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Abstract—Self-supervised representation learning for videos
has been very attractive recently because these methods exploit
the information inherently obtained from the video itself instead
of annotated labels that is quite time-consuming. However, exist-
ing methods ignore the importance of global observation while
performing spatio-temporal transformation perception, which
highly limits the expression capabilities of the video representa-
tion. This paper proposes a novel pretext task that combines the
temporal information perception of the video with the motion
amplitude perception of moving objects to learn the spatio-
temporal representation of the video. Specifically, given a video
clip containing several video segments, each video segment is sam-
pled by different sampling rates and the order of video segments
is disrupted. Then, the network is used to regress the sampling
rate of each video segment and classify the order of input
video segments. In the pre-training stage, the network can learn
rich spatio-temporal semantic information where content-related
contrastive learning is introduced to make the learned video
representation more discriminative. To alleviate the appearance
dependency caused by contrastive learning, we design a novel and
robust vector similarity measurement approach, which can take
feature alignment into consideration. Moreover, a view synthesis
framework is proposed to further improve the performance
of contrastive learning by automatically generating reasonable
transformed views. We conduct benchmark experiments with
several 3D backbone networks on two datasets. The results show
that our proposed method outperforms the existing state-of-the-
art methods across the three backbones on two downstream tasks
of human action recognition and video retrieval.

Index Terms—Self-supervised, video representation learning,
pretext task, contrastive learning.

I. INTRODUCTION

V IDEO representation has always been an important basis
for completing many video understanding tasks such

as video retrieval, action recognition, etc. In order to obtain
a more discriminative video representation, many powerful
network architectures based on spatio-temporal feature ex-
traction [1], [2], [3], [4], [5] are designed. In addition, the
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Fig. 1. Illustration of the proposed segment sample rate order prediction
task. As shown in the figure, each sampled video clip is composed of n
video segments. Here, we adopt the strategy of 3 video segments, each video
segment is composed of a random number of video frames (we limit the
shortest video segment length candidate to be 3), and each video segment
is sampled by the different sample rates. Then, disrupt the order of video
segments. The subscripts of the images in the bottom three rows represent
the index of the image in the raw video.

great success of ImageNet [6] inspires people to create large-
scale video datasets, such as Kinetics [7] and ActivityNet [8].
Despite the considerable progress made, video representation
learning under a supervised manner still has two limitations.
(1) The production of video datasets is a labor-intensive task.
Therefore, insufficient training data hinders the application of
many video understanding tasks. (2) The video representation
learned from labels has poor generalization and does not have
the potential to be well applied to multiple downstream tasks.

Recently, many self-supervised representation learning
methods for video are proposed [9], [10], [11], [12], [13], [14],
[15]. The convolutional neural network first performs pretexts
on massive unlabeled videos in a self-supervised manner.
The supervision signals of pretext tasks come from the video
data itself and do not require any manual annotation. Then,
there are two main ways to apply the pre-trained network
to downstream tasks. One is to treat the pre-training as the
initialization of network parameters while the other is to
directly use the pre-trained network as a feature extractor for
downstream tasks.

Early self-supervised methods design pretext tasks based

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 



2

on the spatial transformation of images, including solving a 
jigsaw puzzle [16], image repairing, and predicting the rotation 
angles of images [17]. However, due to the lack of 
consideration of the temporal relationship between video 
frames, the learned video representation cannot be effectively 
applied to video understanding tasks. To introduce advanced 
temporal information for video representation, many methods 
based on video order verification/prediction [9], [18], [19],[20] 
are proposed. Specifically, given a video after temporal 
transformation, these methods leverage the network to perform 
a binary classification task to determine whether the order of 
input video is correct or predict the order of input video clips. 
However, such methods are limited by the single auxiliary task 
structure, which results in much-unmined information in the 
video. As for temporal information, many works reveal that the 
motion amplitude of moving objects is also a kind of mean-
ingful supervision signal [11], [12]. These supervision signals 
can drive the network to pay attention to moving objects whose 
movement trends are most obvious, so it can achieve 
impressive performance. However, solving these tasks cannot 
help the network to pay attention to the global features, and it 
may cause the learned representation to be too local. Although 
the above-mentioned methods can achieve encouraging results, 
they are still restricted by a single-task framework and local 
observations. Other methods include using the corresponding 
relationship of multiple data streams to guide the network to 
generate a video representation with good spatio-temporal 
discrimination [21], [22], [23], and learning spatio-temporal 
representations through statistical regression of motion and 
appearance [24]. The methods using multiple data streams can 
introduce additional data calculation and storage consumption. 
Contrastive learning has become a hot topic for self-supervised 
representation learning [12], [25]. However, these proposed 
methods do not explore which view transformation makes 
contrastive learning more effective.

In this paper, we assume that a good self-supervised video 
representation learning method should be simple and intuitive 
and the learned video representation can globally reflect the 
entire content of the input video clip. Under this assumption, 
we propose a novel self-supervised video representation learn-
ing method. This method classifies the order of unlabeled input 
video segments and predicts the sampling rate of each video 
segment. The network can learn the spatio-temporal represen-
tation of the video by executing this method. Besides, we 
introduce contrastive learning to enhance the discrimination of 
the video representation. Given a video, we sample several 
video segments according to different sampling rates on the 
real timeline. As shown in Fig. 1, each video segment may 
consist of a different number of video frames, and the order of 
video segments is disrupted. Then, the neural network is used 
to predict the order of video segments and the sampling rate of 
each video segment. We sample two video clips from the same 
video as content-related positive pairs, and the video clips 
sampled from other videos are treated as negative pairs. We 
propose a view synthesis framework based on information 
decoupling, which minimizes the mutual information between 
the input and synthesized samples while preserving the motion 
information of the input samples as much as possible. Then,

we maximize the mutual information between the encoded
feature of positive pairs by minimizing the info-NCE loss
[26]. To better preserve the encoded temporal information, we
also propose a novel feature similarity measurement method,
referred to as shuffle similarity (SS).

The contributions of this work can be summarized as
follows.
• We propose a simple and effective self-supervised rep-

resentation learning method for video to predict the
order and the sampling rate of input video segments.
By analyzing the video in segments, this method can
effectively extract high-level temporal semantic informa-
tion, capture the moving objects, and avoid the extracted
spatio-temporal features from being too local.

• Contrastive learning is introduced to enhance the discrim-
ination of video representations and we further propose
a novel feature vector similarity measurement method
to eliminate the appearance dependence caused by con-
trastive learning. In addition, a view synthesis framework
is proposed to further the representation learning.

• Three network architectures are used to evaluate the pro-
posed method in two downstream tasks. The experimental
results show that our approach achieves state-of-the-art
performance on two datasets, reflecting the superiority of
our proposed method.

II. RELATED WORK

A. Learning from Video Content

Self-supervised video representation learning methods that
learning from video content leverage the semantic information
in the video to design several transformations as supervision
signals which can drive the network to extract rich semantic
information. The first motivation is to allow the network to
learn the semantic information in the video during the process
of data reconstructing. For example, the network is used to
generate unsampled video frames based on the context [27],
colorize the grayscale video [28], and predict future frames
based on the given video frames [29], [30]. However, most
of the above-mentioned self-supervised video representation
learning methods based on data reconstruction are pixel-level
dense predictions, which require a large number of network
parameters to train the auxiliary task itself. It is not conducive
to obtaining a robust video representation since too many
network parameters are used to solve specific auxiliary tasks.

