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Event-Triggered State Estimation for Markovian
Jumping Neural Networks: On Mode-Dependent
Delays and Uncertain Transition Probabilities

Hua Yang, Zidong Wang, Yuxuan Shen, Fuad E. Alsaadi and Fawaz E. Alsaadi

Abstract—This paper is concerned with the event-triggered
state estimation (ETSE) problem for a class of discrete-time
Markovian jumping neural networks with mode-dependent time-
delays and uncertain transition probabilities. The parameters of
the neural networks experience switches that are characterized
by a Markovian chain whose transition probabilities are allowed
to be uncertain. The event-triggered mechanism is introduced in
the sensor-to-estimator channel to reduce the frequency of signal
communication. The aim of this paper is to develop an ETSE
scheme such that the estimation error dynamics is exponentially
ultimately bounded in the mean square. To achieve the aim, two
sufficient conditions are proposed with the first one guaranteeing
the existence of the required state estimator, and the second one
giving the algorithm for designing the corresponding estimator
gain by solving some matrix inequalities. In the end, the validity
of the proposed estimation scheme is illustrated by a numerical
example.

Index Terms—Artificial neural networks, Markovian jumping
parameters, uncertain transition probabilities, event-triggered
mechanism, mode-dependent time-delays.

I. I NTRODUCTION

Enlightened by the biological neural network, the artificial
neural network (ANN) has attracted much attention since
it was first proposed in the 1940s [17], [41], [43], [44].
With the continuous development of both the theories and
algorithms of ANNs, the application scope of ANNs have
been broadened to include a number of subject areas such
as crack detection [4], [38] and image processing [1], [11].
In some specific applications, the state information of certain
primary neurons plays an important role in some tasks such
as optimization and approximation, and such state information
is thus required to be knowna priori. Unfortunately, due to
the large size of ANNs and the limited resources available, it
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is nearly impossible to obtain the full/exact state information.
Therefore, an alternative way is to estimate the neuron states
by using available (usually partial) network measurements, and
such a neuron state estimation problem has received a great
deal of research attention, see e.g. [3], [12], [22], [24], [29],
[30], [32].

Time-delays serve as an inevitable phenomenon in the
ANNs due to parallel signal transmissions among the neurons
which may cause oscillation or even divergence of the ANNs.
Up to now, numerous research results have been devoted to the
problem of state estimation for ANNs with time delays [13],
[15], [18], [33], [45]. For example, for static neural networks
with time-varying delays, a delay-dependent sufficient con-
dition has been proposed to meet the desired state estimation
performance requirement [45]. In [15], the event-triggeredH∞

state estimation problem has been studied for ANNs with
mixed time-delays. On the other hand, in real practice, the
ANNs may switch among different modes and the switching
can be characterized by a Markovian chain. Recently, many
researchers have begun to focus on the problem of state
estimation for ANNs with Markov jump parameters [2], [35],
[42]. For example, for Markovian jumping networks with
time-varying delays, a state estimator has been designed in
[42]. For fuzzy neural networks with Markovian jumping
parameters, the mixedH∞ and passive filtering problem has
been addressed in [35], where a filtering algorithm has been
proposed to ensure that the fuzzy neural network is mean-
square stable while satisfying a predefined passivity constraint.

In most of the available results concerning the state esti-
mation problem for Markovian jumping ANNs (MJANNs), an
implicit assumption that has been made is that the transition
probabilities of the Markovian chain are precisely known.
Such an assumption is, unfortunately, unrealistic in practical
engineering since the transition probabilities may not be ex-
actly identifiable due to the resource/environment constraints.
Accordingly, it would be of practical significance to take
into account the uncertainties of the transition probabilities
in the state estimation problem for MJANNs. To the best
of our knowledge, the state estimation problem for MJANNs
with uncertain transition probabilities has not been thoroughly
investigated yet, and our intension in this paper is therefore to
shorten such a gap.

Recently, the event-triggered mechanism (ETM) has become
a popular research topic due to its advantages (over the con-
ventional time-triggered mechanisms) [5]–[7], [16], [28], [34],
[37], [40] in reducing data transmission rate subject to limited
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resources. Under the ETM, the messages are transmitted only
when the predetermined trigger condition is satisfied, and
hence the undesired data collisions are largely avoided. By
now, the state estimation problems for various systems under
ETMs have received an ever-increasing research interest [10],
[20], [39]. For example, theH∞ state estimation problem
with event-triggered condition has been investigated for ge-
netic regulatory networks in [14]. For time-delayed complex
networks with partially accessible nodes, the state estimation
problem has been investigated in [9]. The distributed event-
triggeredH∞ filtering problem has been dealt with in [8]
over sensor networks. Unfortunately, when it comes to the
MJANNs, the ETM-based state estimation issue has received
very little research attention despite its theoretical importance
and the practical significance, not to mention the case that the
transition probabilities are uncertain. As such, we are motivat-
ed to further study the event-triggered state estimation (ETSE)
problem for MJANNs with uncertain transition probabilities.

