
 
Abstract— Household load forecasting plays an important role in future grid planning and operation. However, compared 

with aggregated load forecasting, household load forecasting faces the challenge of the uncertainty of prolific load profiles. 

This paper presents a novel multiple cycles self-boosted neural network (MultiCycleNet) framework for household load 

forecasting, which aims to solve the uncertainty problem of household load profiles through the correlation analysis of 

electricity consumption patterns in multiple cycles. The basic idea of the proposed framework is that the predictor can 

learn customers’ power consumption patterns better by learning the features and contextual information of relevant load 

profiles in multiple historical cycles. We use two real-life datasets: 1. the household load consumption dataset from Low 

Carbon London project led by United Kingdom (UK) Power Networks and 2. the UK Domestic Appliance-Level Electricity 

(UK-DALE) dataset to evaluate the effectiveness of the proposed framework. Compared with the state-of-the-art methods, 

experimental results show that the proposed framework is effective and outperforms the state-of-the-art methods by 

19.83%, 10.46%, 11.14% and 9.02% in terms of mean squared error, root mean squared error, mean absolute error and 

mean absolute percent error, respectively. 

 

Index Terms—Load forecasting, recurrent neural network, time-series forecasting, multiple historical cycles. 

 

1. Introduction 

With the progress of industrial infrastructure and technology, the power system is developing towards the direction of 

intelligence, which provides the possibility to improve the efficient utilization of power grid in the future. As reported in [1], in 

smart cities where Information Communication and Technology (ICT) is merged with the existing traditional infrastructure to 

coordinate and manage with digital technology. At the core of smart city lies the sensors and actuators embedded in the smart 

devices that sense the environment to facilitate effective decision making. This idea of smart cities is coming into reality as many 

countries around the world are developing their smart city models to include domains such as smart energy, smart building and 

smart health [2]. 
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Accurate load forecasting significantly influences the future power planning and scheduling, especially for household load 

forecasting [3]. However, unlike system-level or other-level aggregated load forecasting, household load forecasting is extremely 

challenging because of the high stochastic nature of load profiles. Typically, techniques including aggregation, clustering and 

preprocessing can be used to reduce the problem with uncertainty. However, these techniques are indirectly avoiding the 

uncertainty of household load forecasting [4]. For example, aggregation can be used to reduce the uncertainties so that the final 

load shows mostly regular patterns and easier to perform forecasting, but the problem of low individual prediction accuracy is not 

essentially solved. 

Recently, the development of deep learning [5] provides a new direction for researchers to study load forecasting. Compared 

with traditional machine learning, e.g., k-nearest neighbors (KNN), one of top ten data mining algorithms [6], deep neural network 

has large-scale parameters, excellent activation functions and flexible training algorithms, which enable learning nonlinear 

mapping relationship between data better [5]. Long short-term memory neural network (LSTM) [7], a deep neural network which 

is widely used to process time series, has been used to study household load forecasting by researchers and achieved good results 

[4], [8]. These methods had made progress compared with traditional forecasting method. However, the correlation of the 

household load profile in different historical cycles are not considered with only a load profile of a period as an independent sample 

be trained and predicted, which make model difficult to learn customers' own history power patterns adequately. In other words, 

the challenge of the uncertainty of household load profiles still exists. 

Some studies claim that there is a high correlative relationship between the household load profiles and the behaviors [9]. For 

example, a family may have a fairly consistent pattern of daily behavior, and if this pattern can be obtained, then better forecast 

results can be expected. But these methods require additional information, such as usage information about electrical appliances, 

which are not easily available. On the other hand, some researchers have studied the similarity between different household load 

profiles to improve the prediction accuracy [10], [11]. These methods need to determine the similarity among customers’ load 

patterns, which depends on the characteristics of the dataset. In this paper, we study how to take advantage of the correlation of a 

household load profile itself to learn customer's power consumption pattern, so as to improve the prediction accuracy. 

More frequently sampled time series (every half hour and every hour) are common in many industries due to the rapid 

development of sensors and data storage capabilities. Taking load profile of hourly sampling frequency as an example, the power 

consumption pattern of a family is relatively fixed in a short period, and we can consider using this characteristic to help improving 

the performance of load forecasting. However, the patterns of power consumption at different times of the day are still quite 

different. For example, the power consumption patterns in the morning is significantly different from that at night due to the daily 

activities. It seems inappropriate to expect to eliminate the uncertainty problem through the load profile over a relatively long 

period. Therefore, we decide to reduce the scale of power consumption patterns to a smaller granularity, such as hour level, and 

focus on the power consumption pattern of households at the same time of every day for a relatively long period. In other words, 

if we want to identify load profiles that have a high correlation with the load to be predicted over multiple historical cycles, the 

result often points to the load profiles that are at the same time as the load to be predicted.  

Generally, the correlative historical load profiles and the load to be predicted have highly similar external factors, so they can 

reflect the common features of data under certain conditions. Furthermore, we can use the contextual information of the load profile, 

i.e., historical forward and backward data, to learn customers’ power consumption patterns, which is similar to the idea of 

bidirectional recurrent neural networks [12]. In summary, this paper presents a novel MultiCycleNet framework for short-term 

household load forecasting. The advantage of the proposed framework is that it considers the correlation and the contextual 

information of household load profiles in multiple cycles, which make full use of a load profile itself to reflect the power 

consumption pattern of the customer. In fact, a load profile may contain repeated cycles. If the correlative data of these repeated 



cycles is fed into the model, it would learn the electricity consumption pattern accurately. Therefore, compared to the method that 

only selects a single cycle of data as input, the proposed method uses multiple cycles information of data to obtain more usable 

information. At the same time, since only correlative data would be selected, it would not introduce too much redundant data to 

the model. 

