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Abstract

In this paper, the Tobit Kalman filtering problem is investigated for a class of discrete time-varying fractional-

order systems in the presence of measurement censoring and stochastic nonlinearities under the Round-Robin

protocol (RRP). The fractional-order dynamic model is described by the Grunwald-Letnikov difference equation, and

the statistical means are utilized to characterize the stochastic nonlinearities that include state-dependent stochastic

disturbances as a special case. The RRP is employed to decide the transmission sequence of sensors so as to alleviate

undesirable data collisions. Under the RRP scheduling, only one sensor is permitted to transmit its measurement

over the network at each time instant. In light of the renowned orthogonality projection principle, a protocol-

based fractional Tobit Kalman filter (TKF) is devised with the fractional dynamics and stochastic nonlinearities

elaborately addressed. In the pursuit of the filter design, a couple of new terms appear which are in relation to the

RRP, fractional dynamics and stochastic nonlinearities arise, and these terms are adequately handled recursively or

off-line. Simulation results are provided to demonstrate the usefulness of the proposed method.

Index Terms

Tobit Kalman filtering, fractional-order system, measurement censoring, Round-Robin protocol, stochastic

nonlinearities.

I. INTRODUCTION

The last decade has seen ever-increasing research enthusiasm in fractional calculus due mainly to

its strong capability in characterizing phenomena exhibiting fractional dynamics. For example, it has

been revealed that, dynamics of rubber isolators, traffic situations within information networks, relaxation
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processes of organic dielectric materials, quantum evolutions of complex systems, etc. can all be described

by fractional differential/difference equations (FDDEs)[31], [39], [49]. To date, FDDEs have been suc-

cessfully applied to the modeling, estimation and control problems in a great variety of practical scenarios

such as biological systems, networked systems, immune systems and complex networks, see [1], [9], [41]

and the references therein.

The introduction of FDDEs in system modeling gives rise to the so-called fractional-order systems that

offer adaptability and flexibility to the controller/estimator design, see e.g. [9], [32], [37], [41]. Taking

advantage of the memory property of the fractional-order system, a fractional-order human immunode-

ficiency virus (HIV) model has been put forward in [9] to account for the memory function of immune

responses, and the associate control problem has been resolved via properly optimizing a prescribed

objective function. In [41], the pinning control problem for fractional-order complex networks has been

researched, and it has been uncovered that the network can manage to stabilize itself below a certain order

without pinning a single node.

Regarding the state estimation problems of fractional-order systems, two different fractional Kalman

filters (FKFs) have been established in [32] and [37], respectively, on the basis of different system

representations. Due to its recursive structure and concise implementation, the FKF has been quickly

empowered to deal with correlated noises [36], colored noises [38] and Lévy noises [46]. To further

extend its application scope, much research effort has beendevoted to the development of FKFs suitable

for various systems, for instance, multi-sensor systems, singular systems and nonlinear systems [12], [30],

[47].

It has been well recognized that nonlinearities are ubiquitous that occur in almost all sorts of physical

systems, and the investigation on nonlinearities has played an important role in the context of state

estimation. In case of noisy circumstances (e.g. sensor networks), the nonlinearities may appear in the form

of random disturbances stemming from randomly perturbed network environments and/or transmission

limitations. In this regard, stochastic nonlinearities would become unavoidable and, if not properly settled,

they might give rise to severe deterioration of system performance. Accordingly, much research attention

has been paid to the filtering/control problems for systems with stochastic nonlinearities.

Aiming at the state estimation problem for a general class ofuncertain nonlinear stochastic systems,

a linear matrix inequality approach has been developed in [48] where stochastic nonlinearities have been

characterized via statistical means. Such kind of characterization has then been extensively exploited in

the design of filters for the state estimation problems in theconcurrence of stochastic nonlinearities and

networked-induced phenomena (e.g. packet dropouts, time delays and fading measurements) [6]–[8], [15],

[16]. Additionally, the distributed filtering issue has been addressed in [25] for systems contaminated by

stochastic nonlinearities and sensor degradation, where asufficient condition has been acquired to ensure

the mean-square boundedness of the associated estimation errors. The resilientH∞ filtering problem

has been addressed in [18] for a class of stochastically uncertain discrete-time systems with randomly

occurring gain variations, nonlinearities and channel fadings. The distributed variance-constrained robust

filtering problem has been studied in [45] for a class of time-varying stochastic systems subject to ran-
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domly occurring nonlinearities and missing measurements,where a sufficient condition has been provided

to guarantee the boundedness of the filtering error covariance. Recently, the resilient state estimation

problem has been resolved in [11] for uncertain time-varying recurrent neural networks with randomly

varying nonlinearities and missing measurements, where the variance constraint and the prescribedH∞

performance have been ensured.

Apart from the aforementioned stochastic nonlinearities,another category of measurement nonlinearity,

namely censored observation, has become a hotspot of research in recent years owing to its prevalent

existence in engineering domains where the low-cost commercial off-the-shelf sensors are deployed [2],

[4]. In the event of censored observations, the classic Kalman filter (KF) becomes inapplicable because

measurement noises nearing the censored region turn out to be non-Gaussian with unknown statistics

[5]. As such, the Tobit Kalman filter (TKF) has been proposed in [3] to provide a fully recursive state

estimation paradigm for handling censored observations. Due to its succinct structure and recursive form,

the TKF has immediately been employed in a broad range of application scenarios, for example, the

cooperative localization, fault detection and target tracking, see [10], [13], [14], [17], [22].

In the context of TKF, the state estimation problem has been settled in [22] with both censored

observations and multiplicative noises. Later on, TKFs under Lévy noises [13] and redundant channel

transmission [14] have been devised, and examples concerning maneuvering target tracking have been

presented to elucidate the efficiency of the proposed algorithms. To mitigate impacts from modeling

uncertainties, a modified TKF has been designed in [10] with illustrative examples on unmanned aerial

vehicle systems. In addition, the fault detection problem has also been tackled in [17] for systems with

dead-zone-like censoring.

In the past decade, there has been a growing demand on the installation of networked systems due

largely to their broad applications in practical areas suchas the communication, patient monitoring and

target localization [19], [21], [24], [25], [29], [40], [50]. In networked systems, a typical assumption is

that all system components (e.g.actuators, controllers, filters and sensors) have the permission to broadcast

their information via the shared medium. This assumption, however, is not really reasonable as limited-

bandwidth-induced data collisions are likely to happen which would impair the communication efficiency

especially when data transmission is launched simultaneously by more than one component [23], [27],

[28], [33], [34]. To mitigate unnecessary data collisions,communication protocols have been utilized to

orchestrate the transmission sequences by only permittinga single component to enter the network at each

time instant [35], [42]–[44]. Among various communicationprotocols, the Round-Robin protocol (RRP)

has gained a particular popularity because of its succinct execution manner, where the data transmission

among system components is implemented in afixed circularorder, see e.g. [26], [51]–[53].

