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Abstract

This paper is concerned with the protocol-based finite-horizon H∞ estimation problem for discrete-
time memristive neural networks (MNNs) subject to time-delays and energy-bounded disturbances.
With the purpose of effectively alleviating data collisions and saving energy, the stochastic com-
munication protocol (SCP) is adopted to regulate the data transmission procedure in the sensor-
to-estimator communication channel, thereby avoiding unnecessary network congestion. It is our
objective to construct an H∞ estimator ensuring a prescribed disturbance attenuation level over
a finite time-horizon for the delayed MNNs under the SCP. By virtue of the Lyapunov-Krasovskii
functional in combination with stochastic analysis methods, the delay-dependent criteria are estab-
lished that guarantee the existence of the desired H∞ estimator. Subsequently, the estimator gains
are computed by resorting to solve a bank of convex optimization problems. Finally, the validity of
the designed H∞ estimator is demonstrated via a numerical example.

Keywords: Memristive neural networks, H∞ state estimation, finite-horizon estimation,
stochastic communication protocol.

1. Introduction

For decades, a recurring research interest has been paid to the recurrent neural networks (RNNs)
because of their broad applications in various areas such as prediction and estimation, pattern recog-
nition, intelligent robots as well as automatic control [11, 15, 46, 34, 12, 1, 13, 49, 14, 6, 47, 48]. In
practice, RNNs are usually realized via very large scale integration circuits where the connection
weights are executed via resistors [43]. However, it is well recognized nowadays that the resistor
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has certain inherent weakness regardless of the usefulness in realizing some specific functions. For
instance, in the neural circuit, the volatility of the resistor renders the state information disappear
in the absence of voltage and, moreover, the huge amount of resistors leads inevitably to a sub-
stantial reduction of the integration degree of the neural circuit [33]. As such, the memristors have
been introduced to take place of the resistors in implementing neural networks, and the so-called
memristive neural networks (MNNs) have then attracted much attention in various domains such
as combinatorial optimization, knowledge acquisition and brain emulation [38, 3, 4, 35].

State estimation (SE) which aims to extract the state information from corrupted measurements
is a fundamental yet crucial research focus in physical world. As physical systems are indispensably
confronted with all sorts of disturbances, a great deal of research effort has been dedicated to the
disturbance-corrupted SE problems. So far, quite a few techniques have been developed including,
but are not limited to, the Kalman filtering approach, the H∞ technique, the l2-l∞ method and the
set-membership framework, see [18, 16, 19, 28, 39, 48, 47] for some recent publications. Generally
speaking, the Kalman filtering method is mainly capable of dealing with Gaussian noises, the
H∞ and l2-l∞ methods are put forward to tackle unknown but energy-bounded disturbances, and
the set-membership approach primarily has the ability to handle unknown-but-bounded noises.
Specifically, the Kalman filtering method provides the optimal solution by minimizing the covariance
of the estimation error in the mean square sense, the H∞ method has the capability to impose a
desired disturbance attenuation level on the estimation error [7], the l2-l∞ method manages to
keep the peak value of the estimation error within an allowable range [25], and the set-membership
method is able to confine all possible state estimates within a required specific area containing the
true state [8].

The last decades have witnessed an everlasting research enthusiasm on the study of steady-
state behaviors (e.g. asymptotic/exponential stability) of MNNs, see [37, 41, 36]. It is notable
that, in reality, with ensured steady-state behaviors, systems are also required to possess satisfac-
tory transient performances (e.g. finite-time convergence) on a finite horizon. Unfortunately, the
achievement of the finite-time stability is usually difficult since the system dynamics is required to
converge to the equilibrium in a specified yet limited time. As a matter of fact, in comparison to
the absolute convergence, the idea that keeps system states below a given level seems much more
realistic on a finite horizon in case of exogenous disturbances. In other words, when considering
transient performance, it might be more favorable to constrain the state evolution to a desirable
level in accordance with engineering practice. As such, much research attention has recently been
drawn towards SE problems for MNNs under energy-bounded disturbances with transient behavior
requirements and some inspiring results have been published, see e.g. [41].

As the fast development of network technology, nowadays, the SE algorithm of MNNs in practical
engineering is sometimes required to be realized at a remote location in a networked environment,
which gives rise to the remote SE issue. In such a case, the actual measurement outputs are often
transmitted to a remote estimator through a communication medium (e.g. wireless/distributed net-
works). Because of the big size of MNNs and the high-degree intricacy of the to-do tasks, the data
volume of the network output could become considerably high, thereby posing great challenges (e.g.
fading measurement and communication delays) onto the transmission networks of limited capacity
[10, 40, 45]. To handle these network-induced challenges, an effective measure is to leverage com-
munication protocols that help regulate the data transmission, and some widely deployed protocols
include the event-triggering protocol (EEP), Round-Robin protocol (RRP), stochastic communica-
tion protocol (SCP) and try-once-discard protocol (TODP), see [41, 42, 5, 44]. For example, the
EEP has been successfully applied to the MNNs for the purpose of saving communication resources

2



in [20, 9], and the RRP and SCP have been applied to the traditional RNNs with the view of
avoiding data collisions in [17, 32]. Nevertheless, to our best knowledge, very few results have been
acquired so far on the finite-time H∞ SE problem for delayed MNNs, not to mention the case where
the energy-bounded disturbances and SCP are both embraced.