We evaluate the proposed framework on the household load consumption dataset from Low Carbon London project led by 

United Kingdom (UK) Power Networks and the UK Domestic Appliance-Level Electricity (UK-DALE) dataset, and compare it 

with other forecasting methods. The experimental results show that the proposed method is effective and outperforms the 

comparative methods in various metrics. 

The key contributions in this paper are as follows: 

1. This paper proposes a new framework to solve the uncertainty problem of household load forecasting. The proposed framework 

takes advantage of the correlative and contextual information of the load profile in multiple historical cycles to learn household 

power consumption pattern. To the best of our knowledge, this is the first time that correlative load series considering contextual 

information from historical data have been used to learn household power consumption pattern. 

2. In the case of fluctuating household load profiles, the proposed method can still learn the household power consumption pattern 

well and make a reasonable prediction. 

3. Experimental results show that the proposed framework is effective and far superior to the comparative methods, which include 

traditional machine learning algorithms and the state-of-the-art methods in this field. 

The rest of this paper is organized as follows. In Section 2, we introduce the related work in load forecasting. Section 3 presents 

the theory of the proposed framework. Experimental setup and analysis are presented in Section 4. Finally, Section 5 gives the 

conclusion. 

2. Related works 

There are many traditional time-series forecasting methods, such as exponential smoothing (ES) [13] and autoregressive 

integrated moving average (ARIMA) [14]. In practice, however, the uncertainty of load patterns would cause difficulties for model 

to make prediction, especially for household load forecasting. Some techniques can be used to reduce the uncertainty challenge, 

such as aggregation, clustering and preprocessing. Sun et al. [15] proposed an approach within hierarchical structure for load 

forecasting at distribution level, in which user-level loads acted as child nodes by aggregating to form parent nodes. The method 

made use of the similarity between parent and child node to predict load demand from different levels. The regional aggregated 

load demand forecasting was addressed via combining sister forecasts by Nowotarski et al. [16]. An ensemble method [17] was 

applied for the aggregated load forecasting. First, a hierarchical clustering method was used to cluster the load profile. The 

prediction was then made separately within each cluster. Finally, the weighted summation predicted results was carried out to 

obtain the final aggregation load prediction. It generated multiple predictions by changing the number of clusters, which is quite 

different from the traditional ensemble method. The factor of influence for load forecasting was studied by Wang using k-means 

[18], a classical and widely used clustering method. A wavelet-based ensemble scheme [19] was applied to generate individual 

extreme learning machine (ELM)-base predictor [20]. Then an algorithm combining ELM and Levenberg-Marquardt [21] was 

used to improve the forecasting accuracy of neural networks. Leung et al. [22] investigated the use of occupancy space electrical 

power demand for building cooling load prediction. The Levenberg-Marquardt algorithm was used to process the input data, 

including the usual external climatic data, pretreated air unit operation schedule and the occupancy space electrical power demand, 

and then obtained the electrical power demand of the building cooling system. The results revealed that the use of occupancy space 

power demand would enhance the accuracy of the cooling load prediction. Qiu et al. [23] first used empirical mode decomposition 

(EMD) to decompose load demand series into several intrinsic mode functions (IMFs), then deep learning networks were applied 



to model each of the extracted IMFs. The above methods can obtain good results in load forecasting in some extent, however, they 

are indirectly avoiding the uncertainty of household load profiles [4]. In [24], a Particle swarm optimization (PSO)-based [25] 

improved Wang–Mendel (WM) [26] method was proposed, which combined modeling method based on fuzzy systems and 

evolutionary algorithms. A modified PSO algorithm was used to optimize the fuzzy rule centroid of the data coverage area, and 

the complete fuzzy rule set was obtained by extrapolation. Panapakidis et al. [27] studied short-term load forecasting for the bus. 

First, a modified version of artificial neural network was applied to deal with the aggregated load profiles of interconnected 

systems. Then, in order to enhance the prediction accuracy of the neural network, two new hybrid forecasting models were 

proposed using the load profiling method. These new models would finally combine the neural network with a clustering algorithm 

and predicted load profiles for the bus. Zheng et al. [3] proposed a Kalman filter-based bottom-up approach for household short-

term future load forecasting, and analyzed the accuracy difference between appliance level and home level using the conventional 

and the bottom-up strategy, respectively. 

In recent years, deep learning has made great progress in many fields, such as image recognition [28], machine translation [29], 

and speech recognition [30]. To this end, researchers tried to use deep neural network to solve the problem of load forecasting. In 

[31], an interval prediction method was proposed by establishing an index table containing all predication intervals results based 

on Gaussian distribution and using modified convolution neural network (CNN) [32]. Wu et al. [33] studied load forecasting for 

air compressor system using artificial neural network. Two kinds of artificial neural network, two-layer feed-forward neural 

network and LSTM, were used to predict the load profiles of air compressor. The results indicated that both artificial neural 

networks achieved good results for compressors using variable speed drive, only LSTM gave acceptable results for compressors 

using on/off control, and the results of both artificial neural networks were not satisfactory for load/unload type air compressors. 

Lai et al. [34] proposed a multi-view ensemble framework for short and mid-term load forecasting. Features of multi-view were 

first extracted from both LSTM and three-level wavelet decomposition. These features combining with some exogenous variables 

are then used to train the base predictors. Kong et al. [8] proposed a framework for short-term household load forecasting based 

on LSTM model. The case studies showed that LSTM can capture subtle patterns of power consumption and provide good 

prediction in most cases. A pooling-base deep recurrent neural network (PDRNN) model was proposed by Shi et al. [4]. It first fed 

load profiles of customers into different pools. Then load demand was predicted for each customer using the information shared 

in the same pool, which aims to solve the over-fitting problem in deep neural network. A data-driven deep learning framework 

[35] was applied to improve the accuracy of short-term peak load forecasting. First a copula model was used to learn the tail-

dependence of power load on electricity price and temperature. Then a deep belief network (DBN) was used for short-term load 

forecasting using the learned tail-dependence. Chang et al. [36] proposed a hybrid model based on wavelet transform and Adam 

