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Abstract

In this paper, the Tobit Kalman filtering problem is investigated for a class of discrete time-varying fractional-
order systems in the presence of measurement censoring and stochastic nonlinearities under the Round-Robin
protocol (RRP). The fractional-order dynamic model is described by the Grunwald-Letnikov difference equation, and
the statistical means are utilized to characterize the stochastic nonlinearities that include state-dependent stochastic
disturbances as a special case. The RRP is employed to decide the transmission sequence of sensors so as to alleviate
undesirable data collisions. Under the RRP scheduling, only one sensor is permitted to transmit its measurement
over the network at each time instant. In light of the renowned orthogonality projection principle, a protocol-
based fractional Tobit Kalman filter (TKF) is devised with the fractional dynamics and stochastic nonlinearities
elaborately addressed. In the pursuit of the filter design, a couple of new terms appear which are in relation to the
RRP, fractional dynamics and stochastic nonlinearities arise, and these terms are adequately handled recursively or
off-line. Simulation results are provided to demonstrate the usefulness of the proposed method.

Index Terms

Tobit Kalman filtering, fractional-order system, measurement censoring, Round-Robin protocol, stochastic
nonlinearities.

. INTRODUCTION

The last decade has seen ever-increasing research enthusiasm in fractional calculus due mainly tc
its strong capability in characterizing phenomena exhibiting fractional dynamics. For example, it has
been revealed that, dynamics of rubber isolators, traffic situations within information networks, relaxation
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processes of organic dielectric materials, quantum elaoisitof complex systems, etc. can all be described
by fractional differential/difference equations (FDDHS8Y], [39], [49]. To date, FDDEs have been suc-
cessfully applied to the modeling, estimation and controbfems in a great variety of practical scenarios
such as biological systems, networked systems, immuneragsand complex networks, see [1], [9], [41]
and the references therein.

The introduction of FDDEs in system modeling gives rise ® $l-called fractional-order systems that
offer adaptability and flexibility to the controller/estator design, see e.g. [9], [32], [37], [41]. Taking
advantage of the memory property of the fractional-ordestesy, a fractional-order human immunode-
ficiency virus (HIV) model has been put forward in [9] to acnbdor the memory function of immune
responses, and the associate control problem has beewewsah properly optimizing a prescribed
objective function. In [41], the pinning control problemrffyactional-order complex networks has been
researched, and it has been uncovered that the network aaagm#o stabilize itself below a certain order
without pinning a single node.

Regarding the state estimation problems of fractionaéoystems, two different fractional Kalman
filters (FKFs) have been established in [32] and [37], respely, on the basis of different system
representations. Due to its recursive structure and cerniaiplementation, the FKF has been quickly
empowered to deal with correlated noises [36], colored e®i88] and Lévy noises [46]. To further
extend its application scope, much research effort has Beeoted to the development of FKFs suitable
for various systems, for instance, multi-sensor systemgutar systems and nonlinear systems [12], [30],
[47].

It has been well recognized that nonlinearities are ubdgusitthat occur in almost all sorts of physical
systems, and the investigation on nonlinearities has plae important role in the context of state
estimation. In case of noisy circumstances (e.g. senswaonket), the nonlinearities may appear in the form
of random disturbances stemming from randomly perturbadior& environments and/or transmission
limitations. In this regard, stochastic nonlinearitieswebbecome unavoidable and, if not properly settled,
they might give rise to severe deterioration of system perémce. Accordingly, much research attention
has been paid to the filtering/control problems for systerntl stochastic nonlinearities.

Aiming at the state estimation problem for a general clasarmfertain nonlinear stochastic systems,
a linear matrix inequality approach has been developed8hwhere stochastic nonlinearities have been
characterized via statistical means. Such kind of chatizeteon has then been extensively exploited in
the design of filters for the state estimation problems indtwcurrence of stochastic nonlinearities and
networked-induced phenomena (e.g. packet dropouts, talassland fading measurements) [6]—[8], [15],
[16]. Additionally, the distributed filtering issue has beaddressed in [25] for systems contaminated by
stochastic nonlinearities and sensor degradation, whetgfigient condition has been acquired to ensure
the mean-square boundedness of the associated estimatiws. &he resilientH,, filtering problem
has been addressed in [18] for a class of stochasticallyriacediscrete-time systems with randomly
occurring gain variations, nonlinearities and channeinigsl The distributed variance-constrained robust
filtering problem has been studied in [45] for a class of tvaeying stochastic systems subject to ran-
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domly occurring nonlinearities and missing measuremavitgre a sufficient condition has been provided
to guarantee the boundedness of the filtering error cowaiaRecently, the resilient state estimation
problem has been resolved in [11] for uncertain time-vayyiecurrent neural networks with randomly
varying nonlinearities and missing measurements, whexevéiniance constraint and the prescrikiégd
performance have been ensured.

Apart from the aforementioned stochastic nonlineari@emther category of measurement nonlinearity,
namely censored observation, has become a hotspot of chswarecent years owing to its prevalent
existence in engineering domains where the low-cost comialesff-the-shelf sensors are deployed [2],
[4]. In the event of censored observations, the classic Kalffiiter (KF) becomes inapplicable because
measurement noises nearing the censored region turn owt twi-Gaussian with unknown statistics
[5]. As such, the Tobit Kalman filter (TKF) has been proposed3] to provide a fully recursive state
estimation paradigm for handling censored observationg. 10 its succinct structure and recursive form,
the TKF has immediately been employed in a broad range oficgipin scenarios, for example, the
cooperative localization, fault detection and targetkiag, see [10], [13], [14], [17], [22].

In the context of TKF, the state estimation problem has bestied in [22] with both censored
observations and multiplicative noises. Later on, TKFsaunidévy noises [13] and redundant channel
transmission [14] have been devised, and examples congemaneuvering target tracking have been
presented to elucidate the efficiency of the proposed dhlgns. To mitigate impacts from modeling
uncertainties, a modified TKF has been designed in [10] Witistrative examples on unmanned aerial
vehicle systems. In addition, the fault detection probless hlso been tackled in [17] for systems with
dead-zone-like censoring.