Because pixel-level dense prediction task is too heavy for
the network, many works focus on designing simpler and more
effective pretext tasks. Luo et al. [10] leverage the network
to detect the type of spatio-temporal transformation based on
the contextual semantic information to obtain the semantic
information of the raw video. Xu et al. [31] train a deep
model to estimate the geometric deformation applied to the
original sketches. Compared to it, our method is more suitable
for video tasks. Guo et al. [32] use the 2D heat map as the
intermediate supervised signal for 3D hand pose estimation. In
comparison with this, our method fuses three self-supervised
signals and makes avoiding collapse solution into considera-
tion. Feichtenhofe et al. [33] propose a two-stream structure
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to fuse the features of different time resolutions for video 
representation learning, which is applied to action recognition 
tasks with great success. Inspired by this, many self-supervised 
video representation methods based on temporal resolution 
prediction [11], [12], [34], [13] are proposed. The essence 
of this kind of method is to use the motion amplitude of the 
moving objects in the video as the supervision signal to drive 
the network to pay more attention to the moving objects, so 
impressive results can be achieved.

B. Learning from Video Order

Self-supervised video representation learning methods that
learning from video order are dedicated to making full use
of the temporal information. Temporal information is the key
to improving the performance of video understanding tasks.
Therefore, many self-supervised video representation learning
methods are proposed to utilize the temporal information of
the video as much as possible. One way of utilizing the
temporal information is to leverage the network to verify
whether the input frame sequence with the correct order [18],
[19], [20]. However, these methods often treat the temporal
order verification as a binary classification task, where the
network does not need much temporal information to complete
the verification task. In order to increase the state space for
solving the pretext tasks, the second way on utilizing the
temporal information is to recognize the order of the input
frame sequence [9], [35], [36]. In comparison, the second way
needs more temporal information to complete the task, so it
can achieve better performance.

Although self-supervised video representation learning
methods based on temporal correlation can extract video
temporal information to a certain extent, they may still en-
counter ambiguity problems sometimes. For example, for the
stirring action, both clockwise stirring and counterclockwise
stirring are possible. It is difficult for the self-supervised
video representation learning framework which only relies on
a single auxiliary task to learn feature representations that
sufficiently reflect action changes.

C. Learning from the Correspondence between Multiple Data
Streams

Self-supervised video representation learning methods uti-
lize the correspondence between multiple data streams so that
the generated video representation can put the correlation of
various modalities of data into consideration. Nicolas et al.
[37] automatically collect training set from Web videos accord-
ing to the given textual description and establish the mapping
between the textual description and video representation while
our method does not require a lot of textual description.
Mahendran et al. [22] design an auxiliary task based on the
correlation verification of RGB video frames and optical flow.
Sayed et al. [21] use a dual-stream structure to extract features
from RGB video frames and optical flow data respectively
and verify whether these two input data streams are related to
each other. Gan et al. [38] treat the prediction of optical flow
between two consecutive frames as an auxiliary task. However,
the background jitter greatly affects recognition performance

because optical flow estimation is a dense prediction task.
To this end, Wang et al. [24] design a self-supervised video
representation learning framework based on spatio-temporal
statistics by using optical flow estimation algorithms from
coarse to fine. In order to further utilize the correspondence
of multimodal data, Tao et al. [23] utilize contrastive learning
to train the network, taking different modalities of the same
video as positive pairs and samples from different videos as
negative pairs. Han et al. [25] believe that RGB data and
optical flow data can complement in the feature space of each
other, and propose a joint training framework to learn video
representation.

The self-supervised video representation learning methods
based on multi-modal data correspondence cleverly leverage
the correspondence between different modalities as the su-
pervision signal. Since the data of different modalities have
complementary information, this kind of method based on the
perception of the corresponding relationship of multi-modal
data can reduce appearance dependence to a certain extent,
and generate a more robust video representation.

III. PROPOSED METHOD

The proposed self-supervised video representation learning
method is described in detail in this section. Firstly, we
provide an overview of the proposed method. Secondly, we
give some necessary formulations. Thirdly, each component
of the proposed method is explained one by one. Finally, we
outline the entire learning framework and explain the logical
connections between the components.

TABLE I
NOTATIONS AND DEFINITIONS

Notations Definitions
vi a video in dataset
xkvi a video clip sampled from vi
T the number of frames included in the video clip
fθ the parameters of backbone
rvi the representation of video vi
h the logits of order prediction
pi the probability of xvi is the ith permutation
yi the ground truth of order prediction

£order the error of order prediction
α the regression of sampling rate
α̂ the ground truth of sampling rate

£sr the error of sampling rate regression
h(·) an MLP projection head
ψxkvi

the feature coding of xkvi
Sim(ψ1, ψ2) the similarity between ψ1 and ψ2

£ctr the loss of contrastive
D the distance matrix
dis the minimum matching distance of two vectors

A. Overview

The overview of our proposed method is shown in Fig. 2.
Firstly, we sample a video clip query from the raw video,
and feed it into the view synthesis module to generate a new
view as a candidate of key. Next, we resample a video clip
used as another candidate and randomly select a sample from
the candidates as the key. Then, the query and key are fed
into the encoder Q and the encoder K respectively for feature
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Fig. 2. Overview of our proposed method. (a) Sampling two video clips by the different sampling rates and orders from the raw video. One is used as query,
and another is used as a candidate for the key. After that, query is fed into view synthesis to generate a transformed view which is used as another candidate
for the key. Then randomly select a sample from the candidates as the key. (b) We use two encoders to encode query and key into feature representations
containing rich temporal and spatial semantic information respectively. The encoder K does not perform backpropagation, it updates the gradient through
momentum update and gradually approaches the encoder Q. (c) According to the feature representation of the encoder Q, the sample rate of video segments
in the query are regressed. (d) According to the feature representation encoded by the encoder Q, the order of video segments in the query is classified. (e)
Query and key are respectively encoded into 512-dimensional feature vectors by encoder Q and encoder K. A fully connected layer projects them into the
feature space for contrastive learning with the negative samples stored in the dynamic queue Q.

encoding. Note that the encoder K does not perform back-
propagation during the training process, the parameters are
updated by momentum gradient. The feature vector encoded
from the query is firstly used for sampling rate prediction
and order prediction, and then used for contrastive learning
together with the feature vector encoded from the key.

B. Formulation

Given a video vi, we sample a video clip xvi ∈
RC×T×H×W from this video, where C is the number of
channels of the frame, T is the number of frames included in
the video clip xvi , H and W indicate the height and width of
the video frames, respectively. As shown in Fig. 1, xvi consists
of n video segments s, that is xvi = s

(1)
vi , s

(2)
vi , . . . , s

(n)
vi . For

each video segment s(k)vi = v1i , v
2
i , . . ., where vji indicates the

jth frame of video vi. We make li the length of skvi , then
T =

∑N
i=1 li. After encoded by spatio-temporal convolutional

neural network fθ, the video clip can be represented as fθ(x).
Refer to Table I for the definition of the notations appearing
in this paper.

C. Video Segment Order Prediction

Temporal information can reflect the changes of video
frames in the timeline and is also an important source of
information for video understanding tasks. Some works use
2D CNN [39] to extract the features of video frames sepa-
rately and concatenate them to form a video representation.
Then the video representation is utilized to perform an order
verification task. However, these methods have an obvious
drawback. Considering only a single frame of video results in
the learned video representation, it cannot effectively reflect
the spatiotemporal dynamics of the video over a period of time,
which can limit the performance on downstream tasks. To this

end, we extend the order verification task based on a single
frame to the video segment order recognition. Essentially, our
method takes advantage of the continuity of the video on the
timeline. Therefore, uniform sampling may cause the network
only focus on the connection between two video segments and
only a trivial solution can be obtained in this way. To increase
the state space of the auxiliary task solution, we sample
each video segment with a random sampling rate. Besides, to
prevent the network from focusing on the connections between
video segments too much, we sample each video segment with
a random length. In this way, the length of video segments is
not equal, and the network can not solve the video segment
order prediction problem by only focusing on the continuity of
fixed-position. We do not encode each segment separately and
then concatenate these segment features to predict the order of
the segments like[9]. Because it can cause the network to focus
on video segment-level features, instead of the video clip-level
features. In addition, we made the temporal dynamics more
significant by increasing the sampling interval.