[37] optimized LSTM neural network (WT-Adam-LSTM) for electricity price forecasting. The sequence of the electricity price 

would be processed by wavelet transform, and then the combination of Adam and LSTM would be used to capture household 

behaviors for electricity price. In [38], a fuzzy clustering method was first applied to group the load profiles. Then a two-stage 

ensemble model combining radial basis function neural network (RBFNN) [39] and CNN was applied to model load demand in 

each group. Finally, the predicted results in each group were aggregated to form the final load prediction. A two-terminal sparse 

coding neural network proposed by Chen et al. [40] used affinity propagation (AP) to group the load profiles considering household 

power consumption similarity at first. Then a two-terminal sparse auto-encoder was applied to predict the load demand in each 

group. The encoder first extracted the features of load profiles and performed dimension reduction. The output of the encoder 

would take as input to a deep neural network composed of a variety of different structures. Duan et al. [41] proposed a prediction 

model for aggregated loads of buildings, which was composed of feature selection and enhanced support vector machine (ESVM) 

based forecast engine. Besides the aggregated loads of building, the electric vehicle (EV) impact on network was also considered 



in the method. In [42]  a three-level hybrid ensemble short-term load forecasting method consisting of discrete wavelet transform 

(DWT), particle swarm optimization (PSO), and RBFNN was proposed. The DWT was applied to decompose the data, and PSO 

was used to obtain the required optimal adjustable parameters of the RBFNN for the forecasting. In [43] a load forecasting model 

based on an artificial neural network (ANN) was proposed to predict hourly load demand for various seasons of a year. In the 

model, a global best particle swarm optimization (GPSO) algorithm was applied to enhance the performance of prediction, and a 

weight bias encoding/decoding scheme was used to improve network training. 

Some studies made use of the information of household appliances to improve model’s prediction. Kong et al. [9] proposed a 

short-term memory deep learning framework for household load forecasting based on the information of household appliances. It 

trained a LSTM using household load profiles and other available appliances’ consumption information both. Generally, household 

load pattern has a high correlation with family’s behavior. Therefore, a better prediction can be expected if such a pattern can be 

obtained. The signal of appliances was studied by Dinesh et al. [44]. It first decomposed the aggregated household load profile 

into multiple individual appliances’ signals. Then the model was used to predict these signals of appliances. The predicted results 

of the individual appliances were aggregated to form the final prediction. However, these methods require additional information 

that may be difficult to obtain. Some studies exploited the similarity among customers’ load patterns to improve the prediction. 

Bandara et al. [10] proposed a method for load forecasting based on multiple seasonal patterns and related time series. It first 

grouped the related load profiles so as to take advantage of the cross-series knowledge among the related time series. Then a series 

of multiseasonal decomposition techniques were applied to process the load profiles. In the prediction stage, two approaches, 

deseasonalized approach and seasonal exogenous approach, were used to supplement the learning procedure of LSTM with 

previous preprocessed load profiles. Quilumba et al. [11] proposed a three-stage approach based on the similarity of customers’ 

load patterns. It first grouped power consumption patterns according to the total consumption of a certain period of a day, so as to  

get a more balanced grouping of customers. Then load forecasting was performed for each group separately. The predicted results 

of each group were aggregated to form the final system-level load prediction. These methods take advantage of the relevant patterns 

of load profiles among different customers, but they did not consider the relevant patterns that exist in the customer's own load 

profiles. 

There are some studies considering the correlation for load forecasting. Xu et al. [45] claimed that the load accuracy is 

inconsistent with the power purchase cost through cost computation. In other words, more accurate load forecasting models may 

not aim for optimal benefit. To solve this problem, Xu et al. [45] proposed a beneficial correlated regularization (BCR) method 

for neural network load forecasting. In the BCR, the training objectives of neural network included the accuracy section part and 

the power cost part. In [46], 24-hour equations were assembled to form a periodic autoregressive moving average model for load 

forecasting, which considered the hourly sequence as a periodic correlation process. The author proposed a new method to estimate 

the parameters of the multi-equation model. First, an independent model was obtained for each hour. Then the parameters for each 

hour were associated with the previous hours for a joint estimate. Besides, the above method took temperature as explanatory 

variable and considered the impact of holiday on demand. Although the studies mentioned above and the MultiCycleNet both 

study the correlation for load forecasting, there are fundamental differences between them. (i). The MultiCycleNet studies the 

correlation load series in multiple cycles in a customer’s historical load profiles to find out the repeating pattern. (ii). The contextual 

information, i.e., the backward and forward correlative load series, is considered as the correlative load series at the same time to 

capture a more robust power consumption pattern. In order to facilitate the comparison, Table 1 summarizes the methods 

comparison between this study and related works.  

 

 



TABLE 1 

METHODS COMPARISON BETWEEN THIS STUDY AND RELATED WORKS 

 
Literature author Z. Zheng et al. [3] H. Shi et al. [4] C. S. Lai et al. [34] T. Ouyang et al. 

[35] 

Z. Chang et al. [36] This study 

Methodology A bottom-up 

approach using 

Kalman filter-based 

model 

A pooling-base deep 

recurrent neural 

network model 

(PDRNN) 

Multi-view neural 

network ensemble 

model 

A data-driven 

framework 

combining copula 

model and deep 

belief network 

(Copula-DBN) 

A hybrid model 

based on wavelet 

transform and Adam 

optimized LSTM 

neural network 

(WT-Adam-LSTM) 

Multiple cycles self-

boosted neural 

network 

(MultiCycleNet) 

Application 

scenarios 

Household short-

term load 

forecasting 

Household load 

forecasting 

Short and mid-term 

load forecasting 

Short-term load 

forecasting 

Electricity price 

forecasting 

Household short-

term load 

forecasting 

Compared method Persistence model, 

LSTM 

Auto regressive 

integrated moving 

average (ARIMA), 

recurrent neural 

network (RNN), 

support vector 

regression (SVR), 

deep recurrent 

neural networks 

(DRNN) 

Wavelet transform- 

radial basis function 

neural networks 

(WT-RBFNN), 

LSTM-radial basis 

function neural 

networks (LSTM-

RBFNN), 

Ensemble model 

Neural networks 

(NN), SVR, extreme 

learning machine 

(ELM), deep belief 

network (DBN) 

General regression 

neural network 

(GRNN), LSTM 

LSTM, PDRNN, 

WT-Adam-LSTM, 

Copula-DBN, 

Kalman filter-based 

model 

Description Proposed a Kalman 

filter-based bottom-

up approach for 

household load 

forecasting, which 

achieves better 

predictive results 

than LSTM by 

aggregating the 

forecasts of 

appliances. 