The primary objective of this paper is to fill in such a gap by designing a protocol-based fractional TKF

robust to stochastic nonlinearities. This appears to be a non-trivial task for the following difficulties: 1)

it is indistinct what fractional difference equation should be selected to describe the fractional dynamics

of the system; 2) it is pretty challenging to build a protocol-based fractional Tobit regression model

where effects of stochastic nonlinearities are also accommodated; and 3) it is fairly challenging to exam-
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ine the performance of the resultant filtering algorithm with influences from fractional-order dynamics,

measurement censoring and stochastic nonlinearities alsoconsidered. This motivates us to carry out the

present study. This motivates us to carry out the present study. In response to these difficulties, the main

contributions are highlighted as follows.1) To the best of the authors’ knowledge, this paper represents one

of the first few attempts at the protocol-based Tobit Kalman filtering problem for fractional-order systems

corrupted by stochastic nonlinearities, where the formulated model is holistic in catering for the general

practice; 2) a protocol-based fractional TKF is developed to account for the fractional dynamics and RRP,

and also mitigate the adverse impacts caused by censored observations and stochastic nonlinearities; 3)

3) the performance of the developed filtering algorithm is ensured through examining the exponential

boundedness of the filtering error dynamics in the mean square sense.

The remainder of the paper is organized as follows. In Section II, the problem under consideration is

formulated. In Section III, a modified Tobit regression model is built, based on which a protocol-based

fractional TKF is designed. In Section IV, a numerical example is provided to show the usefulness of the

filter, and some conclusions are drawn in Section V.

Notation The notation used here is fairly standard except where otherwise stated.Rn denotes then-

dimensional Euclidean space.I and 0 represent identity and zero matrices with compatible dimensions,

respectively. The subscripts “-1” and “T ” represent inverse and transpose operations, respectively. Amn
andAm represent the(m,n)th sub-block and themth row of matrix or variableA, respectively.y1:k stands

for all the measurements up to time instantk. E{x} andE{x|y} will, respectively, mean the expectation

of x and the expectation ofx conditional ony. diag{Xm} (m = 1, 2, . . . , p) stands for a block-diagonal

matrix with matricesXm on the diagonal. vec{xm} =
[

x1 x2 · · · xp

]T

. var{x} denotes the variance

of x. ‖x‖ is the Euclidean norm of vectorx. sign(x) stands for the sign function where sign(x) = −1 if

x < 0, sign(x) = 0 if x = 0, and sign(x) = 1 if x > 0. δ(·) ∈ {0, 1} is the Dirac delta function.

II. PROBLEM FORMULATION

Consider the following discrete-time fractional-order system in the presence of stochastic nonlinearities

(see [36]):

∆qxk+1 =Akxk + f(xk, ηk) + ωk, (1)

xk+1 =∆qxk+1 −
k+1
∑

j=1

(−1)jΥjxk+1−j , (2)

zk =Ckxk + g(xk, ζk) + υk, (3)

where

∆qxk+1 =
[

∆q1x1,k+1 ∆q2x2,k+1 · · · ∆qnxn,k+1

]T

Υj =diag

{(

q1

j

)

,

(

q2

j

)

, · · · ,
(

qn

j

)}

,
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(

qs

j

)

=











1, for j = 0,

qs(qs − 1) · · · (qs − j + 1)

j!
, for j > 0

and xk ∈ R
n and zk ∈ R

p are, respectively, the state vector and the uncensored measurement vector.

∆ is the fractional difference operator,qs (s = 1, 2, . . . , n) are the orders of the fractional difference

with respect to state componentsxs,k+1. Ak and Ck are known matrices with compatible dimensions.

f(xk, ηk) andg(xk, ζk) are stochastic nonlinearities whereηk andζk are mutually uncorrelated zero-mean

and Gaussian noise sequences ink. ωk ∈ R
n andυk ∈ R

p are zero-mean and white Gaussian noises with

covariancesQk andRk, respectively.

Given p sensors, measurementszm,k ∈ R (m = 1, 2, . . . , p) are transmitted to the remote estimator via

a shared communication network. Due to limited communication bandwidth, it is assumed that, at each

communication time instant, there is only one single sensorthat is granted to propagate its output through

the network. Accordingly, the RRP is employed to orchestrate the transmission order of the sensors for

the purpose of circumventing data collisions.

Denote mod(k−m, p) as the unique non-negative remainder on division ofk−m by p, ~k , mod(k−
1, p)+1 ∈ {1, 2, . . . , p} as the selected sensor that has access to the network at timek, Γ~k

, diag{Γm,~k}
(m = 1, 2, . . . , p) as the measurement update coefficient whereΓm,~k , δ(~k −m), and ȳk , vec{ȳm,k}
as the actual measurement arriving at the estimator after network transmission with the zero-order holder

strategy.

Abiding by the RRP and the zero-order holder strategy, for themth sensor,̄ym,k is updated as follows

(see [26], [51]):

ȳm,k =

{

zm,k, if mod(k −m, p) = 0,

ȳm,k−1, otherwise,
(4)

Taking advantage of the update coefficientΓm,~k , (4) is transformed into

ȳm,k =

p−1
∑

l=0

Γm,~k−l
zm,k−l, (5)

where~k−l , l andzm,k−l , zm,0 for k − l ≤ 0.

DenoteIm as a constant censoring threshold beyond or below which the sensor measurementym,k is

uncensored or censored. In general,Im can be knowna prior based on some prior knowledge about

the possible measurement information. Letting an additional detection device be equipped at the input

terminal of the estimator to check whetherȳm,k is censored or not, the Tobit observation model is given

as follows (see [2], [3]):

ym,k =

{

ȳm,k, ȳm,k > Im,
Im, ȳm,k ≤ Im,

(6)

whereym,k ∈ R (m = 1, 2, . . . , p) are the censored measurements finally received by the estimator with

constant thresholdsIm. According to whether̄ym,k is censored or not, (6) can be converted into

ym,k = γm,kȳm,k + (1− γm,k)Im, (7)
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whereγm,k (m = 1, 2, . . . , p) are Bernoulli random variables governing the censoring phenomena of̄ym,k
with following probability distributions:

Prob{γm,k = 1} = γ̄m,k,Prob{γm,k = 0} = 1− γ̄m,k. (8)

Here, γ̄m,k are known non-negative constants. It is supposed thatγm,k are uncorrelated withηk, ζk and

other noise signals.

Let y1:k and ym,1:k be the measurement collections from, respectively, all sensors and themth sensor

up till time k, and

yk , vec {ym,k} , x̂−k , E{xk|y1:k−1}
x̂k , E{xk|y1:k}, ŷ−k , E{yk|y1:k−1}
x̃−k , xk − x̂−k , x̃k , xk − x̂k

ỹ−k , yk − ŷ−k , Px̃−
k
, E{x̃−k

(

x̃−k
)T}

Px̃k , E{x̃kx̃Tk }, Px
k
, E{xkxTk }

Px̃−
k
ỹ
−

k
, E{x̃−k

(

ỹ−k
)T}, Pỹ−

k
, E{ỹ−k

(

ỹ−k
)T}.

Assumption 1:1) The initial statex0 has the mean̄x0 and covarianceP0. 2) x0, ηk, ζk, ωk andυk are

mutually independent.

Assumption 2:The nonlinearity functionsf(xk, ηk) and g(xk, ζk) satisfy f(0, ηk) = 0, g(0, ζk) = 0

with the following first-order moment

E

{[

f(xk, ηk)

g(xk, ζk)

] ∣

∣

∣

∣

∣

xk

}

= 0,

and covariance

E







[

f(xk, ηk)

g(xk, ζk)

][

f(xt, ηt)

g(xt, ζt)

]T ∣
∣

∣

∣

∣

xk







=0, k 6= t,

E







[

f(xk, ηk)

g(xk, ζk)

][

f(xt, ηt)

g(xt, ζt)

]T ∣
∣

∣

∣

∣

xk







=
r
∑

i=1

Πix
T
k Γixk, k = t,

whereΠi =diag{Π1i,Π2i} (i = 1, 2, . . . , r), r is a known positive integer andΓi are known matrices with

appropriate dimensions.

