
FINAL 1

Non-FragileH∞ State Estimation for Recurrent
Neural Networks with Time-Varying Delays: On

Proportional-Integral Observer Design
Di Zhao, Zidong Wang, Guoliang Wei and Xiaohui Liu

Abstract—In this paper, a novel proportional-integral observer
(PIO) design approach is proposed for the non-fragileH∞

state estimation problem for a class of discrete-time recurrent
neural networks with time-varying delays. The developed PIO is
equipped with more design freedom leading to better steady-state
accuracy as compared with the conventional Luenberger observ-
er. The phenomena of randomly occurring gain variations, which
are characterized by Bernoulli distributed random variables
with certain probabilities, are taken into consideration in the
implementation of the addressed PIO. Attention is focused on the
design of a non-fragile PIO such that the error dynamics of the
state estimation is exponentially stable in mean-square sense and
the prescribedH∞ performance index is also achieved. Sufficient
conditions for the existence of the desired PIO are established
by virtue of the Lyapunov-Krasovskii functional approach and
the matrix inequality technique. Finally, a simulation example is
provided to demonstrate the effectiveness of the proposed PIO
design scheme.

Index Terms—Recurrent neural networks, proportional-
integral observer, non-fragile state estimation,H∞ performance,
randomly occurring gain variations, time-varying delays.

I. I NTRODUCTION

I N the past few years, recurrent neural networks (RNNs),
which are composed of a large number of interconnect-

ed neurons, have been received successful applications in
a variety of fields including artificial intelligence, optimiza-
tion, control and signal processing [3], [7], [10], [14], [16],
[18], [19]. RNNs are typically implemented by simulating
the information processing mechanism of human brain or
biological nervous systems, and the success of RNNs is
largely credited to their significant superiorities in parallelism,
nonlinear mapping, self-learning adaptability, fault tolerance
and associative memory. An increasingly attractive research
topic along the line of RNN research is the dynamical analysis
problem that has led to a rich body of remarkable results
appeared in the literature. For example, the analysis problems
for stability, adaptability, robustness and fault tolerance have
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been extensively investigated in [31], [35], [42], [45]. On
the other hand, it is well recognized that the acquisition of
the state information of certain primary neurons is critically
important in enabling RNNs to perform specific tasks such as
optimization, classification and approximation. Unfortunately,
it is often the case that the neuron state information is not
readily available due mainly to the inherent characteristics
of RNNs such as huge dimensions, tight couplings, strong
nonlinearities and resource constraints. As such, a natural yet
efficient way is to estimate the states of the RNNs through
available information of the network measurements, which
gives rise to the state estimation issue of RNNs [28], [43].

Time-delays are well known to be inevitable in RNNs for
three reasons identified as follows: 1) the speed of informa-
tion transmission between neurons is limited due to physical
constraints; 2) the switching speed of electronic components
(e.g. the amplifiers) among large-scale integrated circuits when
implementing RNNs is inherently bounded; and 3) the time-
delays might be purposely introduced into RNNs in order to
reflect the problem-specific nature in certain applications such
as mobile image processing [23], [26], [45]. In the context
of dynamic analysis, time-delays in RNNs contribute much to
the system complexities that are likely to cause performance
deterioration and undesirable behaviors such as oscillation,
divergence, chaos or even instability. Accordingly, time-delays
add substantial difficulties/challenges to the state estimation
problems of RNNs. As a result, in the past two decades or so,
much effort has been devoted to the state estimation problems
for RNNs suffering from various kinds of time-delays that
include, but are not limited to, constant time-delays, time-
varying delays (TVDs), discrete time-delays, distributed time-
delays as well as mixed time-delays, see [1], [2], [20], [38],
[40], [46]–[48] and the references therein.

As is well known, theH∞ state estimation (HSE) method
has proven to be a powerful tool for evaluating the distur-
bance attenuation/resistance capacity of the estimation error
dynamics, and this warrants the promising application prospect
of the HSE algorithm in aerospace, aviation, power system,
measuring equipment, robotics and other fields [13], [33],
[37]. The main idea of the HSE algorithm is to construct an
estimator, on the premise that the disturbance input is energy-
bounded, such that theH∞ norm of the transfer function from
the disturbance input to the estimation error is no more than a
deterministic value (also called disturbance attenuation level).
In comparison with the Kalman filter method that assumes the
noises to be strictly Gaussian, the HSE method works well
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under less stringent assumption that the process/measurement
noises are arbitrary but energy-bounded. Up to date, the HSE
problem has stirred considerable research interest as evidenced
by a large number of reported results that can be catego-
rized by employed methodologies such as the linear matrix
inequality (LMI) approach and the Riccati matrix equation
approach [8], [11], [21], [32]. For example, in [9], a theoretical
framework has been established by utilizing the recursive
Riccati equation method in order to cope with the distributed
HSE problem for time-varying stochastic parameter system.
The event-based HSE problem has been investigated in [12]
for a class of nonlinear time-varying systems by means of the
LMI technique.

During the past few decades, the so-called proportional-
integral observer (PIO) has received an ever-increasing interest
from a variety of research communities such as manufacturing
process, network communication systems, power supply sys-
tems and economic systems [4], [6], [41]. To be more specific,
the structure of a typical PIO consists of two terms, namely,
the proportional term (proportional to the output estimation
error) and the integral term (integral to the output estimation
error), by which both the current and the historical information
can be ideally exploited. In comparison with the conventional
Luenberger observer, the PIO possesses certain distinguishing
merits such as better steady-state accuracy, stronger robust-
ness, more insensitive to exogenous noises and more freedom
to observer design. Thanks to the extra integral term in its
structure, the PIO has long been an attractive research topic
leading to fruitful results in the literature [5], [17], [36].
Nevertheless, to the best of authors’ knowledge, very few
results have been available on the PIO design problem for
RNNs, not to mention the case where theH∞ performance
index is a major concern as well, and this leaves a gap that
will be narrowed through our endeavors in this paper.

An implicit assumption with almost all available PIO design
schemes is that the designed PIO can be precisely implemented
in practice. Such an assumption, however, is not always
reasonable in reality because the imprecision in implementing
the PIO parameters is a frequently occurred phenomenon for
various reasons such as 1) the finite precision of measuring
equipment; 2) the round-off error in numerical calculation; 3)
the random failures/repairs of system components; and 4) the
requirement of safe-tuning margin reserved for practicing engi-
neers [22], [44]. In other words, the gains of the designed PIOs
might encounter undesired fluctuations during the execution
process, which could jeopardize the estimation performance to
a great extent. In this sense, a natural idea is to design a PIO
that is insensitive/invulnerable to the gain variations, and this
gives rise to the so-callednon-fragilePIO design problem. On
the other hand, the gain variations might take place on a ran-
dom basis owing mainly to the network-induced complexities
(e.g. quantizations, saturations, disorders or channel fadings)
and changes of network conditions (e.g. network load, network
congestion and network transmission rate) whose occurrences
are typically random [15], [24], [29]. Consequently, it is
of both theoretical importance and practical significance to
design a non-fragile PIO in case of the randomly occurring
gain variations (ROGVs) in order to maintain the satisfactory

estimation performance, and this leads to another motivation
for the current investigation.

