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Non-Fragile H,, State Estimation for Recurrent
Neural Networks with Time-Varying Delays: On
Proportional-Integral Observer Design

Di Zhao, Zidong Wang, Guoliang Wei and Xiaohui Liu

Abstract—In this paper, a novel proportional-integral observer ~ been extensively investigated in [31], [35], [42], [45]. On
(PIO) design approach is proposed for the non-fragile .. the other hand, it is well recognized that the acquisition of
state estimation problem for a class of discrete-time recurrent the state information of certain primary neurons is critically

neural networks with time-varying delays. The developed PIO is . . . o
equipped with more design freedom leading to better steady-state important in enabling RNNs to perform specific tasks such as

accuracy as compared with the conventional Luenberger observ- Optimization, classification and approximation. Unfortunately,
er. The phenomena of randomly occurring gain variations, which it is often the case that the neuron state information is not
are characterized by Bernoulli distributed random variables readily available due mainly to the inherent characteristics
yvlth certaln_probabllltles, are taken into cqnsplerauon in the of RNNs such as huge dimensions, tight couplings, strong
implementation of the addressed PIO. Attention is focused on the . - .
design of a non-fragile PIO such that the error dynamics of the no_nl_lneantles .and resource constraints. As such, a natural yet
state estimation is exponentially stable in mean-square sense andefficient way is to estimate the states of the RNNs through
the prescribed H., performance index is also achieved. Sufficient available information of the network measurements, which
conditions for the existence of the desired PIO are established gives rise to the state estimation issue of RNNs [28], [43].
by virtue of the Lyapunov-Krasovskii functional approach and =~ Time_delays are well known to be inevitable in RNNs for
the matrix inequality technique. Finally, a simulation example is . . ] .
provided to demonstrate the effectiveness of the proposed PIO three reaso-ns.|dent|f|ed as follows: .1) .th.e speed of |nf0rr_n&1-
design scheme. tion transmission between neurons is limited due to physical
. constraints; 2) the switching speed of electronic components
Index Terms—Recurrent neural networks, proportional- - . o
integral observer, non-fragile state estimation, . performance, (€-0- the amplifiers) among large-scale integrated circuits when
randomly occurring gain variations, time-varying delays. implementing RNNs is inherently bounded; and 3) the time-
delays might be purposely introduced into RNNs in order to
reflect the problem-specific nature in certain applications such
as mobile image processing [23], [26], [45]. In the context
N the past few years, recurrent neural networks (RNNg)f dynamic analysis, time-delays in RNNs contribute much to
which are composed of a large number of interconnedhe system complexities that are likely to cause performance
ed neurons, have been received successful applicationsdéterioration and undesirable behaviors such as oscillation,
a variety of fields including artificial intelligence, optimiza-divergence, chaos or even instability. Accordingly, time-delays
tion, control and signal processing [3], [7], [10], [14], [16],add substantial difficulties/challenges to the state estimation
[18], [19]. RNNs are typically implemented by simulatingoroblems of RNNs. As a result, in the past two decades or so,
the information processing mechanism of human brain oruch effort has been devoted to the state estimation problems
biological nervous systems, and the success of RNNSs fig RNNs suffering from various kinds of time-delays that
largely credited to their significant superiorities in parallelisminclude, but are not limited to, constant time-delays, time-
nonlinear mapping, self-learning adaptability, fault toleranogrying delays (TVDs), discrete time-delays, distributed time-
and associative memory. An increasingly attractive researdélays as well as mixed time-delays, see [1], [2], [20], [38],
topic along the line of RNN research is the dynamical analyq#0], [46]-[48] and the references therein.
problem that has led to a rich body of remarkable resultsAs is well known, theH, state estimation (HSE) method
appeared in the literature. For example, the analysis probleh@s proven to be a powerful tool for evaluating the distur-
for stability, adaptability, robustness and fault tolerance hatence attenuation/resistance capacity of the estimation error
dynamics, and this warrants the promising application prospect

This work was supported in part by the National Natural Science Foundatigf the HSE algorithm in aerospace aviation power system
of China under Grants 61933007, 61873148 and 61873169, the Royal Socig ' ! '

of the UK, and the Alexander von Humboldt Foundation of German '%asuring eqUi_pment* robotics and _Other_ fields [13]. [33]7
(Corresponding author: Guoliang Wei [37]. The main idea of the HSE algorithm is to construct an

D. Zhao is with University of Shanghai for Science and Technologwstimator, on the premise that the disturbance input is energy-
Shanghai 200093, China. (Emaihaodi 0907520@L.63. com) ded h th e fth fer f ion f
Z. Wang and X. Liu are with the Department of Computer Scienc@oun ed, such that th, norm of the transfer function from

Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdomthe disturbance input to the estimation error is no more than a
(Email: Zi dong. Wang@r unel . ac. uk) N deterministic value (also called disturbance attenuation level).
G. Wei is with the College of Science, University of Shang- . ith the Kal fil hod th h
hai for Science and Technology, Shanghai 200093, China. (Em i comparison with the Kalman filter method that assumes the

guol i ang. wei @ssst . edu. cn) noises to be strictly Gaussian, the HSE method works well

|. INTRODUCTION

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2020.3015376, IEEE Transactions on Neural Networks and Learning Systems

FINAL 2

under less stringent assumption that the process/measurenastimation performance, and this leads to another motivation
noises are arbitrary but energy-bounded. Up to date, the HRIE the current investigation.
problem has stirred considerable research interest as evidencédotivated by the above discussions, in this paper, we strive
by a large number of reported results that can be catedo-challenge the non-fragildi.. PIO design problem for
rized by employed methodologies such as the linear matthxe discrete-time recurrent neural network (DRNN) in the
inequality (LMI) approach and the Riccati matrix equatiopresence of TVDs. The main difficulties stem from 1) the
approach [8], [11], [21], [32]. For example, in [9], a theoreticadlesign of the non-fragile PIO for the DRNN that ensures
framework has been established by utilizing the recursitiee exponentially mean-square (EM-S) stability and the
Riccati equation method in order to cope with the distributguerformance of the estimation error dynamics; and 2) the es-
HSE problem for time-varying stochastic parameter systetablishment of a unified framework to quantify the joint impact
The event-based HSE problem has been investigated in [#2Jm the ROGVs and TVDs on estimation performance. The
for a class of nonlinear time-varying systems by means of thevelties of this paper are summarized as follodsthe first
LMI technique. attempt is made to investigate the new PIO design problem