Remark 1: In contrast with its integer-order counterpart, the fractional-order dynamic model (which is

based on the fractional calculus) is capable of providing more appropriate characterizations of certain non-

linear dynamics ranging from friction to slipping. Among the various fractional calculus definitions (e.g.

the Grunwald-Letnikov definition, Riemann-Liouville definition and Caputo definition), the Grunwald-

Letnikov definition has been recognized as particularly suitable for modeling discrete-time systems with

fractional orders because of its backward difference form.As such, in this paper, the fractional-order

dynamic model (1)–(2) (originated from the Grunwald-Letnikov definition) is adopted for the subsequent

filter design.
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Remark 2:As is shown in Assumption 2, the concerned stochastic nonlinearities are fairly generic due

to its coverage of some well-studied nonlinearities including 1) state-dependent noises, i.e.f(xk, ηk) =

Bkxkηk andg(xk, ζk) = Dkxkζk whereBk andDk are known compatible matrices; 2) random sequences

whose powers rely on sector-bounded nonlinear state functions, i.e.f(xk, ηk) = f̄(xk)ηk andg(xk, ζk) =

ḡ(xk)ζk where ||f̄(xk)|| ≤ α||xk||, ||ḡ(xk)|| ≤ β||xk|| and α and β are known scalars; and 3) random

sequences whose powers rely on the signs of nonlinear state functions, i.e.f(xk, ηk) = Bksign[f(xk)]xkηk
andg(xk, ζk) = Dksign[g(xk)]xkζk. In this sense, the nonlinear stochastic model considered in this paper

is with respect to the nonlinearities in our paper is considerably general to reflect the engineering practice.

Remark 3:Under the scheduling of the RRP, equal priority is assigned to each sensor and the mea-

surement from individual sensor is admitted to enter the network in a fixed circularmanner. In the event

that zm,k from sensorm has no entry into the network, the zero-order holder strategy is utilized for

the generation of̄ym,k−1 for the purpose of offsettinḡym,k. Consequently, at time instantk − l, only the

component̄y
~k−l,k−l

of the actually arrived measurementȳk−l is updated, whilst the rest componentsȳm,k−l
(m = 1, 2, . . . , p, m 6= ~k−l) remain the same as their counterparts inȳk−l−1. Obeying thefixed circular

order for information propagation,̄ym,k (m = 1, 2, . . . , p) can be represented by the sum ofΓm,~k−l
zm,k−l

(l = 0, 1, . . . , p− 1) as shown in (5).

Remark 4: It is observed from (7) that random variablesγm,k (m = 1, 2, . . . , p) are used to describe the

censoring phenomena ofym,k. In accordance with (7), if no censoring occurs forȳm,k, i.e. γ
m,k

= 1, we

haveym,k = ȳm,k, which means that the output observation is equivalent to the latent one. If the censoring

occurs forȳm,k, i.e. γm,k = 0, we haveym,k = Im, which means that the censoring threshold is allocated

to the output observation. Here, the censoring probabilities γ̄m,k are knowna priori via some statistical

experiments. Alternatively, as with [3],̄γm,k can also be approximated by

γ̄m,k ≈ Φ





∑p−1
l=0 Γm,~k−l

Cm,k−lςk−l − Im
√

∑p−1
l=0 Γ

2
m,~k−l

Rm,k−l



 , (9)

whereςk−l , x̂−k−l for l = 0, ςk−l , x̂k−l for l = 1, 2, . . . , p − 1, andΦ(·) is the cumulative distribution

function (CDF) of the random variable “·” which obeys the standard normal distribution.

The objective of this paper is to design the TKF for the discrete-time fractional-order system (1)–(8)

under the RRP and Assumptions 1–2.

III. M AIN RESULTS

This section aims at formalizing a specifically tailored protocol-based fractional Tobit Kalman filtering

paradigm to surmount the identified challenges brought by the fractional dynamics, stochastic nonlinearities

and RRP. The formulation procedure differentiates itself from the conventional TKF through the following

perspectives: (1) an ameliorated Tobit regression model ispresented that stems from the involvement of

the fractional dynamics, stochastic nonlinearities and RRP; and (2) extra computations with respect to the

state prediction, measurement prediction, filter gain as well as associate covariances are encompassed.
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Let

ȳm,k , ξm,k + νm,k, Rm,k ,

p−1
∑

l=0

Γ2
m,~k−l

Rm,k−l,

ϑm,k ,
Im − ξm,k

Rm,k

, νm,k ,

p−1
∑

l=0

Γm,~k−l
υm,k−l

ξm,k ,

p−1
∑

l=0

Γm,~k−l
(Cm,k−lxk−l + gm(xk−l, ζk−l)) .

The Tobit regression model for system (1)–(8) is obtained below.

Lemma 1:The mean and variance ofym,k (m = 1, 2, . . . , p) are given by

E{ym,k|xk} =[1− Φ (ϑm,k)]
[

ξm,k +
√

Rm,kλ (ϑm,k)
]

+ Φ(ϑm,k)Im, (10)

var{ym,k|xk} =Rm,k[1− ϕ (ϑm,k)], (11)

where

ϕ (ϑm,k) =λ (ϑm,k) [λ (ϑm,k)− ϑm,k] , (12)

λ (ϑm,k) =
φ (ϑm,k)

1− Φ (ϑm,k)
, (13)

andφ (ϑm,k), Φ (ϑm,k) are, respectively, the probability density function (PDF)and CDF of the Gaussian

random variableϑm,k with φ (ϑm,k) andΦ (ϑm,k) defined as

φ (ϑm,k) =
1√
2π
e
−
(Im−ξm,k)

2

2Rm,k , (14)

Φ (ϑm,k) =

∫ Im

−∞

1
√

2πRm,k

e
−
(ym,k−ξm,k)

2

2Rm,k dym,k
. (15)

Proof: See Appendix–A.

Remark 5:The Tobit regression model manifested in Lemma 1 embodies the mean and variance of

ym,k. In contrast with its counterpart in [3] where merely the censoring phenomenon is concerned, it is

seen that the termCm,kxk is now substituted by the term

ξm,k ,

p−1
∑

l=0

Γm,~k−l
(Cm,k−lxk−l + gm(xk−l, ζk−l)) .

What is more, the original measurement noise covarianceRm,k is replaced by the sum ofp noise

covariancesRm,k ,
∑p−1

l=0 Γ
2
m,~k−l

Rm,k−l. These two replacements sketch clearly the influences from

stochastic nonlinearities and RRP on the desired regression model. Also, the impact from the fractional

dynamics is reflected from the statexk−l integrated in the termξm,k by noticing the correlation between

xk−l and∆qsxk−l as expressed in (1)–(2). It is noteworthy that, the impact from the fractional dynamics

embedded inxs,k−l gives rise to the emergence of a few new terms in the subsequent filter design.

For m = 1, 2, . . . , p, we let

I , vec {Im} , γ̄k , diag {γ̄m,k} , ξ̂−k , vec
{

ξ̂−m,k

}

, ϑ̄k , vec
{

ϑ̄m,k
}

,
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Rk , diag {Rm,k} , λ
(

ϑ̄k
)

, vec
{

λ
(

ϑ̄m,k
)}

, ϕ
(

ϑ̄k
)

, diag
{

ϕ
(

ϑ̄m,k
)}

where

ξ̂−m,k ,

p−1
∑

l=0

Γm,~k−l
Cm,k−lςk−l, ϑ̄m,k ,

Im − ξ̂−m,k
Rm,k

andϕ
(

ϑ̄m,k
)

andλ
(

ϑ̄m,k
)

can be, respectively, computed via (12) and (13) by replacing ξm,k with ξ̂−m,k.

