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Abstract—This article addresses the prediction-based dis-
tributed filtering problem for a class of time-varying nonlinear
stochastic systems with communication delays and missing mea-
surements through the sensor networks. The phenomenon of
the missing measurements is depicted by a set of Bernoulli dis-
tributed random variables, where each sensor node possesses its
own missing probability. The communication delays are taken
into account, which commonly occur during the estimation
exchanges among the sensor nodes with communication links. A
new prediction-based suboptimal distributed filter is designed by
taking the missing probabilities and the prediction estimation into
account, which has the advantages on the active compensation
of the impacts caused by the missing measurements and com-
munication delays. That is, a new compensation filtering method
within the time-varying framework is presented based on the
predictive estimation and the innovation measurements. A locally
minimum upper bound matrix for the estimation error covari-
ance is obtained by properly designing the distributed filter gain
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at every sampling step. Furthermore, the performance analysis
problem of the prediction-based distributed filtering algorithm
is discussed by providing the desirable theoretical derivations.
Finally, some comparative simulations are used to show the
advantages of the presented prediction-based distributed filtering
strategy under delay compensation mechanism.

Index Terms—Communication delays, missing measure-
ments, monotonicity discussions, nonlinear stochastic systems,
prediction-based distributed filtering.

I. INTRODUCTION

ENSOR networks include a large number of spatially dis-
Spersed sensors with certain topological structure, which
have broad applications in reality, including the forest fire
detection, water quality monitoring, the natural disaster pre-
vention, and so on [11], [12], [43]. For the multisources data
collected by the sensors, the key problem is how to design
proper filtering schemes based on the local information shared
by the adjacent nodes [2], [35]. Over the past decade, a great
amount of filtering methods in the centralized or distributed
way have been proposed in [37] and [42]. Compared with
the centralized filtering strategy, the distributed data process-
ing approaches have provided efficient estimation schemes in
the parallel way to improve the filtering performance and the
fault tolerance capability [1], [26], [41]. Recently, some state
estimation algorithms have been proposed by taking certain
evaluation criteria into consideration [14], [15], [24], [39].
For example, the distributed optimal filtering approaches based
on the innovation analysis technique have been given in [3]
and [4] for networked multisensor systems and a variance-
constrained distributed filtering algorithm has been presented
in [7] based on the information affected by the deception attack
and uniform quantization. In [9], a novel distributed filtering
approach with guaranteed H, performance has been given to
attenuate the influences from uncertain observations, includ-
ing the quantized measurements and data packet dropouts.
Very recently, both the network security and the robustness
of algorithm have been considered in [6], and a new resilient
variance-constrained filtering method in a distributed manner
has been developed for power systems with cyber-attacks.
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Among the design of control and filtering algorithms
in the networked environments, a great deal of effort
has been made to examine the impacts from the missing
measurements or packet dropouts onto the whole system
performance [5], [17], [18], [34], [44]. Accordingly, some
efficient filtering methods under different criteria have been
reported [16], [32], [38], [46]. For example, the locally optimal
estimation method based on the orthogonal projection prin-
ciple has been presented in [47] for discrete-time linear
stochastic systems with missing measurements over wireless
sensor networks, and a fusion estimation method has been
proposed in terms of certain fusion rule of the matrix weights.
In order to enhance the fault-tolerant capability of the esti-
mation techniques, the optimal fusion filtering algorithms in
a distributed manner have been proposed in [27] and [28] for
linear discrete time-varying stochastic systems with missing
measurements, where a distributed fusion estimation scheme
has been presented in [28] by employing the matrix-weighted
fusion idea to provide the compensation mechanism. Besides,
considerable attention has been made to develop the nonlin-
ear distributed filtering methods with the hope to attenuate the
degradations induced by the missing measurements [8], [31].
In particular, the distributed filtering approaches under the H,
performance constraints have been given in [32] and [40] for
time-invariant nonlinear stochastic systems subject to miss-
ing measurements through the network transmissions. In [8],
a robust distributed filtering algorithm with the average Hoo
performance requirement has been designed for time-varying
nonlinear stochastic systems subject to randomly varying non-
linearities through the lossy sensor networks. However, it is
worthwhile to notice that few methods can be applicable for
handling the optimized distributed filtering issue under vari-
ance constraint of time-varying nonlinear multisensor systems
subject to degraded measurements.

