
Rabi, M., Cashell, K.A., Shamass, R. Ultimate behaviour and serviceability analysis of stainless steel reinforced 
concrete beams. Engineering Structures, Volume 248, 1 December 2021, 113259. Available at: 
https://www.sciencedirect.com/science/article/abs/pii/S0141029621013821  

Ultimate behaviour and serviceability analysis of stainless steel reinforced concrete beams  1 

Musab Rabia, b, K.A. Cashella, Rabee Shamassc 2 

a Dept of Civil Engineering, Jerash University, Jordan  3 

b Dept of Civil and Environmental Engineering, Brunel University London, UK 4 

c Division of Civil and Building Services Engineering, School of Build Environment and Architecture, 5 

London South Bank University, UK 6 

 7 

Abstract  8 

Stainless steel reinforcement has become a very attractive option for reinforced concrete structures 9 

owing to its distinctive properties including outstanding corrosion resistance, excellent fire behaviour, 10 

long life cycle as well as low maintenance requirements. Additionally, stainless steel reinforcement 11 

offers exceptional ductility and strain hardening characteristics compared with other common materials, 12 

which are very desirable in design to avoid sudden collapse. However, most global design standards do 13 

not incorporate an appropriate design approach for reinforced concrete members with stainless steel. 14 

The substantial strain hardening characteristics of stainless steel are typically not represented in 15 

standardised material models and therefore this attractive characteristic is not exploited in design 16 

resulting in structural and economic inefficiencies. Hence, the aim of this paper is to propose and 17 

validate a new deformation-based design approach for stainless steel reinforced concrete beams based 18 

on the continuous strength method, with reference to the current design rules provided in Eurocode 2. 19 

This approach is shown to be an effective design tool that exploits the distinctive characteristics of 20 

stainless steel reinforcement in an efficient and reliable manner. It is shown to provide a more efficient 21 

design with less over-conservatism and greater accuracy, compared with other methods. A 22 

comprehensive parametric study is conducted using Abaqus software to study the influence that various 23 

geometric and material properties have on the capacity of the members. Moreover, the serviceability 24 

limit state is also explored through a detailed analysis of the deflection behaviour.  25 

https://www.sciencedirect.com/science/article/abs/pii/S0141029621013821
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Highlights 26 

• The behaviour of stainless steel reinforced concrete beams is investigated. 27 

• A full and simplified version of a deformation-based design method is proposed and examined 28 

herein with reference to the current design rules in Eurocode 2.  29 

• A comprehensive parametric study is conducted to study the most influential parameters. 30 

• The serviceability limit state is also explored through a detailed analysis of the deflection 31 

behaviour.  32 

 33 
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1. Introduction  36 

Stainless steel is an exceptional construction material that has recently become an attractive choice for 37 

reinforced concrete structures owing principally to its excellent corrosion resistance and durability. In 38 

addition, stainless steel exhibits favourable mechanical properties, great ductility, a long life cycle and 39 

is fully recyclable. These distinctive characteristics mainly depend on the constituent elements of the 40 

stainless steel alloys and thus it is essential to carefully select the appropriate grade for each particular 41 

application. Stainless steels are defined as a group of corrosion resistant, alloying steels which possess 42 

a minimum chromium content of 10.5% and a maximum carbon content of 1.2%. There are five main 43 

categories of stainless steel, and each grade is classified according to its metallurgical structure: (1) 44 

austenitic, (2) ferritic, (3) duplex, (4) martensitic and (5) precipitation hardened stainless steel [1].     45 

The durability, resilience and efficiency of structures and infrastructure are highly topical at the current 46 

time, especially following the Polcevera Viaduct tragedy in Italy 2018 [2]. Whilst there are ever-47 

increasing demands for civil engineering structures and infrastructure to be more durable, there are also 48 

significant pressures to achieve long service periods without requiring rehabilitative or remedial works, 49 

to be more efficient in terms of material usage, and to be more resilient to both natural and man-made 50 

environments and scenarios. It is estimated that Western Europe spends around €5 billion annually on 51 
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repairing corroding concrete infrastructure [3], with a corresponding figure of $8.3 billion for the United 52 

States [4]. In addition, there can be significant further indirect costs associated with important 53 

infrastructure being out-of-service. In this context, there is a clear motivation for improving the life of 54 

reinforced concrete (RC) elements, especially for those in sensitive or harsh environments such as 55 

bridges, tunnels and marine structures.  56 

For structures subjected to aggressive conditions and reinforced with traditional carbon steel, corrosion 57 

is difficult to avoid. The typical approaches for improving durability are to control the alkalinity of 58 

concrete, increase the depth of concrete cover or use cement inhibitors or reinforcement coating 59 

materials. However, in harsh or exposed environments, all of these measures may not be sufficient to 60 

prevent the development of unacceptable levels of corrosion in which case, the use of stainless steel 61 

reinforcement may provide an ideal solution. Stainless steel reinforcement may even result in an 62 

increase in the life time of structures, and a significant reduction in the cost of expensive inspections 63 

and rehabilitation works.  64 

There are a number of reasons that stainless steel reinforcement is not more commonly employed in 65 

every-day reinforced concrete structures. Firstly, there is a common perception amongst engineers that 66 

stainless steel reinforcement is prohibitively expensive, particularly in terms of their initial cost, and 67 

the full life cycle costs are not always considered when selecting the materials [5]. Secondly, there is a 68 

lack of design guidance and performance data available in the public domain, mainly owing to this 69 

being a relatively new topic in structural engineering terms. Given the high initial cost of stainless steel, 70 

it is crucial that efficient design rules which exploit the advantageous and distinctive properties of the 71 

material should be made available. However, most global design standards [6] do not incorporate an 72 

efficient design approach for RC members with stainless steel. In particular, they generally include an 73 

elastic-plastic material model for idealising the reinforcement behaviour, which does not exploit the 74 

significant strain hardening and high ductility characteristics of stainless steel. Although, this 75 

assumption could be acceptable for the design of traditional concrete structures reinforced with carbon 76 

steel, it results in inaccurate predictions for stainless steel RC members since stainless steel exhibits a 77 
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nonlinear response from an early stage followed by significant strain hardening. Therefore, designing 78 

RC structures with stainless steel using the current design rules, is neither efficient nor accurate.  79 

There has been extensive research in recent years into the behaviour of structural stainless steel 80 

including retrofitting applications [7, 8], the flexural behaviour [9, 10], compressive response [11, 12] 81 

and the mechanical characteristics [13-15]. However, most of this research has focused on bare stainless 82 

steel sections, rather than stainless steel reinforced concrete which is the main concern of the current 83 

paper. There has been some research in recent years into the flexural behaviour of reinforced concrete 84 

beams which were repaired using a hybrid system of stainless steel rebars and CFRP sheets [16]. 85 

Recently, Hasan et al. has investigated a series of geographical locations which are suitable for using 86 

stainless steel rebars in reinforced concrete girder bridges using a life cycle costing (LCC) based system 87 

[17]. However, the current paper is concerned with the behaviour of stainless steel reinforced concrete 88 

flexural members, and the principal objective is to propose and validate an alternative design method 89 

to those available in the current design standards. The proposed method is based on the increasingly 90 

popular continuous strength method (CSM), which is a deformation-based design approach that 91 

harnesses the advantages of material strain hardening. The CSM was originally developed for stainless 92 

steel structural members with non-slender cross-sections [18] and has been developed many times over 93 

the last 15 years [19-21]. The approach has also been adapted for composite construction [22; 23] and 94 

has most recently been extended to include RC beams reinforced with stainless steel [24]. This paper 95 

presents the results of a comprehensive parametric study in which the most influential geometric and 96 

material properties are examined, in terms of the structural performance of stainless steel RC members. 97 