In summary, this paper investigates the ETSE problem for
MJANNs with uncertain transition probabilities and mode-
dependent time-delays. Our aim is to develop a state estimator
to guarantee that the estimation error dynamics is exponen-
tially ultimately bounded (EUB) in the mean square.The
major contributions are highlighted as follows: 1) for the
first time, the ETSE problem is studied for MJANNs with
uncertain transition probabilities; 2) important factorsthat
complicate the ANNs (e.g. Markovian jumping parameters,
mode-dependent time-delays, uncertain transition probabilities
and ETMs) are simultaneously considered in a unified frame-
work; and 3) a sufficient condition is derived that guarantees
the exponentially ultimate boundedness in the mean square for
the estimation error dynamics.

This paper is structured as follows. In Section II, the M-
JANNs with uncertain transition probabilities is presented, the
ETM is introduced, and the ETM-based estimator is proposed.
The main results (including Theorem 1 and Theorem 2) are
presented in Section III. A simulation study is conducted in
Section IV to show the effectiveness of our estimator design
algorithm. Finally, the conclusion is drawn in Section V.

Notation MT denotes the transpose of the matrixM . |e|
represents the Euclidean norm of a vectore. For a symmetric
matrixA, λm(A) (λM (A)) refers to the minimum (maximum)
eigenvalue ofA. diagn{zi} denotesdiag{z1, z2, · · · , zn} and
vecn{xi} stands for [xT1 , x

T
2 , · · · , x

T
n ]

T . E{x} means the
expectation ofx. P{a} indicates the occurrence probability
of the event“a”.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let ς(h) ∈ S , {1, 2, . . . , N} (h ≥ 0) be a Markov chain
whose transition probability matrix is given byΠ = [π̃ij ]N×N .
Moreover, the transition probability of the Markov chainς(h)
is

P {ς(h+ 1) = j|ς(h) = i} = π̃ij , ∀ i, j ∈ S

where π̃ij , πij + ∆πij represents the uncertain transition
probability from modei to modej satisfying π̃ij ≥ 0 and

∑N

j=1 π̃ij = 1. πij is a known constant and∆πij is the
uncertainty satisfying

|∆πij | ≤ κij , κij ≥ 0.

Consider the following discrete-timen-neuron MJANNs
with mode-dependent delays:










































xi(h+ 1) = ai(ς(h))xi(h) +

n
∑

j=1

b0ij(ς(h))fj(xj(h))

+
n
∑

j=1

b1ij(ς(h))gj(xj(h− τj(h, ς(h))))

+ di(ς(h))ωi(h), i = 1, 2, . . . , n

xi(s) = φi(s), s ∈ [−τM , 0]

(1)

wherexi(h) ∈ R is the state of theith neuron andai(ς(h)) is
the state feedback coefficient.fj(·) andgj(·) are the activation
functions of thejth neuron.b0ij(ς(h)) andb1ij(ς(h)) represent
the connection weight and the delayed connection weight of
the jth neuron on theith neuron, respectively.di(ς(h)) is a
known constant andωi(h) is a zero mean Gaussian white noise
process withE{ω2

i (h)} = 1. The positive integerτj(h, ς(h))
denotes the mode-dependent time-varying delays of thejth
neuron satisfyingτm ≤ τj(h, ς(h)) ≤ τM , and it is assumed
that τj(0, ς(0)) = τM . φi(s) is the given initial condition.

The MJANNs (1) can be rewritten in a compact form as
follows:



















x(h+ 1) = A(ς(h))x(h) +B(ς(h))f(x(h))

+Bd(ς(h))g(x(h − τ(h, ς(h))))

+D(ς(h))ω(h),

x(s) = φ(s), s ∈ [−τM , 0]

(2)

where

x(h) , vecn {xi(h)} ,

f(x(h)) , vecn {fi(xi(h))} ,

g(x(h)) , vecn {gi(xi(h− τi(h, ς(h))))} ,

A(ς(h)) , diagn {ai(ς(h))} ,

B(ς(h)) ,
[

b0ij(ς(h))
]

n×n
,

Bd(ς(h)) ,
[

b1ij(ς(h))
]

n×n
,

D(ς(h)) , diagn {di(ς(h))} ,

ω(h) , vecn {ωi(h)} ,

φ(s) , vecn {φi(s)} .

The following assumption is first made on the activation
functionsfi(·) andgi(·).