Proposed the 

PDRNN for 

household 

forecasting. It first 

fed load profiles of 

customers into 

different pools. 

Then load demand 

was predicted for 

each customer using 

the information 

shared in the same 

pool. 

Proposed multi-

view ensemble 

framework for short 

and mid-term load 

forecasting. 

Features of multi-

view are first 

extracted from both 

LSTM and three-

level wavelet 

decomposition. 

These features 

combining with 

some exogenous 

variables are then 

used to train the base 

predictors. 

Proposed the 

Copula-DNB for 

short-term load 

forecasting. First, a 

copula model was 

used to learn the tail-

dependence of 

power load on 

electricity price and 

temperature. Then a 

deep belief network 

was used for short-

term load 

forecasting using 

the learned tail-

dependence. 

Proposed the WT-

Adam-LSTM for 

electricity price 

forecasting. The 

electricity price data 

would be processed 

by wavelet 

transform, and the 

combination of 

Adam and LSTM 

would be used to 

capture household 

behaviors for 

electricity price. 

Proposed a new 

framework to solve 

the uncertainty 

problem of 

household load 

forecasting. It made 

use of the 

correlative and 

contextual 

information of the 

load profiles in 

multiple cycles to 

learn household 

power consumption 

pattern. 

 

 

3. Methodology 

In this section, we first formally define the problem of household load forecasting with multiple cyclical load series. 

Subsequently, we describe the components of the proposed MultiCycleNet framework in detail. 

3.1 Problem Statement 

For household power consumption pattern, we assume that there is a cycle pattern that can be followed. In this work, we take a 

day as the minimum cycle. A sequence of household power consumption on day d can be represented as , 

where k represents the k-th half hour on day d. 

,1 ,2 ,{ , , ..., , ...}d d d kx x x=X



 

 

 

 

Autocorrelation analysis between the load to be predicted  and the historical load of the last 96 consecutive time steps (with 

time interval of half hour) is shown in Fig. 1. Blue shaded area represents the 95% significance level, and green shaded areas 

represent the positive correlation values greater than the 95% significance level. It can be observed from Fig. 1 that there are highly 

correlation between the historical load and the predicted load , especially for the time stamp of . In 

addition, the backward and forward data relative to the predicted load is also important information for prediction. Fig. 2 is an 

example to illustrate the backward and forward data, in which the data in the blue and green boxes represents the backward and 

forward data relative to the predicted load, respectively. It is worth noting that the backward historical load series, such as

,d ix

,d ix ( 1), ( 2),{ , ,...}d i d ix x- -

Fig. 1.  Autocorrelation analysis of a household load profile. 

Fig. 2.  Backward and forward data relative to the predicted load 𝑥!,#, where d represents day d and i represents the i-th half 
hour on a day. Data in the red box represents the predicted load, and data in the blue and green boxes represents the backward 
and forward data relative to the predicted load, respectively. 



, and the forward historical load series, such as , around the load at the same 

time as the predicted load is highly correlative to as well. As mentioned in Section 1, these correlative load series usually have 

similar external factors, which can reflect the power consumption patterns of households under certain conditions. We use  

to indicate the correlative load series of in multiple cycles. The model  for household load forecasting can be defined as 

follows: 

 

                                    (1) 

 

where  is the parameters of the MultiCycleNet. Fig. 3 illustrates the key processes of the proposed framework. The time series in 

the first box represent the observations, which will be fed into the next layer later for data normalization. The multiple cycle 

processing layer would calculate the numbers of cycle and the sizes of window of backward and forward data. After that, the 

observations would be split into multiple parts according to the cycle and the window of backward and forward data, and then fed 

into the recurrent neural network model to get the forecast results. The MultiCycleNet framework has three layers: 1) normalization 

( 1),( 1) ( 1),( 2){ , ,...}d i d ix x- - - - ( 1),( 1) ( 1),( 2){ , ,...}d i d ix x- + - +

,d ix

c di-X

,d ix ( )f ×
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 layer; 2) multiple cycle processing layer; and 3) recurrent neural network layer. In the following section, we discuss each 

component of the MultiCycleNet framework in detail. 

Fig. 3.  The key processes of the MultiCycleNet framework. 



3.2 Normalization Layer 

The MultiCycleNet is a predictor based on historical load profiles of households. Therefore, there is a huge difference between 

different household load profile ranges. In order to stabilize the predictor’s training, normalization strategy is performed in the data 

preprocessing stage. In this paper, we use the min-max normalization method to preprocess the load profiles. To some extent, 

normalization can avoid the network saturation effect caused by the boundary of network activation function [47]. 

3.3 Multiple Cycle Processing Layer 

This section discusses how to select the multiple historical load series for load prediction. There are two levels needed to be 

considered for the multiple historical load series, namely, the time level and the cycle level. The time level refers to the window 

that contains backward and forward load series at a certain time. The cycle level refers to the numbers of historical cycles. It is 

intuitive to think that the load at the same time in each cycle is highly correlated. In addition, for the load at a certain time, forward 

and backward load series around it is also correlated, which is determined by the household behaviors. Generally, household power 

consumption level is stable in a short period, so it needs to determine that short period in multiple historical cycles and obtain the 

corresponding load series. Then we will take advantage of the correlative load series above to learn the household power 

consumption patterns to solve the problem of uncertainty of load profiles. 