Building on previous work, the CSM approach is examined over an extensive range of parameters, with 98 

emphasis given to the geometry of the section, reinforcement ratio and also deflections, in the context 99 

of the nonlinear stress-strain behaviour.  100 

2. Design of stainless steel reinforced concrete beams 101 

Two versions of the continuous strength method (CSM) have been developed for the design of stainless 102 

steel reinforced concrete beams, accounting for the distinct material properties of the reinforcement. 103 
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The full analytical model (hereafter referred to as AM) considers the full stress-strain response of 104 

stainless steel whereas the simplified model (SM) considers simplified material model for the stainless 105 

steel which is a bilinear elastic-linear strain hardening relationship; these are both presented in Fig. 1. 106 

The full details of these models are available in [24], and a concise overview is presented herein. 107 

2.1. Material model  108 

The constitutive behaviour of stainless steel is noticeably different from that of carbon steel, as shown 109 

in Fig. 2. Stainless steel exhibits a nonlinear response from the beginning, does not have a clearly 110 

defined yield point and develops significant strain hardening and ductility. In contrast, carbon steel 111 

exhibits a linear relationship in the elastic range with a well-defined yield point, followed by a 112 

moderate degree of stain hardening. Hence, the 0.2% proof stress (σ0.2) is typically used to identify the 113 

yield limit in stainless steel.  114 

The modified Ramberg-Osgood stainless steel material model developed by Mirambell and Real [14] 115 

and Rasmussen [15], which is an extension of the original version [13], is employed to represent the 116 

stainless steel constitutive stress-strain relationship. This material model was developed on the basis of 117 

empirical data and has been adopted in an extensive number of research papers [18-25]. It includes the 118 

two expressions presented in Eqs. 1 and 2, for the elastic and non-elastic stages of the behaviour, 119 

respectively:   120 

ε =
σ

E
+ 0.002(

σ

σ0.2
)
n
                                                    for    σ ≤ σ0.2 

(1) 

ε = ε0.2 +
σ−σ0.2

E2
+ (εu − ε0.2 −

σu−σ0.2

E2
) (

σ−σ0.2

σu−σ0.2
)
m

   for    σ0.2 < σ ≤ σu 
(2) 

In these expressions, ε and σ are the engineering strain and stress, respectively; E is the elastic modulus; 121 

E2 is the tangent modulus at the 0.2% proof stress; σu and εu are the ultimate stress and corresponding 122 

strain, respectively; ε0.2 is the strain corresponding to σ0.2; and n and m are material constants related to 123 

the strain hardening behaviour. It is noteworthy that all equations in this paper are applied using SI 124 

units, unless stated otherwise.  125 
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However, in order to implement the material model in conjunction with the design method, it is 126 

necessary to determine the stress as a function of strain. Therefore, the inversion relationship proposed 127 

by [26] for the full stress-strain relationship of stainless steel is employed, as presented in Eqs. 3 and 4.  128 

σ1(ε) = σ0.2

r (
ε

ε0.2
)

1+(r−1)(
ε

ε0.2
)
p                           for    ε ≤ ε0.2 (3) 

 129 

σ2(ε) = σ0.2

[
 
 
 
 

1 +
r2 [

ε

ε0.2
−1]

1+(r∗−1) (

ε
ε0.2

−1

εu
ε0.2

−1
)

p∗

]
 
 
 
 

        for    ε > ε0.2 (4) 

where the material parameters are: 130 

ε0.2 =
σ0.2

E
+ 0.002 r =

E ε0.2

σ0.2
 

 

E2 =
E

1 + 0.002 n/e
 p = r

1 − r2

r − 1
 

e =
σ0.2

E
 m = 1 + 3.5

σ0.2

σu
 

σu = σ0.2

1 − 0.0375(n − 5)

0.2 + 185e
 Eu =

E2

1 + (r∗ − 1)m
 

r2 =
E2 ε0.2

σ0.2
 ru =

Eu(εu − ε0.2)

σu − σ0.2
 

εu = min (1 −
σ0.2

σu
, A)  p∗ = r∗

1 − ru

r∗ − 1
 

r∗ =
E2(εu − ε0.2)

σu − σ0.2
 n =

ln (20)

ln (σ0.2 σ0.01)⁄
 

In these expressions, A is the stainless steel elongation; Eu is the slope of the stress-strain curve at εu; 131 

and r, r2, r*, ru, p and p* are parameters that need to be determined. 132 
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For the simplified design model, a bilinear stress-strain relationship is employed to avoid the complexity 133 

of nonlinear equations, as presented in Eqs. 5 and 6, and depicted in Fig. 1. In this approach, the yield 134 

point is identified as the 0.2% proof stress (σ0.2) and the corresponding yield strain (εy) is determined 135 

by dividing this value by the elastic modulus, E. The difference between εy and ε0.2 as employed in the 136 

full analytical model are demonstrated in Fig. 1. The slope of the strain hardening region (Esh) is 137 

obtained from the line passing through the yield (εy, σ0.2) and ultimate (C2εu, σu) points, as defined in 138 

Eq. 7. It has been found that a value of 0.15 is an appropriate value for the constant C2 [24]. 139 

σ = Eε ε ≤ εy (5) 

σ = σ0.2 + Esh(ε − εy) ε > ε𝑦 (6) 

Esh =
σu − σ0.2

C2εu − εy
 (7) 

 140 

Fig. 1: The simplified and modified Ramberg-Osgood material models for stainless steel. 141 
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 142 

Fig. 2: Stress-strain constitutive response for stainless steel grade 1.4301 and carbon steel, with 143 

diameter of 10 mm [27]. 144 

2.2. Analytical models  145 

The plastic bending moment capacity of the stainless steel reinforced concrete beam is obtained using 146 

either the full or simplified material models discussed in the previous section. In both of these 147 

approaches, the internal tensile and compressive forces are equated, assuming that the cross-section is 148 

in equilibrium. The internal forces are determined based on the stainless steel stress-strain material 149 

model and the equivalent rectangular compressive stress distribution in the concrete, together with the 150 

strain distribution in the section.       151 

There are two possible cases for calculating the bending moment capacity of the section using the full 152 

and simplified material models. Case 1 is when the tensile strain of the reinforcement is less than the 153 

total strain corresponding to σ0.2 (i.e. ε ≤ ε0.2 in the case of full material model and ε ≤ εy for the 154 

simplified material model) and Case 2 is when the tensile stain of the reinforcement is greater than the 155 

total strain corresponding to σ0.2 (i.e. ε > ε0.2 for the full material model and ε > εy in the case of the 156 

simplified material model).  157 

The stress in the reinforcement at failure of the beam is determined from the corresponding strain which 158 

is determined based on the strain distribution in the section, as follows: 159 
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ε = κ(d − y)                       (8) 

κ = min(κsu, κcu) (9) 

In these expressions, d is the depth of the reinforcement in the section from the top of the beam, κ is the 160 

ultimate curvature of the section, and κsu and κcu are the limiting curvatures for stainless steel and 161 

concrete failures, respectively. There are two possible failure modes of the section, either crushing of 162 

the concrete (i.e. when κsu > κcu) or by rupture of the reinforcement (κsu < κcu). Because of the brittle 163 

nature of concrete and the high ductility of stainless steel, the failure mode of the section is dominated 164 

by crushing of the concrete in most cases. The values of κsu and κcu are determined as: 165 

κsu =
εu

d − y
   

κcu =
εcu

y
  

 