Motivated by the above discussions, in this paper, we strive
to challenge the non-fragileH∞ PIO design problem for
the discrete-time recurrent neural network (DRNN) in the
presence of TVDs. The main difficulties stem from 1) the
design of the non-fragile PIO for the DRNN that ensures
the exponentially mean-square (EM-S) stability and theH∞

performance of the estimation error dynamics; and 2) the es-
tablishment of a unified framework to quantify the joint impact
from the ROGVs and TVDs on estimation performance. The
novelties of this paper are summarized as follows:1) the first
attempt is made to investigate the new PIO design problem
for DRNN; 2) a non-fragile PIO is proposed that maintains
a satisfactory estimation performance subject to simultaneous
presence of ROGVs and TVDs; and 3) sufficient conditions are
derived to ensure the EM-S stability andH∞ performance of
the estimation error dynamics.

The outline of this paper is as follows. Section II formulates
the PIO design problem for DRNN in the presence of TVDs. In
Section III, both the EM-S stability and theH∞ performance
of the estimation error dynamics are analyzed. Sufficient
conditions are characterized for the existence of the desired
PIO by virtue of LMI technique. Section IV illustrates the
validity of the designed PIO via numerical simulation. Section
V concludes this paper.

Notation. For stochastic variablesµ andν, E{µ} (respec-
tively, E{µ|ν}) denotes the expectation ofµ (respectively, the
expectation ofµ conditional onν). Is refers to the identity
matrix of dimensions × s and the symbol∗ stands for the
ellipsis for symmetric terms. Moreover, for a symmetric matrix
Ξ, λmax(Ξ) and λmin(Ξ) are the maximum and minimum
eigenvalues, respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following DRNN consisting ofm neurons with
TVDs:

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




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
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
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x(k + 1) =Ax(k) + Fℓ
(

x(k)
)

+H
(

x(k − ~(k))
)

+ ϑ
(

k, x(k), x(k − ~(k))
)

v(k)

+M̟(k)

y(k) =Cx(k)

z(k) =Dx(k)

x(ı) =ϕ(ı), ı ∈ H , {−~̄, . . . , −1, 0}

(1)

wherex(k) =
[

x1(k) x2(k) · · · xm(k)
]T ∈ R

m is the neural
state vector,A = diag{a1, a2, . . . , am} is a diagonal matrix
with positive entriesai > 0 (i ∈ M , {1, 2, . . . ,m}),
y(k) =

[

y1(k) y2(k) · · · yp(k)
]T ∈ R

p is the measure-
ment output, andz(k) = [z1(k) z2(k) · · · zr(k)]

T ∈ R
r

is the linear combination of the states to be estimated.C

and D are deterministic matrices with appropriate dimen-
sions. ℓ

(

x(k)
)

=
[

ℓ1
(

x1(k)
)

ℓ2
(

x2(k)
)

· · · ℓm
(

xm(k)
)]T

and 
(

x(k − ~(k))
)

=
[

1
(

x1(k − ~(k))
)

2
(

x2(k −
~(k))

)

· · · m
(

xm(k − ~(k))
)]T

are the neuron activation
functions and~(k) denotes the TVD.F = [fij ]m×m and
H = [hij ]m×m represent the connection weight matrix and
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the delayed connection weigh matrix, respectively.̟(k) ∈ R
q

is the exogenous disturbance input belonging tol2[0,+∞).
v(k) ∈ R is a scalar Wiener process on the probability space
(Ω, F , Prob) with

E{v(k)} = 0, E{v(s)v(t)} =

{

1, if s = t

0, if s 6= t

and ϑ(·, ·, ·) : R × R
m × R

m → R
m stands for the noise

intensity vector function.ϕ(ı) is a given initial condition
sequence.

Assumption 1:The neuron activation functionsℓi(·) : R →
R andi(·) : R → R (i ∈ M) satisfy the following conditions:

l−i 6
ℓi(p)− ℓi(q)

p− q
6 l+i

j−i 6
i(p)− i(q)

p− q
6 j+i , ∀p, q ∈ R (2)

wherel−i , l+i , j−i andj+i are deterministic constants.
Remark 1: As discussed in [27], the constantsl−i , l+i ,

j−i and j+i in Assumption 1 could be positive, negative, or
zero. Consequently, the activation functionsℓi(·) and i(·)
(i ∈ M) could be nonmonotonic and more general than the
usual sigmoid functions and Lipschitz-type conditions.

Assumption 2:The noise intensity vector functionϑ(·, ·, ·) :
R×R

m×R
m → R

m with ϑ(k, 0, 0) = 0 satisfies the following
condition:

ϑT (k, ǫ, ε)ϑ(k, ǫ, ε) 6 ι1ǫ
T ǫ+ ι2ε

T ε, ∀ǫ, ε ∈ R
m (3)

whereι1 and ι2 are deterministic constants.
Assumption 3:The positive integer~(k) in (1), which stands

for the TVD, satisfies

~ 6 ~(k) 6 ~̄, k ∈ N

where~ and ~̄ are known positive integers.
In this paper, the phenomenon of ROGVs is taken into con-

sideration in order to accommodate the engineering practice.
To estimate the neuron states of (1), a non-fragile PIO is
constructed as follows:

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
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






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




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
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

x̂(k + 1) =Ax̂(k) + Fℓ
(

x̂(k)
)

+H
(

x̂(k − ~(k))
)

+
(

GP + ̺(k)∆GP (k)
)(

y(k)− Cx̂(k)
)

+
(

GI + σ(k)∆GI (k)
)

ξ(k)

ξ(k + 1) =ξ(k) + y(k)− Cx̂(k)

ẑ(k) =Dx̂(k)

ξ(0) =0

x̂(ı) =0, ı ∈ H

(4)

where x̂(k) ∈ R
m is the estimate ofx(k), ẑ(k) ∈ R

r is the
estimate ofz(k) and ξ(k) ∈ R

p is a vector representing the
integral of the output estimation error.GP and GI are the
observer gain matrices to be designed.

The mutually uncorrelatedstochastic variables̺ (k) and
σ(k), which govern the phenomenon of ROGVs, are two
independent-identical-distribution Bernoulli sequences with
the following probabilities:

Prob{̺(k) = 1} =¯̺, Prob{̺(k) = 0} = 1− ¯̺

Prob{σ(k) = 1} =σ̄, Prob{σ(k) = 0} = 1− σ̄

where ¯̺ ∈ [0, 1) and σ̄ ∈ [0, 1) are two known constants.
Here,̺(k) andσ(k) are uncorrelated withv(k).

The real matrices∆GP (k) and∆GI(k), which denote the
observer gain variations, are presented as follows:

∆GP (k) =SPP (k)TP (5)

∆GI(k) =SII(k)TI (6)

whereSP , SI , TP andTI are deterministic constant matrices
with appropriate dimensions,P (k) and I(k) ∈ R

t×t are
unknown matrix functions satisfying the following norm-
bounded conditions

PT (k)P (k) 6I (7)

IT (k)I(k) 6I. (8)

Remark 2: Compared with the conventional Luenberger
observer, the PIO proposed in (4) is equipped with an ex-
tra integral term, which renders more design freedom for
achieving better steady-state accuracy. On the other hand, the
gains of the PIO are subject to undesirable fluctuations that
should be adequately tackled in order to mitigate the possible
deterioration of the estimation performance. For this purpose,
the non-fragile PIO is put forward in (4) with hope to maintain
the satisfactory estimation performance in the case of the gain
variations on the PIO parameter implementation.

Remark 3:It should be emphasized that, in practical engi-
neering, the gain variations are often inevitable due to a variety
of reasons such as finite precision, rounding errors, analog-
to-digital conversion and finite word length in computation.
Moreover, the phenomenon of gain variation may appear in
a random manner owing mainly to the random fluctuations
of the network environments (e.g. network load, transmission
rate and network bandwidth). Under such circumstances, the
occurrence mechanism of the gain variations can be mathemat-
ically modeled by Bernoulli processes with certain statistical
properties.

