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Abstract—Gold immunochromatographic strip (GICS) is a
widely used lateral flow immunoassay technique. A novel image
segmentation method is developed in this paper for quantitative
analysis of GICS based on the deep reinforcement learning
(DRL), which can accurately distinguish the test line and the
control line in the GICS images. The deep belief network (DBN)
is employed in the deep Q network in our DRL algorithm.
Meanwhile, the multi-factor learning curve is introduced in
the DRL algorithm to dynamically adjust the capacity of the
replay buffer and the sampling size, which leads to enhanced
learning efficiency. It is worth mentioning that the states,actions,
and rewards in the developed DRL algorithm are determined
based on the characteristics of GICS images. Experiment results
demonstrate the feasibility and reliability of the proposed DRL-
based image segmentation method and show that the proposed
new image segmentation method outperforms some existing
image segmentation methods for quantitative analysis of GICS
images.

Index Terms—Deep reinforcement learning, image segmen-
tation, deep belief network, image segmentation, multi-factor
learning curve, gold immunochromatographic strip.

I. I NTRODUCTION

Served as an important lateral flow immunoassay tech-
nique, the gold immunochromatographic strip (GICS) has
been successfully applied to biomedical and related areas for
determining the target analyte in the specimens, especially
under the non-laboratory environment due to its short analysis
time and high stability [12], [14], [37], [43]. With the purpose
of improving the performance of the GICS, researchers have
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devoted tremendous efforts to designing various biochemi-
cal reaction systems (so as to investigate the quantitative
properties of the strips) and developing GICS quantitative
instruments [9], [28], [39], [42], [43].

Notice that the image-based quantitative analysis method
(which aims to recognize the test line and the control line
in GICS images) has become an attractive research topic for
developing GICS quantitative instruments [40], [42], [43]. In
fact, it is of critical importance to distinguish the test line
and control line in the GICS images as two lines significantly
affect the subsequent quantification. Up to now, a large number
of image processing methods have been utilized to segment
the two lines in the GICS images, such as the cellular neural
network, the fuzzy c-means algorithm, and the deep belief
network (DBN) [7], [15], [40], [41], [43]. It is worth mention-
ing that there are two main challenging problems in dealing
with the acquired GICS images: 1) the quality of the GICS
image is poor due to the existence of unavoidable noise in the
GICS image caused by environment factors like temperature
and humidity; and 2) the boundary between the two lines and
the background is irregular and blurry, especially the images
with low concentration where the test line is too shallow to be
recognized. To address the above mentioned challenges, our
goal is to develop an effective image segmentation method to
recognize the two lines for quantitative analysis of GICS.

Recently, reinforcement learning (RL) has become an attrac-
tive research topic in artificial intelligence and has achieved
a great success in various areas [2], [13], [16], [17], [24],
[31], [36], [38]. The aim of a RL algorithm is to maximize
the cumulative rewards by learning strategies through the
interaction with the environment. Nevertheless, traditional RL
algorithms have the problem of lack of scalability [2]. To
overcome this drawback of the RL, the deep RL (DRL)
algorithm has been put forward by employing the popular deep
neural networks (DNNs) in RL algorithms. Up to now, DRL
algorithms have achieved a great success in many research
fields, such as intelligent control [3], [17], [24], strategy
analysis [13], [31] and image processing [38]. Served as a
popular DRL algorithm, the deep Q-learning network (DQN)
proposed in [23] has shown competitive performance for high-
dimensional problems [1], [8]. According to the characteristics
of GICS images, the image segmentation problem can be
regarded as the process of finding the optimal boundary of test
and control lines. Hence, it is natural to develop an effective
segmentation method based on the DRL algorithm to segment
the GICS images for quantitative analysis of GICS.
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To apply the DRL algorithm to GICS images segmentation,
the state, action, and reward of DRL algorithm are defined
according to the characteristics of GICS images. In general,
the architecture of the network has significant impacts on the
performance of the DQN algorithm. Notice that the DBN has
been successfully applied to segment the two lines in the GICS
images in [41]. Hence, a seemingly natural idea is to employ a
DBN to establish the feature space for the DRL algorithm due
to its competitive representation learning ability. In addition,
the learning efficiency of the DRL algorithm is decreased if
the capacity of replay buffer and the size of random sampling
are fixed. In the DQN, the replay buffer capacity and the
sampling size are related to the discount factor and learning
rate. As such, the multi-factor learning curve proposed in [35]
has been introduced in this work to dynamically adjust the
replay buffer capacity and the sampling size with hope to en-
hance the leaning efficiency of DRL algorithm. The developed
DBN-based DRL algorithm possesses two advantages: 1) the
developed DBN-based DRL algorithm is capable of extracting
the state features with higher accuracy than that of the standard
RL algorithm; and 2) the learning efficiency of the developed
DBN-based DRL algorithm is improved, which benefits the
image segmentation process.