(10) 

The bending moment capacity of the section is obtained by firstly establishing the stress in the 166 

reinforcement and then locating the position of the neutral axis by applying equilibrium of the internal 167 

forces to the cross-section of the beam. In the case of full model, this results in complex nonlinear 168 

equations that require an iterative solution method whereas the simplified model provides a straight 169 

forward solution procedure. The full solution procedures for both methods are discussed in more detail 170 

in [24]. A flow chart presenting the full procedure for determining the neutral axis and the plastic 171 

bending moment capacity is given in Fig. 3. 172 
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 173 

Fig. 3: Flow chart of the solution procedure for a singly reinforced concrete beam. 174 

3. Numerical model   175 

A finite element (FE) model has been developed using the Abaqus software [28] to simulate the 176 

behaviour of a stainless steel RC beam, with the aim of using it to examine the proposed analytical 177 

methods discussed in the previous section. This was shown to accurately predict the behaviour of 178 

reinforced concrete beams in terms of bending moment capacity, initial bending stiffness and crack 179 

propagation and patterns [24]. A similar approach is utilised herein to investigate the effect of beams 180 

geometries and materials properties of concrete and stainless steel on the structural behaviour of 181 

stainless steel RC beams, deflection at service moment and to further validate the proposed simplified 182 

model for the flexural capacity of stainless steel RC beams. In addition, in the current paper, the model 183 

is employed to conduct a detailed study into the deflection behaviour, which has not been previously 184 

considered. 185 

The FE model is developed using an implicit dynamic solution procedure for quasi-static behaviour, 186 

which is able to achieve numerical convergence despite the nonlinearities of the behaviour. In the 187 

model, the concrete elements are represented using 3D eight-node hexahedral elements whereas the 188 

reinforcement is simulated using 2-node beam elements available in the Abaqus library [28]. The 189 
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reinforcement is embedded in the concrete and the translational degrees of freedom at each node of the 190 

reinforcement are constrained to the interpolated values of the corresponding degrees of freedom of the 191 

concrete element. 192 

In terms of the materials, the modified Ramberg-Osgood material model described previously in Eqs. 193 

1 and 2 is implemented to represent the behaviour of the stainless steel reinforcement. On the other 194 

hand, the nonlinear concrete behaviour in compression is modelled using Eq. 11, as given in Eurocode 2 195 

[6]:  196 

σc = (
kη − η2

1 + (k − 2)η
)fcm 

 (11) 

where: 197 

k = 1.05Ec

εc1

fcm

  fcm = fck + 8  

η = 
εc

εc1
  εc1(%) = 0.7(fcm)0.31 ≤ 2.8  

Ec = 22000(0.1fcm)0.3    

In these expressions, σc is the concrete compressive stress; fcm and fck are the mean and characteristic 198 

values of the concrete cylinder compressive strength, respectively; εc1 is the strain at the peak stress of 199 

the concrete while εcu is the ultimate strain of concrete, which is taken as 0.0035; and Ec is the Young’s 200 

modulus of concrete.  201 

The tensile stress-strain behaviour of concrete is modelled using Eq. 12, which was proposed by [29], 202 

and provides an accurate post-failure tensile response compared with linear or bi-linear relationships: 203 

σt = Ecεt if εt ≤ εcr 

(12) 
σt = ft(

εcr

εt
)0.4  if εt > εcr 

In these expressions, εt  is the concrete tensile strain corresponding to the tensile stress (σt) and εcr is 204 

the tensile cracking strain corresponding to the tensile strength of concrete (ft), determined as: 205 
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ft = 0.3(fck)
2/3 (13) 

3.1. Failure criteria  206 

In the numerical analysis, it is typically assumed that ultimate failure of a normally reinforced concrete 207 

beam occurs when the outer fibre of the concrete in compression reaches the ultimate crushing strain 208 

(usually taken as 0.003 or 0.0035). This is likely to occur when the reinforcement material exhibits 209 

elastic perfectly-plastic stress-strain properties, because the compressive strain in the concrete at the top 210 

surface is reached after the reinforcement yields so the steel no longer contributes towards the ultimate 211 

bearing capacity of the section. However, this behaviour is different when the reinforcement is made 212 

from stainless steel rather than carbon steel, owing to the significant levels of strain hardening and 213 

ductility in the stainless steel, and the lack of a distinct yield point. Even when the concrete reaches the 214 

crushing strain at the top surface, the stainless steel reinforcement is still contributing towards the 215 

ultimate bearing capacity of the section. In addition, it is difficult to predict exactly when the concrete 216 

has crushed and therefore, it is necessary to make an assumption regarding the exact point at which the 217 

concrete is assumed to have failed (e.g. once the first node at the top surface reaches the assumed strain 218 

limit or all nodes on the top surface). In order to avoid this uncertainty, in the current work the maximum 219 

capacity of the section is taken at the ultimate load capacity of the section, in the same manner that this 220 

is commonly determined experimentally.  221 

3.2. Validation of the FE model 222 

The FE model has been validated using six RC beams from different experimental programmes 223 

available in the literature [30-35], three of which were reinforced with stainless steel reinforcement and 224 

three of which had traditional carbon steel reinforcement. No further experimental data on stainless 225 

steel reinforced concrete beams were available in the literature. All of the beams were tested under four-226 

point loading conditions in displacement control. The validation includes three stainless steel RC 227 

beams, namely B3, SS and BKW1, and three other beams (SR6, U2 and O) reinforced with carbon steel 228 

reinforcement for additional robustness. The full details of the geometry and material properties for 229 

these beams are available in [24]. 230 
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Fig. 4 shows the numerical load-displacement response for beams SS, SR6, U2, O and BKW1 in 231 

comparison with the corresponding experimental data. Fig. 5 presents the moment-displacement 232 

response for beam B3, since this is that manner that the experimental data is published [35]. It is 233 

observed that the model provides an excellent depiction of the experimental behaviour in all cases in 234 

terms initial stiffness, cracking point, and ultimate strength. It is found that the model slightly over-235 

estimates the initial stiffness of the beams most likely because of some localized cracking in the 236 

experiment were not captured by the numerical model.  237 

 238 

Fig. 4: Comparison between experimental and numerical load-displacement curves for beams U2 239 

[30], O [31], SS [32], SR6 [33] and BKW1 [34]. 240 
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 241 

Fig. 5: Comparison between experimental and numerical moment-displacement curves for beam B3 242 

[35]. 243 

4. Analysis of the behaviour 244 

In this section, the performance of stainless steel reinforced concrete beams with different geometric 245 

and material properties is assessed using the FE model. Moreover, the accuracy of the proposed design 246 

models is analysed against the numerical results, with reference to the current design provisions in 247 

Eurocode 2. Around 200 numerical simulations have been conducted to investigate the influence that 248 

the design parameters have on the exploitation of strain hardening and ductility of the stainless steel 249 

reinforcement in the section, including concrete strength, grade of stainless steel, geometry and 250 

reinforcement ratio. In addition, a detailed study into the influence of these parameters on the deflections 251 

and the accuracy of the Eurocode 2 provisions, is also presented. 252 

All of the members in this study are assumed to be simply supported beams under four-point loading 253 

conditions and have a clear span of 3300 mm in order to avoid shear failure in the beam. Each member 254 

has two reinforcements with diameter of 12 mm, unless it is stated otherwise. The full range of 255 

parameters examined is presented in Table 1. The material data presented by [36] for these grades is 256 
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given in Table 2, including the n and m parameters required for application of the modified Ramberg-257 

