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Abstract. Sparse Distributed Memory (SDM) is a mathematical asso-
ciative human long-term memory model that is psychologically and neu-
roscientifically plausible. It is content addressable and can potentially
store unlimited high dimensional information although it only accepts
binary vectors. Although an integer SDM has been proposed to store
non-binary vectors, the size of the model has been increased significantly.
In this paper, we propose a biologically plausible encoding schema to en-
able SDM to accept integer vectors, requiring much less space than the
existing integer SDM model. A public handwritten digits data set with
integer values has been used for the evaluation of our proposed model
and satisfied performance has been achieved in both data retrieval and
pattern recognition.
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1 Introduction

The Sparse Distributed Memory model (SDM) was introduced in 1988 by Kan-
erva [1]. Its purpose is to simulate human long-term memory which has an po-
tential infinity information storage mechanism although the size of the memory
is limited by the fixed number of hard locations. SDM is distributed, auto as-
sociative, content addressable, and noise robust. It represents a mapping from
concepts in human mind to n-dimensional space.

The original SDM, due to its structure design with binary address vectors,
has a fundamental limitation. It only accepts binary data directly, while data
in real life is not always binary. Various encoding schemes were evaluated by
Mendes et al. [2], but none of them were capable of storing a non-binary value
type in a single dimension in SDM. A significant improvement of SDM was
made by Snaider et al. [3]. They proposed an integer SDM that extended SDM
to store integer values in a single dimension of the memory. However, storage
and computing costs increased significantly. It also increased the complexity of
model hardware implementation.

Here we explored a new methodology that allows SDM to process integers
using a neural coding scheme. The rest of this paper is organized as follows:
Section 2 introduces SDM related works. Section 3 explains our methodology.
Some simulation results are presented in Section 4. Section 5 concludes the paper.
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2 Related Works

In the past 30 years, SDM has been improved with various extensions increasing
its performance and its applications. Hard location activation was made faster
by [4] and [5]. Hely et al. [6] proposed a SDM signal model that didn’t rely on a
priori input values, and it increased the robustness of SDM learning both random
and correlated data. Ternary memory space was introduced by [7]. This improved
SDM performance as the percentage of missing features in the read-cues increases
to a reasonable degree. In 2009, Meng et al. [8] proposed a modified SDM model
that initialized the address matrix using training samples in a straightforward
fashion which significantly improved recall performance. They also introduced a
tri-state technique in learning rules to keep the storage requirement low while
increasing the performance significantly.

The integer SDM model proposed by Snaider et al. [3] in 2012 has a similar
structure to Kanerva’s binary SDM. But the values in the address matrix are
integers within a value range. The size of the range is r, and there is no limitation
on the value of . The dimensions of the space follow modular arithmetic, i.e.
the values wrap around after r. Instead of holding only one counter for each
cell, each dimension of a vector in the content matrix holds r counters. The
procedures of reading and writing are similar to the ones used by SDM. Both
writing and reading operations need to find activated hard locations first. When
writing a word, only one counter in each dimension of the activated hard location
can increment out of the total r counters. By comparing the value in the same
dimension of the written word and the value of each counter in that dimension,
the counter increments if its index is equal to the value in the word. To read from
memory, the counters of each dimension with the same index in the activated
hard locations are summed up. The majority rule is applied to the collection of
sums and the index of the counters with the largest sum is the output value of
that dimension of the output vector. Snaider’s integer SDM model has a space
complexity O(mnr) while the original SDM model has space complexity O(mn).
Its time complexity is O(mn + prmn) compared to O(mn + pmn).

In 2018, Huang et al. [9] proposed a spiking pattern classifier. Although the
work didn’t involve SDM, the way to transform spikes into a high dimensional
sparse vector using a temporal encoding still provides useful insights for our
work.

3 Methodology

3.1 Overview

To extend the original SDM model to accept integer vectors, a neural coding
scheme was proposed, instead of modifying the SDM model’s internal structure.
Figure 1 shows an overview of our method. The original image whose pixel
values are integer is transformed into an integer vector as an input of the SDM
model. The spiking neural encoder converts each integer value in the vector
into a sequence of binary data. Therefore, the integer vector is converted into
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a sequence of binary vectors as shown in Figure 2, before it is written into
the SDM. When reading from the SDM model, similar to writing operation,
the integer vector cue is encoded into a sequence binary vector cues first. The
output sequence of binary vectors from SDM is converted back into a single
integer vector using the spike neural decoder as shown in Figure 2. The integer
vector is then transformed back into an integer pixel matrix, the recalled image.