During the past few decades, the so-called proportion&r DRNN; 2) a non-fragile PIO is proposed that maintains
integral observer (PIO) has received an ever-increasing inter@satisfactory estimation performance subject to simultaneous
from a variety of research communities such as manufacturipgesence of ROGVs and TVDs; and 3) sufficient conditions are
process, network communication systems, power supply sgerived to ensure the EM-S stability aifl,, performance of
tems and economic systems [4], [6], [41]. To be more specifitie estimation error dynamics.
the structure of a typical PIO consists of two terms, namely, The outline of this paper is as follows. Section Il formulates
the proportional term (proportional to the output estimatiotine PIO design problem for DRNN in the presence of TVDs. In
error) and the integral term (integral to the output estimatiddection I, both the EM-S stability and th€., performance
error), by which both the current and the historical informatioof the estimation error dynamics are analyzed. Sufficient
can be ideally exploited. In comparison with the conventionabnditions are characterized for the existence of the desired
Luenberger observer, the PIO possesses certain distinguishith@ by virtue of LMI technique. Section IV illustrates the
merits such as better steady-state accuracy, stronger robualidity of the designed PI1O via numerical simulation. Section
ness, more insensitive to exogenous noises and more freeddieoncludes this paper.
to observer design. Thanks to the extra integral term in itsNotation. For stochastic variables andv, E{u} (respec-
structure, the PIO has long been an attractive research tojpiely, E{u|v}) denotes the expectation pf(respectively, the
leading to fruitful results in the literature [5], [17], [36].expectation ofy conditional onv). I, refers to the identity
Nevertheless, to the best of authors’ knowledge, very fewatrix of dimensions x s and the symbok stands for the
results have been available on the PIO design problem flipsis for symmetric terms. Moreover, for a symmetric matrix
RNNSs, not to mention the case where the, performance Z, A\,.x(Z) and A,y (E) are the maximum and minimum
index is a major concern as well, and this leaves a gap tlagenvalues, respectively.
will be narrowed through our endeavors in this paper.

An implicit assumption with almost all available PIO design  |I. PROBLEM FORMULATION AND PRELIMINARIES
schemes is that the designed PIO can be precisely implementedonsider the following DRNN consisting af. neurons with
in practice. Such an assumption, however, is not alwayg/ps:
reasonable in reality because the imprecision in implementing

the PIO parameters is a frequently occurred phenomenon for ok +1) =Az(k) + Fé(x(k)) + Hj(x(k u h(k)))

various reasons such as 1) the finite precision of measuring + 9 (k, 2(k), x(k — h(k)))v(k)

equipment; 2) the round-off error in numerical calculation; 3) + Mw(k)

the random failures/repairs of system components; and 4) the y(k) =Ca(k) @)

requirement of safe-tuning margin reserved for practicing engi- (k) =Da(k)

neers [22], [44]. In other words, the gains of the designed PIOs _

might encounter undesired fluctuations during the execution x(1) =p(), 1€HE{-h ..., 1,0}

process, which could jeopardize the estimation performance t T "

a great extent. In this sense, a natural idea is to design a %erex(k) - [xl(.k) z3(k) - 2 (k)] _€R™ is the neural
state vectorA = diag{a1, aq, ..., a,} is a diagonal matrix

that is insensitive/invulnerable to the gain variations, and th\}\ﬁth positive entriesa; > 0 (i € M 2 {1.2 m})
gives rise to the so-calletbn-fragilePIO design problem. On ¢ T W '

the other hand, the gain variations might take place on a rdifl) = [p(k) va(k) - yp(k)]" € R” is the Jneasure-
dom basis owing mainly to the network-induced complexitidg@ent output, andz(k) = [z1(k) 22(k) --- 2 (k)] € R”
(e.g. quantizations, saturations, disorders or channel fadini§sfhe linear combination of the states to be estimated.
and changes of network conditions (e.g. network load, netwdtRd D are deterministic matrices with appropriate dlgnen-
congestion and network transmission rate) whose occurren8@s. £(z(k)) = [¢1(z1(k)) l2(w2(k)) -+ Ln(zm(k))]

are typically random [15], [24], [29]. Consequently, it isand j(z(k — A(k))) = [n(z1(k — (k) g2(z2(k —

of both theoretical importance and practical significance fgk))) -+ jm (zm(k — h(k)))]T are the neuron activation
design a non-fragile PIO in case of the randomly occurrirfgnctions andi(k) denotes the TVD.F = [fijlmxm and
gain variations (ROGVSs) in order to maintain the satisfactotif = [hi;]mxm represent the connection weight matrix and
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the delayed connection weigh matrix, respectivelyk) € R? Prob{o(k) =1} =5, Prob{o(k)=0}=1-0

is the exogenous disturbance input belongingst0, +co).

v(k) € R is a scalar Wiener process on the probability spagéereo € [0,1) ands € [0,1) are two known constants.
(Q, .#, Prob with Here, o(k) ando (k) are uncorrelated with (k).

The real matrice\Gp (k) and AG(k), which denote the

E{v(k)} =0, E{v(s)u(t)} = L ifs=t observer gain variations, are presented as follows:
’ 0, ifs#t
. AGp(k) =SpP(k)Tp %)
andd(-, -, 1) : R x R™ x R™ — R™ stands for the noise
() AG (k) =S1(k)T; (6)

intensity vector function.p(z) is a given initial condition
sequence.