Denoting x̃(k) , x(k) − x̂(k) and z̃(k) , z(k) − ẑ(k),
we obtain the estimation error dynamics from (1) and (4) as
follows:
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








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












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
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x̃(k + 1) =Ax̃(k) + F ℓ̃(k) +H̃
(

k − ~(k)
)

−
(

GP + ̺(k)∆GP (k)
)

Cx̃(k)

−
(

GI + σ(k)∆GI(k)
)

ξ(k)

+ ϑ
(

k, x(k), x(k − ~(k))
)

v(k)

+M̟(k)

ξ(k + 1) =ξ(k) + Cx̃(k)

z̃(k) =Dx̃(k)

x̃(ı) =ϕ(ı), ı ∈ H

(9)

where

ℓ̃(k) ,ℓ
(

x(k)
)

− ℓ
(

x̂(k)
)

̃
(

k − ~(k)
)

,
(

x(k − ~(k))− 
(

x̂(k − ~(k))
)

.
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Furthermore, settingχ(k) ,
[

xT (k) x̃T (k) ξT (k)
]T

, we
have the following augmented system:





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








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

χ(k + 1) =
(

A+∆G(k)
)

χ(k) + ˜̺(k)∆GP (k)χ(k)

+ σ̃(k)∆GI(k)χ(k) +H
(

k − ~(k)
)

+ V
(

k, χ(k), χ(k − ~(k))
)

v(k)

+ Fℓ(k) +M̟(k)

z̃(k) =Dχ(k)

χ(ı) =φ(ı), ı ∈ H

(10)

whereφ(ı) ,
[

ϕT (ı) ϕT (ı) 01×p

]T
and

A ,





A 0m×m 0m×p

0m×m A−GPC −GI

0p×m C Ip





F ,





F 0m×m

0m×m F

0p×m 0p×m



 , H ,





H 0m×m

0m×m H

0p×m 0p×m





D ,
[

0r×m D 0r×p

]

, I ,
[

Im 0m×m 0m×p

]

M ,





M

M

0p×q



 , ℓ(k) ,

[

ℓ(x(k))

ℓ̃(k)

]

, ˜̺(k) , ̺(k)− ¯̺


(

k − ~(k)
)

,

[


(

x(k − ~(k))
)

̃
(

k − ~(k)
)

]

, σ̃(k) , σ(k)− σ̄

∆G(k) ,





0m×m 0m×m 0m×p

0m×m − ¯̺∆GP (k)C −σ̄∆GI(k)
0p×m 0p×m 0p×p





∆GP (k) ,





0m×m 0m×m 0m×p

0m×m −∆GP (k)C 0m×p

0p×m 0p×m 0p×p





∆GI(k) ,





0m×m 0m×m 0m×p

0m×m 0m×m −∆GI(k)
0p×m 0p×m 0p×p





V
(

k, χ(k), χ(k − ~(k))
)

,





ϑ
(

k, Iχ(k), Iχ(k − ~(k))
)

ϑ
(

k, Iχ(k), Iχ(k − ~(k))
)

0p×1



 .

To facilitate later discussions, the definition of EM-S sta-
bility is given as follows.

Definition 1: The augmented system (10) with̟(k) = 0
is said to be EM-S stable if there exist constantsλ > 0 and
π ∈ (0, 1) such that

E{‖χ(k)‖2} 6 λπk sup
ı∈H

E{‖φ(ı)‖2}, ∀k ∈ N. (11)

The main purpose of this paper is to design a non-fragile
PIO in the form of (4) for the DRNN (1) with TVDs.
Specifically, we aim to determine the observer gain matrices
GP andGI such that the augmented system (10) satisfies the
following two requirements simultaneously:

1) the augmented system (10) with̟(k) = 0 is EM-S
stable;

2) for a given disturbance attenuation levelδ > 0 and all
non-zero̟(k), under the zero-initial condition, the output
z̃(k) satisfies

∞
∑

k=0

E
{

‖z̃(k)‖2
}

6 δ2
∞
∑

k=0

‖̟(k)‖2. (12)

III. M AIN RESULTS

Lemma 1: [39] Let U = UT , X andZ be real matrices
of appropriate dimensions, andY (k) satisfyY T (k)Y (k) 6 I.
Then

U +XY (k)Z + ZTY T (k)XT < 0 (13)

if and only if there exists a positive scalarκ such that

U + κXXT +
1

κ
ZTZ < 0 (14)

or




U κX ZT

κXT −κI 0
Z 0 −κI



 < 0. (15)

Lemma 2:Based on condition (2), we have
(

ℓ(k)− L+χ(k)
)T(

ℓ(k)− L−χ(k)
)

6 0
(


(

k − ~(k)
)

− J+χ
(

k − ~(k)
)

)T

×
(


(

k − ~(k)
)

− J−χ
(

k − ~(k)
)

)

6 0 (16)

where

L+ ,

[

L+ 0 0
0 L+ 0

]

, L− ,

[

L− 0 0
0 L− 0

]

J+ ,

[

J+ 0 0
0 J+ 0

]

, J− ,

[

J− 0 0
0 J− 0

]

L+ ,diag{l+1 , l+2 , . . . , l+m}, L− , diag{l−1 , l−2 , . . . , l−m}
J+ ,diag{j+1 , j+2 , . . . , j+m}, J− , diag{j−1 , j−2 , . . . , j−m}.

Proof: From the definition of̃x(k), χ(k) and combining
with the notations in (1), (9) and (10), we have

(

ℓ(k)− L+χ(k)
)T(

ℓ(k)− L−χ(k)
)

=
(

ℓ(x(k)) − L+x(k)
)T(

ℓ(x(k)) − L−x(k)
)

+
(

ℓ̃(k)− L+x̃(k)
)T(

ℓ̃(k)− L−x̃(k)
)

=

m
∑

i=1

(

ℓi
(

xi(k)
)

− l+i xi(k)
)T(

ℓi
(

xi(k)
)

− l−i xi(k)
)

+

m
∑

i=1

(

ℓi
(

xi(k)
)

− ℓi
(

x̂i(k)
)

− l+i
(

xi(k)− x̂i(k)
)

)T

×
(

ℓi
(

xi(k)
)

− ℓi
(

x̂i(k)
)

− l−i
(

xi(k)− x̂i(k)
)

)

(17)

and
(


(

k − ~(k)
)

− J+χ
(

k − ~(k)
)

)T

×
(


(

k − ~(k)
)

− J−χ
(

k − ~(k)
)

)

=
(


(

x(k − ~(k))
)

− J+x(k − ~(k))
)T

×
(


(

x(k − ~(k))
)

− J−x(k − ~(k))
)

+
(

̃(k − ~(k))− J+x̃(k − ~(k))
)T

×
(

̃(k − ~(k))− J−x̃(k − ~(k))
)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TNNLS.2020.3015376, IEEE Transactions on Neural Networks and Learning Systems



FINAL 5

=
m
∑

i=1

(

i
(

xi(k − ~(k))
)

− j+i xi(k − ~(k))
)T

×
(

i
(

xi(k − ~(k))
)

− j−i xi(k − ~(k))
)

+

m
∑

i=1

(

i
(

xi(k − ~(k))
)

− i
(

x̂i(k − ~(k))
)

− j+i
(

xi(k − ~(k))− x̂i(k − ~(k))
)

)T

×
(

i
(

xi(k − ~(k))
)

− i
(

x̂i(k − ~(k))
)

− j−i
(

xi(k − ~(k))− x̂i(k − ~(k))
)

)

. (18)

Furthermore, in light of (2), we obtain that
(

ℓi
(

xi(k)
)

− l+i xi(k)
)T(

ℓi
(

xi(k)
)

− l−i xi(k)
)

6 0,
(

ℓi
(

xi(k)
)

− ℓi
(

x̂i(k)
)

− l+i
(

xi(k)− x̂i(k)
)

)T

×
(

ℓi
(

xi(k)
)

− ℓi
(

x̂i(k)
)

− l−i
(

xi(k)− x̂i(k)
)

)

6 0,
(

i
(

xi(k − ~(k))
)

− j+i xi(k − ~(k))
)T

×
(

i
(

xi(k − ~(k))
)

− j−i xi(k − ~(k))
)

6 0,
(

i
(

xi(k − ~(k))
)

− i
(

x̂i(k − ~(k))
)

− j+i
(

xi(k − ~(k))− x̂i(k − ~(k))
)

)T

×
(

i
(

xi(k − ~(k))
)

− i
(

x̂i(k − ~(k))
)

− j−i
(

xi(k − ~(k))− x̂i(k − ~(k))
)

)

6 0.