Original Images J_I_L“_. M_, Recalled Image

using Training set using testing set
Spike Sparse Spike
Neural Representation Neural
Encoding (SDM) Decoding

Fig. 1. Overview of proposed integer SDM model with neural rate coding.
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Fig. 2. The transformation between Integer vector and sequences of binary vectors
using neural encoding and decoding.

3.2 Neural Coding

Different neural coding schemes have their own merits and are based on biologi-
cal observations [10]. The coding scheme we chose here was inspired by the spike
train generation, which is observed from in wvitro experiments in neuroscience.
A spike train is a sequence of recorded times at which a neuron fires an action
potential. When the voltage drop across a neural soma or axon membrane is
recorded, intermittent pulses of roughly 100 millivolts over 1-2 milliseconds are
observed—these are action potentials or spikes. On a behavioral time scale of
several hundred milliseconds, each spike may be considered to occur at a sin-
gle point in time. Sequences of such spike times form spike trains. Spike trains
are considered to be the primary mode of information transmission in the ner-
vous system. When action potentials are recorded repeatedly from a neuron in
response to changing stimuli, they maintain a relatively consistent shape. How-
ever, the pattern of spike times varies as the stimulus changes. Most prominently,
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the rate at which spikes occur, the firing rate (f), varies with conditions. When
the firing rate is defined in terms of the maximum number of spikes (L) that
occur over a time interval of length At, using

L

f:Zt (1)

this phenomenon of firing rate varying with stimulus is called rate coding. While
analysis of neural activity in terms of varying firing rates, as defined in Equation
1 which represents spike count rate, is useful in many contexts, more subtle
alterations of the pattern of spike times also occur. Here, we used a spike count
rate coding scheme for encoding and decoding between an integer value and its
spike train. For an integer value I € [0, K], it will be converted into a binary
sequence {by,ba, - ,ba:} satisfying

At
L
k=1
where b; = 1(i = 1,2, - - - , At) means a spike and b; = 0 means no spike. For one

integer value, its binary sequence can be chosen differently. But all these binary
sequences will be decoded to the same integer.

3.3 Sparse Distributed Memory

The Kanerva’s SDM model [1] as shown in Figure 3, contains two matrices: an
N x M address matrix A which contains binary data, and a U x M content
matrix C that contains integer data. It is content-addressable (i.e., an input
word w is also used as an address x), so the column widths of the matrix A
and matrix C are the same, N = U. Instead of listing all addresses in memory
space, matrix A keeps a small portion of sparse randomly distributed addresses,
called hard locations. A hard location contains an address vector in matrix A
and an integer vector in matrix C. When writing or reading data, a set of
hard locations within a activation radius r are activated after comparing the
hamming distance between the input address x and each hard location address.
When matrix A holds a uniform random sample of address space, the binomial
distribution with parameter N can be used to find the activation radius r that
corresponds to a given probability p of activating hard locations, according to
Equation 3, from [11],

r=p—3%9 (3)

where p = %, 6= \/g . The values in the distance vector d are hamming dis-
tances and the 1s in the activation vector y mark the activated hard locations.
For writing operation, at an activated hard location, each dimension of the in-
teger content vector will increment by 1 if the value of the same dimension of
the input word is 1, or decrement by 1 if the value is 0. For reading operation,
a dimension in the output vector z is set to 1 when the sum is larger than 0, or
0 otherwise, after summing each dimension of the content vectors into a vector
s at the activated hard locations.
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Fig. 3. Structure of Binary Sparse Distributed Memory Model.

4 Evaluation

4.1 Data Set

An optical recognition of a handwritten digits data set [12] was chosen for the
evaluation of our integer SDM model. This data set contains 1797 images with
labels ranging from 0 to 9 and a resolution of 8x8 pixels. The range of each pixel
value is from 0 to 16. A SDM model will be built with 1257 images for training
the model and 540 images for testing the performance on data retrieval/recall
and pattern recognition using a simple classifier.

4.2 Parameter setting

Neural encoder/decoder parameters: Sample training time window At:
defines how many binary vectors to convert from an integer vector. There is no
value limitation, but we set it to 16.

The number of maximum spikes L affects how sparse of the spike train is.
Here, 8, 12, and 16 are chosen for the experiments. L = 16 means the fire rate
f=1and L = 8 means the fire rate f = 0.5.