We model the video segment prediction as a classification
task. For a video clip with N segments, there are N ! kinds
of possible permutations, each permutation corresponds to
a category of the classification task. In our method, video
segment order prediction is only an auxiliary task and should
not be too difficult. Otherwise, many network parameters are
used to solve the auxiliary task, which is not conducive to
learning robust video representation. Therefore, we limit the
number of video segments between 2 and 5. For the video
segment order prediction, the input of the model is a video
clip containing N segments, and the output of the model
is the probability distribution of different orders. Here, we
use multiple layer perception (MLP) to establish the mapping
relationship between the video feature representation and the
probability distribution of different orders. The specific process
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is represented as follows:

rvi = fθ(xvi) (1)

h =W2(W1rvi + b1) + b2 (2)

pi =
ehi∑C
j=1 e

hj

(3)

where r is the video representation generated by the network
backbone, W and b represent the parameters of the linear
classifier, h is the logits of order prediction, C is the number
of all permutations, and pi is the probability that the order of
the input video clip is the ith permutation. We specify y as
the ground truth of the order of input video segments, and use
cross-entropy loss to measure the error of order prediction,
then:

£order = −
C∑
i=1

yi log(pi) (4)

D. Video Segment Sampling Rate Prediction

Video is a kind of three-dimensional data, and a large
amount of high-level semantic information is hidden in the
spatio-temporal dynamics of the video. We hope that the
network can pay more attention to the moving objects in
the video during the representation learning stage because the
movement trends of the moving objects often best reflect the
content of the video, while reducing the negative effects of
noisy background to some extent. Generally, a moving object
is composed of pixels with the most significant movement
trend in the video. This observation inspires us to design an
auxiliary task that utilizes the motion amplitude of the moving
objects as a supervision signal.

In a video play at a constant speed, the motion amplitude
of moving objects per unit time is approximately equal. Based
on this observation, we approximate the different motion
amplitudes of the moving objects by different sampling rates
of video. The larger the sampling rate is, the greater the motion
amplitude of the moving objects. On the contrary, the smaller
the motion amplitude. Yao et al. [11] propose a self-supervised
video representation learning method based on playback rate
perception. They model playback rate perception as a classifi-
cation problem. Unlike them, we feel that it is more intuitive
to model the motion amplitude prediction of moving objects as
a regression problem instead of a classification problem. The
semantic information required to solve the regression problem
is significantly more than that of the classification problem.
Besides, the method of Yao et al. has an obvious defect.
Since the entire video clip is sampled at a single sampling
rate, the neural network only needs to focus on a few local
frames to complete the playback rate prediction. To this end,
we introduce a more sophisticated sampling method, that is,
the input video clip is composed of multiple video segments
with different sampling rates. This design requires the neural
network to focus on the input video clip globally. Therefore,
our method can obtain a more global video representation
which is conducive to applying our method to downstream
tasks that require global observation.

For video segment sampling rate prediction tasks, the input
of the model is a video clip containing N segments and T

video frames, where s(k)vi = vji , v
j+m
i . . ., m is the sampling

rate which means the interval between two adjacent frames in
the raw video here. The output of the model is the regression
of the sampling rate of each video segment which is indicated
as α ∈ RN . We still use MLP to regress the sampling rate of
each video segment. The specific operations are as follows:

rvi = fθ(xvi) (5)

α =W1rvi + b1 (6)

where r is the video representation extracted by the backbone,
W and b are the parameters of the linear classifier, and α is
the prediction of the neural network. α̂ indicates the ground
truth of the sampling rate, and we use the mean square error
(MSE) to measure the error between the network prediction
and the ground truth:

£sr =
1

n

N∑
i=1

(αi − α̂i)2 (7)

E. Content-related Contrastive Learning

Both video segment order prediction and sampling rate
prediction are only trying to dig the information contained
in a video out. However, only considering the information
in a video can lead to performance limitations when ap-
plying the video representation to downstream tasks. The
video representation needs to consider the differences between
samples to obtain a better video representation that includes
as much task-related information as possible. To achieve this
goal, many works introduce contrastive learning into self-
supervised video representation learning methods. However,
most methods use the correspondence between multiple data
streams to set positive and negative samples. For example,
an RGB video vi and its corresponding optical flow oi are a
positive pair, then vj and oi are a negative pair. Due to the
additional consumption of data calculation and storage, these
approaches are not conducive to applying to large-scale video
data.

The purpose of contrastive learning is to minimize the
distance between positive samples and maximize the distance
between negative samples in the feature space. Its essence is
to maximize the mutual information of the representations of
positive pairs and to make the representations of different sam-
ples distribute uniformly in the feature space. We treat video
clips sampled from the same video as positive samples and
video clips sampled from other videos as negative samples.
It can avoid the overhead of additional data calculation and
storage by using this method.

For the contrastive learning module, the input video clips are
encoded into feature vectors fθ(x) that contain rich semantic
information by the backbone, then use h(·) to map it into
feature space. x1vi is a video clip sampled from vi, and x2vi
indicates another video clip sampled from the same video.
We treat x1vi and x2vi as a positive pair, x1vi and xkvj as a
negative pair. We denote the features encoded from video
clips as ψxk

vi
= h(fθ(x

k
vi)), and define Sim(ψx1

vi
, ψx2

vi
) as
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the similarity of feature vector ψx1
vi 

and ψx2
vi 

. We maximize the 
mutual information between ψx1

vi 
and ψx2

vi 
and the dis-tance 

between ψx1
vi 

and ψx1
vj 

in feature space by minimizing infoNCE 
[26]. The loss of contrastive learning is as follows:

£victr = − log
e
Sim(ψx1

vi
,ψx2

vi
)

e
Sim(ψx1

vi
,ψx2

vi
)
+
∑
j 6=i e

Sim(ψx1
xi
,ψx1

vj
)

(8)

The optimization of the contrastive loss requires a large
number of negative samples to avoid the collapse solution, so
we maintain a dynamic queue to store the encoded features
like moco [40]. The existing methods generally measure the
similarity of feature vectors using Euclidean distance or cosine
similarity, but they are not suitable for our self-supervised
video representation learning method. The reason is that
we disrupted the order of the input video segments before
performing the order prediction, and the change in order is
reflected in the encoded feature vector. Therefore, using these
two methods to measure feature vectors can lead to the loss
of temporal information. We need to align the features before
performing the similarity measurement, otherwise, it may
cause the neural network to depend on the appearance features.
To this end, we propose a novel feature similarity measurement
method for aligning and measuring feature vectors, which is
referred to as shuffle similarity.