The main contributions of our work can be outlined as
follows: 1) a DRL-based image segmentation method is de-
veloped for accurately recognizing the control and test lines
in GICS images; 2) a modified deep Q-learning algorithm is
proposed by utilizing the DBN and the multi-factor learning
curve to enhance the feature extraction ability and the learning
efficiency of the DRL algorithm; and 3) the DRL algorithm is
applied to the quantitative analysis of GICS for the first time.

The remainder of this paper is organized as follows. In
Section II, the preliminaries about RL, Q-learning, and Deep
Q-learning are presented. The developed DRL algorithm com-
bined with the DBN and the multi-factor learning curve are
presented in Section III. GICS images and the introduced
image segmentation method based on the proposed DRL
algorithm are described in Section IV. Experiment results and
performance evaluation are discussed in section V. Finally,
conclusions are drawn in VI.

II. PRELIMINARIES

In this section, the background of the basic RL system, Q-
learning and deep Q-learning are presented.

A. Reinforcement Learning

RL is a popular machine learning method which aims to
learn satisfactory policies to solve sequential decision prob-
lems by optimizing a cumulative reward signal [27], [32].
Generally, a typical RL model is defined by a 4-tuple (S, A, P,
R), whereS denotes the state space,A represents the action
space,P is the state transition probability, andR stands for the
reward function [27], [33]. Through the process of interaction
with the environment, the agent learns to act in a specific state
to obtain the maximum future rewards. Notice that it is of
practical significance to balance the short-term and long-term
benefits of the agent while making decisions [25]. According

to the cumulative learning experience, the RL agent is capable
of selecting the best action for each state with the maximized
cumulative rewards.

B. Q-Learning

It should be noticed that the Markov decision process is
used in the RL algorithm. The rewardr as well as the next
states′ are obtained according to following formula:

p(s′, r|s, a) = P{St = s′, Rt = r|St−1 = s, At−1 = a} (1)

where s denotes the current state,s′ is the next state,t
represents the time step,a is the action.

The long-term cumulative discounted rewardsGt is shown
as follows:

Gt =

T
∑

k=t+1

γk−t−1Rk (2)

whereRk is the received reward at time stepk, and γ is a
discount factor which represents the trade-off between short-
term and long-term gains.

Meanwhile, the state-value function based on Eq. (1) is
defined by:

Qπ(s, a) = Eπ [Gt|St = s, At = a] (3)

Then, the optimal action for each state is determined when
the state-value function Eq. (3) reaches the best solution.In
the RL algorithm, theQ-table is employed to storeQ(s, a)
for all states. The Q-learning algorithm aims to optimize the
state-value function by iteratively updating theQ-table [10],
[34]. The updating equation of theQ-table is given as follows
[33]:

Q(St, At)←Q(St, At) + α[Rt+1 + γ max
a∈A(St+1)

Q(St+1, a)

−Q(St, At)]
(4)

whereα stands for the learning rate.

C. Deep Q-Learning

Essentially, Q-learning is a binary discrete function:

Q(S,A) = f(s, a) (5)

Although the traditional Q-learning algorithm performs well
in the low-dimensional state space, the performance of the Q-
learning algorithm is not satisfactory in the high-dimensional
state space. In the high-dimensional state space, theQ-table
is not able to cover all the states, and the large amount
of data leads to high computational burden. Therefore, the
function fitting method is employed to solve the limitation of
Q-learning algorithm for high-dimensional problem.

Owing to its power in function approximation, neural net-
works have been introduced in the Q-learning algorithm. The
deep Q-learning network (DQN) proposed in [23] which is a
combination of a neural network and Q-learning has shown
competitive performance for RL problems [1], [8]. In [24],
a double network structure has been put forward to describe
the correlation between the state-action value function and the
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update target, where the two networks involved are named as
the Q-network and the target network, respectively.