Assumption 1The neuron activation functions(-) : R —
R andy;(-) : R — R (i € M) satisfy the following conditions:

whereSp, S;, Tp andT; are deterministic constant matrices
with appropriate dimensionsP(k) and I(k) € R!*! are
unknown matrix functions satisfying the following norm-

il 1C) e bounded conditions

)1 PT(k)P(k) <I @)
— _Ji(p) —2i(q) t <
Ji gﬁ <Ji» VpgeR 2 1) <. .

wherel;, I, j; andj;" are deterministic constants.

Remark 1:As discussed in [27], the constants,
j; andj; in Assumption 1 could be positive, negative, o

Remark 2:Compared with the conventional Luenberger
observer, the PIO proposed in (4) is equipped with an ex-
i e _ fra integral term, which renders more design freedom for
Z€ro. Consequently, the activation functiofg-) and j:(-) achieving better steady-state accuracy. On the other hand, the
(i € m) coqld be n_onmonotor_uc ar_ld more gen\_e_ral than ﬂbeams of the PIO are subject to undesirable fluctuations that
usual S'gqu fL.mctlon_s ar_ld Llp_schltz-type cor_1d|t|0ns. should be adequately tackled in order to mitigate the possible

Asijmp:cyllon ZTEle noise intensity vector f.unct|(ﬂ'(-, 5 '). " deterioration of the estimation performance. For this purpose,
RXR. . xR™ — R™ with 9(k, 0,0) = 0 satisfies the following the non-fragile P10 is put forward in (4) with hope to maintain
condition: the satisfactory estimation performance in the case of the gain

T (k,e,e)0(k,e,e) < 1€l e+ 19eTe, Ve,e € R™  (3) variations on the PIO parameter implementation.

Remark 3:It should be emphasized that, in practical engi-
neering, the gain variations are often inevitable due to a variety
of reasons such as finite precision, rounding errors, analog-
to-digital conversion and finite word length in computation.

wherer; and., are deterministic constants.
Assumption 3The positive integefi(k) in (1), which stands
for the TVD, satisfies

h<hk)<h keN Moreover, the phenomenon of gain variation may appear in
o - a random manner owing mainly to the random fluctuations
whereh andh are known positive integers. of the network environments (e.g. network load, transmission

_In this paper, the phenomenon of ROGVs is taken into copate and network bandwidth). Under such circumstances, the
sideration in order to accommodate the engineering practiegcurrence mechanism of the gain variations can be mathemat-
To estimate the neuron states of (1), a non-fragile PIO jisally modeled by Bernoulli processes with certain statistical

constructed as follows: properties.
&(k+1) =Az(k) + Fe(&(k)) + Hy(2(k — h(k))) Denoting Z(k) = (k) — &(k) and 2(k) = z(k) — 2(k),
(Gp + o(k)AGH (K ))(y(k) O (k)) }/(\;ﬁo(\)l\llast?’:un the estimation error dynamics from (1) and (4) as
+ (Gr + o (k) AG1 (k))€(k)
(k+1) =¢(k) + y(k) — C2(k) @) #(k +1) =Az(k) + Fi(k) + Hj(k — h(k))
(k) =Da(k) — (Gp + o(k)AGp(k))Ci(k)
£(0) =0 — (G1 + o(k)AG(k))E(R)
(1) =0, 1€9 + 9 (k, x(k),z(k — h(k)))v(k) ©)
wherei(k) € R™ is the estimate of:(k), 2(k) € R" is the + Mw(k)
estimate ofz(k) and £(k) € R is a vector representing the §(k+1) =¢(k) + Cz(k)
integral of the output estimation erro&p and G; are the Z(k) =Dz (k)
observer gain matrices to be designed. #(1) =p(1), 1€H

The mutually uncorrelated stochastic variableg (k) and
o(k), which govern the phenomenon of ROGVs, are tw@here
independent-identical-distribution Bernoulli sequences with ~
the following probabilities: U(k) 20(z(k )) - E(:E )
A

Prob{o(k) = 1} =5, Problo(k) =0}=1-0 (k= h(k))
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Furthermore, setting((k) = [27(k) % (k) gT(k)]T, we [1l. M AIN RESULTS
have the following augmented system: Lemma 1: [39] Let U = UT, X and Z be real matrices
x(k+1) =(A+ AG(k))x(k) + o(k)AGp (k) x (k) of appropriate dimensions, ané(k) satisfy Y (k)Y (k) < I.
+ 5 (k)AGr (k)x (k) + Hy(k — h(k) Then
+V(k, x(k), x(k — h(k)))v(k) U+XY(k)Z+ZTYT(k)XT <0 (13)
(10)
+ FU(k) + Moo (k) if and only if there exists a positive scalarsuch that
Z(k) =Dx(k) PR
x(2) =6(2), 1€9 U+rXX +EZ Z <0 (14)
whereg(z) £ [T (1) ¢ (2) lep}T and or .
r U kX 7
A Omxm 0m><p T
AL 0,0 A—GpC -Gy /-QZ( —g] OI <0 (15)
| Opsm C I, —h
[ F Opsm H Oy Lemma 2:Based on condition (2), we have
FE N Onxm  F |, HZ |Opxm H T
Opsmn Opicm Opm Opcm (e0) = £xtk)) (e08) = £-x(1)) < 0
T
D& [0 D Ol T2 [ O O] (500 = AR = Zox — 100
M
M2 [ M ] , 0(k) 2 [“g’(gg))} L 6(k) 2 o(k) — o X (J(k — h(k)) = T-x(k - h(k))) <0 (16)
Opxq ( ) where
J(@(k — h(k)) = A = + -
g(k—h(k))é[~ ,o(k) 2 o(k)—o ALY 0 0 A= 0 0
](k - h(k)) Ly = o L+t ol L= 0O L- 0
Ome Ome Om><p J,» —
AG(E) 2 [omm _GAGH(K)C —GAGH (k) g, 2 ["O i 8} R [“’O o 8}
Opxm Opxm Opxp L+ 2diag{lf, I, ..., 15y, L~ 2diag{i], Iy, ..., I}
Om><m Om><m Omxp A g Loz im A g Loz im
AGp(k) 2 |Omxm —AGp(k)C Opmxp JT2diag(jy, gy - dm)s I 2 diagliy, gy i)
Opxm Opxm Opxp Proof: From the definition oft(k), x(k) and combining
Omxm  Omxm  Omxp with the notations in (1), (9) and (10), we have
Ag](k) = Ome Ome _AGI(k) T
Opsm O Opicp (k) = £ox(k)) (€)= £-x(k))

e W”ﬁ] = (tet) - e) (8Gel0) ~ L)

i
V(k,x(k), x(k — h(k))) £ [ﬂ(kle(k)lx(k — h(k))