F. Shuffle Similarity

Given two feature vectors zxvp
and zxvq

, we divide it into
k parts uniformly, that is zxv

= z
(1)
xv , z

(2)
xv , . . . , z

(k)
xv . Here

zxv
∈ Rd and d is a positive integer which is divisible by

k where k indicates the number of segments that each video
clip contained. Then we use Euclidean distance to measure
the distance between each part for simplicity as follows:

Dij =
k∑
i=1

k∑
j=1

||z(i)xvp
− z(j)xvq

||2 (9)

To compute the minimum matching distance dis according
to the distance matrix, we define M = ∅, N = ∅ and dis = 0.
M is a set storing the minimum matching segment obtained
in zxvp

, and N is a set storing that in zxvq
. Each segment in

zxvp
or zxvq

can get the minimum match once. The specific
steps are as follows:

(m,n) = arg min
m/∈M,n/∈N

D (10)

dis = dis+Dmn (11)

M =M ∪ {Dij |i = m} , N = N ∪ {Dij |j = n} (12)

The minimum matching distance of the two feature vectors
dis can be obtained after repeating (10)(11)(12) for k times.
This measurement approach aligns the feature vectors in
segments, so the similarity between the two feature vectors
can be reflected robustly and effectively. The pseudo-code is
shown in Algorithm 1.

Algorithm 1 Shuffle Similarity
Require:

The feature vector zxvp
∈ Rd, where d = n× k;

The feature vector zxvq
∈ Rd, where d = n× k;

Ensure:
The distance between zxvp

and zxvq
, dis;

1: Divide the feature into k parts uniformly, that is zxv
=

z(1), z(2), . . . , z(k);
2: Initialize a distance matrix D ∈ Rk×k;
3: for each i ∈ [1, k] do
4: for each j ∈ [1, k] do
5: Dij = ||z(i)xvp

− z(j)xvq
||2;

6: end for
7: end for
8: Set M = ∅, N = ∅ and dis = 0;
9: while M 6= D and N 6= D do

10: (m,n) = argminm/∈M,n/∈N D;
11: dis = dis+Dm,n;
12: M =M ∪ {Dij |i = m} , N = N ∪ {Dij |j = n};
13: end while
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Fig. 3. Given video clip is fed into the autoencoder and optical flow estimator
to generate a new view and optical flow. The estimated optical flow and the
raw video clip are used to calculate the photometric loss. The info-max loss
is obtained by maximizing the similarity between the estimated optical flow
of the raw video clip and the generated view. Both the generated view and
the raw video clip are fed into the feature extractor to obtain the embeddings,
and then the info-min loss is calculated.

G. View Synthesis

Sampling a video clip xvi ∈ RC×T×H×W from the
raw video, then feed it into the optical flow estimator Oθ
and the variational autoencoder Gθ respectively. The esti-
mated optical flow is represented as oxvi

= Oθ(xvi) and
oxvi

∈ R2×(T−1)×H×W . These two channels indicate the
offset distance of the pixel in the x-axis and y-axis directions,
respectively. oxvi

can be used to represent the movement of
pixels in xvi . Then xvi is used to generate xpvi and xnvi , where
xpvi = x

(1)
vi , x

(2)
vi , ..., x

(T−1)
vi and xnvi = x

(2)
vi , x

(3)
vi , ..., x

(T )
vi . To

evaluate the effectiveness of the generated optical flow, we
utilize the estimated optical flow oxvi

to warp xpvi and the
warped video clip can be calculated as xwvi = oxvi

xpvi . We set
a photometric consistency term that encourages the estimated
flow to align video frame patches with a similar appearance
by penalizing photometric dissimilarity. The photometric loss
is as follows:

£photo =
1

n

∑
ρ(xnvi − x

w
vi) (13)
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where ρ(x) =
√
x2 + ε2 is the Charbonnier penalty function

(a differentiable variant of l1 norm) [41] and we set ε = 1e−3.
In the pre-training process of the view synthesis module, the
parameters of the optical flow estimator are optimized by an
independent optimizer. However, many effective conventional
optical flow estimation algorithms require a lot of calcula-
tion time, which obviously cannot meet the requirements.
Therefore, the proposed optical flow estimation module is
a rational solution. As shown in Fig. 3, the synthesized
view xsvi = Gθ(xvi), x

s
vi ∈ RC×T×H×W . In addition, the

Gaussian noise is introduced to improve the generalization
of the autoencoder by minimizing the Kullback–Leibler loss
which can be calculated as follow:

£KL−Loss =
1

2

d∑
i=1

(µ2
(i) + σ2

(i) − log σ2
(i) − 1) (14)

Next, we maximize the motion information of the synthesized
view and the raw video clip . The synthesized view is also
fed into the optical flow estimator to get the optical flow osxvi

.
Then the info-max loss is as below:

£infomax =
1

n

∑
ρ(oxvi

− osxvi
) (15)

It should be noted that when calculating the info-max loss,
oxvi

is separated from the dynamic graph and the parameters
of the optical flow estimator are resumed to the original values
after the backpropagation. The purpose is to avoid the collapse
solution. We minimize the mutual information between the
embedding of the synthesized view and the original video clip
to suppress the appearance dependence. Then, the info-min
loss is calculated as below:

£infomin = −D(fθ(xvi), fθ(x
s
vi)) (16)

where we empirically use the cosine similarity as D(.) and
fθ denotes the feature extractor in Fig. 3. In addition, a stop-
gradient operation is introduced to avoid the collapse solution.
That is xvi does not contribute to backpropagation.

The pre-training of the view synthesis module is to minimiz-
ing £view. In the pre-training process of the self-supervised
learning, only the parameters of the autoencoder are retained
for inference.

H. Learning Framework

One goal of video representation learning under the self-
supervised manner is to obtain more generalized and robust
video representation, which requires the network to extract
semantic information from the video as much as possible.
We believe that the high-level semantic information required
by the neural network to complete different pretext tasks is
not absolutely the same, so it is not easy to ensure that
the learned video representation contains enough information
to solve multiple downstream tasks. Therefore, we use a
multi-task learning framework with hard parameter sharing to
optimize multiple pretext tasks jointly. The premise of using
this network structure is that the neural network has redundant
parameters for the solution of each subtask, otherwise, it
may cause some subtasks to become noise affecting the con-
vergence of other subtasks. Besides, the multi-task structure

allows each subtask to share parameters, which can effectively
prevent a single subtask from falling into overfitting. The
parameter sharing mechanism may help the neural network
find a better mapping way for completing tasks.

Fig. 2 is the framework of our proposed method. Given a
video, we sample a video clip from the raw video and referred
to it as query. Next fed it into the view synthesis module to
generate a new view and resample another video clip as the
candidates for key. Then randomly select a sample as the key.
After the backbone encodes query, the prediction of the order
distribution can be obtained through a linear classifier, and
the sampling rate prediction can be regressed through another
linear classifier. Furthermore, the feature representation of
query is mapped into the feature space through a multi-
layer non-linear classifier. The feature representation of query
forms a positive pair with that of the key. Meanwhile, this
maintains a dynamic queue in which many encoded feature
representations are stored and these feature representations can
be treated as negative samples.

The optimization goal is as follows:

minimize£total = λ1£order+λ2£sr+λ3£contrastive (17)

where λ1,λ2, and λ3 are hyperparameters, which represent the
weight of each subtask that used to balance the contribution of
each subtask in backpropagation. Rational weight assignment
can avoid easy subtasks dominating the entire training process.

The closest work to the proposed method is the one
proposed by Wang et al [12]. In comparison with it, we
have the following improvements: (1) Our work extends a
video segment order prediction subtask, which can effectively
introduce temporal information for video representation. (2)
We sample several video segments at different sampling rates
and concatenate them into a video clip. The proposed method
can generate a more global feature representation. (3) A novel
feature vector similarity measurement method is proposed to
eliminate appearance dependence to some extent. (4) Different
from other contrastive learning based methods [12], [23],
[25], [42] that design view transformation based on human
prior knowledge, we propose a view synthesis framework for
generating effective positive views.

IV. EXPERIMENTS

A. Experimental Setup

We conduct all of the experiments on a server with one
Nvidia 2080Ti GPU, one Intel Core i9-9820X CPU, and 64GB
RAM under Ubuntu 18.04 LTS and the proposed method is
implemented based on Pytorch framework.