The output of the Q-network represents the solution of the
state-value functionQ(S,A), and the output of target network
serves as the label of the Q-network. It is remarkable that the
two networks have same structures, and the parameter updating
of two networks is asynchronous. The parameters of the Q-
network update at every iteration. The parameters of the target
network update at everyC iterations. Note that the parameters
of the target network remain unchanged when the Q-network
updates the parameters [24].

It should be pointed out that there exists inevitable correla-
tion between the samples. Therefore, a replay buffer is used
in the DQN to reduce the correlation between samples and
increase the sample efficiency [2]. That is, a replay buffer
is employed to store the samples generated by the agent
interacting with the environment. During the training process
of the DQN, a small batch of samples are selected from the
replay buffer. Then, the parameters of the Q-network and the
target network are updated by using the stochastic gradient
descent method, which greatly reduces the correlation among
samples to solve the local optimal problem to some extent.
It should be noted that the architecture of the network has
significant impacts on the performance of the DQN algorithm.

III. I MPROVED DEEPREINFORCEMENTLEARNING

In this section, the proposed modified DQN and the multi-
factor learning curve are discussed.

A. Modified DQN

In this paper, the deep belief network (DBN) [11], [26], [41]
is selected as the Q-network and the target network, of which
the structure is shown in Fig. 1.
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Fig. 1. Schematic diagram of a DBN

The DBN is composed of stacked restricted Boltzmann
machines (RBMs) and a back propagation (BP) layer. In a
DBN, the greedy learning algorithm is utilized to optimize the

weights of the network layer-by-layer, which is divided into
two phases. The first phase is pre-training, which performs in a
bottom-up manner. The second phase is the fine-tuning phase,
where the error is propagated from up to bottom to adjust the
parameters of the entire network.

For thejth node of the output layer in a DBN, we assume
that the actual output isoj and the expected output isej. The
sensitivityδj is computed by using the following formula:

δj = oj(1− oj)(ej − oj) (6)

For the lth hidden layer,yi is the output of theith node,
and the sensitivityδi is calculated via the following equation:

δli = yli(1− yli)
∑

j

wl
ijδ

l+1
j (7)

The weight and bias of a DBN are updated as follows:

wl
ij = wl

ij + εfine-tuningy
l
iδ

l+1
j (8)

blj = blj + εfine-tuningδ
l+1
j (9)

The schematic diagram of the DQN embedded with DBN
algorithm is depicted in Fig. 2:

s
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Fig. 2. The schematic diagram of DQN embedded with DBN
algorithm

The loss function of DQN is shown as follows:

Loss(θ,Q, y) =
1

2
[y(s, a)−Q(s, a, θ)]2 (10)

wherey(s, a) represents the label of Q-network, which is de-
termined through maximizing the value of state-value function:

y(s, a) = r +max
a′

Q(s′, a′, θ−) (11)

whereθ− denotes the parameters of the target network, and
θ− is fixed during the computation ofy(s, a).
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B. Multi-factor Learning Curve

Through the training process of a DQN algorithm, the
learning efficiency is decreased if the capacity of replay buffer
and the size of random sampling are fixed. In [29], the
prioritized replay sampling method is utilized to ensure that
the DQN is able to obtain satisfactory training samples witha
large probability, which eventually leads to enhanced training
efficiency. Notice that the optimized replay buffer can add high
quality samples, but ignores the influence of the replay buffer
capacity.

It should be noted that the relationship between the training
steps and the learning ability of the DQN is similar to the
core ideal of learning curve [35]. The theory of learning curve
aims to describe the process that an individual enhances the
learning ability through the accumulation of experience. The
learning curve model is mainly divided into two categories,
which are the single factor model and the multi-factor model.
In general, the leaning ability of an individual is related to
several factors. In the DQN, the replay buffer capacity and the
sampling size are related to the discount factorγ and learning
rateα. Hence, the multi-factor learning curve is utilized in this
paper to dynamically adjust the replay buffer capacity and the
sampling size with hope to enhance the leaning efficiency of
the DQN.