Osgood material model.  258 

Table 1: Range of geometrical parameters included in the study. 259 

Parameter Range examined 

Concrete grade C20, C30, C40, C50 

Grade of stainless steel reinforcement Austenitic 1.4311, lean duplex 

1.4162 and Austenitic 1.4307 

Width/height (b/h) ratio of the beam  0.55 to 1 

Diameter of the reinforcement 12 mm and 20 mm 

Reinforcement ratio (%) 0.187 – 5.2 % 

Table 2: Material properties of stainless steel reinforcement included in the study [36]. 260 

Stainless 

steel type 

Grade σ0.2 

(N/mm2) 

σu 

(N/mm2) 

E       

(kN/mm2) 

εu   

(%) 

n m 

Austenitic 1.4311 

(304LN) 

480 764 202.6 38.6 4.7 4.8 

Lean 

duplex 

1. 4162 

(LDX2101) 

682 874 199.1 20.4 5.3 5.0 

Austenitic 1.4307 

(304L) 

562 796 210.2 30.7 4.7 4.8 

 261 

4.1. Bending moment capacity predictions 262 

Figs. 6, 7 and 8 present the bending moment predictions obtained from the proposed full analytical 263 

model (AM), the simplified analytical model (SM) and the numerical model (FE) as well as those 264 

obtained using the design method provided in Eurocode 2 (i.e. elastic-perfectly-plastic behaviour of the 265 

material is assumed), for beams reinforced with stainless steel grades 1.4311, 1.4162, 1.4307, 266 
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respectively. The results are presented in terms of bending moment versus concrete strength (fc), to 267 

highlight how this parameter influences the behaviour.  268 

The figures show a good agreement between the results obtained numerically with those calculated 269 

using the full proposed analytical model with average and maximum AM/FE values being -14.9% and 270 

-22.3% whilst these same values obtained using the Eurocode 2 design rules (i.e. EC2/FE) are -28.3% 271 

23 and -44.7%, respectively. It is noteworthy that a negative value for the AM/FE ratio indicates a 272 

conservative result from the analytical model. Clearly, the Eurocode 2 design rules provide an overly 273 

conservative prediction of the ultimate bending moment capacity, whereas the full analytical design 274 

model provides less conservative yet accurate and reasonably realistic results. There are still some 275 

disparities between the analytical and numerical results, which are most likely owing to some of the 276 

simplifications in the analytical model. These include the assumption that concrete does not contribute 277 

to the load carrying capacity in tension and also the idealisation of rectangular stress blocks. 278 

Nevertheless, the results are better than the existing design provisions, and remain on the conservative 279 

side consistently. 280 

The simplified analytical model which incorporates the bilinear stress-strain curve for the stainless steel, 281 

also provides conservative predictions for the bending moment capacity in most cases with the average 282 

and maximum SM/FE values being -9.9% and -26.8%, respectively. It is noteworthy that the simplified 283 

analytical model provides less conservative results overall compared with the full analytical model 284 

mainly because the simplified material model has a greater slope in the strain hardening region. In 285 

addition, in a small number of cases when beams have a relatively low b/h ratio and are made using 286 

high strength concrete and grade 1.4162 stainless steel, the simplified analytical model tends to 287 

overestimate the bending moment capacity compared with the numerical results, which slightly skews 288 

the average and maximum SM/FE values given before. Therefore, it is necessary to recalibrate the 289 

simplified method in order to achieve better agreement with full method predictions, and to provide 290 

conservative predictions for all cases, as discussed in the following section.   291 
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4.1.1. Proposed modifications into the simplified analytical model  292 

In this section, the slope of the strain hardening portion of the stainless steel constitutive relationship is 293 

modified to improve the accuracy of the simplified analytical model, especially for the cases highlighted 294 

in the previous section where slightly unconservative results were obtained. This is achieved by 295 

recalibrating the C2 parameter in Eq. 7 based on the extensive range of numerical data obtained. Since 296 

different stainless steel grades have their own mechanical properties, an optimization study for the C2 297 

parameter is conducted individually for each material type. Consequently, it has been found that the 298 

most accurate bending moment predictions for the full range of parameters examined in the current 299 

study are achieved using a C2 value of 0.25 for beams with austenitic stainless steel grades 1.4311 and 300 

1.4307, and 0.3 for beams with lean duplex stainless steel grade 1.4162. This is reasonably acceptable 301 

as a higher value of C2 results in a lower Esh value and hence lower strain hardening capacity, as is the 302 

case for lean duplex stainless steel compared with the austenitic grades.  303 

The results of the simplified analytical model predicted using the new proposed values for C2 (denoted 304 

as SM-I) are presented in Figs. 6, 7 and 8, for beams made using grade 1.4311, 1.4162 and 1.4307 305 

stainless steel, respectively. The figure also presents the data from the previous C2 value of 0.15 (SM 306 

in the figures). It is observed that the simplified analytical model predictions with the newly proposed 307 

C2 values are in excellent agreement with the predictions of the full analytical model. The average and 308 

maximum SM-I/AM ratios are -2.8% and -17.2%, respectively, whilst these same values for SM/AM 309 

are 5.9% and 34.5%, respectively. This also ensures that the simplified predictions are below that of the 310 

numerical model, for all examined cases. Therefore, the proposed values for C2 parameter are 311 

implemented in the simplified analytical model for all the results presented in the following sections.  312 
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(a) (b) 

  

(c) (d) 

Fig. 6: Bending moment predictions for beams with grade 1.4311 austenitic stainless steel using a b/h 313 

ratio of (a) 1.00 (b) 0.85 (c) 0.70 and (d) 0.55. 314 
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(a) (b) 

  

(c) (d) 

Fig. 7: Bending moment predictions for beams with grade 1.4162 duplex stainless steel using a b/h 315 

ratio of (a) 1.00 (b) 0.85 (c) 0.70 and (d) 0.55. 316 

30

35

40

45

50

55

60

15 25 35 45 55

M
o

m
en

t 
(k

N
m

)

fc (N/mm2)

FE AM SM

SM-I EC2

40

50

60

70

80

15 25 35 45 55

M
o

m
en

t 
(k

N
m

)

fc (N/mm2)

FE AM SM

SM-I EC2

50

60

70

80

90

100

15 25 35 45 55

M
o

m
en

t 
(k

N
m

)

fc (N/mm2)

FE AM SM

SM-I EC2

60

80

100

120

140

15 25 35 45 55

M
o

m
en

t 
(k

N
m

)

fc (N/mm2)

FE AM SM

SM-I EC2



20 
 

  

(a) (b) 

  

(c) (d) 

Fig. 8: Bending moment predictions for beams with grade 1.4307 austenitic stainless steel using a b/h 317 

ratio of (a) 1.00 (b) 0.85 (c) 0.7 and (d) 0.55. 318 
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analytical model is 21.5%.  Clearly, the ultimate bending moment calculated from the simplified 325 

analytical model is more influenced by the strength of concrete compared with those obtained using the 326 

numerical or the full analytical models. This is perhaps owing to the simplified bi-linear material 327 

behaviour of the stainless steel employed in the simplified material model which, for beams made from 328 

a relatively higher concrete strength, enables the reinforcement to carry further tensile forces prior 329 

concrete crushing failure. Despite this, all the predictions of the simplified method are currently lower 330 

than the numerical values, considering the new proposed values for the C2 parameter.  331 

