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Deep-Reinforcement-Learning-Based Images
Segmentation for Quantitative Analysis of Gold
Immunochromatographic Strip

Nianyin Zeng, Han Li, Zidong Warig Weibo Liu, Songming Liu, Fuad E. Alsaadi and Xiaohui Liu

Abstract—Gold immunochromatographic strip (GICS) is a
widely used lateral flow immunoassay technique. A novel imag
segmentation method is developed in this paper for quantitéve
analysis of GICS based on the deep reinforcement learning
(DRL), which can accurately distinguish the test line and tte
control line in the GICS images. The deep belief network (DBI)
is employed in the deep Q network in our DRL algorithm.
Meanwhile, the multi-factor learning curve is introduced in
the DRL algorithm to dynamically adjust the capacity of the
replay buffer and the sampling size, which leads to enhanced
learning efficiency. It is worth mentioning that the states,actions,
and rewards in the developed DRL algorithm are determined
based on the characteristics of GICS images. Experiment re#s
demonstrate the feasibility and reliability of the proposal DRL-

based image segmentation method and show that the proposed

new image segmentation method outperforms some existing
image segmentation methods for quantitative analysis of @S
images.

Index Terms—Deep reinforcement learning, image segmen-
tation, deep belief network, image segmentation, multi-fetor
learning curve, gold immunochromatographic strip.

I. INTRODUCTION

Served as an important lateral flow immunoassay tecH
nique, the gold immunochromatographic strip (GICS) hd
been successfully applied to biomedical and related amas ¥
determining the target analyte in the specimens, espyecia{
under the non-laboratory environment due to its short aigly

time and high stability [12], [14], [37], [43]. With the puoge
of improving the performance of the GICS, researchers h
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devoted tremendous efforts to designing various biochemi-
cal reaction systems (so as to investigate the quantitative
properties of the strips) and developing GICS quantitative
instruments [9], [28], [39], [42], [43].

Notice that the image-based quantitative analysis method
(which aims to recognize the test line and the control line
in GICS images) has become an attractive research topic for
developing GICS quantitative instruments [40], [42], [4B]
fact, it is of critical importance to distinguish the testdi
and control line in the GICS images as two lines significantly
affect the subsequent quantification. Up to now, a large rarmb
of image processing methods have been utilized to segment
the two lines in the GICS images, such as the cellular neural
network, the fuzzy c-means algorithm, and the deep belief
network (DBN) [7], [15], [40], [41], [43]. It is worth mentio-
ing that there are two main challenging problems in dealing
with the acquired GICS images: 1) the quality of the GICS
image is poor due to the existence of unavoidable noise in the
GICS image caused by environment factors like temperature
and humidity; and 2) the boundary between the two lines and
the background is irregular and blurry, especially the iesag
ith low concentration where the test line is too shallow éo b
gcognized. To address the above mentioned challenges, our
oal is to develop an effective image segmentation method to
|(f-cognize the two lines for quantitative analysis of GICS.

Recently, reinforcement learning (RL) has become an attrac
tive research topic in artificial intelligence and has achik

cgreat success in various areas [2], [13], [16], [17], [24],
31], [36], [38]. The aim of a RL algorithm is to maximize
the cumulative rewards by learning strategies through the
interaction with the environment. Nevertheless, trad#iioRL
algorithms have the problem of lack of scalability [2]. To
overcome this drawback of the RL, the deep RL (DRL)
algorithm has been put forward by employing the popular deep
neural networks (DNNSs) in RL algorithms. Up to now, DRL
algorithms have achieved a great success in many research
fields, such as intelligent control [3], [17], [24], strayeg
analysis [13], [31] and image processing [38]. Served as a
popular DRL algorithm, the deep Q-learning network (DQN)
proposed in [23] has shown competitive performance for-igh
dimensional problems [1], [8]. According to the charactics
of GICS images, the image segmentation problem can be
regarded as the process of finding the optimal boundary bf tes
and control lines. Hence, it is natural to develop an eféecti
segmentation method based on the DRL algorithm to segment
the GICS images for quantitative analysis of GICS.
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To apply the DRL algorithm to GICS images segmentatiotp the cumulative learning experience, the RL agent is dapab
the state, action, and reward of DRL algorithm are defined selecting the best action for each state with the maxidize
according to the characteristics of GICS images. In generalimulative rewards.
the architecture of the network has significant impacts @en th
performance of the DQN algorithm. Notice thqt the_ DBN ha§_ Q-Learning
been successfully applied to segment the two lines in thesGIC _ - _
images in [41]. Hence, a seemingly natural idea is to employ alt should be n0t|ce_d that the Markov decision process is
DBN to establish the feature space for the DRL algorithm di#$€d n the RL algorithm. The rewardas well as the next
to its competitive representation learning ability. In #iga, Stetes’ are obtained according to following formula:
the Iearnipg efficiency of the DRL algorithm is decreased. iB(s',r|s,a) = P{S, = s, Ry = 7|S;_1 = 8, Ay_1 = a} (1)
the capacity of replay buffer and the size of random sampling
are fixed. In the DQN, the replay buffer capacity and th@here s denotes the current state; is the next statet
sampling size are related to the discount factor and legrnifépresents the time step,is the action.
rate. As such, the multi-factor learning curve proposed®Bi[  The long-term cumulative discounted rewar@sis shown
has been introduced in this work to dynamically adjust ths follows:

replay buffer capacity and the sampling size with hope to en- T
hance the leaning efficiency of DRL algorithm. The developed Gy = Z ARTLR, (2)
DBN-based DRL algorithm possesses two advantages: 1) the k=t+1

developed DBN-based DRL algorithm is capable of extractingnere Ry, is the received reward at time stép and~ is a

the state features with higher accuracy than that of thelatéin giscount factor which represents the trade-off betweemtsho
RL algorithm; and 2) the learning efficiency of the developeg,n and long-term gains.

DBN-based DRL algorithm is improved, which benefits the Meanwhile, the state-value function based on Eq. (1) is

image segmentation process. defined by:
The main contributions of our work can be outlined as
follows: 1) a DRL-based image segmentation method is de- Qr(s,a) = Ex[G|S; = s, Ay = a 3)

veloped for accurately recognizing the control and testdin
in GICS images; 2) a modified deep Q-learning algorithm

proposed by utilizing the DBN and _the m_u_lti-factor Iearningghe RL algorithm, theQ-table is employed to stor&(s, a)
curve to enhance the feature extraction ability and thenIBgr_ for all states. Thé Q-learning algorithm aims to optim’ize th

efficiency of the DRL algorithm; and 3) the DRL algorithm is i . : . .
applied to the quantitative analysis of GICS for the firstetim state-value function by iteratively updating tggtable [10],

e54]. The updating equation of thg-table is given as follows

. Then, the optimal action for each state is determined when
{Re state-value function Eq. (3) reaches the best solution.

The remainder of this paper is organized as follows. | 3
Section Il, the preliminaries about RL, Q-learning, and pe '
Q-learning are presented. The developed DRL algorithm cor@X(S;, A;) < Q(S;, Ar) + a[Ri41 +v max  Q(Si4+1,a)
bined with the DBN and the multi-factor learning curve are a€A(Se+1) 4)
presented in Section Ill. GICS images and the introduced — Q(S:, A)]
image segmentation method based on the proposed Dfgheren stands for the learning rate.
algorithm are described in Section IV. Experiment resutid a
performance evaluation are discussed in section V. Final

. . P‘f Dee -Learnin
conclusions are drawn in VI. PQ 9

Essentially, Q-learning is a binary discrete function:

Il. PRELIMINARIES Q(S, A) = f(s,a) (5)
In this section, the background of the basic RL system, Q-

learning and deep Q-learning are presented. Although the traditional Q-learning algorithm performslwe

in the low-dimensional state space, the performance of the Q
) ) learning algorithm is not satisfactory in the high-dimemsil
A. Reinforcement Learning state space. In the high-dimensional state spaceQttable

RL is a popular machine learning method which aims ts not able to cover all the states, and the large amount
learn satisfactory policies to solve sequential decisiosbp of data leads to high computational burden. Therefore, the
lems by optimizing a cumulative reward signal [27], [32]function fitting method is employed to solve the limitatioh o
Generally, a typical RL model is defined by a 4-tupke A, P, Q-learning algorithm for high-dimensional problem.
R), where S denotes the state spacé,represents the action Owing to its power in function approximation, neural net-
space P is the state transition probability, adftistands for the works have been introduced in the Q-learning algorithm. The
reward function [27], [33]. Through the process of inteiatt deep Q-learning network (DQN) proposed in [23] which is a
with the environment, the agent learns to act in a specifte staombination of a neural network and Q-learning has shown
to obtain the maximum future rewards. Notice that it is afompetitive performance for RL problems [1], [8]. In [24],
practical significance to balance the short-term and lengt a double network structure has been put forward to describe
benefits of the agent while making decisions [25]. Accordinttpe correlation between the state-action value functiahtha
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update target, where the two networks involved are namedwasights of the network layer-by-layer, which is divideddnt
the Q-network and the target network, respectively. two phases. The first phase is pre-training, which perfomas i