On the other hand, it is well recognized that the
communication delays should be addressed carefully dur-
ing the design of a distributed filter or controller, oth-
erwise the estimation accuracy and efficiency would be
degraded [20], [25], [29], [30], [36]. Recently, some fusion
filtering schemes in the distributed way have been developed
for stochastic systems with communication delays as in [27]
under the minimum variance constraint and in [33] within
the receding horizon framework, where the matrix-weighted
fusion criterion has been utilized to fuse the local estima-
tions. In [10], an event-based distributed filtering method
with the weighting average H., performance requirement has
been proposed, where the coordination design problem of fil-
ter parameters and triggered thresholds has been carried out.
Nevertheless, it should be mentioned that most existing dis-
tributed filtering schemes dealing with the communications
delays have been proposed in terms of the out-of-date esti-
mation directly, which indeed degrades the filtering efficiency
and accuracy. In order to actively compensate the commu-
nication delays, some forward predictive mechanisms have
been presented in [19], [21], and [22] to handle the control
synthesis problems for systems with networked transmissions.
In contrast to the predictive control methods, however, few
results with the active compensation mechanism are available
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for tackling the distributed filtering problems subject to com-
munication delays. Very recently, the predictive compensation
idea has been initially introduced to handle the estima-
tion/filtering problem with communication delays, where new
distributed algorithms have been developed for time-invariant
linear systems in [48] and time-varying linear systems in [13],
respectively. To the best of our knowledge, the prediction-
based distributed filtering problem for time-varying stochastic
nonlinear systems subject to degraded measurements has not
been fully studied, which needs additional research attentions
to provide a new method in order to actively compensate
the impacts caused by the communication delays and missing
measurements.

In this article, we aim to tackle the locally optimal dis-
tributed filtering problem for time-varying nonlinear stochastic
systems subject to communication delays and missing mea-
surements over sensor networks. First, the possible communi-
cation delays during the estimation exchanges between linked
senor nodes are considered and a prediction-based updating
rule is developed to actively provide the state estimate at
current time step based on the delayed estimation. That is,
the prediction-based estimations of adjacent sensor nodes at
the updating instant are obtained in terms of the delayed
transmissions. Second, the distributed filter of the recursive
feature is constructed for each sensor node by combining the
prediction compensation estimations with its own innovation
measurements. Subsequently, a locally optimal distributed fil-
tering scheme is presented, where the desirable time-varying
filter gain matrix is expressed based on the solutions to cer-
tain matrix difference equations and a minimal upper bound
matrix of the estimation error covariance is obtained at every
sampling step. Compared with the existing results, the fol-
lowing challenges should be handled: 1) How to examine
both the communication delays and the missing measurements
within a unified framework? 2) How to actively compensate
and reflect the available information of the mentioned phe-
nomena in the distributed estimation algorithm? 3) How to
depict the performance of the estimation algorithm from the
theoretical aspects. The main contributions and advantages of
this article could be outlined as: 1) the communication delays
among the node transmissions are taken into account; 2) a
prediction-based estimation updating rule is given to actively
compensate the impacts caused by the communication delays
during the state estimation exchanges among the nodes; 3) a
new distributed filtering strategy with easy-to-implement form
is provided via the active delay compensation of the state
estimation prediction and the occurrence probabilities of miss-
ing measurements; and 4) a rigorously theoretical proof is
presented to show the monotonicity between the estimation
error covariance and the missing measurements. Finally, some
simulations with comparative results are utilized to show the
advantages of the prediction-based distributed filtering method
proposed in this article.

The remainder of this article are outlined as follows. In
Section II, both the mathematical model of the target plant
and the related information of sensor networks are first
provided. Moreover, the prediction compensation idea is intro-
duced for the communication delays and a new distributed
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filter is constructed. The design of the prediction-based dis-
tributed filtering algorithm is provided in Section III and the
desired expression form of the distributed filter gain is also
presented. In Section IV, the mathematical analysis of the
algorithm performance is conducted. In Section V, the simula-
tion experiments are conducted to demonstrate the usefulness
and differences of the new distributed filtering scheme based
on the prediction compensation mechanism. Finally, some
conclusion discussions are provided in Section VI.