Therefore, (16) is true and the proof is complete.

A. Exponentially Mean-Square Stability Analysis

In this subsection, we shall give a sufficient condition for
examining the EM-S stability of the augmented system (10).

Theorem 1:Let the PIO gain matricesGP andGI be given.
The system (10) is EM-S stable with̟(k) = 0 if there exist
positive-definite matricesP , Q and positive scalarsς0, ς1, ς2
satisfying the following inequalities:











Ω =

[

Ω11 ∗
Ω21 Ω22

]

< 0 (19a)

P <
ς0

2
I (19b)

where

Ω11 ,









Ω1
11 ∗ ∗ ∗
0 Ω2

11 ∗ ∗
Ω3

11 0 −ς1I ∗
0 Ω4

11 0 −ς2I









Ω21 ,





λ1∆GP (k) 0 0 0
λ2∆GI(k) 0 0 0
A+∆G(k) 0 F H





Ω1
11 , −P + (~̄− ~+ 1)Q+ ς0ι1IT I − ς1L1

Ω2
11 , −Q+ ς0ι2IT I − ς2J1, Ω22 , −I3 ⊗ P−1

Ω3
11 , −ς1L2, Ω4

11 , −ς2J2, ˇ̺, ¯̺(1− ¯̺)

σ̌ , σ̄(1− σ̄), λ1 ,
√

ˇ̺, λ2 ,
√
σ̌

L1 ,
1

2

(

LT
+L− + LT

−
L+

)

, L2 , −1

2
(L+ + L−)

J1 ,
1

2

(

J T
+ J− + J T

−
J+

)

, J2 , −1

2
(J+ + J−) .

Proof: To derive the criterion for the EM-S stability of the
augmented system (10), we construct the following Lyapunov-
Krasovskii functional:

V
(

χ(k)
)

= V1

(

χ(k)
)

+ V2

(

χ(k)
)

+ V3

(

χ(k)
)

(20)

where

V1

(

χ(k)
)

,χT (k)Pχ(k)

V2

(

χ(k)
)

,

k−1
∑

µ=k−~(k)

χT (µ)Qχ(µ)

V3

(

χ(k)
)

,

k−~
∑

ν=k−~̄+1

k−1
∑

µ=ν

χT (µ)Qχ(µ).

Then, the difference of the Lyapunov-Krasovskii functional
V
(

χ(k)
)

is given as follows:

ℑV
(

χ(k)
)

=ℑV1

(

χ(k)
)

+ ℑV2

(

χ(k)
)

+ ℑV3

(

χ(k)
)

(21)

where

ℑV1

(

χ(k)
)

,E{V1

(

χ(k + 1)
)

|χ(k)} − V1

(

χ(k)
)

ℑV2

(

χ(k)
)

,E{V2

(

χ(k + 1)
)

|χ(k)} − V2

(

χ(k)
)

ℑV3

(

χ(k)
)

,E{V3

(

χ(k + 1)
)

|χ(k)} − V3

(

χ(k)
)

.

In the case of̟(k) = 0, calculating the difference of
V1

(

χ(k)
)

along the trajectory of system (10) and taking the
mathematical expectation, one has

E
{

ℑV1

(

χ(k)
)}

=E
{

V1

(

χ(k + 1)
)

− V1

(

χ(k)
)}

=E

{(

(

A+∆G(k)
)

χ(k) + ˜̺(k)∆GP (k)χ(k)

+ σ̃(k)∆GI(k)χ(k) +H
(

k − ~(k)
)

+ Fℓ(k) + V
(

k, χ(k), χ(k − ~(k))
)

v(k)
)T

× P
(

(

A+∆G(k)
)

χ(k) + ˜̺(k)∆GP (k)χ(k)

+ σ̃(k)∆GI(k)χ(k) +H
(

k − ~(k)
)

+ Fℓ(k) + V
(

k, χ(k), χ(k − ~(k))
)

v(k)
)

− χT (k)Pχ(k)
}

=E

{

χT (k)
(

AT +∆GT (k)
)

P
(

A+∆G(k)
)

χ(k)− χT (k)

× Pχ(k) + ℓT (k)FTPFℓ(k) + ˜̺2(k)χT (k)∆GP
T (k)

× P∆GP (k)χ(k) + σ̃2(k)χT (k)∆GI
T (k)P∆GI(k)

× χ(k) + T
(

k − ~(k)
)

HTPH
(

k − ~(k)
)

+ vT (k)

× V
(

k, χ(k), χ(k − ~(k))
)T

PV
(

k, χ(k), χ(k − ~(k))
)

× v(k) + 2˜̺(k)χT (k)∆GP
T (k)P

(

A+∆G(k)
)

χ(k)

+ 2σ̃(k)χT (k)∆GI
T (k)P

(

A+∆G(k)
)

χ(k)

+ 2T
(

k − ~(k)
)

HTP
(

A+∆G(k)
)

χ(k) + 2ℓT (k)FTP
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×
(

A+∆G(k)
)

χ(k) + 2vT (k)V
(

k, χ(k), χ(k − ~(k))
)T

× P
(

A+∆G(k)
)

χ(k) + 2˜̺(k)σ̃(k)χT (k)∆GI
T (k)P

×∆GP (k)χ(k) + 2˜̺(k)T
(

k − ~(k)
)

HTP∆GP (k)χ(k)

+ 2˜̺(k)ℓT (k)FTP∆GP (k)χ(k) + 2˜̺(k)vT (k)

× V
(

k, χ(k), χ(k − ~(k))
)T

P∆GP (k)χ(k)

+ 2σ̃(k)T
(

k − ~(k)
)

HTP∆GI(k)χ(k) + 2σ̃(k)ℓT (k)FT

× P∆GI(k)χ(k) + 2σ̃(k)vT (k)V
(

k, χ(k), χ(k − ~(k))
)T

× P∆GI(k)χ(k) + 2T
(

k − ~(k)
)

HTPFℓ(k)

+ 2vT (k)V
(

k, χ(k), χ(k − ~(k))
)T

PH
(

k − ~(k)
)

+ 2vT (k)V
(

k, χ(k), χ(k − ~(k))
)T

PFℓ(k)
}

=E

{

χT (k)
(

AT +∆GT (k)
)

P
(

A+∆G(k)
)

χ(k)

− χT (k)Pχ(k) + ℓT (k)FTPFℓ(k)

+ ˜̺2(k)χT (k)∆GP
T (k)P∆GP (k)χ(k)