The output of the Q-network represents the solution of thmttom-up manner. The second phase is the fine-tuning phase,
state-value functiod)(.S, A), and the output of target networkwhere the error is propagated from up to bottom to adjust the
serves as the label of the Q-network. It is remarkable that tharameters of the entire network.
two networks have same structures, and the parameter ngdati For the jth node of the output layer in a DBN, we assume
of two networks is asynchronous. The parameters of the @at the actual output is; and the expected outputis. The
network update at every iteration. The parameters of thlgetarsensitivity §, is computed by using the following formula:
network update at every iterations. Note that the parameters
of the target network remain unchanged when the Q-network
updates the parameters [24].

It should be pointed out that there exists inevitable carrel For theith hidden layery; is the output of theith node,
tion between the samples. Therefore, a replay buffer is usggd the sensitivity); is calculated via the following equation:
in the DQN to reduce the correlation between samples and

Oh=yi(1—yh) > wholt
J

(6)

6j = 0;(1 —05)(e; — 05)

increase the sample efficiency [2]. That is, a replay buffer
is employed to store the samples generated by the agent
interacting with the environment. During the training pees

of the DQN, a small batch of samples are selected from theThe weight and bias of a DBN are updated as follows:
replay buffer. Then, the parameters of the Q-network and the

target network are updated by using the stochastic gradient wﬁj = wﬁj + Efine.tUnindjé§§
descent method, which greatly reduces the correlation gmon b= b+ efneunin 951.+1
samples to solve the local optimal problem to some extent. I J J
It should be noted that the architecture of the network has
significant impacts on the performance of the DQN algorithn‘:j\1

(@)

+1 (8)
C)

The schematic diagram of the DQN embedded with DBN
gorithm is depicted in Fig. 2:

Ill. | MPROVED DEEPREINFORCEMENTLEARNING

Loss gradient

In this section, the proposed modified DQN and the multi- Loss
factor learning curve are discussed. Ots.aw)
arg maxQ(s,a,w)
ifi . Q-network Target network
A. Modified DQN Environment X using DBN | po— using DBN
In this paper, the deep belief network (DBN) [11], [26], [41] update
is selected as the Q-network and the target network, of which (50) o
the structure is shown in Fig. 1.
Sampling
Expected Lables
State
(s,a,rs")
Error (...) Output Layer Action Memory
|
Fine turning BP } w®
1 Reward
3
(000000
Fine turning  RBM3 i e gulg.o rziihm The schematic diagram of DQN embedded with DBN
Error x o
Backpropagation (. . . , . .) h
Fine tumning ~ RBM2| 1 w® The loss function of DQN is shown as follows:
(000000 1 )
Fine turning RBMI } W LOSS(@, Qv y) = 5 [y(S, a) - Q(S, a, 9)] (10)
|
(9000000 i wherey(s, a) represents the label of Q-network, which is de-

termined through maximizing the value of state-value fiomct

Fig. 1. Schematic diagram of a DBN

y(s,a) = r+maxQ(s',a’,07) (11)
The DBN is composed of stacked restricted Boltzmann
machines (RBMs) and a back propagation (BP) layer. Invehered~ denotes the parameters of the target network, and

DBN, the greedy learning algorithm is utilized to optimiret 6~ is fixed during the computation af(s, a).
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B. Multi-factor Learning Curve

Through the training process of a DQN algorithm, the
learning efficiency is decreased if the capacity of replafjeou
and the size of random sampling are fixed. In [29], the

otherwise select; = arg max Q(sy, a, 6)

Execute actionu,, observe reware; and next state;;
according to the Eqgs. (14) and (15)
Update the capacity of replay buff&

prioritized replay sampling method is utilized to ensuratth
the DQN is able to obtain satisfactory training samples \&ith
large probability, which eventually leads to enhancechirej
efficiency. Notice that the optimized replay buffer can adghh
quality samples, but ignores the influence of the replayduff
capacity.