Assumption 1:For 1 ≤ i ≤ n, the activation functionsfi(·)
andgi(·) satisfy the following conditions:

α−
i ≤

fi(s1)− fi(s2)

s1 − s2
≤ α+

i , s1, s2 ∈ R,

β−
i ≤

gi(s1)− gi(s2)

s1 − s2
≤ β+

i , s1, s2 ∈ R

whereα−
i , α

+
i , β

−
i andβ+

i are known constants.
Remark 1:It should be noted that Assumption 1 has been

discussed in [39] where the constantsα−
i , α

+
i , β

−
i andβ+

i are
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allowed to be set as zero, positive and negative. Therefore,
activation functions under this assumption can be nonmono-
tonic and is more general than the widely used sigmoid and
Lipschitz-type functions.

The measurement of the sensor is modeled as

y(h) = C(ς(h))x(h) + L(ς(h))v(h) (3)

wherey(h) ∈ Rm is the measurement output,C(ς(h)) and
L(ς(h)) are known matrices, andv(h) ∈ Rp is the bounded
disturbance satisfying|v(h)|2 ≤ v̄.

In this paper, we consider the scenario that the transmission
of measurements from sensors to state estimator is imple-
mented over a network with limited bandwidth. To economize
on the communication resources, an ETM is enforced in the
sensor-to-estimator channel as defined by

ρT (h)ρ(h) − θ > 0

whereρ(h) , y(hi)− y(h), θ > 0 is the threshold, andy(hi)
is the measured output at the most recent triggering instant.

Based on the event generator function, the sequence of
event-triggering instants is determined by

hi+1 , min
{

h ∈ N|h > hi, ρ
T (h)ρ(h)− θ > 0

}

. (4)

To estimate the state of the ANNs (2), in this paper, the
state estimator is constructed as follows:



















x̂(h+ 1) = A(ς(h))x̂(h) +B(ς(h))f(x̂(h))

+Bd(ς(h))g(x̂(h− τ(h, ς(h))))

+K(ς(h)) [y(hi)− C(ς(h))x̂(h)]

x̂(s) = 0, s ∈ [−τM , 0]

(5)

wherex̂(h) is the estimate ofx(h) andK(ς(h)) is the matrix
gain of the estimator to be designed.

Denotinge(h) , x(h)−x̂(h), the estimation error dynamics
is obtained from (2) and (5) as follows:






































e(h+ 1) = A(ς(h))e(h) +B(ς(h))f̃(e(h))

+Bd(ς(h))g̃(e(h− τ(h, ς(h))))

−K(ς(h))ρ(h)−K(ς(h))L(ς(h))v(h)

−K(ς(h))C(ς(h))e(h)

+D(ς(h))ω(h)

e(s) = φ(s), s ∈ [−τM , 0]

(6)

where

f̃(e(h)) ,f(x(h)) − f(x̂(h)),

g̃(e(h− τ(h, ς(h)))) ,g(x(h− τ(h, ς(h))))

− g(x̂(h− τ(h, ς(h)))).

Definition 1: [31] The estimation error system (6) is said to
be EUB in the mean square if there exist constants0 < µ < 1,
ϑ > 0 and ψ̄ > 0 such that

E
{

|e(h)|2
}

≤ µhϑ+ ψ(h) and lim
h→+∞

ψ(h) = ψ̄. (7)

Based on the discussion above, the main objective of this
paper is to develop a set of event-triggered-based estimators
in the form of (5) such that the estimation error system (6) is
EUB in the mean square.

III. M AIN RESULTS

In this section, we discuss the ETSE problem for MJANNs
with mode-dependent delays and uncertain transition probabil-
ities. First, we present sufficient conditions under which the
estimation error system (6) is EUB in the mean square, and
then we will characterize the desired estimator gain.

In the following, for presentation convenience, we denote
the matrixM(ς(t)) asMi, the scalarm(ς(t)) asmi or mi,
and the function̺ (·, ς(t)) as̺(·, i) for ς(t) = i (i ∈ S).

Theorem 1:Let the estimator gainsKi (i ∈ S) be given.
The estimation error system (6) is EUB in the mean square
if there exist a set of positive definite matricesPi > 0
(i ∈ S), a positive definite matrixQ > 0, three sets of
diagonal matricesΛi , diag{λi1, λ

