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Abstract
As a popular nondestructive testing (NDT) technique, thermal imaging test demonstrates competitive performance in crack 
detection, especially for detecting subsurface cracks. In thermal imaging test, the temperature of the crack area is higher than 
that of the non-crack area during the NDT process. By extracting the features of the thermal image sequences, the temperature 
curve of each spatial point is employed for crack detection. Nevertheless, the quality of thermal images is influenced by the 
noises due to the complex thermal environment in NDT. In this paper, a modified generative adversarial network (GAN) is 
employed to improve the image segmentation performance. To improve the feature extraction ability and alleviate the influ-
ence of noises, a penalty term is put forward in the loss function of the conventional GAN. A data preprocessing method 
is developed where the principle component analysis algorithm is adopted for feature extraction. The data argumentation 
technique is utilized to guarantee the quantity of the training samples. To validate its effectiveness in thermal imaging NDT, 
the modified GAN is applied to detect the cracks on the eddy current pulsed thermography NDT dataset.

Keywords Generative adversarial network · Thermal imaging test · Nondestructive testing · Crack detection · Principal 
component analysis

Introduction

In the past few decades, thermography nondestructive test-
ing (NDT) methods have been widely applied to device 
assessment and component inspection in additive manu-
facturing, aerospace, transportation, electrical engineer-
ing and mechanical engineering [1, 2]. It is known that the 
thermography NDT methods have the advantages of fast 
detection speed, high detection accuracy and nondestructive 
evaluation [3–5]. It should be pointed out that the infrared 
thermography NDT methods can be divided into two types, 

namely the active infrared thermography (AIT) methods 
and the passive infrared thermography (PIT) methods. AIT 
methods employ an extra heating source to produce a tem-
perature contrast between crack and normal areas. In PIT, 
the temperature difference of the crack and non-crack areas 
is measured without using extra heating sources. In general, 
the detection performance of the AIT methods outperforms 
the PIT ones due to the fact that various heating sources 
would lead to a large thermal contrast between crack and 
normal areas [6–8].

As a powerful AIT method, the eddy current pulsed ther-
mography (ECPT) method has been successfully applied 
to various NDT tasks because of its simple operation and 
wide scanning range. In ECPT, an electromagnetic pulse 
with high current is applied to induce the eddy current in 
the specimen, and the heating distribution of the specimen 
is recorded by the infrared camera. Similar to other ther-
mography methods, it is a challenging task in ECPT to build 
a physical model to accurately describe the NDT process 
because of complex thermal environment and various dis-
turbances. In this context, a reasonable yet effective way is 
to deal with the acquired ECPT images for crack detection 
by using the data analysis techniques.
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Thanks to their powerful capabilities in feature extraction, 
machine learning algorithms have been widely utilized in 
thermal image analysis [4, 5, 9–13]. A variety of image pro-
cessing methods have been successfully applied for feature 
extraction of the thermal images such as the discrete wavelet 
transform method [14], the K-means clustering algorithm [15] 
and the thermal resistance effect model-based method [16]. 
The aforementioned image processing algorithms are nor-
mally applied to handle one specific thermal image through 
the ECPT-based NDT process [17]. It is worth mentioning 
that such a thermal image is manually selected according to 
experimental experience, where the image processing perfor-
mance is largely affected by the expert knowledge.

To overcome the limitation of using one manually chosen 
image for crack detection, machine learning methods have 
been successfully applied for crack detection by using multiple 
NDT images (i.e., the NDT image sequences) during the past 
few years [18]. For instance, the frequency pattern extraction 
methods based on the Fourier transform have been adopted to 
enhance the image contrast through the phase map for detect-
ing the cracks based on NDT image sequences [19, 20]. The 
principal component analysis (PCA) algorithms have been suc-
cessfully adopted to extract the thermal features through the 
entire ECPT-based NDT process for crack detection [21, 22].