On the basis of Lemma 1, the protocol-based TKF for system (1)–(8) is derived in the following

theorem.

Theorem 1:For system (1)–(8), its protocol-based fractional TKF is established as follows:

x̂−k =(Ak−1 +Υ1)x̂k−1 −
k
∑

j=2

(−1)jΥj x̂k−j, (16)

x̂k =x̂
−
k +Kk(yk − ŷ−k ), (17)

Px̃−
k
=(Ak−1 +Υ1)Px̃

k−1
(Ak−1 +Υ1)

T +Qk−1 +
r
∑

i=1

Π1itr(Px
k−1

Γi) +
k
∑

j=2

(−1)jΥjPx̃
k−j

ΥT
j , (18)

Px̃
k
=Px̃−

k
−KkP

T

x̃
−

k
ỹ
−

k

. (19)

The one-step measurement prediction and the filter gain are

ŷ−k =γ̄k

[

ξ̂−k +
√

Rkλ
(

ϑ̄k
)

]

+ (I − γ̄k)I, (20)

Kk =Px̃−
k
ỹ−
k
P−1

ỹ−
k

, (21)

where

Px̃−
k
ỹ−
k
=Px̃−

k
(γ̄kΓ~k

Ck)
T (22)

Pỹ−
k
=γ̄kΓ~k

CkPx̃−
k

(γ̄kΓ~k
Ck)

T

+ γ̄k

p−1
∑

l=1

Γ~k−l
Ck−lPx̃k−l

(γ̄kΓ~k−lCk−l)
T + γ̄k

r
∑

i=1

Π2itr(Px
k
Γi)γ̄k +Rk

[

I − ϕ
(

ϑ̄k
)]

, (23)

Px
k
=(Ak−1 +Υ1)Px

k−1
(Ak−1 +Υ1)

T +Qk−1 +
r
∑

i=1

Π1itr(Px
k−1

Γi) +
k
∑

j=2

(−1)jΥjPx
k−j

ΥT
j . (24)

Proof: See Appendix–B.

Remark 6:Making comparison between the desired protocol-based fractional TKF in Theorem 1 and

the traditional TKF in [3], two remarkable distinctions canbe encapsulated. One is the replacement of

the termCkx̂
−
k (which is the product of the measurement matrixCk and the one-step state prediction

x̂−k ) by the termξ̂−k = Γ~k
Ckx̂

−
k +

∑p−1
l=1 Γ~k−l

Ck−lx̂k−l (which is the sum ofp products riding on the

measurement update coefficientΓ~k−l
, measurement matrixCk−l, one-step state prediction̂x−k and past

state estimatêxk−l). The other is the emergence of a suite of new terms∆qx̂−k , Px
k−1

,
∑r

i=1Π1,itr(Px
k−1

Γi)

and
∑k

j=1(−1)jΥjPx̃
k−j

ΥT
j in computing the state prediction and filter gain. The first distinction results

from the RRP whilst the second one roots in the fractional dynamics and stochastic nonlinearities.
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TABLE I: The Pseudocode of the Protocol-Based Fractional TKF

Algorithm: Protocol-Based TKF

Input: x̄0, P0, y1:k
Output: x̂k, Px̃

k

1: let x̂0 = x̄0, Px̃
0
= Px

0
= P0.

2: for k = 1 : N do

3: calculate the predicted estimatex̂−

k by (16) and associated covarianceP
x̃
−

k

by (18);

4: calculate the gain matrixKk by (21)–(24);

5: calculate the updated estimatex̂k by (17) and associated covariancePx̃
k

by (19);

6: end for

Lemma 1, together with Theorem 1, gives rise to the protocol-based fractional Tobit Kalman filtering

algorithm with its pseudocode outlined in Table I.

Remark 7:Thanks to Lemma 1 and Theorem 1, a reinforced Tobit Kalman filtering framework is

devised with a view to solving the novel filtering problem forfractional-order systems susceptible to

stochastic nonlinearities under the RRP. System (1)–(8) under investigation is holistic that not only

incorporates fractional behaviors of the system but also accounts for important randomly occurring

phenomena (i.e. censored observations and stochastic nonlinearities) which are prevalently confronted

in application scenarios ranging from networked control toobject tracking. These disparate phenomena

are tackled within a unified yet effective scheme. In addition, the RRP is adopted to avoid data collisions

and boost transmission reliability.

Next, we move forward to discussion the performance of the designed fractional TKF. Due to the

time-varying nature of the protocol-induced measurement update coefficientΓ~k
, the convergence of the

developed fractional TKF cannot be guaranteed in general. Thus, we turn to pursue the boundedness of

the developed algorithm where the exponential boundednessof the filtering error dynamics is analyzed

in the mean square sense.

To start with, the following definition is first introduced for discussion convenience.

Definition 1: For real numbersǫ > 0, ε > 0 and0 < χ < 1, if for all k ≥ 0,

E
{

‖x̃k‖2
}

≤ ǫE
{

‖x̃0‖2
}

χk + ε,

holds, then the stochastic processx̃k is exponentially bounded in the mean square sense.

The following assumption is essential in deriving our results.

Assumption 3:The following conditions are satisfied for allk ≥ 0:

‖Π2i‖ ≤π̄, γ ≤ ‖γ̄k‖ ≤ γ̄, c ≤ ‖Ck‖ ≤ c̄,

‖Υj‖ ≤r̄, ‖Π1i‖ ≤ π̄, ‖x̂k‖ ≤ χ̄, qI ≤ Qk ≤ q̄I

‖Ak‖ ≤ā, ‖Γi‖ ≤ τ̄ ,
∥

∥

∥
tr(Px

k−1
)
∥

∥

∥
≤ s̄,

∥

∥

∥
P−1

ỹ
−

k

∥

∥

∥
≤ η̄.

Theorem 2:Consider the discrete-time fractional-order system (1)–(8) with its filter in the form of

(16)–(24). Under Assumption 3, the resulting filtering error dynamics is exponentially bounded in mean

square sense.
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Proof: See Appendix–C.

Remark 8: It is noteworthy that the developed filter in Theorem 1 is a generalization of those in [3]

and [37]. In the case that model (1)–(2) is an integer-order one without the nonlinearityf(xk, ηk), the

nonlinearityg(xk, ζk) is omitted in (3) and the RRP is abandoned, the modified Tobit regression model

in Lemma 1 and the protocol-based fractional TKF in Theorem 1will, respectively, degenerate to the

traditional Tobit regression model and TKF in [3]. In the case that the aforementioned randomly occurring

phenomena are absent and the RRP is discarded, the Tobit regression model in Lemma 1 will disappear

and the protocol-based fractional TKF in Theorem 1 will reduce to the renowned FKF in [37].

IV. I LLUSTRATIVE EXAMPLE

In this section, a numerical example (modified from [37]), a spring-mass-damper example (modified

from [20]) and an oscillator example (modified from [3]) are leveraged to elucidate the usefulness of the

presented filter design approach and associate filtering performance. Denote the root mean-squared errors

(RMSEs) ofx1,k andx2,k, respectively, as

RMSE1 ,

√

√

√

√(1/M)
M
∑

i=1

(

x
(i)
1,k − x̂

(i)
1,k

)2

,RMSE2 ,

√

√

√

√(1/M)
M
∑

i=1

(

x
(i)
2,k − x̂

(i)
2,k

)2

,

whereM is the number of Monte Carlo trials.