i
2, · · · , λ

i
n} > 0, Γi ,

diag{γi1, γ
i
2, · · · , γ

i
n} > 0, Σi , diag{σi

1, σ
i
2, · · · , σ

i
n} > 0

and positive scalarsε1, ε2 such that

Φi ,

























Πi
11 0 Πi

13 Πi
14 0 0 0 Πi

18

∗ Πi
22 0 0 Πi

25 0 0 0
∗ ∗ Πi

33 0 0 0 0 Πi
38

∗ ∗ ∗ Πi
44 0 0 0 0

∗ ∗ ∗ ∗ Πi
55 0 0 Πi

58

∗ ∗ ∗ ∗ ∗ Πi
66 0 Πi

68

∗ ∗ ∗ ∗ ∗ ∗ Πi
77 Πi

78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Πi
88

























< 0

(8)
where

Πi
11 ,− Pi − Λiα̃1 − Γiβ̃1,

Πi
13 ,− Λiα̃2,

Πi
14 ,− Γiβ̃2,

Πi
18 ,AT

i P̄i − CT
i K

T
i P̄i,

Πi
22 ,− Σiβ̂1,

Πi
25 ,− Σiβ̂2,

Πi
33 ,− Λi,

Πi
38 ,BT

i P̄i,

Πi
44 ,ǫQ− Γi,

Πi
55 ,− (κ̄− πii)Q − Σi,

Πi
58 ,BT

diP̄i,

Πi
66 ,− ε1I,

Πi
68 ,−KT

i P̄i,

Πi
77 ,− ε2I,

Πi
78 ,− LT

i K
T
i P̄i,

Πi
88 ,− P̄i,

P̄i ,

n
∑

j=1

(πij + κij)Pj ,

π ,min {πii|i ∈ S} ,

ǫ ,(1 + κ̄− π)(τM − τm) + 1,

α̃1 ,
1

2

(

αT
+α− + αT

−α+

)

,

α̃2 ,−
1

2

(

αT
+ + αT

−

)

,
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α+ ,diagn
{

α+
i

}

,

α− ,diagn
{

α−
i

}

,

β̃1 ,
1

2

(

βT
+β− + βT

−β+
)

,

β̃2 ,−
1

2

(

βT
+ + βT

−

)

,

β+ ,diagn
{

β+
i

}

,

β− ,diagn
{

β−
i

}

,

β̂1 ,
1

2

(

β̂T
+β̂− + β̂T

−β̂+

)

,

β̂2 ,−
1

2

(

β̂T
+ + β̂T

−

)

,

β̂+ ,In ⊗ β+,

β̂− ,In ⊗ β−,

κ̄ ,max {κii|i ∈ S} .

Proof: Construct a Lyapunov-Krasovskii functional as
follows:

V (e(h), h, i) = V1(e(h), h, i) + V2(e(h), h, i) + V3(e(h))

where

V1(e(h), h, i) ,e
T (h)Pie(h),

V2(e(h), h, i) ,
h−1
∑

s=h−τ(h,i)

g̃T (e(s))Qg̃(e(s)),

V3(e(h)) ,

τM−1
∑

ι=τm

h−1
∑

s=h−ι

g̃T (e(s))Q̄g̃(e(s))

with Q̄ , (1 + κ̄− π)Q.
For notation simplification, in the sequel, we denote

ξ(h, i) ,
[

eT (h) eTτhi(h) f̃T (e(h)) g̃T (e(h))

g̃Tτhi(e(h)) ρT (h) vT (h)
]T
,

̥i ,
[

Ai −KiCi 0 Bi 0 Bdi −Ki −KiLi

]

where eτhi(h) , e(h − τ(h, i)) and g̃τhi(e(h)) , g̃(e(h −
τ(h, i))).

Calculating the differences ofV1(e(h), h, i), V2(e(h), h, i),
andV3(e(h)), one has

E{V1(e(h+ 1), h+ 1, ς(h+ 1))|e(h), ς(h) = i}

− V1(e(h), h, i))

=

N
∑

j=1

π̃ijξ
T (h, i)̥T

i Pj̥iξ(h, i)

+

N
∑

j=1

π̃ijE{ω
T (h)DT

i PjDiω(h)}

− eT (h)Pie(h)

≤ξT (h, i)̥T
i P̄i̥iξ(h, i) + nλmax{D

T
i P̄iDi}

− eT (h)Pie(h),

E{V2(e(h+ 1), h+ 1, ς(h+ 1))|e(h), ς(h) = i}

− V2(e(h), h, i)

=

N
∑

j=1

π̃ij

h
∑

s=h−τ(h,j)+1

g̃T (e(s))Qg̃(e(s))

−

h−1
∑

s=h−τ(h,i)

g̃T (e(s))Qg̃(e(s))

=π̃ii





h−1
∑

s=h−τ(h,i)+1

−

h−1
∑

s=h−τ(h,i)



 g̃T (e(s))Qg̃(e(s))

+ g̃T (e(h))Qg̃(e(h)) +
∑

j 6=i

π̃ij





h−1
∑

s=h−τ(h,j)+1

−

h−1
∑

s=h−τ(h,i)



 g̃T (e(s))Qg̃(e(s))