3.3.1 Backward and Forward Load Series Selection 

In order to determine the correlative load series on time level, partial autocorrelation function (PACF) is applied to analyze the 

characteristic of load series. Initially, household load profile in the first month of each quarter in a certain period is taken as a 

sample. Then statistics of correlation is made on those samples at the time level. Finally, mean value is chosen as final windows’ 

value of correlative load series at the time level according to the statistical results. The selection process at the time level is 

presented in Table 2. 

 
TABLE 2 

CORRELATIVE LOAD SERIES SELECTION AT THE TIME LEVEL 

Process1: Time Level Correlative Load Series Selection 

Input: Household load profiles 

Output: The windows’ range of correlative load series at the time level 

1. Extract every household load profile in the first month of each quarter in a certain year as a sample 

2. Concatenate the above samples into a new dataset 

3. Use PACF to analyze the autocorrelation of the new dataset 

4. Select the lags with cyclical multiples as the centers 

5. Count the number of other lags that greater than 95% significance level on the left and right sides of the centers 

6. Compute the average of the counted values in 5 

 

3.3.2 Multiple Cycles Selection 

The key of correlative load selection at the cycle level is to determine the numbers of cycle to help model learn household power 

consumption patterns over a period of time. We use trail-and-error method to determine the numbers of correlative load at the 

cycle level. The selection process at the cycle level is presented in Table 3. 

 

 

 

 

 



TABLE 3 

CORRELATIVE LOAD SERIES SELECTION AT THE CYCLE LEVEL 

Process2: Cycle Level Correlative Load Selection 

Input: Household load profiles 

Output: The windows’ range of correlative load series at the cycle level 

1. Take the number of days in a quarter as the value range at the cycle level 

2. Generate a sequence S with same interval within the value range in Step 1 

3. Use moving window transformation strategy on the historical load profiles to generate  

training samples with different cycle value according to the sequence S 

4. Train different models using different training samples in Step 3 

5. Determine the optimal numbers of cycle according to the performance among different models 

 

3.4 Recurrent Neural Network Layer 

LSTM is one of the most widely used variants of recurrent neural networks, which aims to solve the disability of standard 

recurrent neural network [48]. The key components of LSTM are the cell state and gates. The cell state is similar to the memory 

that remembers the state of information up to the present. The gates are used to control the selection of input information and the 

change of the cell state. Generally, the capability of the gate is realized through sigmoid function, tanh function, and point-wise 

multiplication operation. LSTM has three gates, namely, forget gate, input gate and output gate. The forget gate is used to control 

what information the cell state should discard. The input gate is used to determine what information the cell will store. The input 

gate consists of an input layer and a tanh layer. The input layer determines which values to update, and the tanh layer generates a 

candidate value that can be added to the cell state. By combining the outputs of the input layer and the tanh layer, input gate 

generates the final update information for the cell state. Cell state’s update is jointly determined by the forget gate and the input 

gate. In other word, information is discarded and updated at the same time. The output gate determines what the model will output. 

In the output stage, the model uses the sigmoid function to determine the candidate output at current time step. Then the updated 

cell state is processed through a tanh layer to generate a new vector and the two processing results above are combined to create 

the final output values. The derivation formula of LSTM is as follows [7]: 

 

 (2) 

  (3) 

 (4) 

  (5) 

 (6) 

  (7) 

 

where , , and  represent forget gate, input gate, and output gate of the LSTM cell respectively, while  represents the input 

at time step t. Also  represents the candidate state, which is used to generate the cell state . The hidden output of the cell at 

different time steps are represented by  and .  and  represent weight matrices of forget gate, input gate, output 

gate, and tanh layer of the input gate. The biases of the gates are denoted as  and  respectively. In these equations,  
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represents the point-wise multiplication operation,  represents the sigmoid activation function, and tanh stands for the 

hyperbolic tangent function. The mean squared error (MSE) is used as the loss function of the proposed framework. The MSE is 

given by: 

ℒ = !
"
∑ (𝑦# − 𝑦'#)$"
#%!   (8) 

where  and  refer to the actual load value and the prediction of model at time step t respectively. Also, n is the number of 

samples in the training set. MSE is a widely used metric in regression problem, which essentially minimizes the square differences 

between the actual and the predicted value. 

4. Experiment 
4.1 DataSet Description 

To evaluate the performance of the proposed method, this study used two public datasets. Dataset I is the Smart Meter Energy 

Consumption Data in London Households, which took part in the UK Power Networks led Low Carbon London project between 

November 2011 and February 2014 [49]. The dataset had gathered load profiles for 5,567 customers in London containing energy 

consumption, in kWh (per half hour), household identifier, date, time and acorn group. There are two different groups in the dataset. 

The first group is subjected to Dynamic Time of Use (dToU) energy prices throughout 2013. Another group is not subject to the 

dToU tariff. These groups are equally treated in the experiment since we focus on the problem of uncertainty of household load 

forecasting. Dataset II is the UK-DALE dataset [50] which was collected from five residential houses in the UK from a period of 

about five years. Since the first house in the UK-DALE dataset contains complete appliance usage information, only data from the 

first house in UK-DALE was used in the experiment. In this work, the dataset is split into training set and test set. The splitting 

process is as follows: For a household long-term load profile spanning several years, load profile located in the previous part is 

taken as the training data. The subsequent part of the load profile is used as the test data to verify the prediction accuracy of model. 

More details about the process of data splitting can be found in Section 4.6. 

