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ABSTRACT 
 
A number of alternative relaxations for the family of set problems (FSP) in general and 
set covering problems (SCP) in particular are introduced and discussed. These are (i) 
Network flow relaxation, (ii) Assignment relaxation, (iii) Shortest route relaxation, (iv) 
Minimum spanning tree relaxation. A unified tree search method is developed which 
makes use of these relaxations. Computational experience of processing a collection of 
test problems is reported. 
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1. Introductio  to  set problems(SP) 

 
It has been known that integer programming can represent a wide class of discrete 

optimisation problems [DANT 63] and [WILL 85]. In this paper we are interested in a 

class of 0-1 integer programming problems: the set covering problem (SCP), the set 

partitioning problem (SPP) and together we refer to them as the set problems (SP). They 

are well known problems in the field of graph theory and combinatorial optimisation. 

 

It is well accepted that these problems and their solution methods represent most 

successful instances of applying discrete models to solve industrial scheduling problems. 

Alternative algorithms based on graph theoretic approach for the SP have been investigated 

in this paper, using a collection of test problems which were put together to reflect real 

life applications. 

 

The contents of this paper is organised as follows. In section 2 applications of the SP are 

briefly discussed and the collection of test problems is outlined. In section 3 a few 

heuristics which have become established way of preprocessing such problems prior to 

applying a full solution algorithms are described. The graph theoretic relaxations which    we 

introduced constitute a new approach to solving SP and are described in section 4. The 

tree search algorithm is described in section 5 and the computational results are presented 

in section 6. An example illustrating the relaxations with a small SP model is set out in 

Appendix  . 

 

Notation and problem definition 

 

Consider    a     set    R={l,2,...,m}     and    a     class    H     of     subsets     of         R,     such     that 

H= {H1, H2,.....Hn}.   Let     J={l,2,...,n}     be  the set of indices  for the     subsets  which  make 

up the class H. 

 

A cover for     R     is a subclass of     H defined   as   {Hj|j  ∈    Jc}  where     satisfying ,jccj −
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jcLet.RjHJcj =∈
U

 be the cost  of  including  Hj  in  the cover.  Thus  the  minimum  

cost set covering problem is that of finding a cover    { ∗∈ cJj1jH  } as above, such that 
 

∑
∗∈ cJj

jc  is a minimum. 

 
The SCP may    be also posed as a zero-one integer programming problem. 
 

Min          (1.1) ∑
=

n

1j
cjxj

 
subject to 

           (1.2) m,....,1i
n

1j
,1aijxj =∑

=
>

          n,....,1j},1,0{jx =∈     (1.3) 
 

where 

⎩
⎨
⎧

=
otherwise0

ercovtheinincludedisjHif1
jx  

and 

⎩
⎨
⎧ ∈

=
otherwise0

jHiif1
aij  

It is convenient to introduce the index sets Ri, i = l,2,...m, such that for a row i ,               

Ri denotes the indices of the columns with unit entry. Similarly, the index sets Hj, j = 

l,2,...,n, denote the indices of the rows with unit entry in column j. Thus Hj and Ri               

are related to aij: as set out in (1.4) and (1.5) 

Hj =  {i1aij  =  1,   i=1.....m)  for  all   j                                                      (1.4) 

 ∑
=

=
m

1i
ijj aH    

      and 

 Ri ={j                                                          aij=1,  j=1,….,n} for all i׀

 (1.5) 
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.
n

1j
ijaiR ∑

=
=   

A feasible solution to the SCP is called a cover. A prime cover x*, is a cover for which                

xj currently taking value one cannot be reduced to zero without violating a constraint. An 

optimal solution to the SCP is a prime cover if all the costs are positive. 

 

The SPP may be defined as 

Min       (1.6) ∑
=

n

1j
jxjc

subject   to 

        (1.7) m,....,1i,1xj
n

1j
jia ==∑

=
    n,....,1j,}1,0{jx =∈        (1.8) 
and   represents   the   minimum   cost   selection   such   that   each   member of R is included 

exactly once. 

 
2.Applications of SP and test prodlems 
 

It is known that SP represent a wide range of industrial scheduling and planning problems. 

These include bus crew scheduling [MTDD 85], air crew scheduling [BAFS 81], vehicle 

routing [CHRS 85], steiner problem [FNHT 74], facility location [DKST 81] and others. 