+ σ̃2(k)χT (k)∆GI
T (k)P∆GI(k)χ(k)

+ T
(

k − ~(k)
)

HTPH
(

k − ~(k)
)

+ vT (k)V
(

k, χ(k), χ(k − ~(k))
)T

P

× V
(

k, χ(k), χ(k − ~(k))
)

v(k)

+ 2T
(

k − ~(k)
)

HTP
(

A+∆G(k)
)

χ(k)

+ 2ℓT (k)FTP
(

A+∆G(k)
)

χ(k)

+ 2T
(

k − ~(k)
)

HTPFℓ(k)
}

. (22)

Furthermore, the differences forV2

(

χ(k)
)

andV3

(

χ(k)
)

can
be computed as follows:

E
{

ℑV2

(

χ(k)
)}

=E
{

V2

(

χ(k + 1)
)

− V2

(

χ(k)
)}

=E







k
∑

µ=k−~(k+1)+1

χT (µ)Qχ(µ) −
k−1
∑

µ=k−~(k)

χT (µ)Qχ(µ)







=E

{

χT (k)Qχ(k)− χT
(

k − ~(k)
)

Qχ
(

k − ~(k)
)

+

k−1
∑

µ=k−~(k+1)+1

χT (µ)Qχ(µ)−
k−1
∑

µ=k−~(k)+1

χT (µ)Qχ(µ)

}

=E

{

χT (k)Qχ(k)− χT
(

k − ~(k)
)

Qχ
(

k − ~(k)
)

+

k−1
∑

µ=k−~+1

χT (µ)Qχ(µ) +

k−~
∑

µ=k−~(k+1)+1

χT (µ)Qχ(µ)

−
k−1
∑

µ=k−~(k)+1

χT (µ)Qχ(µ)

}

6E

{

χT (k)Qχ(k)− χT
(

k − ~(k)
)

Qχ
(

k − ~(k)
)

+

k−~
∑

µ=k−~̄+1

χT (µ)Qχ(µ)

}

(23)

and

E
{

ℑV3

(

χ(k)
)}

=E
{

V3

(

χ(k + 1)
)

− V3

(

χ(k)
)}

=E







k−~+1
∑

ν=k−~̄+2

k
∑

µ=ν

χT (µ)Qχ(µ)−
k−~
∑

ν=k−~̄+1

k
∑

µ=ν

χT (µ)Qχ(µ)







=E







k−~
∑

ν=k−~̄+1

(

χT (k)Qχ(k)−χT (ν)Qχ(ν)
)







=E







(~̄− ~)χT (k)Qχ(k)−
k−~
∑

µ=k−~̄+1

χT (µ)Qχ(µ)







. (24)

Noting the statistical characteristics ofv(k) and
combining with (3) and (19b), we calculate the term
vT (k)V

(

k, χ(k), χ(k−~(k))
)T

PV
(

k, χ(k), χ(k−~(k))
)

v(k)
(contained in (22)) as follows:

E

{

vT (k)V
(

k, χ(k), χ(k − ~(k))
)T

P

× V
(

k, χ(k), χ(k − ~(k))
)

v(k)
}

=V
(

k, χ(k), χ(k − ~(k))
)T

P

× V
(

k, χ(k), χ(k − ~(k))
)

6λmax(P )V
(

k, χ(k), χ(k − ~(k))
)T

× V
(

k, χ(k), χ(k − ~(k))
)

6ς0ϑ
(

k, Iχ(k), Iχ(k − ~(k))
)T

× ϑ
(

k, Iχ(k), Iχ(k − ~(k))
)

6ς0

(

ι1χ
T (k)IT Iχ(k)

+ ι2χ
T (k − ~(k))IT Iχ(k − ~(k))

)

. (25)

Substituting (22)-(25) into (21), we have

E
{

ℑV
(

χ(k)
)}

=E

{

ℑV1

(

χ(k)
)

+ ℑV2

(

χ(k)
)

+ ℑV3

(

χ(k)
)

}

6E

{

χT (k)
(

(

AT +∆GT (k)
)

P
(

A+∆G(k)
)

+ (~̄− ~+ 1)Q− P + ˜̺2(k)∆GP
T (k)P∆GP (k)

+ σ̃2(k)∆GI
T (k)P∆GI(k) + ς0ι1IT I

)

χ(k)

+ χT
(

k − ~(k)
)

(

ς0ι2IT I −Q
)

χ
(

k − ~(k)
)

+ T
(

k − ~(k)
)

HTPH
(

k − ~(k)
)

+ ℓT (k)FTPFℓ(k) + 2T
(

k − ~(k)
)

HTPFℓ(k)

+ 2T
(

k − ~(k)
)

HTP
(

A+∆G(k)
)

χ(k)

+ 2ℓT (k)FTP
(

A+∆G(k)
)

χ(k)
}

=E

{

χT (k)
(

(

AT +∆GT (k)
)

P
(

A+∆G(k)
)

+ (~̄− ~+ 1)Q− P + ˇ̺∆GP
T (k)P∆GP (k)

+ σ̌∆GI
T (k)P∆GI(k) + ς0ι1ITI

)

χ(k)

+ χT
(

k − ~(k)
)

(

ς0ι2IT I −Q
)

χ
(

k − ~(k)
)

+ T
(

k − ~(k)
)

HTPH
(

k − ~(k)
)
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+ ℓT (k)FTPFℓ(k) + 2T
(

k − ~(k)
)

HTPFℓ(k)

+ 2T
(

k − ~(k)
)

HTP
(

A+∆G(k)
)

χ(k)

+ 2ℓT (k)FTP
(

A+∆G(k)
)

χ(k)
}

=E

{

ℵT
1 (k)Π1ℵ1(k)

}

(26)

where

ℵ1(k) ,
[

χT (k) χT
(

k − ~(k)
)

ℓT (k) T
(

k − ~(k)
)]T

Π1 ,









Π11
1 ∗ ∗ ∗
0 Π22

1 ∗ ∗
Π31

1 0 Π33
1 ∗

Π41
1 0 Π43

1 Π44
1









Π11
1 , − P +

(

AT +∆GT (k)
)

P
(

A+∆G(k)
)

+ (~̄− ~+ 1)Q+ ˇ̺∆GP
T (k)P∆GP (k)

+ σ̌∆GI
T (k)P∆GI(k) + ς0ι1ITI

Π22
1 , −Q+ ς0ι2ITI, Π33

1 , FTPF
Π44

1 ,HTPH, Π31
1 , FTP

(

A+∆G(k)
)

Π41
1 ,HTP

(

A+∆G(k)
)

, Π43
1 , HTPF .

From (16), it can be readily verified that
[

χ(k)
ℓ(k)

]T [L1 ∗
L2 I

] [

χ(k)
ℓ(k)

]

6 0,

[

χ
(

k − ~(k)
)


(

k − ~(k)
)

]T [J1 ∗
J2 I

] [

χ
(

k − ~(k)
)


(

k − ~(k)
)

]

6 0. (27)

Furthermore, it results from (26) that

E
{

ℑV
(

χ(k)
)}

6E
{

ℵT
1 (k)Π1ℵ1(k)

}

− ς1E

{

[

χ(k)
ℓ(k)

]T [L1 ∗
L2 I

] [

χ(k)
ℓ(k)

]

}

− ς2E

{

[

χ
(

k − ~(k)
)


(

k − ~(k)
)

]T [J1 ∗
J2 I

] [

χ
(

k − ~(k)
)


(

k − ~(k)
)

]

}

=E

{

ℵT
1 (k)Π2ℵ1(k)

}

(28)

where

Π2 ,Π1 +Π3

Π3 ,









Π11
3 ∗ ∗ ∗
0 Π22

3 ∗ ∗
Π31

3 0 Π33
3 ∗

0 Π42
3 0 Π44

3









Π11
3 ,− ς1L1, Π22

3 , −ς2J1

Π33
3 ,− ς1I, Π44

3 , −ς2I

Π31
3 ,− ς1L2, Π42

3 , −ς2J2.