Opx1 + (Z(k) - L*:E(k))T (E(k) - L‘:E(k))

To facilitate later discussions, the definition of EM-S sta-
bility is given as follows. - N T _

Definition 1: The augmented system (10) with(k) = 0 :Z (Zi(xl(k)) — 1 xl(k)) (Zi (wi(k)) =1; Iz(k))
is said to be EM-S stable if there exist constakts- 0 and =t .
7 € (0,1) such that + Z (&- (zi(k)) — £ (2:(k)) — I (zi(k) — @(k)))

E{[Ix(k)|I*} < Ax" SugE{IW(z)IF}, VEeN.  (11) i=1
(4S8

The main purpose of this paper is to design a non-fragile
PIO in the form of (4) for the DRNN (1) with TVDs. and
Specifically, we aim to determine the observer gain matrices
Gp andGy such that the augmented system (10) satisfies the (
following two requirements simultaneously:

1) the augmented system (10) with(k) = 0 is EM-S X (J(k_ h(k)) = T-x(k - h(k)))

(k= (k) — Tex (k- h(k)))T

stable;

2) for a given disturbance attenuation levet- 0 and all
non-zerow(k), under the zero-initial condition, the output
Z(k) satisfies

STE{IE®)12) <62 lw (k)2 (12)
k=0 k=0
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- . r 6La(1-0), M2vE X2V

; (56 = k) = il = (k) ; (1 T) > NE; 2

=1 E 5(£ E +£ EJ’_) £2:—§(£++£_)

% (91 (sl = h(k)) = 57 (k = B(K)) ) i 1
FES(TIT + T, B2 =5 (T + T ).

+Z (jz x;(k — h(k )) —Ji(fi(k - h(k)))

Proof: To derive the criterion for the EM-S stability of the
augmented system (10), we construct the following Lyapunov-
Krasovskii functional:

T
= i (il = (k) = & (k = h(k)))

x (jz 2i(k — h(k))) — 2:(2:(k — h(k))) V(x(k)) = Vi(x(k)) + Va(x(k)) + Vas(x(k))  (20)
=57 @ik = (k) = &k = 1K) ). (18) Where

Furthermore, in light of (2), we obtain that Vl( (k )) éXT](Ck 1PX( )

(tilwah) =t aath)) - (Ca(wak) = 17 :(k)) <o, éu 2 X"

T

Ci(wi(K)) — 0 (2i(Rk)) — U (25 (k) — &4(k k—h k-

(6 0)) = 3(@1(0)) = 8 () = 2:(0))) b)) 2 Z

x (£ (k) = (@i (k) = 17 (k) = 2:(k) ) <0, =

T Then, the difference of the Lyapunov-Krasovskii functional
gili(k = (k) = i wi(k = h(k)) V(x(k)) is given as follows:
x (o5 (sth = k) = 37 ik = RR) ) <0, SV (x(K)) =8VA (x(R)) + SVa (x(R)) +SVa(x(k)) (D)

where

VA (x(k)) £E{VA (x(k + 1)) [x(k)} = Va (x(k))
SVa(x(k)) ZE{Va (x(k + 1)) |x(k)} — Va(x(k))

SVa(x (k) £E{V5(x(k + 1)) |x(k)} — Va(x(k)).

In the case ofw(k) = 0, calculating the difference of

Therefore, (16) is true and the proof is complete. m Vi(x(k)) along the trajectory of system (10) and taking the
mathematical expectation, one has

A. Exponentially Mean-Square Stability Analysis E {SVi(x(k))}

In this subsection, we shall give a sufficient condition forE {Vi (x(k + 1)) — Vi(x(k)) }
examining the EM-S stability of the augmented system (10):E AL A k) + k
Theorem 11 et the PIO gain matrice& p andG; be given. {(( TAGk ))X( )+ eR)AGP (R)x(k)
The system (10) is EM-S stable with(k) = 0 if there exist ~ + 3 (k)AG; (k)x(k) + Hy(k — h(k))

positive-definite matrice$’, @ and positive scalars, <1, T
satisfying the following inequalities: o + FUk) + V(k, x(k), x(k — (k)))v(k))
Cfon s x P((A+AG(R) x(k) + 8(K)AG (k)x(k)
- [Q o <0 B s mag +Hj(k n(w)
Pyt (A90) 4 Fu(h) + W (k. (). x(k — B(E) (k)
where — X" (k) Px(k)}
o s A T B[ X" () (AT + AGT () P(A + AG(R)) x(k) — X" (K
1= 03 0 —al = x Px(k) + (T (k) FT PFU(k) + 8 (k)xT (k)AGpT ( )
:AOA Ql;{ 8 ; ‘ff x PAGp(k)x(k) + 52 (k)x" (k) AG, T (k) PAG; (F)
Qg 2 A;A%;((k)) 0 0 0 x(k) + 77 (k — h(k ))HTPHy(k h(k)) + o7 (k)
_A—i—AQ(k) 0 F H xV(k x(k), x(k — h(k ))) PV(k x(k), X(k—h(k)))
O 2 -P+(h—h+1)Q+wul"T -l x v(k) + 26(k)x" (k)AGp™ (k)P (A + AG(k)) x (k)
D2 - Q+ I’ —wl, Qp2-IzeP! + 26 (k)T (k)AG; T (k)P (A+ AG(k))x(k)
O 2 Gl QL 2-0h, 02010 +257 (k= (k) HT P(A+ AG(K)) x (k) + 20" (k) FT P
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X (A+ AG(k))x (k) + 20" (k)Y (K, x(k), x(k = h(k))) "
XP(A+Ag( ))x (k) +2 () (k)x" ()Agz (k)P

x AGp(k)x(k) + 28(k)y" (k — h(k))H" PAGp (k)x(k)
+20(k)ET (k) FTPAGP (K)x (k) + 26(k)v” (k)

x V(k, x(k), x(k — h(k ))) PAGp(k)x (k)
+26(k)g" (k — h(k))HT PAGr (k) x (k) + 25 (k) (T (k) FT
x PAGr(k)x (k) + 25 (k)oT (k)Y (k, x (k). x(k — h(k)))"
xPAg[(k)X(k)—i-?j ( ( NHIPFU(k)