Notations: Z™ depicts the n,-dimensional Euclidean space.
E{-} means the mathematical expectation of “”. tr(A) rep-
resents the trace of the matrix A. AT and A~! denote the
transpose of the matrix A and the inverse of the matrix A,
respectively. ;, klk—z; stands for the state prediction at the time
step k based on the delayed estimation ';ijk—fij' The graph
G = (¥, &, 7) is used to represent the topological structure
with the node set ¥ = {1,2,..., N}, theedge set & C ¥ x ¥
and the weighted adjacency matrix JZ = [hjInxn.

II. PROBLEM STATEMENTS

In this section, the prediction-based distributed filtering
problem is formulated for addressed discrete time-varying non-
linear stochastic systems subject to communication delays and
missing measurements, where the information is communi-
cated via the sensor networks with N sensor nodes. First, the
related information of the sensor networks and the target plant
is provided. Second, a new distributed filter is constructed in
terms of the prediction mechanism for each sensor node, which
involves the state estimations updated by predictive way and
the related measurement innovations. In addition, the aims of
the design problem of distributed filter based on the predictive
compensation scheme are outlined.

A. Sensor Networks and Target Plant

In this section, both the related information of sensor
networks and the addressed time-varying nonlinear target plant
are introduced.

The network topological structure is characterized by the
directed graph G = (¥, &, ), where ¥ = {1,2,...,N}
depicts the set of sensor nodes, & C ¥ x ¥ stands for the
edge set, and JZ = [h;j|nxn represents the weighted adjacency
matrix with the element h;; satisfying h; > 0 & (i,j) € &. In
particular, assume that /; = 1. Moreover, the set of neighbors
of sensor node i is denoted by N; with N; £ {j € 7|(i,)) €
SN}

In this article, the mathematical model of addressed time-
varying nonlinear multisensor systems is given as follows:

X1 = Fixg + fie (€, xi) + Brwoy
Yik = Qi kHikxk + vik (D

where x; € "~ is the state vector, and y; x € Z™ represents
the measurement output collected by the ith i=1,2,...,N)
sensor node. & is a zero-mean white noise with unity variance.
The process noise @y and measurement noise v; ; have zero
mean values, and their covariances are denoted by Wy > 0
and V; > 0, respectively. Fy, H;x (i =1,2,...,N) and By
are known properly dimensional system matrices.

The stochastic nonlinearity f (&, xx) with fi(&,0) = 0
satisfies

E{fi Gk, xo0 I} = 0 2)

and

E{fic (€, o Ems Xm) i} = 0, k # m
t

E{f(&. Xfe Ees xe) e} = Z T kxg @ ik 3)
i=1

where ¢ > 0 is a known integer, I'; x and ®;; are properly
dimensional known matrices.

The random variables g;x (i = 1,2,...,N) characterize
the missing measurements and satisfy the following statistical

property:
Prob{oix = 1} = E{oix} =0ix
Prob{oix = 0} =1 —E{oix} =1 —aix (4)

where 0;x € [0, 1] are known constant scalars. Throughout
this article, we suppose that &, @k, Vi, 0ik, and xo are
mutually uncorrelated in i and k.

B. Design of Prediction-Based Distributed Filter

Via the fixed topological structure, the following distributed
filter is commonly constructed for the sensor node i:

X1 =FiXi i+ ik (vik — 0ikHixZix)+ Z hij(Rik — Xj.x)
JEN;
5)

with ¢;  being the distributed filter gain matrix to be designed.
Notice that both the state estimations of adjacent nodes at cur-
rent time step and the measurement innovations are needed.
However, it should be pointed out that the state estima-
tions exchanged by the connected sensor nodes might suffer
from the network-induced communication delays. That is, the
delayed estimation information can be available only after
the network transmissions. Thus, the estimation performance
would be deteriorated inevitably.