Unfortunately, the quality of the thermal images is influ-
enced by the background noises and disturbances caused by 
experimental environment and material properties. To alle-
viate the influence of noises and disturbances, the powerful 
deep learning techniques have been widely adopted for image 
analysis [23–26]. For example, a two-stream convolutional 
neural network has been put forward in [24] for subsurface 
defect detection. A deep neural network-based subsurface 
damage detection approach has been developed in [23] for 
steel bridge defect detection. Among the popular deep learn-
ing techniques, the generative adversarial network (GAN) 
has been widely employed in computation vision thanks to 
its powerful abilities in data generation and pattern recogni-
tion [27, 28]. In fact, GANs have been successfully utilized 
to generate thermal images for thermographic data analysis 
[29]. Therefore, a seemingly natural idea is to employ the 
modified GAN to extract the features of a series of thermal 
images (which makes full use of the thermal information dur-
ing the whole ECPT process), and the crack detection is then 
implemented based on the output of the GAN.

In this paper, a GAN-based crack detection approach is 
put forward where one designed penalty term is introduced 
into the loss function of the GAN, which not only enhances 
the feature extraction ability but also reduces the noises. To 
be specific, for each spatial point of the thermal image, the 
corresponding temperature values during the ECPT-based 
NDT process are fed to the GAN, and a pixel value of this 
spatial point is generated by the GAN. Then, an image is 
reconstructed based on these pixels derived by the GAN. 

Under the effect of the designed penalty term, the pixel dif-
ference between the crack area and non-crack area would 
be enlarged, which benefits the crack detection for the NDT 
process. In the developed crack detection strategy, the PCA 
algorithm is employed to alleviate the influence of the ther-
mal transmission through the material. Data argumentation 
is applied to guarantee the effectiveness of the training data.

The main contributions of this paper can be outlined in 
the following three aspects: 

1. A modified GAN is proposed where a penalty term is 
introduced in the loss function so as to enhance the fea-
ture extraction ability and restrain the effects induced by 
the noises.

2. The proposed GAN-based method is successfully 
employed for ECPT crack detection for the first time. 
With the utilization of the NDT image sequences, the 
reliability of the crack detection result can be guaranteed.

3. The performance of the developed GAN-based method 
is comprehensively evaluated for thermal image analy-
sis. Experimental results verify the effectiveness of the 
developed modified GAN by comparing with that of the 
conventional GAN. The proposed GAN-based crack 
detection method is employed to solve a real-world 
ECPT-based NDT problem.

The rest of this paper is organized as follows. The back-
ground of the ECPT technique is provided in "Background", 
and the experimental setup of the ECPT detection system is 
also introduced. The methodology of the proposed GAN-
based crack detection method is presented in "Methodol-
ogy", where the basic knowledge of the conventional GAN 
and the details of the modified GAN are illustrated. Data 
preprocessing and data augmentation are shown in "Data 
Preprocessing". "ECPT Images" presents the ECPT images 
utilized in this paper. In "Experimental Results", experimen-
tal results and discussion are provided. The conclusions and 
the future work are summarized in "Conclusion".

Background

In this section, the basic knowledge of the ECPT technique 
is provided, and the hardware setup of an ECPT detection 
system is introduced.

Basic Knowledge of ECPT

ECPT is an effective AIT method for detecting material deg-
radations and failures. In ECPT, the eddy current is induced 
in the conductive material and generates the Joule heat, 
which leads to the temperature rise. In the crack area of 
the specimen, the conductive material influences the eddy 
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current flow as well as the heat conduction, thereby increas-
ing the temperature of the crack area. The thermal imaging 
system is employed to record the thermal contrast between 
the crack and non-crack area in the materials. The ECPT-
based crack detection approach is displayed in Fig. 1.

The Joule heating of the eddy current in the material is 
expressed as follows:

where Js is the eddy current density; Q indicates the sum of 
the Joule heating; � indicates the conductivity of the mate-
rial; and E represents the electric intensity.