+ 20T (R)V (k, x (), x(k — h(k))) " PHy(k — h(k))

+ 207 (k)Y (k, x(k), X )TPH(k}

:E{ (k)(AT+AgT( ) P(A+ AG(k)) x (k)

_ Px(k) + (T (k) FTPFe(k)

+ 8*(k)X" (k)AGp™ (k) PAGp (k) x (k)

+ 62 (k)xT (k)AGr " (k) PAG (k)x(k)

+ 7" (k — (k) H" PHy(k — h(k))

k. x (), x(k = (k)" P
); x(k — h(k)))v(k)

+ 297 (k — h(k )HTP(A+AQ( ))x(k)
T

Furthermore, the differences % (x(k)) and Vs (x(k)) can

be computed as follows:

E{3Va(x(k))}

=E{Va(x(k +1)) — Va(x(k))}

k k—1
=E { > XT(wex(w) — xT(u)Qx(u)}
p=k—h(k+1)+1 p=k—n(k)
—E{XT(k)Qx(k) —x" (k= (k) Qx (k — h(k))

k—1 k—1
+ Y Xwexw - Y XT(M)QX(M)}
p=k—h(k+1)+1 p=k—h(k)+1
ZE{XT(k)QX(k) — X" (k= h(k))Qx (k — h(k))
k—1 k—h
- Xwxmw+ D X" (wQx(w)
p=k—h+1 p=k—h(k+1)+1
k—1
- XT(H)QX(H)}
pn=k—h(k)+1
<1E{XT(/€)QX(/€) (k — n(k))Qx (k — h(k))
k-h
+ X" (1) Qx () } (23)
pu=k—h+1

(22)

6

and

E{SVs(x(k)) }

=E {Va(x(k + 1)) = Va(x(k)) }
k—h+1 k k—h k

:IE{ > > X mex(w=Y ZXT(M)QX(M)}
v=k—h+20=V v=k—h+1p=V

:]E{ S XT(k)Qx(k)—xT(V)QX(V))}
v=k—h+1

:E{(h—ﬁ)XT(k)QX(k)— zf xT(u)Qx(u)}- (24)

p=k—h+1

Noting the statistical characteristics ofv(k) and
combining with (3) and 7(19b) we calculate the term

v (k)Y (k, x(k), x(k—=h(k)))" PV (k, x(k), x(k—h(k)))v(k)
(contained in (22)) as follows:

E{UT(k)V(k X (), x(k — h(k)" P
XV (k x(), XUk = B o(k) }
=V (k. x(k), x(k — (k)" P
x V(k, x(k), x(k — h(k)))
Cmax (P (k, x (k). x(k — h(k)))"
x V(k, x(k), x(k — h(k)))
<ot (k, Ix(k), Ix(k — h(k)))"
x 9k, Tx(k), Ix(k — h(k)))
<co (0" (W7 Tx(k)
+ 12X (k = (k)T Tk — h(R)) ).
Substituting (22)-(25) into (21), we have
E{SV (x(k))}
—E{SVi (x() + V2 (x(1) + V3 (x()) }
<E{ T (k )((AT+AQT (K)) P(A+ AG(k))
2(
)

(25)

(h h+1)Q — P+ 3*(k)AGpT (k)PAGp (k)
52 (k)AG; T (k) PAG (k) + §0L11TI) (k)

X7 (k= h(k)) (gOLQITI - Q)X(k: — h(k))

7" (k — h(k))HT PHy(k — h(k))
+ T () FTPFU(k) + 297 (k — h(k))HT PFL(k)
+ 257 (k — h(k))H" P(A+ AG(k)) x(k)
+ 207 (k) FT P(A + AG(K)) x(k)}

:E{XT(k) ((AT + AGT (k) P(A+ AG(K))

+(h—h+1)Q — P+ AGp" (k)PAGp (k)
+ 650G T (k) PAGr (k) + goblsz) (k)

XF (k= h(k)) (gszI - Q)X(k — h(k))