B. Datasets

To evaluate the performance of the proposed method, we
conduct extensive experiments on multiple datasets. The pro-
posed method is utilized to perform pre-training under the self-
supervised manner on the Kinetics-400 [7] and UCF101 [43]
datasets, and evaluate the performance of action recognition
and video retrieval on UCF101 and HMDB51 [44] datasets.

Kinetics-400 [7] is a large-scale human action recognition
dataset containing 400 action categories and 306245 trimmed
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videos about ten seconds. Generally, there are 400 ∼ 1150 
videos for each action category. We use its training split as the 
data for pre-training which contains approximately 24000 
videos.

UCF101 [43] is one of the most widely used action recog-
nition datasets. It is composed of 5 categories of actions 
including human-object interaction, body-motion only, human-
human interaction, playing musical instruments, and sports. 
101 human actions in the natural environment are contained in 
this dataset, each human action is performed by 25 performers, 
and each person performs 4 ∼ 7 groups. The video frame size is 
cropped to 320 × 240. In this paper, we use the training split of 
UCF101 as the pre-training data and evaluate the performance 
of the proposed method in downstream tasks on the testing 
split.

HMDB51 [44] is a dataset with wide data sources, including 
movies, some existing released datasets, YouTube videos, etc. 
It consists of 51 human action categories, and each category 
contains more than 101 videos. We use this dataset to evaluate 
the performance of the proposed method in downstream tasks.

C. Backbones

As far as our concern, the evaluation of self-supervised
video representation learning methods should be decoupled
from the selected network backbone because the performance
improvement may come from the use of a powerful network
backbone. For a fair comparison, we use the three most widely
used network backbones in self-supervised video representa-
tion learning methods to evaluate our method, including C3D
[1], R3D, and R(2+1)D [2].

C3D [1] is a 3D convolutional neural network expanded
from a 2D convolutional neural network, which is suitable
for extracting spatio-temporal dynamic information of video
by using the 3D convolution kernel. C3D contains 8 stacked
convolutional layers and 5 pooling layers, and we set the size
of the convolution kernel to 3× 3× 3.

R3D [2] is a 3D extended version of 2D ResNet[45]. As we
know, ResNet has achieved great success in the image classifi-
cation field, and it is now widely used in various representation
learning approaches. Inspired by it, R3D introduces residual
connections in the 3D convolutional neural network to form
an 18-layer 3D version of ResNet. The size of the convolution
kernel is also set to 3× 3× 3.

R(2+1)D [2] decomposes the 3D convolution kernel into a
combination of spatial convolution and temporal convolution.
The biggest advantage of this mechanism is that the number
of R(2+1)D network layers is more than that of normal 3D
convolutional neural networks with the same number of spatio-
temporal convolution operations, which brings more nonlinear
expression capability to the network.

S3D-G [46] adopts a strategy similar to R(2+1)D [2]. On
the basis of I3D[3], the 3D convolution kernel is replaced by
a combination of 2D + 1D convolution kernels. In addition,
the feature gating module is introduced to generate the weight
of the channel dimension.

D. Pretext Task Training

As shown in Fig. 2, the non-linear classifier is connected
to the network backbone during the pretext task training
stage and it is removed when evaluating downstream tasks.
Perceiving long-term video features is helpful for completing
most video understanding tasks, so the length of the input
video clip has a very significant impact on the performance
of downstream tasks. However, the benefits of increasing the
length of video clips are not the focus of this paper, so we
use the same configuration as the recent works [9], [11] that
limiting the length of video clips to 16 frames for the sake of
fairness. The sampling process is shown in Fig. 1, except that
the index of the first frame is randomly selected to ensure that
each sampled video clip is unique. For the data augmentation,
the input video clip is first resized to 128 × 171, and then
randomly crop it into 112 × 112, then color jitter is used to
randomly adjust the brightness, contrast, and saturation of the
input video clip, and finally randomly horizontal flip the video
clip. When pre-training on the UCF101 [43] dataset, the batch
size is set to 16 and train for 300 epochs. The batch size and
the total number of epoch are setted to 32 and 30 respectively
when pre-training on Kinetics-400 [7] dataset. We select SGD
as the optimizer, the initial learning rate is set to 1e− 3 while
the momentum and weight decay are set to 9e− 1 and 5e− 4
respectively. It is noticed that the learning rate reduces to 0.1
times after 200 (20 for Kinetics) epochs pre-training.

It can be seen from Fig. 2 (b) that the video clip query and
key are encoded into 512-dimensional feature vectors by the
encoder Q and the encoder K, and the features are denoted
as vq and vk here. vq is used for order prediction (d) and
sampling rate prediction (c), while vq and vk are mapped
into 128-dimensional feature vectors respectively through a
non-linear classifier to perform contrastive learning with the
negative samples stored in the queue (e). It is worth noting
that we use an engineering method similar to moco [40]. The
encoder K does not perform backpropagation during the pre-
training stage, and the encoder K updates the parameters in
a momentum update way. For each iteration, the encoder K
updates the parameters in the following manner:

θk = δθk + (1− δ)θq (18)

where θk is the parameters of the encoder K, and θq represents
the parameters of the encoder Q. For ease of implementation,
the length of the queue in this project is set to the integer
multiple of the batch size. The proposed method is a multi-
task structure, we assign different weights to the loss of each
subtask to control the training speed of each subtask. In our
experiment, £total = λ1£order+λ2£sr+λ3£ctr, where λ1 =
λ3 = 1 and λ2 = 0.3.

E. Fine-tune and Evaluation

To evaluate the superiority of the proposed method, we
apply the network backbone trained by our proposed method
to the task of action recognition. Specifically, all parameters of
the convolutional layer in the backbone after self-supervised
learning are retained, and the parameters of the fully connected
layer are randomly initialized. During the fine-tune stage, the
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training set of the Kinetics-400 [7] and UCF101[43] are used as 
the training data. It should be noted that the video clip fed into 
the neural network is continuous 16 frames that randomly 
sampled from the raw video. For data augmentation, it is 
consistent with the configuration of the pretext task training.

We evaluate the performance of the learned video repre-
sentations applied to downstream tasks on the testing sets of 
UCF101 [43] and HMDB51 [44]. We firstly sample 10 clips in 
a video, then resize the video frame to the size of 128 × 171, 
and center crop it into the size of 112 × 112. The final 
prediction of the classification is obtained by averaging the 
prediction of each clip.

F. Ablation Study

In this section, we conduct extensive ablation experiments
to further evaluate the superiority of our proposed method.
The following three aspects are discussed. Firstly, we discuss
why self-supervised learning works. Secondly, the best exper-
imental setup is explored. Then, experiments are conducted to
explore the effectiveness of each component. Finally, experi-
mental results are analyzed and discussed.
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Fig. 4. Visualization of feature distribution. Each color in the figure represents
an action category. Here are 5 colors in total, representing class 0, class 10,
class 20, class 30, and class 40 of the UCF101[43] dataset respectively. (a)
The distribution of the features extracted by the backbone whose parameters
are randomly initialized. (b) The distribution of features extracted by the
backbone after self-supervised learning. (c) Features distribution that the
features are extracted by the backbone after supervised learning.

Query Random initialization Ours (self-supervised)

Balance Beam Still Rings Uneven Bars Uneven Bars Balance Beam Balance Beam Balance Beam

Horse Race Horse Race Golf Swing Biking Horse Race Horse Race Horse Race

Surfing Surfing Surfing SurfingRope Climbing Cliff Diving Hammer Throw

Fig. 5. Each image represents a video. From left to right, the first column
represents three querys randomly selected from the testing split. The following
are the Top-3 retrieval results of using the backbone with random initialization
parameters and the backbone pre-trained by the proposed method. The
subscript of each image represents the label it belongs to. The correct retrieval
results are marked in green, and failure cases are marked in red.