SDM parameters: The address matrix was initialised with a sparse randomly
and uniformly distributed (bits were independent of each other, and the ratio
of 0s to 1s was around 1.0) sample of addresses and the content matrix was
initialised with Os.
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Memory space dimension is chosen as N = 64 as an 8x8 image can be trans-
formed into a 1x64 integer vector. N = 64 for both address and content matrices.
Activation radius of writing r.;te = 20. The SDM reading radius ryeqq = 25.

Hard location amount M: This number stands for the capacity of the memory
and the memory should be more powerful if this number is bigger. We tried 1000,
2000, 4000, 8000, 16000 and 32000 in our experiments.

4.3 Data Retrieval

This was to verify the data retrieval performance of the neural coding integer
SDM as an auto-associative memory. In the data set, the first 1257 images were
used as training set while the rest 540 images were used as testing set for retrieval.
100 of retrieval images are shown in Figure 4.

LRI FIEEEEFHEAE
RIEEARMEAEIE  FIHTEEETFNE
HERIEAHAMI HEERAHAED
CINMEIARIAEI AR AN
FACEIAEFAER (AR AARE
HEHAMENAENE ARHAPE AR
ANEFEME MR
MEAEARERME AETHAEFBE]
MEAIAMARERNE BRI FFE
HEAEMEERED HAEAREEIFED

Fig. 4. 100 original (left) and recalled (right) images, N = 64, M = 8000, rycaq = 25,
Twrite = 20, At = 16, L = 16.

4.4 Pattern Recognition

This experiment was designed to verify whether the changes to the stored inte-
gers were consistent in memory, compared to their original values. If the original
data set was classifiable, the reconstructed images should still be classifiable if
the retrieval quality is good. After the training using 1257 images, the SDM
model is fixed. Then the 1257 reconstructed images from training set are used
as the training set and the remaining 540 reconstructed images as testing set
to train a Support Vector Machine (SVM) [13] classifier. The classification ac-
curacy using radius basis function kernel (RBF), the regularization parameter
¢ = 1.0 and v = 0.001 are shown in Table 1 under different parameters. The
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best performance is 94% compared to 97% using the same classifier on the orig-
inal data set. It can be seen that with increase of the number of hard locations,
the performance is better. With the increase of maximum spikes per pixel, the
performance is also better. The classification confusion matrix under condition
of M = 8000, L = 16 is shown in Figure 5 and compared to classification results
on original data.

Table 1. Recognition accuracy under different settings when rreqq = 25 and rwrite =
20.

Number of hard location (M) | 1000 | 2000 | 4000 | 8000 | 8000 | 8000 | 16000 | 32000

Max spikes per pixel (L) 16 16 16 8 12 16 16 16

Recognition accuracy (% ) 8 | 8 | 92 | 76 | 91 | 93 93 94

50

40

30

True label
True label

Predicted label Predicted label

Fig. 5. Classification confusion matrix using original data set with accuracy of 97%
(left) and using recalled data set from SDM with accuracy of 94% (right).

Assuming an integer requires 8 bits to be represented, the total storage space
of SDM in this experiment is M « N + M x N x 8 = QM N bits. Using Snaider’s
integer SDM model, with the same value range size 17 (0-16) and the same
amount hard locations, it requires M « N «8+ M « N «8 17 = 144 M N, which is
16 times larger than our SDM implementation. It is a significant advantage. For
every single integer datum stored, our method requires M Nx At+ M+ N *xpx At =
M x N %16+ M % N % 0.001 « 16 = 16.016 M N operations, while integer SDM
requires M * N + M « N xp*xr = M« N + M x N % 0.001 * 17 = 1.017TMN
operations, where p is the hard location activation probability. Our model need
more computing than the integer SDM in [3]. However, our operation is much
simpler because hamming distance and simple addition operations are used in
our model and Euclidean metric are used in integer SDM in [3].
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Conclusion

This paper proposes a novel idea to extend the original SDM model to accept
integer vectors instead of the binary vector using a neural coding scheme. It
keeps the simplicity of the SDM implementation, but extends it to store integer
vector patterns without introducing extra storage cost compared to integer SDM.
Experimental evaluation shows that it can achieve satisfied performance on data
retrieval and pattern recognition. It is a significant advantage that can be used
for wide applications where integer feature patterns are used.
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