In the past decade, there has been a growing demand on thdaitish of networked systems due
largely to their broad applications in practical areas sashlthe communication, patient monitoring and
target localization [19], [21], [24], [25], [29], [40], [0 In networked systems, a typical assumption is
that all system components (e.g.actuators, controlldtes;Sfiand sensors) have the permission to broadcast
their information via the shared medium. This assumpti@wséver, is not really reasonable as limited-
bandwidth-induced data collisions are likely to happenchiwould impair the communication efficiency
especially when data transmission is launched simultasigday more than one component [23], [27],
[28], [33], [34]. To mitigate unnecessary data collisionemmunication protocols have been utilized to
orchestrate the transmission sequences by only permétsiggle component to enter the network at each
time instant [35], [42]-[44]. Among various communicatiprotocols, the Round-Robin protocol (RRP)
has gained a particular popularity because of its succixetgion manner, where the data transmission
among system components is implemented fixed circularorder, see e.g. [26], [51]-[53].

The primary objective of this paper is to fill in such a gap bgidaing a protocol-based fractional TKF
robust to stochastic nonlinearities. This appears to beratmaal task for the following difficulties: 1)
it is indistinct what fractional difference equation shiblide selected to describe the fractional dynamics
of the system; 2) it is pretty challenging to build a protebaked fractional Tobit regression model
where effects of stochastic nonlinearities are also accodated; and 3) it is fairly challenging to exam-
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ine the performance of the resultant filtering algorithmhwinnfluences from fractional-order dynamics,

measurement censoring and stochastic nonlinearitiescalssidered. This motivates us to carry out the
present study. This motivates us to carry out the presedi sta response to these difficulties, the main
contributions are highlighted as followk) To the best of the authors’ knowledge, this paper reptssame

of the first few attempts at the protocol-based Tobit Kalmieriing problem for fractional-order systems

corrupted by stochastic nonlinearities, where the fornedamodel is holistic in catering for the general

practice; 2) a protocol-based fractional TKF is developedatcount for the fractional dynamics and RRP,
and also mitigate the adverse impacts caused by censoresh@i®ns and stochastic nonlinearities; 3)

3) the performance of the developed filtering algorithm isugad through examining the exponential
boundedness of the filtering error dynamics in the mean sjsanse.

The remainder of the paper is organized as follows. In Sedtiothe problem under consideration is
formulated. In Section Ill, a modified Tobit regression mlodebuilt, based on which a protocol-based
fractional TKF is designed. In Section IV, a numerical exéarip provided to show the usefulness of the
filter, and some conclusions are drawn in Section V.

Notation The notation used here is fairly standard except where wikerstatedR™ denotes then-
dimensional Euclidean spacé.and 0 represent identity and zero matrices with compatible dsicens,
respectively. The subscripts “-1” and™ represent inverse and transpose operations, respsgctivgl,
and A,, represent thém, n)th sub-block and the:th row of matrix or variable4, respectivelyy,., stands
for all the measurements up to time instant£{z} andE{z|y} will, respectively, mean the expectation
of x and the expectation af conditional ony. diag{ X,,} (m =1,2,... ,Tp) stands for a block-diagonal
matrix with matricesX,, on the diagonal. vee,,} = [9:1 Ty - xp} . var{z} denotes the variance
of z. ||z|| is the Euclidean norm of vectar. signxz) stands for the sign function where sign = —1 if
x <0, signz) =0if x =0, and sigiz) = 1 if x > 0. 6(-) € {0, 1} is the Dirac delta function.

[I. PROBLEM FORMULATION

Consider the following discrete-time fractional-ordest®m in the presence of stochastic nonlinearities
(see [36]):

Ay =Agzy + f(2r, M) + Wi, (1)

k41
Tpp1 =A% — Z(—l)]zjkJrl—p (2)

=1
2 =Cray, + g(wp, G) + Uk, (3)

where
T
Az = [Aq1$1,k+1 APgypy - Aqnxn,k—‘rl]

v () 6 0
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. 1, for j =0,
(])Z QS<QS_1>"'<Qs_j+1)

S , forj>0

j.
andz;, € R™ and z, € RP are, respectively, the state vector and the uncensoredunesasnt vector.
A is the fractional difference operatay, (s = 1,2,...,n) are the orders of the fractional difference

with respect to state components;.,. A; and C; are known matrices with compatible dimensions.
f(z, me) andg(xy, () are stochastic nonlinearities whejgand ¢, are mutually uncorrelated zero-mean
and Gaussian noise sequences.iv, € R™ andwv, € RP are zero-mean and white Gaussian noises with
covariances); and Ry, respectively.

Givenp sensors, measurements, € R (m =1,2,...,p) are transmitted to the remote estimator via
a shared communication network. Due to limited commuriacabandwidth, it is assumed that, at each
communication time instant, there is only one single setisatris granted to propagate its output through
the network. Accordingly, the RRP is employed to orchestthte transmission order of the sensors for
the purpose of circumventing data collisions.

Denote modk —m, p) as the unique non-negative remainder on divisiok efm by p, ;, = modk —
1,p)+1€{1,2,...,p} as the selected sensor that has access to the network dt,tirpe= diag{T',,. , }
(m =1,2,...,p) as the measurement update coefficient wHgge, = 5(h, — m), and g, = Vec{Jni}
as the actual measurement arriving at the estimator aftaronle transmission with the zero-order holder
strategy.

Abiding by the RRP and the zero-order holder strategy, fentith sensory,, ;. is updated as follows
(see [26], [51)):

- Zmg, 1t mod(k —m,p) =0,
Ym,k = B . (4)
Umi—1, Otherwise
Taking advantage of the update coefficiént;,, (4) is transformed into
p—1
Ymk = Z Lo b Zm o=t (5)
=0

wherefhy,_; =1 andz,, ,_; = 2o for k—1<0.