For a comprehensive survey on the application of the SP see Balas et al [BLPD 76] and 

Balas [BALS 83]. The many applications of the SP have constantly stimulated researchers 

to develop new algorithms for the SP. There are many algorithms which solve these 

problems. In testing performance of algorithms it is meaningful to use problem instances 

which are taken from real or (nearly) real applications. It is doubtful if randomly 

generated models have much value in testing algorithms which are designed to solve real 

problems. With this in mind we have collected a range of test problems taken from 

different contexts which are summarised below.  For a full discussion of these models   we 
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refer the readers to  [ELDA 88]  and [EDMT 88]. 
 
 
Summary of test problems 
 
 
Table below gives a summary of test problems collected by us. 
 
 
 

Problems 
names 

Number of 
rows 

Number of 
columns 

Number of 
non zero 
entries 

Density 

Airline 

AIR1 158 416 1371 0.021 
AIR2 153 1050 3510 0.022 

AIR3 128 1100 3728 0.026 
AIR4 148 1100 3670 0.022 

AIR5 152 1043 3435 0.021 
AIR6 139 1100 3731 0.024 

 
 
 

Bus 

BUS1 28 231 628 0.097 

BUS2 27 168 428 0.094 

BUS3 55 1059 3227 0.055 

BUS4 53 547 1401 0.048 

BUS5 57 31 223 0.126 

BUS6 108 245 1538 0.058 

BUS7 213 2200 6090 0.013 

BUS8 316 3015 12950 0.013 
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Problems 

names 
Number of 

rows 
Number of 

columns 
Number of 
non zero 
entries 

Density 

Steiner 

STR1 117 27 351 0.111 
STR2 330 45 990 0.067 

 
 

Random 

RDM1 50 60 139 0.046 

RDM2 51 61 138 0.044 

RDM3 92 88 486 0.060 

RDM4 100 106 636 0.060 

RDM5 100 109 675 0.062 

RDM6 100 130 754 0.058 

RDM7 98 98 606 0.063 

RDM8 400 510 4664 0.022 

RDM9 400 660 5926 0.022 

RDM10 50 492 4948 0.200 

RDM11 50 489 5056 0.200 

RDM12 50 492 4954 0.200 

RDM13 50 486 4888 0.200 

RDM14 50 494 4991 0.200 
 
 
Problems AIR1 to AIR6 are generated by [POWR 87] and the authors. Problems BUS1 to 

BUS4 are supplied by Paixao [PAXO 85] and problems BUS5 to BUS8 are supplied by 

PIM/UNICOM [UNIC 84] and they are of extended set partitioning [DDMT 85] types with 

side constraints.  Problems STR1   and STR2 are taken from     [FNHT  74].  Problems   RDM1 
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to RDM14 are supplied by Paixao. They are randomly generated with positive random 

costs which vary between 1 and 25 for RDM1 to RDM9 and a cost of 1 for problems 

RDM10 to RDM14. All these models are converted to the standard MPSX format using 

the modelling system CAMPS  [LUMT 87]. 

 

3.  Preprocessing Heuristics 

 

Preprocessing procedures have been applied by a number of investigators as a preliminary 

step towards the solution of large scale SP models [BLHO 80] and [GFNH 72]. These 

procedures may be simple algorithms or heuristics and possess computational complexities 

which have polynomial time performance. In this section we list a number of procedures 

which we have adopted to find tight upper and lower bounds for the SCP and to reduce 

the model size. In this composite approach we start by deriving lower and upper bounds 

to the SCP using the dual ascent procedure. These bounds are then used as inputs to the 

lagrangean relaxation. A sufficient number of subgradient iterations are then applied to 

tighten the bounds and to reduce the model size. At the end of the subgradient 

optimisation step, the best lagrangean solution is recalled and the row reduction tests are 

applied. If some rows are removed from the model by the row reduction tests, the 

subgradient procedure is applied again. At this point if an optimal solution to the SCP is 

not found we recall the best lagrangean solution already computed and derive a dual 

feasible solution. This dual solution is then used to derive the costs of the graph               

relaxation models described in section 4. 