9" (k = h(k))HT PHy(k — h(k))
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+ T (k)F"PFe(k) + 25" (k — h(k))H" PF (k) where
+ 2.]T (k - h(k))HTP(A + Ag(k))X(k) m = )\max(P), é (ﬁ h+ 1)/\max(Q).
+205 (k) FTP(A+ Ag(k))X(k)} Furthermore, for any > 1, it follows from (29) that
—e (NN () 20 B{"1V ((k + 1)) ~ B0V ()
where =p" RSV (x(k) } +p" T E{V (x (k) }
Ny (k) 2 [\T(k) xT(k—h(k)) €T(k) 57 (k—h(k)]" - P"E{V(x(K))}
meoe e <P (= Amin(~TE{ (k) 2})
m = HO?I HS 1';%’3 I +0"(p = DE{V(x(k))}
i o I I <041(P)PkE{HX(k)H2}
' 2 — P+ (A" + AG” (k)) P (A + AG(k)) = )
_ E 31
(e Bt 10 + 5AGeT ) PAGR(H) +a2(p)u§ﬁp {Ix)I*} (31)
+6AG, T (k)PAG (k) + o I"T where
M2 2 - Q+quI’z, TP 2F'PF a ' B
4 20T Py, T2 FTP(A+ AG(K)) ZlEP; ;(— in;;(—ﬂz)p +(p—Dm
' 24T P(A + AG(K)), T2 2 HTPF. o ﬁ_p 7|7<2 N
From (16), it can be readily verified that (350][r§:1y0|rt1(t)egei 1>vvi%ch tfes';g;ﬂn;?;g: on both sides o
x(k) | [ x(k)
[ £k )} |:£2 I} [E(k)} <0, E{Pe‘;g(é’))}—E{V(X(O))}
x(k — )} [Jl *] [X(k—h(k))] <ai(p) X " E{Ix(R)|?
s O | R {0 2 PRI
Furthermore, it results from (26) that o-1 k-1 S )
+a E . (32)
E{SV (x(k)} 2( ];)Xk: {Ix)1%}
B T ) — qE{ B((:))r {g ﬂ Pc((llj))} } Additionally, the last item in (32) can be computed as
6—1 k—1
o [x(k - h<k>>r [m } {x(k - ﬁ(kz))} 2. FE{xI%
N Lok —nwE) | [T 1) [a(k— h(K)) k=0 y=k—
-1 v+h 6O—h—1 v+h 0—1 —
- {NlT(k)HzN1(k)} @) <Y 3+Y Y+ Z )p’“E{le(v)IIQ}
where —=—hk=0 v=0 k=v+1 p=0—hk=v+1
I, £11; + 11, LS B+ 2D S )
mit * * -l v——h =1 =
0 I =« * 7 0-1
Mg £ | o 3 33 plp"=1) v v)|)?
i 1%2 e i ;p E{Ix()*}- (33)
' 2 — gLy, NP2 -—oh Then, it follows from (32) and (33) that
I3 2 —al, I 2 —ql E{p’'V(x(0)} —E{V(x(0))}
Hgl £ _ 1Lo, H§2 L b
By virtue of the Schur Complement Lemma, we conclude <en(p) ZpkE{”X(k)”Q}
from (19a) thatll, < 0, which further indicates
E{SV (x(k)) } < =Amin(~T)E{[[x(F)[I*}.  (29) +as(p ( v)|*}

In what follows, we shall proceed to analyze the EM-
S stability of the augmented system (10). According to the o( ot — 1) y 9
definition of V(v (k)), we know that =TT ;P E{|Ixw)I*}
k-1 Fooqy 01
E{V(x(k)} <mE{Ix®)*} +m2 Y E{Ix()]?} (30) + %me(um)
v=0

v=k—h
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— where
kE k 2 )
(p)kzzop {Ix(®)1I* } Qs . . .
2
+ sup E{||¢(2)|| 34 0 Qf = * *
a(p) s E[60) ) (34 ontlas o _ar v
0 QfF 0 -l *
where ) O 0 0 0 —&I
2p"H —2p [MAGH(E) 0 0 0 0
Bi(p) Zai(p) + a 1AGp (k)
1(p) 1(p) 72(%’) b1 o - MAG(E) 0 0 0 0
N ﬁph—l AT IA4+AGE) 0O F H M
Bap) Zaz(p)h~— | D 00 0 0
A g -1 -1 -1
Since ﬂl(l) _ _)\min(_HZ) < 0 and hmp%oo ﬂl(p) _ 622 = d|ag{—P P -P P -P 5 _I}
400, we can infer that there exists a scalar- 1 such that Proof: Note thatQ < 0 is implied by ® < 0, hence the
Bi1(v) = 0, which implies that EM-S stability of the augmented system (10) in the case of
9 w(k) = 0 can be inferred immediately from Theorem 1.
E{y'V(x(0))} —E{V(x(0))} In what follows, in order to conduct th& ., performance
<B2(7) sup E{[|p(2)[|*}. (35) analysis for the augmented system (10) under non-zsi),
1ED we define the following index functional:
Noting L
AN R (R)E(E) — 62wt (R)w(k 40
B(VO(O)} < sw BT @9 2B WE -~ W= ) @0
€9
and where, is a non-negative integer.

According to the initial conditiony(0) = 0, we know that
E{GVOAO)} > Amin(PE{IX@)}  (37) V(x(0)) =0, and therefore

where ZE{Z k)z(k) — 8*w” (k)oo(k)}
(7 + 1) max{n, 72},

||l>

= Z E{SV (x(k)) + 27 (k)2(k) — *=" (k) (k) }

we obtain ~
E{][x(0)[*} < "mtf;()v)e pE{[6(x)||*} +HE{V(><(0))} —E{V(x(n+ 1)}
—Ar? supE{H(z)( )12} (38) =Y E{SV(x(k)) + 27 (k)2(k) — O°=" (k)w (k) }
€9 _
with —E{V(x(p+1))}
R C) “ () + 20T (FME
e L gZE{ k)R (k) 427 () MT P (A + AG(K))
Consequently, according to Definition 1, it is easy to conclude x(k) +20(k)@” (k)M" PAGp (k)x (k)
that the augmented system (10) witt{k) = 0 is EM-S stable, + 20( Yol (E)MTPAG(k)x (k) + 2w™ (k)
which completes the proof. [ ] % MTPH](k _ h(k)) + 2T ()MT PFU(k)
+ 2" (R)MT PV (k, x (), x(k — h(k)))v(k)
B. H., Performance Analysis i wT(k)MTPMw(k) + X(k)DTDx(k)

In this subsection, the analysis on tli&,, performance
constraint (12) will be conducted for the augmented system
(10) with non-zerow (k) under the zero-initial condition.