In the ECPT, the heat in the crack area is accumulated as 
the electromagnetic energy continually injects. Furthermore, 
the heat diffusion causes that the temperature variation of the 
specimen is a dynamic process. The material heat conduc-
tion is given by:

where T represents the abbreviation of the temperature dis-
tribution (i.e., T(x, y, z, t)), where x, y, z are the Cartesian 
coordinates of the three-dimensional space and t is the time 
stamp; � , Cp and � indicate the thermal conductivity, the heat 
capacity and the density of the objective material, respec-
tively; and q(x, y, z, t) is the internal heat generation function 
induced by the Joule heating process [30].

It is worth mentioning that the heat conduction process 
is slow compared with the thermographic sampling process. 
Hence, the thermal imaging system is capable of captur-
ing the thermal features of the material (including the crack 
area). The time domain information of the thermal features 
is very important for crack detection.

ECPT Detection System

A typical ECPT detection system includes a thermal imager, 
a heating device (which is also known as an induction heat-
ing element), a heating coil and a specimen, which is shown 
in Fig. 2. A stainless steel specimen with several cracks 
(consisting of through-hole cracks and normal cracks) is 
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q(x, y, z, t) displayed in Fig. 2. The heating coil is driven by the high-
frequency and high-power alternating current generator 
device, which is the core component for energy injecting. 
By deploying a high-quality thermal imager, the NDT pro-
cess of the ECPT detection system is recorded. It should be 
noticed that a computer is employed to control the heating 
device as well as the thermal imager.

Methodology

Basic Knowledge of the GAN

As a popular generative model in deep learning, the GAN 
has been successfully applied to various practical applica-
tions, e.g., image translation, image synthesis, semantic 
segmentation and natural language processing. The origi-
nal GAN consists of a generator and a discriminator. In the 
original GAN, the input of the generator is random noise. 
The input of the discriminator is the real data as well as the 
so-called fake data (produced by the generator). It should be 
mentioned that the purpose of the discriminator is to accu-
rately identify the real data and the generated fake data. The 
output of the discriminator is a value in the range of (0, 1). 

The coil
Specimen

Eddy currentCrack

Sp

Edddy currentrack Ed

The coil

Fig. 1  The eddy current path through a conventional exciting coil

Specimen

Heating coil

Thermal imager

Fig. 2  The ECPT detection system and the specimen
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The goal of the generator is to explore the distribution of 
the training data.

The loss function of the original GAN is shown as 
follows:

where D(⋅) is the discriminator; G(⋅) represents the genera-
tor; x is real data; z indicates the input of the generator; 
and ℙr and ℙf  denote the distribution of real data and the 
distribution of the fake data (which is the output data of the 
generator), respectively.

Modified GAN

In this paper, a modified GAN is put forward to analyze 
the thermal images (which are obtained by using the ECPT 
technique) with the aim to identify the cracks. For crack 
detection, the input of the generator is the thermal signal 
(which indicates the temperature) of one individual point 
in the specimen, and the output of the generator is a value 
which identifies the individual point belonging to a crack or 
not. By reconstructing the output of the generator (which is 
trained by Eq. (3)), the obtained image is thus utilized for 
crack detection. In fact, the temperature of the non-crack 
area changes relatively slow and the temperature of the 
crack area changes relatively fast, which makes it difficult 
to analyze the obtained ECPT thermal images. It should be 
mentioned that the image contrast of the generated image 
is relatively small, which may lead to the overlapping of 
the crack area and the non-crack area. As such, the original 
loss function of the conventional GAN as shown in Eq. (3) 
is not suitable for crack detection by using the ECPT tech-
nique. In this paper, a modified GAN is put forward where 
a designed penalty term is introduced in the loss function 
so as to enhance the contrast ratio of the ECPT detection 
result. The sigmoid function is chosen as the penalty term 
in this paper according to its characteristics of 1) smooth; 2) 
differentiable; and 3) monotonic.