 

The composite procedure is made up of four main procedures [ELDA 88] which are 

labelled as 

(a)  dual ascent procedure, 

(b)  lagrangean and subgradient procedure, 

(c)  redundant rows procedure 

(d)  dual solution procedure. 
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4. Alternative relaxations 

 

A minimising problem Q is said to be a relaxation of a minimising problem P if the set             

of feasible solutions of Q contains the set of all feasible solutions of P and the 

corresponding optimal solution value zQ is less than or equal to the optimal solution value 

zp. In proposing alternative relaxations to the SP the main motivation is to derive 

problems which are easily solved in their relaxed form and provide lower bounds to the 

SP. Five graph theoretic relaxations [ELDA 88] have been developed for the SP. These 

can be itemised as 

- A network relaxation which can be solved by the greedy method, 

- An assignment relaxation based on partitioning the constraint set into two 

disjoint subsets which represent the set of vertices of the bipartite graph, 

- An assignment relaxation using the traveling salesman approach, 

- A shortest route relaxation, 

- A minimal spanning tree relaxation. 

 

Only the assignment relaxations, the corresponding algorithmic implementation and 

computational results are considered in this paper. 

 

A lower bound derived by the assignment 1   representation (ASP1) 

 

Let aj=(a1j,...,amj)T denote the column aj of the SCP problem and let this column be 

decomposed into a set of kj  columns 

)jk
ja....,,1

ja(  

each with at least one unit entry and at most two unit entries. It follows from this 

decomposition that 

   

∑
=

=
jk

1p

p
jaja  
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The column (nonzero) count of aj
p can only be 1   or 2, that is 

 

∑
=

=∈
m

1i
jk,....,1p},2,1{p

ia       (4.1) 

 

where   {0,1}. ∈p
jia

 
Let q: be the largest positive integer such that qj<( |Hj|+l)/2. The allowable range for kj           

is easily seen to be qj<kj<|Hj|. Let the set R (set of rows) be partitioned into two                  

disjoint sets R' and R" such that R'UR"=R and R'nR"   = Φ . 

 
Thus the SCP (1.1-1.3) can be written as 
 

∑
=

n

1j
jxjcMin         (4.2) 

 
subject   to 
 

Ri
n

1j
,1jxija ′∈∑

=
>       

 (4.3) 

"Ri,
n

1j
1jxija ∈∑

=
>       (4.4) 

,...,n.1j,}1,0{jx =∈        (4.5) 
 

Introduce two (redundant) constraints indexed m+1 and m+2 such that 
 

0
n

1j
jxj,1ma∑

=
>+         (4.6) 
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0jj
n

1j
,2ma >×

=
+∑        (4.7) 

 

Where 
⎪⎩

⎪
⎨
⎧

∈
<

′∈=+
∑∑

otherwise0
Ri

1ija
Ri

ijaif1
j,1ma 11      (4.8) 

 

and 
⎪⎩

⎪
⎨
⎧

′∈
<

∈=+
∑∑

otherwise0
Ri

1ija
Ri

ijaif1
j,2ma 11           (4.9) 

 
Thus the SCP can be rewritten as follows 
 

∑
=

n

1j
jxjcMin         (4.10) 

subject to 

      (4.11) Ri,1
n

1j
jxija ′∈>

=
∑

 

      (4.12) 11Ri,1
n

1j
jxija ∈>

=
∑

        (4.13) 0
n

1j
jxj,1ma >

=
+∑

       (4.14) 0
n

1j
jxj,2ma >

=
+∑

.jallfor}1,0{jx ∈       (4.15) 
 

Let R+=R'U{m+l} and R++ = R"U{m+2}. From the definitions set out in (4.1) it follows 

that it is always possible to derive a decomposition of aj to 

a j
p  (p=l, . . ,k j)  where ap

j  takes one of the three alterative forms. 
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a) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−=

o
.

jp
sa

.

o
.

jp
ra

.

p
ja

  where jnHRr ′∈  and     (4.16) jH"Rs ∩∈

b) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−−−−−−−=

p
j,zma

.

o
o

o
.

jp
ra

.

p
ja

   where   r jnHR′∈      (4.17) 

c) 
 

  where      (4.18) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−
+

=

o
j

p
sa

.

.

p
j,1ma

o
o

p
ja j

"Rs Η∩ε

 

In (4.16-4.18) all   values and the rest of the components are zero.  1p
jia −

 
Assignment relaxation (version 11 of the SCP. 
 
