(h)) < hle(h)[*.

Recalling the definition o (e(h), h, ), it is readily seen
that

i}

<
<

Ve(h),h,1)
h—1
Dmax (Pe(D)? + Anax (@1 >~ Je(s)]
s=h—7(h,i)

T]\/jfl h—l

FAmax(@h Y Y le(s))?

L=Tm s=h—t
For a scalar > 1, we have
A"TIEALV (e(h+ 1), h+ 1,5(h 4+ 1))|e(h),s(h)
—a"V(e(h), h,i)
=a"E{(V(e(h+1),h+1,c(h+1))|e(h),s(h)
—V(e(h),h,i)} + a"(a — 1)V (e(h), h, i)

i}

i

T-1
SO aE(er)
h=0 s=h—7(h,s(h))

-1 s+tvm T—7m—1 s+7m
(Y
s=—7nm h=0 s=0 h=s-+1
T-1
+ > Z )ahE{|e(s)|2}
s=T—7p h=s+1

a™ 1
<

< 3 E{le())

S=—TM

TM_l ZQSE“
a™— 1_1 ZQSE{|€ }

+ (14)

and
T—17p—1 h—1

Z Z Z ahE{|e(s)2}

h=0 t=Tm s=h—t
s+Tan T—71ym—1 s+7m

<o (X T3S

s=—7n h=0 s=0 h=s+1

+ Tz_l %)ahE{|e(s)|2}

s=T—7p h=s+1
—1

O M=) S fle(e) )

S=—TMm

a—1
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+ a(aTM — 1 T]w

Zoﬂﬁﬂ

Tm—1 _ —
+ ola DTt = 7m) Z o@°E {Je(s)|?

a—1

(15)

From (14) and (15), it is easily known that
oTEAV (e(T), T, <(T))[e(T — 1),(T — 1)}
—E{V(e(0),0,5(0))}
= h]E h 2 a(l — CYT)(S
a)hgoa {le(n)| }+ﬁ i

-1

+ (p2(0) + p2(0) (7 — 1) a_‘ll > E{je(s))
a ™ __ Z QSE {|
+ ;M_ 1_1 ZoﬂEﬂe | }
h a(l—a”)
) Z a"E{[e(h)*} + ﬁai
h=0
1 (1) + el — a7 1)
< Bl 16)

where

p1(a) + p2(a)(Trr — i)
a—1
— 2a) .

_/\min(_q)i) <0 andlima_)oo C(a) =

(@) £o(e) +
x (@™ F 4™

Noting that((1) =

+00, there exists a scalary > 1 such that{(ag) = 0. Then,

it is inferred from (16) that
ag E{V(e(T), T,<(T))le(T — 1),
—E{V(e(0),0,5(0))}

(%01(040) + p2(a0)(Tar — ) (g™ — 1)
ap — 1

)1} +

(T-1)}

ap(1 — Oég)é

E
X max {le(s o

T <s<0 v

Noting
E {V(e(0),0,5(0))}

) E{le(0)

S E{e(0)

—TM™

<Amax (P ?} 4 Amax(Q

-1

Nh Y E{le(0)}

+ (TI\I - Tm))\maX(Q)

(Amax(Q)h + (T — Tin)
Jnax E{|e )}

< max (Amax (Pe(0)) +
X)\max(Q)h) TIM) X

and

ag E{V(e(T), T,<(T)} = Amin(Py)a7E {|e(0)*},

we have

@(ao)

| } < (O‘g — 1)61
T ! agAmin(Pi)

E {|e(T
{l &y (aO_l))‘min(Pi)

+

where

w(ao)
é((% (@) + pa(a) (T = 7)) (@™ = 1)
a—1
+ max(Amax (Pe0)) + (Amax(@)h + (Tar — Tm)

A QM)rar)) _ max_ E{[e(0)]?).

By taking 1 = 1/aq, (T) = (af — 1)8;/(af *(ag —
1) Amin(P)), andd = @ () /Amin (F;), it is readily seen from
Definition 1 that the estimation error system (6) is EUB in the
mean-square with

- B 0;
v= im0 = G T B
The proof is complete. |

Theorem 1 provides a sufficient condition guaranteeing that
the estimation error dynamics is EUB in the mean square
sense. In the following theorem, we are going to charaateriz
the desired estimator gain.

Theorem 2:The estimation error system (6) is EUB in the
mean square if there exist a set of matriéds> 0 (i € 9),

a set of matricey; (i € S), a matrix@ > 0, three sets
of diagonal matrices\; = diag{\},\5,--- , AL} > 0, A; =
diag{6%, 0%, -+, 04} > 0, B; = diag{o}, ok, ,04} > 0
and positive scalars;, s such that
m, 0 I M, 0 0 0 O
* b 00 Iy 0 0 0
* x I 0 0 0 0 IIig
* * Iy 0 0 0 0 <0
* * * * IIig 0 0 IIi
* * * * « I, 0 Ok
* * * * * L [
* * * * * * * &3
) )
where

38 = A?R - C;TY;’Ta 6%8 = _YviTa ®$8 = _L?Y;T

Moreover, the estimator gain matrices can be calculated by
K;=P'Y; (i€09).
Proof: The proof of this theorem follows directly from

that of Theorem 1, and is therefore omitted. |

Remark 2:The purpose of this paper is to develop an event-
based state estimator for a class of MJANNS with uncertain
transition probabilities and mode-dependent delays. Ticese
this purpose, the existence of the estimator is first endoyed
sufficient condition, which also guarantees that the ediima
error dynamics is EUB in the mean square. Then, a sufficient
condition in terms of certain matrix inequalities is given i
Theorem 2 to design the estimator gain.