≤g̃T (e(h))Qg̃(e(h))− g̃Tτhi(e(h))Qg̃τhi(e(h))

× (κ̄− πii) +

h−τm
∑

s=h−τM+1

g̃T (e(s))Q̄g̃(e(s)),

and

E{V3(e(h+ 1))− V3(e(h))}

=

τM−1
∑

s=τm

g̃T (e(h))Q̄g̃(e(h))

−

τM−1
∑

s=τm

g̃T (e(h− s))Q̄g̃(e(h− s))

=(1 + κ̄− π)(τM − τm)g̃T (e(h))Qg̃(e(h))

−

h−τm
∑

s=h−τM+1

g̃T (e(s))Q̄g̃(e(s)).

Then, it is derived that

E{V (e(h+ 1), h+ 1, ς(h+ 1))|e(h), ς(h) = i}

− V (e(h), h, i)

≤ξT (h, i)̥T
i P̄i̥iξ(h, i)− eT (h)Pie(h)

+ nλmax{D
T
i P̄iDi}+ ǫg̃T (e(h))Qg̃(e(h))

− (κ̄− πii)g̃
T
τhi(e(h))Qg̃τhi(e(h)).

From Assumption 1, it is easily known that
[

e(h)

f̃(e(h))

]T [

α̃1 α̃2

∗ I

] [

e(h)

f̃(e(h))

]

≤ 0 (9)

and
[

e(h)
g̃(e(h))

]T [

β̃1 β̃2
∗ I

] [

e(h)
g̃(e(h))

]

≤ 0, (10)

which further indicates
[

eτhi(h)
g̃τhi(e(h))

]T [

β̂1 β̂2
∗ I

] [

eτhi(h)
g̃τhi(e(h))

]

≤ 0. (11)

Taking into account both the event-triggering condition (4)
and the constraint on the bounded disturbancev(h), we obtain

Ξ1 , ρT (h)ρ(h)− θ ≤ 0,

Ξ2 , vT (h)v(h) − v̄ ≤ 0.
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Summarizing the above inequalities, we have

E{V (e(h+ 1), h+ 1, ς(h+ 1))|e(h), ς(h) = i}

− V (e(h), h, i)

≤ξT (h, i)̥T
i P̄i̥iξ(h, i)− eT (h)Pie(h)

+ ǫg̃T (e(h))Qg̃(e(h)) + nλmax{D
T
i P̄iDi}

− (κ̄− πii)g̃τhi(e(h))Qg̃τhi(e(h))− ε1Ξ1 − ε2Ξ2

−

[

e(h)

f̃(e(h))

]T [

Λiα̃1 Λiα̃2

∗ Λi

] [

e(h)

f̃(e(h))

]

−

[

e(h)
g̃(e(h))

]T [

Γiβ̃1 Γiβ̃2
∗ Γi

] [

e(h)
g̃(e(h))

]

−

[

eτhi(h)
g̃τhi(e(h))

]T [

Σiβ̂1 Σiβ̂2
∗ Σi

] [

eτhi(h)
g̃τhi(e(h))

]

=ξT (h, i)
(

Φ̃i +̥
T
i P̄i̥i

)

ξ(h, i) + δi

whereδi , nλmax{D
T
i P̄iDi}+ ε1θ + ε2v̄ and

Φ̃i =





















Πi
11 0 Πi

13 Πi
14 0 0 0

∗ Πi
22 0 0 Πi

25 0 0
∗ ∗ Πi

33 0 0 0 0
∗ ∗ ∗ Πi

44 0 0 0
∗ ∗ ∗ ∗ Πi

55 0 0
∗ ∗ ∗ ∗ ∗ Πi

66 0
∗ ∗ ∗ ∗ ∗ ∗ Πi

77





















.

With the help of the Schur Complement Lemma, it follows
from (8) that

Φ̂i , Φ̃i +̥
T
i P̄i̥i < 0

and, accordingly,

E{V (e(h+ 1), h+ 1, ς(h+ 1))|e(h), ς(h) = i}

− V (e(h), h, i)

≤− λmin(−Φ̂i)ξ
T (h, i)ξ(h, i) + δi

≤− λmin(−Φ̂i)|e(h)|
2 + δi.

From Assumption 1 and the definition ofe(h), we know
that there exists a positive constanth satisfying

g̃T (e(h))g̃(e(h)) ≤ h|e(h)|2.

Recalling the definition ofV (e(h), h, i), it is readily seen
that

V (e(h), h, i)

≤λmax(Pi)|e(h)|
2 + λmax(Q)h

h−1
∑

s=h−τ(h,i)

|e(s)|2

+ λmax(Q̄)h

τM−1
∑

ι=τm

h−1
∑

s=h−ι

|e(s)|2.