DenoteZ,, as a constant censoring threshold beyond or below whichahsos measurement, ;. is
uncensored or censored. In genefB), can be knowna prior based on some prior knowledge about
the possible measurement information. Letting an additialetection device be equipped at the input
terminal of the estimator to check whethgy . is censored or not, the Tobit observation model is given
as follows (see [2], [3]):

s = {y’””“’ = ©
Ly Ymp < Iy

wherey,,, € R (m =1,2,...,p) are the censored measurements finally received by the éstiméh
constant thresholdg,,. According to whetheg,, ;. is censored or not, (6) can be converted into

Ym,k = ’Vm,k:gm,k: + (1 - 'Vm,k:)Ima (7)
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where~,, (m =1,2,...,p) are Bernoulli random variables governing the censoringipheena ofy,,,
with following probability distributions:

Pmb{%n,k = 1} - f?m,ka PrOb{Vme - 0} =1- f?m,lv (8)

Here, 7, are known non-negative constants. It is supposed{hat are uncorrelated withy,, ¢, and
other noise signals.

Let y1., andy,, 1., be the measurement collections from, respectively, als@enand thenth sensor
up till time £, and

Y Evec {ymut. 4 = E{aplyre-1}
Ty £ E{aelyin},  0p = E{yelyin—1}
~— A A ~ VAN ~
T =T — Ty, T = T — Tk
o e e [~ \T
Yp. éyk_yka Pj;; éE{xk (xk:) }
Py, 2 E{@x3)}, P, & E{xpx}
e e\ T e (T
Pi»,;gkf = E{7, (?/k;) h ngf = E{7; (yk) b
Assumption 1:1) The initial stater, has the mean, and covariance?,. 2) xg, Mg, (x, wr, anduvy are
mutually independent.
Assumption 2:The nonlinearity functionsf(zy,n;) and g(zy, ¢;) satisfy f(0,7,) = 0, ¢(0,¢;) = 0
with the following first-order moment
f(@h, k) _
Tl = U,
9(k, )

|

- T 4T

E f(xk’a nk) f(xta nt) Ty :07 k ?é t,
_g(xkv Ck)_ _g(xt, Ct)_

- ar 4T

f@e,me) | | f (e m)
_9(%;@)_ _9(%;@)_

wherell; =diag{I1y;, [I5;} (i =1,2,...,7), r is a known positive integer and, are known matrices with
appropriate dimensions.

Remark 1:In contrast with its integer-order counterpart, the fracél-order dynamic model (which is
based on the fractional calculus) is capable of providingenappropriate characterizations of certain non-
linear dynamics ranging from friction to slipping. Amongetkarious fractional calculus definitions (e.g.
the Grunwald-Letnikov definition, Riemann-Liouville ddfion and Caputo definition), the Grunwald-
Letnikov definition has been recognized as particularlyadlé for modeling discrete-time systems with
fractional orders because of its backward difference fo®.such, in this paper, the fractional-order
dynamic model (1)—(2) (originated from the Grunwald-L&btv definition) is adopted for the subsequent
filter design.

and covariance

E

Tp p = Z Hingixk, k=t,
i=1
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Remark 2:As is shown in Assumption 2, the concerned stochastic neatities are fairly generic due
to its coverage of some well-studied nonlinearities inglgdl) state-dependent noises, iféxy, n,) =
By and g(xy, () = Dz, Where B, and D, are known compatible matrices; 2) random sequences
whose powers rely on sector-bounded nonlinear state fumsti.e. f (zy, n:) = f(zx)n: and g(ag, G.) =
G(x1)C where || f(z)]| < allzil], [|g(2)|| < Bl|zx|| anda and 8 are known scalars; and 3) random
sequences whose powers rely on the signs of nonlinear statédns, i.e.f(zy, n.) = Bsignlf (zx)]zim
andg(xy, k) = Dgsigng(zy)|xrCx. In this sense, the nonlinear stochastic model considerdiis paper
is with respect to the nonlinearities in our paper is comsibly general to reflect the engineering practice.

Remark 3:Under the scheduling of the RRP, equal priority is assigmeddch sensor and the mea-
surement from individual sensor is admitted to enter thevaet in afixed circularmanner. In the event
that z,, , from sensorm has no entry into the network, the zero-order holder styaiegutilized for
the generation of;,,, ., for the purpose of offsetting,, .. Consequently, at time instaht— /, only the
componeny, ., of the actually arrived measuremejt ; is updated, whilst the rest componenis
(m=1,2,...,p, m # hy_;) remain the same as their counterpartgjin, ;. Obeying thefixed circular
order for information propagatiow,,, (m =1,2,...,p) can be represented by the sumlof;, ,zm k-
(l=0,1,...,p—1) as shown in (5).

Remark 4:1t is observed from (7) that random variabtgs, (m = 1,2, ..., p) are used to describe the
censoring phenomena gf, .. In accordance with (7), if no censoring occurs for, i.e.v, , =1, we
havey,, » = ¥m.k, Which means that the output observation is equivalentéddtent one. If the censoring
occurs fory,, k, i.e. v, = 0, we havey,, , = Z,,, which means that the censoring threshold is allocated
to the output observation. Here, the censoring probadslifj, , are knowna priori via some statistical
experiments. Alternatively, as with [3};,,» can also be approximated by

110_01 1—‘m N Lcmk 1Sk—1 _Im

Ve T R
whereg,_; £ Z,_, for 1 =0, ¢y L i forl=1,2,...,p—1, and®(-) is the cumulative distribution
function (CDF) of the random variable™which obeys the standard normal distribution.

The objective of this paper is to design the TKF for the disetene fractional-order system (1)—(8)
under the RRP and Assumptions 1-2.