In this paper, the updating rules of the replay buffer capacity
and the sampling size based on the learning curve model are
given by:

R← R
1

k
(steps)−

log γ

log 2 ∗
⌈

steps

C

⌉− log(1−α)
log 2

(12)

N ← N
1

k
(steps)−

log γ

log 2 ∗
⌈

steps

C

⌉− log(1−α)
log 2

(13)

whereR denotes the capacity of replay buffer;N represents
the sampling size;steps denotes the current training step;k
stands for the performance of the first training whose default
value is 1;γ represents the discount factor;α is the learning
rate, andC is the iteration number. It should be mentioned
that the discount factorγ has an effect on the capacity of the
replay buffer and the sampling size at each iteration, while
the learning rateα has an effect on the replay buffer and the
sampling size at everyC iterations.

The pseudocode of the proposed DRL algorithm for the
GICS images segmentation in this paper is described as
follows:

Algorithm 1: Improved DRL Algorithm

Initialize replay memoryD to capacityR, minibatch sizeN,
training stepssteps, learning rateα and reward discountγ
Initialize Q-network with random weightsθ
Initialize target network with weightsθ− = θ
For episode=1,M do

Initialize sequence and calculate initial states1
For t=1, T do

Calculate the outputargmax
a

Q(st, a, θ) of Q-network

Select a random actionat with a certain probability

otherwise selectat = argmax
a

Q(st, a, θ)

Execute actionat, observe rewardrt and next statest+1

according to the Eqs. (14) and (15)
Update the capacity of replay bufferR:

R← R
1

k
(steps)−

log γ

log 2 ∗
⌈

steps

C

⌉− log(1−α)
log 2

Store transition (st, at, rt, rt+1) in replay memoryD
Update minibatch sizeN:

N ← N
1

k
(steps)−

log γ

log 2 ∗
⌈

steps

C

⌉−
log(1−α)

log 2

Sample random minibatch of transitions (si, ai, ri, ri+1)
Setyi = ri + γmax

a′

Q(si, a
′, θ−)

Perform a gradient descent step to update the weightsθ
of Q-network:

L =
1

N

∑

i

(yi −Q(si, ai, θ)
2

Every C steps resetθ− = θ
Setsteps← steps+ 1

End For
End For

IV. D EEPREINFORCEMENTLEARNING-BASED GICS
IMAGES SEGMENTATION

In this section, the background of the GICS images and the
detailed DRL-based image segmentation are presented.

A. GICS Images

It is worth mentioning that the control line and test line
of the GICS become red when the specimen containing the
target analyte passes through the strip. Seven GICS images
with different concentrations of human chorionic gonadotropin
(hCG) are presented in Fig. 3.

Fig. 3. Images of GICS with different concentrations of hCG.

It should be pointed out that the concentration of the target
analyte influences the intensity of the lines, especially the test
line. In this case, the quantitative analysis of the GICS can
be accomplished by measuring the signal intensity of test and
control lines [40]. It can be seen in Fig. 3 that the boundary
of the line is too blurry to be recognized, which indicates that
it is difficult to precisely segment the control and test lines
from the background. As such, we aim to propose an effective
image segmentation method with hope to accurately segment
the control and test lines.

In this paper, the main objective is to develop an image
segmentation method based on the DRL algorithm to accu-
rately segment the GICS images for the quantitative analysis.
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In our simulation, each image is divided into two sub-images
(including the control line and the test line, respectively)
to reduce the computational complexity. In addition, a DRL
algorithm is proposed based on the characteristics of the GICS.

B. Processing GICS Images via Deep Reinforcement Learning

The RL agent starts with the top or bottom of each column,
and moves either down/up or remains unchanged. The corre-
sponding reward is determined according to the position of the
agent. In order to segment the sub-image, it is necessary to
find the upper and lower edges of the target line (test line or
control line). The edge of the target line is determined when
the upper and lower points of the boundary in each column
are found.

1) Definition of state:The grayscale intensity of neighbor
pixels near the target is used to represent the state of target
pixel. The state vectorwinsize∗winsize is obtained by setting
the size of the moving window towinsize. The mirroring
method is applied to fill the pixels outside the window.