_log(1—a)

steps log 2
*
C

Store transition ;, a¢, ¢, 7:41) in replay memoryD
Update minibatch siz&!:

log v

1
R+ RE (steps)™ Tos2

It should be noted that the relationship between the trginin 1 ; log(ie)
steps and the learning ability of the DQN is similar to the N N> (steps)™ 197 x F €ps
core ideal of learning curve [35]. The theory of learningweur k ¢

aims to describe the process that an individual enhances the
learning ability through the accumulation of experienckeT
learning curve model is mainly divided into two categories,
which are the single factor model and the multi-factor model
In general, the leaning ability of an individual is relatea t
several factors. In the DQN, the replay buffer capacity dred t
sampling size are related to the discount faet@nd learning
ratea. Hence, the multi-factor learning curve is utilized in this  Every C steps reset~ = ¢
paper to dynamically adjust the replay buffer capacity dred t Setsteps + steps + 1
sampling size with hope to enhance the leaning efficiency ofgend For
the DQN. End For

In this paper, the updating rules of the replay buffer cayaci
and the sampling size based on the learning curve model are

Sample random minibatch of transitions,(a;, 7;, 7i+1)
Sety; = r; + ymaxQ(s;,a’,07)

Perform a gradignt descent step to update the weights
of Q-network:

1
L= sz: (yi — Q(si,a,60)°

given by: IV. DEEPREINFORCEMENTLEARNING-BASED GICS
log(i—a) IMAGES SEGMENTATION
R« Rl(steps)*ﬁiig X {% e (12)  In this section, the background of the GICS images and the
k ¢ detailed DRL-based image segmentation are presented.
1 7logl(1720¢)
N« NE(StepS)—ﬁiiZ “ [Stg’s (13) A. GICS Images

] It is worth mentioning that the control line and test line
whereR denotes the capacity of replay bufféd;represents of the GICS become red when the specimen containing the
the sampling sizeyteps denotes the current training stéip; target analyte passes through the strip. Seven GICS images

stands for the performance of the first training whose defayliipy different concentrations of human chorionic gonadpin
value is 1,y represents the discount facter;is the learning éhCG) are presented in Fig. 3.

rate, andC is the iteration number. It should be mentione
that the discount factoy has an effect on the capacity of th m_ Control Line
===  «—— Test Line

replay buffer and the sampling size at each iteration, whi~ | IO P LR
the learning ratex has an effect on the replay buffer and th i ke ke ke ki b
Images of GICS with different concentrations of hCG.

sampling size at everg’ iterations.
The pseudocode of the proposed DRL algorithm for theg. 3.
GICS images segmentation in this paper is described as

follows: It should be pointed out that the concentration of the target

analyte influences the intensity of the lines, especiakyttst
line. In this case, the quantitative analysis of the GICS can
be accomplished by measuring the signal intensity of tedt an
control lines [40]. It can be seen in Fig. 3 that the boundary
of the line is too blurry to be recognized, which indicateatth
it is difficult to precisely segment the control and test $ine
from the background. As such, we aim to propose an effective
image segmentation method with hope to accurately segment
the control and test lines.

In this paper, the main objective is to develop an image
segmentation method based on the DRL algorithm to accu-
rately segment the GICS images for the quantitative aralysi

Algorithm 1: Improved DRL Algorithm

Initialize replay memonD to capacityR, minibatch sizeN,
training stepssteps, learning ratex and reward discount
Initialize Q-network with random weight$
Initialize target network with weight8— = 0
For episode=1M do

Initialize sequence and calculate initial state

For t=1, T do

Calculate the outpuirg max Q(s¢, a, ) of Q-network

Select a random actioaﬁlt with a certain probability
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In our simulation, each image is divided into two sub-images Training Test
(including the control line and the test line, respectiyely e e
to reduce the computational complexity. In addition, a DRL - e
algorithm is proposed based on the characteristics of tlESGI L e L et
v v
ROI ROI
B. Processing GICS Images via Deep Reinforcement Learning Extraction Extraction
The RL agent starts with the top or bottom of each column, | |
and moves either down/up or remains unchanged. The corre- l
sponding reward is determined according to the positiohef t =
agent. In order to segment the sub-image, it is necessary to ‘ Action Reward
find the upper and lower edges of the target line (test line or |
control line). The edge of the target line is determined when 4
the upper and lower points of the boundary in each column DBN-Based
are found. DRL
1) Definition of state:The grayscale intensity of neighbor l
pixels near the target is used to represent the state ofttarge Seg‘:‘:g‘;tl‘:ﬁ"“ — 1

pixel. The state vectaninsizexwinsize is obtained by setting

the size of the moving window tavinsize. The mirroring Fig. 4.