[1l. M AIN RESULTS

This section aims at formalizing a specifically tailoredtpaml-based fractional Tobit Kalman filtering
paradigm to surmount the identified challenges brought eyrtctional dynamics, stochastic nonlinearities
and RRP. The formulation procedure differentiates itgelirf the conventional TKF through the following
perspectives: (1) an ameliorated Tobit regression modetasented that stems from the involvement of
the fractional dynamics, stochastic nonlinearities andPR&hd (2) extra computations with respect to the
state prediction, measurement prediction, filter gain alé ageassociate covariances are encompassed.
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Let

p—1

_ A A 2

Ym,k = gm,k + Vm.k, Rm,k - E Fm,ﬁkilRm,k—lu
1=0

Rm,k
p—1

Emp = Z Uty (ConkmiTr—1 + g (-1, Ce—1)) -

=0
The Tobit regression model for system (1)—(8) is obtainddviae
Lemma 1:The mean and variance of,, (m =1,2,...,p) are given by

p—1
9 A Im - gm,k N T
mk — 5 3 Vmk= m,hy—; Um,k—1
1=0

E{ymslzit =1 = @ W) G + v/ Ronid )| + @ (V) T (10)
var{ym klze} =Rkl — ¢ (Fmp)], (11)
where
@ (Ump) =A (Om) (A (Fm) = Il (12)
A (D ) z%, (13)

and ¢ (V,,1), ® (9,,x) are, respectively, the probability density function (P2Rd CDF of the Gaussian
random variable),, , with ¢ (9,, ) and® (9,,, ;) defined as

1 (Im*gm,k>2

¢ (Vi) = o Temik (14)
2
O (9, 1) = oL e‘(ym’zﬁ%iz’k) d, .. (15)
, e 2R ok
Proof: See Appendix—A. [ |

Remark 5: The Tobit regression model manifested in Lemma 1 embodiesrtean and variance of
ym,k- IN contrast with its counterpart in [3] where merely the smmmg phenomenon is concerned, it is
seen that the termy,, ,z;, is now substituted by the term

p—1

Emp = Z Uty (ConkmiTr—t + g (-1, Ce—1)) -

=0
What is more, the original measurement noise covariaRgg, is replaced by the sum of noise
covariancesR,, x £ Zf;ol anﬁMRm,k_l. These two replacements sketch clearly the influences from
stochastic nonlinearities and RRP on the desired regressadel. Also, the impact from the fractional
dynamics is reflected from the statg_; integrated in the terng,, , by noticing the correlation between
rr—; and A%x,_; as expressed in (1)—(2). It is noteworthy that, the impamtfthe fractional dynamics
embedded inc, ,_; gives rise to the emergence of a few new terms in the subseéliendesign.

Form=1,2,...,p, we let

T 2 vec {T,}, 7 2 diag {Jmr}, & 2 vec {ﬁ;k} e = vee {mi},
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Ry = diag {Rmrt, A (1%) £ vec {)\ (ﬁmk)} , P (@k) £ diag {@ ('ngc)}
where

p—1 F—
- ANTpL O G, 2 T Sk
Sm,k = mhg_ Cmk—1Sk—1, Umk = —F5

-0 Rm,k

and (U,,x) and X (U,,x) can be, respectively, computed via (12) and (13) by repipgin,. with é;b,k
On the basis of Lemma 1, the protocol-based TKF for system(8))is derived in the following
theorem.
Theorem 1:For system (1)—(8), its protocol-based fractional TKF itabkshed as follows:

k
By =(Aror + T)E = Y (1) ey, (16)

j=2

T =2, + Ki(ye — U1, ) (17)

r k
Pfic,; =(Ap_1 + T1>Pfik71(Ak—1 + T1)T + Qr_1 + Z Hutr(ka By )+ Z T P TT (18)
7j=2

i=1

_ o T
Py, =P;- KkPjgg, (19)
The one-step measurement prediction and the filter gain are
G = |G+ VR (00) | + (1= )T, (20)
Ky =P;— - P‘ : (21)
where
T :Pj; (%Fhka)T (22)

P, :fj/thkaPj; (Dn,Cr) "

p— r
+ Yk Z Upy Crmt Py, (T —1Ce)™ + Z Hotr(Py D)k + R [ — 0 (0k)] . (23)

1=1

r k
Pr =(Apa + Y0P, (A +T0)" + Qur + ) Itr(Py, T + Y (=17T,P, 7. (24)
- s

Proof: See Appendix—B. [ ]
Remark 6:Making comparison between the desired protocol-basedidraat TKF in Theorem 1 and
the traditional TKF in [3], two remarkable distinctions che encapsulated. One is the replacement of
the termCjyz,. (which is the product of the measurement matfix and the one-step state prediction

z,) by the termgk =TI Crly + >0, ka ,Cr—1Zi— (which is the sum ofp products riding on the
measurement update coefficidnf, ,, measurement matrig’,_;, one-step state predictiaty and past
state estimate; ;). The other is the emergence of a suite of new tefx#s, , P, Yoy Hl,itr(PxHFi)
and Z?zl(—l)jTjPi,kijTjT in computing the state prediction and filter gain. The firstidction results

from the RRP whilst the second one roots in the fractionaladyies and stochastic nonlinearities.
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TABLE |: The Pseudocode of the Protocol-Based FractionaF TK

Algorithm: Protocol-Based TKF
Input: Zo, Po, y1:x

Output: &%, Pz,

1. letzo = To, Pz, = P, = Po.
2. for k=1:N do

3: calculate the predicted estimatg by (16) and associated covariange- by (18);
k

4: calculate the gain matriX(;, by (21)—(24);

5: calculate the updated estimaitg by (17) and associated covarian®e, by (19);

6: end for

Lemma 1, together with Theorem 1, gives rise to the protbesled fractional Tobit Kalman filtering
algorithm with its pseudocode outlined in Table I.

Remark 7:Thanks to Lemma 1 and Theorem 1, a reinforced Tobit Kalmaarifity framework is
devised with a view to solving the novel filtering problem fioactional-order systems susceptible to
stochastic nonlinearities under the RRP. System (1)-(&eunnvestigation is holistic that not only
incorporates fractional behaviors of the system but alsmowats for important randomly occurring
phenomena (i.e. censored observations and stochastimeariiies) which are prevalently confronted
in application scenarios ranging from networked controblbgect tracking. These disparate phenomena
are tackled within a unified yet effective scheme. In additihe RRP is adopted to avoid data collisions
and boost transmission reliability.