The effect of concrete strength on the load-displacement response is illustrated in Figs. 9, 10 and 11 for 332 

beams made using stainless steel reinforcement in grade 1.4311, 1.4162 and 1.4307, respectively. The 333 

section used in this analysis is 300 mm in width and 545 mm in height (i.e. the b/h ratio is 0.55). The 334 

concrete strength is varied between 20 and 50 MPa. It is clear that as expected, the initial bending 335 

stiffness, crack load (i.e. identified as the load in which the slope of the load-displacement curve begins 336 

to change) and ultimate load of the beam is improved by increasing the strength of concrete, for all 337 

cases. For example, increasing the strength of concrete from 20 MPa to 50 MPa enhances the cracking 338 

load and the ultimate load by around 43% and 11% on average, respectively. Beams with C20 concrete 339 

exhibit a softer bending stiffness, lower cracking load and ultimate load compared with the responses 340 

obtained using the other concrete strengths. This is most likely because the lower tensile strength of 341 

C20 leads to greater cracking in the specimen which affects the overall load-displacement response. 342 
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 343 

Fig. 9: Load-displacement curves obtained numerically using various concrete strength for beams 344 

with stainless steel grade 1.4311. 345 

 346 

Fig. 10: Load-displacement curves obtained numerically using various concrete strength for beams 347 

with stainless steel grade 1.4162. 348 
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 349 

Fig. 11: Load-displacement curves obtained numerically using various concrete strength for beams 350 

with stainless steel grade 1.4307. 351 

4.3. Stainless steel grade  352 

The effect that stainless steel grade has on the load-displacement response is illustrated in Fig. 12. For 353 
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elasticity and yield strength are taken as 200 GPa and 500 N/mm2, respectively. The figure illustrates 367 

that using carbon steel reinforcement shows no considerable difference in terms of the cracking load or 368 

the initial bending stiffness of the beams, compared with the stainless steel reinforced concrete 369 

members. However, it is clearly observed that the ultimate load capacity for the beam with carbon steel 370 

rebars is significantly lower, by around 27% on average, compared with that of stainless steel beams. 371 

Additionally, it is evident from Table 3 that beams with carbon steel reinforcement develop lower 372 

ultimate bending moment capacities compared with those of stainless steel beams.  373 

The other important observation is that the deflection at the ultimate load of the beam is influenced by 374 

the grade of stainless steel, as shown in Fig. 12. For instance, the beam with grade 1.4311 stainless steel 375 

reinforcement deflects to 18.6 mm at the ultimate load whereas the corresponding deflections for beams 376 

with grades 1.4162 and 1.4307 are 13.4 and 12 mm, respectively. Given that grade 1.4311 has the 377 

highest strain hardening capacity of the stainless steels examined herein, it is clearly intuitive to 378 

conclude that the ductility of the section is improved by using reinforcement with a greater ultimate 379 

strain.  380 

In order to analyse the accuracy of the full and simplified analytical models when different stainless 381 

steel grades are used, Table 3 shows a comparison of the bending moment predictions obtained 382 

numerically and analytically with reference to the predictions of Eurocode 2. The results are obtained 383 

for two different sections with width to height (b/h) ratios of 0.55 and 0.70. The results demonstrate 384 

that both the full and simplified models as well as the Eurocode 2 tend to provide less conservative 385 

bending moment predictions compared with the numerical values when a grade of stainless steel with 386 

a relatively higher strength is used. 387 

 388 
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 389 

Fig. 12: Load-displacement curves obtained numerically for different reinforcement grades. 390 

Table 3: Comparison between the ultimate bending moment predictions obtained numerically and 391 

analytically for different reinforcement grades.  392 

b/h 

ratio 

Grade FE 

(kNm) 

AM 

(kNm) 

SM-I 

(kNm) 

EC2 

(kNm) 

AM/FE 

% 

SM-I/FE 

% 

EC2/FE 

% 

0.55 

1.4311 101.4 81.0 90.5 56.0 -20.1 -10.8 -44.8 

1.4162 113.8 97.8 109.5 79.3 -14.1 -3.7 -30.3 

1.4307 104.9 85.8 98.3 65.5 -18.2 -6.3 -37.6 

B500b 78.9 - - 58.3 - - -26.1 

0.7 

1.4311 75.9 61.4 65.1 43.3 -19.0 -14.1 -42.9 

1.4162 85.8 74.5 80.0 61.2 -13.2 -6.8 -28.6 

1.4307 78.7 66.1 71.2 50.6 -16.0 -9.5 -35.7 

B500b 56.4 - - 45.14 - - -20 
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4.4. Geometry   394 

In order to investigate the effect that the geometry of the section has on the behaviour of stainless steel 395 

RC beams, beams with different b/h ratios ranging from 1.00 to 0.55 are considered in the current 396 

section. The results presented are obtained for beams made from C50 concrete. Figs. 13, 14 and 15 397 

illustrate the relationship between the bending moment predictions obtained from the numerical and 398 

analytical models, and b/h ratios for beams with stainless steel grades 1.4311, 1.4162 and 1.4307, 399 

respectively. It is clear that the ultimate bending moment significantly increases for beams with a 400 

relatively lower b/h ratio, as expected since these beams would have a greater second moment of area. 401 

The simplified analytical model tends to provide a higher prediction compared with the full analytical 402 

model for beams with a lower b/h ratio. However, the bending moment predictions obtained from the 403 

simplified analytical model are lower than those obtained numerically in all cases, therefore providing 404 

a conservative prediction. It is noteworthy that the full analytical method improves the accuracy of the 405 

bending capacity of the section by around 41%, 21% and 32% on average, compared with the current 406 

design approach in Eurocode 2, for the results presented in this section and obtained using stainless 407 

steel grades 1.4311, 1.4162 and 1.4307, respectively.  408 

Fig. 16 presents the relationship between the beam geometry and the ability of the section to exploit the 409 

strain hardening capabilities of the stainless steel, using the full analytical model. It is shown that the 410 

geometry of the beam has a relatively small influence on the exploitation of strain hardening. For 411 

example, a beam with a b/h ratio of 0.55 develops around 4.2%, 2.9% and 2.2% more stress in the 412 

reinforcement for grades 1.4311, 1.4162 and 1.4307, respectively, compared with members with a b/h 413 

ratio of 1.00. In general, it is observed that beams reinforced with 1.4162 grade lean duplex stainless 414 

steel reinforcement exhibit greater exploitation of the strain hardening capacity in the stainless steel, 415 

compared with beams reinforced with the austenitic grades 1.4307 and 1.4311. 416 
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 417 

Fig. 13: Effect of the beam geometry on the bending moment predictions for beams with austenitic 418 

stainless steel grade 1.4311. 419 

 420 

Fig. 14: Effect of the beam geometry on the bending moment predictions for beams with lean duplex 421 

stainless steel grade 1.4162 422 
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 423 

Fig. 15: Effect of the beam geometry on the bending moment predictions for beams with austenitic 424 

stainless steel grade 1.4307. 425 

 426 

Fig. 16: Effect of the beam geometry on the exploitation of strain hardening. 427 
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hardening in the reinforcement, is assessed. The results presented are obtained for beams with concrete 432 

strength C40 and a b/h ratio of 0.70.  433 

Figs. 17, 18 and 19 illustrate the effect that reinforcement ratio (ρ) has on the bending moment capacity 434 

values obtained numerically and analytically for beams made using stainless steel reinforcement in 435 

grades 1.4311, 1.4162 and 1.4307, respectively. The results demonstrate that both the full and simplified 436 

analytical models underestimate the bending moment capacities obtained numerically in almost all 437 

cases, which is conservative and in line with previous findings. The numerical analyses show that the 438 

bending moment capacity improves as the reinforcement ratio increases until it reaches a specific ratio 439 