For a scalarα > 1, we have

αh+1
E {V (e(h+ 1), h+ 1, ς(h+ 1))|e(h), ς(h) = i}

− αhV (e(h), h, i)

=αh+1
E {(V (e(h+ 1), h+ 1, ς(h+ 1))|e(h), ς(h) = i)

−V (e(h), h, i)}+ αh(α− 1)V (e(h), h, i)

≤αhφ(α)|e(h)|2 + αhϕ1(α)

h−1
∑

s=h−τ(h,i)

|e(s)|2

+ αh+1δi + αhϕ2(α)

τM−1
∑

ι=τm

h−1
∑

s=h−ι

|e(s)|2 (12)

where

φ(α) ,− αλmin(−Φ̂i) + (α− 1)λmax(Pi),

ϕ1(α) ,(α− 1)hλmax(Q),

ϕ2(α) ,(α− 1)hλmax(Q̄).

For any integerT ≥ τM +1, summing up both sides of (12)
from 0 to T − 1 with respect toh, we have

αT
E{V (e(T ), T, ς(T ))|e(T − 1), ς(T − 1)}

− E {V (e(0), 0, ς(0))}

≤φ(α)

T−1
∑

h=0

αh
E
{

|e(h)|2
}

+
α(1− αT )

1− α
δi

+ ϕ1(α)

T−1
∑

h=0

h−1
∑

s=h−τ(h,ς(h))

αh
E
{

|e(s)|2
}

+ ϕ2(α)
T−1
∑

h=0

τM−1
∑

ι=τm

h−1
∑

s=h−ι

αh
E
{

|e(s)|2
}

. (13)

Moreover, for the last two terms in (13), one has

T−1
∑

h=0

h−1
∑

s=h−τ(h,ς(h))

αh
E
{

|e(s)|2
}

≤

(

−1
∑

s=−τM

s+τM
∑

h=0

+

T−τM−1
∑

s=0

s+τM
∑

h=s+1

+

T−1
∑

s=T−τM

T−1
∑

h=s+1

)

αh
E
{

|e(s)|2
}

≤
ατM − 1

α− 1

−1
∑

s=−τM

E
{

|e(s)|2
}

+
α(ατM − 1)

α− 1

T−1
∑

s=0

αs
E
{

|e(s)|2
}

+
α(ατM−1 − 1)

α− 1

T−1
∑

s=0

αs
E
{

|e(s)|2
}

(14)

and
T−1
∑

h=0

τM−1
∑

ι=τm

h−1
∑

s=h−ι

αh
E
{

|e(s)|2
}

≤(τM − τm)

(

−1
∑

s=−τM

s+τM
∑

h=0

+

T−τM−1
∑

s=0

s+τM
∑

h=s+1

+

T−1
∑

s=T−τM

T−1
∑

h=s+1

)

αh
E
{

|e(s)|2
}

≤
(ατM − 1)(τM − τm)

α− 1

−1
∑

s=−τM

E
{

|e(s)|2
}
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+
α(ατM − 1)(τM − τm)

α− 1

T−1
∑

s=0

αs
E
{

|e(s)|2
}

+
α(ατM−1 − 1)(τM − τm)

α− 1

T−1
∑

s=0

αs
E
{

|e(s)|2
}

. (15)

From (14) and (15), it is easily known that

αT
E {V (e(T ), T, ς(T ))|e(T − 1), ς(T − 1)}

− E {V (e(0), 0, ς(0))}

≤φ(α)

T−1
∑

h=0

αh
E
{

|e(h)|2
}

+
α(1− αT )

1− α
δi

+ (ϕ1(α) + ϕ2(α)(τ̄ − τ ))(
ατM − 1

α− 1

−1
∑

s=−τM

E
{

|e(s)|2
}

+
α(ατM − 1)

α− 1

T−1
∑

s=0

αs
E
{

|e(s)|2
}

+
α(ατM−1 − 1)

α− 1

T−1
∑

s=0

αs
E
{

|e(s)|2
}

)

≤ζ(α)

T−1
∑

h=0

αh
E
{

|e(h)|2
}

+
α(1− αT )

1− α
δi

+
(ϕ1(α) + ϕ2(α)(τM − τm))(ατM − 1)

α− 1
× max

−τM≤s≤0
E
{

|e(s)|2
}

(16)

where

ζ(α) ,φ(α) +
ϕ1(α) + ϕ2(α)(τM − τm)

α− 1

×
(

ατM+1 + ατM − 2α
)

.