In what follows, the effects from the communication delays
onto the estimation accuracy will be well examined. To begin,
the communication delays are denoted by 7;; between the
sensor i and sensor j. When designing the filter as in (5),
the latest estimation jx—r; is available at current sampling
instant k because of the communication delays. In order to
improve the estimation accuracy and efficiency, the state esti-
mations of adjacent nodes at current time step are predicted
based on the delayed estimation information and the following
prediction-based update method is adopted:

Xj k=t k—ty = Fk—ryXj k—r;lk—7;

Xj k=t 2lk—ty = Fhoryt 1% k=1 1 k1

Xj k-1 k-1 = Fr—2Xj k—2/k—7;
X klk—1y = Fr—1%j k—1]k—1; (6)
where %j k—r;k—z; £ Xj k—z;- Next, in order to facilitate fur-

ther expression, we define F,:U = ]_[Zl Fy_j. Then, it follows

J
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from the prediction idea in the equation (6) that )ch.,klk—rij =
Tij A
Fk"xj',k_fif.
Via the prediction estimation idea as in (6), the following
distributed filtering scheme of the active compensation format
is introduced:

Xiks1 = Fikix + Gix(vik — 0ikHixkik)

—+ Z h,:/()AC,',k - )A?j,k|k—rij) )
JjeN;

with ¢ ;. being the desired filter parameter to be constructed.
Next, let e k+1 = Xi+1 — Xi k+1 be the filtering error. Then,
from (1) and (7), one has

eik+1 = (Fr — 0ix“ikHix)eir + fiEx, x0)
+ Biwk — 0i kY ik HijxXi — YikVik

— Y iRk — R k—ry) ®)
JEN;

with ¢;x = 0ix — 0ik- In order to characterize the estima-
tion accuracy, define the filtering error covariance as 2 =
E{ei,kegk}.

Remark 1: So far, a new distributed filtering scheme under
the active compensation method is given in (7), where both the
prediction estimations of adjacent sensor nodes and its mea-
surement innovation at the same sampling step are utilized
during the design of the distributed filter. In particular, the
communication delays z;; are considered in this article and the
induced effects are compensated by utilizing the updating rule
in (6). Accordingly, based on the delayed estimation '%j’k_rlj’
the prediction estimation )ch,k|k,ry. at the time step k can be
obtained and adopted in (7). In what follows, the validity of
the prediction-based estimation approach will be shown, where
the distributed filtering approach via the delay prediction com-
pensation could provide better estimation accuracy than the
one without the delay prediction compensation.

Now, we are ready to summarize the aims of this article,
which include two aspects.

1) A new prediction-based distributed filtering algorithm

with active compensation mechanism is developed, and
the explicit form of the distributed filter parameter ¥; x
is provided to minimize the upper bound matrix of the
estimation error covariance.

2) The performance analysis problem of the developed dis-
tributed estimation algorithm is discussed, where the
relationship between the missing probabilities and fil-
tering algorithm accuracy is pointed out by providing
the theoretical proof.

III. DESIGN OF PREDICTION-BASED FILTERING SCHEME

In this section, the recursion expression of the estimation
error covariance is provided in terms of the correspond-
ing definition. Second, a minimized upper bound matrix
of the estimation error covariance is found and the desir-
able filter parameter matrix is constructed accordingly. Third,
the developed prediction-based suboptimal distributed fil-
tering (PBSODF) algorithm is outlined to facilitate the
implementations.
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To begin, the following theorem presents the recursion
expression of the resultant filtering error covariance.

Theorem 1: Consider the time-varying nonlinear stochastic
system (1) and the distributed filter (7) based on the prediction
compensation. The recursion expression of the filtering error
covariance is described as

Zikr1 = (Fr — 064G ikHix) Zix(Fx — éi,k%,kHi,k)T

— (Fr — é_?i,kgi,kHi,k)E hijei,k
(
JjeN;

x (Xix — )ch,k\k—r,j)T

- E Z hij (% — )ACj,k\k—r,-j)ezk(Fk_éi,k%i,kHi,k)T
JEN;

t
+ ) Ty uB{xg @paxic} + BiWiBy
p=1
+ 0k (1 — 0 OE{Y i ki LG )
+ Z Z hijhis (X k — Xj kjk—ry)
JjeN; seN;
N N T
X (Rik — Xokh—ry) + %i,kVi,kggk- )
Proof: Based on the filtering error in (8) and the correspond-

ing definition of the filtering error covariance, the following
equation is obtained:

Ziis1 = (Fr — 0ixikHix) Zi(Fr — éi,k%,kHi,k)T

— (Fr—0ix¥YikHix)E Z hijei i (Xi k=% kik—v;)
JeN;