By virtue of the Schur Complement Lemma, we conclude
from (19a) thatΠ2 < 0, which further indicates

E
{

ℑV
(

χ(k)
)}

6 −λmin(−Π2)E{‖χ(k)‖2}. (29)

In what follows, we shall proceed to analyze the EM-
S stability of the augmented system (10). According to the
definition of V (χ(k)), we know that

E{V (χ(k))} 6η1E{‖χ(k)‖2}+ η2

k−1
∑

ν=k−~̄

E{‖χ(ν)‖2} (30)

where

η1 , λmax(P ), η2 , (~̄− ~+ 1)λmax(Q).

Furthermore, for anyρ > 1, it follows from (29) that

E
{

ρk+1V (χ(k + 1))} − E{ρkV (χ(k))
}

=ρk+1
E
{

ℑV (χ(k))
}

+ρk+1
E
{

V (χ(k))
}

− ρkE
{

V (χ(k))
}

6ρk+1
(

− λmin(−Π2)E
{

‖χ(k)‖2
}

)

+ ρk(ρ− 1)E
{

V (χ(k))
}

6α1(ρ)ρ
k
E
{

‖χ(k)‖2
}

+ α2(ρ)

k−1
∑

ν=k−~̄

ρkE
{

‖χ(ν)‖2
}

(31)

where

α1(ρ) ,− λmin(−Π2)ρ+ (ρ− 1)η1

α2(ρ) ,(ρ− 1)η2.

For any integerθ > 1, taking summation on both sides of
(31) from 0 to θ − 1 with respect tok yields

E
{

ρθV (χ(θ))} − E{V (χ(0))
}

6α1(ρ)

θ−1
∑

k=0

ρkE
{

‖χ(k)‖2
}

+ α2(ρ)

θ−1
∑

k=0

k−1
∑

ν=k−~̄

ρkE
{

‖χ(ν)‖2
}

. (32)

Additionally, the last item in (32) can be computed as

θ−1
∑

k=0

k−1
∑

ν=k−~̄

ρkE
{

‖χ(ν)‖2
}

6





−1
∑

ν=−~̄

ν+~̄
∑

k=0

+

θ−~̄−1
∑

ν=0

ν+~̄
∑

k=ν+1

+

θ−1
∑

ν=θ−~̄

θ−1
∑

k=ν+1



ρkE
{

‖χ(ν)‖2
}

6
ρ~̄− 1

ρ− 1

−1
∑

ν=−~̄

E{‖χ(ν)‖2}+ ρ(ρ~̄−1)

ρ−1

θ−1
∑

ν=0

ρνE
{

‖χ(ν)‖2
}

+
ρ(ρ~̄−1)

ρ−1

θ−1
∑

ν=0

ρνE
{

‖χ(ν)‖2
}

. (33)

Then, it follows from (32) and (33) that

E
{

ρθV (χ(θ))} − E{V (χ(0))
}

6α1(ρ)

θ−1
∑

k=0

ρkE
{

‖χ(k)‖2
}

+ α2(ρ)

(

ρ~̄ − 1

ρ− 1

−1
∑

ν=−~̄

E{‖χ(ν)‖2}

+
ρ(ρ~̄ − 1)

ρ− 1

θ−1
∑

ν=0

ρνE
{

‖χ(ν)‖2
}

+
ρ(ρ~̄ − 1)

ρ− 1

θ−1
∑

ν=0

ρνE
{

‖χ(ν)‖2
}

)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TNNLS.2020.3015376, IEEE Transactions on Neural Networks and Learning Systems



FINAL 8

6β1(ρ)

θ−1
∑

k=0

ρkE
{

‖χ(k)‖2
}

+ β2(ρ) sup
ı∈H

E{‖φ(ı)‖2} (34)

where

β1(ρ) ,α1(ρ) + α2(ρ)
2ρ~̄+1 − 2ρ

ρ− 1

β2(ρ) ,α2(ρ)~̄
ρ~̄ − 1

ρ− 1
.

Since β1(1) = −λmin(−Π2) < 0 and limρ→∞ β1(ρ) =
+∞, we can infer that there exists a scalarγ > 1 such that
β1(γ) = 0, which implies that

E
{

γθV (χ(θ))} − E{V (χ(0))
}

6β2(γ) sup
ı∈H

E{‖φ(ı)‖2}. (35)

Noting

E
{

V (χ(0))
}

6 η̄ sup
ı∈H

E{‖φ(ı)‖2} (36)

and

E{γθV (χ(θ))
}

> λmin(P )γθ
E{‖χ(θ)‖2} (37)

where

η̄ ,(~̄+ 1)max{η1, η2},

we obtain

E{‖χ(θ)‖2} 6
η̄ + β2(γ)

λmin(P )γθ
sup
ı∈H

E{‖φ(ı)‖2}

=λπθ sup
ı∈H

E{‖φ(ı)‖2} (38)

with

λ ,
η̄ + β2(γ)

λmin(P )
, π ,

1

γ
.

Consequently, according to Definition 1, it is easy to conclude
that the augmented system (10) with̟(k) = 0 is EM-S stable,
which completes the proof.

B. H∞ Performance Analysis

In this subsection, the analysis on theH∞ performance
constraint (12) will be conducted for the augmented system
(10) with non-zero̟ (k) under the zero-initial condition.

Theorem 2:Let the PIO gain matricesGP , GI and the
disturbance attenuation levelδ > 0 be given. The system
(10) is EM-S stable and also satisfies theH∞ performance
constraint (12) for all non-zero̟ (k) under the zero-initial
condition if there exist positive-definite matricesP , Q and
positive scalarsς0, ς1, ς2 satisfying the following inequalities:











Θ =

[

Θ11 ∗
Θ21 Θ22

]

< 0 (39a)

P <
ς0

2
I (39b)

where

Θ11 ,













Ω1
11 ∗ ∗ ∗ ∗
0 Ω2

11 ∗ ∗ ∗
Ω3

11 0 −ς1I ∗ ∗
0 Ω4

11 0 −ς2I ∗
0 0 0 0 −δ2I













Θ21 ,









λ1∆GP (k) 0 0 0 0
λ2∆GI(k) 0 0 0 0
A+∆G(k) 0 F H M

D 0 0 0 0









Θ22 , diag{−P−1, −P−1, −P−1, −I}.
Proof: Note thatΩ < 0 is implied byΘ < 0, hence the

EM-S stability of the augmented system (10) in the case of
̟(k) = 0 can be inferred immediately from Theorem 1.