In this paper, we aim at developing a finite-time H∞ estimator for delayed MNNs with energy-
bounded disturbances under the SCP. The primary contributions we deliver in this paper are out-
lined in threefold. 1) The SCP is introduced to orchestrate the data transmission order between the
MNNs and the remote estimator, and thereby alleviating data collisions and saving communication
resources. 2) A unified H∞ framework is built for SE issue of MNNs to cope with the mathematical
complexities resulting from the time-delays, energy-bounded disturbances and SCP. 3) Sufficient
conditions are found for the solvability of the addressed SE problem and the filter is obtained with
the help of a bank of recursive linear matrix inequalities (RLMIs) whose solutions are provided by
standard software packages.

The subsequent part of this paper is organized as follows. In Section 2, the finite-time H∞ state
estimation problem is formulated for the discrete-time MNNs subject to time-delays and energy-
bounded disturbances. Section 3 derives the main results for designing the desired estimator. In
Section 4, a simulation example is provided to illustrate the effectiveness of the proposed estimation
scheme. Finally, the conclusion is drawn in Section 5.

Notation. N is the set of {1, 2, . . . , n}. I denotes the identity matrix. λmin(A) (λmax(A)) is the
smallest (largest) eigenvalue of matrix A. diag{· · · } means a block-diagonal matrix. E{·} is the
expectation operator. ‖x‖ presents the Euclidean norm of x. The symbol ∗ indicates an ellipsis for
symmetry-induced terms.

2. Problem Formulation and Preliminaries

Consider an MNN with the following structure:


















z(s+ 1) =D(z(s))z(s) +A(z(s))f(z(s))

+B(z(s))g(z(s− τ)) + L(s)v(s)

y(s) =C(s)z(s) +M(s)v(s)

z̄(s) =N(s)z(s)

(1)

where

z(s) =
[

z1(s) z2(s) · · · zn(s)
]T

,

y(s) =
[

y1(s) y2(s) · · · ym(s)
]T

,

D(z(s)) =diag{d1(z1(s)), d2(z2(s)), · · · , dn(zn(s))}, di(zi(s)) > 0 (i = 1, 2, . . . , n)

are the neuron state vector, the ideal measurement output and the self-feedback matrix, respec-
tively; z̄(s) ∈ R

p is the neural state to be estimated; v(s) ∈ l2[0,N − 1] is the disturbance vector;
A(z(s)) =

(

aij(zi(s))
)

n×n
and B(z(s)) =

(

bij(zi(s))
)

n×n
are connection weight matrices with no

delays and discrete delays, respectively; the matrices C(s), L(s), M(s) and N(s) are known and
with compatible dimensions.

The nonlinear neuron activation functions (NNAFs) f(z(s)) and g(z(s− τ)) have the following
forms:

f(z(s)) =
[

f1(z1(s)) f2(z2(s)) · · · fn(zn(s))
]T

,
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g(z(s− τ)) =
[

g1(z1(s− τ)) g2(z2(s− τ)) · · · gn(zn(s− τ))
]T

where τ ∈ Z
+ is a constant delay and the initial condition is φ(s) =

[

φ1(s) φ2(s) · · · φn(s)
]T

for s ∈ [−τ, 0].

Assumption 1. The NNAFs f(z(s)) and g(z(s)) are assumed to be continuous and satisfy

‖f(z(s))‖2 ≤ ϑf (s)‖Υf(s)z(s)‖
2, (2)

‖g(z(s))‖2 ≤ ϑg(s)‖Υg(s)z(s)‖
2 (3)

for all s ∈ [0,N], where ϑf (s) and ϑg(s) are known positive scalars, Υf (s) and Υg(s) are known
matrices, and f(0) = g(0) = 0.

By using the technique employed in [20], the MNN given by (1) is rewritten as:



















z(s+ 1) =(D̄ +∆D(s))z(s) + (Ā+∆A(s))f(z(s))

+ (B̄ +∆B(s))g(z(s− τ)) + L(s)v(s)

y(s) =C(s)z(s) +M(s)v(s)

z̄(s) =N(s)z(s)

(4)

where

D̄ , diag{d1, d2, . . . , dn}, Ā , [aij ]n×n, B̄ , [bij ]n×n,

∆D(s) , HF1(s)E1, ∆A(s) , HF2(s)E2, ∆B(s) , HF3(s)E3.