The SCP as presented in (4.10-4.15) can be relaxed as an assignment problem by 
introducing a bipartite graph with two sets of vertices and arcs as shown below. 
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Set of vertices. For the m+2 rows introduce m+2 corresponding vertices 2mv,...,1v +  which 

are used in the (assignment) graph representation of the problem. 

 
The set of arcs and associated costs. Introduce three sets of arcs  

defined as 
"DAandDA,BA ′

 

(i) { }"RsandRr/)sv,rv(BA ε′ε=  

There is an arc from vr to vs if there exists a column  which satisfies p
ja

(4.16), with the associated cost .1j1/jc2jpd Η−  

(ii)  { }.Rr\)2mv,rv("D ′ε+−Α

 

There is an arc from 2m  v  torv +  if there exists a column  which satisfies  p
ja

(4.17) with the associated cost .j/jcjpd Η=  

(iii) ."Rs)sv,1mv(D ⎭
⎬
⎫

⎩
⎨
⎧ ∈+=′Α   

T h e r e  i s  a n  a r e  f r o m  i f  t h e r e  e x i s t s  a  c o l u mn   wh ich  

s a t i s f i e s  (4.18). The associated cost  is  given as 

s  v   to1mv +
p
ja

jpd jH/jcjpd =  

Finally introduce an arc set An + 1 with a dummy arc from 1mv +  to 2mv + ,  

)}2mv,1mv{(1nA ++=+  with zero associated cost 01,1nd =+ , whereby the flow 

requirements ( >1) may be imposed on 1mv +  and 2mv + . Let  denote the 

corresponding dummy column. Let A denote the directed arcs of the resulting graph such 

that A={

1na +

1nA"DDBA +Α′Α UUU }. Figure 4.1 illustrates the structure of this graph. Let  

denote the set of arcs obtained by decomposing the column j in the manner indicated 

earlier. Thus there are  arcs in , where for (v

jA

jk jA r,vs) ,jA∈ +∈Rrv  and ++∈Rrv  as 

explained in (4.16-4.18).  It is easy to see that 

 

   U
1n

1j
.AjA

+

=
=
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Figure 4.1 

 
 
A statement of the relaxed problem [FRZE 85]. With each column  associate 

a variable  and a cost coefficient d

ja

}1,0{jpy,jpy ∈ jp which are defined for j=l,...,n+l and 

. Then the relaxed problem ASP1  is stated as jk,....,1p =

 

  Min       (4.19) ∑ ∑
+

= =

1n

1j

jk

1p
jpyjpd

 
subject to 
 

       (4.20) ∑ ∑
+

= =

+∈>α
1n

1j

jk

1p
Rr,1jpyp

jsr

 

       (4.21) ∑ ∑
+

= =

+ε>α
1n

1j

jk

1p
Rs,1jpyp

jsr
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    for all j and p     (4.22) { }1,0pjy ∈

 

where   j=1,…,n+1    (4.23) 
⎭
⎬
⎫

⎩
⎨
⎧ ε

=α
otherwise0

jA)sv,rv(if1p
jsr

 
ASPl set out in (4.19-4.23) is a proper relaxation of the SCP and is explained below. 
 
 
Let the cost coefficient of ASPl, dip be defined such that 
 

          (4.24) ∑
=

=
jk

1p
.jcjpd

 
(a) For any x* which is a feasible solution to the SCP it is simple to construct a feasible 

solution y* to the ASPl in the following way 

 

⎪
⎪
⎭

⎪⎪
⎬

⎫

====

====

1*
jjky...1jyset 1*

jxfor

and

0*
jjky...1jyset  0*

jxfor

 j=1,…,n 

 
also set . This implies that the following relation for those columns  which 

are decomposed such that 

11,1ny =+ ja

n,...,1j,2jk =>  

 
    1jk,...,1p,1pjypjy −=+=     (4.25) 
 
must also be satisfied. The solution x* for the SCP and y* for the ASPl have the same 

objective function value (see 4.24). 

 
 
 
 
 

page 13 



(b) If the optimal solution y  to the ASPl also satisfies (4.25) then this implies that the 

vector x  computed by the relations 

 

  −−= jpyjx j=1,..,n, p=1,…,kj    (4.26) 

 
is also an optimum solution to the SCP. If the optimal solution to the ASPl does not 

satisfy (4.25) it still provides a valid lower bound on the optimal objective value of the 

SCP. At this stage a tree search method can be used to satisfy the relations (4.25) by 

suitably fixing groups of yjp to zero or one. 