In what follows, in order to conduct theH∞ performance
analysis for the augmented system (10) under non-zero̟(k),
we define the following index functional:

J(µ) ,

µ
∑

k=0

E
{

z̃T (k)z̃(k)− δ2̟T (k)̟(k)
}

(40)

whereµ is a non-negative integer.
According to the initial conditionχ(0) = 0, we know that

V (χ(0)) = 0, and therefore

J(µ) =

µ
∑

k=0

E
{

z̃T (k)z̃(k)− δ2̟T (k)̟(k)
}

=

µ
∑

k=0

E
{

ℑV (χ(k)) + z̃T (k)z̃(k)− δ2̟T (k)̟(k)
}

+ E
{

V (χ(0))
}

− E
{

V (χ(µ+ 1))
}

=

µ
∑

k=0

E
{

ℑV (χ(k)) + z̃T (k)z̃(k)− δ2̟T (k)̟(k)
}

− E
{

V (χ(µ+ 1))
}

6

µ
∑

k=0

E

{

ℵT
1 (k)Π2ℵ1(k)+2̟T (k)MTP

(

A+∆G(k)
)

× χ(k) + 2˜̺(k)̟T (k)MTP∆GP (k)χ(k)

+ 2σ̃(k)̟T (k)MTP∆GI(k)χ(k) + 2̟T (k)

×MTPH
(

k − ~(k)
)

+ 2̟T (k)MTPFℓ(k)

+ 2̟T (k)MTPV
(

k, χ(k), χ(k − ~(k))
)

v(k)

+̟T (k)MTPM̟(k) + χ(k)DTDχ(k)

− δ2̟T (k)̟(k)
}

− E
{

V (χ(µ+ 1))
}

6

µ
∑

k=0

E

{

ℵT
1 (k)Π2ℵ1(k)+2̟T (k)MTP

(

A+∆G(k)
)

× χ(k) + 2̟T (k)MTPH
(

k − ~(k)
)

+ 2̟T (k)MTPFℓ(k) +̟T (k)MTPM̟(k)

+ χ(k)DTDχ(k) − δ2̟T (k)̟(k)
}

− E
{

V (χ(µ+ 1))
}

=

µ
∑

k=0

E
{

ℵT
2 (k)Π4ℵ2(k)

}

− E
{

V (χ(µ+ 1))
}

(41)
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where

ℵ2(k) ,
[

ℵT
1 (k) ̟T (k)

]T

Π4 ,













Π11
4 ∗ ∗ ∗ ∗
0 Π22

4 ∗ ∗ ∗
Π31

4 0 Π33
4 ∗ ∗

Π41
1 Π42

3 Π43
1 Π44

4 ∗
Π51

4 0 Π53
4 Π54

4 Π55
4













Π11
4 ,Π11

1 +Π11
3 +DTD

Π22
4 ,Π22

1 +Π22
3

Π31
4 ,Π31

1 +Π31
3

Π33
4 ,Π33

1 +Π33
3

Π44
4 ,Π44

1 +Π44
3

Π51
4 ,MTP

(

A+∆G(k)
)

Π53
4 ,MTPF

Π54
4 ,MTPH

Π55
4 ,− δ2I +MTPM.

On the basis of the Schur Complement Lemma, we conclude
from (39a) thatE

{

ℵT
2 (k)Π4ℵ2(k)

}

< 0, which results in
µ
∑

k=0

E
{

z̃T (k)z̃(k)−δ2̟T (k)̟(k)
}

6−E
{

V (χ(µ+1))
}

. (42)

Letting µ → ∞ and consideringE
{

V (χ(∞))
}

> 0, it
follows from (42) that

∞
∑

k=0

E
{

z̃T (k)z̃(k)
}

− δ2
∞
∑

k=0

̟T (k)̟(k)

6− E
{

V (χ(∞))
}

6 0 (43)

which further indicates
∞
∑

k=0

E
{

z̃T (k)z̃(k)
}

6 δ2
∞
∑

k=0

̟T (k)̟(k). (44)

The proof of Theorem 2 is complete.

C. Non-Fragile PIO Design

In this subsection, a non-fragile PIO is designed for the
DRNN (1) by virtue of the LMI technique. Furthermore,
based on the designed observer, both the EM-S stability and
the H∞ performance of the augmented system (10) can be
simultaneously achieved.

Theorem 3:Let the disturbance attenuation levelδ > 0
be given. The system (10) is EM-S stable and also satisfies
the H∞ performance constraint (12) for all non-zero̟(k)
under the zero-initial condition if there exist positive-definite
matricesP̂ , Q, matricesĜP , ĜI and positive scalarsς0, ς1,
ς2, κ1, κ2 satisfying the following inequalities:











Λ =

[

Θ11 ∗
Λ21 Λ22

]

< 0 (45a)

P <
ς0

2
I (45b)

where

Λ21 ,

[

Λ1
21

Λ2
21

]

, Λ22 ,

[

Λ1
22 ∗

Λ2
22 Λ3

22

]

, P , diag{P̂ , P̂ , I}

Λ1
21 ,









0 0 0 0 0
0 0 0 0 0

Ã 0 F̃ H̃ M̃
D 0 0 0 0









, Λ2
21 ,









0 0 0 0 0
TP 0 0 0 0
0 0 0 0 0
TI 0 0 0 0









Λ1
22 , diag{−P, −P, −P, −I}

Λ2
22 ,









κ1λ1ST
P 0 κ1 ¯̺ST

P 0
0 0 0 0
0 κ2λ2ST

I κ2σ̄ST
I 0

0 0 0 0









Λ3
22 , diag{−κ1I, −κ1I, −κ2I, −κ2I}

SP ,





0m×t

SP

0p×t



 , TP ,
[

0t×m −TPC 0t×p

]

SI ,





0m×t

SI

0p×t



 , TI ,
[

0t×m 0t×m −TI

]

Ã ,





P̂A 0m×m 0m×p

0m×m P̂A− ĜPC −ĜI

0p×m C I



 , M̃ ,





P̂M

P̂M

0p×q





F̃ ,





P̂F 0m×m

0m×m P̂F

0p×m 0p×m



 , H̃ ,





P̂H 0m×m

0m×m P̂H

0p×m 0p×m



 .

In addition, the desired PIO gains are calculated by

GP = P̂−1ĜP , GI = P̂−1ĜI . (46)

Proof: To begin with, in order to eliminate the parameter
uncertainties occurred in the gain matrices, we rewrite (39a)
in the form of (15). According to the notations in (10), we
have

∆G(k) = ¯̺SPP (k)TP + σ̄SII(k)TI (47)

∆GP (k) = SPP (k)TP (48)

∆GI(k) = SII(k)TI . (49)

Accordingly, we can rewrite (39a) as follows:

Θ =Ξ0 + Ξ1SP (k)Ξ1T + ΞT
1SP (k)ΞT

1T

+ Ξ2SI(k)Ξ2T + ΞT
2S I(k)Ξ

T
2T < 0 (50)

where

Ξ0 ,

[

Θ11 ∗
Ξ21
0 Θ22

]

, Ξ21
0 ,









0 0 0 0 0
0 0 0 0 0
A 0 F H M
D 0 0 0 0









Ξ1S ,
[

0 0 0 0 0 λ1ST
P 0 ¯̺ST

P 0
]T

Ξ1T ,
[

TP 0 0 0 0 0 0 0 0
]

Ξ2S ,
[

0 0 0 0 0 0 λ2ST
I σ̄ST

I 0
]T

Ξ2T ,
[

TI 0 0 0 0 0 0 0 0
]

.
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Applying Lemma 1 to (50), we know that (50) holds if and
only if there exist positive scalarsκ1 and κ2 such that the
following inequality holds:













Ξ0 ∗ ∗ ∗ ∗
κ1Ξ

T
1S −κ1I ∗ ∗ ∗

Ξ1T 0 −κ1I ∗ ∗
κ2Ξ

T
2S 0 0 −κ2I ∗

Ξ2T 0 0 0 −κ2I













< 0. (51)

Performing the congruence transformation to the inequality
(51) by diag{I, I, I, I, I, P, P, P, I, I, I, I, I} and utilizing the
variable substitution

ĜP = P̂GP , ĜI = P̂GI (52)

we conclude that (51) holds if and only if (45a) holds.
To this end, it follows immediately from Theorem 2 that,

with the non-fragile PIO gain matricesGP andGI given in
(46), the augmented system (10) is EM-S stable and theH∞

performance constraint (12) is also met for any non-zero̟(k)
under the zero-initial condition. The proof is now complete.