Next, we move forward to discussion the performance of thagmed fractional TKF. Due to the
time-varying nature of the protocol-induced measuremeuiate coefficient’;,, the convergence of the
developed fractional TKF cannot be guaranteed in genetals,Twe turn to pursue the boundedness of
the developed algorithm where the exponential boundedofet®e filtering error dynamics is analyzed
in the mean square sense.

To start with, the following definition is first introducedrfdiscussion convenience.

Definition 1: For real numberg > 0, ¢ > 0 and0 < y < 1, if for all £ > 0,

E {[|ze]*} < B {l130]”} x* +e,

holds, then the stochastic processis exponentially bounded in the mean square sense.
The following assumption is essential in deriving our résul
Assumption 3:The following conditions are satisfied for &ll> 0:
M| <79 < 1wl <%, < Gkl < ¢
15[ <7, [[Hys]| < 7, (|2l < Xo@f < Qr < gl
7
U

1A <a, [T < 7, <.

(P, )| <.

Theorem 2:Consider the discrete-time fractional-order system @)-(ith its filter in the form of
(16)—(24). Under Assumption 3, the resulting filtering erdynamics is exponentially bounded in mean
square sense.
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Proof: See Appendix—C. [ ]

Remark 8:1t is noteworthy that the developed filter in Theorem 1 is aggalization of those in [3]
and [37]. In the case that model (1)—(2) is an integer-order without the nonlinearityf (zx, nx), the
nonlinearity g(z, () is omitted in (3) and the RRP is abandoned, the modified Tagtession model
in Lemma 1 and the protocol-based fractional TKF in Theoremvill, respectively, degenerate to the
traditional Tobit regression model and TKF in [3]. In the edlsat the aforementioned randomly occurring
phenomena are absent and the RRP is discarded, the Tolassegr model in Lemma 1 will disappear
and the protocol-based fractional TKF in Theorem 1 will regltio the renowned FKF in [37].

IV. ILLUSTRATIVE EXAMPLE

In this section, a numerical example (modified from [37]),pairsy-mass-damper example (modified
from [20]) and an oscillator example (modified from [3]) aevéraged to elucidate the usefulness of the
presented filter design approach and associate filterifgrp@since. Denote the root mean-squared errors
(RMSESs) ofz, ,, andz,y, respectively, as

M . N 2 M _ 9
RMSEL 2 | (1/0) Y («f) = af) ) RMSE2 2 | (1/30) Y (o), - 3f))

i=1 =1

where M is the number of Monte Carlo trials.

A. Numerical Example

Consider system (1)—(8) with parameters:
0 1 0.1 0.3
7Ck = )
—-0.1 —-0.2 0.5 1.5

Qk :Rk = 0.3]2, PxO = Pjo = 100]2,

k:

T T
@ =0.7,q0=12,19 = [1 1} I = [—1 —1} .
The stochastic nonlinearitied z, n,) and g(zy, ;) are
[, k) = [0.2 0.3}T0-3sin (Z1,k) TLEMLE + [0.2 0.3}T0.4sin (Zop) T g2k
9w, G) = [0.1 0.1r0.3sin (z1,6) 216Gk + [0.1 0.1r0.4sm (T2.4) T2 Corks

wheren, x, n2.k, (11 and(,y, are zero-mean uncorrelated Gaussian white noises witly ooutariances.
Apparently, the above stochastic nonlinearities satisguinption 2 with

0.04 0.06
r= ]-7 Hll - 5
0.06 0.09

0.01 0 0.09 0
[y = , I = .
0 0.01 0 0.16
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Fig. 1: State and its estimate.

15 T

N --—--—PBTKF
10 i ——PBFTKF-SN

~-=-=-=PBTKF

Time (k)

Fig. 2: Performance comparison in RMSE1 and RMSEZ2.

Fig. 1 depicts the true state values and associate estimateisied by the protocol-based TKF (which
is named as PBTKF and is barely capable of tackling censopsdreations under the RRP in case of
¢1 = ¢ = 1) and the protocol-based fractional TKF with stochasticlmearities (which is named as
PBFTKF-SN and is capable of addressing both censoring antinearities under the RRP in case of
¢1 = 0.7 andg¢, = 1.2). Fig. 2 plots the comparison result in RMSE between the PBakd PBFTKF-SN
after 1000 independent Mote Carlo trials.

It is confirmed from Fig. 1 that, our PBFTKF-SN manages toKr#e true state values precisely,
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Fig. 3: True sate and estimates under different censorireshiolds(Z,, Z,].
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=< .
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0 A L LT L) ) X
0 10 20 30 40 50 60 70 80 90 100
Time (k)
10 T T T T T T

---------- Thresholds [5,5] =====Thresholds [2,2] Thresholds [-1,-1] ‘

RMSE of X2,k
(6]
|

60 70 80 90 100
Time (k)

Fig. 4: Performance comparison in RMSE under different cgng thresholdsZ,, Z,|.

whilst the PBTKF has considerable deviations from trueestatiues. Additionally, it is observed from
Fig. 2 that the RMSE curve of our PBFTKF-SN always resideselothan that of the PBTKF, implying
that issues of the fractional dynamics and stochastic nealtities are well settled in our PBFTKF-SN
whereas they are not disposed of in the PBTKF.

Besides, to better illustrate the relationship betweenciresoring threshold and the filtering perfor-
mance, simulations of our PBFTKF-SN based on different @eng thresholds have been conducted
where corresponding state estimates and RMSEs are deitexsin Figs. 3—4. It is apparently observed
from Figs. 3—4 that, as censoring thresholds Z,] increase, the filtering accuracy with respect to the
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N\|"  Damperc

Fig. 5: A simple mass-spring-damper system.

system state deteriorates. This well coincides with the tiaat, in case of larger censoring thresholds,
measurements are more likely to be censored and less irtiomtan be used for state estimation, leading
to performance degeneracy of our PBFTKF-SN.