A. Numerical Example

Consider system (1)–(8) with parameters:

Ak =

[

0 1

−0.1 −0.2

]

, Ck =

[

0.1 0.3

0.5 1.5

]

,

Qk =Rk = 0.3I2, Px
0
= Px̃

0
= 100I2,

q1 =0.7, q2 = 1.2, x0 =
[

1 1
]T

, I =
[

−1 −1
]T

.

The stochastic nonlinearitiesf(xk, ηk) andg(xk, ζk) are

f(xk, ηk) =
[

0.2 0.3
]T

0.3 sin (x1,k)x1,kη1,k +
[

0.2 0.3
]T

0.4 sin (x2,k)x2,kη2,k,

g(xk, ζk) =
[

0.1 0.1
]T

0.3 sin (x1,k)x1,kζ1,k +
[

0.1 0.1
]T

0.4 sin (x2,k) x2,kζ2,k,

whereη1,k, η2,k, ζ1,k and ζ2,k are zero-mean uncorrelated Gaussian white noises with unity covariances.

Apparently, the above stochastic nonlinearities satisfy Assumption 2 with

r = 1, Π11 =

[

0.04 0.06

0.06 0.09

]

,

Π21 =

[

0.01 0

0 0.01

]

, Γ1 =

[

0.09 0

0 0.16

]

.
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Fig. 1: State and its estimate.
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Fig. 2: Performance comparison in RMSE1 and RMSE2.

Fig. 1 depicts the true state values and associate estimatesprovided by the protocol-based TKF (which

is named as PBTKF and is barely capable of tackling censored observations under the RRP in case of

q1 = q2 = 1) and the protocol-based fractional TKF with stochastic nonlinearities (which is named as

PBFTKF-SN and is capable of addressing both censoring and nonlinearities under the RRP in case of

q1 = 0.7 andq2 = 1.2). Fig. 2 plots the comparison result in RMSE between the PBTKF and PBFTKF-SN

after 1000 independent Mote Carlo trials.

It is confirmed from Fig. 1 that, our PBFTKF-SN manages to track the true state values precisely,
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Fig. 3: True sate and estimates under different censoring thresholds[I1, I2].
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Fig. 4: Performance comparison in RMSE under different censoring thresholds[I1, I2].

whilst the PBTKF has considerable deviations from true state values. Additionally, it is observed from

Fig. 2 that the RMSE curve of our PBFTKF-SN always resides lower than that of the PBTKF, implying

that issues of the fractional dynamics and stochastic nonlinearities are well settled in our PBFTKF-SN

whereas they are not disposed of in the PBTKF.

Besides, to better illustrate the relationship between thecensoring threshold and the filtering perfor-

mance, simulations of our PBFTKF-SN based on different censoring thresholds have been conducted

where corresponding state estimates and RMSEs are demonstrated in Figs. 3–4. It is apparently observed

from Figs. 3–4 that, as censoring thresholds[I1, I2] increase, the filtering accuracy with respect to the
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tx
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Fig. 5: A simple mass-spring-damper system.

system state deteriorates. This well coincides with the fact that, in case of larger censoring thresholds,

measurements are more likely to be censored and less information can be used for state estimation, leading

to performance degeneracy of our PBFTKF-SN.

B. Spring-Mass-Damper Example

Consider a simple mass-spring-damper system [20] as illustrated in Fig. 5. The equation of motion for

such a model is given by

m
d2xt
dt2

+ c
dxt
dt

+ kxt = ft,

wherem is the mass,k is the spring constant andc is the damping coefficient.xt is the system state and

ft is the control term. Letft = ∆0.5xt + ut where∆ is the the fractional differential/difference operator

and ut is the known input. Referring to [20], the above model can be transformed into the following

fractional-order differential equation to describe the viscoelastically damped structure:

m∆2xt + c∆1xt + kxt −∆0.5xt = ut.

Letting m = 0.1, c = 0.4, m = 0.1, the fractional-order difference counterpart of the abovemodel is

obtained as follows:

∆0.5xk+1 =Akxk +Bkuk,

xk+1 =∆0.5xk+1 −
k+1
∑

j=1

(−1)jΥjxk+1−j,

where

Ak =













0 1 0 0

0 0 1 0

0 0 0 1

−0.1 −0.1 −0.4 0













, Bk =













0

0

0

1













.

Taking into account the possible noise and the stochastic nonlinearity, the above model is further

converted into

∆qxk+1 =Akxk +Bkuk + f(xk, ηk) + ωk,
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Fig. 6: Mass-spring-damper example: state and its estimate.
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Fig. 7: Mass-spring-damper example: state and its estimate.

xk+1 =∆qxk+1 −
k+1
∑

j=1

(−1)jΥjxk+1−j ,

with its measurement model being

zk = Ckxk + g(xk, ζk) + υk,

which are exactly the same system and measurement models considered in this paper.
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Consider the above system with parameters:

Ck =

[

1 0 0 0

1 1 0 0

]

, I =

[

−2

−2

]

, Rk = 0.0025I2, Px
0
= Px̃

0
= I4,

Qk = 10−4













0.1665 0.0704 −0.0198 −0.1206

0.0704 0.1444 0.0257 −0.1127

−0.0198 0.0257 0.0991 −0.0067

−0.1206 −0.1127 −0.0067 0.2439













, x0 =













0

0

0

0













, uk = sin(
π

12
k).

The stochastic nonlinearitiesf(xk, ηk) andg(xk, ζk) are

f(xk, ηk) =
[

0.2 0.3 0.2 0.3
]T [

0.3 sin (x1,k)x1,kη1,k + 0.4 sin (x2,k) x2,kη2,k

+ 0.3 sin (x3,k)x3,kη3,k + 0.4 sin (x4,k)x4,kη4,k

]

,

g(xk, ζk) =0.1[0.3 sin (x1,k) x1,kζ1,k + 0.4 sin (x2,k)x2,kζ2,k

+ 0.3 sin (x3,k)x3,kζ3,k + 0.4 sin (x4,k) x4,kζ4,k],

whereη1,k, η2,k, ζ1,k and ζ2,k are zero-mean uncorrelated Gaussian white noises with unity covariances.

Apparently, the above stochastic nonlinearities satisfy Assumption 2 with

r = 1, Π11 =













0.04 0.06 0.04 0.06

0.06 0.09 0.06 0.09

0.04 0.06 0.04 0.06

0.06 0.09 0.06 0.09













,

Π21 = 0.01, Γ1 = diag{0.09, 0.16, 0.09, 0.16}.

Figs. 6–7 plot the true state values and associate estimatesprovided by the PBTKF and PBFTKF-SN,

from which It is confirmed that, our PBFTKF-SN manages to track the true state values precisely, whilst

the PBTKF has considerable deviations from true state values.

C. Oscillator Example

In the event that the fractional orderq converges to1, the considered system becomes a fist-difference

model and the corresponding filtering problem can be resolved based on the existing filtering algorithm

for integer order systems. In case ofq = 1, the original fraction-order difference system is reducedto the

following first-order difference system:

∆1xk+1 =Akxk + f(xk, ηk) + ωk,

xk+1 =∆1xk+1 + xk,

zk =Ckxk + g(xk, ζk) + υk,

which is further transformed into

xk+1 =Ãkxk + f(xk, ηk) + ωk,
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Fig. 8: True values of the first and second dimensions of the state and their estimates.
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Fig. 9: Performance comparison in RMSE.

zk =Ckxk + g(xk, ζk) + υk,

whereÃk = Ak + I.