 
Let ),jjk,...,1j(j λλ=λ  j=1,…,n represent the  lagrangean  multipliers 

associated with the side constraints of the decomposed column  (j=l,...,n) where ja jλ  are 

unrestricted in sign. Let )n,...,1( λλ=λ  represent a collection of lagrangean multipliers 

The lagrangean relaxation [GOEF 74] LASPl(λ ) of the ASPl as set out in (4.19-4.23) and 

(4.25) can be written as 

 

 Min ∑
=

∑
=

−λ−λ+
n

1j

jk

1k
)1jkjkjkd(kjy  

 
subject to 

network constraints   (4.20-4.21) 

and 

 jk,...,1kandn,...,1j},1,0{kjy ==∈  

where   n,...,1j,0jjkojy ==λ=

 
 
If we replace the inequality (">") in (4.20) and (4.21) by equality ("=") for Rr ′∈  and 

 respectively then the modified ASPl becomes a relaxation to the SPP. This implies 

that the constraints corresponding to i

"Rs∈

ε R must be strictly equal to 1, while the two 

constraints corresponding to iε {m+l,m+2} can be > 1. 
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A lower bound derived by the assignment 2 representation (ASP2) 

 
Let kj = jH  denote the number of 1's in the column  Let  as defined 

i n  ( 1 . 4 )  b e  r e - e x p r e s s e d  a s  H

ja jH

j = { }jki,...,1i .  I n t roduce  t he  ve r t ex  s e t  V  

corresponding to the rows i=l,...,m of the SCP such that V={v,,...,vm}. For each column 

aj construct a set of kj directed arcs from V to V which admit unit flow in the following 

way. The arc sets in the equivelent bipartite graph are denoted by Aj where 

 

A j =  ,  j = 1  , … , n  (4.27) 
⎭
⎬
⎫

⎩
⎨
⎧

−
)1iv,

jkiv(,)
jkiv,1jkiv(,...,)3iv,2iv(,)2iv,1iv(

 
Let the associated cost for each arc in the arc set Aj be defined as 
 
          (4.28) .jk/jcjd =

 
With each of  the  arcs  taken from the set   associate  a  var iable  

 {0,1} and defined for all  (v

jk jA

∈j
pqy p,vq) jA∈ .     (4.29) 

 

Let   j=1,…,n    (4.30) 
⎭
⎬
⎫

⎩
⎨
⎧ ε

=α
otherwise0

jA)qv,pv(if1j
pq

 
The  r e l axed  p rob l em ASP2  i s  s t a t ed  a s  f o l l ows .  
 

Min     (4.31) 

      

∑
=

∑
ε

n

1j jA)qv,pv(

j
pqyjd

subject to 
 

       (4.32) ∑
=

=>α
n

1j
m,...,1i,1j

qiyj
qi

 

       (4.33) ∑
=

=>α
n

1j
m,...,1i,1j

ipyj
ip
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      (4.34) jA)qv,pv(andn,...,1j,}1,0{j
pqy ε=ε

 
ASP2 set out in (4.31-4.44) is a proper relaxation of the SCP. This is explained below. 
 
 
(a) for any x* which is a feasible solution to the SCP it is simple  to construct a feasible 

solution y*  to the ASP2 by the procedure 

 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

ε==

ε==

jA)qv,pv(,1j*
pqyset1*

jxfor

and
jA)qv,pv(,0j*

pqyset0*
jxfor

 j=1,…,n 

 
This implies that the following relations for those columns aj such that ,2jH >  j=l,...,n 

 
j

1ijki
y...j

3i2i
yj

2i1i
y ===        (4.35) 

 
must also be satisfied.  The feasible solution y* to the ASP2 has a cost which is equal to 

the cost of the feasible solution x* of the SCP (see 4.28). 

 

(b) If the optimal solution y  to the ASP2 also satisfies (4.35) then this implies that the 

vector x  computed by the relations 

  

 jAε)qv,p(vandn1,...,j,j
pqyjx ==      (4.36) 

 
is also an optimum solution to the SCP. If the optimal solution to the ASP2 does not 

satisfy (4.35), it still provides a valid lower bound on the optimal objective value of the 

SCP. At this stage a tree search method can be used to satisfy the relations (4.35) by 
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suitably fixing groups of kj variables as defined in (4.35) to the  values zero or one. 