In this paper, a modified loss function is introduced 
where a penalty term is designed so as to enhance the fea-
ture extraction ability and improve the contrast ratio of the 
reconstructed image. The loss function of the modified GAN 
is given as follows:

where �1 is the penalty parameter of the introduced penalty 
term; �2 and �3 are sigmoid function parameters; var(∗) is the 
variance; P is a constant value; and ‖G(z)‖2 is the Euclidean 
norm of G(z). In this paper, we aim to pursue

(3)
J(D,G) = 𝔼x∼ℙr(x)

[logD(x)]

+ 𝔼z∼ℙf (z)
[log(1 − D(G(z)))]

(4)V(D,G) = �1
‖G(z)‖2
1

1+e−�2[var(z)−�3]
+ P

+ J(D,G)

To summarize, the modified loss function is designed to 
make G(z) as large as possible if the thermal signal z belongs 
to the crack area. It is challenging to identify whether the 
point belongs to the crack area or not when G(z) is around 
0.5. In this situation, the penalty parameters �2 and �3 are 
employed to decrease the value of G(z) to a lower one, which 
contributes to the enhancement of the contrast ratio of the 
crack area. The influence of �2 and �3 on the sigmoid func-
tion is shown in Fig. 3. By selecting �2 and �3 , the curve of 
the sigmoid function is fine-tuned for the training process, 
which is the nonlinear part of the neural networks.

GAN‑Based Crack Detection Method

In this paper, the GAN is employed to analyze the thermal 
features of the ECPT images. The procedure of the GAN-
based crack detection method is shown in Fig. 4.

The thermal signal of the spatial points reflects the 
heat conduction feature of the specimen. As mentioned 
previously, the temperature of the spatial point (that 
belongs to the crack) becomes higher within a relatively 
fast time period than that of the spatial point in the non-
crack area. In this case, the temperature distribution of 
the crack points is different from that of the non-crack 
points. As shown in Fig. 4, the preprocessed thermal sig-
nal is utilized as the training data of the generator instead 
of random noise. The output of the generator is applied 
to reconstruct the detection image. Then, the detection 
image is post-processed by using a manually selected 
threshold for binarization so as to identify the crack. To 
summarize, a probability value is obtained to determine 
whether the corresponding spatial point belongs to the 
crack or not by extracting the features of the thermal sig-
nal by using the GAN.
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Fig. 3  The effect of �2 and �3 to the sigmoid function
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Data Preprocessing

It is time-consuming and expensive to generate enough 
effective data for training a satisfactory deep learning 
model by using the ECPT technique. In the ECPT system, 
the thermal signal of the spatial points is easily influ-
enced by the high-frequency noise during the NDT pro-
cess. Therefore, it is of practical importance to preprocess 
the raw data for the further training process. In this paper, 
the thermal images captured through the ECPT-based 
NDT process are studied, and the thermal information of 
the spatial points in the specimen is investigated for all 
the selected image frames. In this section, the PCA-based 
feature selection of the thermal images and the data argu-
mentation are discussed.

PCA‑Based Feature Extraction

In the ECPT detection system, the thermal imager with 
high sampling rate captures the thermal images through 
the NDT process. It should be noted that the detection 
result of the thermal imaging systems is easily affected 
by external infrared radiation (produced by the external 

heating system) and surface radiation of the specimen, 
which leads to disturbances/noises in the images recorded 
by the thermal imager. The relationship between the tem-
perature and the spatial information of the thermal signal 
during the NDT process is depicted in Fig. 5.

It can be seen in Fig. 5 that the temperature of the points 
inside/around the crack is much higher than that in other 
area. In addition, the temperature curve is not smooth due 
to the existence of noises. The NDT process is continuous, 
and the temperature of the spatial points around the crack 
area is also influenced, which makes it difficult to distin-
guish the crack and non-crack points based on the GAN 
trained by using the raw data. The temperature distribution 
of four randomly selected lines of the detected image is 
depicted in Fig. 6.