Consider the above model with parameters:

Ãk =

[

cos(w) − sin(w)

sin(w) cos(w)

]

, I =

[

0

0

]

, w = 0.052π,

Ck =I2, Rk = I2, Qk = diag{0.0025, 0.0025}, P0 = I2.
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The oscillator example concerns about the estimation of ballistic roll rates in case of the noisy dynamic

model and uncertain magnetometer data. The stochastic nonlinearitiesf(xk, ηk) and g(xk, ζk) are the

same as that adopted in the first numerical example. In order to further verify the effectiveness of our

developed fractional-order filtering algorithm in case ofq = 1, the performance comparison is made

between the protocol-based Tobit Kalman filter (which is named as PBTKF and is capable of tackling

censored observations under the RRP) and our developed protocol-based fractional TKF with stochastic

nonlinearities (which is named as PBFTKF-SN and is capable of simultaneously addressing fractional

dynamics, censoring and stochastic nonlinearities under the RRP).

Fig. 8 depicts the true state values and associated estimates generated by the PBTKF and our PBFTKF-

SN, and Fig. 9 plots the comparison result in RMSE between thePBTKF and PBFTKF-SN after1000

independent Mote Carlo trials. It is witnessed from Fig. 8 that, the PBFTKF-SN manages to track the

true state values precisely, whilst the PBTKF appears to have considerable deviations from the true state

values. Besides, it is sketched in Fig. 9 that, the RMSE curveof the PBFTKF-SN resides lower than that

of the PBTKF, indicating that issues of sensor nonlinearities are suitably addressed in the PBFTKF-SN,

whilst they are not settled in the PBTKF.

V. CONCLUSION

In this paper, we have dealt with the recursive filtering problem for fractional-order systems in the

conjunction of censored observations and stochastic nonlinearities under the RRP. The fractional-order

difference equation (stemming from the Grunwald-Letnikovdefinition of the fractional-order derivative)

has been utilized to sketch the evolution of the involved dynamic model. The stochastic nonlinearities

have been characterized in a generic form which includes some well-investigated nonlinearities as special

cases, and the RRP is selected to schedule the data transmission in the network. These phenomena have

been elaborately addressed via developing enhanced Tobit regression model, which generates a bank of

new terms in the desired filter and adds extra computations inthe algorithm implementation. Luckily,

these computations are all recursive or off-line, and therefore the designed TKF is propitious for online

scenarios. Finally, the feasibility of the proposed TKF hasbeen verified by a numerical example.

APPENDIX

A. Proof of Lemma 1

Proof: It is not difficult to learn from the definitionνm,k ,
∑p−1

l=0 Γm,~k−l
υm,k−l that, νm,k is a

Gaussian distributed noise with mean zero and covarianceRm,k ,
∑p−1

l=0 Γ
2
m,~k−l

Rm,k−l. Referring to

ȳm,k , ξm,k + νm,k and (7), the PDF ofym,k is

f(ym,k|xk) =
1

√

Rm,k

φ

(

ym,k − ξm,k
√

Rm,k

)

u(ym,k − Im)

+ δ(Im−ym,k)Φ(ϑm,k), (25)
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whereu(ym,k−Im) is the unit step function, andφ

(

ym,k−ξm,k√
Rm,k

)

andΦ(ϑm,k) are calculated via (14)–(15).

In line with (25), the mean ofym,k is derived as

E{ym,k|xk}
=Prob{ym,k > Im|xk}E{ym,k|ym,k > Im, xk}+ Prob{ym,k = Im|xk}E{ym,k|ym,k = Im, xk}. (26)

In order to computeE{ym,k|xk}, the probabilities and means on the right-hand side of (26) should be

provided first.

Prob{ym,k > Im|xk} =Prob{ȳm,k > Im|xk}
=Prob{νm,k > Im − ξm,k|xk}
=1− Φ (ϑm,k) . (27)

In the light of (25), we have

E{ym,k|ym,k > Im, xk}

=
1

√

Rm,k

∫ +∞

Im

ym,k

φ

(

ym,k−ξm,k√
Rm,k

)

1− Φ (ϑm,k)
dym,k

= ξm,k +
√

Rm,kλ (ϑm,k) , (28)

whereλ (ϑm,k) is given by (13). Parallel to (27)-(28), we arrive at

Prob{ym,k = Im|xk} = Φ(ϑm,k) , (29)

E{ym,k|ym,k = Im, xk} = Im. (30)

Inserting (27)-(30) into (26) yields (10). Making reference to (25), (28) and (30), we have var{ym,k|ym,k =
Im, xk} = 0 and

var{ym,k|xk} =var{ym,k|ym,k > Im, xk}
=E{y2m,k|ym,k > Im, xk} −

(

E{y2m,k|ym,k > Im, xk}
)2

= Rm,k [1− ϕ (ϑm,k)] ,

which is exactly the same as (11), whereϕ (ϑm,k) is given by (12).

B. Proof of Theorem 1

Proof: Denoting∆qx̂−k , E{∆qxk|y1:k−1} and noting Assumption 2, we attain∆qx̂−k = Ak−1x̂k−1.

Adopting Assumption 1 in [36] that past estimatesx̂k−j (j = 1, 2, . . . , k) will not be updated with later

arrived measurementsyk−j+1, we have

E{xk−j |y1:k} = E{xk−j|y1:k−j} = x̂k−j|k−j. (31)
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Substituting (1) into (2) produces

xk =(Ak−1 +Υ1)xk−1 + f(xk−1, ηk−1) + ωk−1 −
k
∑

j=2

(−1)jΥjxk−j , (32)

Making use of Assumption 2 and (32) produces (24). Putting (2) and (31) intox̂−k , E{xk|y1:k−1} and

noticing∆qx̂−k = Ak−1x̂k−1, we obtain

x̂−k =E

{

∆qxk −
k
∑

j=1

(−1)jΥjxk−j

∣

∣

∣

∣

∣

y1:k−1

}

= (Ak−1 +Υ1)x̂k−1 −
k
∑

j=2

(−1)jΥjx̂k−j ,

which is exactly the same as (16). (16) together with (32) generates

x̃−k =(Ak−1 +Υ1)x̃k−1 + f(xk−1, ηk−1) + ωk−1 −
k
∑

j=2

(−1)jΥj x̃k−j. (33)

Substituting (33) intoPx̃−
k
, E

{

x̃−k
(

x̃−k
)T
}

and utilizing Assumption 2 in [36] thatE
{

x̃−k
(

x̃−t
)T
}

= 0

for k 6= t, we have (18).

A direct employment of the orthogonality projection principle to system (1)–(8) yields (17) where the

filter gain is given by (21).

(32), along with (17), brings̃xk = x̃−k −Kkỹ
−
k . As a result,Px̃

k
, E

{

x̃kx̃
T
k

}

can be expressed as

Px̃
k
=E

{

(

x̃−k −Kkỹ
−
k

) (

x̃−k −Kkỹ
−
k

)T
}

=Px̃−
k
− Px̃−

k
ỹ
−

k
KT
k −KkP

T

x̃
−

k
ỹ
−

k

+KkPỹ−
k
KT
k . (34)

The combination of (21) and (34) leads to (19).