1) Why self-supervised learning works: We are eager to
know why self-supervised learning works. In this part, we
use R(2+1)D as backbone and sample video clips which
consists of 16 consecutive frames from 5 action categories

in UCF101 dataset. Each video clip can be represented by a
512-dimensional feature vector after encoded by the network
backbone. Then, t-SNE [47] is used to map these feature
vectors from high-dimensional space to a two-dimensional
feature space.
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Fig. 6. Comparing the performance of action recognition on three backbones
using different parameter initialization methods. Blue indicates that the
parameters of the backbone are initialized randomly, while orange indicates
that the parameters of the backbone are trained by the proposed method. The
vertical axis represents the accuracy of action recognition.

From Fig. 4(a), it can clearly be observed that the features
extracted distribute in the entire feature space uniformly when
the parameters of the neural network are initialized randomly.
Self-supervised learning introduces much temporal and spatial
semantic information into the feature representation. This se-
mantic information makes the extracted feature representation
more discriminative. As shown in Fig. 4(b), the points with
the same color (representing the same action category) in the
figure are more concentrated in the feature space. It should
be noted that we do not introduce any manual annotation
during the self-supervised learning stage. Fig. 4(c) shows
the feature distribution after supervised learning. It can be
seen that benefit from many action category labels, the point
distribution of the same category is extremely concentrated,
and the distance between different categories is very far. It can
also be seen from Fig. 5 that when the network parameters
are randomly initialized, the extracted features can almost
only reflect the background color of the video. However, after
the pre-training of the self-supervised method, rich semantic
information is introduced into the feature representation, which
makes the retrieval result significantly better than the former.

TABLE II
USING THREE BACKBONES TO EVALUATE THE PERFORMANCE OF

RANDOM INITIALIZATION AND SELF-SUPERVISED LEARNING ON ACTION
RECOGNITION TASKS ON TWO DATASETS.

Backbone Eval. dataset Random Self-supervised
C3D UCF101 61.5 75.9
C3D HMDB51 23.1 39.8
R3D UCF101 54.5 76.6
R3D HMDB51 21.4 42.3

R(2+1)D UCF101 56.4 80.1
R(2+1)D HMDB51 22.3 46.6

It can be seen from Table II that with C3D [1] backbone, the
proposed approach can obtain 14.4% and 16.7% improvements
on UCF101 [43] and HMDB51 [44] than randomly initialized.
With R3D [2] as a backbone, it can achieve 22.1% and 20.9%
improvements, respectively. And when we use R(2+1)D [2]
as a backbone, the improvements can be 23.7% and 24.3%.
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Fig. 7. The order prediction accuracy, top-1 video retrieval accuracy and
action recognition accuracy on UCF-101 dataset with the different video
segment numbers. The blue line chart represents the relationship between
the order prediction accuracy and the number of video segments, while the
orange and green line chart respectively represent the relationship between the
top-1 retrieval accuracy and the action recognition accuracy and the number
of video segments.

Another key observation can be found from Fig. 6 is that the
improvement of the proposed method on the hmdb51 [44] is
always greater than that on the UCF101 [43]. This reflects that
when the proposed method is used as a pre-training method,
the benefits on small datasets are greater than those on large
datasets.

The above experimental results strongly demonstrate that
when the neural network pre-trained by self-supervised learn-
ing is used as a feature extractor and applied to downstream
tasks, the neural network can extract discriminative video
representations without any manual annotation. When the
proposed method is regarded as a pre-training method, it can
help the network find a better mapping way to complete the
target task.

TABLE III
COMPARING THE IMPACT OF THE DIFFERENT NUMBERS OF VIDEO

SEGMENT ON THE TOP-1 RETRIEVAL RESULT AND THE ACTION
RECOGNITION ACCURACY

Method Order acc. Samp. error Cntr. loss Top-1 Recg. acc.
n = 2 96.78 1.55 0.72 38.5 78.8
n = 3 93.12 1.66 0.66 39.7 80.1
n = 4 89.02 1.88 0.69 38.1 79.0
n = 5 84.36 2.23 0.75 37.7 78.3

n: the number of video segment. Samp. error: the error between
sampling rate prediction and ground truth. Order acc: the accuracy
of the order prediction. Cntr. loss: the loss of contrastive learning.
Top-1: the top-1 retrieval result. Recg. acc: the action recognition
accuracy.

2) Number of Video Segments: We explore the best video
segment number for pretext task with R(2+1)D [2] as the
backbone in Table III. When the input video clip contains
n segments, the order prediction task becomes a classifier
problem with n! classes. However, too many segments can
result in fewer frames per segment, which is not conducive
to sampling rate prediction. We limit the number of segments
to n = [2, 5] for the comparative experiment to control the
difficulty of the pretext task. It can be seen from the table
that the performance of downstream tasks increases with the
increase of the number of segments until n = 3. When n > 3,
the accuracy of downstream tasks begins to decline. From
Fig. 7, we can see that the accuracy of the order prediction
decreases as the number of video segments increases. This
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Fig. 8. The top-1 video retrieval accuracy and action recognition accuracy
on UCF-101 dataset with the different ranges of the candidate sampling rate.
p denotes the range of the candidate sampling rate. The blue line chart
represents the relationship between the top-1 retrieval accuracy and the range
of the candidate sampling rate while the green line chart represents the
relationship between the action recognition accuracy and the range of the
candidate sampling rate.

reflects that the difficulty of the pretext task increases with
the number of segments increases. The results prove the
hypothesis that the pretext designed should not be too difficult
or too simple. Also, it can be seen from Fig. 7 that the
performance of action recognition and the performance of
video retrieval are positively correlated. The reason might be
that there is a lot of relevant information between these two
tasks.

TABLE IV
COMPARING THE IMPACT OF THE DIFFERENT RANGES OF CANDIDATE
SAMPLING RATE ON THE TOP-1 RETRIEVAL RESULT AND THE ACTION

RECOGNITION ACCURACY

Method Order acc. Samp. error Cntr. loss Top-1 Recg. acc.
p = [1, 4] 90.89 2.23 0.75 38.4 78.5
p = [1, 6] 91.34 2.01 0.68 38.8 79.0
p = [1, 8] 90.77 1.73 0.72 39.7 80.1
p = [1, 10] 91.25 1.68 0.70 39.4 79.7

p: the range of candidate sampling rate. Samp. error: the error of sampling
rate prediction. Order acc: the accuracy of the order prediction. Cntr. loss:
the loss of contrastive learning. Top-1: the top-1 retrieval result. Recg.
acc: the action recognition accuracy.

TABLE V
THE COMPARISON OF MODELING THE SAMPLING RATE PREDICTION AS A

CLASSIFICATION PROBLEM AND A REGRESSION PROBLEM ON UCF101

Method Backbone Top-1 Recog. acc.
Classification C3D 34.7 74.5

Regression C3D 35.6 75.9
Classification R(2+1)D 38.6 79.3

Regression R(2+1)D 39.7 80.1

3) Sampling Rate: During the training process of pretext
tasks, except for the number of the video segments, we
also explore the impact of different sampling rate ranges on
downstream tasks. In this part, we discuss the optimal range
of sampling rate p ∈ [d, u].