4.2 Error Metrics 

The mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percent error 

(MAPE) and symmetric mean absolute percent error (SMAPE) are metrics used to evaluate the predictive performance of the 

models [51]. The MSE, RMSE, MAE, MAPE and SMAPE are defined as follows: 

                                                                                                         (9) 

                                          (10) 

                                                         (11) 

                                     (12) 

                                 (13) 

where  and  refer to the true value and the predicted value of the model at time step t, respectively. Also, n is the number of 

samples in the test set. The dataset is first divided into training set and test set, and then the models are trained several times to 
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obtain their best performance on the test set. After that, the error metrics mentioned above are applied to evaluate the performance 

of the model. Furthermore, when calculating the MAPE and SMAPE values for the load dataset, to avoid problems for zero 

forecasts and actual observations, we add a constant term 1 to the denominator of (12) and (13). 

4.3 Hyperparameter Tuning and Optimization 

The hyperparameters play an important role in model’s prediction besides the internal parameters of model. Random search [52] 

is a simple and useful method for hyperparameters tuning, which can provide more possibilities and choices than grid search. 

However, random search cannot use previous hyperparameters tuning results to improve the subsequent tuning process. Annealing 

[53] schedule hyperparameters tuning is a variant of random search, which can take advantage of previous hyperparameters tuning 

results to improve the subsequent tuning process while retains the characteristics of random search. When using the annealing 

method to search for hyperparameters, it needs to define the search space of hyperparameters and the number of trials in advance. 

In our experiment, the maximum number of trials for each model is 1000. The value of the parameter is randomly determined 

during the first trial. In the next trial, the algorithm will randomly perturb the hyperparameter combination tried in the previous 

step to generate a new solution. If the new solution has a better result, it will be accepted. However, if the result becomes worse, 

the new solution will only be accepted with a certain probability. It is worth noting that this method is suitable for use when the 

test time of each combination is not long and there are enough computing resources. 

In fact, the models used in the experiment have many hyperparameters. Taking LSTM as an example, the different combinations 

of hyperparameters, such as the activation function, the number of network layers and the optimizer, may produce different 

prediction results. Since the number of combinations is too large, it would take a lot of time to try out all of these combinations. 

Aiming to evaluate the effectiveness of the proposed framework, the authors have selected a few but important hyperparameters 

for tuning. To this end, the main hyperparameters are selected as the ultimate tuning targets, which are listed in Table 4. 

 
TABLE 4 

HYPERPARAMETERS TUNING TARGETS SUMMARY 

 

Model hyperparameters Minimum value Maximum value 

Long short-term memory neural network (LSTM) cell dimension 50 800 

Gate recurrent unit (GRU) cell dimension 50 800 

Temporal convolutional networks (TCN) filter 50 800 

TCN kernel 1 6 

Batch size 50 600 

Epoch 10 50 

Decision tree max depth 2 30 

Decision tree min samples split 2 30 

Decision tree min sample leaf 1 30 

K nearest neighbors (KNN) neighbor 3 30 

Support vector regression (SVR) epsilon 0 1 

SVR penalty parameter 0 1 

SVR kernel {linear, poly, rbf} 

 

4.4 State-of-the-art methods comparison 

The proposed method is compared with other traditional methods including support vector regression (SVR), decision tree, k-

nearest neighbors regression (KNN), gate recurrent unit (GRU) [54], temporal convolutional networks (TCN) [55], light gradient 

boosting machine (LightGBM) [56] and LSTM. These methods cover machine learning methods and deep learning methods. 



Subsequently, several current state-of-the-art methods in the space of load forecasting are used to compare with the proposed 

method. For example, Shi et al. [4] proposed a novel pooling-based deep recurrent neural network (PDRNN) which used customer-

pool technique to solve the challenges in household load forecasting and over-fitting. Kong et al. [8] proposed the LSTM* method 

which made use of various load-related information, such as time, week, and holiday information. Ouyang et al. [35] used DBN 

and a copula model to improve the prediction of peak load. Chang et al. [36] proposed a hybrid model based on wavelet transform 

and Adam optimized LSTM neural network (WT-Adam-LSTM) for electricity price forecasting. Zheng et al. [3] proposed the 

Kalman filter-based bottom-up approach for household short-term future load forecasting, and analyzed the accuracy difference 

between appliance level and home level.  

4.5 Multiple Cycle backward and forward historical data 

The parameters about the cycles used in the MultiCycleNet is identified by the method mentioned in Section 3. Fig. 4 illustrates 

that using 9 previous cycles is a better choice than others in this case. Generally, using more cycles capture more information, but 

also has a higher chance of containing more noise, which will lead to deterioration and volatility of the model performance. It can 

be seen from Fig. 4 that higher volatility appears with a large number of cycles, such as 63-87 than small cycle numbers, such as 

3-27. 

To evaluate the impact of the contextual information of the load profiles on the predicted results in multiple cycles, we set up 

two experiments to compare the results between 1) not using historical forward load series as the input, and 2) using both backward 

and forward load series as the input. A sample that does not contain forward load series and a sample that contains backward and 

forward load series both are shown in Fig. 5. It is assumed that half-hour i at day d is the time of load that we want to predict, the 

blue and red boxes represent backward and forward load series respectively. Table 5 shows the experimental results. It can be seen 

that using both backward and forward load series outperform not using historical forward load series with respect to mean MSE, 

mean RMSE and mean MAPE values. 

 

 

 

Fig. 4.  The prediction accuracy of model using incrementally growing numbers of cycle. 



 
TABLE 5 

THE IMPACT OF THE CONTEXTUAL INFORMATION OF LOAD PROFILES 

Model Mean MSE (kWh)2 Mean RMSE (kWh) Mean MAE (kWh) Mean MAPE (%) 

No-forward 0.0281 0.1676 0.0799 5.88 

Backward + 

forward 

0.0278 0.1667 0.0804 5.82 

 

4.6 Results and discussion 

In this experiment, time series cross-validation is used to evaluate the performance of models. There are a series of test datasets 

in the cross-validation process, and each test dataset is composed of some individual observations. The corresponding training data  

Fig. 6.  Time series cross-validation procedure. Each row represents a data division, where the blue 
points form the training dataset, and the red points form the test dataset. No future observations can 
be used to construct predictions. 