method is applied to fill the pixels outside the window. DRL.
2) Definition of action: In this paper, the agent performs

two actions, that is, moves or remains unchanged. Action

is expressed as:

The flowchart of GICS image segmentation based on the

sub-images, which contain the control line and the test, line
0 stop respectively. The size of each sub-image is set as 115*270.
A= { ( In our simulation, a DBN consists of two RBMs, where the
number of input node is respectively set to be 100 and 9 for
3) Definition of _reward:To evaluate the segmentatipn Pereach RBM when thevinsize equals to 3. The learning rate
formance of the image, the manually segmented image /sis set to be 0.1, the initial capacity of the replay buffer is

C, between the manually segmented image and the segmemjgghmeters is 20.

image by using the algorithm can be used as the criteria for

determining the reward. It should be mentioned that the towe ]

the coincidence, the worse the segmentation performance/y Image Segmentation

this paper, 0.9 is set as threshold of the coincidence rate. ATo comprehensively evaluate the performance of the image
positive reward is offered if the coincidence rate is bigi@n segmentation, a standard RL algorithm and the developed
the threshold. On the contrary, a negative value is givehdf tDRL algorithm are applied to segment the GICS images. For
coincidence rate is smaller than the threshold. The coemdd simplicity, three typical segmentation results are shown i

1 down/up

rate and reward are defined as follows: Fig. 5, where the left column shows pre-processed images
S pr N Djopt + 206 N Y Pojopt (denoted by or_iginal images), Fhe middle and right _columns
r = T TEST (15) are segmentation result_s obtained b_y the RL algorithm and
the proposed DRL algorithm, respectively.
R = { 10 *ICT gT i 83 (16) It can be seen in Fig. 5 that both the RL algorithm and

the proposed DRL algorithm achieve satisfactory resufts. |
wherep; and p, represent the pixels in the foreground (testrder to quantitatively evaluate the segmentation acguiac
line and control line) and background (other area), respegmilarity indicatorn is employed, which is defined by:
tively; pfjope @and py)ope are the foreground and background B.NB,+F,NF.
pixels of the manually segmented image (which is the optimal n= BT E x 100% 17)
segmented image), respectively. e

The flowchart of the GICS image segmentation methd&here the subscript indexrepresents the manually segmented

based on the developed DRL algorithm is displayed in Fig. §nage (labeled image) stands for the segmentation result;
B and F' stand for the background and foreground area,

respectively. According to Eq. (17), the segmentation eamu
of test and control lines in each test image is listed in Table

In this section, the performance of the developed DRLhe total segmentation accuracy is equal to the average of
algorithm is evaluated in terms of the segmentation resutterresponding segmentation accuracy of the control artd tes
and the quantitative analysis of GICS images. Here, 10 GldiBes.
images with different concentrations of hCG are selectdd@s In Table. I, we can see that the developed DRL algorithm
training set. Especially, each GICS image is divided into twoutperforms the RL algorithm in the segmentation of GICS

V. EXPERIMENT RESULTS AND DISCUSSIONS
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TABLE |
THE SEGMENTATION ACCURACY OF THEGICSIMAGES

Concentration Control line Test line Total accuracy
RL (%) | DRL (%) | RL (%) | DRL (%) | RL (%) | DRL (%)

75ml 93.12 94.76 94.03 96.03 93.58 95.40
100ml 94.95 96.95 94.01 97.00 94.48 96.98
150ml 95.08 97.08 93.56 95.56 94.32 96.32
200ml 95.62 97.62 94.36 98.36 94.99 97.99
300ml 95.79 98.79 94.40 96.40 95.10 97.56
400ml 94.21 97.21 96.12 99.22 95.17 98.22
500ml 95.57 96.57 94.60 98.60 95.09 97.58
Average 94.90 97.00 94.45 97.31 94.68 97.16