Here, H =
[

H1 H2 · · · Hn

]

and Ei =
[

ET
i1 ET

i2 · · · ET
in

]T
(i = 1, 2, 3) are known matrices,

dj , aij and bij are known positive scalars, and Fi(s) (i = 1, 2, 3) satisfies FT
i (s)Fi(s) ≤ I.

Remark 1. In most existing literature, the norm-bounded conditions are enforced to facilitate the
handling of parameter uncertainties. It is worth mentioning that, in the context of MNN, it is exactly
the time-varying uncertain terms ∆D(s), ∆A(s) and ∆B(s) that reflect the influence from the
memristors. It should be emphasized that, in the current work, our main focus is on examining the
effect of the state-dependent switching (towards norm-bounded disturbances) that relies on features
of the memristor and the current-voltage.

For the purpose of reducing data collisions and mitigating network burdens, we adopt the SCP to
schedule the data transmission. Let ~ys(s) be the actually received data from the ith (i = 1, 2 . . . ,m)
node. Under the SCP, ~yi(s) updates as

~yi(s) =

{

yi(s), if i = ξ(s)

~yi(s− 1), otherwise
(5)

where ξ(s) ∈ {1, 2, . . . ,m} denotes the selected sensor for data transmissions at time s. ξ(s) is
regulated by a Markov chain with the transition probability matrix P =

(

pij
)

m×m
where

pij , Prob
{

ξ(s+ 1) = j|ξ(s) = i
}

, i, j = 1, 2, . . . ,m. (6)

4



Here pij ≥ 0 and
∑m

j=1 pij = 1. Consequently, this description leads to the following data exchange
model between the transmitter and the receiver:

~y(s) = Ψξ(s)y(s) + (I −Ψξ(s))~y(s− 1) (7)

where Ψξ(s) = diag{δ(ξ(s − 1)), δ(ξ(s − 2)), . . . , δ(ξ(s −m))} is the update matrix, and δ(·) is the
Kronecker delta function.
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Figure 1: State Estimation with Stochastic Communication Protocols.

Remark 2. In general, the communication protocols can be classified into two categories, i.e., static
and dynamic protocols. Specifically, the RRP is an equal scheduling mechanism that belongs to the
category of static protocols, whereas the SCP belongs to dynamic protocols in which the Markov
chains are utilized to model the regulation procedure. Regardless of protocol categories, at each time
step s, only one sensor is permitted to access the network for data transmission. To make full
use of the data, the zero-order holder mechanism is implemented to store information that is not
transmitted.

Based on (1) and (5), the desired estimator is built as

{

ẑ(s+ 1) =D̄ẑ(s) + Āf(ẑ(s)) + B̄g(ẑ(s− τ)) +K(s)(~y(s)− C(s)ẑ(s))

ˆ̄z(s) =N(s)ẑ(s)
(8)

where ẑ(s) and ˆ̄z(s) are the estimates of z(s) and z̄(s), respectively, and K(s) is the parameter to
be designed.

By defining

e(s) ,z(s)− ẑ(s), ˜̄z(s) , z̄(s)− ˆ̄z(s),

f̃(s) ,f(z(s))− f(ẑ(s)), g̃(s− τ) , g(z(s− τ))− g(ẑ(s− τ)),

we acquire the estimation error dynamics from (4), (7) and (8) as follows:



















e(s+ 1) = (D̄ −K(s)Ψξ(s)C(s))e(s) + (∆D(s) −K(s)(Ψξ(s) − I)C(s))z(s)

+ Āf̃(s) + ∆A(s)f(z(s)) + B̄g̃(s− τ) + ∆B(s)g(z(s− τ))

−K(s)(I −Ψξ(s))~y(s− 1) + (L(s)−K(s)Ψξ(s)M(s))v(s)

˜̄z(s) = N(s)e(s).

(9)
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By denoting

η(s) ,
[

zT (s) eT (s) ~yT (s− 1)
]T

,

~f(η(s)) ,
[

fT (z(s)) f̃T (s)
]T

,

~g(η(s− τ)) ,
[

gT (z(s− τ)) g̃T (s− τ)
]T

,

and taking into account (1), (7) and (9), we further have the following augmented system:
{

η(s+ 1) = D(s)η(s) +A(s)~f(η(s)) + B(s)~g(η(s− τ)) + L(s)v(s)

˜̄z(s) = N (s)η(s)
(10)

where

N (s) ,
[

0 N(s) 0
]

, D(s) , D̄ +∆D(s), A(s) , Ā+∆A(s), B(s) , B̄ +∆B(s),

D̄ ,





D̄ 0 0
D̄21 D̄22 D̄23

Ψξ(s)C(s) 0 I −Ψξ(s)