L e t  ),jkj,...,1j(j λλ=λ  j = 1 , … , n  r e p r e s e n t  t h e  l a g r a n g e a n  m u l t i p l i e r s  

associated with the side constraints of the decomposed column aj (j=l,...,n) where  are 

unrestricted in sign. Let 

jλ

)n,...,1( λλ=λ represent a collection of lagrangean multipliers 

The lagrangean relaxation [GOEF 74] LASP2(λ ) of the ASP2 as set out in (4.31-4.34) 

and (4.35) can be written as 

 
 

 Min  )1jkjk
j

1kiki
d(j

1kiki
y

n

1j

jk

1k
−λ−λ+

++
∑
=

∑
=

 
subject to 

network constraints (4.32-4.33) 

and 

  jA)qv,pv(andn,...,1j,}1,0{j
pqy ε=ε

 
where .n,...,1j,1i1jki,0jjkoj ==+=λ=λ  

 
 
If we replace the inequality ">" in (4.32-4.33) by equality "="H then the modified ASP2 

becomes a relaxation to the SPP. 

 

5. A unified tree search algorithm 

 

Branch and bound is one of the most successful techniques for solving combinatorial 

optimisation problems, covering discrete optimisation models in general and integer 

programming problems in particular [MRTY 76]. The computational efficiency of the tree 

developement and the search procedure which follows from branch and bound depends on 

a number of factors which are considered below. 

 

In designing the branch and bound algorithm, we wish to control the size of the tree 
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developed and the process of searching for the optimal solution of the original problem, 

that is, controlling the number of subproblems proposed. This search strategy depends on 

the heuristics as defined by the choices made at the following algorithmic steps. 

 

(a) The type of the relaxation used to represent the original problem (problem 

representation). This also influences the time taken to solve each subproblem 

(reoptimise). 

(b) The choice of the branching variable (branching strategy). 

(c) The choice of the best subproblem to solve (search strategy). 

 

In this context Breu et al [BRBD 74] have surveyed the art and science of branch and 

bound techniques for 0-1 integer programming. Shapiro [SHAP 79] has incorporated the 

lagrangean relaxation within the framework of the tree search procedure and Mitra 

[MTRA 73] has investigated different strategies for the tree search procedure as applied to 

mixed integer programming. 

 

To start with one of the relaxed SCP problems, namely, ASP1 or ASP2 is solved at the 

root node. After solving the subproblem the solution is analysed and a variable is chosen 

for branching. The choice of a branching variable is a difficult task and no universal rule 

exists which gives a uniformly good result. Many investigators have remarked that, this 

choice rule should be formulated by studying the problem and its structure. By and large 

good branching rules are highly context dependent. In choosing the next subproblem from 

the waiting list of subproblems held in a stack, again many alternative criteria can be used 

and together with the variable choice strategies, these determine the size of the search 

tree. In our investigation we have taken the most popular method of last in first out 

(UFO) rule. 
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An outline of the unified tree search strategy 

 

The alternative strategies which are adopted in the design of the branch and bound 

procedure are outlined in the statement of the algorithm set out below. At each step of 

the solution process it is necessary to know whether or not a feasible solution to the SCP 

is obtained. It is also necessary to know the value of the best objective function which is 

denoted by zmin. Also we use  to denote the optimal solution value of the relaxed 

problem (ASP1 or ASP2), that is, a lower bound on the objective function value of the 

SCP. Before stating the algorithm we explain how the search is terminated at each branch 

of the tree depending on the outcome of the subproblem investigation. A node is 

fathomed if after the solution of the subproblem one of the following conditions hold. 

lz

(1) The lower bound is greater than the upper bound. 

(2) The subproblem has no feasible solution. 

(3) The optimal solution to the relaxed problem is found and this also satisfies the side 

contraints. Hence it is a feasible solution to the SCP and because of (1) above it is also 

the best feasible solution to the SCP found so far. 

 

Step(l) Preprocessing procedure 

In this step the composite preprocessing procedures (a), (b) and (c) outlined in 

section 3 are applied to reduce the model size and to derive an upper bound 

( minz ) and a lower bound (z ) on l z . If  lz  > minz  - 1 go to Step(11), 

otherwise apply the preprocessing procedure (d) to obtain a dual feasible 

solution, which is used to derive the cost vector of the relaxed problem. 