From the Table IV, we can see that 4 groups of experiments
are performed, p = [1, 4], p = [1, 6], p = [1, 8] and p = [1, 10].
p represents the interval between two adjacent frames in the
sampled video clip. When the candidate range of the sampling
rate is too small, the change of adjacent frames is not obvious
enough, it may limit the performance of the proposed method
on downstream tasks.
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In addition, we also discuss the advantages of modeling the 
motion amplitude prediction of moving objects as a regression 
problem compared to a classification problem in Table V. The 
table shows the superiority of modeling sampling rate 
prediction as a regression problem.

TABLE VI
EXPLORING THE EFFECTIVENESS OF EACH COMPONENT

Components Downstream task
Order pred. Samp. rate pred. Cntr. learning Shuffle View Top-1 Recog. acc.
! # # # # 10.2 73.5
! ! # # # 11.4 75.6
! ! ! # # 38.0 77.2
! ! ! ! # 38.5 77.8
! ! ! ! ! 39.7 80.1

Order pred: the order prediction subtask; Samp. rate pred: the sampling
rate prediction subtask; Cntr. learning: the contrastive learning module;
Top-1: the top-1 retrieval result on UCF101 dataset; Recg. acc: the action
recognition accuracy on UCF101 dataset.

4) Effectiveness of Resolution and Length: Table IX shows
the performance of the proposed method on video clips under
different resolutions and lengths. Due to equipment limitations,
we use the relatively lightweight networks R3D [2] and S3D-
G [46] as the backbone for this part of the experiment. From
the table, we have the two very intuitive observations: (1)
Higher resolution produces better results. (2) More video
frames are fed, better performance can be achieved. This
shows that adding data is still an effective way to improve
the performance of the target task. However, the increment in
data can also significantly increase the computational cost.

5) Effectiveness of Each Component: In this part, we
discuss the effectiveness of each component of the proposed
approach. We select R(2+1)D [2] as the backbone, use the
train split of UCF101 [43] as the pre-training data, then fine-
tune the network on the training set of UCF101 and HMDB51,
and evaluate the effectiveness of each component on their test
split.

According to the content in Table VI, we have the following
key observations: (1) When only performing order prediction
and sampling rate prediction subtasks, the considerable per-

TABLE VII
THE PRETEXT TASK PERFORMANCE OF SINGLE-TASK AND MULTI-TASK

ON UCF101

Backbone Order acc. Samp. error Cntr. loss
R(2+1)D 94.16 — —
R(2+1)D — 1.58 —
R(2+1)D — — 0.50
R(2+1)D 93.75 1.63 0.54

TABLE VIII
THE COMPARISON WITH VCOP[9]

Method Backbone FLOPs Recog. acc. Top-1
VCOP[9] C3D 115.8× 109 65.6 7.4

Ours(order) C3D 38.6× 109 66.7 7.8
VCOP[9] R3D 59.8× 109 64.9 14.1

Ours(order) R3D 19.9× 109 65.3 14.5
VCOP[9] R(2+1)D 64.4× 109 72.4 10.7

Ours(order) R(2+1)D 21.5× 109 73.5 10.5

TABLE IX
THE IMPACT OF DIFFERENT FRAME RESOLUTIONS AND CLIP LENGTHS ON

THE DOWNSTREAM TASK

Backbone Resolution Clip length UCF101 HMDB51
R3D 112×112 16 76.6 42.3
R3D 112×112 32 78.4 44.5
R3D 112×112 64 80.2 46.0
R3D 152×152 16 78.9 43.8
R3D 224×224 16 81.0 46.6

S3D-G 112×112 16 70.6 39.1
S3D-G 112×112 32 74.8 42.7
S3D-G 112×112 64 79.5 47.3
S3D-G 152×152 16 74.9 43.6
S3D-G 224×224 16 78.6 46.5

formance can be achieved. (2) The introduction of contrastive
learning significantly improves the performance of video re-
trieval, which shows that contrastive learning can significantly
enhance the discrimination of video representation. (3) Shuffle
Similarity can further improve the performance of our pro-
posed method on downstream tasks.

To further demonstrate the superiority of the proposed
method, we show the comparison between the proposed
method and VCOP[9] a method based on video order predic-
tion in Table VIII. The results in Table VIII are performed with
the proposed method only considering the video segment order
prediction subtask. It can be seen that even if only the video
segment order prediction subtask is considered, the proposed
method can still achieve slightly better results than VCOP[9],
and only costs about one-third of the calculation overhead.

Our proposed method utilizes a multi-task learning architec-
ture to optimize three subtasks together. Therefore, we need
to ensure that the network has enough parameters to optimize
multiple subtasks jointly. Table VII shows the results of the
ablation experiments. It can be seen that using a multi-task
learning structure to optimize three subtasks at the same time
can achieve a comparable result to single-task optimization.
This strongly proves that the network does have enough
parameters to jointly optimize multiple subtasks.

G. Discussion

By visualizing the distribution of the features extracted by
the network in the feature space, we find that a considerable
clustering result can be achieved even without any manual
annotation is introduced. This phenomenon strongly illustrates
that the proposed method can fully dig out the temporal and
spatial semantic information hidden in the video, and then
make the learned video representation more discriminative.
Compared to random initialization, the proposed method as
a parameter initialization method not only converges faster
but also greatly surpasses the performance of the former. This
benefits from much temporal and spatial semantic information
obtained by pre-training and the designed pseudo-labels can
drive the network to extract more meaningful features.

Also, we perform several groups of ablation experiments to
explore the influence of different video segment numbers, the
ranges of candidate sampling rate, and each component of the
proposed method on downstream tasks. Experimental results
demonstrate that a moderately difficult pretext task is essential
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for learning a good video representation, and its impact is even 
more significant than that of other pre-training methods.

Although the proposed method has satisfactory performance 
in downstream tasks and various ablation experiments also 
show that the video representation learned by the proposed 
method can effectively reflect the dynamic changes of the 
video. However, this method still has some limitations. For 
example, the motion speed of different types of actions are dif-
ferent, that is, the same sampling rate of different actions may 
be accompanied by different motion amplitudes. Therefore, di-
rectly using the sampling rate as a metric for the motion ampli-
tude of the moving objects is sometimes not accurate. Recent 
self-supervised video representation learning works suggest 
that the premise for self-supervised learning to be effective is 
that the designed pretext tasks and target downstream tasks 
must contain enough task-related information. Although the 
existing self-supervised video representation learning methods 
have made encouraging progress, these methods are designed 
based on the prior knowledge of researchers. However, search-
ing for the best pretext tasks is still a challenging task. Another 
key observation of this work is that compared to a single-task 
learning framework, optimizing multiple pretext tasks at the 
same time can help the network dig out more temporal and 
spatial semantic information. Therefore, after the exploration of 
this paper, we have the following insights: if the video 
representation is learned for a specific downstream task, the 
optimal pretext task is often difficult to find, so the guidance of 
a small number of labels may be a better solution. If the 
generalization of video representation is pursued, it can be 
more effective to optimize multiple pretext tasks with suitable 
difficulty jointly.

V. COMPARISON WITH STATE-OF-THE-ART METHODS

A. Comparison Methods

First, we briefly introduce the comparison methods in this
section. VCOP[9] is a self-supervised video representation
learning method based on video clip order prediction. VCP[10]
attempts to drive the network to extract video semantic in-
formation in the process of classifying the type of transfor-
mation. ST-Puzzle[36] extends the image puzzles into three-
dimensional space-time cubic puzzles. PRP[11] firstly uses
temporal resolution perception to learn video representation.
The pace[12] proposed by Wang et al. also introduces con-
trastive learning on the basis of temporal resolution perception,
which further improves the performance.