(i.e. around 0.032 in the cases presented herein) after which no further improvement in the bending 440 

capacity is observed. The reason for this is most likely due to the greater depth of the neutral axis when 441 

a higher reinforcement ratio is employed which increases the compressive stress in the concrete until it 442 

crushes, and no further improvement can be achieved. Moreover, both the simplified analytical model 443 

and the Eurocode 2 design rules provide identical predictions, as expected, when a higher reinforcement 444 

ratio is used since both models are based on the same constitutive behaviour for the stainless steel in 445 

the elastic range. It is also observed that for beams with a relatively higher reinforcement ratio, the 446 

moment capacities predicted by the full analytical model are below those from the simplified analytical 447 

model and also Eurocode 2. This is owing to the nonlinearity of the material model which starts from 448 

an early stage.  449 
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 450 

Fig. 17: Effect of the reinforcement ratio (ρ) on the bending moment capacity for beams made using 451 

grade 1.4311 austenitic stainless steel. 452 

 453 

Fig. 18: Effect of the reinforcement ratio (ρ) on the bending moment capacity for beams made using 454 

grade 1.4162 lean duplex stainless steel. 455 
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  456 

Fig. 19: Effect of the reinforcement ratio (ρ) on the bending moment capacity for beams made using 457 

grade 1.4307 austenitic stainless steel. 458 

Figs. 20, 21 and 22 demonstrate the influence of reinforcement ratio on the exploitation of strain 459 

hardening in the rebar for beams with stainless steel reinforcement in grades 1.4311, 1.4162 and 1.4307, 460 

respectively. These results are obtained using the full analytical model, for a range of different concrete 461 

strengths. The figures illustrate the amount of stress in the rebars that can be exploited when calculating 462 

the ultimate bending moment capacity of the section. The horizontal solid line in each of the figures 463 

represents the yield limit for that particular grade of stainless steel (i.e. σ0.2 σu⁄ ).  464 

It is shown in the figures that further exploitation of the strain hardening capacity in the reinforcement 465 

is achieved when a relatively higher grade of concrete is employed. This is mainly because the higher 466 

strength concrete can carry greater compressive forces allowing the rebar to reach greater levels of 467 

stress. In all cases, it is observed that the level of stress in the stainless steel is relatively lower when a 468 

higher reinforcement ratio is employed. This is because an increase in the steel cross-sectional area 469 

generally reduces the levels of stress and strain in the reinforcement and increases the depth of the 470 

neutral axis, which causes a relative increase in the levels of applied stress and strain in the concrete 471 

resulting in crushing of the concrete. Accordingly, lower exploitation of the tensile strength in the 472 

reinforcement is achieved.       473 
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 474 

Fig. 20: Effect of reinforcement ratio on the exploitation of strain hardening for beams reinforced with 475 

grade 1.4311 austenitic stainless steel. 476 

 477 

Fig. 21: Effect of reinforcement ratio on the exploitation of strain hardening for beams reinforced with 478 

grade 1.4162 lean duplex stainless steel. 479 
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 480 

Fig. 22: Effect of reinforcement ratio on the exploitation of strain hardening for beams reinforced with 481 

grade 1.4307 austenitic stainless steel. 482 
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requires obtaining the depth of the neutral axis (y) from the strain distribution in Fig. 23, as presented 497 

in Eq. 14: 498 

y =
d

1 + ε0.2 εcu⁄
 

(14) 

 499 

 500 

Fig. 23: Strain and stress distribution diagrams for a reinforced concrete beam including (a) the cross-501 

section (b) the strain distribution, (c) the stress distribution and (d) an equivalent stress distribution in 502 

the section. 503 

The equilibrium of internal forces can be applied, as presented in Eq. 15, by assuming the depth of the 504 

compressive stress block of the concrete is 0.8y and the concrete compressive stress in the concrete 505 

stress block is 0.85fc: 506 

0.68fcy b − Asσs = 0 (15) 

In this expression, the tensile stress (σs) is the 0.2% proof stress of the reinforcement (σ0.2). 507 

By substituting Eq. 14 into Eq. 15, Eq. 16 is obtained: 508 

 0.68fc (
d

1+ε0.2 εcu⁄
) b − Asσ0.2 = 0 (16) 

The balanced reinforcement ratio (ρbal) is obtained by rearranging Eq. 16, as follows: 509 
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ρbal =
As

bd
=

0.68

σ0.2
(

fc
1 + ε0.2 εcu⁄

) 
(17) 

In the case of under-reinforced section, the reinforcement ratio must be greater than the minimum ratio 510 

required to prevent the rupture of the rebar which it can be obtained using Eq. 18.  511 

ρmin =
0.68

σu
(

fc
1 + εu εcu⁄

) 
(18) 

4.6. Deflections  512 

A realistic estimation of the levels of deflection that develop in a structure is imperative to ensure 513 

acceptable serviceability and the comfort of end-users. Thus, global design standards typically provide 514 

limiting values for deflections which should not be exceeded. In Eurocode 2, for example, the allowable 515 

deflection is limited to span/250 for members subjected to quasi-permanent loads [6]. Deflections are 516 

in important consideration for concrete members reinforced with stainless steel owing to the excellent 517 

ductility of the reinforcing material. In the deflection calculations for RC beams, using the elastic 518 

modulus of stainless steel may result in over-conservative predictions due to the non-linear behaviour 519 

of the stainless steel, even in the low-strain range. Therefore, this section aims to evaluate the deflection 520 

design approach in Eurocode 2 for stainless steels RC beams. The predicted results from Eurocode 2 521 

are compared with the corresponding values from the numerical model. The influences of implementing 522 

the secant modulus and the tangent modulus of stainless steel in the deflection calculations for RC 523 

beams are also explored.  524 

In Eurocode 2, the deflection of a member is obtained based on the assumption that the concrete member 525 

comprises cracked and un-cracked sections, at the service load. Accordingly, the maximum deflection 526 

(δEC2) for RC members is calculated as follows:    527 

δEC2 = (1 − ζ)δ1 + ζδ2 (19) 

In this expression, ζ is a distribution coefficient representing the tension stiffening phenomenon in the 528 

section, and is taken as zero for the un-cracked portion of the section, otherwise it is calculated using 529 

Eq. 20:   530 
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ζ = 1 − β(
Mcr

Ma
)
2

 
(20) 

where β is a coefficient that accounts for the effect of the duration of loading on the average strain, and 531 

is assumed to have a value of unity for a single short-term loading and 0.5 for sustained and cyclic 532 

loading. Mcr and Ma are the bending moment values calculated at the cracking and service loads, 533 

respectively. The cracking moment (Mcr) is determined as: 534 

Mcr =
ftIg

y
 

(21) 

δ1 and δ2 are the deflection values obtained for the un-cracked section and cracked section, respectively, 535 

and are determined from Eqs. 22 and 23 for beams subjected to four point bending conditions: 536 

δ1 =
Pa

24EcIg
 (3L2 − 4a2) 

(22) 

δ2 =
Pa

24EcIcr
 (3L2 − 4a2) 

(23) 

In these expressions, P is the applied load at each point, L is the clear span and a is the distance between 537 

the support and the nearest loading point. Ig and Icr are the second moment of area calculated on the 538 

basis of the un-cracked and cracked sections, respectively, determined using the expressions in Eqs. 24 539 

and 25:  540 

Ig =
bh3

12
  

(24) 

Icr =
bd3k3

3
+ nAsd

2(1 − k)2 

where k = √2ρn + (ρn)2 − ρn 

(25) 