Noting thatζ(1) = −λmin(−Φi) < 0 and limα→∞ ζ(α) =
+∞, there exists a scalarα0 > 1 such thatζ(α0) = 0. Then,
it is inferred from (16) that

αT
0 E {V (e(T ), T, ς(T ))|e(T − 1), ς(T − 1)}

− E {V (e(0), 0, ς(0))}

≤
(ϕ1(α0) + ϕ2(α0)(τM − τm))(ατM

0 − 1)

α0 − 1

× max
−τM≤s≤0

E
{

|e(s)|2
}

+
α0(1− αT

0 )

1− α
δi.

Noting

E {V (e(0), 0, ς(0))}

≤λmax

(

Pς(0)

)

E
{

|e(0)|2
}

+ λmax(Q)h

−1
∑

−τM

E
{

|e(0)|2
}

+ (τM − τm)λmax(Q̄)h

−1
∑

−τM

E
{

|e(0)|2
}

≤max
(

λmax

(

Pς(0)

)

+ (λmax(Q)h+ (τM − τm)

×λmax(Q̄)h
)

τM
)

× max
−τM≤s≤0

E
{

|e(0)|2
}

and

αT
0 E {V (e(T ), T, ς(T ))} ≥ λmin(Pi)α

T
TE
{

|e(0)|2
}

,

we have

E
{

|e(T )|2
}

≤
(αT

0 − 1)δi

αT−1
0 (α0 − 1)λmin(Pi)

+
̟(α0)

αT
0 λmin(Pi)

where

̟(α0)

,

( (ϕ1(α) + ϕ2(α)(τM − τm))(ατM − 1)

α− 1
+ max(λmax(Pς(0)) + (λmax(Q)h+ (τM − τm)

× λmax(Q̄)h)τM )
)

max
−τM≤s≤0

E{|e(0)|2}.

By taking µ = 1/α0, ψ(T ) = (αT
0 − 1)δi/(α

T−1
0 (α0 −

1)λmin(Pi)), andϑ = ̟(α0)/λmin(Pi), it is readily seen from
Definition 1 that the estimation error system (6) is EUB in the
mean-square with

ψ̄ = lim
T→∞

ψ(T ) =
α0δi

(α0 − 1)λmin(Pi)
.

The proof is complete.
Theorem 1 provides a sufficient condition guaranteeing that

the estimation error dynamics is EUB in the mean square
sense. In the following theorem, we are going to characterize
the desired estimator gain.

Theorem 2:The estimation error system (6) is EUB in the
mean square if there exist a set of matricesPi > 0 (i ∈ S),
a set of matricesYi (i ∈ S), a matrixQ > 0 , three sets
of diagonal matricesΛi = diag{λi1, λ

i
2, · · · , λ

i
n} > 0, ∆i =

diag{δi1, δ
i
2, · · · , δ

i
n} > 0, Σi = diag{σi

1, σ
i
2, · · · , σ

i
n} > 0

and positive scalarsε1, ε2 such that
























Πi
11 0 Πi

13 Πi
14 0 0 0 Θi

18

∗ Πi
22 0 0 Πi

25 0 0 0
∗ ∗ Πi

33 0 0 0 0 Πi
38

∗ ∗ ∗ Πi
44 0 0 0 0

∗ ∗ ∗ ∗ Πi
55 0 0 Πi

58

∗ ∗ ∗ ∗ ∗ Πi
66 0 Θi

68

∗ ∗ ∗ ∗ ∗ ∗ Πi
77 Θi

78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Πi
88

























< 0

(17)

where

Θi
18 = ĀT

i P̄i − CT
i Y

T
i , Θi

68 = −Y T
i , Θ

T
78 = −LT

i Y
T
i .

Moreover, the estimator gain matrices can be calculated by
Ki = P̄−1

i Yi (i ∈ S).
Proof: The proof of this theorem follows directly from

that of Theorem 1, and is therefore omitted.
Remark 2:The purpose of this paper is to develop an event-

based state estimator for a class of MJANNs with uncertain
transition probabilities and mode-dependent delays. To achieve
this purpose, the existence of the estimator is first ensuredby a
sufficient condition, which also guarantees that the estimation
error dynamics is EUB in the mean square. Then, a sufficient
condition in terms of certain matrix inequalities is given in
Theorem 2 to design the estimator gain.

Remark 3:Until now, an ETSE scheme has been designed
for a class of MJANNs with uncertain transition probabilities
and mode-dependent delays. The major contribution of this
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paper is outlined in twofold as follows: 1) the considered
system model is general that accounts for the factors including
the Markovian jumping parameters, the uncertain transition
probabilities, the ETM and the mode-dependent time-delays;
and 2) the effects of the above factors on state estimation are
all reflected in the main results.

IV. N UMERICAL SIMULATION

A numerical simulation is carried out to demonstrate the
validity of the proposed ETSE scheme for a class of discrete-
time MJANNs with mode-dependent delays and uncertain
transition probabilities.