B. Spring-Mass-Damper Example

Consider a simple mass-spring-damper system [20] asrdliest in Fig. 5. The equation of motion for
such a model is given by
R dxy
pTE + I + kxy = fi,
wherem is the massk is the spring constant andis the damping coefficient:; is the system state and
f, is the control term. Letf, = A%®z, + u, where A is the the fractional differential/difference operator
and u; is the known input. Referring to [20], the above model can famdformed into the following

fractional-order differential equation to describe thscaelastically damped structure:

m

mA%z, + Az, + kay — A%z, = .

Letting m = 0.1, ¢ = 0.4, m = 0.1, the fractional-order difference counterpart of the abowadel is
obtained as follows:

0.5
A™xyy =Agxy, + Bruy,
k+1
0.5 j
Tpy1 =AD" Tpp — E (_1)]Tj1'k+1—j>

i=1

where
0 1 0 O 0
0 0 1 0 0
Ak == ) Bk -
0 0 0 1 0
—-0.1 -01 —-04 0 1

Taking into account the possible noise and the stochastidingarity, the above model is further
converted into

Ay =Agxy + Brug + f (g, k) + Wk,
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x1’k and its estimate

x4’k and its estimate

Xz,k and its estimate

x3’k and its estimate

Time (k)

PBFTKF-SN

Time (k)

Fig. 6: Mass-spring-damper example: state and its estimate

T
[ |= = =True state ===-= PBFTKF

Time (k)

Fig. 7: Mass-spring-damper example: state and its estimate

k+1

Tpy1 =A% — Z(—l)jTﬂkH—j’

J=1

with its measurement model being

which are exactly the same system and measurement modedglemad in this paper.

2 = Crxy + g(@k, G) + Uk,

15
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Consider the above system with parameters:

1000 9
Ck — [1 10 O] ,I — [_2 ,Rk — 00025[2>Px0 — Pjo — [4,
0.1665 0.0704 —0.0198 —0.1206 0
0.0704  0.1444  0.0257 —0.1127 0 -
=101 , T = ,u = sin(—k).
@ —0.0198 0.0257 0.0991 —0.0067] """ |o| " (12%)
—0.1206 —0.1127 —0.0067 0.2439 0

The stochastic nonlinearitied z, n,) and g(zy, ;) are
T
f(l’k, T}k) - [02 0.3 0.2 03} |:03 sin (xl,k) T1,kM1,k + 0.4 sin (l’g’k) T2, k12, k

+ 0.3sin (z34) 3 k035 + 0.4sin (24) x4,k:774,k] ,
g(xk, ¢) =0.1[0.3 sin (21 4) £1 £Cr e + 0.4 8in (29 k) T2 kCok
+ 03 SiIl (l’g’k) x3,k§3,k + 04 sin (1’4’k) JI4J€C47]€],

wheren, i, n2.k, (11 @and(yy, are zero-mean uncorrelated Gaussian white noises witly ooitariances.
Apparently, the above stochastic nonlinearities satisguinption 2 with

0.04 0.06 0.04 0.06

0.06 0.09 0.06 0.09
r = 1, H11 = 5
0.04 0.06 0.04 0.06

0.06 0.09 0.06 0.09
Iy = 0.01, T, = diag{0.09,0.16,0.09,0.16}.
Figs. 6—7 plot the true state values and associate estimpatesied by the PBTKF and PBFTKF-SN,

from which It is confirmed that, our PBFTKF-SN manages tokrdme true state values precisely, whilst
the PBTKF has considerable deviations from true state salue

C. Oscillator Example
In the event that the fractional orderconverges td, the considered system becomes a fist-difference

model and the corresponding filtering problem can be redobased on the existing filtering algorithm
for integer order systems. In caseq# 1, the original fraction-order difference system is redutethe
following first-order difference system:

Az =Agzg + [z, m8) + wi,

Tpp1 =A'Tpy + 2,
2z, =Crp + g(T, ) + Uk,

which is further transformed into

Thy1 = Ay, + f (@, nk) + Wi,
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Fig. 8: True values of the first and second dimensions of the €tnd their estimates.
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Fig. 9: Performance comparison in RMSE.

2 =Crap + 9wk, Gp) + vy,

where 4, = A, + 1.
Consider the above model with parameters:

~ Q] O
A = cos(w) sin(w) L = ,w = 0.0527,
sin(w)  cos(w) 0

Cy =L, Ry, = I, Q), = diag{0.0025, 0.0025}, Py = I».
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The oscillator example concerns about the estimation dishbalroll rates in case of the noisy dynamic
model and uncertain magnetometer data. The stochastiénearities f(zx, n,) and g(zx, () are the
same as that adopted in the first numerical example. In odéurther verify the effectiveness of our
developed fractional-order filtering algorithm in case f 1, the performance comparison is made
between the protocol-based Tobit Kalman filter (which is ednas PBTKF and is capable of tackling
censored observations under the RRP) and our developedcpkdtased fractional TKF with stochastic
nonlinearities (which is named as PBFTKF-SN and is capablsimultaneously addressing fractional
dynamics, censoring and stochastic nonlinearities urteRRP).

Fig. 8 depicts the true state values and associated estmeaterated by the PBTKF and our PBFTKF-
SN, and Fig. 9 plots the comparison result in RMSE betweenPBBEKF and PBFTKF-SN aftet 000
independent Mote Carlo trials. It is withessed from Fig. 8ttithe PBFTKF-SN manages to track the
true state values precisely, whilst the PBTKF appears te ltansiderable deviations from the true state
values. Besides, it is sketched in Fig. 9 that, the RMSE cofwbe PBFTKF-SN resides lower than that
of the PBTKF, indicating that issues of sensor nonlinezsitare suitably addressed in the PBFTKF-SN,
whilst they are not settled in the PBTKF.

V. CONCLUSION

In this paper, we have dealt with the recursive filtering peob for fractional-order systems in the
conjunction of censored observations and stochastic meadities under the RRP. The fractional-order
difference equation (stemming from the Grunwald-Letniktefinition of the fractional-order derivative)
has been utilized to sketch the evolution of the involvedaiyit model. The stochastic nonlinearities
have been characterized in a generic form which includesssetll-investigated nonlinearities as special
cases, and the RRP is selected to schedule the data tralmsmisshe network. These phenomena have
been elaborately addressed via developing enhanced Basgssion model, which generates a bank of
new terms in the desired filter and adds extra computatiorthanalgorithm implementation. Luckily,
these computations are all recursive or off-line, and floeeethe designed TKF is propitious for online
scenarios. Finally, the feasibility of the proposed TKF bagn verified by a numerical example.