-E Z hij (R k=3 kik—;) €f 1 Fre — @i,k%,kHi,k)T
jeN;
t
+ Z Fp,k]E{xEqD,,’kxk} + BkaBE
p=1
+ oik(1 — éi,k)]E{gi,kHi,kxkszIkgzk}

+ Z Z hijhis (561;1( - 5Cj,k|k—r,-j)(5€i,k - 56s,k|k—r,-S)T

JjeN seN;
14
FGiaViad T+ Y [AL+ (A PT] (10)
s=1

where
A}’k =E{(Fx - éi,kgi,kHi,k)ei,kflj@k’ )}
A2y = E{(F — 0ia¥iaHii)er ] BY |
Aik = —E|(Fx - @i,k%,kHi,k)éi,kei,kXECEkggk}
Aﬁk = —E{(F« — éi,kgi,kHi,k)ei,kv}:kgEk}
Ay = Effile, xom) B}
APy = —E{Bifi G, )X, CL T}
ALy = ~Elfi v, 9T )
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8 . 5 T
Ak ijfk (&ks Xk) (Xik — X klk—z;)
jGN

'A?,k = E{Ql kBkZITkx]f szngk}
All’(])( = E{Bkw_kvl kgl k}
. . T
All’}( =-E Z hijBkwk(xi,k — xj',k\k_fij)
JeN;
Alk = E{oixixHixxev 9711}
T
lk = Z hlj]E{Ql G ik Hijoxx (Rik — X kik—c;) }

jeN;
T
lk— ZhU]E[ lkvlk(-xlk x]klk t,,) } (11)
jeN;
Next, we can verify that the terms A, (s = 1,2,...,14)

in (11) are zero terms since &, @k, vk, and g; x are mutually
uncorrelated in i and k. Thus, (9) can be obtained readily. H

Remark 2: Tt should be noticed that some unknown terms
are involved in (9), thus the exact value of the filtering
error covariance is unavailable. Therefore, additional effort
will be devoted to handle those unknown term in terms
of the matrix theory. Accordingly, a suboptimal estimation
method is adopted, i.e., a minimized upper bound matrix of
Z'ik+1 is obtained by designing proper filter parameter via
the completing square technique and mathematical induction
approach.

Theorem 2: Consider the time-varying nonlinear stochastic
system (1) and the distributed filter (7) based on the prediction
compensation. Let o, ; (r = 1, 2) be known positive constants.
If the following matrix difference equation:

Oik+1 = (14 01.4) (Fx — 0ixYikHik)
t
X O k(Fx — 0i 4G ikHi )" + Z Ty itr(Dp 1k Ep i)
p=1
+ BkWiBy + 0ix(1 — 0i k)Y ik Hix Bi kH, kg
+iaVikd i+ (1 + Ulfkl) Z Z hijhig
jeN; seN;

X (Rik = Xjkik—ry) (Rik — fs,k\k—r,-,r)T (12)

under the initial condition 20 < ©;0 has a solution
®;x > 0, where

Eix = (14 024)Oix + <1 + sz,{l)ii,kfczk (13)
then we can testify that
Likr1 < Oyt (14)

Furthermore, if we adopt the following filter gain matrix:
Gik = (14 014)0ikFxO;, kH,-Tk
X [(1 + O'l,k)ézkHz (i kH w+oik(1 — aik)

-1
X Hi Bkl + Vi (15)

it is observed that the minimized upper bound matrix ©; i1
can be described by

O k+1 = (1 + Jl,k)FkG),',kFg +BkaBE + (1 + Ul_,l:)

X Z Z hihis Rk — Xj kip—v;) (Rik — 5€s,k|k—r,-s)T

jeN; seN;
—(1+ Gl,k)zéi%ka®i,kHiTk
X [(1 + U],k)@%kHi,k®i,kHEk + 0ik(1 — 0i k)

XHiBixHly + Vie | Hik®TFL. (16)

Proof: By employing the completing square technique and
the mathematical induction method, the assertions in this the-
orem can be verified. First, suppose that 27 < ©; holds.
Second, there is a need to show that 27 s+1 < ©; k+1.