B. Action Recognition

We compare our proposed approach with other state-of-the-
art methods for action recognition. The comparison results are
shown in Table X. The results in the table clearly show that the
proposed method can achieve state-of-the-art performance on
both UCF101 and HMDB51 dataset with different backbones.
When C3D is used as the backbone, the proposed method
outperforms the current best-performing method RTT [13] by
7.6% on UCF101 [43]. When we use R3D [2] as backbone,
the proposed method outperforms PRP[11] by 10.1% on
UCF101 and 12.6% on HMDB51 respectively. Besides, even

with lower resolution and pre-training on the smaller dataset,
the proposed method still outperforms DPC [29] by 8.4%
and 7.8% on UCF101 and HMDB51 datasets. When using
R(2+1)D [2] as the backbone and pre-training on the UCF101
dataset, the proposed method outperforms the current state-
of-the-art method of Pace [12] by 4.2% and 10.7%. Even
if Pace [12] uses larger dataset kinetics [7] for pre-training,
the proposed method still outperforms it by 3.0% and 10.0%.
Due to equipment limitations, when the S3D-G[46] is used
as the backbone and the input video clip length is 64, we
can only execute experiments with a lower video resolution of
152×152. Nevertheless, the proposed method can still achieve
comparable performances in comparison with the current state-
of-the-art method in [12].

C. Video Retrieval

We further verify the superiority of the proposed method
on the nearest neighbour video retrieval task. For a fair
comparison, we follow the evaluation protocol used in [9].
First sample 10 16-frames video clips from each video in the
training set, and then feed them into the backbone to obtain
512-dimensional feature vectors from the last pooling layer.
Then extract the features of the video clips from the testing
set to query the clips in the training set. The specific operation
is that we use the cosine similarity to measure the distance
between the feature representation of the query clip and the
feature representation of all clips in the training set to obtain
k nearest neighbor video clips. If the label of the test clip is
within the Top − k retrieval results range, it means that this
retrieval is successful.

The comparison results on UCF101 and HMDB51 datasets
are respectively shown in Table XI and Table XII. The tables
show top-1, top-5, top-10, top-20 and top-50 retrieval accuracy.
It can be seen that the proposed method outperforms to
the listed state-of-the-art methods in all evaluation metrics.
In addition, we can also see that applying the pre-trained
parameters to video retrieval can achieve a more significant
performance improvement than action recognition. From Table
VI, we can find that the huge improvement in video retrieval
comes from the introduction of contrastive learning. For the
proposed method, the order prediction subtask and the video
segment sampling rate prediction subtask are mainly used to
introduce semantic information to the network and help the
network find better mapping when performing downstream
tasks while contrastive learning can significantly enhance the
ability of the network to extract discriminative features.

VI. CONCLUSION

In this paper, a novel self-supervised video representation
learning method is proposed, which mines the temporal and
spatial semantic information hidden in the video by regressing
the sampling rate of the video segments and classifying
the order of video segments. In addition, we introduced the
currently very popular contrastive learning to further enhance
the discrimination of learned video representations. To verify
the effectiveness of the proposed method, we use C3D, R3D,
R(2+1)D and S3D-G as backbone in two downstream tasks
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TABLE X
COMPARISION WITH THE STATE-OF-THE-ART SELF-SUPERVISED LEARNING METHODS FOR ACTION RECOGNITION

Method Self-supervised learning setup Action Recognition
Backbone Params Frame size Clip length Pre-training UCF101 HMDB51

VCOP[9] C3D 27.7M 112×112 16 UCF101 65.6 28.4
VCP[10] C3D 27.7M 112×112 16 UCF101 68.5 32.5

ST-Puzzle[36] C3D 65.5M 224×224 128 Kinetics-400 65.8 33.7
PRP[11] C3D 27.7M 112×112 16 UCF101 69.1 34.5
RTT[13] C3D 27.7M 112×112 16 UCF101 68.3 38.4

Ours C3D 29.1M 112×112 16 UCF101 70.9 37.3
Ours(view) C3D 32.5M 112×112 16 UCF101 75.9 39.8
VCOP[9] R3D 14.2M 112×112 16 UCF101 64.9 29.5
VCP[10] R3D 14.2M 112×112 16 UCF101 66.0 31.5

ST-Puzzle[36] R3D 33.6M 224×224 128 Kinetics-400 65.8 33.7
PRP[11] R3D 14.2M 112×112 16 UCF101 66.5 29.7

3D-RoNet[48] R3D 33.6M 224×224 16 Kinetics-400 62.9 33.7
DPC[29] R3D 14.2M 128×128 40 Kinetics-400 68.2 34.5

Ours R3D 15.0M 112×112 16 UCF101 71.1 38.4
Ours R3D 15.0M 112×112 16 Kinetics-400 72.1 39.2

Ours(view) R3D 22.2M 112×112 16 UCF101 76.6 42.3
VCOP[9] R(2+1)D 14.4M 112×112 16 UCF101 72.4 30.9
VCP[10] R(2+1)D 14.4M 112×112 16 UCF101 66.3 32.2
PRP[11] R(2+1)D 14.4M 112×112 16 UCF101 72.1 35.0
Pace[12] R(2+1)D 14.4M 112×112 16 UCF101 75.9 35.9
Pace[12] R(2+1)D 14.4M 112×112 16 Kinetics-400 77.1 36.6

Ours R(2+1)D 15.2M 112×112 16 UCF101 77.8 39.5
Ours R(2+1)D 15.2M 112×112 16 Kinetics-400 78.8 42.2

Ours(view) R(2+1)D 22.5M 112×112 16 UCF101 80.1 46.6
SpeedNet[49] S3D-G 9.6M 224×224 64 Kinetics-400 81.1 48.8

Pace[12] S3D-G 9.6M 224×224 64 UCF101 87.1 52.6
Ours S3D-G 10.1M 152×152 64 UCF101 80.2 50.3

Ours(view) S3D-G 15.0M 152×152 64 UCF101 85.9 52.7

TABLE XI
COMPARISON WITH STATE-OF-THEART METHODS FOR VIDEO RETRIEVAL

TASK ON UCF101 DATASET.

Backbone Method Top1 Top5 Top10 Top20 Top50

C3D[1]

Random 16.7 28.5 33.5 40.0 49.4
VCOP[9] 12.5 29.0 39.0 50.6 66.9
VCP[10] 17.3 31.5 42.0 52.6 67.7
PRP[11] 23.2 38.1 46.0 55.7 68.4
Pace[12] 20.0 37.4 46.9 58.5 73.1

Ours 35.6 52.4 62.2 73.2 83.5

R3D[2]

Random 9.9 18.9 26.0 35.5 51.9
VCOP[9] 14.1 30.3 40.4 51.1 66.5
VCP[10] 18.6 33.6 42.5 53.5 68.1
PRP[11] 22.8 38.5 46.7 55.2 69.1
Pace[12] 19.9 36.2 46.1 55.6 69.2

Ours 37.1 55.2 61.7 72.8 84.2

R(2+1)D[2]

Random 10.6 20.7 27.4 37.4 53.1
VCOP[9] 10.7 25.9 35.4 47.3 63.9
VCP[10] 19.9 33.7 42.0 50.5 64.4
PRP[11] 20.3 34.0 41.9 51.7 64.2
Pace[12] 17.9 34.3 44.6 55.5 72.0

Ours 39.7 53.6 66.7 75.9 83.7

action recognition and video retrieval, respectively. The pro-
posed method can pre-train the backbone as a feature extractor
for downstream tasks and can further fine-tune the pre-trained
backbone to perform downstream tasks. The experimental
results show that our method outperforms existing state-of-
the-art self-supervised video representation learning methods
on multiple datasets.
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