Fig. 5. The blue box represents the backward load data and the red box represents the forward load data, and i represents 
the i-th half hour on a day. (a) The load series in the blue boxes are taken as the input. (b) The load series in the blue and 
red boxes are taken as the input. 



set only contains observations that occurred before the observations that make up the test dataset. Therefore, no future observations 

can be used to construct predictions. Fig. 6 illustrates the cross-validation procedure in the experiment, in which the blue points 

form the training dataset and the red points form the test dataset. 10-fold cross-validation was performed and their mean value was 

used as the final prediction result in this study. 

Table 6 summarizes the evaluation results of all comparative methods and the MultiCycleNet for the London, UK household 

load consumption dataset. The results in Table 6 show that MultiCycleNet achieves the best results on each metric and outperforms 

the state-of-the-art methods by 19.83%, 10.46%, 11.14% and 9.02% in terms of mean MSE, mean RMSE, mean MAE and mean 

 
TABLE 6 

COMPARATIVE EXPERIMENT RESULTS FOR THE LONDON, UK HOUSEHOLD LOAD CONSUMPTION DATASET 

 

Model Mean MSE 

(kWh)2 

Mean RMSE (kWh) Mean MAE (kWh) Mean MAPE (%) 

SVR 0.0427 0.2067 0.0912 6.24 

Decision tree 0.0721 0.2686 0.1246 8.90 

KNN [6] 0.0421 0.2052 0.0997 6.82 

LSTM [7] 0.0386 0.1963 0.0929 6.40 

GRU [54] 0.0387 0.1968 0.0949 6.56 

TCN [55] 0.0384 0.1961 0.0889 5.99 

LSTM* [8] 0.0351 0.1874 0.0914 6.39 

PDRNN [4] 0.0348 0.1865 0.0891 6.20 

Copula-DBN [35] 0.0488 0.2209 0.0993 7.12 

WT-Adam-LSTM [36] 0.0376 0.1938 0.0899 6.12 

LightGBM [56] 0.0411 0.2028 0.0920 6.21 

MultiCycleNet 0.0279 0.1670 0.0790 5.45 

 

MAPE respectively. It is notable that deep learning methods, e.g., LSTM, GRU, and TCN receive better average performance 

compared to those in traditional machine learning, e.g., SVR, decision tree, and KNN, with respect to mean MSE and mean RMSE. 

However, it is also noticeable that SVR outperforms some deep neural networks with respect to mean MAPE. The phenomenon 

that SVR outperforms deep neural networks in some metrics was noticed in [4], and KNN does not perform very well in individual 

forecasting in [8]. LightGBM is a gradient boosting framework that uses tree-based learning algorithms and has faster training 

speed and lower memory usage. In the experiment, LightGBM is the fastest model to complete the training, and the operation 

efficiency is very high. In terms of predictive performance, LightGBM is better than traditional machine learning algorithms, but 

it is still not as good as deep learning models. 

For the state-of-the-art methods, PDRNN used customer-pool technique aiming to solve the over-fitting problem, and LSTM* 

made use of various load-related information, such as time, week, and holiday information, and Copula-DBN used copula model 

to compute the information about peak load. WT-Adam-LSTM used the wavelet transform to process the nonlinear data for having 

a more stable variance. However, MultiCycleNet does not use the technique or the information above and outperforms the state-

of-the-art methods, i.e., PDRNN, LSTM*, Copular-DBN and WT-Adam-LSTM, by 19.83%, 10.46%, 11.34% and 10.95% in terms 

of mean MSE, mean RMSE, mean MAE and mean MAPE respectively. As mentioned previously, the correlative load series in 

multiple historical cycles usually have similar external factors, which can reflect the power consumption patterns of households 

under certain conditions. In other words, repeating and frequent activities would be included in the input data when using 



correlative load series in multiple cycles. Therefore, robust prediction results can be achieved when the input data includes more 

reliable information. 

The UK-DALE dataset is another dataset used to evaluate the effectiveness of the proposed method. Table 7 summarizes the 

evaluation results of the Kalman filter-based model and the MultiCycleNet on the UK-DALE dataset. 

 
TABLE 7 

HOUSE-LOAD FORECASTING ACCURACY ON THE HOUSE AND APPLIANCE LEVELS ON UK-DALE DATASET 

 

SMAPE (%) Kalman filter-based model [3] MultiCycleNet 

Strategy 1: forecasting the aggregated 28.2 6.8 

Strategy 2: aggregating the forecasts 15.1 6.2 

 

There are two strategies: (1) the conventional strategy, and (2) the bottom-up strategy, used in [3] to evaluate the difference on 

household load forecasting accuracy on the house and appliance levels. The Strategy 1 forecasts the load directly at the household 

level, and the Strategy 2 aggregates the forecasts made at the appliance level.  

Generally, the information recorded under different granularities usually has greater differences. Fine-grained information, such 

as load profile in half an hour, is usually more detailed, and coarse-grained information, such as load profile in days, is usually 

rough. Considering that fine-grained information is more suitable for the proposed method to analyze the correlative information 

in the historical cycles, therefore, in this study, the MultiCycleNet first predicted the household electricity consumption for half an 

hour, and then aggregated the forecast results during the day to form the finally daily forecast results for Strategy 1. On the other 

hand, considering that home-level electricity consumption information is also important for daily forecasting, for Strategy 2, the 

home-level electricity consumption data was also used for the daily forecasting in addition to the appliance-level electricity 

consumption data. The results in Table 7 shows that the MultiCycleNet outperforms the Kalman filter-based model by 75.9% and 

58.9% in terms of SMAPE for Strategy 1 and Strategy 2, respectively. On the other hand, the MultiCycleNet shows better 

performance on Strategy 2 than Strategy 1 due to the increased electricity consumption information of appliances. To predict the 

next day electricity consumption, the Kalman filter-based model used the last 10 days of historical data, while the MultiCycleNet 

first extracted correlative data from multiple cycles, and then used these data to predict household future load. Therefore, the 

MultiCycleNet can learn the household electricity consumption pattern better from historical data and obtain more accurate 

prediction results.  