 , ∆D(s) ,





∆D(s) 0 0
∆D(s) 0 0

0 0 0



 , Ā ,





Ā 0
0 Ā

0 0



 ,

∆A(s) ,





∆A(s) 0
∆A(s) 0

0 0



 , B̄ ,





B̄ 0
0 B̄

0 0



 , ∆B(s) ,





∆B(s) 0
∆B(s) 0

0 0



 ,L(s) ,





L(s)
L(s)−K(s)Ψξ(s)M(s)

Ψξ(s)M(s),



 ,

D̄21 ,K(s)(I −Ψξ(s))C(s), D̄22 , D̄ −K(s)Ψξ(s)C(s), D̄23 , −K(s)(I −Ψξ(s)).

In this paper, it is our purpose to design estimator of form (8) such that

E

{

N−1
∑

s=0

||˜̄z(s)||2

}

≤ γ2
E

{

N−1
∑

s=0

||v(s)||2 +
0

∑

s=−τ

ηT (s)S(s)η(s)

}

(11)

where γ > 0 is a prescribed disturbance attenuation level and {S(s)}−τ≤s≤0 are known positive-
definite matrices.

3. Main Results

Before presenting our main results, we first introduce the following lemmas that are helpful in
subsequent derivations.

Lemma 1. (Schur Complement Equivalence [2]) Given constant matrices S1,S2,S3 where S1 =
ST

1 and 0 < S2 = ST
2 , then S1 +ST

3 S
−1
2 S3 < 0 if and only if

[

S1 ST
3

S3 −S2

]

< 0 or

[

−S2 S3

ST
3 S1

]

< 0. (12)

Lemma 2. [2] Let M = MT, H and E be real matrices of appropriate dimensions, and ∆ satisfies
‖∆‖ ≤ 1, then

M+ H∆E+ ET∆HT ≤ 0 (13)

if and only if there exists a positive scalar ε such that

M+ εHHT + ε−1ETE ≤ 0. (14)
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We are now in the situation to present the sufficient condition under which the required H∞

performance is guaranteed.

Theorem 1. Let the attenuation level γ > 0, the matrix sequence {S(s)}−τ≤s≤0, and param-
eter K(s) be given. The estimation error ˜̄z(s) satisfies the H∞ constraint (11) if there exist
matrix sequences {P (s)}1≤s≤N and {Q(s)}−τ+1≤s≤N+1 and scalar sequences {λ1(s)}0≤s≤N−1 and
{λ2(s)}0≤s≤N−1 satisfying

E

{

ηT (0)P (0)η(0) +

0
∑

s=−τ

ηT (s)Q(s+ 1)η(s)

}

≤ γ2
E

{

0
∑

s=−τ

ηT (s)S(s)η(s)

}

(15)

and

Ω(s) =













Θ11 0 Θ13 Θ14 Θ15

∗ Θ22 0 0 0
∗ ∗ Θ33 Θ34 Θ35

∗ ∗ ∗ Θ44 Θ45

∗ ∗ ∗ ∗ Θ55













< 0 (16)

where

Θ11 , DT (s)P (s+ 1)D(s) +Q(s+ 1) +N T (s)N (s) + 3λ1(s)ϑf (s)Υ̃
T
f (s)Υ̃f (s)

+ 4λ1(s)ϑf (s)Ῡ
T
f (s)Ῡf (s)− P (s),

Θ22 , 3λ2(s)ϑg(s− τ)Υ̃T
g (s− τ)Υ̃g(s− τ) + 4λ2(s)ϑg(s− τ)ῩT

g (s− τ)Ῡg(s− τ) −Q(s+ 1− τ),

Θ33 , AT (s)P (s+ 1)A(s)− λ1(s)I, Θ44 , BT (s)P (s+ 1)B(s)− λ2(s)I,

Θ55 , LT (s)P (s+ 1)L(s)− γ2I, Θ13 , DT (s)P (s+ 1)A(s), Θ14 , DT (s)P (s+ 1)B(s),

Θ15 , DT (s)P (s+ 1)L(s), Θ34 , AT (s)P (s+ 1)B(s), Θ35 , AT (s)P (s+ 1)L(s),

Θ45 , BT (s)P (s+ 1)L(s)

with

Υ̃f(s) ,
[

Υf(s) 0 0
]

, Ῡf (s) ,

[

Υf(s) 0 0
0 Υf(s) 0

]

,

Υ̃g(s− τ) ,
[

Υg(s− τ) 0 0
]

, Ῡg(s− τ) ,

[

Υg(s− τ) 0 0
0 Υg(s− τ) 0

]

.

Proof. Consider the following Lyapunov-Krasovskii functional:

V (η(s)) = V1(η(s)) + V2(η(s)) (17)

where

V1(η(s)) ,ηT (s)P (s)η(s),

V2(η(s)) ,
s−1
∑

i=s−τ

ηT (i)Q(i+ 1)η(i).