By using the PCA method, the first principal compo-
nent is used as the generated signal. The procedure of the 
utilized signal processing method is shown in Fig. 7. The 
target object and its neighboring spatial points are 9 points 

Fig. 4  Extracting the spatial features from time sequence signals

Fig. 5  The spatial and temporal relationship of thermal signal

Fig. 6  The temperature distribution of different continuous spatial 
point sets
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in total. The corresponding thermal time series signals are 
processed by PCA, and then, a new signal is obtained with 
the main information of 9 signals.

As mentioned previously, the thermal imager captures 
more than one thousand images in a short time because 
of its high sampling rate. To be specific, the sampling 
rate of the thermal imager is 1.5s and the excitation of 
the eddy current is 0.5s. As the heating process is slow, 
the temperature of the spatial points remains the same 
between several frames. It is therefore unnecessary to 
utilize all the image frames for the training process due 
to the computational cost. In this paper, the uniform sam-
pling method is employed to select 201 image frames for 
training the GAN. The preprocessing of the thermal sig-
nal is depicted in Fig. 7, which fuses the thermal features 
extracted through the image sequences. In addition, the 
preprocessed thermal signals are normalized to improve 
the generalization ability of the GAN.

In signal processing, the sampling method is equiva-
lent to adding a low pass filter. Through decreasing the 
sampling rate, the high-frequency components would be 
restrained. In order to get effective information and avoid 
the influences of the high-frequency noises, the sampling 
process is conducted after the PCA-based feature extrac-
tion process.

Data Augmentation

During the NDT crack detection process, a large amount 
of raw data is collected. Nevertheless, most of the obtained 
raw data include redundant information or noises, which 
requires data preprocessing. In this paper, data augmenta-
tion is employed to produce enough training data so as to 
guarantee the generalization ability of the modified GAN 
algorithm. In particular, an interpolation-based method is 
designed to generate new data, which is shown in Fig. 8. 
The value of the generated point is the mean value of the 
selected points. For example, a new data point m is generated 
by calculating the mean value of the e and its neighbor e.

The label of the generated new data point is given as 
follows:

(5)Lnew = LA&LB

Time

Temperature

...

Time

Temperature

Time

Temperature

PCA

Sampling

Fig. 7  The block diagram of time sequence signal fusion

Signal of point: a

Signal of point: e

New signal

Temperature

Time

a b c

d e f

g h i

Fig. 8  The process of time sequence signal generating

Crack

Reference line

B

A

Fig. 9  A typical thermal image captured through the NDT process

Crack

The edge of the specimen

Fig. 10  The labeled data
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where La and Le represent the label of point A and point 
B, respectively; & denotes the logical conjunction “and.” 
It should be noted that the values of the thermal signals 
extracted by the image sequences are normalized to improve 
the generalization performance of the GAN.

ECPT Images

In this paper, the thermal images are preprocessed to extract 
the thermal signal as the input of the generator. An example 
of the thermal image captured through the infrared camera 
is depicted in Fig. 9. In Fig. 9, three cracks with different 
shapes are identified.

The size of an acquired thermal image (as shown in 
Fig. 9) is 480 × 640, and the total number of pixel points 
in this image is 307200. In order to enlarge the number of 
training data, there are more than 920480 data for GAN 

training by using the data generation method in this paper. 
The corresponding labeled image of Fig. 9 is shown in 
Fig. 10. Figure 10 is a binary image, which indicates that 
the class of the pixel points is only 0 or 1. To be specific, 
the pixel value of the crack points is 0 and the pixel value 
of the points in non-crack area is 1.
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Fig. 11  The temperature of the selected points

Fig. 12  An example of the testing data: a thermal image with two 
cracks

Crack areas
Areas influenced
by exciting source

Edge area

Fig. 13  The result using the general GAN

Fig. 14  (a) The result without PCA; (b) the result with PCA
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The temperature of the selected 15 pixel points in the 
reference line (as shown in Fig. 9) is displayed in Fig. 11. 
Note that the 15 pixel points are uniformly selected from 
position A to position B. In Fig. 11, the temperature value 
of the points in different positions starts to rise at different 
times, which indicates that the thermal energy transfers in 
the specimen in all directions. In this case, the size of the 
detected crack area is larger comparing with the size of the 

real crack area, which makes it difficult to use traditional 
image processing methods to detect the crack accurately.