Theorem 2:Let the PIO gain matrice&/p, G; and the
disturbance attenuation levél > 0 be given. The system - -
(10) is EM-S stable and also satisfies tHe, performance x x(k) + 2" (k) M* PHy(k — h(k))
constraint (12) for all non-zereo(k) under the zero-initial + 2wt (k)YMTPFI(k) + =T (k) MT PMw(k)
condition if there exist positive-definite matricd3 () and T 9 T
positive scalarsy, <1, s» satisfying the following inequalities: X(k)D"Dx(k) — 6"w (k)w(k)}

—E{V(x(n+1)}

=S TERT(IR(0)} - E{V(x(u +1))}  (41)

_ 52wT(k)w(k)} —E{V(x(p+1))}

< XM: E{N{(k)ﬂzm(k)+2wT(k)MTP(A + AG(k))
k=0

@11 %
O = <0 39a
[621 922] (392)

P< %01 (39b)
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Where (00 0 0 0 0 0000
0 0 0 0 O Tp 0 0 0 O
T 1 & - - 2 J 2 A P
Ra(k) 2 [R] (k) =" (k)] M=l 0 77 M™% 0 0000
o * * % D 0 0 0 0 7 0 0 0 O
0 II22 « * * 1 a4
m, 2 [ 61 o i Ayy = d_lag{—P, —-P, —P, -1}
Hélll H%Q HAILS H34 % 111)\681731 8 61%8;1; 8
H51 0 H53 H54 H55 2 A
11 2 114 11 T4 ! ! Az 0 koXoS]  k20ST 0
;" =1y + 1137 + DD |0 0 0 0
H4212 éH%2 + H§2 Ag2 £ diag{—/-@ll, —Iill, —K/QI, —Iig]}
3! I + 115 Ot
33 21198 4 1138 Sp2 | Sp |, Tp2E[Oixm —TpC Opxp
0
H34 énﬁf4+1—[§4 A pXt
3! M7 P(A+ AG(k et
i M P+ AGE) S2| S|, T2 (O O —Ti]
Iy =M* PF Opst
I3t M7 PH [ PA Omm O] [PM
° 2 — 5% + MTPM. AL 0pum PA—GpC —Gi|, M2 |PM
On the basis of the Schur Complement Lemma, we conclude :OPAX’” ¢ I . Opxq
from (39a) thatE{ X7 (k)II4Xz(k)} < 0, which results in . PE  Omxm . PH  Omxm
" FE\Opxm PF |, H=Z|0pxm PH
> B2 (k)z(k)—6°@" (k) (k) }<—B{V (x(n+1))}. (42) LOpxm — Opxm Opxm  Opxm
k=0

Letting 1 — oo and consideringE{V(X(oo))} > 0, it In addition, the desired PIO gains are calculated by
follows from (42) that

S E{ET (k)i (k)} - 6% @ (k)w(k)
k=0 k=0 Proof: To begin with, in order to eliminate the parameter

S— ]E{V(X(OO))} <0 (43)  uncertainties occurred in the gain matrices, we rewrite (39a)
which further indicates in the form of (15). According to the notations in (10), we

Gp =P 'Gp, Gr=P'Gy. (46)

) oo have
S E{ET(R)E(k)} < 6° ) @ (k)w (k). (44)
k=0 k=0 AG(k) = aSpP(k)Tp + aSrI(k)Tr (47)
The proof of Theorem 2 is complete. [ | AGp (k) = SpP(k)Tp (48)
AGr(k) = SrI(k)Tr. (49)

C. Non-Fragile PIO Design

In this subsection, a non-fragile PIO is designed for the ) )
DRNN (1) by virtue of the LMI technique. Furthermore, Accordingly, we can rewrite (39a) as follows:
based on the designed observer, both the EM-S stability and
the H,, performance of the augmented system (10) can be © =Eg + Z1,P(k)Z1, + E1, P(k)=T,
simultaneously achieved.

: _ + Zog I(k)Z2, + 3 I(K)EL <0 50
Theorem 3:Let the disturbance attenuation lev@l> 0 251 (k)220 + 55, 1(R)Zs, (50)
be given. The system (10) is EM-S stable and also satisfies
the H,, performance constraint (12) for all non-zeta(k) WNere
under the zero-initial condition if there exist positive-definite
matricesP, @), matricesGp, GG; and positive scalarsy, <1, o 8 8 8 8 8
S, K1, ko Satisfying the following inequalities: =z 4 (P % =21 &
2, K1, K2 fying @gq 0[5(2)1@22}0 A0 F H M
A_[Au A*}<O (453) DO 0O 0 0
21 22 - & T ~oT T
< Eis 2[00 0 0 0 MSE 0 oS5 0
P< =T (45b) A
2 2. 2[T» 00 0 0 0 0 0 0
where 2,200 00 0 0 0 \WST 8T 0
1
A * é[

1 A oA
A?lé[ﬁéi]v“?é[éi Agj,Pédiag{P,P,I} E2, £[T7 00 0 0 0 0 0 0].
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Applying Lemma 1 to (50), we know that (50) holds if and
only if there exist positive scalars; and x2 such that the
following inequality holds:

=0 * * * *
nlElTs —r1d * * *

EIT 0 —k1l * * < 0. (51)
KQE,’;S 0 0 —Iig[ *

EQT 0 0 0 —IigI

Performing the congruence transformation to the inequality
(51) bydiadI,1,1,1,1,P,P,P,1,1,1,1,I} and utilizingthe
variable substitution

Gp = PGp, G;= PGy (52)

we conclude that (51) holds if and only if (45a) holds.

To this end, it follows immediately from Theorem 2 that,
with the non-fragile PIO gain matrice§p and G; given in
(46), the augmented system (10) is EM-S stable andHhe
performance constraint (12) is also met for any non-ze(b)
under the zero-initial condition. The proof is now complete.

[ |

Remark 4:In this paper, we aim to develop a non-fragile
H,, PIO design scheme for the DRNN with TVDs. In
Theorems 1-2, sufficient conditions are established such tha
the estimation error dynamics is EM-S stable and the
performance constraint is also satisfied. In Theorem 3, the
gains of PIO are characterized in terms of the solutions to
LMIs. It should be noted that the main results established
in Theorems 1-3 can be extended to more general system
with network-induced phenomena such as packet dropouts
guantizations, disorders or saturations [25], [30], [34], [37].

Remark 5:For now, the non-fragile PIO design problem
has been solved for the DRNN subject to ROGVs and TVDs.
Comparing with the existing results, the distinctive charac-
teristics of the main results in this paper are highlighted as
follows: 1) the design problem of non-fragile PI1O is, for the
first time, investigated for DRNN with TVDs; and 2) a unified
framework is established to account for the joint effects from
the ROGVs and the TVDs on estimation performance.