7



Computing ∆V (η(s)) based on system (10) and then taking the expectation, we obtain

E{∆V (η(s))} = E{∆V1(η(s)) + ∆V2(η(s))} (18)

where

E{∆V1(η(s))} =E{V1(η(s+ 1))− V1(η(s))}

=E{ηT (s+ 1)P (s+ 1)η(s+ 1)− ηT (s)P (s)η(s)}

=E{ηT (s)[DT (s)P (s+ 1)D(s)− P (s)]η(s) + ~fT (η(s))AT (s)P (s+ 1)A(s)~f(η(s))

+ ~gT (η(s− τ))BT (s)P (s+ 1)B(s)~g(η(s − τ)) + vT (s)LT (s)P (s+ 1)L(s)v(s)

+ 2ηT (s)DT (s)P (s+ 1)A(s)~f(η(s)) + 2ηT (s)DT (s)P (s+ 1)B(s)~g(η(s− τ))

+ 2ηT (s)DT (s)P (s+ 1)L(s)v(s) + 2~fT (η(s))AT (s)P (s+ 1)B(s)~g(η(s− τ))

+ 2~fT (η(s))AT (s)P (s+ 1)L(s)v(s) + 2~gT (η(s− τ))AT (s)P (s+ 1)L(s)v(s)}
(19)

and

E{∆V2(η(s))} =E{V2(η(s+ 1))− V2(η(s))}

=E{
s

∑

i=s+1−τ

ηT (i)Q(i+ 1)η(i)−
s−1
∑

i=s−τ

ηT (i)Q(i+ 1)η(i)}

=E{ηT (s)Q(s+ 1)η(s)− ηT (s− τ)Q(s+ 1− τ)η(s − τ)}. (20)

Substituting (19) and (20) into (18) leads to

E{∆V (η(s))} =E{∆V1(η(s)) + ∆V2(η(s))}

=E{ηT (s+ 1)P (s+ 1)η(s+ 1)− ηT (s)P (s)η(s)}

=E{ηT (s)[DT (s)P (s+ 1)D(s) +Q(s+ 1)− P (s)]η(s) + ~fT (η(s))AT (s)P (s+ 1)

×A(s)~f(η(s)) + ~gT (η(s− τ))BT (s)P (s+ 1)B(s)~g(η(s − τ)) + vT (s)LT (s)P (s+ 1)

× L(s)v(s) − ηT (s− τ)Q(s+ 1− τ)η(s − τ) + 2ηT (s)DT (s)P (s+ 1)A(s)~f(η(s))

+ 2ηT (s)DT (s)P (s+ 1)B(s)~g(η(s− τ)) + 2ηT (s)DT (s)P (s+ 1)L(s)v(s)

+ 2~fT (η(s))AT (s)P (s+ 1)B(s)~g(η(s− τ)) + 2~fT (η(s))AT (s)P (s+ 1)L(s)v(s)

+ 2~gT (η(s− τ))AT (s)P (s+ 1)L(s)v(s)}. (21)

Next, adding the zero term

˜̄zT (s)˜̄z(s)− γ2vT (s)v(s) − ˜̄zT (s)˜̄z(s) + γ2vT (s)v(s)

to both sides of (21) results in

E{∆V (η(s))} ≤ E
{

ζT (s)Ω̄(s)ζ(s) − ˜̄zT (s)˜̄z(s) + γ2vT (s)v(s)
}

(22)
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where

Ω̄(s) ,













Θ̄11 0 Θ13 Θ14 Θ15

∗ Θ̄22 0 0 0
∗ ∗ Θ̄33 Θ34 Θ35

∗ ∗ ∗ Θ̄44 Θ45

∗ ∗ ∗ ∗ Θ55













,

ζ(s) ,
[

ηT (s) ηT (s− τ) ~fT (η(s)) ~gT (η(s− τ)) vT (s)
]T

,

Θ̄11 ,DT (s)P (s+ 1)D(s) +Q(s+ 1) +N (s)TN (s)− P (s),

Θ̄22 ,−Q(s+ 1− τ), Θ̄33 , AT (s)P (s+ 1)A(s), Θ̄44 , BT (s)P (s+ 1)B(s).