Remark 3:Until now, an ETSE scheme has been designed
for a class of MJANNSs with uncertain transition probabagi
and mode-dependent delays. The major contribution of this
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paper is outlined in twofold as follows: 1) the considered Cy = 12 08 1.2 } ’
system model is general that accounts for the factors imudud | 0.6 1.9 0.6
the Markovian jumping parameters, the uncertain transitio I _ [ 0.4 ]
probabilities, the ETM and the mode-dependent time-delays e | 0.3 |7

and 2) the effects of the above factors on state estimatien ar 0.6

all reflected in the main results. La=1 o5 ] :

The uncertain transition probability matrix is denoted by

= 0.4+A7T11 0.3+A7T12
T 0354+ Amy; 0.35 4 Ao

IV. NUMERICAL SIMULATION

A numerical simulation is carried out to demonstrate the
validity of the proposed ETSE scheme for a class of discrete-

time MJANNs with mode-dependent delays and uncertafffth #11 = 0.15, £12 = 0.15, k21 = 0.1, andray = 0.2. .
transition probabilities. Considering the parameters mentioned above, the gain

Let the ANNs (1) have three neurons with the followin atrices of the desired estimator are obtained by using the
ATLAB LMI toolbox and outlined as

parameters:
- - [ 0.4509 —0.1083 ]|
07 0 0 Ky = | 00762 —0.4683 |,
=10 0 | 01012 0.0018 |
- = [ 0.4927 —0.1509 ]
08 0 Ko=| 01472 —0.3055 | .
Ap=10 =050, 0.2054 —0.0431
0 0 0.7 - -
02 06 027 The initial values of the states are set to dbgs) = 0.1,
By =102 -0.2 0 CCQ(S) = —-0.1, and Ig(S) = 0.2 for s € [—3,0] The
02 —01 —01 corresponding results are shown in Figs. 1-4, where Fig. 1,
02 05 03] Fig. 2 and Fig. 3 deplct the states mf(h), xg(h), x3(h),
the corresponding estimates and the estimation eer(s),
By=102 -04 0 e2(h) and es(h), respectively. The execution status of the
03 =0.1 —0.2] ETM is described in Fig. 4. From Figs. 1-4, it is readily
0.05 0.04 —0.03 seen that the designed estimator performs well in estimatin
Bgy = 10.05 0.1  0.01 the state trajectory of the system, which visually implikes t
0.05 0.01 0.05 effectiveness of our design scheme.
0.25
D= l02], i
0.18 g o4
0.08 —0.03 0.03 § 02
Bp= |00l 02 002 2
—0.06 0.03 0.02 :H 0
02 i AW
Dy = 0.3 0 5 10 15 20 25 30 35 40 45 50
0.25 Time (k)

o
N

and other parameters are chosenras = 3, 7, = 2 and ;”
6 = 0.15. 5 Of
The activation functions are selected as 2 oal
£
f(z(s)) = tanh(0.5z1(s)) tanh(0.4z2(s)) i o L
T "o 5 10 15 20 25 30 35 40 45 50
tanh(0.623(s)) |, Time ()
z(s)) = | tanh(0.32z1(s tanh(0.4x5(s
9(s) =| (0.321(s)) (0.4zy(s)) T Fig. 1: Stater; (h), estimatet; (k) and estimation errat; (h).
tanh(0.223(s)) |,
from which we conclude thatv; = Bl = 0, a =

diag{—0.2,-0.25—-0.1} andBQ = diag{—0.15,—-0.2, —0.1}. V. CONCLUSION
The measurement output of the sensor is modeled by (3)In this paper, the ETSE problem has been studied for

with the following parameters: a class of discrete-time MJANNs with uncertain transition
29 05 1.8 probabilities and mode-dependent delays. The switching of
G = [ 03 1.2 02 }, the ANNs has been characterized by a Markovian chain
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whose transition probabilities are allowed to be uncertaire
ETM has been used to regulate the data transmissions of the
sensor. Based on the proposed ETM, a sufficient conditian tha
guarantees that the estimation error system is EUB in themea
square has been derived. Then, the gain of the estimator has
been derived by solving certain matrix inequalities praubis
-01 : ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Theorem 2. Finally, a numerical case is offered to demotgstra
Time (K) the validity of the proposed ETSE.
01 Further research topics would include the extension of the
main results to 1) the moving-horizon estimation problem
0 \ for discrete-time MJANNs with uncertain transition proba-
bilities [19], [46]-[48] ; 2) the reliableH, state estimation
problem of MJANNs with missing measurements [21], [27],
02 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ [36] and mixed mode-dependent time-delays [23]; and 3) the
0 5 10 15 20 25 30 35 40 45 50 improvement of the state estimation performance by using
Time (9 some latest optimization algorithms [25], [26]. Note thatne

State X, and its estimate

2

Estimation error e,

Fig. 2: Stater,(h), estimatei,(h) and estimation errar,(h). Multi-objective optimization approaches have been prepas
[25], [26] with successful applications to the minimizatiof
energy consumption in crude oil pipeline transportaticstem

© and large-scale oil-gas gathering system, and these ertell
£ algorithms are well suited to be applied to the further reidnc
§ of the state estimation errors in the problem addressedsn th
= paper.
©
-
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