The testing data are the thermal images of the specimen 
with two cracks, where one crack is a through-hole crack 
and the other one is a normal crack with a small depth. One 
image frame of the testing thermal images is depicted in 
Fig. 12. In Fig. 12, the crack in the left side is the through-
hole crack and the other one is the normal crack.

Fig. 15  (a) The result with 
�1 = 2, �2 = 0.1, �3 = 0.1 ; 
(b) the result with 
�1 = 1.5, �2 = 0.7, �3 = 0.3 ; 
and (c) the result with 
�1 = 0.7, �2 = 20, �3 = 0.5
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Experimental Results

Results and Discussion

In this paper, the original GAN is employed for crack detec-
tion, and the corresponding experimental result is shown in 
Fig. 13. We can see that most of the background noises are 
reduced and the cracks are not identified successfully, which 
indicates that the contrast ratio of the obtained image is not 
large enough to distinguish the disturbances.

Experiment result of the modified GAN method is shown 
in Fig. 14. Results of the modified GAN trained by the origi-
nal data and the PCA-based preprocessed data are depicted in 
Fig. 14a, b, respectively. Comparing with the result shown in 
Fig. 13, it can be seen that the contrast ratio of the generated 
image is relatively high and the background noises are reduced 
in Fig. 14, which indicates that the modified GAN outperforms 
the original GAN in dealing with thermal images. In addition, 
there are fewer noises between the cracks in Fig. 14b than that 
in Fig. 14a, which demonstrates the effectiveness of the PCA-
based data preprocessing method.

The testing results of the developed GAN-based crack 
detection method in Fig. 12 are displayed in Fig. 15. Differ-
ent hyperparameters settings are tested as shown in Fig. 15. 
For the first experiment, the hyperparameters are set as 
�1 = 2, �2 = 0.1, �3 = 0.1 . In this experiment, �3 is small 
which makes the thermal signal with small variance that 
cannot be reduced to a lower value. In this case, there are 
still some disturbances as shown in Fig. 15a. For the second 
experiment, the hyperparameters �2 and �3 are fine-tuned 
to make thermal signals with small variance to be reduced. 
It can be seen in Fig. 15b that most of the disturbances are 
alleviated. Figure 15c shows the size of the cracks is also 
reduced with relatively large hyperparameters. Furthermore, 
the crack areas are also reduced when enlarging the param-
eters. Based on results in Fig. 15, we can draw the conclu-
sion that the hyperparameters of the penalty term have large 
influence on the generalization performance of the GAN.

Conclusion

In this paper, a modified GAN algorithm has been put 
forward for the crack detection of an ECPT system by ana-
lyzing the captured thermal images. Motivated by the sig-
moid function, a new penalty term has been designed and 
added in the loss function of the GAN, where the hyper-
parameters of the penalty term have been manually chosen 
according to experimental experience. The deployment of 
the penalty term has contributed to the feature extraction, 
and the background noises have been reduced. To extract 

the features of the thermal data, the PCA algorithm and 
the data augmentation method have been utilized in data 
preprocessing. Experimental results have demonstrated the 
effectiveness of the proposed GAN-based crack detection 
algorithm on the real-world ECPT dataset. In particular, 
the modified GAN has shown better performance than 
the conventional GAN. In our future work, we aim to: 1) 
develop an automatic hyperparameter selection scheme for 
GAN-based crack detection system based on evolutionary 
computation [31–37]; 2) apply our crack detection sys-
tem to other thermography NDT tasks; 3) design a novel 
control strategy to enhance the detection performance of 
the crack detection system [38–46]; and 4) explore the 
dynamic behavior of the ECPT-based NDT process and 
study the thermography features based on signal process-
ing and control theory [47–56].
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