Step(2) Solution at the root node 

The relaxed SCP problem is solved at the root node of the tree. If  lz  >

minz  - 1 or the side constraints are satisfied go to Step(11), (the optimal 

solution to the SCP is obtained which is equal to minz  in the former and 

in the latter), else initialise the lagrangean multipliers and go to Step(8). 

lz  

Step(3) Choice of the branching variable(s) 

Select a group of network variables yjk corresponding to the arcs in the arc set 
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Aj for branching. Add the two subproblems with  

and  to  the list of subproblems,  store their positions  in the list 

and go to Step(4b).  

)jk,...,1k,1jky( ==

)jk,...,1k,1jky( ==

Step(4) Subproblem selection 

(a) If the list of subproblems is empty go to Step(11). 

(b) Choose a subproblem from the list. 

Step(5) Subproblem preparation 

Prepare the subproblem to be optimised, that is, identify the out-of- kilter 

arcs, for example, update the list of subproblems, etc. 

Step(6) Subproblem solution 

Solve the subproblem using a network optimiser  [FDFL 62]. 

Step(7) Subproblem solution analysis 

If the subproblem has no feasible solution or the objective solution value is 

greater than Zmin -1 then go to Step(4). If the side constraints are satisfied go 

to Step(10). Otherwise go to Step(8). 

Step(8) Solution improvement and model reduction 

Test for optimal network solution improvement. Temporary remove the 

redundant columns using reduced cost analysis and single row tests. 

Step(9) Lagrangean and subgradient procedure 

If the number of subgradient iterations exceed an iteration counter (LMAX) go 

to Step(3). Otherwise compute the lagrangean multipliers, update the 

corresponding costs, set the negative costs to nonnegative costs and go to 

step(5). 

Step(10) Update the best SCP solution 

A feasible solution to the SCP has been found. Update minz  and the 

corresponding solution vector and go to Step(4). 

Step(11) SCP optimal solution 

Output the best SCP feasible solution and the corresponding optimal objective 

value ( minz ). 
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6.  Computational results 

 

The computational results to the branch and bound algorithm designed for the ASP1 and 

ASP2 are given in tables 6.1 and 6.2 respectively. This algorithm is applied to the test 

problems which have not been optimaly solved using the preprocessing procedures of 

section 3. The abbreviations used in these tables headings are explained below. 

z  is the optimal solution value if found. A value with a "*" represents the best feasible 

solution found within the time limit. 

m, n are the reduced dimensions of the test problems, where m denotes the number of 

rows and n denotes the number of columns. 

uz  is the best upper bound derived using the preprocessing procedures. The computing 

time taken of the preprocessing procedures is given in the next column. The bound 

derived by the ASP1 and ASP2 at the root node of the tree and the corresponding 

computing time are also reported in these tables, followed by the total number of nodes 

developed in the process of searching for the optimal solution. The number of lagrangean 

iterations applied within the framwork of the tree search is also tabulated. The last two 

columns in these tables represent the total time for the branch and bound algorithm (not 

including step(l)) and the total execution time. The maximum running time permitted was 

set to 1000 cpu seconds. 
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Computational results of processing the test problems by the tree search method on ASP1. 
 
 

  

 
 
 

Table 6.1 
 

All times are in seconds of Honeywell 
Multics DP6840 processing 

      PREPRO- INITIAL     NO OF   

PROBLEM  

REDUCED 
DIMENSIONS 

 CESSING NETWORK  NO OF LAG B&

NAME Z m n uz  TIME SOLUTION TIME NODES ITER TIM

AIR1 16635 120 297 16660     40.93 16577.2  6.12 1136 601 95

B TOTAL 

E TIME 

4.1 995.0 

AIR2 18880 129 436 18885 269.3 18833.1 7.3 26 11 67

AIR3 18195 104 499 18195 175.4 18124.0 6.9 145 113 52

AIR4 19715 138 1089 19795 100.9 19462.7 16.57 225 144 19

AIR5 21560 131 1003 21800 104.55 21377.3 14.67 357 173 34

AIR6 16925 124 998 17000    124.3 16795.0 14.55 31 0 44

           