It is also worth mentioning that the patterns of power consumption at different times of a day are still quite different, for example, 

the power consumption patterns in the morning and in the evening would be significantly different, which can be interpreted by 

the daily activities. To this end, it seems inappropriate to select the correlative load series over a relatively long period, as it may 

contain different power consumption patterns with the load to be predicted. 

For an in-depth study, state-of-the-art methods having better predicted results in Table 6 (LSTM* and PDRNN) are selected to 

further compare their performance with MultiCycleNet in the case of high fluctuation of the load profiles. In this case, the 

fluctuation is determined by the standard deviation of the load profiles. The high fluctuation of load profiles is usually a huge 

challenge in the field of household load forecasting as it will bring great problems in the accurate prediction. Table 8 shows the 

MSE values of the top 5 users with the most fluctuating load profiles in the dataset. Fig. 7 shows the above users true and predicted 

load profiles in three days for visualization. 



 

 

 

 

 
 

Fig. 7.  The load profiles of the top 5 users having the most fluctuation in the dataset, including the true value and the predicted value of each 
model. 



TABLE 8 

THE MSE VALUES OF THE TOP 5 USERS WITH THE MOST FLUCTUATING LOAD PROFILES 

 

Model Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 

LSTM* 0.399 0.384 0.259 0.484 0.568 

PDRNN 0.389 0.289 0.146 0.461 0.487 

MultiCycleNet 0.164 0.080 0.181 0.073 0.113 

 
The results in Table 8 show that the proposed method achieves better predicted performance than the comparative methods on 

four out of top five users with the most fluctuating load profiles, which indicates that the proposed method is able to learn power 

consumption pattern better than the comparative methods in the case of high fluctuation. However, the MultiCycleNet does not 

achieve the best performance in profile 3, which can be interpreted by the effect of the invalid information stored in the previous 

cycles. The proposed method would use data in multiple historical cycles for learning. If too much invalid information appears in 

multiple historical cycles, the learning of the model would be affected, and therefore inaccurate predictions would be made. In 

other words, the MultiCycleNet needs to take some time to adapt to the customer’s new patterns, while forgetting all the invalid 

information it learned earlier. 

4.6.1 Analysis of the residual signals 

Fig. 8 illustrates the results of residual signal analysis of the proposed method. Fig. 8 (a) shows the autocorrelation of the 

residuals. It shows that there is a peak at the lag 1 order, however, in the case of other lag orders, the autocorrelation is not large. 

 

 

Fig. 8.  Analysis of the residual signals for the MultiCycleNet. (a) Image of autocorrelation function of residuals. (b) Histogram of residuals. (c) Relationship 
between fitted values and residuals. 



On the other hand, although the right tail is slightly longer as shown in Fig. 8 (b), the distribution of the residuals conforms to the 

normal distribution. Fig. 8 (c) shows the relationship between the fitted values and the residuals. The figure shows that there is no 

obvious rule between the fitted values and the residuals, and the residuals are centered at 0, showing a symmetrical form. Therefore, 

it can be inferred from the results in Fig. 8 that the difference between the predicted values and the observed values is random and 

unpredictable. In other words, there is no interpretable and predictable information in the predicted error of the proposed method. 

4.6.2 Statistical test of models 

In order to test whether the results of the experiment are affected by accidental factors, we used the paired sample t-test to 

evaluate the differences of the models. The paired sample t-test is used to determine whether the mean difference between the test 

error rates of the two models is zero. If the predictive performance of the two models is the same, then their test error rates should 

also be the same. 

 
TABLE 9 

PAIRED SAMPLE T-TESTS OF MODELS 

 

Models p-value 

LSTM, MultiCycleNet 0.0036 

LSTM*, MultiCycleNet 0.0013 

PDRNN, MultiCycleNet 0.0037 

 

Table 9 summarizes the results of the paired sample t-test for models, and it illustrates that all p-values of p < 0.05 between the 

proposed model and LSTM, LSTM* and PDRNN, which means that the results are significant. Therefore, there is a significant 

difference in the predictive performance between the models that we have tested, and the model with the smaller average error rate 

has better performance. 

5. Conclusion 

This paper presents a novel framework for household load forecasting, namely, MultiCycleNet framework, which aims to 

address the uncertainty of household load forecasting. The proposed framework is based on the idea that load series with high 

correlation in multiple historical cycles often reflect the common pattern of time series. The level of household power consumption 

is usually stable in a short period. Therefore, we consider using these correlative load series distributed in multiple cycles to 

improve the accuracy of household load forecasting. 

The proposed framework is introduced and discussed in detail in this paper. First, we explain the preprocessing method of load 

profiles in order to accelerate the convergence rate of the model and obtain the stable prediction results. Then, the concept of 

correlative load series in multiple cycles is discussed. The correlative load series consist of two levels, namely, the time level and 

the cycle level. Furthermore, we give the key processes about how to generate the correlative load series in multiple cycles. After 

that, an introduction about the inference module and the technique used in the proposed framework is given. We evaluate the 

effectiveness of the proposed framework on two real-life datasets based in the United Kingdom. The experiment results show that 

the proposed framework can be a competitive approach among the state-of-the-art methods in several performance metrics. And 

the statistical test of models shows that there is a significant difference in the predictive performance between the proposed model 

and the comparative methods. For future work, different weights can be assigned to different historical load series, aiming to study 

how to take advantage of customers' own historical load profiles better to solve the uncertainty of household load forecasting. 
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