APPENDIX

A. Proof of Lemma 1

Proof: It is not difficult to learn from the definition,, ; = {’:‘01 Lo Um— that, vy, 1, is a

Gaussian distributed noise with mean zero and covariddge = > T2 5. Rmk-i. Referring to
Umk = &k + Vmy @nd (7), the PDF 0f),,, ;. is

+ 5(Im_ym,k)q)(19m,k>7 (25)
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whereu(y,,r —Z,) is the unit step function, and y\/"%k) and®(9,, ) are calculated via (14)—(15).
m,k

In line with (25), the mean of,, ;. is derived as
Bkl }
=Pro{ymi > Zn| Tk E{ Y, k| Yt > L @i} + PIOO{Y i = Lo |20 }E{ Y o[ Yk = Lo i} (26)
In order to computét{y,, x|z}, the probabilities and means on the right-hand side of (B6ulsl be
provided first.
Prob{y,,x > Z|zr} =Prob{g,, , > .|z}
=Prob{v,, . > L, — Emilar}
=1— D (V). (27)
In the light of (25), we have

E{ymk |ymk > L, «Tk}

(b ym,k_gm,k
1 Foo \ Rm,k
= ymvk dym,k
m

AV, Rm,k 11— (ﬁm,k)
- gm,k + \/ Rm,k)\ (ﬁm,k) s (28)
where\ (Y., ) is given by (13). Parallel to (27)-(28), we arrive at
Proqym,k - Im|xk} = (ﬂm,k) ) (29)
E{ym,k|ym,k = Ima xk} = Im (30)

Inserting (27)-(30) into (26) yields (10). Making refererto (25), (28) and (30), we have @, x| Ym i =
L, zr} =0 and
var{ Y |z} =Va{Yum k| Ymp > Lo, Ui}
:E{y;,kwm,k > Imv xk} - (E{ygz,kwm,k > Imv xk})z
== RmJg [1 — @ (ﬁm,k)] s

which is exactly the same as (11), wheréd,, ) is given by (12). [ |

B. Proof of Theorem 1

Proof: Denoting A%z, 2 E{A%;|y1..—1} and noting Assumption 2, we attaiN’z, = Ap_1Zj_1.
Adopting Assumption 1 in [36] that past estimatgs ; (j = 1,2,..., k) will not be updated with later
arrived measurements._;.,, we have

E{zr—jlyin} = E{on_jlyrn—j} = To—jjr—;- (31)
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Substituting (1) into (2) produces
k

r =(Apmr + Y1) zeor + f@rm1,mem1) + wimr — (=1 Tyaney, (32)
=2
Making use of Assumption 2 and (32) produces (24). Puttinga(@l (31) intoi; = E{xx|y1.x_,} and
noticing A%, = A,_12;—1, We obtain
yl:k—l}
k

= (Ap—1 + 1) Tpy — Z(—l)jTji"k—j,

j=2
which is exactly the same as (16). (16) together with (32)egaties
k

Ty =(Ag—1 + Y1) Tp—1 + f(@p—1, Mk—1) + W1 — Z(_l)jrjjk—j- (33)

j=2

k

JAZ']; = {Aql’k — Z(_l)jzjk—j

j=1

Substituting (33) inta”; - = {f,; (j,;)T} and utilizing Assumption 2 in [36] that {f,; (@‘)T} =0
for k # t, we have (18).
A direct employment of the orthogonality projection priplei to system (1)—(8) yields (17) where the
filter gain is given by (21).
(32), along with (17), brings, = 7, — Ky, . As a result,P; = E {z,7f } can be expressed as
~_ Jo ~_ ~\T
Pi‘k ZE{(xk — Ky, ) (xk — Ky, ) }
:Pi,: - Pj;g;K/z - Kkpg;;g; + KkPg;KkT. (34)
The combination of (21) and (34) leads to (19).
Making reference to Lemma 1, we obtain
G =l =@ ()] [ + VRA ()] + @ (9) T
=Yk |:ék_ + VR (igk):| + [[ — ’7]6]1-,
which is exactly the same as (20). Form (7) and the definiioe: vec {y,, 1}, we havey, = .9 +
(I — vx)Z. Subtracting (20) fromy,, induces
U = vk + (L — ) L=y - (35)
Denote gy = & + vy, vx = Zf:_ol Ch Uty & = Zf:_ol Chy, (Coip—t + g(@h—1, Ge—1)) @nd ék =
& — é,;. Keeping (33) and (35) in mind, we attain
Pfc,;g,; =E{(z — %) (s + (I — )Z—9;)"}
=E{(z(& + vi) Ty} — B{& (& + vr) T}

p—l T p—1 r
=E ¢ @k <Z Fhklck—lxk—l> oo —EQ i (Z Pﬁlek—lek—l> o
1=0 1=0
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p—1

=P, (%I, Ci)" — (@) (T C)" + > E{#z .} (FLh, Crt)”
=1

=P, (%I Ch)" — iy (fE)T CAYNe S (36)

where the second equality holds from the independence,oénd v, and the independence af,
g(xk_1, () and vy, and the last equality holds from Assumption 2 in [36] t%{:’é;x?} = 0 for
k # t. The notice of

Py, =E{(&;; +23)(@ +23)"}
ae A \T
:Pj; + I (xk) ,
together with (36) yields (22).