IV. NUMERICAL SIMULATION

12

10

0.8

0.6

0.4

0.2

-0.21 V
-0.4

|frertronncinares

—— Actual state (k)

—»— Estimation of x; (k)

0

I
10

. . . . . . . .
20 30 40 50 60 70 80 90 100
Time(k)

Fig. 1: Trajectories of state; (k) and its estimate.

0.6

0.4

0.2

-0.4

Al

A

—— Actual state z(k)
—»— Estimation of @ (k)

-0.8
0

10

20 30 40 50 60 70 80 90 100
Time(k)

Fig. 2: Trajectories of states(k) and its estimate.

In this section, we shall provide a simulation example in The activation functions are taken as

order to demonstrate the validity of the obtained theoretical

results on the proposed PIO design problem for a class of tanh (0.6s) — 0.2sins
DRNNS. l(s) = tanh (—0.4s)
Consider a DRNN described by (1) with corresponding L tanh (—0.2s)
parameters as follows: tanh (—0.4s) — 0.2 cos s
- : = tanh (0.2
0681 0 0 1 1) o Eg 43 , VeeR
A= 0 0.637 0 , M=1]15 '
| 0 0 0.806 2 which meet (2) with
05 0104 1.3 04 1.9 Iy =-02, If=08
F=102 03 01|, C= 04 01 12 L L
0.2 03 04 co A ly ==04, I3y =0
¥ 1 _ I3 =—-02, I3 =0
0.3 0.1-02 0.3 04 0.1 ° "
H=102 03 04|, D= 02 01 03l g7 =-02, j=06
0.1 0.2 0.3] - jg =0, ji =02
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2 T T T 2 T T T T T T T T T
—— Actual state z3(k) ‘—State estimation error 7 (L)‘
—«—Estimation of z3(k) =0 7
15 . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
’ 0 10 20 30 40 50 60 70 80 90 100
Time(k)
5 T T T T
1 1 ‘— State estimation error ig(k)‘
5
05 ] 5 L
0 10 20 30 40 50 60 70 80 90 100
. o ] Time(k)
a S . e o |
—— State estimation error Z3(k)
0 g 0 4
-
10 e
-0.5 L L L L L L L L L 0 10 20 30 40 50 60 70 80 90 100
0 10 20 30 40 50 60 70 80 90 100 Time(k)
Time(k)
Fig. 3: Trajectories of states(k) and its estimate. Fig. 5: Trajectories of estimation errafk) with Luenberger
observer.
0.5 T T T
—— State estimation error Z; (k)
. e 29(—2) = w2(—1) = 22(0) = —0.5 anday(—3) = w3(—2) =
& 1'3(—1):.%'3(0):1.
05 e By means of the MATLAB software (with the YALMIP
0 10 20 30 40 50 60 70 80 90 100 i .
Time(K) 3.0), the solutions to LMIs (45a)-(45b) and the desired PIO
08 . gains can be obtained immediately as follows (only the main

‘—Statc estimation error j:.z(k-)‘

= | parameters are listed):
\-o.SU A A [4.1777  —1.2340 —1.5194

0 10 20 30 40 ‘50 60 70 80 90 100 p — _1 2340 3 6153 _2 1519
Time(k) ' i i
- —15194 —2.1519 2.6332
—— State estimation error Z3(k -
L os == ]| 18502 —1.3418
& ot | Gp =1 03349 —0.5081|, x; = 0.2708
-0.50 iO 2‘0 1‘50 ‘40 ‘50 ‘60 ‘70 ‘ 80 ‘ 90 100 .__ 1 3323 1 : 1808
Time(k) [—1.6524 6.9657
Gr=|—1.0431 9.8022]| , ko = 0.3582
Fig. 4: Trajectories of estimation erraik) with PIO. [ 12087 1.7936

Go =6.4878, G = 7.2499
G2 =6.6950, g3 = 6.7031.

jz =0, ji =04 In order to manifest the validity of the proposed PIO design
scheme, the simulation results are shown in Figs. 1-5. Figs. 1-
The corresponding parameters of gain perturbation matricgsyepict the neuron states and their estimates and Fig. 4
in non-fragile PIO are given as follows: plots the trajectories of estimation err@(k), from which
we can confirm that the desired PIO performs quite well as

Sp=1[06 05 04]", Tp=[01 02] J | PIO | quite

e expected. Fig. 5 depicts the trajectories of estimation error
Sr=[05 04 03], Tr=[02 03] #(k) with Luenberger observer. It can be concluded from the
P(k) =0.8sin(k), I(k)=0.6cos(k). above simulation results that the PIO proposed in this paper

. outperforms Luenberger observer adopted in most literature
In this example, the probabilities of the ROGVs are assum%a zstimation perforn?ance P

to bep = 0.65 anda = 0.7. The external disturbance is taken
as w(k) = 0.8e7 %2 cos(k) and the disturbance attenuation
level is given asd = 0.28. The TVD is chosen a&(k) =

3 — (sin(k))?, from which it is easy to verify that the upper In this paper, we have dealt with the non-fragiie, P10
bound and the lower bound of the TVD alie= 3 andi = 1, design problem for a kind of DRNNs subject to ROGVs and
respectively. Moreover, the initial values of the states are sSB¥Ds. The phenomena of ROGVs concerned in this paper
aszi(—3) = z1(—2) = z1(—1) = z1(0) = 0.5, z2(—3) = have been governed by Bernoulli distributed random variables

V. CONCLUSION
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with certain probabilities for the sake of accommodating thHe7)]
practical situations. A novel non-fragile P1O has been designed
which can exhibit a satisfactory estimation performance in the
simultaneous presence of ROGVs and TVDs. Furthermores]
the EM-S stability andH,., performance of the estimation
error dynamics have been analyzed respectively by meg
of Lyapunov theory, and the desired PIO gains have been
obtained by resorting to LMI technique. A simulation example

has been finally presented to reveal the effectiveness Efﬂﬂ

superiority of the proposed design method. It is worth noting

that the current method and results could be extended to

the RNNs with constant time-delays, discrete time—dela)%,l]

distributed time-delays or mixed time-delays [2], [46], [47].
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