Making reference to Lemma 1, we obtain

ŷ−k =[I − Φ
(

ϑ̄k
)

]
[

ξ̂−k +
√

Rkλ
(

ϑ̄k
)

]

+ Φ
(

ϑ̄k
)

I

=γ̄k

[

ξ̂−k +
√

Rkλ
(

ϑ̄k
)

]

+ [I − γ̄k]I,

which is exactly the same as (20). Form (7) and the definitionyk , vec {ym,k}, we haveyk = γkȳk +

(I − γk)I. Subtracting (20) fromyk induces

ỹ−k = γkȳk + (I − γk)I−ŷ−k . (35)

Denote ȳk , ξk + νk, νk ,
∑p−1

l=0 Γ~k−l
υk−l, ξk ,

∑p−1
l=0 Γ~k−l

(Ck−lxk−l + g(xk−l, ζk−l)) and ξ̃−k ,

ξk − ξ̂−k . Keeping (33) and (35) in mind, we attain

Px̃−
k
ỹ
−

k
=E{(xk − x̂−k )(γkȳk + (I − γk)I−ŷ−k )T}
=E{(xk(ξk + νk)

Tγk} − E{x̂−k (ξk + υk)
Tγk}

=E







xk

(

p−1
∑

l=0

Γ~k−l
Ck−lxk−l

)T

γTk







− E







x̂−k

(

p−1
∑

l=0

Γ~k−l
Ck−lxk−l

)T

γTk






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=Px
k
(γ̄kΓ~k

Ck)
T − x̂−k

(

x̂−k
)T

(γ̄kΓ~k
Ck)

T +

p−1
∑

l=1

E
{

x̃−k x
T
k−l

} (

γ̄kΓ~k−l
Ck−l

)T

=Px
k
(γ̄kΓ~k

Ck)
T − x̂−k

(

x̂−k
)T

(γ̄kΓ~k
Ck)

T , (36)

where the second equality holds from the independence ofxk and γk and the independence ofxk,

g(xk−l, ζk−l) and vk, and the last equality holds from Assumption 2 in [36] thatE
{

x̃−k x
T
t

}

= 0 for

k 6= t. The notice of

Px
k
=E{(x̃−k + x̂−k )(x̃

−
k + x̂−k )

T}
=Px̃−

k
+ x̂−k

(

x̂−k
)T
,

together with (36) yields (22).

Recalling the expressions ofξk and ξ̂−k leads to

ξ̃−k =

p−1
∑

l=0

Γ~k−l
(Ck−lxk−l + g(xk−l, ζk−l))− Γ~k

Ckx̂
−
k +

p−1
∑

l=1

Γ~k−l
Ck−lx̂k−l

=Γ~k
Ckx̃

−
k +

p−1
∑

l=1

Γ~k−l
Ck−lx̃k−l +

p−1
∑

l=0

g(xk−l, ζk−l),

which gives rise to

E

{

ξ̃−k

(

ξ̃−k

)T
}

=Γ~k
CkPx̃−

k

CT
k Γ~k

+

r
∑

i=1

Π2itr(Px
k
Γi) +

p−1
∑

l=1

Γ~k−l
Ck−lPx̃k−l

CT
k−lΓ~k−l

, (37)

where the equality holds from the independence ofx̃−k and x̃k−l. Parallel to the derivation ofPx̃−
k
ỹ−
k

, one

has

Pỹ−
k
=E{ỹ−k

(

ỹ−k
)T}

=γ̄kE

{

ξ̃−k

(

ξ̃−k

)T
}

γ̄k + E
{

γkν̃kν̃
T
k γk
}

, (38)

where ν̃k = νk −
√
Rkλ

(

ϑ̄k
)

. For the sake of derivation brevity, we suppose that cov{ym,k, ys,k} = 0

for m 6= s (m, s = 1, 2, . . . , p). The extension of such a result to the case where cov{ym,k, ys,k} 6= 0 for

m 6= s is straightforward but rotationally cumbersome. Abiding by such a supposition, we have

E
{

γkν̃kν̃
T
k γk
}

=diag
{

var{γm,kν̃m,kν̃Tm,kγm,k}
}

=diag{var{ym,k|xk}}
=diag

{

Rm,k

[

1− ϕ
(

ϑ̄m,k
)]}

=Rk

[

I − ϕ
(

ϑ̄k
)]

. (39)

Finally, putting (37) and (39) into (38) results in (23).
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C. Proof of Theorem 2

Proof: DenoteKk , −γ̄kKk and uk , −
∑k

j=1(−1)jΥj x̃k−j + f(xk, ηk) + KkΓ
−1
~k
ỹk+1. Based on

1–(8), the filtering error dynamics is obtained as

x̃k+1 =xk+1 − x̂−k+1 −Kk+1ỹk+1 (40)

=Akxk + f(xk, ηk) + ωk −
k+1
∑

j=1

(−1)jΥjxk+1−j − (Ak +Υ1)x̂k +
k
∑

j=1

(−1)jΥj x̂k−j −Kk+1ỹk+1

=(Ak +Υ1)x̃k −
k
∑

j=1

(−1)jΥj x̃k−j + f(xk, ηk) + ωk −Kk+1ỹk+1

=(Ak +Υ1)x̃k + ωk + uk. (41)

It follows from 22–(23) that
∥

∥

∥
Px̃−

k
ỹ
−

k

∥

∥

∥
=
∥

∥

∥
Px̃−

k
(γ̄kΓ~k

Ck)
T
∥

∥

∥
≤ γ̄

∥

∥

∥
Px̃−

k

∥

∥

∥

∥

∥ΓT
~k

∥

∥

∥

∥CT
k

∥

∥ ≤ γ̄c̄
∥

∥

∥
Px̃−

k

∥

∥

∥
, (42)

and
∥

∥

∥
P−1

ỹ−
k

∥

∥

∥
≤
∥

∥

∥
[γ̄kΓ~k

CkPx̃−
k

(γ̄kΓ~k
Ck)

T ]−1
∥

∥

∥
≤ γ2c2

∥

∥

∥
Px̃−

k

∥

∥

∥

−1

. (43)

Taking the norm on both sides ofKk , −γ̄kKk and keeping (42) and (43) in mind, we have

‖Kk‖ ≤ ‖γ̄k‖
∥

∥

∥
Px̃−

k
ỹ
−

k

∥

∥

∥

∥

∥

∥
P−1

ỹ
−

k

∥

∥

∥
≤ γ̄2c̄

γ2c2
, κ̄. (44)

Noting

uk , −
k
∑

j=1

(−1)jΥj x̃k−j + f(xk, ηk) + γ̄−1
k Kkỹ

−
k+1

= −
k
∑

j=1

(−1)jΥj (xk−j − x̂k−j) + f(xk, ηk) + γ̄−1
k Kk(yk − ŷ−k ),

and making use of the trace property, we have

E
{

uTk uk
}

≤E

{

k
∑

j=1

(xTk−jΥ
T
j Υjxk−j

}

+ E

{

k
∑

j=1

(x̂Tk−jΥ
T
j Υjx̂

T
k−j

}

+ E
{

fT (xk, ηk)f(xk, ηk)
}

+ γ−2
E
{

ỹTk+1KT
k+1Kk+1ỹk+1

}

=tr

{

k
∑

j=1

ΥjPxk−j
ΥT
j

}

+ tr

{

k
∑

j=1

x̂k−jΥ
T
j Υjx̂

T
k−j

}

+ tr

{

r
∑

i=1

Π1itr(Px
k−1

Γi)

}

+ tr
{

Kk+1Pỹ−
k
KT
k+1

}

≤ks̄r̄2 + kχ̄2r̄2 + rπ̄s̄τ̄ + κ̄2η̄

,ū. (45)
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Subsequently, consider the following iterative matrix equation with respect toΨk

Ψk+1 , AkΨkA
T
k +Qk + κI, (46)

with the initial value

Ψ0 , Q0 + κI,

whereκ > 0 is a scalar. Then, it is easy to know that

‖Ψk+1‖ ≤‖Ak‖2 ‖Ψk‖+ ‖Qk‖+ ‖κI‖ ≤ ā2 ‖Ψk‖+ q̄ + κ,

which, by iteration, leads to

‖Ψk‖ ≤ā2k ‖Ψ0‖+ (q̄ + κ)
k−1
∑

t=0

ā2t ≤ ā2k ‖Ψ0‖+ (q̄ + κ)
∞
∑

t=0

ā2t. (47)

From Assumption 3, we know0 < ā2 < 1 and therefore

‖Ψk‖ ≤‖Ψ0‖+
(q̄ + κ)

1− ā2
,

Ψk ≥κI.