Recalling the expressions ¢f and ék‘ leads to

p—1 p—1

& = Z L, (Cromiwpy + 9(xp—g, Cot)) — Ui, Cry, + Z L. Cro1Th—
1=0 =1
p—1 p—1

=I'y, Cr2, + Z Ly Cromiiy + Z 9(zp—1, Go—t),

=1 =0
which gives rise to

p—1

- /AT !
E {g,; (gk—) } =T, CeP,_ Ci T, + Zl oitr(Py T5) + > Th, Coi Py, CL T, (37)

=1
where the equality holds from the independence pfand z,_,. Parallel to the derivation OP@Z@?E’ one
has

o e N\T
Pg,; =E{y;, (yk) }
_ ~ (=\T _ ~ ~T
= E {ﬁk (§k ) } Y& + E {ytntp v} (38)
where 7y, = v, — R\ (Jk). For the sake of derivation brevity, we suppose that{gow, ys.} = 0

for m # s (m,s =1,2,...,p). The extension of such a result to the case wherd gy, ys} # 0 for
m # s is straightforward but rotationally cumbersome. Abidingduch a supposition, we have

E { o v } =diag{var{yu, ;T k70 Yk} }
=diag{var{y,. »|vx}}
—diag{Rox [1 — ¢ (Jn1)]}
=Ry [I — ¢ (V)] - (39)

Finally, putting (37) and (39) into (38) results in (23). [ |
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C. Proof of Theorem 2

Proof: Denote ), & —5, K, andu;, = —Zle(—l)mik_j + f(zg, mr) + ICknglng. Based on

1-(8), the filtering error dynamics is obtained as
Thy1 =Tp1 — Ty — K1k (40)

k41

=Agry + flaogme) +op — > (1 Tiappry — (Ay + T1)d

j=1

T fk —j Ky 19r41

IIMw

K
=(Ap+ T0)F, = > (=1 Tjiny + f (o me) + wi — Kl

j=1

=(Ax + Y1) Tk, + wi, + up. (41)

It follows from 22—(23) that

|Pecsc | = [P anc”|| < 7| Pec [ IR INICE ] < 3¢ |[Pxc]| (42)
and
o] < Jmcer, arnciri | < 2 ]| @)

Taking the norm on both sides @, £ —5, K, and keeping (42) and (43) in mind, we have

P V _—y (44)

T, Uy

Ikl < Il

Noting

k
we 2 =3 (1 TyEes + flowm) + 75 Kby
j 1

= — Z (xhej — Ziy) + [ () + ¥ Kilye — 5 ),

and making use of the trace property, we have
k k
E {uguk} <E {Z(xk JTTT Lk~ J} +E {Z(xk jTTTJ AZ J}
j=1 j=1
+E {7 @e, mo) f (@, me) } + 7 E G K K G

_tr{ZT P, JTT} +tr{2xk YT ]}

7=1

{Z tr(P,, Ti)p +1tr {IC,QHPWIC,CH}

<ksr? —i—/{:X P4+ rasT+ R 7]
2. (45)
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Subsequently, consider the following iterative matrix &gpn with respect tol,
Uyr1 £ AU AL + Qp + k1, (46)

with the initial value
Uy £ Qo+ kI,

wherex > 0 is a scalar. Then, it is easy to know that
el < AR IR+ 1Qull + K11 < @ Wil + 7 + &,

which, by iteration, leads to

k— 00
Wi <@ [[Wo]l + (7 + r) Z [ Woll + (g + ) > @, (47)
t=0 t=0
From Assumption 3, we know < a?> < 1 and therefore
(q + k)
Wkl <[[Woll + ~——=»
—a
\I/k ZHI

In view of (46) and (47), there exists a positive scala’& ||¥,|| + f*g; such thats! < ¥, < I
holds for allk > 0.
DenoteV, £ xk\I/ Zr and remembef, = AT, + wy + ug. FOr any scalap > 0, we have
E{Vir1} — (L +p)Vi
=E { (AxZp + wi + wp) "V (Ardie + wp +u) } — (1+ p) 305 ' 3
=E {(Apir) ;' AxZ } + E{ (Aed) 0y we ) + BT {(AZn) " 05 g}
+E{wi U w} + B {uf O u — (1+ p) 3 ¥ '3
<E {(Ar@e) "0 A } + pE { (Ar@r) 05" Apiie }
+p! {u;‘:\If,;luk} +E {w,:f\If,zlwk} +E {uf@;luk} — (14 p)3} v, '3y,
=14+ p)E{& (AL V" Ay — U Dt + 1+ p DE {uf Uy we ) + E{wp U wy (48)
By employing the matrix inversion lemma, it follows that
ATw A — 0t
=AL (AR VAL + Qe+ k)T A, — 0!
— [V, + UL AL (Qp + KI)H AT
— [+ AL (Qr + wI) T AR
(1 + _Q—w) (49)
4
Combining (48) and (49), it is derived that

E{Viti} — (1 +p)Vi
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~(1+p) (H%) E{a{ 0 T} + 1+ p " E {u Uy i} + B {wf ¥ Y}
R B
g K KR

5\ 1 .
Definex £ (1 +p) (1 — (1 + “271”) ) andc = (1+p~")% + 2. Itis no doubt that there always exist

positive scalarsi, 1), ¢ andp such that) < y < 1 and0 < fﬁ—; < 1. Thus, (50) is converted into

k
E{Vin} < XE{Vi} +¢ < X*ME{Vi} +¢ ) X" (51)

=0

KeepingV,, = jf\lf,gljk andx/ < ¥, in mind, we have
E{Vit1} =E{@3 U @ } <E{@L ki ),
and this leads to
E{Vo} < E{&lr'I3,}. (52)

The combination oft, | = A% + wi + ug, (51) and (52) yields

E{||Z41]*} = E{Z1 Vi Ve1Trg }
< YE{ Ty Ui Tr }
= @E{Vkﬂ}
k
< OTE(Vo} + 6 > X

=0
k

= OXME{E R B} + s > X

1=0

n k
Vs ; i
= —E{||Z|* 1" + ¢ > x
=0

BN

1; ~ N2 kL T - i
< - E{ll@olx +¢<;x
IE ~ 2 L k1 @g
=—E R SR 53
Bl (53)
Paying attention td) < y < 1 and0 < fﬁ—gx < 1, (53) and Definition 1, we confirm thak, is
exponentially bounded in mean square sense. This comletgsroof. [ |
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