Now, the involved cross-terms in (9) are first tackled. It
follows from simple computations that the following inequality
can be obtained:

— (Fx — 0ix¥ixHix)E Z hijei k (Xik — Xj kik—ry)

JEN;

-E Z hij(Ri g — ij,klkfr,_-,-)e;‘l:k(Fk - @i‘k%i,kHi,k)T

JjeN;
_ _ T
< o1x(Fx — 0ix¥iiHik) ik (Fx — 01k ixHi k)
_ N N N R T
+ 01,;: Z Z hijhis %k — X ki—ry) (Rik — Xeklh—1i)
jeN; seN;

A7)
with o1, > O being the constant scalars. Besides, the
following equations:

t 1
Z Fp,kE{XEQp,kxk} = Z Fp’ktr(cbp’kE{xkxE}) (18)
p=1 p=1
are true. Moreover, it follows from x; = e;  + X; ¢ that:
Efxexg ) < (1+020) Zik + (1 + sz,cl)ffi,kfczk
L Bix 19)
with o024 being known positive constant scalars.
Substituting (19) into (18) leads to
t t
D TpaBE{x Opuxi} < D Tputr(piEps).  (20)
p=1 p=1
From (19), the sixth term in (9) obeys
8ik(1 = 8ik) EAG i kHi g Hi i G 1 )
<o (1 _Ql k)gl kHlkulkH kg 21
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Thus, together with (9), (17), (20), and (21), it can be shown
that

Lik+1 < (1+01,k)(Fk—éi,k%,kHi,k)%i,k(Fk—éi,k%,kHi,k)T

13
+ Z T itr(®ix Ei k) + BiWaB{
i=1
- - o) T 4T
+ 0ik(1 — 0ik)¥9ikHik EikH Y i1

+GiaViudT+ (140 ) 2 3 hyhi
JEN: seN;

A N N N T
X (Rik — Xjklk—ry) ik — Xsiklk—r,) - (22)
Consequently, according to the mathematical induction
approach, it is easy to show the following result:
Lik+1 < Oipt1. (23)

Finally, the minimum upper bound matrix ®; 4 is deter-
mined by properly constructing the distributed filter parameter
matrix ¢; ;. By employing the completing square technique,
the upper bound matrix ®; 4| can be rewritten as

Ojkt1 = [gi,k - (1+ Gl,k)éi,ka@i,kHEk
x ((1 + 01,k)éi%kHi,k®i,kHEk + 0ik(1 — 0i )
- T -1
X Hi,kﬂi,kHi,k + V,',k)
X ((1 + O'I,k)@iz,kHi,k@i,kHEk
+ 0k (1 — i) Hi i BiiHyy + Vi,k)
X [gi,k — (1 + 016)0ikFx®ikH]y
X ((1 + 01.4) 07 Hi k@i H}
11T
_ - = T
+ oik(1 — Qi,k)Hi,kai,kH,-,k + Vi,k) }
2.
—(1+o01x) Q%kaGi,kHEk
X ((1 + ol,k)é%kHi,k®i,kHiTk + 0ik(1 — 0ix)
T - T
X Hj g Ei,kHl‘,k + Vi,k) H; 1O; i F
+ (14 01.4) Fe®ikFy + BiWiB; + (1 + 01_,11)
. . . . T
X Y hihis(Rik — Rikik—ry) (Rik — Rekik—ri) -
jeN seN;
(24)

Then, it can be shown that the obtained upper bound matrix
®; x+1 of the filtering error covariance can be minimized by
simply taking

Gix=(1+ al,k)éi,ka&,kH,-T,k
X [(1 + O'l,k)é_?zkHi,k@i,kHEk + 0i k(1 — 0i k)

-1
X Hi Bl + Vi | (25)
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Algorithm 1 Algorithm PBSODF

Step 1: Let k = 0 and initialize the related values.

Step 2: Obtain the state estimations Xx—r; from (6).

Step 3: The filter parameter matrix ¢; ; is determined via (15)
for the i-th sensor node.

Step 4: Calculate the state estimation X; x4 in terms of (7).

Step 5: The upper bound matrix ©; 1 is calculated by (12).

Step 6: Set k = k+ 1 and then go back to Step 2.