2) Definition of action: In this paper, the agent performs
two actions, that is, moves or remains unchanged. ActionA
is expressed as:

A =

{

0 stop
1 down/up

(14)

3) Definition of reward:To evaluate the segmentation per-
formance of the image, the manually segmented image is
utilized as the benchmark. In this work, the coincidence rate
Cr between the manually segmented image and the segmented
image by using the algorithm can be used as the criteria for
determining the reward. It should be mentioned that the lower
the coincidence, the worse the segmentation performance. In
this paper, 0.9 is set as threshold of the coincidence rate. A
positive reward is offered if the coincidence rate is biggerthan
the threshold. On the contrary, a negative value is given if the
coincidence rate is smaller than the threshold. The coincidence
rate and reward are defined as follows:

Cr =

∑

pf ∩
∑

pf |opt +
∑

pb ∩
∑

pb|opt
∑

pf +
∑

pb
(15)

R =

{

10 ∗ Cr Cr ≥ 0.9
−1 Cr < 0.9

(16)

wherepf and pb represent the pixels in the foreground (test
line and control line) and background (other area), respec-
tively; pf |opt and pb|opt are the foreground and background
pixels of the manually segmented image (which is the optimal
segmented image), respectively.

The flowchart of the GICS image segmentation method
based on the developed DRL algorithm is displayed in Fig. 4.

V. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, the performance of the developed DRL
algorithm is evaluated in terms of the segmentation results
and the quantitative analysis of GICS images. Here, 10 GICS
images with different concentrations of hCG are selected asthe
training set. Especially, each GICS image is divided into two

Fig. 4. The flowchart of GICS image segmentation based on the
DRL.

sub-images, which contain the control line and the test line,
respectively. The size of each sub-image is set as 115*270.

In our simulation, a DBN consists of two RBMs, where the
number of input node is respectively set to be 100 and 9 for
each RBM when thewinsize equals to 3. The learning rate
α is set to be 0.1, the initial capacity of the replay buffer is
set to be 100, and the frequency of changing target network
parameters is 20.

A. Image Segmentation

To comprehensively evaluate the performance of the image
segmentation, a standard RL algorithm and the developed
DRL algorithm are applied to segment the GICS images. For
simplicity, three typical segmentation results are shown in
Fig. 5, where the left column shows pre-processed images
(denoted by original images), the middle and right columns
are segmentation results obtained by the RL algorithm and
the proposed DRL algorithm, respectively.

It can be seen in Fig. 5 that both the RL algorithm and
the proposed DRL algorithm achieve satisfactory results. In
order to quantitatively evaluate the segmentation accuracy, a
similarity indicatorη is employed, which is defined by:

η =
Bs ∩Br + Fs ∩ Fr

Bs + Fs

× 100% (17)

where the subscript indexr represents the manually segmented
image (labeled image);s stands for the segmentation result;
B and F stand for the background and foreground area,
respectively. According to Eq. (17), the segmentation accuracy
of test and control lines in each test image is listed in Table. I.
The total segmentation accuracy is equal to the average of
corresponding segmentation accuracy of the control and test
lines.

In Table. I, we can see that the developed DRL algorithm
outperforms the RL algorithm in the segmentation of GICS
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TABLE I
THE SEGMENTATION ACCURACY OF THEGICS IMAGES

Concentration
Control line Test line Total accuracy

RL (%) DRL (%) RL (%) DRL (%) RL (%) DRL (%)

75ml 93.12 94.76 94.03 96.03 93.58 95.40

100ml 94.95 96.95 94.01 97.00 94.48 96.98

150ml 95.08 97.08 93.56 95.56 94.32 96.32

200ml 95.62 97.62 94.36 98.36 94.99 97.99

300ml 95.79 98.79 94.40 96.40 95.10 97.56

400ml 94.21 97.21 96.12 99.22 95.17 98.22

500ml 95.57 96.57 94.60 98.60 95.09 97.58

Average 94.90 97.00 94.45 97.31 94.68 97.16

Fig. 5. Segmentation results of the GICS images.

images with different concentrations of hCG, and the total
accuracy of DRL algorithm is 2.48% higher than the result
obtained by the RL algorithm. Meanwhile, a total segmen-
tation accuracy of 97.16% demonstrates the reliability and
efficiency of the developed DRL algorithm. Furthermore, the
peak signal-to-noise ratio (PSNR) is utilized to evaluate the
segmentation performance of the proposed DRL algorithm.
The larger the PSNR value, the better the performance of
image segmentation. In order to calculate the PSNR of GICS
images, a binary mask is set up to classify the image pixels,
where the pixel value of foreground (the test and control line)
is set as 1 and the pixel value of background (other areas) is
set as 0. The PSNR is calculated by:

MSE =
1

mn

m−1
∑

i=0

n−1
∑

j=0

[I(i, j)−K(i, j)]2 (18)

PSNR = 20 ∗ log10
[

MAXI√
MSE

]

(19)

where MSE denotes the mean square error between the nor-
malized original imageI and the masked imageK; MAXI

is the maximum range of the input image data type.
The results of PSNR are illustrated in Fig. 6. It can be seen

in Fig. 6 that the developed DRL algorithm has demonstrated
outstanding performance with satisfactory PSNR values in the
segmentation of GICS images. Especially, it provides higher
accuracy than the methods developed in [40].
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Fig. 6. PSNR values of GICS images with different concentrations.

B. Quantitative Analysis

The objective of segmenting GICS images is to quanti-
tatively determine the concentration of the target analytein
a specimen. Therefore, the relative integral optical density
(RIOD) is selected as an indicator for the quantitative analysis
of the concentration of hCG [41]. RIOD is defined as:

RIOD =
IODT

IODC

=

N
∑

i=1

log
Gavg

Gi

M
∑

j=1

log
Gavg

Gj

(20)

whereIDOT and IDOC denote the integral optical density
of the test line and the control line, respectively;N stands for
the number of pixels in the test line;M denotes the number of
pixels in the control line;Gavg is the average grayscale pixel
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TABLE II
THE ROID VALUES OF DIFFERENT TEST SAMPLES

Concentration(mL) 75 100 150 200 300 400 500
ROID 0.7012 0.9376 1.0432 1.6634 2.0643 2.7968 3.7941

value of the whole image;Gi andGj represent the grayscale
of pixel value in the test line and the control line, respectively.
The RIOD values for 7 different concentrations of hCG are
listed in Table. II.

In Table. II, it can be seen that the RIOD value distinguishes
the concentration of the target analyte very well. Meanwhile,
a functional relationship between the RIOD and the concen-
tration of the target analyte is obtained by using the least
square method. The scatterplot between the RIOD and the
concentration of hCG and the fitted line based on Table. II are
shown in Fig. 7.
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Fig. 7. The scatterplot and fitted line between the RIOD and the
concentration of hCG.

In particular, the results obtained by using the RL algorithm
and the cellular neural network (CNN) [40] are presented in
Fig. 7. To make it convenient for comparison, the fitted linear
equation of the DRL algorithm, RL algorithm and the CNN
are given in Table. III. In addition, the correlation coefficients
of the three methods are also shown in Table. III, where
the correlation coefficient of the proposed DRL algorithm is
0.973, which is the best among the three methods. In this
case, the concentration of hCG and RIOD value are linear
correlated. To summarize, the RIOD value can be used to
determine the concentration of target analyte in a specimen
for the quantitative analysis of GICS.

VI. CONCLUSIONS

In this paper, a novel image segmentation method based on
the DRL algorithm is proposed for the quantitative analysisof
GICS images. In our work, the state, action, and the reward
are defined based on the characteristics of GICS images. In
addition, the DBN is utilized in the DQN algorithm, where

TABLE III
THE COMPARISON OF FITTING RESULTS AMONG THREE METHODS

Method Fitted linear equation Correlation coefficient
DRL y=0.006x+0.241 0.973
RL y=0.007x+0.179 0.963

CNN y=0.006x+0.236 0.969

the capacity of the replay buffer and the sampling size are
dynamically changed according to the multi-factor learning
curve, which can effectively enhance the learning efficiency.
Experiments on GICS images with different concentrations
have been carried out. Experiment results have demonstrated
that the developed DRL algorithm is capable of providing a
satisfactory performance in terms of several indices.

In the future, we aim to develop advanced image processing
approaches for the quantitative analysis of GICS [4], [5],
and apply our developed DRL algorithm to other research
areas, for example, discrete-time switched complex networks
[6], [22], [46], networked systems [30], [45], [47], [48], and
multiagent systems [44]. We can also integrate the developed
DRL algorithm with the latest optimization techniques pro-
posed in [18]–[21]. For example, where a variety of effective
optimization methods have been developed for petroleum
engineering, which saved a lot of investment for the petroleum
industry.
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