In Eq. 25, the term n refers to the modular ratio between the reinforcement and the concrete, given as 541 

the ratio of E to Ec. 542 
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In the current analysis, the deflection of the beam is calculated at the mid-span of the member at the 543 

service moment, which is 30% of the ultimate bending moment (0.3Mu), as well as at 67% of the 544 

ultimate bending moment (0.67Mu). Table 4 presents a comparison between the measured deflections 545 

from the numerical model (δFE) and the predicted values obtained using Eurocode 2 (δEC2), using the 546 

expressions given in Eqs. 19-25. The results presented in the table are for beams made from C40 547 

concrete which are 300 mm in width and 428 mm in depth, and employ the elastic modulus for the 548 

stainless steel (E) in the calculations. In order to study the influence of the stainless steel constitutive 549 

relationship on the deflection of RC beams, various reinforcement ratios (ρ) are considered to develop 550 

different levels of stress in the reinforcement.  551 

It is observed that the Eurocode 2 design deflections at 0.3Mu are in very good agreement with the 552 

corresponding numerical values (δEC2/δFE) with the maximum and average differences being around -553 

38% and -2%, respectively. These same values at 0.67Mu are -28% and -15%, respectively. Figs. 24(a) 554 

and (b) demonstrate the influence that the reinforcement ratio has on the beam deflections at 0.3Mu and 555 

0.67Mu, respectively. It is clear that Eurocode 2 predictions are in very good agreement with the 556 

corresponding measured values from the FE model in almost all cases for beams which are at the service 557 

load, corresponding to a bending moment of 0.3Mu. On the other hand, the code results in over-558 

conservative predictions for beams with relatively higher reinforcement ratios, when the beam is 559 

subjected to 0.67Mu. It is also observed that the deflections rise with an increase of reinforcement ratio 560 

up to specific point (i.e. at a reinforcement ratio of around 1%) after which remains more or less 561 

constant. This indicates that the deflection is more influenced by the reinforcement ratio for relatively 562 

low values of ρ, where the stress level in the reinforcement is relatively greater.  563 
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Table. 4: Results of the predicted deflection obtained from Eurocode 2 in comparison with the measured 564 

values from the FE model.  565 

Reinforcement  

ratio (ρ) 

Grades Bending moment  Deflections at 0.3Mu Deflections at 0.67Mu 

0.3Mu 

(kNm) 

0.67Mu 

(kNm) 

δEC2 

(mm) 

δFE 

(mm) 

δEC2/δFE 

δEC2 

(mm) 

δFE 

(mm) 

δEC2/δFE 

0.0019 

1.4311 22.7 50.6 0.38 0.36 1.05 6.05 6.47 0.94 

1.4162 25.6 57.1 0.43 0.70 0.62 7.80 8.19 0.95 

1.4307 23.6 52.6 0.40 0.42 0.95 6.36 6.70 0.95 

0.0039 

1.4311 40.9 91.3 2.16 2.07 1.04 9.10 9.31 0.98 

1.4162 46.0 102.7 3.04 3.05 1.00 10.64 11.22 0.95 

1.4307 42.2 94.2 2.32 2.38 0.98 9.17 9.51 0.96 

0.0078 

1.4311 75.0 167.5 4.05 3.79 1.07 10.15 11.34 0.90 

1.4162 86.6 193.3 4.91 4.76 1.03 11.96 13.82 0.87 

1.4307 79.6 177.8 4.24 4.02 1.06 10.49 12.02 0.87 

0.0117 

1.4311 103.4 231.0 4.39 4.27 1.03 10.30 12.30 0.84 

1.4162 118.7 265.1 5.18 5.20 1.00 12.02 14.83 0.81 

1.4307 109.7 244.9 4.56 4.47 1.02 10.63 12.84 0.83 

0.0156 

1.4311 122.9 274.4 4.30 4.26 1.01 9.89 12.27 0.81 

1.4162 143.1 319.6 5.12 5.27 0.97 11.69 15.37 0.76 

1.4307 133.9 299.1 4.59 4.62 0.99 10.50 13.36 0.79 

0.0216 

1.4311 152.6 340.9 4.29 4.51 0.95 9.73 13.27 0.73 

1.4162 158.6 354.2 4.52 4.78 0.94 10.23 14.15 0.72 

1.4307 157.2 351.0 4.31 4.53 0.95 9.76 13.28 0.74 

 566 
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 567 

(a) 568 

 569 

(b) 570 

Fig. 24: Effect of reinforcement ratio on the deflection of a stainless steel reinforced concrete beam at 571 

(a) 0.3Mu and (b) 0.67Mu.  572 

As stated before, the current design approach in Eurocode 2 [6] calculates the deflection on the basis of 573 

the modulus of elasticity of the reinforcement. This assumption is acceptable in the case of carbon steel 574 

reinforcement, however it may result in an over-conservative prediction in the case of stainless steel 575 
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reinforcement owing to its nonlinear behaviour. In the design of structural stainless steel sections, it is 576 

recommended to use the secant modulus in deflection calculations rather than the elastic modulus [37]. 577 

In order to investigate this for reinforced concrete design, the predicted deflections calculated using 578 

secant modulus and also the tangent modulus of the stainless steel reinforcement are compared with 579 

their corresponding numerical values. 580 

The secant modulus of elasticity (Esec) for stainless steel is obtained from the modified Ramberg-581 

Osgood material model presented earlier in Eqs. 1 and 2 according to: 582 

 Esec =
E

1+0.002 
E

σ
 (

σ

σ0.2
)
n  for    σ ≤ σ0.2 (26) 

Esec =
σ

ε0.2 +
σ − σ0.2

E2
+ (εu − ε0.2 −

σu − σ0.2
E2

) (
σ − σ0.2
σu − σ0.2

)
m for    σ0.2 < σ ≤ σu (27) 

The tangent modulus of elasticity (Etan) is the derivative of the secant modulus and is determined as 583 

follows: 584 

 Etan =
σ0.2 E

σ0.2 + 0.002 n E(
σ

σ0.2
)
n−1 for    σ < σ0.2 (28) 

Etan =
1

1
E2

+ (εu − ε0.2 −
σu − σ0.2

E2
) (

m
(σu − σ0.2)m) (σ − σ0.2)

m−1
 

for    σ0.2 < σ ≤ σu (29) 

The deflection of elastic beams (i.e. those not containing a plastic hinge) may be estimated by standard 585 

structural theory. In order to obtain the secant modulus and the tangent modulus of the reinforcement 586 

at 0.3Mu and 0.67Mu, the stress in the reinforcement must first be determined. An elastic analysis of the 587 

section is conducted to obtain the depth of the neutral axis (y) and the stress in the reinforcement, 588 

according to the stress and strain distributions presented in Fig. 25.  589 
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 590 

Fig. 25: Elastic analysis of a reinforced concrete beam including (a) the cross-section (b) the strain 591 

distribution, (c) the stress distribution in the section. 592 

The location of the neutral axis can be obtained from Eq. 30: 593 

y = d(√2ρn + ρ2n2 − ρn)  (30) 

where n is the modular ratio between the reinforcement and concrete: 594 

n =
Esec

Ec
 

for secant modulus 

(31) 

n =
Etan

Ec
 

for tangent modulus 

Once the neutral axis depth is located, the stress in the reinforcement is calculated from the stress 595 

distribution in Fig. 25(c), as follows: 596 

σs =
Ma

As(d − y 3⁄ )
 

(32) 

Since the secant and tangent moduli are functions of the stress in the reinforcement, an iterative 597 

technique is required to obtain the solution of Eq. 32. A flow chart describing the solution procedure 598 

for determining the secant modulus is given in Fig. 26. The same solution procedure can be followed 599 

to determine the tangent modulus. Then, the deflections of the beam for load levels corresponding to 600 