Besides, the minimized upper bound matrix ®; 41 is

O k+1 = (1 + O'Lk)Fk®,',kF;£ +BkaBZ + (1 + Ul_kl)

X Z Z hihis Rk — Xj kip—v;) (Rik — 5€s,k|k—r,-s)T

jeN; seN;
—(1+ Gl,k)zéi%ka®i,kH?jk
X [(1 + U],k)é%kHi,k®i,kHEk + 0ik(1 — 0i k)

-1
x il + Vik| Hu®wFl.  Q6)
Therefore, the proof of this theorem is complete. |

Based on the prediction-based distributed filter and the
recursion expressions in Theorem 2, the following PBSODF
algorithm can be given.

Remark 3: Up to now, the influences from the communica-
tion delays and the missing measurements onto the estimation
error covariance have been addressed and a prediction-based
distributed filtering method has been given. In particular,
the delay compensation estimation based on the predictive
updating rule and the occurrence probabilities of the missing
measurements have been explicitly reflected in Theorem 2.
The reason is that the communication delays t; have been
utilized in (6) at the prediction step and the occurrence proba-
bilities o; x have been adopted during the design of distributed
filter (7). Compared with the existing estimation methods, we
have made one of the first attempts to discuss the effects of
communication delays among the adjacent node’s communi-
cations. Besides, the time-varying characteristic of addressed
dynamical networks has been well discussed and an appeal-
ing prediction-based estimation algorithm suitable for online
computations has been developed accordingly. During the dis-
tributed filtering algorithm, the major step is to obtain the
prediction estimation in Step 2 based on the updating rule (6)
and have the filter parameter matrix ¢;  recursively in Step 3
via (15).

IV. PERFORMANCE ANALYSIS OF
PBSODF ALGORITHM

In this section, the theoretical derivations are given to dis-
cuss the performance analysis problem of proposed PBSODF
algorithm, i.e., the monotonicity feature between tr(®; ;) and
0i .k 1s shown.

Theorem 3: For the proposed prediction-based distributed
filtering approach, it is shown that tr(®; ;) is nonincreasing if
the missing probability o; x increases.
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Proof: In terms of the minimized upper bound matrix
in (16), we have

% = tr{—2(1 + 01.4) 8k FL® kH

X [(1 +01,0) 87 kHik®ikH} . + 01k (1 = 0ik)
« Hj,kEi,kHiTk + Vi’k]_lHj,k@)i,kFlE

i (1 + al’k)zészk®i,kHEk

< [(1 + 01.4)0ikHi k@i kHy + 0ik (1 — Qi)
x Hik Ei,kH;l:k + Vi*k]il

x [2(1+ 01,) @ik Hi kO kHy + Hik Ei kH}
— 20 kHi x BikH] ]

< [(1 + 01.4)0ikHi k@i kH}y + 0ik (1 — Qi)
x HikEikH}y + Vi,k]ilH’?k@i’kF’?}'

Next, by introducing the positive semi-definite term 29; Vi k
onto the right-hand side of the above equation, one has

dtr(®; x)
doi k
< tr{—2(l + Gl,k)zéi,kaGi,kH;l:k
X [(1 + al,k)éfk X Hi,k®i,kH;l:k + 0ik(1— Qik)
T -1
X Hi Ei,kH,',k + Vi,k]
X Hi kO kF{ + (1 + 01,0 Fe®; kH}
x [(1 + 01.) ik Hik @i kHyy + 01k (1 — i)
- -1
x Hi k di,kHiTk + Vik]
X |:2éi,k((1 + 01.4)07 1 Hik®ikH}y + ik (1 — 0ik)
x Hj Ei,kH}:k + Vi,k) - ézkHi,k Ei,kH?:k]
x [(1 + 01.4)0ikHi k@i kHy + 8k (1 — k)
_ -1
x Hj i Di,kH;l:k + Vik] Hi,k®i,kFZ}
<0. 27
Then, it follows from (27) that the proof of this theorem is
complete. |
Remark 4: In Theorem 3, the inherent relationship between
the upper bound matrix of the filtering error covariance and
the missing probabilities is pointed out by providing the theo-
retical analysis. To be more specific, it can be concluded from
Theorem 3 that, the smaller the occurrence probabilities g; ,
the bigger tr(®; ), and then the worse the estimation accu-
racy of the developed PBSODF algorithm is obtained. The
essential reason is that less measurements can be available
in the filter side when p; x is small, then the estimation accu-
racy of the developed PBSODF algorithm is degraded directly,

which is consistent with the engineering insight and will also
be illustrated later via the co