BUS2 41051 26 90 41537      1.52 41036.4      .04 16 2 

BUS3 64749* 55 977 64749   62.31 63000.2   7.6 487 539 >100

BUS4 74787* 53 547 75212    26.63 72086.1  2.6 818 966 >100

           

RIM4 97 99 74 97 11.5         93.23      .21 75 30     45

RIM5 96 31 54 96 10.7          94.37      .12 37 30     34

RIM6 87 57 40 87 15.2        85.6       .59 70 31     1

                      

.0 336.3 

8.3 703.7 

7.9 298.8 

2.7 347.2 

.1 168.4 

 
   

.87         2.39 

0 >1000 

0 >1000 

 

.4   56.9 

.8   45.5 

6.3    31.5 
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Computation results of processing the test problems by the tree search method based on ASP2. 
 
 

    

 
 

Table 6.2 
All times are in seconds of  Honeywell 

Multics DP6840 processing 

    REDUCED     PREPRO- INITIAL     
NO 
OF 

PROBLEM DIMENSIONS   CESSING NETWORK  NO OF LAG
NAME z m n nz  TIME SOLUTION TIME NODIES ITER

AIR1 16635 120 297 16660     40.93 16577.5   14.43 454 172 

 B&B TOTAL 
 TIME TIME 

>1000 >1000 
AIR2 18880 129 436 18885 269.3 18835.2  24.2 110 74 
AIR3 18195 104 499 18195 175.4 18136.5  18.6 88 
AIR4 19715 138 1089 19795 100.9 19469.8   12.51 177 135 
AIR5 21560 131 1003 21800 104.55 21379.0 11.5 403 231 
AIR6 16925 124 998 17000    124.3 16899.0 25.4 49 13 

          
BUS2 41051 26 90 41537      1.52 41046.4     .1 22 7 
BUS3 64278* 55 977 64749   62.31 63029.0 39.6 116 122 
BUS4 73694* 53 547 75212   26.63 72125.2  9.9 142 210 

          
RIM4 97 99 74 97 11.5          93.23     .89 75 94 
RIM5 96 31 54 96 10.7          94.37     .87 46 14 
RIM6 87 57 40 87 15.2        85.7     .67 47 7 

          

893.3 1162.6 
11 283.3 458.66 

>1000 >1000 
>1000 >1000 

577 701.3 
  

1.7 3.22 
>1000 >1000 
>1000 >1000 
  
584.0 600.0 
94.5 115.2 
34.1 49.3 

  

page 23



The ASP1 solved nearly all the test problems within the time limit, except for BUS3 and 

BUS4. The ASP2 fails to solve problems AIR1, AIR4, AIRS, BUS3 and BUS4 within this 

time limit. The lagrangean and subgradient procedures manage to improve the bounds at 

the lower levels of the tree, that is, when a large number of variables have been fixed to 

either one or zero, but, at the expense very high computing time. The best feasible 

solutions obtained for BUS3 and BUS4 test problems by the ASP2 are better than these 

obtained by the ASP1. 

 

Overall more experiments are needed to "successfully" incorporate the lagrangean and 

subgradient procedures within the tree search procedure.  Different branching strategies also 

may be worth investigating and of course a faster network optimiser will improve the 

performance of this algorithm. 
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Appendix 
 

ILLUSTRATIVE EXAMPLE  OF THE  ALTERNATIVE 
RELAXATIONS 

 
In this appendix the alternative relaxations of the SP (ASPl, ASP2) are illustrated .using 
the SCP example set out in the tableau below. variables. yjk,k=l,...kj reprsent the variables 
for the assignment relaxations,  where kj denotes the  total number of arcs derived 
from column a: of the SCP. 
 
 
  
 

 c c c c c c c c   
 0 0 0 0 0 0 0 0   
 1 1 1 1 1 1 1 1   
 1 2 3 4 5 6 7 8   

cost 4 3 3 2 3 2 3 4   

row1 1    1 1 1  > 1 

row2  1 1  1   1 > 1 

row3      1   > 1 

row4    1   1  > 1 

row5 1      1 1 > 1 

row6  1   1    > 1 

row7   1   1   > 1 

row8    1    1 > 1 
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The ASP1 representation of the SCP example 
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The ASP2 representation of the SCP example 
 
 
 
 
 
 
 
 

 

 