Furthermore, we obtain from (2) and (3) that

~fT (η(s))~f(η(s)) ≤ 3ϑf (s)η
T (s)Υ̃T

f (s)Υ̃f (s)η(s) + 4ϑf (s)η
T (s)ῩT

f (s)Ῡf (s)η(s) (23)

and

~gT (η(s− τ))~g(η(s− τ)) ≤ 3ϑg(s− τ)ηT (s− τ)Υ̃T
g (s− τ)Υ̃g(s− τ)η(s − τ)

+ 4ϑg(s− τ)ηT (s− τ)ῩT
g (s− τ)Ῡg(s− τ)η(s − τ). (24)

It is inferred from (22)-(24) that

E{∆V (η(s))} ≤ E{ζT (s)Ω̄(s)ζ(s) − λ1(s)(~f
T (η(s))~f (η(s))− 3ϑf (s)η

T (s)Υ̃T
f (s)Υ̃f (s)η(s)

− 4ϑf (s)η
T (s)ῩT

f (s)Ῡf (s)η(s)) − λ2(s)(~g
T (η(s− τ))~g(η(s− τ))

− 3ϑg(s− τ)ηT (s− τ)Υ̃T
g (s− τ)Υ̃g(s− τ)η(s− τ)

− 4ϑg(s− τ)ηT (s− τ)ῩT
g (s− τ)Ῡg(s− τ)η(s− τ))

− ˜̄zT (s)˜̄z(s) + γ2vT (s)v(s)}

≤ E{ζT (s)Ω(s)ζ(s) − ˜̄zT (s)˜̄z(s) + γ2vT (s)v(s)}. (25)

Taking the sum on both sides of (25) with respect to s from 0 to N− 1 yields

N−1
∑

s=0

E {∆V (η(s))} = E{ηT (N)P (N)η(N) − ηT (0)P (0)η(0)

+

N−1
∑

s=N−τ

ηT (s)Q(s+ 1)η(s)−
0

∑

s=−τ

ηT (s)Q(s+ 1)η(s)}

≤ E

{

N−1
∑

s=0

ζT (s)Ω(s)ζ(s)

}

− E

{

N−1
∑

s=0

(

||˜̄z(s)||2 − γ2||v(s)||2
)

}

.

Consequently, we arrive at

E

{

N−1
∑

s=0

||˜̄z(s)||2

}

− γ2
E

{

N−1
∑

s=0

||v(s)||2 +
0

∑

s=−τ

ηT (s)S(s)η(s)

}
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≤E

{

N−1
∑

s=0

ζT (s)Ω(s)ζ(s)

}

− ηT (N)P (N)η(N) −
N−1
∑

s=N−τ

ηT (s)Q(s+ 1)η(s)

+ ηT (0)P (0)η(0) +

0
∑

s=−τ

ηT (s)Q(s+ 1)η(s)− γ2
0

∑

s=−τ

ηT (s)S(s)η(s).

Noting that Ω(s) < 0 and inequality (15), the H∞ performance (11) is ensured, which completes
the proof.

Theorem 2. Let γ > 0 and {S(s)}−τ≤s≤0 be given. The concerned H∞ SE issue of MNN (1)
is solved if there exist matrix sequences {P (s) > 0}1≤s≤N (P (s) = diag{P1(s), P2(s), P3(s)}),
{Q(s) > 0}−τ+1≤s≤N+1 and {Y (s)}0≤s≤N−1, scalar sequences {λ1(s)}0≤s≤N−1, {λ2(s)}0≤s≤N−1

and {κ(s)}0≤s≤N−1 satisfying (15) and the following RLMIs

Ω̆(s) =





Ω̃(s) H̃ κ(s)ẼT

∗ −κ(s)I 0
∗ ∗ −κ(s)I



 < 0 (26)

for 0 ≤ s ≤ N, where

Ω̃(s) ,























−P (s+ 1) 0 0 0 0 0 Π̄1

0 −I 0 0 0 0 Π2

∗ ∗ − 1
µ1(s)

I 0 0 0 Π3

∗ ∗ ∗ − 1
µ2(s)

I 0 0 Π4

∗ ∗ ∗ ∗ − 1
µ3(s)

I 0 Π5

∗ ∗ ∗ ∗ ∗ − 1
µ4(s)

I Π6

∗ ∗ ∗ ∗ ∗ ∗ Π7























, Ě ,













E1 0 0 0 0
0 0 0 0 0
0 0 E2 0 0
0 0 0 E3 0
0 0 0 0 0













,

E1 ,

[

E1 0 0
E1 0 0

]

, E2 ,

[

E2 0
E2 0

]

, E3 ,

[

E3 0
E3 0

]

, Ẽ ,
[

0 0 0 0 0 0 Ě
]

,

H̃ ,
[

ȞT 0 0 0 0 0 0
]T

, Ȟ ,
[

P (s+ 1)H 0 P (s+ 1)H P (s+ 1)H 0
]

, H ,





H 0
H 0
0 0



 ,

Π̄1 ,
[

Θ11 0 P (s+ 1)Ā P (s+ 1)B̄ P (s+ 1)L(s)
]

, Π2 ,
[

N 0 0 0 0
]

,

Π3 ,
[

Υ̃f(s) 0 0 0 0
]