Let the ANNs (1) have three neurons with the following
parameters:

A1 =





0.7 0 0
0 −0.4 0
0 0 0.6



 ,

A2 =





0.8 0 0
0 −0.5 0
0 0 0.7



 ,

B1 =





0.2 0.6 0.2
0.2 −0.2 0
0.2 −0.1 −0.1



 ,

B2 =





0.2 0.5 0.3
0.2 −0.4 0
0.3 −0.1 −0.2



 ,

Bd1 =





0.05 0.04 −0.03
0.05 0.1 0.01
0.05 0.01 0.05



 ,

D1 =





0.25
0.2
0.18



 ,

Bd2 =





0.08 −0.03 0.03
0.01 0.2 0.02
−0.06 0.03 0.02



 ,

D2 =





0.2
0.3
0.25





and other parameters are chosen asτM = 3, τm = 2 and
θ = 0.15.

The activation functions are selected as

f(x(s)) =
[

tanh(0.5x1(s)) tanh(0.4x2(s))

tanh(0.6x3(s))
]T
,

g(x(s)) =
[

tanh(0.3x1(s)) tanh(0.4x2(s))

tanh(0.2x3(s))
]T
,

from which we conclude that̃α1 = β̃1 = 0, α̃2 =
diag{−0.2,−0.25−0.1} andβ̃2 = diag{−0.15,−0.2,−0.1}.

The measurement output of the sensor is modeled by (3)
with the following parameters:

C1 =

[

2.2 0.5 1.8
0.3 1.2 0.2

]

,

C2 =

[

1.2 0.8 1.2
0.6 1.9 0.6

]

,

L1 =

[

0.4
0.3

]

,

L2 =

[

0.6
0.5

]

.

The uncertain transition probability matrix is denoted by

Π =

[

0.4 + ∆π11 0.3 + ∆π12
0.35 + ∆π21 0.35 + ∆π22

]

with κ11 = 0.15, κ12 = 0.15, κ21 = 0.1, andκ22 = 0.2.
Considering the parameters mentioned above, the gain

matrices of the desired estimator are obtained by using the
MATLAB LMI toolbox and outlined as

K1 =





0.4509 −0.1083
0.0762 −0.4683
0.1012 0.0018



 ,

K2 =





0.4927 −0.1509
0.1472 −0.3055
0.2054 −0.0431



 .

The initial values of the states are set to bex1(s) = 0.1,
x2(s) = −0.1, and x3(s) = 0.2 for s ∈ [−3, 0]. The
corresponding results are shown in Figs. 1-4, where Fig. 1,
Fig. 2 and Fig. 3 depict the states ofx1(h), x2(h), x3(h),
the corresponding estimates and the estimation errorse1(h),
e2(h) and e3(h), respectively. The execution status of the
ETM is described in Fig. 4. From Figs. 1-4, it is readily
seen that the designed estimator performs well in estimating
the state trajectory of the system, which visually implies the
effectiveness of our design scheme.
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Fig. 1: Statex1(h), estimatêx1(h) and estimation errore1(h).

V. CONCLUSION

In this paper, the ETSE problem has been studied for
a class of discrete-time MJANNs with uncertain transition
probabilities and mode-dependent delays. The switching of
the ANNs has been characterized by a Markovian chain
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Fig. 2: Statex2(h), estimatêx2(h) and estimation errore2(h).
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Fig. 3: Statex3(h), estimatêx3(h) and estimation errore3(h).
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Fig. 4: Event-based release instants and release intervals.

whose transition probabilities are allowed to be uncertain. The
ETM has been used to regulate the data transmissions of the
sensor. Based on the proposed ETM, a sufficient condition that
guarantees that the estimation error system is EUB in the mean
square has been derived. Then, the gain of the estimator has
been derived by solving certain matrix inequalities proposed in
Theorem 2. Finally, a numerical case is offered to demonstrate
the validity of the proposed ETSE.

Further research topics would include the extension of the
main results to 1) the moving-horizon estimation problem
for discrete-time MJANNs with uncertain transition proba-
bilities [19], [46]–[48] ; 2) the reliableH∞ state estimation
problem of MJANNs with missing measurements [21], [27],
[36] and mixed mode-dependent time-delays [23]; and 3) the
improvement of the state estimation performance by using
some latest optimization algorithms [25], [26]. Note that some
multi-objective optimization approaches have been proposed in
[25], [26] with successful applications to the minimization of
energy consumption in crude oil pipeline transportation system
and large-scale oil-gas gathering system, and these excellent
algorithms are well suited to be applied to the further reduction
of the state estimation errors in the problem addressed in this
paper.
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