Original images  RL DRL is the maximum range of the input image data type.
] e The results of PSNR are illustrated in Fig. 6. It can be seen
in Fig. 6 that the developed DRL algorithm has demonstrated
_— — outstanding performance with satisfactory PSNR valuehén t
segmentation of GICS images. Especially, it provides highe
100mL accuracy than the methods developed in [40].
— — 20.0
17.51
200mL
- 15.0
m 125
=
— m— £ 10.0
g
500mL 75
5.0
Fig. 5. Segmentation results of the GICS images.
2.5
0.0+

0 1 2 3 4 5 6 7
images with different concentrations of hCG, and the tot The images of different concentration

accuracy of DRL algorithm is 2.48% higher than the result
obtained by the RL algorithm. Meanwhile, a total segmer'fig- 6. PSNR values of GICS images with different concentrations.
tation accuracy of 97.16% demonstrates the reliability and
efficiency of the developed DRL algorithm. Furthermore, the
peak signal-to-noise ratio (PSNR) is utilized to evaludte t N .
segmentation performance of the proposed DRL algorithl%'. Quantitative Analysis
The larger the PSNR value, the better the performance offhe objective of segmenting GICS images is to quanti-
image segmentation. In order to calculate the PSNR of Gld&ively determine the concentration of the target anaiyte
images, a binary mask is set up to classify the image pixefs,specimen. Therefore, the relative integral optical dgnsi
where the pixel value of foreground (the test and contra)lin (RIOD) is selected as an indicator for the quantitative psial
is set as 1 and the pixel value of background (other areaspfsthe concentration of hCG [41]. RIOD is defined as:
set as 0. The PSNR is calculated by: N o

2. log =g

m—1n—1 IODT i=1
1 .. L2 RIOD = = (20)
MSE = — 3" N " [1(,5) — K(1,5)°  (18) I0Dc M. 4
mn i=0 j:O J;l log —Gjy
MAX; . . .
PSNR = 20 * log,, Sk (19) whereIDOr and IDO¢ denote the integral optical density

of the test line and the control line, respectivdly/stands for
where MSE denotes the mean square error between the rtbe- number of pixels in the test lin® denotes the number of
malized original image and the masked imagk; M AX; pixels in the control line(z,,, is the average grayscale pixel
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TABLE Il
THE ROID VALUES OF DIFFERENT TEST SAMPLES

Concentration(mL) 75 100 150 200 300 400 500
ROID 0.7012] 0.9376 | 1.0432| 1.6634 | 2.0643 | 2.7968 | 3.7941
TABLE Il

value of the whole image:; andG; represent the grayscaleTe compaRISON OF FITTING RESULTS AMONG THREE METHODS

of pixel value in the test line and the control line, respeyi.

The RIOD values for 7 different concentrations of hCG are

. . Method | Fitted linear equation| Correlation coefficient
listed in Table. II. S DRL y=0.006x+0.241 0.973

In Table. Il, it can be seen that the RIOD value distinguishes RL y=0.007x+0.179 0.963
the concentration of the target analyte very well. Meangyhil CNN y=0.006x+0.236 0.969

a functional relationship between the RIOD and the concen-
tration of the target analyte is obtained by using the least

square method. The scatterplot between the RIOD and g capacity of the replay buffer and the sampling size are
concentration of hCG and the fitted line based on Table. Il aﬂ?namically changed according to the multi-factor leagnin

shown in Fig. 7.

»
o

| —— Fit line of Adaptive CNN
—— Fit line of RL
—— Fit line of DRL
®  Calculated by Adaptive CNN
v Calculated by RL
A Calculated by DRL

w w
= n
L L

o
n
L

wn
L

Relative Integral Optical Density

=)
n
L

o
o
!

T

0 50 100 150 200 250 300 350 400 450 500 550
hCG Concentation

curve, which can effectively enhance the learning effigyenc
Experiments on GICS images with different concentrations
have been carried out. Experiment results have demordtrate
that the developed DRL algorithm is capable of providing a
satisfactory performance in terms of several indices.

In the future, we aim to develop advanced image processing
approaches for the quantitative analysis of GICS [4], [5],
and apply our developed DRL algorithm to other research
areas, for example, discrete-time switched complex néddsvor
[6], [22], [46], networked systems [30], [45], [47], [48]nd
multiagent systems [44]. We can also integrate the devdlope
DRL algorithm with the latest optimization techniques pro-
posed in [18]-[21]. For example, where a variety of effextiv
optimization methods have been developed for petroleum
engineering, which saved a lot of investment for the petnole
industry.
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