, Π4 ,
[

Ῡf(s) 0 0 0 0
]

, Π5 ,
[

Υ̃g(s− τ) 0 0 0 0
]

,

Π6 ,
[

Ῡg(s− τ) 0 0 0 0
]

, Π7 , diag
{

Q(s+ 1)− P (s),−Q(s+ 1− τ),−λ1(s)I,−λ2(s)I,−γ2I
}

,

Θ11 ,





P1(s+ 1)D̄ 0 0

D̃21 D̃22 D̃22

P3(s+ 1)Ψξ(s) 0 P3(s+ 1)(I −Ψξ(s))





with

D̃21 , − Y (s)(Ψξ(s) − I)C(s), D̃22 , P2(s+ 1)D̄ − Y (s)C(s), D̃23 , −Y (s)(I −Ψξ(s)),

µ1(s) , 3λ1(s)ϑf (s), µ2(s) , 4λ1(s)ϑf (s), µ3(s) , 3λ2(s)ϑg(s), µ4(s) , 4λ2(s)ϑg(s).

Furthermore, if inequalities (16) and (26) hold, then K(s) = P−1
2 (s+ 1)Y (s).
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Proof. To remove uncertainty effects in (16), we denote

Π1 ,
[

P (s+ 1)D(s) 0 P (s+ 1)A(s) P (s+ 1)B(s) P (s+ 1)L(s)
]

. (27)

By using Schur Complement Equivalence Lemma (Lemma 1), it can be deduced from (16) that

Ω̃(s) + (H̃F(s)Ẽ) + (H̃F(s)Ẽ)T < 0, (28)

where Ω̃(s) is defined in (26), F(s) , diag{F1(s), 0,F2(s), F3(s), 0} with F1(s) , diag{F1(s), F1(s)},
F2(s) , diag{F2(s), F2(s)} and F3(s) , diag{F3(s), F3(s)}. Based on this fact, it follows from
K(s) = P−1

2 (s+ 1)Y (s) and Lemma 2 that (28) holds if (26) is true. The proof is now complete.

According to Theorem 2, the H∞ SE approach is summarized in Algorithm 1 as follows.

Algorithm 1 : The H∞ SE Algorithm.

Step 1. Let s = 0, γ, N , {S(s)}−τ≤s≤0 and {Q(s)}−τ+1≤s≤0, {φ(s)}−τ≤s≤0 and {P1(0), P2(0), Q(0)} be
given.

Step 2. Solve the RLMI (26) for {P1(s+1), P2(s+1), P3(s+1),Q(s+1), Y (s)}. Then, the desired estimator
gain K(s) can be obtained by K(s) = P−1

2 (s+ 1)Y (s).
Step 3. Set s = s+ 1. If s < N, go to Step 2. Otherwise, stop.

Remark 3. Up to now, the protocol-based finite-time SE problem has been well settled for the
concerned delayed MNNs. In Theorem 2, the sufficient condition that ensures the existence of the
required estimator (8) has been established in terms of the solvability of the feasibility of a bank of
RLMIs. Noticing that the system complexity is caused jointly by the SCP protocol, state-dependent
parameters and external disturbances, the resulting impacts are obviously reflected in the preceding
analysis, and the developed estimation scheme is able to achieve a good compromise between the
system performance and resource consumption. Our results could stand out from the rich body of
literature for mainly two reasons: 1) the SCP is, for the first time, introduced to schedule the data
traffic between the MNNs and the remote estimator for the sake of alleviating data collisions; and 2)
a new unified H∞ estimation framework is established to account for time-delays, energy-bounded
disturbances and SCP.

Remark 4. In Theorem 2, the design of the discussed protocol-based finite-horizon H∞ state es-
timator is successfully converted into the solution to a convex optimization problem via the semi-
definite programme method. The computational complexity of the proposed LMI-based algorithm
depends polynomially on the dimensions of the system state and the measured output vector, and
the number of neurons in the MNN.

4. An Illustrative Example

Consider (1) with parameters:

d1(z1(·)) =

{

0.48, |z1(·)| > 0.01,

0.48, |z1(·)| ≤ 0.01,
d2(z2(·)) =

{

0.64, |z2(·)| > 0.01,

0.64, |z2(·)| ≤ 0.01,
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d3(z3(·)) =