In view of (46) and (47), there exists a positive scalarψ̄ , ‖Ψ0‖ + (q̄+κ)
1−ā2

such thatκI ≤ Ψk ≤ ψ̄I

holds for allk ≥ 0.

DenoteVk , x̃TkΨ
−1
k x̃k and remember̃xk+1 = Akx̃k + ωk + uk. For any scalarρ > 0, we have

E{Vk+1} − (1 + ρ)Vk

=E
{

(Akx̃k + ωk + uk)
TΨ−1

k (Akx̃k + ωk + uk)
}

− (1 + ρ)x̃TkΨ
−1
k x̃k

=E
{

(Akx̃k)
TΨ−1

k Akx̃k
}

+ E
{

(Akx̃k)
TΨ−1

k uk
}

+ E
T
{

(Akx̃k)
TΨ−1

k uk
}

+ E
{

ωTkΨ
−1
k ωk

}

+ E
{

uTkΨ
−1
k uk

}

− (1 + ρ)x̃TkΨ
−1
k x̃k

≤E
{

(Akx̃k)
TΨ−1

k Akx̃k
}

+ ρE
{

(Akx̃k)
TΨ−1

k Akx̃k
}

+ ρ−1
{

uTkΨ
−1
k uk

}

+ E
{

ωTkΨ
−1
k ωk

}

+ E
{

uTkΨ
−1
k uk

}

− (1 + ρ)x̃TkΨ
−1
k x̃k

=(1 + ρ)E
{

x̃Tk (A
T
kΨ

−1
k Ak −Ψ−1

k )x̃k
}

+ (1 + ρ−1)E
{

uTkΨ
−1
k uk

}

+ E
{

ωTkΨ
−1
k ωk

}

. (48)

By employing the matrix inversion lemma, it follows that

ATkΨ
−1
k Ak −Ψ−1

k

=ATk (AkΨkA
T
k +Qk + κI)−1Ak −Ψ−1

k

=− [Ψk +ΨkA
T
k (Qk + κI)−1AkΨk]

−1

=− [I + ATk (Qk + κI)−1AkΨk]
−1Ψ−1

k

≤−
(

1 +
ā2ψ̄

q

)−1

Ψ−1
k . (49)

Combining (48) and (49), it is derived that

E{Vk+1} − (1 + ρ)Vk
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≤− (1 + ρ)

(

1 +
ā2ψ̄

q

)−1

E
{

x̃TkΨ
−1
k x̃k

}

+ (1 + ρ−1)E
{

uTkΨ
−1
k uk

}

+ E
{

ωTkΨ
−1
k ωk

}

≤− (1 + ρ)

(

1 +
ā2ψ̄

q

)−1

E{Vk}+ (1 + ρ−1)
ū

κ
+
q̄

κ
. (50)

Defineχ , (1+ ρ)

(

1−
(

1 + ā2ψ̄

q

)−1
)

andς , (1 + ρ−1) ū
κ
+ q̄

κ
. It is no doubt that there always exist

positive scalars̄a, ψ̄, q andρ such that0 < χ < 1 and0 < ψ̄ς

1−χ
< 1. Thus, (50) is converted into

E{Vk+1} ≤ χE{Vk}+ ς ≤ χk+1
E{V0}+ ς

k
∑

i=0

χi. (51)

KeepingVk , x̃TkΨ
−1
k x̃k andκI ≤ Ψk in mind, we have

E{Vk+1} = E
{

x̃Tk+1Ψ
−1
k+1x̃k+1

}

≤ E
{

x̃Tk+1κ
−1Ix̃k+1

}

,

and this leads to

E{V0} ≤ E{x̃T0 κ−1Ix̃0}. (52)

The combination of̃xk+1 = Akx̃k + ωk + uk, (51) and (52) yields

E{‖x̃k+1‖2} = E{x̃Tk+1Ψ
−1
k+1Ψk+1x̃k+1}

≤ ψ̄E{x̃Tk+1Ψ
−1
k+1x̃k+1}

= ψ̄E{Vk+1}

≤ ψ̄χk+1
E{V0}+ ψ̄ς

k
∑

i=0

χi

= ψ̄χk+1
E{x̃T0 κ−1Ix̃0}+ ψ̄ς

k
∑

i=0

χi

=
ψ̄

κ
E{‖x̃0‖2}χk+1 + ψ̄ς

k
∑

i=0

χi

≤ ψ̄

κ
E{‖x̃0‖2}χk+1 + ψ̄ς

∞
∑

i=0

χi

=
ψ̄

κ
E{‖x̃0‖2}χk+1 +

ψ̄ς

1− χ
. (53)

Paying attention to0 < χ < 1 and 0 < ψ̄ς

1−χ
< 1, (53) and Definition 1, we confirm that̃xk is

exponentially bounded in mean square sense. This completesthe proof.
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of The Franklin Institute, vol. 352, no. 5, pp. 1963–1978, 2015.

[47] G. Xue, Y. Xu, J. Guo, and W. Zhao, The fractional Kalman filter-based asynchronous multirate sensor information fusion, Complexity,

vol. 2018, art. no. 1450353, 10 pages, 2018.

[48] E. E. Yaz, and Y. I. Yaz, State estimation of uncertain nonlinear stochastic systems with general criteria,Applied Mathematics Letters,

vol. 14, no. 5, pp. 605–610, 2001.

[49] V. Zaborovsky, and R. Meylanov, Informational networktraffic model based on fractional calculus, inProceedings of International

Conference on Info-tech and Info-net, Beijing, China, Oct. 2001, pp. 58–63.

[50] Z. Zhao, Z. Wang, L. Zou and J. Guo, Set-Membership filtering for time-varying complex networks with uniform quantizations over

randomly delayed redundant channels,International Journal of Systems Science, DOI: 10.1080/00207721.2020.1814898, 2020.



FINAL VERSION 27

[51] L. Zou, Z. Wang, Q.-L. Han and D. H. Zhou, Moving horizon estimation for networked time-delay systems under Round-Robin

protocol, IEEE Transactions on Automatic Control, vol. 64, no. 12, pp. 5191–5198, Dec. 2019.

[52] L. Zou, Z. Wang, J. Hu, and D. Zhou, Moving horizon estimation with unknown inputs under dynamic quantization effects, IEEE

Transactions on Automatic Control, vol. 65, no. 12, pp. 5368-5375, Dec. 2020.

[53] L. Zou, Z. Wang, and D. Zhou, Moving horizon estimation with non-uniform sampling under component-based dynamic event-triggered

transmission,Automatica, vol. 120, Art. no. 109154, 13 pages, Oct. 2020.