Remark 4:In this paper, we aim to develop a non-fragile
H∞ PIO design scheme for the DRNN with TVDs. In
Theorems 1-2, sufficient conditions are established such that
the estimation error dynamics is EM-S stable and theH∞

performance constraint is also satisfied. In Theorem 3, the
gains of PIO are characterized in terms of the solutions to
LMIs. It should be noted that the main results established
in Theorems 1-3 can be extended to more general systems
with network-induced phenomena such as packet dropouts,
quantizations, disorders or saturations [25], [30], [34], [37].

Remark 5:For now, the non-fragile PIO design problem
has been solved for the DRNN subject to ROGVs and TVDs.
Comparing with the existing results, the distinctive charac-
teristics of the main results in this paper are highlighted as
follows: 1) the design problem of non-fragile PIO is, for the
first time, investigated for DRNN with TVDs; and 2) a unified
framework is established to account for the joint effects from
the ROGVs and the TVDs on estimation performance.

IV. N UMERICAL SIMULATION

In this section, we shall provide a simulation example in
order to demonstrate the validity of the obtained theoretical
results on the proposed PIO design problem for a class of
DRNNs.

Consider a DRNN described by (1) with corresponding
parameters as follows:

A =





0.681 0 0
0 0.637 0
0 0 0.806



 , M =





1
1.5
2





F =





0.5 0.1 0.4
0.2 0.3 0.1
0.2 0.3 0.4



 , C =

[

1.3 04 1.9
0.4 0.1 1.2

]

H =





0.3 0.1 0.2
0.2 0.3 0.4
0.1 0.2 0.3



 , D =

[

0.3 0.4 0.1
0.2 0.1 0.3

]

.

0 10 20 30 40 50 60 70 80 90 100

Time(k)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Actual state x1(k)
Estimation of x1(k)

Fig. 1: Trajectories of statex1(k) and its estimate.

0 10 20 30 40 50 60 70 80 90 100

Time(k)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Actual state x2(k)
Estimation of x2(k)

Fig. 2: Trajectories of statex2(k) and its estimate.

The activation functions are taken as

ℓ
(

s
)

=





tanh (0.6s)− 0.2 sin s
tanh (−0.4s)
tanh (−0.2s)






(

s
)

=





tanh (−0.4s)− 0.2 cos s
tanh (0.2s)
tanh (0.4s)



 , ∀s ∈ R

which meet (2) with

l−1 = −0.2, l+1 = 0.8

l−2 = −0.4, l+2 = 0

l−3 = −0.2, l+3 = 0

j−1 = −0.2, j+1 = 0.6

j−2 = 0, j+2 = 0.2

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TNNLS.2020.3015376, IEEE Transactions on Neural Networks and Learning Systems



FINAL 11

0 10 20 30 40 50 60 70 80 90 100

Time(k)

-0.5

0

0.5

1

1.5

2

Actual state x3(k)
Estimation of x3(k)

Fig. 3: Trajectories of statex3(k) and its estimate.

0 10 20 30 40 50 60 70 80 90 100

Time(k)

-0.5

0

0.5

x̃
1
(k
)

State estimation error x̃1(k)

0 10 20 30 40 50 60 70 80 90 100

Time(k)

-0.5

0

0.5

x̃
2
(k
)

State estimation error x̃2(k)

0 10 20 30 40 50 60 70 80 90 100

Time(k)

-0.5

0

0.5

1

x̃
3
(k
)

State estimation error x̃3(k)

Fig. 4: Trajectories of estimation error̃x(k) with PIO.

j−3 = 0, j+3 = 0.4.

The corresponding parameters of gain perturbation matrices
in non-fragile PIO are given as follows:

SP =
[

0.6 0.5 0.4
]T

, TP =
[

0.1 0.2
]

SI =
[

0.5 0.4 0.3
]T

, TI =
[

0.2 0.3
]

P (k) = 0.8 sin(k), I(k) = 0.6 cos(k).

In this example, the probabilities of the ROGVs are assumed
to be ¯̺ = 0.65 andσ̄ = 0.7. The external disturbance is taken
as ̟(k) = 0.8e−0.2k cos(k) and the disturbance attenuation
level is given asδ = 0.28. The TVD is chosen as~(k) =
3− (sin(kπ))2, from which it is easy to verify that the upper
bound and the lower bound of the TVD are~̄ = 3 and~ = 1,
respectively. Moreover, the initial values of the states are set
as x1(−3) = x1(−2) = x1(−1) = x1(0) = 0.5, x2(−3) =

0 10 20 30 40 50 60 70 80 90 100

Time(k)

-4

-2

0

2

x̃
1
(k
)

State estimation error x̃1(k)

0 10 20 30 40 50 60 70 80 90 100

Time(k)

-5

0

5

x̃
2
(k
)

State estimation error x̃2(k)

0 10 20 30 40 50 60 70 80 90 100

Time(k)

-10

-5

0

5

x̃
3
(k
)

State estimation error x̃3(k)

Fig. 5: Trajectories of estimation error̃x(k) with Luenberger
observer.

x2(−2) = x2(−1) = x2(0) = −0.5 andx3(−3) = x3(−2) =
x3(−1) = x3(0) = 1.

By means of the MATLAB software (with the YALMIP
3.0), the solutions to LMIs (45a)-(45b) and the desired PIO
gains can be obtained immediately as follows (only the main
parameters are listed):

P̂ =





4.1777 −1.2340 −1.5194
−1.2340 3.6153 −2.1519
−1.5194 −2.1519 2.6332





GP =





1.8502 −1.3418
0.3349 −0.5081
−1.3323 1.1808



 , κ1 = 0.2708

GI =





−1.6524 6.9657
−1.0431 9.8022
1.2087 1.7936



 , κ2 = 0.3582

ς0 =6.4878, ς1 = 7.2499

ς2 =6.6950, ς3 = 6.7031.

In order to manifest the validity of the proposed PIO design
scheme, the simulation results are shown in Figs. 1-5. Figs. 1-
3 depict the neuron states and their estimates and Fig. 4
plots the trajectories of estimation errorx̃(k), from which
we can confirm that the desired PIO performs quite well as
expected. Fig. 5 depicts the trajectories of estimation error
x̃(k) with Luenberger observer. It can be concluded from the
above simulation results that the PIO proposed in this paper
outperforms Luenberger observer adopted in most literature
for estimation performance.

V. CONCLUSION

In this paper, we have dealt with the non-fragileH∞ PIO
design problem for a kind of DRNNs subject to ROGVs and
TVDs. The phenomena of ROGVs concerned in this paper
have been governed by Bernoulli distributed random variables
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with certain probabilities for the sake of accommodating the
practical situations. A novel non-fragile PIO has been designed
which can exhibit a satisfactory estimation performance in the
simultaneous presence of ROGVs and TVDs. Furthermore,
the EM-S stability andH∞ performance of the estimation
error dynamics have been analyzed respectively by means
of Lyapunov theory, and the desired PIO gains have been
obtained by resorting to LMI technique. A simulation example
has been finally presented to reveal the effectiveness and
superiority of the proposed design method. It is worth noting
that the current method and results could be extended to
the RNNs with constant time-delays, discrete time-delays,
distributed time-delays or mixed time-delays [2], [46], [47].
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