{

0.56, |z3(·)| > 0.01,

0.56, |z3(·)| ≤ 0.01,
a11(z1(·)) =

{

0.12, |z1(·)| > 0.01,

0.10, |z1(·)| ≤ 0.01,

a12(z1(·)) =

{

−0.66, |z1(·)| > 0.01,

−0.70, |z1(·)| ≤ 0.01,
a13(z1(·)) =

{

0.10, |z1(·)| > 0.01,

0.07, |z1(·)| ≤ 0.01,

a21(z2(·)) =

{

−0.40, |z2(·)| > 0.01,

−0.46, |z2(·)| ≤ 0.01,
a22(z2(·)) =

{

0.12, |z2(·)| > 0.01,

0.08, |z2(·)| ≤ 0.01,

a23(z2(·)) =

{

0.11, |z2(·)| > 0.01,

0.09, |z2(·)| ≤ 0.01,
a31(z3(·)) =

{

0.10, |z3(·)| > 0.01,

0.08, |z3(·)| ≤ 0.01,

a32(z3(·)) =

{

−0.36, |z3(·)| > 0.01,

−0.16, |z3(·)| ≤ 0.01,
a33(z3(·)) =

{

0.12, |z3(·)| > 0.01,

0.10, |z3(·)| ≤ 0.01,

b11(z1(·)) =

{

−0.15, |z1(·)| > 0.01,

−0.15, |z1(·)| ≤ 0.01,
b12(z1(·)) =

{

0.05, |z1(·)| > 0.01,

0.05, |z1(·)| ≤ 0.01,

b13(z1(·)) =

{

0.10, |z1(·)| > 0.01,

0.10, |z1(·)| ≤ 0.01,
b21(z2(·)) =

{

−0.01, |z2(·)| > 0.01,

−0.01, |z2(·)| ≤ 0.01,

b22(z2(·)) =

{

0.20, |z2(·)| > 0.01,

0.20, |z2(·)| ≤ 0.01,
b23(z2(·)) =

{

0.15, |z2(·)| > 0.01,

0.15, |z2(·)| ≤ 0.01,

b31(z3(·)) =

{

−0.01, |z3(·)| > 0.01,

−0.01, |z3(·)| ≤ 0.01,
b32(z3(·)) =

{

0.065, |z3(·)| > 0.01,

0.065, |z3(·)| ≤ 0.01,

b33(z3(·)) =

{

0.075, |z3(·)| > 0.01,

0.075, |z3(·)| ≤ 0.01.

Other parameters of system (1) are given by

C(s) =

[

0.30 sin(2s) 0.30 0.25
−0.20 0.25 0.10

]

, L(s) =
[

0.01 −0.01 sin(s) 0
]T

,

M(s) =
[

−0.01 0.02 sin(3s)
]T

, N(s) =
[

0.10 sin(s) −0.10 0.10
]

.

The NNAFs are chosen as

f(z(s)) = (1.2 + 0.12 sin(s))
1

2





tanh(0.5z1(s))
tanh(0.7z2(s))
tanh(0.6z3(s))



 , g(z(s)) = (1.2− 0.10 sin(s))
1

2





tanh(0.5z1(s))
tanh(0.7z2(s))
tanh(0.6z3(s))



 ,

which satisfy the constraints (2) and (3) with ϑf (s) = (1.2+0.12 sin(s))
1

2 , ϑg(s) = (1.2−0.10 sin(s))
1

2 ,
and

Υf (s) = Υg(s) =





0.25 0 0
0 0.49 0
0 0 0.36



 .

In the example, the time-delay is chosen as τ = 3, the attenuation value γ = 1.05, z̄(0) =
[

−0.7 0.5 0.4
]T

, ˆ̄z(0) =
[

−0.5 0.3 0
]T

, and the simulation run length is set as N = 21.
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Figure 2: z1(s) and ẑ1(s).

Based on the proposed protocol-based H∞ algorithm, the RLMIs in Theorem 2 are solved
recursively under prescribed initial conditions, and the corresponding demonstration results are
given in Figs. 2–5. Specifically, Figs. 2–4 show the neuron states, estimates and estimation errors
ei(s)(i = 1, 2, 3), respectively, while Fig. 5 plots the output estimation errors ˜̄z(s). From the
simulation results, we see clearly that our proposed estimation scheme is indeed effective.

5. Conclusions

The finite-time H∞ SE problem has been investigated in this paper for delayed MNNs under the
SCP. To reduce communication burdens in case of large-scale data exchange in the sensor-estimator
channel, the SCP (modeled as a Markov chain) has been used to regulate the data transmission
process. First, a theoretical framework has been established for the addressed MNNs to analyze the
finite-time H∞ performance. Within such a framework, sufficient conditions have been obtained for
the existence of the desired remote estimator. Subsequently, the required estimator gains have been
obtained by resorting to solve certain RLMIs. Finally, an illustrative example has been provided to
verify the validity of our estimation scheme. Moreover, it is also our interest to apply the developed
algorithm to MNNs under other protocols, for instance, the RRP [32] and TODP [24] in the near
future. Also, the methodology proposed in this paper can be utilized to deal with more complicated
systems with more comprehensive network-induced phenomena [21, 26, 27, 29, 30, 31, 22, 23].
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Figure 3: z2(s) and ẑ2(s).
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