0.3Mu and 0.67Mu are calculated using secant modulus and the tangent modulus.  601 
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 602 

Fig. 26: Flow chart of the solution procedure. 603 

The predicted deflections obtained using the elastic modulus (δEC2), secant modulus (δEC2(Esec)) and 604 

tangent modulus (δEC2(Etan)) for the stainless steel grades considered herein, are presented in Table 5 in 605 

comparison with the corresponding numerical values (δFE). The results show that implementing the 606 

secant modulus in the calculations of deflection provides quite accurate predictions at 0.3Mu with 607 

maximum and average δEC2(Esec)/δFE values of -38% and 0%, respectively. However, these results are 608 

quite similar in terms of accuracy as the corresponding deflections obtained using the elastic modulus 609 

of stainless steel, as presented earlier, which gave maximum and average δEC2/δFE values of -38% and -610 

2%, respectively. On the other hand, at 0.67Mu, using the secant modulus in deflection calculations 611 

results in un-conservative predictions with maximum and average δEC2(Esec) /δFE values of 55% and 18%, 612 

respectively. The corresponding values when the elastic modulus is used in the calculations are -28% 613 

and -15%, respectively, as previously presented.   614 

Using the tangent modulus in deflection calculations at load levels corresponding to 0.3Mu results in 615 

maximum and average δEC2(Etan)/δFE values of -38% and 6%, respectively, whilst at 0.67Mu the maximum 616 

and average δEC2(Etan)/δFE values are 1130% and 205%, respectively. It is clear that the using the tangent 617 
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modulus to calculate the deflections results in a significant overestimation of the deflections compared 618 

with the numerical model values, especially at higher load levels.  619 

In summary, the results presented in this analysis show that there is only a minor improvement in the 620 

deflection predictions by adopting the secant modulus rather than the elastic modulus in the 621 

calculations, and in all cases at load levels corresponding to 0.3Mu, conservative predictions are 622 

achieved. The predictions obtained using the tangent modulus were significantly less accurate than 623 

when the elastic modulus or the secant modulus is employed. Therefore, it is recommended to use the 624 

elastic modulus in the calculation of deflections for stainless steel RC beams. It is noteworthy that the 625 

predicted deflections for beams with a reinforcement ratio 0.187% at loads corresponding to 0.3Mu are 626 

typically the same for each stainless steel grade considered herein. After a careful examination of these 627 

cases, it was found that applied load is lower than the cracking moment and therefore the deflection is 628 

calculated only on the basis of an un-cracked section. In this scenario, the second moment of area is 629 

calculated based on the gross area of the section which is the same irrespective of the reinforcement 630 

modulus of elasticity.  631 



44 
 

Table. 5: Deflection results obtained using the initial modulus, secant modulus and the tangent modulus 632 

of stainless steel in comparison with the measured values from the FE model.  633 

Reinforcement  

ratio 

Grade Bending moment 

(kNm) 

Deflections at 0.3Mu Deflections at  0.67Mu 

0.3Mu 0.67Mu 

δEC2 

/δFE 

δEC2(Esec) 

/δFE 

δEC2(Etan) 

/δFE 

δEC2 

/δFE 

δEC2(Esec) 

/δFE 

δEC2(Etan) 

/δFE 

0.00187 

1.4311 22.7 50.6 1.05 1.05 1.05 0.94 1.36 12.30 

1.4162 25.6 57.1 0.62 0.62 0.62 0.95 1.35 2.89 

1.4307 23.6 52.6 0.95 0.95 0.95 0.95 1.46 4.02 

0.00390 

1.4311 40.9 91.3 1.04 1.09 1.29 0.98 1.48 5.91 

1.4162 46.0 102.7 1.00 1.01 1.05 0.95 1.26 2.45 

1.4307 42.2 94.2 0.98 1.01 1.11 0.96 1.55 3.60 

0.00779 

1.4311 75.0 167.5 1.07 1.12 1.29 0.90 1.41 3.60 

1.4162 86.6 193.3 1.03 1.04 1.08 0.87 1.09 1.94 

1.4307 79.6 177.8 1.06 1.08 1.19 0.87 1.33 2.79 

0.01169 

1.4311 103.4 231.0 1.03 1.06 1.19 0.84 1.35 2.94 

1.4162 118.7 265.1 1.00 1.00 1.03 0.81 0.96 1.52 

1.4307 109.7 244.9 1.02 1.04 1.12 0.83 1.15 2.17 

0.01559 

1.4311 122.9 274.4 1.01 1.03 1.11 0.81 1.14 2.16 

1.4162 143.1 319.6 0.97 0.98 0.99 0.76 0.85 1.21 

1.4307 133.9 299.1 0.99 1.01 1.06 0.79 1.01 1.72 

0.02165 

1.4311 152.6 340.9 0.95 0.97 1.02 0.73 0.94 1.57 

1.4162 158.6 354.2 0.94 0.95 0.95 0.72 0.76 0.90 

1.4307 157.2 351.0 0.95 0.96 0.99 0.74 0.85 1.23 

 634 
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5. Conclusions  635 

This paper has presented a detailed investigation into the behaviour of stainless steel reinforced concrete 636 

beams. A full and simplified version of a deformation-based design method for the analysis of these 637 

elements has been proposed and examined in comparison with predictions of the current design rules 638 

in Eurocode 2. A comprehensive parametric study was conducted to study the influence that various 639 

geometric and material properties have on the capacity of the members. Moreover, the paper provides 640 

guidance for selecting an appropriate reinforcement ratio in order to allow for an evaluation of the 641 

strain hardening properties of the stainless steel reinforcement being included in the design. In the 642 

final section of the paper, the serviceability limit state for stainless steel reinforced concrete beams has 643 

been explored through a detailed analysis of the deflection behaviour. Overall, the results and analysis 644 

presented in this paper have provided an excellent basis for engineers to specify stainless steel 645 

reinforcement in reinforced concrete beams in an efficient and sustainable manner, with minimal 646 

wastage of materials. Following this detailed study, the following key findings and recommendations 647 

for international codes of practice are presented: 648 

1. The proposed full and simplified analytical approach is shown to be an effective design tool 649 

that exploits the distinctive characteristics of stainless steel reinforcement in an efficient and 650 

reliable manner. 651 

2. For the range of data examined here, the average and maximum full analytical-to-numerical 652 

bending moment values are -14.9% and -22.3% whilst these same values obtained using the 653 

Eurocode 2 design rules are -28.3% and -44.7%, respectively. 654 

3. The predictions of the simplified proposed analytical model are in excellent agreement with 655 

the predictions of the full analytical model with the average and maximum full-to-simplified 656 

bending moment values are -2.8% and -17.2%, respectively 657 

4. In general, it is shown that further exploitation of the strain hardening capacity in the rebar is 658 

achieved when a relatively higher grade of concrete is employed. 659 

5. It is also found that the b/h ratio of the beam has a relatively small influence on the 660 

exploitation of strain hardening. 661 
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6. It is observed that the levels of stress in the rebar are relatively lower when a higher 662 

reinforcement ratio is employed. 663 

7. It is recommended that the elastic modulus is employed in the calculation of deflections for 664 

stainless steel RC beams rather than the secant modulus or the tangent modulus. 665 

8. Finally, although the results presented herein are very promising in terms of improving the 666 

efficiency of designing stainless steel reinforced concrete beams, it is important that the shear 667 

resistance is studied in future work, including how the revised flexural capacities determined 668 

herein are likely to affect the design shear resistance.  669 
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